test_0728_SECOND | | | | | 87.71 34 | 95.34 1 | 71.43 62 | 93.49 9 | 94.23 5 | | | | | 97.49 3 | 89.08 7 | 96.41 12 | 94.21 39 |
|
SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 70 | 93.57 7 | 94.06 12 | 77.24 51 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 5 | 89.07 9 | 96.63 4 | 94.88 9 |
|
IU-MVS | | | | | | 95.30 2 | 71.25 63 | | 92.95 56 | 66.81 242 | 92.39 6 | | | | 88.94 11 | 96.63 4 | 94.85 14 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 70 | | 94.06 12 | 77.17 55 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 10 | | | |
|
DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 45 | 95.27 5 | 71.25 63 | 93.49 9 | 92.73 65 | 77.33 49 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 7 | 89.08 7 | 96.41 12 | 93.33 82 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 95.27 5 | 71.25 63 | 93.60 6 | 94.11 8 | 77.33 49 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
test_one_0601 | | | | | | 95.07 7 | 71.46 61 | | 94.14 7 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
test_part2 | | | | | | 95.06 8 | 72.65 33 | | | | 91.80 13 | | | | | | |
|
HPM-MVS++ |  | | 89.02 8 | 89.15 8 | 88.63 4 | 95.01 9 | 76.03 1 | 92.38 25 | 92.85 60 | 80.26 13 | 87.78 30 | 94.27 36 | 75.89 19 | 96.81 22 | 87.45 19 | 96.44 9 | 93.05 93 |
|
FOURS1 | | | | | | 95.00 10 | 72.39 42 | 95.06 1 | 93.84 18 | 74.49 118 | 91.30 15 | | | | | | |
|
DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 14 | 94.80 11 | 72.69 32 | 91.59 42 | 94.10 10 | 75.90 88 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 9 | 87.44 20 | 96.34 15 | 93.95 51 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
CNVR-MVS | | | 88.93 9 | 89.13 9 | 88.33 7 | 94.77 12 | 73.82 9 | 90.51 63 | 93.00 47 | 80.90 9 | 88.06 28 | 94.06 46 | 76.43 16 | 96.84 20 | 88.48 14 | 95.99 19 | 94.34 34 |
|
ACMMPR | | | 87.44 26 | 87.23 31 | 88.08 13 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 39 | 76.78 67 | 84.66 65 | 94.52 23 | 68.81 84 | 96.65 29 | 84.53 41 | 94.90 45 | 94.00 49 |
|
region2R | | | 87.42 28 | 87.20 32 | 88.09 12 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 42 | 76.73 70 | 84.45 68 | 94.52 23 | 69.09 80 | 96.70 26 | 84.37 44 | 94.83 50 | 94.03 46 |
|
OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 47 | 82.45 3 | 96.87 19 | 83.77 53 | 96.48 8 | 94.88 9 |
|
HFP-MVS | | | 87.58 23 | 87.47 25 | 87.94 17 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 37 | 76.78 67 | 84.91 56 | 94.44 30 | 70.78 61 | 96.61 32 | 84.53 41 | 94.89 46 | 93.66 65 |
|
#test# | | | 87.33 31 | 87.13 33 | 87.94 17 | 94.58 16 | 73.54 15 | 92.34 27 | 93.24 37 | 75.23 100 | 84.91 56 | 94.44 30 | 70.78 61 | 96.61 32 | 83.75 54 | 94.89 46 | 93.66 65 |
|
testtj | | | 87.78 20 | 87.78 21 | 87.77 26 | 94.55 18 | 72.47 39 | 92.23 31 | 93.49 30 | 74.75 113 | 88.33 25 | 94.43 32 | 73.27 42 | 97.02 16 | 84.18 49 | 94.84 48 | 93.82 59 |
|
MCST-MVS | | | 87.37 30 | 87.25 30 | 87.73 30 | 94.53 19 | 72.46 40 | 89.82 81 | 93.82 19 | 73.07 148 | 84.86 61 | 92.89 71 | 76.22 17 | 96.33 39 | 84.89 35 | 95.13 41 | 94.40 31 |
|
APDe-MVS | | | 89.15 6 | 89.63 6 | 87.73 30 | 94.49 20 | 71.69 58 | 93.83 4 | 93.96 16 | 75.70 92 | 91.06 16 | 96.03 1 | 76.84 15 | 97.03 15 | 89.09 6 | 95.65 32 | 94.47 28 |
|
DP-MVS Recon | | | 83.11 90 | 82.09 97 | 86.15 68 | 94.44 21 | 70.92 76 | 88.79 111 | 92.20 88 | 70.53 188 | 79.17 135 | 91.03 113 | 64.12 125 | 96.03 50 | 68.39 195 | 90.14 108 | 91.50 142 |
|
XVS | | | 87.18 34 | 86.91 37 | 88.00 15 | 94.42 22 | 73.33 20 | 92.78 17 | 92.99 49 | 79.14 22 | 83.67 83 | 94.17 40 | 67.45 93 | 96.60 34 | 83.06 60 | 94.50 56 | 94.07 44 |
|
X-MVStestdata | | | 80.37 143 | 77.83 179 | 88.00 15 | 94.42 22 | 73.33 20 | 92.78 17 | 92.99 49 | 79.14 22 | 83.67 83 | 12.47 371 | 67.45 93 | 96.60 34 | 83.06 60 | 94.50 56 | 94.07 44 |
|
mPP-MVS | | | 86.67 42 | 86.32 45 | 87.72 32 | 94.41 24 | 73.55 13 | 92.74 19 | 92.22 87 | 76.87 64 | 82.81 95 | 94.25 38 | 66.44 102 | 96.24 42 | 82.88 64 | 94.28 62 | 93.38 79 |
|
NCCC | | | 88.06 14 | 88.01 18 | 88.24 10 | 94.41 24 | 73.62 11 | 91.22 51 | 92.83 61 | 81.50 6 | 85.79 45 | 93.47 59 | 73.02 45 | 97.00 17 | 84.90 33 | 94.94 44 | 94.10 42 |
|
ZNCC-MVS | | | 87.94 18 | 87.85 20 | 88.20 11 | 94.39 26 | 73.33 20 | 93.03 14 | 93.81 20 | 76.81 65 | 85.24 51 | 94.32 35 | 71.76 54 | 96.93 18 | 85.53 29 | 95.79 25 | 94.32 35 |
|
ZD-MVS | | | | | | 94.38 27 | 72.22 48 | | 92.67 67 | 70.98 179 | 87.75 31 | 94.07 45 | 74.01 38 | 96.70 26 | 84.66 39 | 94.84 48 | |
|
MP-MVS |  | | 87.71 21 | 87.64 23 | 87.93 20 | 94.36 28 | 73.88 7 | 92.71 21 | 92.65 70 | 77.57 42 | 83.84 80 | 94.40 34 | 72.24 50 | 96.28 41 | 85.65 28 | 95.30 40 | 93.62 72 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 29 | 71.25 63 | 95.06 1 | 94.23 5 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 3 | 89.42 4 | 96.68 2 | 94.95 5 |
|
MSC_two_6792asdad | | | | | 89.16 1 | 94.34 29 | 75.53 2 | | 92.99 49 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 29 |
|
No_MVS | | | | | 89.16 1 | 94.34 29 | 75.53 2 | | 92.99 49 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 29 |
|
MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 9 | 94.28 32 | 73.46 18 | 92.90 16 | 94.11 8 | 80.27 12 | 91.35 14 | 94.16 41 | 78.35 13 | 96.77 23 | 89.59 3 | 94.22 64 | 94.67 21 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SMA-MVS |  | | 89.08 7 | 89.23 7 | 88.61 5 | 94.25 33 | 73.73 10 | 92.40 22 | 93.63 23 | 74.77 112 | 92.29 7 | 95.97 2 | 74.28 34 | 97.24 11 | 88.58 13 | 96.91 1 | 94.87 11 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS |  | | 87.44 26 | 87.52 24 | 87.19 47 | 94.24 34 | 72.39 42 | 91.86 39 | 92.83 61 | 73.01 150 | 88.58 23 | 94.52 23 | 73.36 40 | 96.49 37 | 84.26 46 | 95.01 42 | 92.70 104 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PGM-MVS | | | 86.68 41 | 86.27 46 | 87.90 21 | 94.22 35 | 73.38 19 | 90.22 74 | 93.04 43 | 75.53 94 | 83.86 79 | 94.42 33 | 67.87 90 | 96.64 30 | 82.70 69 | 94.57 55 | 93.66 65 |
|
CP-MVS | | | 87.11 35 | 86.92 36 | 87.68 37 | 94.20 36 | 73.86 8 | 93.98 3 | 92.82 64 | 76.62 72 | 83.68 82 | 94.46 27 | 67.93 88 | 95.95 56 | 84.20 48 | 94.39 59 | 93.23 85 |
|
zzz-MVS | | | 87.53 24 | 87.41 27 | 87.90 21 | 94.18 37 | 74.25 5 | 90.23 73 | 92.02 94 | 79.45 19 | 85.88 42 | 94.80 16 | 68.07 86 | 96.21 43 | 86.69 24 | 95.34 36 | 93.23 85 |
|
MTAPA | | | 87.23 33 | 87.00 34 | 87.90 21 | 94.18 37 | 74.25 5 | 86.58 185 | 92.02 94 | 79.45 19 | 85.88 42 | 94.80 16 | 68.07 86 | 96.21 43 | 86.69 24 | 95.34 36 | 93.23 85 |
|
GST-MVS | | | 87.42 28 | 87.26 29 | 87.89 24 | 94.12 39 | 72.97 25 | 92.39 24 | 93.43 33 | 76.89 63 | 84.68 62 | 93.99 50 | 70.67 64 | 96.82 21 | 84.18 49 | 95.01 42 | 93.90 54 |
|
SR-MVS | | | 86.73 39 | 86.67 40 | 86.91 52 | 94.11 40 | 72.11 51 | 92.37 26 | 92.56 73 | 74.50 117 | 86.84 37 | 94.65 20 | 67.31 95 | 95.77 60 | 84.80 37 | 92.85 74 | 92.84 102 |
|
114514_t | | | 80.68 135 | 79.51 139 | 84.20 119 | 94.09 41 | 67.27 152 | 89.64 88 | 91.11 131 | 58.75 326 | 74.08 240 | 90.72 118 | 58.10 197 | 95.04 96 | 69.70 180 | 89.42 117 | 90.30 183 |
|
test1172 | | | 86.20 50 | 86.22 47 | 86.12 70 | 93.95 42 | 69.89 96 | 91.79 41 | 92.28 82 | 75.07 104 | 86.40 39 | 94.58 22 | 65.00 120 | 95.56 66 | 84.34 45 | 92.60 77 | 92.90 100 |
|
HPM-MVS |  | | 87.11 35 | 86.98 35 | 87.50 41 | 93.88 43 | 72.16 49 | 92.19 32 | 93.33 36 | 76.07 84 | 83.81 81 | 93.95 51 | 69.77 74 | 96.01 52 | 85.15 31 | 94.66 52 | 94.32 35 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
xxxxxxxxxxxxxcwj | | | 87.88 19 | 87.92 19 | 87.77 26 | 93.80 44 | 72.35 45 | 90.47 66 | 89.69 168 | 74.31 122 | 89.16 19 | 95.10 13 | 75.65 21 | 96.19 45 | 87.07 21 | 96.01 17 | 94.79 16 |
|
save fliter | | | | | | 93.80 44 | 72.35 45 | 90.47 66 | 91.17 129 | 74.31 122 | | | | | | | |
|
ETH3 D test6400 | | | 87.50 25 | 87.44 26 | 87.70 35 | 93.71 46 | 71.75 57 | 90.62 61 | 94.05 15 | 70.80 181 | 87.59 33 | 93.51 56 | 77.57 14 | 96.63 31 | 83.31 55 | 95.77 26 | 94.72 20 |
|
ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 17 | 93.70 47 | 73.05 23 | 90.86 56 | 93.59 25 | 76.27 81 | 88.14 26 | 95.09 15 | 71.06 59 | 96.67 28 | 87.67 16 | 96.37 14 | 94.09 43 |
|
HPM-MVS_fast | | | 85.35 63 | 84.95 70 | 86.57 61 | 93.69 48 | 70.58 85 | 92.15 34 | 91.62 113 | 73.89 133 | 82.67 97 | 94.09 44 | 62.60 145 | 95.54 69 | 80.93 81 | 92.93 72 | 93.57 74 |
|
TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 32 | 93.68 49 | 72.13 50 | 91.41 47 | 92.35 80 | 74.62 116 | 88.90 21 | 93.85 52 | 75.75 20 | 96.00 53 | 87.80 15 | 94.63 53 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MP-MVS-pluss | | | 87.67 22 | 87.72 22 | 87.54 39 | 93.64 50 | 72.04 52 | 89.80 83 | 93.50 28 | 75.17 103 | 86.34 40 | 95.29 12 | 70.86 60 | 96.00 53 | 88.78 12 | 96.04 16 | 94.58 24 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ACMMP |  | | 85.89 54 | 85.39 59 | 87.38 44 | 93.59 51 | 72.63 34 | 92.74 19 | 93.18 41 | 76.78 67 | 80.73 120 | 93.82 53 | 64.33 123 | 96.29 40 | 82.67 70 | 90.69 100 | 93.23 85 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DeepC-MVS_fast | | 79.65 3 | 86.91 38 | 86.62 41 | 87.76 29 | 93.52 52 | 72.37 44 | 91.26 48 | 93.04 43 | 76.62 72 | 84.22 73 | 93.36 61 | 71.44 57 | 96.76 24 | 80.82 83 | 95.33 38 | 94.16 40 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CDPH-MVS | | | 85.76 56 | 85.29 63 | 87.17 48 | 93.49 53 | 71.08 68 | 88.58 121 | 92.42 78 | 68.32 233 | 84.61 66 | 93.48 57 | 72.32 49 | 96.15 48 | 79.00 94 | 95.43 34 | 94.28 37 |
|
DP-MVS | | | 76.78 223 | 74.57 235 | 83.42 144 | 93.29 54 | 69.46 107 | 88.55 122 | 83.70 277 | 63.98 282 | 70.20 275 | 88.89 163 | 54.01 230 | 94.80 107 | 46.66 338 | 81.88 206 | 86.01 300 |
|
