This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7790.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
IU-MVS98.77 486.00 5496.84 6381.26 24097.26 695.50 799.13 399.03 4
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7193.58 4797.27 2785.22 5699.54 1692.21 4698.74 2998.56 19
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 6993.53 5097.26 2985.04 5999.54 1692.35 4398.78 2198.50 22
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 6993.65 4397.21 3286.10 4599.49 2392.35 4398.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 1987.51 10193.65 4397.21 3286.10 4599.49 2391.68 6698.77 2498.30 41
test_part298.55 1187.22 1696.40 11
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6097.16 3785.02 6099.49 2391.99 5498.56 4798.47 28
X-MVStestdata88.31 16186.13 20394.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6023.41 35985.02 6099.49 2391.99 5498.56 4798.47 28
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8193.15 5597.04 4286.17 4499.62 192.40 4198.81 1898.52 20
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6791.83 8997.17 3683.96 7499.55 1291.44 7198.64 4398.43 34
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 5891.98 8397.19 3485.43 5499.56 792.06 5398.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10797.12 4087.13 10892.51 7496.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8597.78 187.45 10493.26 5197.33 2484.62 6599.51 2190.75 8498.57 4698.32 40
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10596.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15596.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3097.19 3588.24 8193.26 5196.83 5185.48 5399.59 491.43 7298.40 5398.30 41
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11692.62 7196.80 5584.85 6399.17 5092.43 3998.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7392.73 6797.23 3085.20 5799.32 3792.15 4998.83 1798.25 50
DPE-MVScopyleft95.57 395.67 395.25 798.36 2587.28 1595.56 7597.51 489.13 5697.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
HPM-MVS_fast93.40 5593.22 5493.94 6198.36 2584.83 7697.15 896.80 6985.77 13892.47 7597.13 3882.38 8699.07 5890.51 8698.40 5397.92 75
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 13096.66 8582.69 20690.03 11495.82 9582.30 8999.03 6484.57 15196.48 10096.91 117
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 5996.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8696.10 1396.96 4689.09 1598.94 8494.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4397.23 3287.28 10694.85 2497.04 4286.99 3799.52 2091.54 6898.33 5698.71 12
CPTT-MVS91.99 7591.80 7692.55 10898.24 3181.98 15596.76 2596.49 9581.89 22590.24 11096.44 7178.59 13198.61 10789.68 9197.85 7197.06 109
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3396.90 5788.20 8494.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 11997.17 3886.26 12992.83 6297.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS98.15 3586.62 3597.07 4483.63 18394.19 3096.91 4887.57 2999.26 4391.99 5498.44 51
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 3997.28 2885.90 13597.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 3996.84 6388.33 7794.19 3097.43 1884.24 6999.01 7093.26 2797.98 6698.52 20
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8796.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
114514_t89.51 12688.50 13692.54 10998.11 3781.99 15495.16 9896.36 10370.19 33885.81 17995.25 11076.70 14898.63 10582.07 18696.86 9097.00 113
ACMMPcopyleft93.24 5992.88 6394.30 5498.09 4085.33 7296.86 2297.45 1188.33 7790.15 11297.03 4481.44 10099.51 2190.85 8395.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14195.05 2397.18 3587.31 3199.07 5891.90 6298.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG93.23 6093.05 5893.76 6998.04 4284.07 9896.22 4197.37 1884.15 17390.05 11395.66 10087.77 2399.15 5389.91 8998.27 5898.07 63
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6897.34 1988.28 8095.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8492.25 4598.99 1098.84 8