CPTT-MVS | | | 83.73 77 | 83.33 80 | 84.92 94 | 93.28 55 | 70.86 77 | 92.09 35 | 90.38 146 | 68.75 227 | 79.57 131 | 92.83 73 | 60.60 184 | 93.04 184 | 80.92 82 | 91.56 91 | 90.86 163 |
|
TEST9 | | | | | | 93.26 56 | 72.96 26 | 88.75 113 | 91.89 103 | 68.44 232 | 85.00 54 | 93.10 65 | 74.36 33 | 95.41 77 | | | |
|
train_agg | | | 86.43 45 | 86.20 48 | 87.13 49 | 93.26 56 | 72.96 26 | 88.75 113 | 91.89 103 | 68.69 228 | 85.00 54 | 93.10 65 | 74.43 30 | 95.41 77 | 84.97 32 | 95.71 30 | 93.02 95 |
|
test_8 | | | | | | 93.13 58 | 72.57 36 | 88.68 118 | 91.84 106 | 68.69 228 | 84.87 60 | 93.10 65 | 74.43 30 | 95.16 89 | | | |
|
新几何1 | | | | | 83.42 144 | 93.13 58 | 70.71 80 | | 85.48 255 | 57.43 334 | 81.80 105 | 91.98 85 | 63.28 133 | 92.27 207 | 64.60 227 | 92.99 71 | 87.27 273 |
|
1121 | | | 80.84 126 | 79.77 133 | 84.05 126 | 93.11 60 | 70.78 79 | 84.66 230 | 85.42 256 | 57.37 335 | 81.76 109 | 92.02 84 | 63.41 131 | 94.12 129 | 67.28 203 | 92.93 72 | 87.26 274 |
|
AdaColmap |  | | 80.58 139 | 79.42 141 | 84.06 125 | 93.09 61 | 68.91 115 | 89.36 91 | 88.97 194 | 69.27 211 | 75.70 209 | 89.69 140 | 57.20 209 | 95.77 60 | 63.06 236 | 88.41 129 | 87.50 268 |
|
SR-MVS-dyc-post | | | 85.77 55 | 85.61 56 | 86.23 66 | 93.06 62 | 70.63 82 | 91.88 37 | 92.27 83 | 73.53 141 | 85.69 46 | 94.45 28 | 65.00 120 | 95.56 66 | 82.75 65 | 91.87 86 | 92.50 111 |
|
RE-MVS-def | | | | 85.48 57 | | 93.06 62 | 70.63 82 | 91.88 37 | 92.27 83 | 73.53 141 | 85.69 46 | 94.45 28 | 63.87 127 | | 82.75 65 | 91.87 86 | 92.50 111 |
|
原ACMM1 | | | | | 84.35 114 | 93.01 64 | 68.79 116 | | 92.44 75 | 63.96 283 | 81.09 116 | 91.57 96 | 66.06 108 | 95.45 73 | 67.19 206 | 94.82 51 | 88.81 240 |
|
CSCG | | | 86.41 47 | 86.19 49 | 87.07 50 | 92.91 65 | 72.48 38 | 90.81 57 | 93.56 26 | 73.95 130 | 83.16 88 | 91.07 110 | 75.94 18 | 95.19 88 | 79.94 92 | 94.38 60 | 93.55 75 |
|
agg_prior1 | | | 86.22 49 | 86.09 52 | 86.62 59 | 92.85 66 | 71.94 54 | 88.59 120 | 91.78 109 | 68.96 223 | 84.41 69 | 93.18 64 | 74.94 26 | 94.93 98 | 84.75 38 | 95.33 38 | 93.01 96 |
|
agg_prior | | | | | | 92.85 66 | 71.94 54 | | 91.78 109 | | 84.41 69 | | | 94.93 98 | | | |
|
9.14 | | | | 88.26 15 | | 92.84 68 | | 91.52 45 | 94.75 1 | 73.93 132 | 88.57 24 | 94.67 19 | 75.57 23 | 95.79 59 | 86.77 23 | 95.76 28 | |
|
SF-MVS | | | 88.46 11 | 88.74 11 | 87.64 38 | 92.78 69 | 71.95 53 | 92.40 22 | 94.74 2 | 75.71 90 | 89.16 19 | 95.10 13 | 75.65 21 | 96.19 45 | 87.07 21 | 96.01 17 | 94.79 16 |
|
ETH3D-3000-0.1 | | | 88.09 13 | 88.29 14 | 87.50 41 | 92.76 70 | 71.89 56 | 91.43 46 | 94.70 3 | 74.47 119 | 88.86 22 | 94.61 21 | 75.23 24 | 95.84 58 | 86.62 26 | 95.92 21 | 94.78 18 |
|
MG-MVS | | | 83.41 83 | 83.45 78 | 83.28 149 | 92.74 71 | 62.28 244 | 88.17 138 | 89.50 172 | 75.22 101 | 81.49 110 | 92.74 79 | 66.75 98 | 95.11 91 | 72.85 154 | 91.58 90 | 92.45 114 |
|
APD-MVS_3200maxsize | | | 85.97 52 | 85.88 53 | 86.22 67 | 92.69 72 | 69.53 103 | 91.93 36 | 92.99 49 | 73.54 140 | 85.94 41 | 94.51 26 | 65.80 112 | 95.61 63 | 83.04 62 | 92.51 79 | 93.53 77 |
|
test12 | | | | | 86.80 55 | 92.63 73 | 70.70 81 | | 91.79 108 | | 82.71 96 | | 71.67 55 | 96.16 47 | | 94.50 56 | 93.54 76 |
|
test_prior3 | | | 86.73 39 | 86.86 39 | 86.33 63 | 92.61 74 | 69.59 101 | 88.85 108 | 92.97 54 | 75.41 96 | 84.91 56 | 93.54 54 | 74.28 34 | 95.48 71 | 83.31 55 | 95.86 22 | 93.91 52 |
|
test_prior | | | | | 86.33 63 | 92.61 74 | 69.59 101 | | 92.97 54 | | | | | 95.48 71 | | | 93.91 52 |
|
SD-MVS | | | 88.06 14 | 88.50 13 | 86.71 57 | 92.60 76 | 72.71 30 | 91.81 40 | 93.19 40 | 77.87 36 | 90.32 17 | 94.00 48 | 74.83 27 | 93.78 145 | 87.63 17 | 94.27 63 | 93.65 70 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PAPM_NR | | | 83.02 91 | 82.41 91 | 84.82 98 | 92.47 77 | 66.37 165 | 87.93 146 | 91.80 107 | 73.82 134 | 77.32 172 | 90.66 119 | 67.90 89 | 94.90 102 | 70.37 172 | 89.48 116 | 93.19 89 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 12 | 88.56 12 | 86.73 56 | 92.24 78 | 69.03 110 | 89.57 89 | 93.39 35 | 77.53 46 | 89.79 18 | 94.12 43 | 78.98 12 | 96.58 36 | 85.66 27 | 95.72 29 | 94.58 24 |
|
abl_6 | | | 85.23 64 | 84.95 70 | 86.07 71 | 92.23 79 | 70.48 86 | 90.80 58 | 92.08 92 | 73.51 143 | 85.26 50 | 94.16 41 | 62.75 144 | 95.92 57 | 82.46 72 | 91.30 95 | 91.81 135 |
|
SteuartSystems-ACMMP | | | 88.72 10 | 88.86 10 | 88.32 8 | 92.14 80 | 72.96 26 | 93.73 5 | 93.67 22 | 80.19 14 | 88.10 27 | 94.80 16 | 73.76 39 | 97.11 13 | 87.51 18 | 95.82 24 | 94.90 8 |
Skip Steuart: Steuart Systems R&D Blog. |
UA-Net | | | 85.08 68 | 84.96 69 | 85.45 78 | 92.07 81 | 68.07 137 | 89.78 84 | 90.86 137 | 82.48 2 | 84.60 67 | 93.20 63 | 69.35 77 | 95.22 87 | 71.39 164 | 90.88 99 | 93.07 92 |
|
旧先验1 | | | | | | 91.96 82 | 65.79 177 | | 86.37 246 | | | 93.08 69 | 69.31 79 | | | 92.74 75 | 88.74 243 |
|
MSLP-MVS++ | | | 85.43 61 | 85.76 55 | 84.45 109 | 91.93 83 | 70.24 87 | 90.71 59 | 92.86 59 | 77.46 48 | 84.22 73 | 92.81 75 | 67.16 97 | 92.94 186 | 80.36 88 | 94.35 61 | 90.16 187 |
|
LFMVS | | | 81.82 108 | 81.23 109 | 83.57 141 | 91.89 84 | 63.43 225 | 89.84 80 | 81.85 303 | 77.04 60 | 83.21 86 | 93.10 65 | 52.26 242 | 93.43 165 | 71.98 159 | 89.95 112 | 93.85 56 |
|
PLC |  | 70.83 11 | 78.05 198 | 76.37 216 | 83.08 161 | 91.88 85 | 67.80 141 | 88.19 137 | 89.46 173 | 64.33 276 | 69.87 284 | 88.38 177 | 53.66 232 | 93.58 154 | 58.86 273 | 82.73 196 | 87.86 259 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_111021_HR | | | 85.14 66 | 84.75 72 | 86.32 65 | 91.65 86 | 72.70 31 | 85.98 200 | 90.33 150 | 76.11 83 | 82.08 100 | 91.61 95 | 71.36 58 | 94.17 128 | 81.02 80 | 92.58 78 | 92.08 127 |
|
ETH3D cwj APD-0.16 | | | 87.31 32 | 87.27 28 | 87.44 43 | 91.60 87 | 72.45 41 | 90.02 77 | 94.37 4 | 71.76 164 | 87.28 34 | 94.27 36 | 75.18 25 | 96.08 49 | 85.16 30 | 95.77 26 | 93.80 62 |
|
test222 | | | | | | 91.50 88 | 68.26 133 | 84.16 245 | 83.20 289 | 54.63 346 | 79.74 129 | 91.63 94 | 58.97 193 | | | 91.42 92 | 86.77 286 |
|
TSAR-MVS + GP. | | | 85.71 57 | 85.33 60 | 86.84 53 | 91.34 89 | 72.50 37 | 89.07 101 | 87.28 232 | 76.41 74 | 85.80 44 | 90.22 127 | 74.15 37 | 95.37 83 | 81.82 75 | 91.88 85 | 92.65 108 |
|
MAR-MVS | | | 81.84 107 | 80.70 117 | 85.27 82 | 91.32 90 | 71.53 60 | 89.82 81 | 90.92 134 | 69.77 202 | 78.50 147 | 86.21 240 | 62.36 151 | 94.52 114 | 65.36 220 | 92.05 84 | 89.77 211 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS | | 79.81 2 | 87.08 37 | 86.88 38 | 87.69 36 | 91.16 91 | 72.32 47 | 90.31 71 | 93.94 17 | 77.12 57 | 82.82 94 | 94.23 39 | 72.13 52 | 97.09 14 | 84.83 36 | 95.37 35 | 93.65 70 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 77.84 4 | 85.48 59 | 84.47 74 | 88.51 6 | 91.08 92 | 73.49 17 | 93.18 11 | 93.78 21 | 80.79 10 | 76.66 187 | 93.37 60 | 60.40 188 | 96.75 25 | 77.20 114 | 93.73 68 | 95.29 2 |
|
Anonymous202405211 | | | 78.25 190 | 77.01 198 | 81.99 193 | 91.03 93 | 60.67 263 | 84.77 228 | 83.90 275 | 70.65 187 | 80.00 128 | 91.20 106 | 41.08 331 | 91.43 234 | 65.21 221 | 85.26 165 | 93.85 56 |
|
VDD-MVS | | | 83.01 92 | 82.36 93 | 84.96 91 | 91.02 94 | 66.40 164 | 88.91 105 | 88.11 212 | 77.57 42 | 84.39 71 | 93.29 62 | 52.19 243 | 93.91 140 | 77.05 116 | 88.70 124 | 94.57 26 |
|
API-MVS | | | 81.99 105 | 81.23 109 | 84.26 118 | 90.94 95 | 70.18 93 | 91.10 53 | 89.32 176 | 71.51 171 | 78.66 144 | 88.28 180 | 65.26 115 | 95.10 94 | 64.74 226 | 91.23 96 | 87.51 267 |
|
testdata | | | | | 79.97 237 | 90.90 96 | 64.21 207 | | 84.71 262 | 59.27 321 | 85.40 48 | 92.91 70 | 62.02 158 | 89.08 277 | 68.95 188 | 91.37 93 | 86.63 290 |
|
PHI-MVS | | | 86.43 45 | 86.17 50 | 87.24 46 | 90.88 97 | 70.96 72 | 92.27 30 | 94.07 11 | 72.45 153 | 85.22 52 | 91.90 87 | 69.47 76 | 96.42 38 | 83.28 58 | 95.94 20 | 94.35 33 |
|
VNet | | | 82.21 100 | 82.41 91 | 81.62 199 | 90.82 98 | 60.93 258 | 84.47 236 | 89.78 164 | 76.36 79 | 84.07 77 | 91.88 88 | 64.71 122 | 90.26 257 | 70.68 169 | 88.89 120 | 93.66 65 |
|
PVSNet_Blended_VisFu | | | 82.62 96 | 81.83 104 | 84.96 91 | 90.80 99 | 69.76 98 | 88.74 115 | 91.70 112 | 69.39 208 | 78.96 137 | 88.46 175 | 65.47 114 | 94.87 105 | 74.42 136 | 88.57 125 | 90.24 185 |
|
test_part1 | | | 82.78 94 | 82.08 98 | 84.89 96 | 90.66 100 | 66.97 158 | 90.96 55 | 92.93 57 | 77.19 54 | 80.53 122 | 90.04 131 | 63.44 130 | 95.39 79 | 76.04 125 | 76.90 256 | 92.31 118 |
|
Anonymous20240529 | | | 80.19 147 | 78.89 155 | 84.10 122 | 90.60 101 | 64.75 196 | 88.95 104 | 90.90 135 | 65.97 257 | 80.59 121 | 91.17 107 | 49.97 271 | 93.73 151 | 69.16 186 | 82.70 198 | 93.81 60 |
|
h-mvs33 | | | 83.15 87 | 82.19 95 | 86.02 73 | 90.56 102 | 70.85 78 | 88.15 140 | 89.16 184 | 76.02 85 | 84.67 63 | 91.39 102 | 61.54 163 | 95.50 70 | 82.71 67 | 75.48 279 | 91.72 137 |
|
Anonymous20231211 | | | 78.97 176 | 77.69 186 | 82.81 174 | 90.54 103 | 64.29 206 | 90.11 76 | 91.51 117 | 65.01 268 | 76.16 202 | 88.13 189 | 50.56 265 | 93.03 185 | 69.68 181 | 77.56 249 | 91.11 154 |
|
LS3D | | | 76.95 221 | 74.82 233 | 83.37 147 | 90.45 104 | 67.36 151 | 89.15 99 | 86.94 238 | 61.87 302 | 69.52 287 | 90.61 120 | 51.71 254 | 94.53 113 | 46.38 341 | 86.71 150 | 88.21 253 |
|
VDDNet | | | 81.52 115 | 80.67 118 | 84.05 126 | 90.44 105 | 64.13 209 | 89.73 86 | 85.91 252 | 71.11 176 | 83.18 87 | 93.48 57 | 50.54 266 | 93.49 160 | 73.40 148 | 88.25 130 | 94.54 27 |
|
CNLPA | | | 78.08 196 | 76.79 205 | 81.97 194 | 90.40 106 | 71.07 69 | 87.59 155 | 84.55 265 | 66.03 256 | 72.38 256 | 89.64 142 | 57.56 203 | 86.04 306 | 59.61 265 | 83.35 187 | 88.79 241 |
|
PAPR | | | 81.66 113 | 80.89 116 | 83.99 132 | 90.27 107 | 64.00 210 | 86.76 181 | 91.77 111 | 68.84 226 | 77.13 180 | 89.50 146 | 67.63 91 | 94.88 104 | 67.55 200 | 88.52 127 | 93.09 91 |
|