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3796.76 7387.46 10293.75 4097.43 1884.24 6999.01 7092.73 3497.80 7297.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3796.76 7387.46 10293.75 4097.43 1882.94 8092.73 3497.80 7297.88 77
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3596.87 6186.96 11293.92 3797.47 1683.88 7598.96 8392.71 3797.87 7098.26 49
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9395.47 16989.44 4595.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
save fliter97.85 4885.63 6895.21 9396.82 6789.44 45
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9595.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7096.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3398.40 5398.62 16
ETH3 D test640093.64 4993.22 5494.92 2097.79 5286.84 2295.31 8297.26 2982.67 20793.81 3996.29 7587.29 3299.27 4289.87 9098.67 3798.65 15
9.1494.47 1797.79 5296.08 5097.44 1286.13 13395.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
CDPH-MVS92.83 6492.30 7194.44 4897.79 5286.11 5294.06 17496.66 8580.09 25392.77 6496.63 6286.62 3999.04 6387.40 11898.66 4098.17 54
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12195.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
DP-MVS87.25 19985.36 22992.90 9197.65 5683.24 12094.81 12092.00 28074.99 30781.92 27095.00 11872.66 20399.05 6066.92 32192.33 16496.40 130
PAPM_NR91.22 9090.78 9392.52 11097.60 5781.46 16894.37 15496.24 11086.39 12787.41 14994.80 12782.06 9598.48 11382.80 17595.37 11497.61 87
TEST997.53 5886.49 3994.07 17296.78 7081.61 23392.77 6496.20 8087.71 2699.12 55
train_agg93.44 5393.08 5794.52 4597.53 5886.49 3994.07 17296.78 7081.86 22692.77 6496.20 8087.63 2799.12 5592.14 5098.69 3397.94 72
abl_693.18 6193.05 5893.57 7397.52 6084.27 9595.53 7696.67 8487.85 9293.20 5497.22 3180.35 10799.18 4991.91 5997.21 8397.26 100
test_897.49 6186.30 4894.02 17796.76 7381.86 22692.70 6896.20 8087.63 2799.02 68
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7296.89 5889.40 4892.81 6396.97 4585.37 5599.24 4490.87 8298.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary89.89 11989.07 12492.37 11897.41 6383.03 12694.42 14695.92 13382.81 20486.34 17294.65 13273.89 18699.02 6880.69 21195.51 10995.05 176
agg_prior193.29 5792.97 6194.26 5597.38 6485.92 6093.92 18296.72 7981.96 22092.16 7996.23 7887.85 2298.97 8091.95 5898.55 4997.90 76
agg_prior97.38 6485.92 6096.72 7992.16 7998.97 80
原ACMM192.01 12997.34 6681.05 17896.81 6878.89 26790.45 10895.92 9182.65 8398.84 9680.68 21298.26 5996.14 138
MSLP-MVS++93.72 4694.08 3392.65 10497.31 6783.43 11695.79 6397.33 2290.03 3393.58 4796.96 4684.87 6297.76 16492.19 4898.66 4096.76 120
新几何193.10 8197.30 6884.35 9495.56 16171.09 33591.26 10196.24 7782.87 8298.86 9179.19 23398.10 6296.07 145
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16596.88 5987.67 9892.63 6996.39 7286.62 3998.87 8891.50 6998.67 3798.11 61
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8898.11 61
112190.42 10789.49 11393.20 7797.27 7184.46 8892.63 23095.51 16771.01 33691.20 10296.21 7982.92 8199.05 6080.56 21498.07 6396.10 143
PLCcopyleft84.53 789.06 14188.03 14992.15 12697.27 7182.69 14094.29 15795.44 17579.71 25884.01 23694.18 14876.68 14998.75 10077.28 25093.41 14595.02 177
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4297.11 4290.42 2596.95 1097.27 2789.53 1196.91 23594.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.34 5397.13 7486.15 5196.29 10591.04 10485.08 5899.01 7098.13 6197.86 79
MG-MVS91.77 7991.70 7892.00 13197.08 7580.03 20693.60 19595.18 18987.85 9290.89 10596.47 7082.06 9598.36 12385.07 14397.04 8797.62 86
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21297.24 3088.76 6591.60 9495.85 9486.07 4798.66 10291.91 5998.16 6098.03 67
CNLPA89.07 14087.98 15192.34 11996.87 7884.78 7794.08 17193.24 25181.41 23684.46 22095.13 11575.57 16396.62 24577.21 25193.84 13795.61 162
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15793.56 4996.28 7685.60 5199.31 3892.45 3898.79 1998.12 59
旧先验196.79 8081.81 15895.67 15396.81 5386.69 3897.66 7696.97 114
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11297.21 3484.33 17193.89 3897.09 3987.20 3399.29 4191.90 6298.44 5198.12 59
LFMVS90.08 11289.13 12392.95 8996.71 8282.32 15096.08 5089.91 32886.79 11792.15 8196.81 5362.60 29598.34 12687.18 12293.90 13598.19 53
Anonymous20240521187.68 17786.13 20392.31 12196.66 8380.74 18894.87 11691.49 29580.47 24989.46 11995.44 10454.72 33398.23 13282.19 18489.89 18897.97 70
TAPA-MVS84.62 688.16 16587.01 17391.62 14996.64 8480.65 18994.39 14996.21 11576.38 29286.19 17595.44 10479.75 11598.08 14662.75 33695.29 11696.13 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS90.30 10889.37 11793.07 8496.61 8584.48 8795.68 6895.67 15382.36 21187.85 14192.85 19476.63 15098.80 9880.01 22296.68 9395.91 150
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet92.24 7491.91 7593.24 7696.59 8683.43 11694.84 11896.44 9689.19 5494.08 3495.90 9277.85 14198.17 13688.90 10093.38 14698.13 58
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14793.93 23889.77 3994.21 2995.59 10387.35 3098.61 10792.72 3696.15 10397.83 81
test22296.55 8881.70 16092.22 24495.01 19668.36 34190.20 11196.14 8580.26 11097.80 7296.05 147
Anonymous2024052988.09 16786.59 18892.58 10796.53 8981.92 15795.99 5495.84 14174.11 31589.06 12595.21 11261.44 30398.81 9783.67 16387.47 22597.01 112
Anonymous2023121186.59 22285.13 23290.98 17796.52 9081.50 16496.14 4596.16 11673.78 31783.65 24592.15 21763.26 29397.37 20182.82 17481.74 28194.06 224
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11196.52 9080.00 20894.00 17997.08 4390.05 3295.65 1797.29 2689.66 1098.97 8093.95 1698.71 3098.50 22
testdata90.49 19096.40 9277.89 25495.37 18172.51 32893.63 4596.69 5882.08 9497.65 17283.08 16797.39 8195.94 149
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12294.87 11696.66 8583.29 19389.27 12194.46 13880.29 10999.17 5087.57 11695.37 11496.05 147
API-MVS90.66 10190.07 10392.45 11396.36 9484.57 8196.06 5295.22 18882.39 20989.13 12294.27 14680.32 10898.46 11680.16 22196.71 9294.33 212
F-COLMAP87.95 17086.80 17891.40 15696.35 9580.88 18494.73 12595.45 17379.65 25982.04 26894.61 13371.13 21798.50 11276.24 26191.05 17594.80 190
VDD-MVS90.74 9789.92 10993.20 7796.27 9683.02 12795.73 6593.86 24188.42 7692.53 7296.84 5062.09 29898.64 10490.95 8092.62 16097.93 74
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19795.93 13286.95 11389.51 11796.13 8678.50 13398.35 12585.84 13692.90 15696.83 119
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 22996.56 9383.44 18991.68 9395.04 11786.60 4298.99 7785.60 13997.92 6996.93 116
CHOSEN 1792x268888.84 14887.69 15692.30 12296.14 9981.42 17090.01 28795.86 14074.52 31287.41 14993.94 15775.46 16498.36 12380.36 21795.53 10897.12 108
thres100view90087.63 18286.71 18190.38 19696.12 10078.55 23695.03 10691.58 29187.15 10788.06 13792.29 21368.91 25298.10 13970.13 30091.10 17194.48 208
PVSNet_BlendedMVS89.98 11489.70 11090.82 17996.12 10081.25 17393.92 18296.83 6583.49 18889.10 12392.26 21481.04 10498.85 9486.72 13087.86 22392.35 294
PVSNet_Blended90.73 9890.32 9791.98 13296.12 10081.25 17392.55 23496.83 6582.04 21889.10 12392.56 20481.04 10498.85 9486.72 13095.91 10495.84 154
UA-Net92.83 6492.54 6893.68 7096.10 10384.71 7895.66 7096.39 10191.92 493.22 5396.49 6983.16 7898.87 8884.47 15295.47 11197.45 95
thres600view787.65 17986.67 18390.59 18396.08 10478.72 23294.88 11591.58 29187.06 11088.08 13692.30 21268.91 25298.10 13970.05 30391.10 17194.96 181
DeepC-MVS88.79 393.31 5692.99 6094.26 5596.07 10585.83 6494.89 11496.99 4789.02 6089.56 11697.37 2382.51 8599.38 2992.20 4798.30 5797.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D87.89 17186.32 19892.59 10696.07 10582.92 13195.23 9194.92 20475.66 29982.89 25895.98 8972.48 20699.21 4768.43 31095.23 11995.64 161
hse-mvs390.80 9590.15 10192.75 9796.01 10782.66 14195.43 7895.53 16589.80 3793.08 5895.64 10175.77 15799.00 7592.07 5278.05 31996.60 125