Vis-MVSNet |  | | 83.46 82 | 82.80 88 | 85.43 79 | 90.25 108 | 68.74 120 | 90.30 72 | 90.13 156 | 76.33 80 | 80.87 119 | 92.89 71 | 61.00 177 | 94.20 125 | 72.45 158 | 90.97 97 | 93.35 81 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DPM-MVS | | | 84.93 70 | 84.29 75 | 86.84 53 | 90.20 109 | 73.04 24 | 87.12 167 | 93.04 43 | 69.80 201 | 82.85 93 | 91.22 105 | 73.06 44 | 96.02 51 | 76.72 121 | 94.63 53 | 91.46 145 |
|
EPP-MVSNet | | | 83.40 84 | 83.02 84 | 84.57 104 | 90.13 110 | 64.47 202 | 92.32 28 | 90.73 138 | 74.45 121 | 79.35 134 | 91.10 108 | 69.05 82 | 95.12 90 | 72.78 155 | 87.22 142 | 94.13 41 |
|
CANet | | | 86.45 44 | 86.10 51 | 87.51 40 | 90.09 111 | 70.94 74 | 89.70 87 | 92.59 72 | 81.78 4 | 81.32 111 | 91.43 101 | 70.34 66 | 97.23 12 | 84.26 46 | 93.36 70 | 94.37 32 |
|
test2506 | | | 77.30 215 | 76.49 212 | 79.74 242 | 90.08 112 | 52.02 341 | 87.86 150 | 63.10 368 | 74.88 109 | 80.16 127 | 92.79 76 | 38.29 341 | 92.35 204 | 68.74 191 | 92.50 80 | 94.86 12 |
|
ECVR-MVS |  | | 79.61 155 | 79.26 147 | 80.67 224 | 90.08 112 | 54.69 325 | 87.89 148 | 77.44 335 | 74.88 109 | 80.27 124 | 92.79 76 | 48.96 285 | 92.45 198 | 68.55 192 | 92.50 80 | 94.86 12 |
|
HQP_MVS | | | 83.64 79 | 83.14 81 | 85.14 85 | 90.08 112 | 68.71 122 | 91.25 49 | 92.44 75 | 79.12 24 | 78.92 139 | 91.00 114 | 60.42 186 | 95.38 80 | 78.71 97 | 86.32 155 | 91.33 147 |
|
plane_prior7 | | | | | | 90.08 112 | 68.51 129 | | | | | | | | | | |
|
test1111 | | | 79.43 162 | 79.18 150 | 80.15 234 | 89.99 116 | 53.31 338 | 87.33 162 | 77.05 338 | 75.04 105 | 80.23 126 | 92.77 78 | 48.97 284 | 92.33 206 | 68.87 189 | 92.40 82 | 94.81 15 |
|
CHOSEN 1792x2688 | | | 77.63 209 | 75.69 219 | 83.44 143 | 89.98 117 | 68.58 128 | 78.70 308 | 87.50 228 | 56.38 340 | 75.80 208 | 86.84 216 | 58.67 194 | 91.40 235 | 61.58 251 | 85.75 164 | 90.34 182 |
|
IS-MVSNet | | | 83.15 87 | 82.81 87 | 84.18 120 | 89.94 118 | 63.30 227 | 91.59 42 | 88.46 209 | 79.04 26 | 79.49 132 | 92.16 82 | 65.10 117 | 94.28 119 | 67.71 198 | 91.86 88 | 94.95 5 |
|
plane_prior1 | | | | | | 89.90 119 | | | | | | | | | | | |
|
canonicalmvs | | | 85.91 53 | 85.87 54 | 86.04 72 | 89.84 120 | 69.44 108 | 90.45 69 | 93.00 47 | 76.70 71 | 88.01 29 | 91.23 104 | 73.28 41 | 93.91 140 | 81.50 77 | 88.80 122 | 94.77 19 |
|
plane_prior6 | | | | | | 89.84 120 | 68.70 124 | | | | | | 60.42 186 | | | | |
|
NP-MVS | | | | | | 89.62 122 | 68.32 131 | | | | | 90.24 125 | | | | | |
|
EIA-MVS | | | 83.31 86 | 82.80 88 | 84.82 98 | 89.59 123 | 65.59 181 | 88.21 136 | 92.68 66 | 74.66 115 | 78.96 137 | 86.42 236 | 69.06 81 | 95.26 85 | 75.54 131 | 90.09 109 | 93.62 72 |
|
HyFIR lowres test | | | 77.53 210 | 75.40 226 | 83.94 135 | 89.59 123 | 66.62 161 | 80.36 290 | 88.64 206 | 56.29 341 | 76.45 190 | 85.17 261 | 57.64 202 | 93.28 168 | 61.34 254 | 83.10 192 | 91.91 131 |
|
TAPA-MVS | | 73.13 9 | 79.15 170 | 77.94 175 | 82.79 177 | 89.59 123 | 62.99 237 | 88.16 139 | 91.51 117 | 65.77 258 | 77.14 179 | 91.09 109 | 60.91 178 | 93.21 170 | 50.26 321 | 87.05 144 | 92.17 125 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
thres100view900 | | | 76.50 226 | 75.55 222 | 79.33 250 | 89.52 126 | 56.99 303 | 85.83 207 | 83.23 287 | 73.94 131 | 76.32 195 | 87.12 212 | 51.89 251 | 91.95 219 | 48.33 329 | 83.75 181 | 89.07 223 |
|
GeoE | | | 81.71 110 | 81.01 114 | 83.80 137 | 89.51 127 | 64.45 203 | 88.97 103 | 88.73 204 | 71.27 174 | 78.63 145 | 89.76 138 | 66.32 104 | 93.20 172 | 69.89 178 | 86.02 160 | 93.74 63 |
|
alignmvs | | | 85.48 59 | 85.32 61 | 85.96 74 | 89.51 127 | 69.47 105 | 89.74 85 | 92.47 74 | 76.17 82 | 87.73 32 | 91.46 100 | 70.32 67 | 93.78 145 | 81.51 76 | 88.95 119 | 94.63 23 |
|
PS-MVSNAJ | | | 81.69 111 | 81.02 113 | 83.70 138 | 89.51 127 | 68.21 135 | 84.28 244 | 90.09 157 | 70.79 182 | 81.26 115 | 85.62 252 | 63.15 138 | 94.29 118 | 75.62 129 | 88.87 121 | 88.59 246 |
|
ACMP | | 74.13 6 | 81.51 117 | 80.57 119 | 84.36 113 | 89.42 130 | 68.69 125 | 89.97 79 | 91.50 120 | 74.46 120 | 75.04 230 | 90.41 123 | 53.82 231 | 94.54 112 | 77.56 110 | 82.91 193 | 89.86 207 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
thres600view7 | | | 76.50 226 | 75.44 224 | 79.68 244 | 89.40 131 | 57.16 300 | 85.53 215 | 83.23 287 | 73.79 135 | 76.26 196 | 87.09 213 | 51.89 251 | 91.89 222 | 48.05 334 | 83.72 184 | 90.00 199 |
|
ETV-MVS | | | 84.90 72 | 84.67 73 | 85.59 77 | 89.39 132 | 68.66 126 | 88.74 115 | 92.64 71 | 79.97 17 | 84.10 76 | 85.71 248 | 69.32 78 | 95.38 80 | 80.82 83 | 91.37 93 | 92.72 103 |
|
BH-RMVSNet | | | 79.61 155 | 78.44 163 | 83.14 158 | 89.38 133 | 65.93 173 | 84.95 225 | 87.15 235 | 73.56 139 | 78.19 155 | 89.79 137 | 56.67 212 | 93.36 166 | 59.53 266 | 86.74 149 | 90.13 189 |
|
Regformer-1 | | | 86.41 47 | 86.33 44 | 86.64 58 | 89.33 134 | 70.93 75 | 88.43 123 | 91.39 122 | 82.14 3 | 86.65 38 | 90.09 129 | 74.39 32 | 95.01 97 | 83.97 51 | 90.63 101 | 93.97 50 |
|
Regformer-2 | | | 86.63 43 | 86.53 42 | 86.95 51 | 89.33 134 | 71.24 67 | 88.43 123 | 92.05 93 | 82.50 1 | 86.88 36 | 90.09 129 | 74.45 29 | 95.61 63 | 84.38 43 | 90.63 101 | 94.01 48 |
|
HQP-NCC | | | | | | 89.33 134 | | 89.17 95 | | 76.41 74 | 77.23 175 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 134 | | 89.17 95 | | 76.41 74 | 77.23 175 | | | | | | |
|
HQP-MVS | | | 82.61 97 | 82.02 100 | 84.37 112 | 89.33 134 | 66.98 156 | 89.17 95 | 92.19 89 | 76.41 74 | 77.23 175 | 90.23 126 | 60.17 189 | 95.11 91 | 77.47 111 | 85.99 161 | 91.03 157 |
|
DROMVSNet | | | 86.01 51 | 86.38 43 | 84.91 95 | 89.31 139 | 66.27 167 | 92.32 28 | 93.63 23 | 79.37 21 | 84.17 75 | 91.88 88 | 69.04 83 | 95.43 75 | 83.93 52 | 93.77 67 | 93.01 96 |
|
ACMM | | 73.20 8 | 80.78 134 | 79.84 132 | 83.58 140 | 89.31 139 | 68.37 130 | 89.99 78 | 91.60 114 | 70.28 192 | 77.25 173 | 89.66 141 | 53.37 234 | 93.53 159 | 74.24 139 | 82.85 194 | 88.85 238 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CS-MVS-test | | | 85.02 69 | 85.21 64 | 84.46 108 | 89.28 141 | 65.70 179 | 91.16 52 | 93.56 26 | 77.83 38 | 81.80 105 | 89.89 134 | 70.67 64 | 95.61 63 | 80.39 87 | 92.34 83 | 92.06 128 |
|
Test_1112_low_res | | | 76.40 230 | 75.44 224 | 79.27 251 | 89.28 141 | 58.09 285 | 81.69 277 | 87.07 236 | 59.53 319 | 72.48 254 | 86.67 226 | 61.30 170 | 89.33 272 | 60.81 258 | 80.15 225 | 90.41 179 |
|
F-COLMAP | | | 76.38 231 | 74.33 240 | 82.50 184 | 89.28 141 | 66.95 160 | 88.41 126 | 89.03 189 | 64.05 280 | 66.83 309 | 88.61 170 | 46.78 296 | 92.89 187 | 57.48 285 | 78.55 238 | 87.67 262 |
|
LPG-MVS_test | | | 82.08 102 | 81.27 108 | 84.50 106 | 89.23 144 | 68.76 118 | 90.22 74 | 91.94 101 | 75.37 98 | 76.64 188 | 91.51 97 | 54.29 226 | 94.91 100 | 78.44 101 | 83.78 179 | 89.83 208 |
|
LGP-MVS_train | | | | | 84.50 106 | 89.23 144 | 68.76 118 | | 91.94 101 | 75.37 98 | 76.64 188 | 91.51 97 | 54.29 226 | 94.91 100 | 78.44 101 | 83.78 179 | 89.83 208 |
|
BH-untuned | | | 79.47 160 | 78.60 159 | 82.05 191 | 89.19 146 | 65.91 174 | 86.07 199 | 88.52 208 | 72.18 159 | 75.42 216 | 87.69 194 | 61.15 174 | 93.54 158 | 60.38 259 | 86.83 148 | 86.70 288 |
|
xiu_mvs_v2_base | | | 81.69 111 | 81.05 112 | 83.60 139 | 89.15 147 | 68.03 138 | 84.46 238 | 90.02 158 | 70.67 185 | 81.30 114 | 86.53 234 | 63.17 137 | 94.19 126 | 75.60 130 | 88.54 126 | 88.57 247 |
|
test_yl | | | 81.17 120 | 80.47 122 | 83.24 152 | 89.13 148 | 63.62 216 | 86.21 195 | 89.95 160 | 72.43 156 | 81.78 107 | 89.61 143 | 57.50 204 | 93.58 154 | 70.75 167 | 86.90 146 | 92.52 109 |
|
DCV-MVSNet | | | 81.17 120 | 80.47 122 | 83.24 152 | 89.13 148 | 63.62 216 | 86.21 195 | 89.95 160 | 72.43 156 | 81.78 107 | 89.61 143 | 57.50 204 | 93.58 154 | 70.75 167 | 86.90 146 | 92.52 109 |
|
tfpn200view9 | | | 76.42 229 | 75.37 228 | 79.55 249 | 89.13 148 | 57.65 295 | 85.17 218 | 83.60 278 | 73.41 144 | 76.45 190 | 86.39 237 | 52.12 244 | 91.95 219 | 48.33 329 | 83.75 181 | 89.07 223 |
|
thres400 | | | 76.50 226 | 75.37 228 | 79.86 239 | 89.13 148 | 57.65 295 | 85.17 218 | 83.60 278 | 73.41 144 | 76.45 190 | 86.39 237 | 52.12 244 | 91.95 219 | 48.33 329 | 83.75 181 | 90.00 199 |
|
1112_ss | | | 77.40 213 | 76.43 214 | 80.32 231 | 89.11 152 | 60.41 268 | 83.65 253 | 87.72 224 | 62.13 300 | 73.05 248 | 86.72 220 | 62.58 147 | 89.97 262 | 62.11 246 | 80.80 216 | 90.59 173 |
|
Regformer-3 | | | 85.23 64 | 85.07 66 | 85.70 76 | 88.95 153 | 69.01 112 | 88.29 133 | 89.91 162 | 80.95 8 | 85.01 53 | 90.01 132 | 72.45 48 | 94.19 126 | 82.50 71 | 87.57 134 | 93.90 54 |
|
Regformer-4 | | | 85.68 58 | 85.45 58 | 86.35 62 | 88.95 153 | 69.67 100 | 88.29 133 | 91.29 124 | 81.73 5 | 85.36 49 | 90.01 132 | 72.62 47 | 95.35 84 | 83.28 58 | 87.57 134 | 94.03 46 |
|
Fast-Effi-MVS+ | | | 80.81 129 | 79.92 130 | 83.47 142 | 88.85 155 | 64.51 199 | 85.53 215 | 89.39 174 | 70.79 182 | 78.49 148 | 85.06 264 | 67.54 92 | 93.58 154 | 67.03 209 | 86.58 151 | 92.32 117 |
|
PVSNet_BlendedMVS | | | 80.60 137 | 80.02 128 | 82.36 187 | 88.85 155 | 65.40 184 | 86.16 197 | 92.00 97 | 69.34 210 | 78.11 157 | 86.09 243 | 66.02 109 | 94.27 120 | 71.52 161 | 82.06 203 | 87.39 269 |
|
PVSNet_Blended | | | 80.98 123 | 80.34 124 | 82.90 170 | 88.85 155 | 65.40 184 | 84.43 240 | 92.00 97 | 67.62 237 | 78.11 157 | 85.05 265 | 66.02 109 | 94.27 120 | 71.52 161 | 89.50 115 | 89.01 230 |
|
MVS_111021_LR | | | 82.61 97 | 82.11 96 | 84.11 121 | 88.82 158 | 71.58 59 | 85.15 220 | 86.16 249 | 74.69 114 | 80.47 123 | 91.04 111 | 62.29 152 | 90.55 255 | 80.33 89 | 90.08 110 | 90.20 186 |
|
BH-w/o | | | 78.21 192 | 77.33 194 | 80.84 220 | 88.81 159 | 65.13 191 | 84.87 226 | 87.85 222 | 69.75 203 | 74.52 236 | 84.74 268 | 61.34 169 | 93.11 179 | 58.24 280 | 85.84 163 | 84.27 318 |
|
FIs | | | 82.07 103 | 82.42 90 | 81.04 217 | 88.80 160 | 58.34 283 | 88.26 135 | 93.49 30 | 76.93 62 | 78.47 149 | 91.04 111 | 69.92 72 | 92.34 205 | 69.87 179 | 84.97 167 | 92.44 115 |
|
OPM-MVS | | | 83.50 81 | 82.95 85 | 85.14 85 | 88.79 161 | 70.95 73 | 89.13 100 | 91.52 116 | 77.55 45 | 80.96 118 | 91.75 90 | 60.71 180 | 94.50 115 | 79.67 93 | 86.51 153 | 89.97 203 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
WR-MVS | | | 79.49 159 | 79.22 149 | 80.27 232 | 88.79 161 | 58.35 282 | 85.06 222 | 88.61 207 | 78.56 30 | 77.65 165 | 88.34 178 | 63.81 129 | 90.66 254 | 64.98 224 | 77.22 252 | 91.80 136 |
|
OMC-MVS | | | 82.69 95 | 81.97 102 | 84.85 97 | 88.75 163 | 67.42 148 | 87.98 142 | 90.87 136 | 74.92 108 | 79.72 130 | 91.65 92 | 62.19 155 | 93.96 133 | 75.26 133 | 86.42 154 | 93.16 90 |
|
hse-mvs2 | | | 81.72 109 | 80.94 115 | 84.07 124 | 88.72 164 | 67.68 144 | 85.87 204 | 87.26 233 | 76.02 85 | 84.67 63 | 88.22 183 | 61.54 163 | 93.48 161 | 82.71 67 | 73.44 306 | 91.06 155 |
|
AUN-MVS | | | 79.21 169 | 77.60 188 | 84.05 126 | 88.71 165 | 67.61 145 | 85.84 206 | 87.26 233 | 69.08 218 | 77.23 175 | 88.14 188 | 53.20 236 | 93.47 162 | 75.50 132 | 73.45 305 | 91.06 155 |
|
ACMH | | 67.68 16 | 75.89 236 | 73.93 243 | 81.77 197 | 88.71 165 | 66.61 162 | 88.62 119 | 89.01 191 | 69.81 200 | 66.78 310 | 86.70 225 | 41.95 328 | 91.51 233 | 55.64 297 | 78.14 244 | 87.17 276 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Vis-MVSNet (Re-imp) | | | 78.36 189 | 78.45 162 | 78.07 269 | 88.64 167 | 51.78 344 | 86.70 182 | 79.63 324 | 74.14 128 | 75.11 227 | 90.83 117 | 61.29 171 | 89.75 265 | 58.10 281 | 91.60 89 | 92.69 106 |
|
PatchMatch-RL | | | 72.38 271 | 70.90 271 | 76.80 287 | 88.60 168 | 67.38 150 | 79.53 298 | 76.17 341 | 62.75 294 | 69.36 289 | 82.00 304 | 45.51 307 | 84.89 315 | 53.62 304 | 80.58 219 | 78.12 351 |
|
ACMH+ | | 68.96 14 | 76.01 235 | 74.01 242 | 82.03 192 | 88.60 168 | 65.31 188 | 88.86 107 | 87.55 226 | 70.25 193 | 67.75 298 | 87.47 201 | 41.27 329 | 93.19 174 | 58.37 278 | 75.94 272 | 87.60 264 |
|
LTVRE_ROB | | 69.57 13 | 76.25 232 | 74.54 237 | 81.41 204 | 88.60 168 | 64.38 205 | 79.24 301 | 89.12 188 | 70.76 184 | 69.79 286 | 87.86 191 | 49.09 282 | 93.20 172 | 56.21 296 | 80.16 224 | 86.65 289 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DELS-MVS | | | 85.41 62 | 85.30 62 | 85.77 75 | 88.49 171 | 67.93 139 | 85.52 217 | 93.44 32 | 78.70 29 | 83.63 85 | 89.03 161 | 74.57 28 | 95.71 62 | 80.26 90 | 94.04 65 | 93.66 65 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CLD-MVS | | | 82.31 99 | 81.65 105 | 84.29 117 | 88.47 172 | 67.73 143 | 85.81 208 | 92.35 80 | 75.78 89 | 78.33 152 | 86.58 231 | 64.01 126 | 94.35 117 | 76.05 124 | 87.48 139 | 90.79 164 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
UniMVSNet_NR-MVSNet | | | 81.88 106 | 81.54 106 | 82.92 169 | 88.46 173 | 63.46 223 | 87.13 166 | 92.37 79 | 80.19 14 | 78.38 150 | 89.14 156 | 71.66 56 | 93.05 182 | 70.05 175 | 76.46 264 | 92.25 121 |
|
ab-mvs | | | 79.51 158 | 78.97 154 | 81.14 214 | 88.46 173 | 60.91 259 | 83.84 250 | 89.24 181 | 70.36 190 | 79.03 136 | 88.87 164 | 63.23 136 | 90.21 259 | 65.12 222 | 82.57 199 | 92.28 120 |
|
FC-MVSNet-test | | | 81.52 115 | 82.02 100 | 80.03 236 | 88.42 175 | 55.97 319 | 87.95 144 | 93.42 34 | 77.10 58 | 77.38 170 | 90.98 116 | 69.96 71 | 91.79 224 | 68.46 194 | 84.50 172 | 92.33 116 |
|
Effi-MVS+ | | | 83.62 80 | 83.08 82 | 85.24 83 | 88.38 176 | 67.45 147 | 88.89 106 | 89.15 185 | 75.50 95 | 82.27 98 | 88.28 180 | 69.61 75 | 94.45 116 | 77.81 108 | 87.84 132 | 93.84 58 |
|
UniMVSNet (Re) | | | 81.60 114 | 81.11 111 | 83.09 160 | 88.38 176 | 64.41 204 | 87.60 154 | 93.02 46 | 78.42 32 | 78.56 146 | 88.16 184 | 69.78 73 | 93.26 169 | 69.58 182 | 76.49 263 | 91.60 138 |
|
VPNet | | | 78.69 181 | 78.66 158 | 78.76 258 | 88.31 178 | 55.72 321 | 84.45 239 | 86.63 242 | 76.79 66 | 78.26 153 | 90.55 121 | 59.30 191 | 89.70 267 | 66.63 210 | 77.05 254 | 90.88 162 |
|
TR-MVS | | | 77.44 211 | 76.18 217 | 81.20 212 | 88.24 179 | 63.24 229 | 84.61 234 | 86.40 245 | 67.55 238 | 77.81 162 | 86.48 235 | 54.10 228 | 93.15 176 | 57.75 284 | 82.72 197 | 87.20 275 |
|
EI-MVSNet-Vis-set | | | 84.19 74 | 83.81 76 | 85.31 80 | 88.18 180 | 67.85 140 | 87.66 153 | 89.73 167 | 80.05 16 | 82.95 90 | 89.59 145 | 70.74 63 | 94.82 106 | 80.66 86 | 84.72 170 | 93.28 84 |
|
baseline1 | | | 76.98 220 | 76.75 208 | 77.66 274 | 88.13 181 | 55.66 322 | 85.12 221 | 81.89 301 | 73.04 149 | 76.79 183 | 88.90 162 | 62.43 150 | 87.78 295 | 63.30 234 | 71.18 321 | 89.55 217 |
|
test_0402 | | | 72.79 268 | 70.44 275 | 79.84 240 | 88.13 181 | 65.99 171 | 85.93 202 | 84.29 269 | 65.57 261 | 67.40 303 | 85.49 254 | 46.92 295 | 92.61 193 | 35.88 359 | 74.38 296 | 80.94 343 |
|
tttt0517 | | | 79.40 164 | 77.91 176 | 83.90 136 | 88.10 183 | 63.84 213 | 88.37 130 | 84.05 273 | 71.45 172 | 76.78 184 | 89.12 158 | 49.93 274 | 94.89 103 | 70.18 174 | 83.18 190 | 92.96 99 |
|
VPA-MVSNet | | | 80.60 137 | 80.55 120 | 80.76 222 | 88.07 184 | 60.80 261 | 86.86 175 | 91.58 115 | 75.67 93 | 80.24 125 | 89.45 152 | 63.34 132 | 90.25 258 | 70.51 171 | 79.22 237 | 91.23 150 |
|
UGNet | | | 80.83 128 | 79.59 138 | 84.54 105 | 88.04 185 | 68.09 136 | 89.42 90 | 88.16 211 | 76.95 61 | 76.22 197 | 89.46 150 | 49.30 280 | 93.94 136 | 68.48 193 | 90.31 104 | 91.60 138 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
WR-MVS_H | | | 78.51 185 | 78.49 161 | 78.56 261 | 88.02 186 | 56.38 314 | 88.43 123 | 92.67 67 | 77.14 56 | 73.89 241 | 87.55 198 | 66.25 105 | 89.24 274 | 58.92 272 | 73.55 304 | 90.06 197 |
|
QAPM | | | 80.88 124 | 79.50 140 | 85.03 88 | 88.01 187 | 68.97 114 | 91.59 42 | 92.00 97 | 66.63 249 | 75.15 226 | 92.16 82 | 57.70 201 | 95.45 73 | 63.52 230 | 88.76 123 | 90.66 169 |
|
3Dnovator | | 76.31 5 | 83.38 85 | 82.31 94 | 86.59 60 | 87.94 188 | 72.94 29 | 90.64 60 | 92.14 91 | 77.21 53 | 75.47 212 | 92.83 73 | 58.56 195 | 94.72 110 | 73.24 151 | 92.71 76 | 92.13 126 |
|
EI-MVSNet-UG-set | | | 83.81 76 | 83.38 79 | 85.09 87 | 87.87 189 | 67.53 146 | 87.44 159 | 89.66 169 | 79.74 18 | 82.23 99 | 89.41 154 | 70.24 69 | 94.74 109 | 79.95 91 | 83.92 178 | 92.99 98 |
|
TranMVSNet+NR-MVSNet | | | 80.84 126 | 80.31 125 | 82.42 185 | 87.85 190 | 62.33 242 | 87.74 152 | 91.33 123 | 80.55 11 | 77.99 160 | 89.86 135 | 65.23 116 | 92.62 192 | 67.05 208 | 75.24 289 | 92.30 119 |
|
CP-MVSNet | | | 78.22 191 | 78.34 167 | 77.84 271 | 87.83 191 | 54.54 327 | 87.94 145 | 91.17 129 | 77.65 39 | 73.48 243 | 88.49 174 | 62.24 154 | 88.43 287 | 62.19 243 | 74.07 297 | 90.55 174 |
|
DU-MVS | | | 81.12 122 | 80.52 121 | 82.90 170 | 87.80 192 | 63.46 223 | 87.02 170 | 91.87 105 | 79.01 27 | 78.38 150 | 89.07 159 | 65.02 118 | 93.05 182 | 70.05 175 | 76.46 264 | 92.20 123 |
|
NR-MVSNet | | | 80.23 145 | 79.38 143 | 82.78 178 | 87.80 192 | 63.34 226 | 86.31 192 | 91.09 132 | 79.01 27 | 72.17 258 | 89.07 159 | 67.20 96 | 92.81 191 | 66.08 215 | 75.65 275 | 92.20 123 |
|
TAMVS | | | 78.89 178 | 77.51 190 | 83.03 164 | 87.80 192 | 67.79 142 | 84.72 229 | 85.05 260 | 67.63 236 | 76.75 185 | 87.70 193 | 62.25 153 | 90.82 250 | 58.53 277 | 87.13 143 | 90.49 176 |
|
thres200 | | | 75.55 240 | 74.47 238 | 78.82 257 | 87.78 195 | 57.85 292 | 83.07 265 | 83.51 281 | 72.44 155 | 75.84 207 | 84.42 270 | 52.08 246 | 91.75 225 | 47.41 336 | 83.64 185 | 86.86 284 |
|
PS-CasMVS | | | 78.01 200 | 78.09 172 | 77.77 273 | 87.71 196 | 54.39 329 | 88.02 141 | 91.22 126 | 77.50 47 | 73.26 245 | 88.64 169 | 60.73 179 | 88.41 288 | 61.88 247 | 73.88 301 | 90.53 175 |
|
PCF-MVS | | 73.52 7 | 80.38 142 | 78.84 156 | 85.01 89 | 87.71 196 | 68.99 113 | 83.65 253 | 91.46 121 | 63.00 289 | 77.77 164 | 90.28 124 | 66.10 106 | 95.09 95 | 61.40 252 | 88.22 131 | 90.94 161 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
thisisatest0530 | | | 79.40 164 | 77.76 183 | 84.31 116 | 87.69 198 | 65.10 192 | 87.36 160 | 84.26 271 | 70.04 195 | 77.42 169 | 88.26 182 | 49.94 272 | 94.79 108 | 70.20 173 | 84.70 171 | 93.03 94 |
|
GBi-Net | | | 78.40 186 | 77.40 191 | 81.40 205 | 87.60 199 | 63.01 234 | 88.39 127 | 89.28 177 | 71.63 167 | 75.34 219 | 87.28 204 | 54.80 219 | 91.11 241 | 62.72 237 | 79.57 229 | 90.09 193 |
|
test1 | | | 78.40 186 | 77.40 191 | 81.40 205 | 87.60 199 | 63.01 234 | 88.39 127 | 89.28 177 | 71.63 167 | 75.34 219 | 87.28 204 | 54.80 219 | 91.11 241 | 62.72 237 | 79.57 229 | 90.09 193 |
|
FMVSNet2 | | | 78.20 193 | 77.21 195 | 81.20 212 | 87.60 199 | 62.89 238 | 87.47 158 | 89.02 190 | 71.63 167 | 75.29 223 | 87.28 204 | 54.80 219 | 91.10 244 | 62.38 241 | 79.38 233 | 89.61 215 |
|
CDS-MVSNet | | | 79.07 173 | 77.70 185 | 83.17 157 | 87.60 199 | 68.23 134 | 84.40 242 | 86.20 248 | 67.49 239 | 76.36 194 | 86.54 233 | 61.54 163 | 90.79 251 | 61.86 248 | 87.33 140 | 90.49 176 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
HY-MVS | | 69.67 12 | 77.95 201 | 77.15 196 | 80.36 229 | 87.57 203 | 60.21 270 | 83.37 260 | 87.78 223 | 66.11 253 | 75.37 218 | 87.06 215 | 63.27 134 | 90.48 256 | 61.38 253 | 82.43 200 | 90.40 180 |
|
CS-MVS | | | 84.53 73 | 84.97 68 | 83.23 154 | 87.54 204 | 63.27 228 | 88.82 110 | 93.50 28 | 75.98 87 | 83.07 89 | 89.73 139 | 70.29 68 | 95.23 86 | 82.07 74 | 93.70 69 | 91.18 151 |
|
xiu_mvs_v1_base_debu | | | 80.80 131 | 79.72 135 | 84.03 129 | 87.35 205 | 70.19 90 | 85.56 210 | 88.77 199 | 69.06 219 | 81.83 102 | 88.16 184 | 50.91 260 | 92.85 188 | 78.29 105 | 87.56 136 | 89.06 225 |
|
xiu_mvs_v1_base | | | 80.80 131 | 79.72 135 | 84.03 129 | 87.35 205 | 70.19 90 | 85.56 210 | 88.77 199 | 69.06 219 | 81.83 102 | 88.16 184 | 50.91 260 | 92.85 188 | 78.29 105 | 87.56 136 | 89.06 225 |
|
xiu_mvs_v1_base_debi | | | 80.80 131 | 79.72 135 | 84.03 129 | 87.35 205 | 70.19 90 | 85.56 210 | 88.77 199 | 69.06 219 | 81.83 102 | 88.16 184 | 50.91 260 | 92.85 188 | 78.29 105 | 87.56 136 | 89.06 225 |