HyFIR lowres test88.09 16786.81 17791.93 13696.00 10880.63 19090.01 28795.79 14573.42 32087.68 14692.10 22273.86 18797.96 15580.75 21091.70 16797.19 104
tfpn200view987.58 18686.64 18490.41 19395.99 10978.64 23494.58 13391.98 28286.94 11488.09 13491.77 23269.18 24998.10 13970.13 30091.10 17194.48 208
thres40087.62 18486.64 18490.57 18495.99 10978.64 23494.58 13391.98 28286.94 11488.09 13491.77 23269.18 24998.10 13970.13 30091.10 17194.96 181
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10984.43 9293.08 21796.09 12088.20 8491.12 10395.72 9981.33 10297.76 16491.74 6497.37 8296.75 121
test_part189.00 14587.99 15092.04 12895.94 11283.81 10596.14 4596.05 12586.44 12585.69 18293.73 17171.57 21297.66 17185.80 13780.54 30094.66 193
PatchMatch-RL86.77 21885.54 22390.47 19295.88 11382.71 13990.54 27692.31 27179.82 25784.32 22891.57 24268.77 25496.39 26473.16 28493.48 14492.32 295
EPP-MVSNet91.70 8291.56 7992.13 12795.88 11380.50 19497.33 395.25 18586.15 13189.76 11595.60 10283.42 7798.32 12987.37 12093.25 14997.56 91
IS-MVSNet91.43 8591.09 8792.46 11295.87 11581.38 17196.95 1493.69 24689.72 4189.50 11895.98 8978.57 13297.77 16383.02 16996.50 9998.22 52
PAPR90.02 11389.27 12192.29 12395.78 11680.95 18292.68 22896.22 11281.91 22386.66 16593.75 17082.23 9098.44 12079.40 23294.79 12197.48 93
Vis-MVSNet (Re-imp)89.59 12489.44 11590.03 21095.74 11775.85 28595.61 7390.80 31387.66 10087.83 14295.40 10776.79 14696.46 26178.37 23896.73 9197.80 82
test_yl90.69 9990.02 10792.71 10095.72 11882.41 14794.11 16795.12 19185.63 14291.49 9594.70 12874.75 17198.42 12186.13 13492.53 16197.31 98
DCV-MVSNet90.69 9990.02 10792.71 10095.72 11882.41 14794.11 16795.12 19185.63 14291.49 9594.70 12874.75 17198.42 12186.13 13492.53 16197.31 98
canonicalmvs93.27 5892.75 6494.85 2795.70 12087.66 1196.33 3496.41 9990.00 3494.09 3394.60 13482.33 8898.62 10692.40 4192.86 15798.27 47
CANet93.54 5193.20 5694.55 4495.65 12185.73 6794.94 11096.69 8391.89 590.69 10695.88 9381.99 9799.54 1693.14 3097.95 6898.39 36
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12288.73 497.07 1396.77 7290.84 1684.02 23596.62 6375.95 15699.34 3387.77 11397.68 7598.59 18
alignmvs93.08 6292.50 6994.81 3295.62 12387.61 1295.99 5496.07 12289.77 3994.12 3294.87 12280.56 10698.66 10292.42 4093.10 15298.15 56
CS-MVS92.60 6892.56 6792.73 9995.55 12482.35 14996.14 4596.85 6288.71 6691.44 9791.51 24384.13 7198.48 11391.27 7397.47 8097.34 97
Regformer-194.22 3294.13 3294.51 4695.54 12586.36 4494.57 13596.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7798.15 56
Regformer-294.33 2794.22 2594.68 3895.54 12586.75 2994.57 13596.70 8191.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7798.16 55
WTY-MVS89.60 12388.92 12891.67 14895.47 12781.15 17792.38 23894.78 21483.11 19689.06 12594.32 14178.67 13096.61 24881.57 19890.89 17797.24 101
DELS-MVS93.43 5493.25 5393.97 5995.42 12885.04 7493.06 21997.13 3990.74 2091.84 8795.09 11686.32 4399.21 4791.22 7498.45 5097.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-393.68 4793.64 4893.81 6795.36 12984.61 7994.68 12795.83 14291.27 1293.60 4696.71 5685.75 5098.86 9192.87 3296.65 9497.96 71
Regformer-493.91 4193.81 4194.19 5795.36 12985.47 7094.68 12796.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
thres20087.21 20386.24 20190.12 20695.36 12978.53 23793.26 20992.10 27686.42 12688.00 13991.11 25669.24 24898.00 15269.58 30491.04 17693.83 237
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13283.78 10696.14 4595.98 12889.89 3590.45 10896.58 6575.09 16798.31 13084.75 14996.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
BH-RMVSNet88.37 15987.48 16191.02 17295.28 13379.45 21892.89 22493.07 25585.45 14886.91 16094.84 12670.35 23197.76 16473.97 27994.59 12695.85 153
COLMAP_ROBcopyleft80.39 1683.96 26382.04 27089.74 22295.28 13379.75 21394.25 15992.28 27275.17 30578.02 30893.77 16858.60 32297.84 16165.06 32985.92 23791.63 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJ91.18 9190.92 8991.96 13495.26 13582.60 14492.09 24995.70 15186.27 12891.84 8792.46 20679.70 11798.99 7789.08 9895.86 10594.29 213