|
MVSFormer | | | 82.85 93 | 82.05 99 | 85.24 83 | 87.35 205 | 70.21 88 | 90.50 64 | 90.38 146 | 68.55 230 | 81.32 111 | 89.47 148 | 61.68 160 | 93.46 163 | 78.98 95 | 90.26 106 | 92.05 129 |
|
lupinMVS | | | 81.39 118 | 80.27 127 | 84.76 101 | 87.35 205 | 70.21 88 | 85.55 213 | 86.41 244 | 62.85 292 | 81.32 111 | 88.61 170 | 61.68 160 | 92.24 210 | 78.41 103 | 90.26 106 | 91.83 133 |
|
baseline | | | 84.93 70 | 84.98 67 | 84.80 100 | 87.30 210 | 65.39 186 | 87.30 163 | 92.88 58 | 77.62 40 | 84.04 78 | 92.26 81 | 71.81 53 | 93.96 133 | 81.31 78 | 90.30 105 | 95.03 4 |
|
PAPM | | | 77.68 208 | 76.40 215 | 81.51 202 | 87.29 211 | 61.85 249 | 83.78 251 | 89.59 170 | 64.74 270 | 71.23 266 | 88.70 166 | 62.59 146 | 93.66 153 | 52.66 308 | 87.03 145 | 89.01 230 |
|
LCM-MVSNet-Re | | | 77.05 218 | 76.94 201 | 77.36 279 | 87.20 212 | 51.60 345 | 80.06 293 | 80.46 316 | 75.20 102 | 67.69 299 | 86.72 220 | 62.48 148 | 88.98 279 | 63.44 232 | 89.25 118 | 91.51 141 |
|
casdiffmvs | | | 85.11 67 | 85.14 65 | 85.01 89 | 87.20 212 | 65.77 178 | 87.75 151 | 92.83 61 | 77.84 37 | 84.36 72 | 92.38 80 | 72.15 51 | 93.93 139 | 81.27 79 | 90.48 103 | 95.33 1 |
|
COLMAP_ROB |  | 66.92 17 | 73.01 265 | 70.41 276 | 80.81 221 | 87.13 214 | 65.63 180 | 88.30 132 | 84.19 272 | 62.96 290 | 63.80 333 | 87.69 194 | 38.04 342 | 92.56 195 | 46.66 338 | 74.91 291 | 84.24 319 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PEN-MVS | | | 77.73 205 | 77.69 186 | 77.84 271 | 87.07 215 | 53.91 332 | 87.91 147 | 91.18 128 | 77.56 44 | 73.14 247 | 88.82 165 | 61.23 172 | 89.17 275 | 59.95 262 | 72.37 312 | 90.43 178 |
|
MVS_Test | | | 83.15 87 | 83.06 83 | 83.41 146 | 86.86 216 | 63.21 230 | 86.11 198 | 92.00 97 | 74.31 122 | 82.87 92 | 89.44 153 | 70.03 70 | 93.21 170 | 77.39 113 | 88.50 128 | 93.81 60 |
|
UniMVSNet_ETH3D | | | 79.10 172 | 78.24 170 | 81.70 198 | 86.85 217 | 60.24 269 | 87.28 164 | 88.79 198 | 74.25 125 | 76.84 181 | 90.53 122 | 49.48 277 | 91.56 230 | 67.98 196 | 82.15 202 | 93.29 83 |
|
FMVSNet3 | | | 77.88 203 | 76.85 203 | 80.97 218 | 86.84 218 | 62.36 241 | 86.52 188 | 88.77 199 | 71.13 175 | 75.34 219 | 86.66 227 | 54.07 229 | 91.10 244 | 62.72 237 | 79.57 229 | 89.45 218 |
|
FMVSNet1 | | | 77.44 211 | 76.12 218 | 81.40 205 | 86.81 219 | 63.01 234 | 88.39 127 | 89.28 177 | 70.49 189 | 74.39 237 | 87.28 204 | 49.06 283 | 91.11 241 | 60.91 256 | 78.52 239 | 90.09 193 |
|
nrg030 | | | 83.88 75 | 83.53 77 | 84.96 91 | 86.77 220 | 69.28 109 | 90.46 68 | 92.67 67 | 74.79 111 | 82.95 90 | 91.33 103 | 72.70 46 | 93.09 180 | 80.79 85 | 79.28 236 | 92.50 111 |
|
ET-MVSNet_ETH3D | | | 78.63 182 | 76.63 211 | 84.64 103 | 86.73 221 | 69.47 105 | 85.01 223 | 84.61 264 | 69.54 206 | 66.51 315 | 86.59 229 | 50.16 269 | 91.75 225 | 76.26 122 | 84.24 176 | 92.69 106 |
|
jason | | | 81.39 118 | 80.29 126 | 84.70 102 | 86.63 222 | 69.90 95 | 85.95 201 | 86.77 240 | 63.24 285 | 81.07 117 | 89.47 148 | 61.08 176 | 92.15 213 | 78.33 104 | 90.07 111 | 92.05 129 |
jason: jason. |
PS-MVSNAJss | | | 82.07 103 | 81.31 107 | 84.34 115 | 86.51 223 | 67.27 152 | 89.27 93 | 91.51 117 | 71.75 165 | 79.37 133 | 90.22 127 | 63.15 138 | 94.27 120 | 77.69 109 | 82.36 201 | 91.49 143 |
|
WTY-MVS | | | 75.65 239 | 75.68 220 | 75.57 295 | 86.40 224 | 56.82 305 | 77.92 316 | 82.40 297 | 65.10 265 | 76.18 199 | 87.72 192 | 63.13 141 | 80.90 335 | 60.31 260 | 81.96 204 | 89.00 232 |
|
DTE-MVSNet | | | 76.99 219 | 76.80 204 | 77.54 278 | 86.24 225 | 53.06 340 | 87.52 156 | 90.66 139 | 77.08 59 | 72.50 253 | 88.67 168 | 60.48 185 | 89.52 269 | 57.33 288 | 70.74 323 | 90.05 198 |
|
PVSNet | | 64.34 18 | 72.08 274 | 70.87 273 | 75.69 293 | 86.21 226 | 56.44 312 | 74.37 334 | 80.73 311 | 62.06 301 | 70.17 277 | 82.23 300 | 42.86 320 | 83.31 325 | 54.77 300 | 84.45 174 | 87.32 272 |
|
tfpnnormal | | | 74.39 248 | 73.16 251 | 78.08 268 | 86.10 227 | 58.05 286 | 84.65 233 | 87.53 227 | 70.32 191 | 71.22 267 | 85.63 251 | 54.97 218 | 89.86 263 | 43.03 350 | 75.02 290 | 86.32 292 |
|
RRT_test8_iter05 | | | 78.38 188 | 77.40 191 | 81.34 208 | 86.00 228 | 58.86 278 | 86.55 187 | 91.26 125 | 72.13 162 | 75.91 204 | 87.42 202 | 44.97 309 | 93.73 151 | 77.02 117 | 75.30 286 | 91.45 146 |
|
IterMVS-LS | | | 80.06 148 | 79.38 143 | 82.11 189 | 85.89 229 | 63.20 231 | 86.79 178 | 89.34 175 | 74.19 126 | 75.45 215 | 86.72 220 | 66.62 99 | 92.39 201 | 72.58 156 | 76.86 258 | 90.75 166 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Baseline_NR-MVSNet | | | 78.15 195 | 78.33 168 | 77.61 276 | 85.79 230 | 56.21 317 | 86.78 179 | 85.76 253 | 73.60 138 | 77.93 161 | 87.57 197 | 65.02 118 | 88.99 278 | 67.14 207 | 75.33 285 | 87.63 263 |
|
cascas | | | 76.72 224 | 74.64 234 | 82.99 166 | 85.78 231 | 65.88 175 | 82.33 271 | 89.21 182 | 60.85 308 | 72.74 250 | 81.02 309 | 47.28 293 | 93.75 149 | 67.48 201 | 85.02 166 | 89.34 220 |
|
MVS | | | 78.19 194 | 76.99 200 | 81.78 196 | 85.66 232 | 66.99 155 | 84.66 230 | 90.47 144 | 55.08 345 | 72.02 260 | 85.27 258 | 63.83 128 | 94.11 131 | 66.10 214 | 89.80 113 | 84.24 319 |
|
XVG-OURS | | | 80.41 141 | 79.23 148 | 83.97 133 | 85.64 233 | 69.02 111 | 83.03 266 | 90.39 145 | 71.09 177 | 77.63 166 | 91.49 99 | 54.62 225 | 91.35 236 | 75.71 127 | 83.47 186 | 91.54 140 |
|
CANet_DTU | | | 80.61 136 | 79.87 131 | 82.83 172 | 85.60 234 | 63.17 233 | 87.36 160 | 88.65 205 | 76.37 78 | 75.88 206 | 88.44 176 | 53.51 233 | 93.07 181 | 73.30 149 | 89.74 114 | 92.25 121 |
|
XVG-OURS-SEG-HR | | | 80.81 129 | 79.76 134 | 83.96 134 | 85.60 234 | 68.78 117 | 83.54 258 | 90.50 143 | 70.66 186 | 76.71 186 | 91.66 91 | 60.69 181 | 91.26 238 | 76.94 118 | 81.58 208 | 91.83 133 |
|
TransMVSNet (Re) | | | 75.39 244 | 74.56 236 | 77.86 270 | 85.50 236 | 57.10 302 | 86.78 179 | 86.09 251 | 72.17 160 | 71.53 264 | 87.34 203 | 63.01 142 | 89.31 273 | 56.84 292 | 61.83 346 | 87.17 276 |
|
RRT_MVS | | | 79.88 152 | 78.38 165 | 84.38 111 | 85.42 237 | 70.60 84 | 88.71 117 | 88.75 203 | 72.30 158 | 78.83 141 | 89.14 156 | 44.44 312 | 92.18 212 | 78.50 100 | 79.33 235 | 90.35 181 |
|
MVP-Stereo | | | 76.12 233 | 74.46 239 | 81.13 215 | 85.37 238 | 69.79 97 | 84.42 241 | 87.95 218 | 65.03 267 | 67.46 301 | 85.33 257 | 53.28 235 | 91.73 227 | 58.01 282 | 83.27 188 | 81.85 338 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
thisisatest0515 | | | 77.33 214 | 75.38 227 | 83.18 156 | 85.27 239 | 63.80 214 | 82.11 273 | 83.27 286 | 65.06 266 | 75.91 204 | 83.84 278 | 49.54 276 | 94.27 120 | 67.24 205 | 86.19 157 | 91.48 144 |
|
OpenMVS |  | 72.83 10 | 79.77 153 | 78.33 168 | 84.09 123 | 85.17 240 | 69.91 94 | 90.57 62 | 90.97 133 | 66.70 245 | 72.17 258 | 91.91 86 | 54.70 223 | 93.96 133 | 61.81 249 | 90.95 98 | 88.41 251 |
|
AllTest | | | 70.96 279 | 68.09 291 | 79.58 247 | 85.15 241 | 63.62 216 | 84.58 235 | 79.83 322 | 62.31 298 | 60.32 343 | 86.73 218 | 32.02 355 | 88.96 281 | 50.28 319 | 71.57 319 | 86.15 296 |
|
TestCases | | | | | 79.58 247 | 85.15 241 | 63.62 216 | | 79.83 322 | 62.31 298 | 60.32 343 | 86.73 218 | 32.02 355 | 88.96 281 | 50.28 319 | 71.57 319 | 86.15 296 |
|
Effi-MVS+-dtu | | | 80.03 149 | 78.57 160 | 84.42 110 | 85.13 243 | 68.74 120 | 88.77 112 | 88.10 213 | 74.99 106 | 74.97 231 | 83.49 284 | 57.27 207 | 93.36 166 | 73.53 144 | 80.88 214 | 91.18 151 |
|
mvs-test1 | | | 80.88 124 | 79.40 142 | 85.29 81 | 85.13 243 | 69.75 99 | 89.28 92 | 88.10 213 | 74.99 106 | 76.44 193 | 86.72 220 | 57.27 207 | 94.26 124 | 73.53 144 | 83.18 190 | 91.87 132 |
|
SixPastTwentyTwo | | | 73.37 259 | 71.26 269 | 79.70 243 | 85.08 245 | 57.89 291 | 85.57 209 | 83.56 280 | 71.03 178 | 65.66 319 | 85.88 245 | 42.10 326 | 92.57 194 | 59.11 270 | 63.34 344 | 88.65 245 |
|
EG-PatchMatch MVS | | | 74.04 253 | 71.82 262 | 80.71 223 | 84.92 246 | 67.42 148 | 85.86 205 | 88.08 215 | 66.04 255 | 64.22 329 | 83.85 277 | 35.10 350 | 92.56 195 | 57.44 286 | 80.83 215 | 82.16 337 |
|
IB-MVS | | 68.01 15 | 75.85 237 | 73.36 249 | 83.31 148 | 84.76 247 | 66.03 169 | 83.38 259 | 85.06 259 | 70.21 194 | 69.40 288 | 81.05 308 | 45.76 305 | 94.66 111 | 65.10 223 | 75.49 278 | 89.25 222 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
mvs_tets | | | 79.13 171 | 77.77 182 | 83.22 155 | 84.70 248 | 66.37 165 | 89.17 95 | 90.19 154 | 69.38 209 | 75.40 217 | 89.46 150 | 44.17 314 | 93.15 176 | 76.78 120 | 80.70 218 | 90.14 188 |
|
jajsoiax | | | 79.29 167 | 77.96 174 | 83.27 150 | 84.68 249 | 66.57 163 | 89.25 94 | 90.16 155 | 69.20 215 | 75.46 214 | 89.49 147 | 45.75 306 | 93.13 178 | 76.84 119 | 80.80 216 | 90.11 191 |
|
MIMVSNet | | | 70.69 281 | 69.30 280 | 74.88 302 | 84.52 250 | 56.35 315 | 75.87 326 | 79.42 325 | 64.59 271 | 67.76 297 | 82.41 296 | 41.10 330 | 81.54 332 | 46.64 340 | 81.34 209 | 86.75 287 |
|
MSDG | | | 73.36 261 | 70.99 270 | 80.49 227 | 84.51 251 | 65.80 176 | 80.71 286 | 86.13 250 | 65.70 259 | 65.46 320 | 83.74 281 | 44.60 310 | 90.91 249 | 51.13 314 | 76.89 257 | 84.74 314 |
|
mvs_anonymous | | | 79.42 163 | 79.11 151 | 80.34 230 | 84.45 252 | 57.97 289 | 82.59 268 | 87.62 225 | 67.40 240 | 76.17 201 | 88.56 173 | 68.47 85 | 89.59 268 | 70.65 170 | 86.05 159 | 93.47 78 |
|
EI-MVSNet | | | 80.52 140 | 79.98 129 | 82.12 188 | 84.28 253 | 63.19 232 | 86.41 189 | 88.95 195 | 74.18 127 | 78.69 142 | 87.54 199 | 66.62 99 | 92.43 199 | 72.57 157 | 80.57 220 | 90.74 167 |
|
CVMVSNet | | | 72.99 266 | 72.58 255 | 74.25 308 | 84.28 253 | 50.85 350 | 86.41 189 | 83.45 284 | 44.56 356 | 73.23 246 | 87.54 199 | 49.38 278 | 85.70 308 | 65.90 216 | 78.44 241 | 86.19 295 |
|
pm-mvs1 | | | 77.25 216 | 76.68 210 | 78.93 256 | 84.22 255 | 58.62 281 | 86.41 189 | 88.36 210 | 71.37 173 | 73.31 244 | 88.01 190 | 61.22 173 | 89.15 276 | 64.24 228 | 73.01 309 | 89.03 229 |
|
EPNet | | | 83.72 78 | 82.92 86 | 86.14 69 | 84.22 255 | 69.48 104 | 91.05 54 | 85.27 257 | 81.30 7 | 76.83 182 | 91.65 92 | 66.09 107 | 95.56 66 | 76.00 126 | 93.85 66 | 93.38 79 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v8 | | | 79.97 151 | 79.02 153 | 82.80 175 | 84.09 257 | 64.50 201 | 87.96 143 | 90.29 153 | 74.13 129 | 75.24 224 | 86.81 217 | 62.88 143 | 93.89 142 | 74.39 137 | 75.40 283 | 90.00 199 |
|
v10 | | | 79.74 154 | 78.67 157 | 82.97 168 | 84.06 258 | 64.95 193 | 87.88 149 | 90.62 140 | 73.11 147 | 75.11 227 | 86.56 232 | 61.46 166 | 94.05 132 | 73.68 142 | 75.55 277 | 89.90 205 |
|
SCA | | | 74.22 251 | 72.33 258 | 79.91 238 | 84.05 259 | 62.17 245 | 79.96 295 | 79.29 326 | 66.30 252 | 72.38 256 | 80.13 318 | 51.95 249 | 88.60 285 | 59.25 268 | 77.67 248 | 88.96 234 |
|
test_djsdf | | | 80.30 144 | 79.32 145 | 83.27 150 | 83.98 260 | 65.37 187 | 90.50 64 | 90.38 146 | 68.55 230 | 76.19 198 | 88.70 166 | 56.44 213 | 93.46 163 | 78.98 95 | 80.14 226 | 90.97 160 |
|
1314 | | | 76.53 225 | 75.30 230 | 80.21 233 | 83.93 261 | 62.32 243 | 84.66 230 | 88.81 197 | 60.23 312 | 70.16 278 | 84.07 275 | 55.30 217 | 90.73 253 | 67.37 202 | 83.21 189 | 87.59 266 |
|
MS-PatchMatch | | | 73.83 255 | 72.67 254 | 77.30 281 | 83.87 262 | 66.02 170 | 81.82 274 | 84.66 263 | 61.37 306 | 68.61 294 | 82.82 292 | 47.29 292 | 88.21 289 | 59.27 267 | 84.32 175 | 77.68 352 |
|
v1144 | | | 80.03 149 | 79.03 152 | 83.01 165 | 83.78 263 | 64.51 199 | 87.11 168 | 90.57 142 | 71.96 163 | 78.08 159 | 86.20 241 | 61.41 167 | 93.94 136 | 74.93 134 | 77.23 251 | 90.60 172 |
|
OurMVSNet-221017-0 | | | 74.26 250 | 72.42 257 | 79.80 241 | 83.76 264 | 59.59 274 | 85.92 203 | 86.64 241 | 66.39 251 | 66.96 306 | 87.58 196 | 39.46 335 | 91.60 228 | 65.76 218 | 69.27 327 | 88.22 252 |
|
v2v482 | | | 80.23 145 | 79.29 146 | 83.05 163 | 83.62 265 | 64.14 208 | 87.04 169 | 89.97 159 | 73.61 137 | 78.18 156 | 87.22 208 | 61.10 175 | 93.82 143 | 76.11 123 | 76.78 261 | 91.18 151 |
|
XXY-MVS | | | 75.41 243 | 75.56 221 | 74.96 301 | 83.59 266 | 57.82 293 | 80.59 288 | 83.87 276 | 66.54 250 | 74.93 232 | 88.31 179 | 63.24 135 | 80.09 338 | 62.16 244 | 76.85 259 | 86.97 282 |
|
v1192 | | | 79.59 157 | 78.43 164 | 83.07 162 | 83.55 267 | 64.52 198 | 86.93 173 | 90.58 141 | 70.83 180 | 77.78 163 | 85.90 244 | 59.15 192 | 93.94 136 | 73.96 141 | 77.19 253 | 90.76 165 |
|
EGC-MVSNET | | | 52.07 329 | 47.05 333 | 67.14 338 | 83.51 268 | 60.71 262 | 80.50 289 | 67.75 361 | 0.07 374 | 0.43 375 | 75.85 346 | 24.26 362 | 81.54 332 | 28.82 362 | 62.25 345 | 59.16 362 |
|
v7n | | | 78.97 176 | 77.58 189 | 83.14 158 | 83.45 269 | 65.51 182 | 88.32 131 | 91.21 127 | 73.69 136 | 72.41 255 | 86.32 239 | 57.93 198 | 93.81 144 | 69.18 185 | 75.65 275 | 90.11 191 |
|
v144192 | | | 79.47 160 | 78.37 166 | 82.78 178 | 83.35 270 | 63.96 211 | 86.96 171 | 90.36 149 | 69.99 196 | 77.50 167 | 85.67 250 | 60.66 182 | 93.77 147 | 74.27 138 | 76.58 262 | 90.62 170 |
|
tpm2 | | | 73.26 262 | 71.46 264 | 78.63 259 | 83.34 271 | 56.71 308 | 80.65 287 | 80.40 317 | 56.63 339 | 73.55 242 | 82.02 303 | 51.80 253 | 91.24 239 | 56.35 295 | 78.42 242 | 87.95 255 |
|
v1921920 | | | 79.22 168 | 78.03 173 | 82.80 175 | 83.30 272 | 63.94 212 | 86.80 177 | 90.33 150 | 69.91 199 | 77.48 168 | 85.53 253 | 58.44 196 | 93.75 149 | 73.60 143 | 76.85 259 | 90.71 168 |
|
baseline2 | | | 75.70 238 | 73.83 246 | 81.30 209 | 83.26 273 | 61.79 251 | 82.57 269 | 80.65 312 | 66.81 242 | 66.88 307 | 83.42 285 | 57.86 200 | 92.19 211 | 63.47 231 | 79.57 229 | 89.91 204 |
|
v1240 | | | 78.99 175 | 77.78 181 | 82.64 181 | 83.21 274 | 63.54 220 | 86.62 184 | 90.30 152 | 69.74 205 | 77.33 171 | 85.68 249 | 57.04 210 | 93.76 148 | 73.13 152 | 76.92 255 | 90.62 170 |
|
XVG-ACMP-BASELINE | | | 76.11 234 | 74.27 241 | 81.62 199 | 83.20 275 | 64.67 197 | 83.60 256 | 89.75 166 | 69.75 203 | 71.85 261 | 87.09 213 | 32.78 354 | 92.11 214 | 69.99 177 | 80.43 222 | 88.09 254 |
|
MDTV_nov1_ep13 | | | | 69.97 279 | | 83.18 276 | 53.48 335 | 77.10 320 | 80.18 321 | 60.45 309 | 69.33 290 | 80.44 315 | 48.89 286 | 86.90 300 | 51.60 312 | 78.51 240 | |
|
PatchmatchNet |  | | 73.12 264 | 71.33 267 | 78.49 264 | 83.18 276 | 60.85 260 | 79.63 297 | 78.57 328 | 64.13 277 | 71.73 262 | 79.81 323 | 51.20 258 | 85.97 307 | 57.40 287 | 76.36 269 | 88.66 244 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Fast-Effi-MVS+-dtu | | | 78.02 199 | 76.49 212 | 82.62 182 | 83.16 278 | 66.96 159 | 86.94 172 | 87.45 230 | 72.45 153 | 71.49 265 | 84.17 273 | 54.79 222 | 91.58 229 | 67.61 199 | 80.31 223 | 89.30 221 |
|
gg-mvs-nofinetune | | | 69.95 289 | 67.96 292 | 75.94 291 | 83.07 279 | 54.51 328 | 77.23 319 | 70.29 354 | 63.11 287 | 70.32 274 | 62.33 357 | 43.62 316 | 88.69 284 | 53.88 303 | 87.76 133 | 84.62 317 |
|
MVSTER | | | 79.01 174 | 77.88 178 | 82.38 186 | 83.07 279 | 64.80 195 | 84.08 249 | 88.95 195 | 69.01 222 | 78.69 142 | 87.17 211 | 54.70 223 | 92.43 199 | 74.69 135 | 80.57 220 | 89.89 206 |
|
K. test v3 | | | 71.19 277 | 68.51 285 | 79.21 253 | 83.04 281 | 57.78 294 | 84.35 243 | 76.91 339 | 72.90 152 | 62.99 336 | 82.86 291 | 39.27 336 | 91.09 246 | 61.65 250 | 52.66 358 | 88.75 242 |
|
eth_miper_zixun_eth | | | 77.92 202 | 76.69 209 | 81.61 201 | 83.00 282 | 61.98 247 | 83.15 262 | 89.20 183 | 69.52 207 | 74.86 233 | 84.35 271 | 61.76 159 | 92.56 195 | 71.50 163 | 72.89 310 | 90.28 184 |
|
diffmvs | | | 82.10 101 | 81.88 103 | 82.76 180 | 83.00 282 | 63.78 215 | 83.68 252 | 89.76 165 | 72.94 151 | 82.02 101 | 89.85 136 | 65.96 111 | 90.79 251 | 82.38 73 | 87.30 141 | 93.71 64 |
|
FMVSNet5 | | | 69.50 291 | 67.96 292 | 74.15 309 | 82.97 284 | 55.35 323 | 80.01 294 | 82.12 300 | 62.56 296 | 63.02 334 | 81.53 305 | 36.92 345 | 81.92 330 | 48.42 328 | 74.06 298 | 85.17 310 |
|
DWT-MVSNet_test | | | 73.70 256 | 71.86 261 | 79.21 253 | 82.91 285 | 58.94 277 | 82.34 270 | 82.17 298 | 65.21 263 | 71.05 269 | 78.31 332 | 44.21 313 | 90.17 260 | 63.29 235 | 77.28 250 | 88.53 248 |
|
c3_l | | | 78.75 179 | 77.91 176 | 81.26 210 | 82.89 286 | 61.56 253 | 84.09 248 | 89.13 187 | 69.97 197 | 75.56 210 | 84.29 272 | 66.36 103 | 92.09 215 | 73.47 147 | 75.48 279 | 90.12 190 |
|
sss | | | 73.60 257 | 73.64 247 | 73.51 312 | 82.80 287 | 55.01 324 | 76.12 322 | 81.69 304 | 62.47 297 | 74.68 235 | 85.85 247 | 57.32 206 | 78.11 345 | 60.86 257 | 80.93 213 | 87.39 269 |
|
GA-MVS | | | 76.87 222 | 75.17 231 | 81.97 194 | 82.75 288 | 62.58 239 | 81.44 281 | 86.35 247 | 72.16 161 | 74.74 234 | 82.89 290 | 46.20 301 | 92.02 217 | 68.85 190 | 81.09 212 | 91.30 149 |
|
v148 | | | 78.72 180 | 77.80 180 | 81.47 203 | 82.73 289 | 61.96 248 | 86.30 193 | 88.08 215 | 73.26 146 | 76.18 199 | 85.47 255 | 62.46 149 | 92.36 203 | 71.92 160 | 73.82 302 | 90.09 193 |
|
IterMVS-SCA-FT | | | 75.43 242 | 73.87 245 | 80.11 235 | 82.69 290 | 64.85 194 | 81.57 279 | 83.47 283 | 69.16 216 | 70.49 272 | 84.15 274 | 51.95 249 | 88.15 290 | 69.23 184 | 72.14 315 | 87.34 271 |
|
miper_ehance_all_eth | | | 78.59 184 | 77.76 183 | 81.08 216 | 82.66 291 | 61.56 253 | 83.65 253 | 89.15 185 | 68.87 225 | 75.55 211 | 83.79 280 | 66.49 101 | 92.03 216 | 73.25 150 | 76.39 266 | 89.64 214 |
|
CostFormer | | | 75.24 245 | 73.90 244 | 79.27 251 | 82.65 292 | 58.27 284 | 80.80 283 | 82.73 295 | 61.57 303 | 75.33 222 | 83.13 288 | 55.52 215 | 91.07 247 | 64.98 224 | 78.34 243 | 88.45 249 |
|
EPNet_dtu | | | 75.46 241 | 74.86 232 | 77.23 283 | 82.57 293 | 54.60 326 | 86.89 174 | 83.09 291 | 71.64 166 | 66.25 317 | 85.86 246 | 55.99 214 | 88.04 292 | 54.92 299 | 86.55 152 | 89.05 228 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPSCF | | | 73.23 263 | 71.46 264 | 78.54 262 | 82.50 294 | 59.85 271 | 82.18 272 | 82.84 294 | 58.96 323 | 71.15 268 | 89.41 154 | 45.48 308 | 84.77 316 | 58.82 274 | 71.83 317 | 91.02 159 |
|
cl____ | | | 77.72 206 | 76.76 206 | 80.58 225 | 82.49 295 | 60.48 266 | 83.09 263 | 87.87 220 | 69.22 213 | 74.38 238 | 85.22 260 | 62.10 156 | 91.53 231 | 71.09 165 | 75.41 282 | 89.73 213 |
|
DIV-MVS_self_test | | | 77.72 206 | 76.76 206 | 80.58 225 | 82.48 296 | 60.48 266 | 83.09 263 | 87.86 221 | 69.22 213 | 74.38 238 | 85.24 259 | 62.10 156 | 91.53 231 | 71.09 165 | 75.40 283 | 89.74 212 |
|
tpm cat1 | | | 70.57 282 | 68.31 287 | 77.35 280 | 82.41 297 | 57.95 290 | 78.08 313 | 80.22 320 | 52.04 351 | 68.54 295 | 77.66 338 | 52.00 248 | 87.84 294 | 51.77 310 | 72.07 316 | 86.25 293 |
|
cl22 | | | 78.07 197 | 77.01 198 | 81.23 211 | 82.37 298 | 61.83 250 | 83.55 257 | 87.98 217 | 68.96 223 | 75.06 229 | 83.87 276 | 61.40 168 | 91.88 223 | 73.53 144 | 76.39 266 | 89.98 202 |
|
MVS_0304 | | | 72.48 269 | 70.89 272 | 77.24 282 | 82.20 299 | 59.68 272 | 84.11 247 | 83.49 282 | 67.10 241 | 66.87 308 | 80.59 314 | 35.00 351 | 87.40 297 | 59.07 271 | 79.58 228 | 84.63 316 |
|
tpm | | | 72.37 272 | 71.71 263 | 74.35 307 | 82.19 300 | 52.00 342 | 79.22 302 | 77.29 336 | 64.56 272 | 72.95 249 | 83.68 283 | 51.35 256 | 83.26 326 | 58.33 279 | 75.80 273 | 87.81 260 |
|
tpmvs | | | 71.09 278 | 69.29 281 | 76.49 288 | 82.04 301 | 56.04 318 | 78.92 306 | 81.37 307 | 64.05 280 | 67.18 305 | 78.28 333 | 49.74 275 | 89.77 264 | 49.67 324 | 72.37 312 | 83.67 324 |
|
pmmvs4 | | | 74.03 254 | 71.91 260 | 80.39 228 | 81.96 302 | 68.32 131 | 81.45 280 | 82.14 299 | 59.32 320 | 69.87 284 | 85.13 262 | 52.40 240 | 88.13 291 | 60.21 261 | 74.74 293 | 84.73 315 |
|
TinyColmap | | | 67.30 305 | 64.81 309 | 74.76 304 | 81.92 303 | 56.68 309 | 80.29 292 | 81.49 306 | 60.33 310 | 56.27 355 | 83.22 287 | 24.77 361 | 87.66 296 | 45.52 344 | 69.47 326 | 79.95 347 |
|
ITE_SJBPF | | | | | 78.22 266 | 81.77 304 | 60.57 264 | | 83.30 285 | 69.25 212 | 67.54 300 | 87.20 209 | 36.33 347 | 87.28 299 | 54.34 301 | 74.62 294 | 86.80 285 |