BH-untuned88.60 15588.13 14890.01 21295.24 13678.50 23993.29 20794.15 23284.75 16584.46 22093.40 17475.76 15897.40 19777.59 24794.52 12894.12 219
ETV-MVS92.74 6692.66 6592.97 8895.20 13784.04 10095.07 10296.51 9490.73 2192.96 5991.19 25084.06 7298.34 12691.72 6596.54 9796.54 129
EIA-MVS91.95 7691.94 7491.98 13295.16 13880.01 20795.36 7996.73 7788.44 7489.34 12092.16 21683.82 7698.45 11989.35 9597.06 8697.48 93
ab-mvs89.41 13288.35 14092.60 10595.15 13982.65 14292.20 24595.60 16083.97 17788.55 12993.70 17274.16 18298.21 13582.46 18089.37 19696.94 115
VDDNet89.56 12588.49 13892.76 9695.07 14082.09 15296.30 3593.19 25381.05 24591.88 8596.86 4961.16 30898.33 12888.43 10692.49 16397.84 80
AllTest83.42 26981.39 27589.52 23095.01 14177.79 25893.12 21490.89 31177.41 28476.12 32093.34 17554.08 33697.51 18168.31 31184.27 25093.26 260
TestCases89.52 23095.01 14177.79 25890.89 31177.41 28476.12 32093.34 17554.08 33697.51 18168.31 31184.27 25093.26 260
EI-MVSNet-Vis-set93.01 6392.92 6293.29 7495.01 14183.51 11494.48 13995.77 14690.87 1592.52 7396.67 6084.50 6699.00 7591.99 5494.44 13197.36 96
xiu_mvs_v2_base91.13 9290.89 9191.86 13994.97 14482.42 14592.24 24395.64 15886.11 13491.74 9293.14 18679.67 12098.89 8789.06 9995.46 11294.28 214
tttt051788.61 15487.78 15591.11 16794.96 14577.81 25795.35 8089.69 33285.09 15988.05 13894.59 13566.93 26798.48 11383.27 16692.13 16697.03 111
baseline188.10 16687.28 16790.57 18494.96 14580.07 20294.27 15891.29 30086.74 11887.41 14994.00 15476.77 14796.20 27280.77 20979.31 31595.44 166
Test_1112_low_res87.65 17986.51 19191.08 16894.94 14779.28 22691.77 25494.30 22676.04 29783.51 24992.37 20977.86 14097.73 16878.69 23789.13 20296.22 136
1112_ss88.42 15787.33 16591.72 14694.92 14880.98 18092.97 22294.54 21878.16 28183.82 24093.88 16278.78 12897.91 15979.45 22889.41 19596.26 135
QAPM89.51 12688.15 14793.59 7294.92 14884.58 8096.82 2496.70 8178.43 27683.41 25196.19 8373.18 19899.30 3977.11 25396.54 9796.89 118
BH-w/o87.57 18787.05 17289.12 23994.90 15077.90 25392.41 23693.51 24882.89 20383.70 24391.34 24475.75 15997.07 22475.49 26693.49 14292.39 292
thisisatest053088.67 15287.61 15991.86 13994.87 15180.07 20294.63 13189.90 32984.00 17688.46 13193.78 16766.88 26998.46 11683.30 16592.65 15997.06 109
EI-MVSNet-UG-set92.74 6692.62 6693.12 8094.86 15283.20 12194.40 14795.74 14990.71 2292.05 8296.60 6484.00 7398.99 7791.55 6793.63 13997.17 105
HY-MVS83.01 1289.03 14287.94 15392.29 12394.86 15282.77 13392.08 25094.49 21981.52 23586.93 15892.79 20078.32 13698.23 13279.93 22390.55 17895.88 152
AUN-MVS87.78 17586.54 19091.48 15394.82 15481.05 17893.91 18593.93 23883.00 19986.93 15893.53 17369.50 24297.67 17086.14 13377.12 32595.73 159
Fast-Effi-MVS+89.41 13288.64 13391.71 14794.74 15580.81 18693.54 19695.10 19383.11 19686.82 16390.67 26879.74 11697.75 16780.51 21693.55 14096.57 127
ACMP84.23 889.01 14488.35 14090.99 17594.73 15681.27 17295.07 10295.89 13886.48 12383.67 24494.30 14269.33 24497.99 15387.10 12788.55 20793.72 246
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet78.82 1885.55 24084.65 24388.23 26494.72 15771.93 31787.12 32292.75 26278.80 27084.95 21190.53 27064.43 28996.71 24274.74 27493.86 13696.06 146
LCM-MVSNet-Re88.30 16288.32 14388.27 26194.71 15872.41 31693.15 21390.98 30787.77 9479.25 30291.96 22878.35 13595.75 29283.04 16895.62 10796.65 124
HQP_MVS90.60 10590.19 9991.82 14294.70 15982.73 13795.85 6196.22 11290.81 1786.91 16094.86 12374.23 17898.12 13788.15 10889.99 18494.63 194
plane_prior794.70 15982.74 136
ACMH+81.04 1485.05 25183.46 25989.82 21894.66 16179.37 22094.44 14494.12 23582.19 21478.04 30792.82 19758.23 32397.54 17973.77 28182.90 26792.54 286
ACMM84.12 989.14 13888.48 13991.12 16494.65 16281.22 17595.31 8296.12 11985.31 15285.92 17894.34 13970.19 23498.06 14885.65 13888.86 20594.08 223
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
plane_prior194.59 163
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16386.37 4397.18 797.02 4689.20 5384.31 23096.66 6173.74 19099.17 5086.74 12897.96 6797.79 83
plane_prior694.52 16582.75 13474.23 178
UGNet89.95 11688.95 12792.95 8994.51 16683.31 11995.70 6795.23 18689.37 4987.58 14793.94 15764.00 29098.78 9983.92 15896.31 10296.74 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test89.45 12988.90 12991.12 16494.47 16781.49 16695.30 8596.14 11786.73 11985.45 19595.16 11369.89 23698.10 13987.70 11489.23 20093.77 242
LGP-MVS_train91.12 16494.47 16781.49 16696.14 11786.73 11985.45 19595.16 11369.89 23698.10 13987.70 11489.23 20093.77 242
baseline92.39 7392.29 7292.69 10394.46 16981.77 15994.14 16496.27 10689.22 5291.88 8596.00 8882.35 8797.99 15391.05 7695.27 11898.30 41
ACMH80.38 1785.36 24383.68 25590.39 19494.45 17080.63 19094.73 12594.85 20882.09 21577.24 31292.65 20260.01 31597.58 17672.25 28884.87 24592.96 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB82.13 1386.26 23084.90 23890.34 19994.44 17181.50 16492.31 24294.89 20583.03 19879.63 29992.67 20169.69 23997.79 16271.20 29186.26 23691.72 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
casdiffmvs92.51 7092.43 7092.74 9894.41 17281.98 15594.54 13796.23 11189.57 4391.96 8496.17 8482.58 8498.01 15190.95 8095.45 11398.23 51
MVS_Test91.31 8891.11 8591.93 13694.37 17380.14 19993.46 20095.80 14486.46 12491.35 10093.77 16882.21 9198.09 14587.57 11694.95 12097.55 92
NP-MVS94.37 17382.42 14593.98 155
TR-MVS86.78 21585.76 22089.82 21894.37 17378.41 24192.47 23592.83 25981.11 24486.36 17192.40 20868.73 25597.48 18373.75 28289.85 19093.57 250
Effi-MVS+91.59 8491.11 8593.01 8694.35 17683.39 11894.60 13295.10 19387.10 10990.57 10793.10 18881.43 10198.07 14789.29 9694.48 12997.59 89
CLD-MVS89.47 12888.90 12991.18 16394.22 17782.07 15392.13 24796.09 12087.90 9085.37 20492.45 20774.38 17697.56 17887.15 12390.43 17993.93 229
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC94.17 17894.39 14988.81 6285.43 198
ACMP_Plane94.17 17894.39 14988.81 6285.43 198
HQP-MVS89.80 12089.28 12091.34 15894.17 17881.56 16294.39 14996.04 12688.81 6285.43 19893.97 15673.83 18897.96 15587.11 12589.77 19194.50 205
XVG-OURS89.40 13488.70 13291.52 15194.06 18181.46 16891.27 26596.07 12286.14 13288.89 12795.77 9768.73 25597.26 20987.39 11989.96 18695.83 155
sss88.93 14688.26 14690.94 17894.05 18280.78 18791.71 25795.38 17981.55 23488.63 12893.91 16175.04 16895.47 30382.47 17991.61 16896.57 127
PCF-MVS84.11 1087.74 17686.08 20792.70 10294.02 18384.43 9289.27 29795.87 13973.62 31984.43 22294.33 14078.48 13498.86 9170.27 29694.45 13094.81 189
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 19785.98 21091.08 16894.01 18483.10 12395.14 9994.94 19983.57 18484.37 22391.64 23566.59 27496.34 26878.23 24185.36 24193.79 238
test187.26 19785.98 21091.08 16894.01 18483.10 12395.14 9994.94 19983.57 18484.37 22391.64 23566.59 27496.34 26878.23 24185.36 24193.79 238
FMVSNet287.19 20485.82 21691.30 15994.01 18483.67 10994.79 12194.94 19983.57 18483.88 23892.05 22666.59 27496.51 25677.56 24885.01 24493.73 245
XVG-OURS-SEG-HR89.95 11689.45 11491.47 15494.00 18781.21 17691.87 25296.06 12485.78 13788.55 12995.73 9874.67 17497.27 20788.71 10389.64 19395.91 150
FIs90.51 10690.35 9690.99 17593.99 18880.98 18095.73 6597.54 389.15 5586.72 16494.68 13081.83 9997.24 21185.18 14288.31 21594.76 191
xiu_mvs_v1_base_debu90.64 10290.05 10492.40 11493.97 18984.46 8893.32 20295.46 17085.17 15492.25 7694.03 14970.59 22698.57 10990.97 7794.67 12294.18 215
xiu_mvs_v1_base90.64 10290.05 10492.40 11493.97 18984.46 8893.32 20295.46 17085.17 15492.25 7694.03 14970.59 22698.57 10990.97 7794.67 12294.18 215
xiu_mvs_v1_base_debi90.64 10290.05 10492.40 11493.97 18984.46 8893.32 20295.46 17085.17 15492.25 7694.03 14970.59 22698.57 10990.97 7794.67 12294.18 215
VPA-MVSNet89.62 12288.96 12691.60 15093.86 19282.89 13295.46 7797.33 2287.91 8988.43 13293.31 17874.17 18197.40 19787.32 12182.86 26894.52 203
MVSFormer91.68 8391.30 8192.80 9493.86 19283.88 10395.96 5795.90 13684.66 16791.76 9094.91 12077.92 13897.30 20389.64 9297.11 8497.24 101