|
miper_enhance_ethall | | | 77.87 204 | 76.86 202 | 80.92 219 | 81.65 305 | 61.38 255 | 82.68 267 | 88.98 192 | 65.52 262 | 75.47 212 | 82.30 298 | 65.76 113 | 92.00 218 | 72.95 153 | 76.39 266 | 89.39 219 |
|
MVS-HIRNet | | | 59.14 323 | 57.67 326 | 63.57 341 | 81.65 305 | 43.50 364 | 71.73 339 | 65.06 365 | 39.59 361 | 51.43 359 | 57.73 361 | 38.34 340 | 82.58 329 | 39.53 356 | 73.95 299 | 64.62 360 |
|
GG-mvs-BLEND | | | | | 75.38 298 | 81.59 307 | 55.80 320 | 79.32 300 | 69.63 356 | | 67.19 304 | 73.67 350 | 43.24 317 | 88.90 283 | 50.41 316 | 84.50 172 | 81.45 340 |
|
IterMVS | | | 74.29 249 | 72.94 253 | 78.35 265 | 81.53 308 | 63.49 222 | 81.58 278 | 82.49 296 | 68.06 235 | 69.99 281 | 83.69 282 | 51.66 255 | 85.54 309 | 65.85 217 | 71.64 318 | 86.01 300 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CHOSEN 280x420 | | | 66.51 309 | 64.71 310 | 71.90 319 | 81.45 309 | 63.52 221 | 57.98 361 | 68.95 360 | 53.57 347 | 62.59 338 | 76.70 341 | 46.22 300 | 75.29 357 | 55.25 298 | 79.68 227 | 76.88 354 |
|
gm-plane-assit | | | | | | 81.40 310 | 53.83 333 | | | 62.72 295 | | 80.94 311 | | 92.39 201 | 63.40 233 | | |
|
pmmvs6 | | | 74.69 247 | 73.39 248 | 78.61 260 | 81.38 311 | 57.48 298 | 86.64 183 | 87.95 218 | 64.99 269 | 70.18 276 | 86.61 228 | 50.43 267 | 89.52 269 | 62.12 245 | 70.18 325 | 88.83 239 |
|
test-LLR | | | 72.94 267 | 72.43 256 | 74.48 305 | 81.35 312 | 58.04 287 | 78.38 309 | 77.46 333 | 66.66 246 | 69.95 282 | 79.00 327 | 48.06 288 | 79.24 339 | 66.13 212 | 84.83 168 | 86.15 296 |
|
test-mter | | | 71.41 276 | 70.39 277 | 74.48 305 | 81.35 312 | 58.04 287 | 78.38 309 | 77.46 333 | 60.32 311 | 69.95 282 | 79.00 327 | 36.08 348 | 79.24 339 | 66.13 212 | 84.83 168 | 86.15 296 |
|
CR-MVSNet | | | 73.37 259 | 71.27 268 | 79.67 245 | 81.32 314 | 65.19 189 | 75.92 324 | 80.30 318 | 59.92 315 | 72.73 251 | 81.19 306 | 52.50 238 | 86.69 301 | 59.84 263 | 77.71 246 | 87.11 280 |
|
RPMNet | | | 73.51 258 | 70.49 274 | 82.58 183 | 81.32 314 | 65.19 189 | 75.92 324 | 92.27 83 | 57.60 333 | 72.73 251 | 76.45 343 | 52.30 241 | 95.43 75 | 48.14 333 | 77.71 246 | 87.11 280 |
|
bset_n11_16_dypcd | | | 77.12 217 | 75.47 223 | 82.06 190 | 81.12 316 | 65.99 171 | 81.37 282 | 83.20 289 | 69.94 198 | 76.09 203 | 83.38 286 | 47.75 290 | 92.26 208 | 78.51 99 | 77.91 245 | 87.95 255 |
|
V42 | | | 79.38 166 | 78.24 170 | 82.83 172 | 81.10 317 | 65.50 183 | 85.55 213 | 89.82 163 | 71.57 170 | 78.21 154 | 86.12 242 | 60.66 182 | 93.18 175 | 75.64 128 | 75.46 281 | 89.81 210 |
|
lessismore_v0 | | | | | 78.97 255 | 81.01 318 | 57.15 301 | | 65.99 363 | | 61.16 341 | 82.82 292 | 39.12 337 | 91.34 237 | 59.67 264 | 46.92 363 | 88.43 250 |
|
Patchmtry | | | 70.74 280 | 69.16 282 | 75.49 297 | 80.72 319 | 54.07 331 | 74.94 333 | 80.30 318 | 58.34 327 | 70.01 279 | 81.19 306 | 52.50 238 | 86.54 302 | 53.37 305 | 71.09 322 | 85.87 303 |
|
PatchT | | | 68.46 300 | 67.85 294 | 70.29 328 | 80.70 320 | 43.93 363 | 72.47 337 | 74.88 344 | 60.15 313 | 70.55 270 | 76.57 342 | 49.94 272 | 81.59 331 | 50.58 315 | 74.83 292 | 85.34 306 |
|
USDC | | | 70.33 285 | 68.37 286 | 76.21 290 | 80.60 321 | 56.23 316 | 79.19 303 | 86.49 243 | 60.89 307 | 61.29 340 | 85.47 255 | 31.78 357 | 89.47 271 | 53.37 305 | 76.21 270 | 82.94 334 |
|
tpmrst | | | 72.39 270 | 72.13 259 | 73.18 316 | 80.54 322 | 49.91 353 | 79.91 296 | 79.08 327 | 63.11 287 | 71.69 263 | 79.95 320 | 55.32 216 | 82.77 328 | 65.66 219 | 73.89 300 | 86.87 283 |
|
anonymousdsp | | | 78.60 183 | 77.15 196 | 82.98 167 | 80.51 323 | 67.08 154 | 87.24 165 | 89.53 171 | 65.66 260 | 75.16 225 | 87.19 210 | 52.52 237 | 92.25 209 | 77.17 115 | 79.34 234 | 89.61 215 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 283 | 68.19 288 | 77.65 275 | 80.26 324 | 59.41 276 | 85.01 223 | 82.96 293 | 58.76 325 | 65.43 321 | 82.33 297 | 37.63 344 | 91.23 240 | 45.34 346 | 76.03 271 | 82.32 335 |
|
Anonymous20231206 | | | 68.60 297 | 67.80 296 | 71.02 326 | 80.23 325 | 50.75 351 | 78.30 312 | 80.47 315 | 56.79 338 | 66.11 318 | 82.63 295 | 46.35 299 | 78.95 341 | 43.62 349 | 75.70 274 | 83.36 327 |
|
miper_lstm_enhance | | | 74.11 252 | 73.11 252 | 77.13 284 | 80.11 326 | 59.62 273 | 72.23 338 | 86.92 239 | 66.76 244 | 70.40 273 | 82.92 289 | 56.93 211 | 82.92 327 | 69.06 187 | 72.63 311 | 88.87 237 |
|
MIMVSNet1 | | | 68.58 298 | 66.78 305 | 73.98 310 | 80.07 327 | 51.82 343 | 80.77 284 | 84.37 266 | 64.40 274 | 59.75 346 | 82.16 301 | 36.47 346 | 83.63 323 | 42.73 351 | 70.33 324 | 86.48 291 |
|
ADS-MVSNet2 | | | 66.20 314 | 63.33 316 | 74.82 303 | 79.92 328 | 58.75 280 | 67.55 353 | 75.19 343 | 53.37 348 | 65.25 323 | 75.86 344 | 42.32 323 | 80.53 337 | 41.57 353 | 68.91 329 | 85.18 308 |
|
ADS-MVSNet | | | 64.36 318 | 62.88 320 | 68.78 335 | 79.92 328 | 47.17 358 | 67.55 353 | 71.18 352 | 53.37 348 | 65.25 323 | 75.86 344 | 42.32 323 | 73.99 361 | 41.57 353 | 68.91 329 | 85.18 308 |
|
D2MVS | | | 74.82 246 | 73.21 250 | 79.64 246 | 79.81 330 | 62.56 240 | 80.34 291 | 87.35 231 | 64.37 275 | 68.86 291 | 82.66 294 | 46.37 298 | 90.10 261 | 67.91 197 | 81.24 211 | 86.25 293 |
|
our_test_3 | | | 69.14 293 | 67.00 303 | 75.57 295 | 79.80 331 | 58.80 279 | 77.96 314 | 77.81 331 | 59.55 318 | 62.90 337 | 78.25 334 | 47.43 291 | 83.97 320 | 51.71 311 | 67.58 333 | 83.93 323 |
|
ppachtmachnet_test | | | 70.04 288 | 67.34 301 | 78.14 267 | 79.80 331 | 61.13 256 | 79.19 303 | 80.59 313 | 59.16 322 | 65.27 322 | 79.29 324 | 46.75 297 | 87.29 298 | 49.33 325 | 66.72 334 | 86.00 302 |
|
dp | | | 66.80 306 | 65.43 308 | 70.90 327 | 79.74 333 | 48.82 356 | 75.12 331 | 74.77 345 | 59.61 317 | 64.08 330 | 77.23 339 | 42.89 319 | 80.72 336 | 48.86 327 | 66.58 336 | 83.16 329 |
|
EPMVS | | | 69.02 294 | 68.16 289 | 71.59 320 | 79.61 334 | 49.80 355 | 77.40 318 | 66.93 362 | 62.82 293 | 70.01 279 | 79.05 325 | 45.79 304 | 77.86 347 | 56.58 293 | 75.26 288 | 87.13 279 |
|
PVSNet_0 | | 57.27 20 | 61.67 322 | 59.27 325 | 68.85 334 | 79.61 334 | 57.44 299 | 68.01 352 | 73.44 350 | 55.93 342 | 58.54 348 | 70.41 354 | 44.58 311 | 77.55 348 | 47.01 337 | 35.91 364 | 71.55 357 |
|
CL-MVSNet_self_test | | | 72.37 272 | 71.46 264 | 75.09 300 | 79.49 336 | 53.53 334 | 80.76 285 | 85.01 261 | 69.12 217 | 70.51 271 | 82.05 302 | 57.92 199 | 84.13 319 | 52.27 309 | 66.00 338 | 87.60 264 |
|
Patchmatch-test | | | 64.82 317 | 63.24 317 | 69.57 330 | 79.42 337 | 49.82 354 | 63.49 359 | 69.05 359 | 51.98 352 | 59.95 345 | 80.13 318 | 50.91 260 | 70.98 363 | 40.66 355 | 73.57 303 | 87.90 258 |
|
MDA-MVSNet-bldmvs | | | 66.68 307 | 63.66 315 | 75.75 292 | 79.28 338 | 60.56 265 | 73.92 335 | 78.35 329 | 64.43 273 | 50.13 360 | 79.87 322 | 44.02 315 | 83.67 322 | 46.10 342 | 56.86 353 | 83.03 332 |
|
TESTMET0.1,1 | | | 69.89 290 | 69.00 283 | 72.55 317 | 79.27 339 | 56.85 304 | 78.38 309 | 74.71 347 | 57.64 332 | 68.09 296 | 77.19 340 | 37.75 343 | 76.70 350 | 63.92 229 | 84.09 177 | 84.10 322 |
|
N_pmnet | | | 52.79 328 | 53.26 329 | 51.40 348 | 78.99 340 | 7.68 379 | 69.52 346 | 3.89 379 | 51.63 353 | 57.01 352 | 74.98 348 | 40.83 332 | 65.96 366 | 37.78 358 | 64.67 341 | 80.56 346 |
|
EU-MVSNet | | | 68.53 299 | 67.61 299 | 71.31 325 | 78.51 341 | 47.01 359 | 84.47 236 | 84.27 270 | 42.27 357 | 66.44 316 | 84.79 267 | 40.44 333 | 83.76 321 | 58.76 275 | 68.54 332 | 83.17 328 |
|
pmmvs5 | | | 71.55 275 | 70.20 278 | 75.61 294 | 77.83 342 | 56.39 313 | 81.74 276 | 80.89 308 | 57.76 331 | 67.46 301 | 84.49 269 | 49.26 281 | 85.32 312 | 57.08 290 | 75.29 287 | 85.11 311 |
|
test0.0.03 1 | | | 68.00 301 | 67.69 298 | 68.90 333 | 77.55 343 | 47.43 357 | 75.70 327 | 72.95 351 | 66.66 246 | 66.56 311 | 82.29 299 | 48.06 288 | 75.87 354 | 44.97 347 | 74.51 295 | 83.41 326 |
|
Patchmatch-RL test | | | 70.24 286 | 67.78 297 | 77.61 276 | 77.43 344 | 59.57 275 | 71.16 340 | 70.33 353 | 62.94 291 | 68.65 293 | 72.77 351 | 50.62 264 | 85.49 310 | 69.58 182 | 66.58 336 | 87.77 261 |
|
pmmvs-eth3d | | | 70.50 284 | 67.83 295 | 78.52 263 | 77.37 345 | 66.18 168 | 81.82 274 | 81.51 305 | 58.90 324 | 63.90 332 | 80.42 316 | 42.69 321 | 86.28 305 | 58.56 276 | 65.30 340 | 83.11 330 |
|
JIA-IIPM | | | 66.32 311 | 62.82 321 | 76.82 286 | 77.09 346 | 61.72 252 | 65.34 356 | 75.38 342 | 58.04 330 | 64.51 327 | 62.32 358 | 42.05 327 | 86.51 303 | 51.45 313 | 69.22 328 | 82.21 336 |
|
Gipuma |  | | 45.18 332 | 41.86 335 | 55.16 346 | 77.03 347 | 51.52 346 | 32.50 367 | 80.52 314 | 32.46 365 | 27.12 366 | 35.02 367 | 9.52 374 | 75.50 355 | 22.31 367 | 60.21 351 | 38.45 366 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet_test_wron | | | 65.03 315 | 62.92 318 | 71.37 322 | 75.93 348 | 56.73 306 | 69.09 351 | 74.73 346 | 57.28 336 | 54.03 357 | 77.89 335 | 45.88 302 | 74.39 360 | 49.89 323 | 61.55 347 | 82.99 333 |
|
YYNet1 | | | 65.03 315 | 62.91 319 | 71.38 321 | 75.85 349 | 56.60 310 | 69.12 350 | 74.66 348 | 57.28 336 | 54.12 356 | 77.87 336 | 45.85 303 | 74.48 359 | 49.95 322 | 61.52 348 | 83.05 331 |
|
PMMVS | | | 69.34 292 | 68.67 284 | 71.35 324 | 75.67 350 | 62.03 246 | 75.17 328 | 73.46 349 | 50.00 354 | 68.68 292 | 79.05 325 | 52.07 247 | 78.13 344 | 61.16 255 | 82.77 195 | 73.90 355 |
|
testgi | | | 66.67 308 | 66.53 306 | 67.08 339 | 75.62 351 | 41.69 366 | 75.93 323 | 76.50 340 | 66.11 253 | 65.20 325 | 86.59 229 | 35.72 349 | 74.71 358 | 43.71 348 | 73.38 307 | 84.84 313 |
|
test20.03 | | | 67.45 303 | 66.95 304 | 68.94 332 | 75.48 352 | 44.84 362 | 77.50 317 | 77.67 332 | 66.66 246 | 63.01 335 | 83.80 279 | 47.02 294 | 78.40 343 | 42.53 352 | 68.86 331 | 83.58 325 |
|
KD-MVS_2432*1600 | | | 66.22 312 | 63.89 313 | 73.21 313 | 75.47 353 | 53.42 336 | 70.76 343 | 84.35 267 | 64.10 278 | 66.52 313 | 78.52 330 | 34.55 352 | 84.98 313 | 50.40 317 | 50.33 361 | 81.23 341 |