lupinMVS90.92 9490.21 9893.03 8593.86 19283.88 10392.81 22693.86 24179.84 25691.76 9094.29 14377.92 13898.04 14990.48 8797.11 8497.17 105
IterMVS-LS88.36 16087.91 15489.70 22593.80 19578.29 24593.73 18995.08 19585.73 13984.75 21391.90 23079.88 11396.92 23483.83 15982.51 26993.89 230
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 25583.09 26290.14 20593.80 19580.05 20489.18 30093.09 25478.89 26778.19 30591.91 22965.86 28397.27 20768.47 30988.45 21193.11 270
FMVSNet387.40 19486.11 20591.30 15993.79 19783.64 11094.20 16294.81 21283.89 17884.37 22391.87 23168.45 25896.56 25378.23 24185.36 24193.70 247
FC-MVSNet-test90.27 10990.18 10090.53 18693.71 19879.85 21295.77 6497.59 289.31 5086.27 17394.67 13181.93 9897.01 22984.26 15488.09 21994.71 192
TAMVS89.21 13788.29 14491.96 13493.71 19882.62 14393.30 20694.19 23082.22 21387.78 14493.94 15778.83 12696.95 23277.70 24692.98 15596.32 132
ET-MVSNet_ETH3D87.51 18985.91 21492.32 12093.70 20083.93 10192.33 24090.94 30984.16 17272.09 33892.52 20569.90 23595.85 28789.20 9788.36 21497.17 105
CDS-MVSNet89.45 12988.51 13592.29 12393.62 20183.61 11293.01 22094.68 21781.95 22187.82 14393.24 18278.69 12996.99 23080.34 21893.23 15096.28 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet (Re)89.80 12089.07 12492.01 12993.60 20284.52 8494.78 12297.47 889.26 5186.44 17092.32 21182.10 9397.39 20084.81 14880.84 29694.12 219
VPNet88.20 16487.47 16290.39 19493.56 20379.46 21794.04 17595.54 16488.67 6886.96 15794.58 13669.33 24497.15 21684.05 15780.53 30294.56 201
thisisatest051587.33 19585.99 20991.37 15793.49 20479.55 21590.63 27589.56 33580.17 25187.56 14890.86 26167.07 26698.28 13181.50 19993.02 15496.29 133
mvs_anonymous89.37 13589.32 11889.51 23293.47 20574.22 29691.65 26094.83 21082.91 20285.45 19593.79 16681.23 10396.36 26786.47 13294.09 13397.94 72
CANet_DTU90.26 11089.41 11692.81 9393.46 20683.01 12893.48 19894.47 22089.43 4787.76 14594.23 14770.54 23099.03 6484.97 14496.39 10196.38 131
UniMVSNet_NR-MVSNet89.92 11889.29 11991.81 14493.39 20783.72 10794.43 14597.12 4089.80 3786.46 16793.32 17783.16 7897.23 21284.92 14581.02 29294.49 207
Effi-MVS+-dtu88.65 15388.35 14089.54 22993.33 20876.39 28094.47 14294.36 22387.70 9685.43 19889.56 29073.45 19397.26 20985.57 14091.28 17094.97 178
mvs-test189.45 12989.14 12290.38 19693.33 20877.63 26394.95 10994.36 22387.70 9687.10 15692.81 19873.45 19398.03 15085.57 14093.04 15395.48 164
WR-MVS88.38 15887.67 15890.52 18893.30 21080.18 19793.26 20995.96 13088.57 7285.47 19492.81 19876.12 15296.91 23581.24 20182.29 27194.47 210
WR-MVS_H87.80 17487.37 16489.10 24093.23 21178.12 24895.61 7397.30 2687.90 9083.72 24292.01 22779.65 12196.01 28076.36 25880.54 30093.16 268
test_040281.30 29179.17 29987.67 27493.19 21278.17 24792.98 22191.71 28775.25 30476.02 32290.31 27459.23 31996.37 26550.22 35083.63 25788.47 341
OPM-MVS90.12 11189.56 11291.82 14293.14 21383.90 10294.16 16395.74 14988.96 6187.86 14095.43 10672.48 20697.91 15988.10 11190.18 18393.65 248
CP-MVSNet87.63 18287.26 16988.74 25093.12 21476.59 27795.29 8796.58 9188.43 7583.49 25092.98 19175.28 16595.83 28878.97 23481.15 28893.79 238
diffmvs91.37 8791.23 8391.77 14593.09 21580.27 19692.36 23995.52 16687.03 11191.40 9994.93 11980.08 11197.44 18892.13 5194.56 12797.61 87
nrg03091.08 9390.39 9593.17 7993.07 21686.91 2096.41 3296.26 10788.30 7988.37 13394.85 12582.19 9297.64 17491.09 7582.95 26394.96 181
PAPM86.68 21985.39 22790.53 18693.05 21779.33 22589.79 29094.77 21578.82 26981.95 26993.24 18276.81 14597.30 20366.94 31993.16 15194.95 184
DU-MVS89.34 13688.50 13691.85 14193.04 21883.72 10794.47 14296.59 9089.50 4486.46 16793.29 18077.25 14297.23 21284.92 14581.02 29294.59 198
NR-MVSNet88.58 15687.47 16291.93 13693.04 21884.16 9794.77 12396.25 10989.05 5780.04 29493.29 18079.02 12597.05 22681.71 19780.05 30794.59 198
jason90.80 9590.10 10292.90 9193.04 21883.53 11393.08 21794.15 23280.22 25091.41 9894.91 12076.87 14497.93 15890.28 8896.90 8897.24 101
jason: jason.