|
miper_refine_blended | | | 66.22 312 | 63.89 313 | 73.21 313 | 75.47 353 | 53.42 336 | 70.76 343 | 84.35 267 | 64.10 278 | 66.52 313 | 78.52 330 | 34.55 352 | 84.98 313 | 50.40 317 | 50.33 361 | 81.23 341 |
|
Anonymous20240521 | | | 68.80 296 | 67.22 302 | 73.55 311 | 74.33 355 | 54.11 330 | 83.18 261 | 85.61 254 | 58.15 328 | 61.68 339 | 80.94 311 | 30.71 358 | 81.27 334 | 57.00 291 | 73.34 308 | 85.28 307 |
|
KD-MVS_self_test | | | 68.81 295 | 67.59 300 | 72.46 318 | 74.29 356 | 45.45 360 | 77.93 315 | 87.00 237 | 63.12 286 | 63.99 331 | 78.99 329 | 42.32 323 | 84.77 316 | 56.55 294 | 64.09 343 | 87.16 278 |
|
PM-MVS | | | 66.41 310 | 64.14 312 | 73.20 315 | 73.92 357 | 56.45 311 | 78.97 305 | 64.96 366 | 63.88 284 | 64.72 326 | 80.24 317 | 19.84 366 | 83.44 324 | 66.24 211 | 64.52 342 | 79.71 348 |
|
UnsupCasMVSNet_bld | | | 63.70 320 | 61.53 324 | 70.21 329 | 73.69 358 | 51.39 348 | 72.82 336 | 81.89 301 | 55.63 343 | 57.81 350 | 71.80 353 | 38.67 338 | 78.61 342 | 49.26 326 | 52.21 359 | 80.63 344 |
|
UnsupCasMVSNet_eth | | | 67.33 304 | 65.99 307 | 71.37 322 | 73.48 359 | 51.47 347 | 75.16 329 | 85.19 258 | 65.20 264 | 60.78 342 | 80.93 313 | 42.35 322 | 77.20 349 | 57.12 289 | 53.69 357 | 85.44 305 |
|
TDRefinement | | | 67.49 302 | 64.34 311 | 76.92 285 | 73.47 360 | 61.07 257 | 84.86 227 | 82.98 292 | 59.77 316 | 58.30 349 | 85.13 262 | 26.06 360 | 87.89 293 | 47.92 335 | 60.59 350 | 81.81 339 |
|
ambc | | | | | 75.24 299 | 73.16 361 | 50.51 352 | 63.05 360 | 87.47 229 | | 64.28 328 | 77.81 337 | 17.80 367 | 89.73 266 | 57.88 283 | 60.64 349 | 85.49 304 |
|
CMPMVS |  | 51.72 21 | 70.19 287 | 68.16 289 | 76.28 289 | 73.15 362 | 57.55 297 | 79.47 299 | 83.92 274 | 48.02 355 | 56.48 354 | 84.81 266 | 43.13 318 | 86.42 304 | 62.67 240 | 81.81 207 | 84.89 312 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
new-patchmatchnet | | | 61.73 321 | 61.73 323 | 61.70 342 | 72.74 363 | 24.50 376 | 69.16 349 | 78.03 330 | 61.40 304 | 56.72 353 | 75.53 347 | 38.42 339 | 76.48 352 | 45.95 343 | 57.67 352 | 84.13 321 |
|
LF4IMVS | | | 64.02 319 | 62.19 322 | 69.50 331 | 70.90 364 | 53.29 339 | 76.13 321 | 77.18 337 | 52.65 350 | 58.59 347 | 80.98 310 | 23.55 363 | 76.52 351 | 53.06 307 | 66.66 335 | 78.68 350 |
|
new_pmnet | | | 50.91 330 | 50.29 331 | 52.78 347 | 68.58 365 | 34.94 371 | 63.71 358 | 56.63 370 | 39.73 360 | 44.95 361 | 65.47 356 | 21.93 364 | 58.48 367 | 34.98 360 | 56.62 354 | 64.92 359 |
|
DSMNet-mixed | | | 57.77 325 | 56.90 327 | 60.38 343 | 67.70 366 | 35.61 369 | 69.18 348 | 53.97 371 | 32.30 366 | 57.49 351 | 79.88 321 | 40.39 334 | 68.57 365 | 38.78 357 | 72.37 312 | 76.97 353 |
|
FPMVS | | | 53.68 327 | 51.64 330 | 59.81 344 | 65.08 367 | 51.03 349 | 69.48 347 | 69.58 357 | 41.46 358 | 40.67 362 | 72.32 352 | 16.46 369 | 70.00 364 | 24.24 366 | 65.42 339 | 58.40 363 |
|
pmmvs3 | | | 57.79 324 | 54.26 328 | 68.37 336 | 64.02 368 | 56.72 307 | 75.12 331 | 65.17 364 | 40.20 359 | 52.93 358 | 69.86 355 | 20.36 365 | 75.48 356 | 45.45 345 | 55.25 356 | 72.90 356 |
|
wuyk23d | | | 16.82 341 | 15.94 344 | 19.46 355 | 58.74 369 | 31.45 372 | 39.22 365 | 3.74 380 | 6.84 371 | 6.04 374 | 2.70 374 | 1.27 379 | 24.29 374 | 10.54 373 | 14.40 373 | 2.63 371 |
|
PMMVS2 | | | 40.82 334 | 38.86 337 | 46.69 349 | 53.84 370 | 16.45 377 | 48.61 364 | 49.92 372 | 37.49 362 | 31.67 364 | 60.97 360 | 8.14 376 | 56.42 368 | 28.42 363 | 30.72 366 | 67.19 358 |
|
LCM-MVSNet | | | 54.25 326 | 49.68 332 | 67.97 337 | 53.73 371 | 45.28 361 | 66.85 355 | 80.78 310 | 35.96 363 | 39.45 363 | 62.23 359 | 8.70 375 | 78.06 346 | 48.24 332 | 51.20 360 | 80.57 345 |
|
E-PMN | | | 31.77 335 | 30.64 338 | 35.15 352 | 52.87 372 | 27.67 373 | 57.09 362 | 47.86 373 | 24.64 367 | 16.40 372 | 33.05 368 | 11.23 372 | 54.90 369 | 14.46 371 | 18.15 369 | 22.87 368 |
|
EMVS | | | 30.81 337 | 29.65 339 | 34.27 353 | 50.96 373 | 25.95 375 | 56.58 363 | 46.80 374 | 24.01 368 | 15.53 373 | 30.68 369 | 12.47 371 | 54.43 370 | 12.81 372 | 17.05 370 | 22.43 369 |
|
ANet_high | | | 50.57 331 | 46.10 334 | 63.99 340 | 48.67 374 | 39.13 367 | 70.99 342 | 80.85 309 | 61.39 305 | 31.18 365 | 57.70 362 | 17.02 368 | 73.65 362 | 31.22 361 | 15.89 371 | 79.18 349 |
|
MVE |  | 26.22 23 | 30.37 338 | 25.89 342 | 43.81 350 | 44.55 375 | 35.46 370 | 28.87 368 | 39.07 375 | 18.20 369 | 18.58 371 | 40.18 366 | 2.68 378 | 47.37 372 | 17.07 370 | 23.78 368 | 48.60 365 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS |  | 37.38 22 | 44.16 333 | 40.28 336 | 55.82 345 | 40.82 376 | 42.54 365 | 65.12 357 | 63.99 367 | 34.43 364 | 24.48 367 | 57.12 363 | 3.92 377 | 76.17 353 | 17.10 369 | 55.52 355 | 48.75 364 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepMVS_CX |  | | | | 27.40 354 | 40.17 377 | 26.90 374 | | 24.59 378 | 17.44 370 | 23.95 368 | 48.61 365 | 9.77 373 | 26.48 373 | 18.06 368 | 24.47 367 | 28.83 367 |
|
test_method | | | 31.52 336 | 29.28 340 | 38.23 351 | 27.03 378 | 6.50 380 | 20.94 369 | 62.21 369 | 4.05 372 | 22.35 370 | 52.50 364 | 13.33 370 | 47.58 371 | 27.04 365 | 34.04 365 | 60.62 361 |
|
tmp_tt | | | 18.61 340 | 21.40 343 | 10.23 356 | 4.82 379 | 10.11 378 | 34.70 366 | 30.74 377 | 1.48 373 | 23.91 369 | 26.07 370 | 28.42 359 | 13.41 375 | 27.12 364 | 15.35 372 | 7.17 370 |
|
testmvs | | | 6.04 344 | 8.02 347 | 0.10 358 | 0.08 380 | 0.03 382 | 69.74 345 | 0.04 381 | 0.05 375 | 0.31 376 | 1.68 375 | 0.02 381 | 0.04 376 | 0.24 374 | 0.02 374 | 0.25 373 |
|
test123 | | | 6.12 343 | 8.11 346 | 0.14 357 | 0.06 381 | 0.09 381 | 71.05 341 | 0.03 382 | 0.04 376 | 0.25 377 | 1.30 376 | 0.05 380 | 0.03 377 | 0.21 375 | 0.01 375 | 0.29 372 |
|
test_blank | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
eth-test2 | | | | | | 0.00 382 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 382 | | | | | | | | | | | |
|
uanet_test | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
cdsmvs_eth3d_5k | | | 19.96 339 | 26.61 341 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 89.26 180 | 0.00 377 | 0.00 378 | 88.61 170 | 61.62 162 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
pcd_1.5k_mvsjas | | | 5.26 345 | 7.02 348 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 63.15 138 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet-low-res | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uncertanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
Regformer | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
ab-mvs-re | | | 7.23 342 | 9.64 345 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 86.72 220 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
PC_three_1452 | | | | | | | | | | 68.21 234 | 92.02 12 | 94.00 48 | 82.09 5 | 95.98 55 | 84.58 40 | 96.68 2 | 94.95 5 |
|
test_241102_TWO | | | | | | | | | 94.06 12 | 77.24 51 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 5 | 89.07 9 | 96.58 6 | 94.26 38 |
|
test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 7 | 89.42 4 | 96.57 7 | 94.67 21 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 234 |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 257 | | | | 88.96 234 |
|
sam_mvs | | | | | | | | | | | | | 50.01 270 | | | | |
|
MTGPA |  | | | | | | | | 92.02 94 | | | | | | | | |
|
test_post1 | | | | | | | | 78.90 307 | | | | 5.43 373 | 48.81 287 | 85.44 311 | 59.25 268 | | |
|
test_post | | | | | | | | | | | | 5.46 372 | 50.36 268 | 84.24 318 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 349 | 51.12 259 | 88.60 285 | | | |
|
MTMP | | | | | | | | 92.18 33 | 32.83 376 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 33 | 95.70 31 | 92.87 101 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 63 | 95.45 33 | 92.70 104 |
|
test_prior4 | | | | | | | 72.60 35 | 89.01 102 | | | | | | | | | |
|
test_prior2 | | | | | | | | 88.85 108 | | 75.41 96 | 84.91 56 | 93.54 54 | 74.28 34 | | 83.31 55 | 95.86 22 | |
|
旧先验2 | | | | | | | | 86.56 186 | | 58.10 329 | 87.04 35 | | | 88.98 279 | 74.07 140 | | |
|
新几何2 | | | | | | | | 86.29 194 | | | | | | | | | |
|
无先验 | | | | | | | | 87.48 157 | 88.98 192 | 60.00 314 | | | | 94.12 129 | 67.28 203 | | 88.97 233 |
|
原ACMM2 | | | | | | | | 86.86 175 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 91.01 248 | 62.37 242 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 43 | | | | |
|
testdata1 | | | | | | | | 84.14 246 | | 75.71 90 | | | | | | | |
|
plane_prior5 | | | | | | | | | 92.44 75 | | | | | 95.38 80 | 78.71 97 | 86.32 155 | 91.33 147 |
|
plane_prior4 | | | | | | | | | | | | 91.00 114 | | | | | |
|
plane_prior3 | | | | | | | 68.60 127 | | | 78.44 31 | 78.92 139 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 49 | | 79.12 24 | | | | | | | |
|
plane_prior | | | | | | | 68.71 122 | 90.38 70 | | 77.62 40 | | | | | | 86.16 158 | |
|
n2 | | | | | | | | | 0.00 383 | | | | | | | | |
|
nn | | | | | | | | | 0.00 383 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 355 | | | | | | | | |
|
test11 | | | | | | | | | 92.23 86 | | | | | | | | |
|
door | | | | | | | | | 69.44 358 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 156 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 111 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 174 | | | 95.11 91 | | | 91.03 157 |
|
HQP3-MVS | | | | | | | | | 92.19 89 | | | | | | | 85.99 161 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 189 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 368 | 75.16 329 | | 55.10 344 | 66.53 312 | | 49.34 279 | | 53.98 302 | | 87.94 257 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 205 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 210 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 123 | | | | |
|