RRT_test8_iter0586.90 21086.36 19588.52 25593.00 22173.27 30494.32 15695.96 13085.50 14784.26 23192.86 19360.76 31097.70 16988.32 10782.29 27194.60 197
PS-CasMVS87.32 19686.88 17488.63 25392.99 22276.33 28295.33 8196.61 8988.22 8383.30 25593.07 18973.03 20095.79 29178.36 23981.00 29493.75 244
MVSTER88.84 14888.29 14490.51 18992.95 22380.44 19593.73 18995.01 19684.66 16787.15 15393.12 18772.79 20297.21 21487.86 11287.36 22893.87 233
RPSCF85.07 25084.27 24787.48 28092.91 22470.62 32991.69 25992.46 26776.20 29682.67 26195.22 11163.94 29197.29 20677.51 24985.80 23994.53 202
FMVSNet185.85 23684.11 24991.08 16892.81 22583.10 12395.14 9994.94 19981.64 23182.68 26091.64 23559.01 32196.34 26875.37 26883.78 25393.79 238
tfpnnormal84.72 25783.23 26189.20 23792.79 22680.05 20494.48 13995.81 14382.38 21081.08 27891.21 24969.01 25196.95 23261.69 33880.59 29990.58 325
OpenMVScopyleft83.78 1188.74 15187.29 16693.08 8292.70 22785.39 7196.57 2996.43 9878.74 27280.85 28096.07 8769.64 24099.01 7078.01 24496.65 9494.83 188
TranMVSNet+NR-MVSNet88.84 14887.95 15291.49 15292.68 22883.01 12894.92 11296.31 10489.88 3685.53 18893.85 16476.63 15096.96 23181.91 19079.87 31094.50 205
MVS87.44 19286.10 20691.44 15592.61 22983.62 11192.63 23095.66 15567.26 34281.47 27292.15 21777.95 13798.22 13479.71 22595.48 11092.47 289
CHOSEN 280x42085.15 24983.99 25188.65 25292.47 23078.40 24279.68 34992.76 26174.90 30981.41 27489.59 28869.85 23895.51 29979.92 22495.29 11692.03 299
UniMVSNet_ETH3D87.53 18886.37 19491.00 17492.44 23178.96 23194.74 12495.61 15984.07 17585.36 20594.52 13759.78 31797.34 20282.93 17087.88 22296.71 123
131487.51 18986.57 18990.34 19992.42 23279.74 21492.63 23095.35 18378.35 27780.14 29191.62 23974.05 18397.15 21681.05 20293.53 14194.12 219
cl-mvsnet286.78 21585.98 21089.18 23892.34 23377.62 26490.84 27294.13 23481.33 23883.97 23790.15 27773.96 18596.60 25084.19 15582.94 26493.33 258
PEN-MVS86.80 21486.27 20088.40 25792.32 23475.71 28795.18 9696.38 10287.97 8782.82 25993.15 18573.39 19695.92 28376.15 26279.03 31793.59 249
cl_fuxian87.14 20686.50 19289.04 24292.20 23577.26 26991.22 26794.70 21682.01 21984.34 22790.43 27278.81 12796.61 24883.70 16281.09 28993.25 262
SCA86.32 22985.18 23189.73 22492.15 23676.60 27691.12 26891.69 28983.53 18785.50 19188.81 29766.79 27096.48 25876.65 25690.35 18196.12 140
XXY-MVS87.65 17986.85 17690.03 21092.14 23780.60 19293.76 18895.23 18682.94 20184.60 21594.02 15274.27 17795.49 30281.04 20383.68 25694.01 227
miper_ehance_all_eth87.22 20286.62 18789.02 24392.13 23877.40 26890.91 27194.81 21281.28 23984.32 22890.08 27979.26 12396.62 24583.81 16082.94 26493.04 273
IB-MVS80.51 1585.24 24883.26 26091.19 16292.13 23879.86 21191.75 25591.29 30083.28 19480.66 28388.49 30361.28 30498.46 11680.99 20679.46 31395.25 172
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 22884.98 23590.80 18092.10 24080.92 18390.24 28195.91 13573.10 32383.57 24888.39 30465.15 28597.46 18584.90 14791.43 16994.03 226
Fast-Effi-MVS+-dtu87.44 19286.72 18089.63 22792.04 24177.68 26294.03 17693.94 23785.81 13682.42 26291.32 24770.33 23297.06 22580.33 21990.23 18294.14 218
cl-mvsnet_86.52 22485.78 21788.75 24892.03 24276.46 27890.74 27394.30 22681.83 22883.34 25390.78 26575.74 16196.57 25181.74 19581.54 28393.22 265
cl-mvsnet186.53 22385.78 21788.75 24892.02 24376.45 27990.74 27394.30 22681.83 22883.34 25390.82 26375.75 15996.57 25181.73 19681.52 28493.24 263
RRT_MVS88.86 14787.68 15792.39 11792.02 24386.09 5394.38 15394.94 19985.45 14887.14 15593.84 16565.88 28297.11 22088.73 10286.77 23593.98 228
eth_miper_zixun_eth86.50 22585.77 21988.68 25191.94 24575.81 28690.47 27794.89 20582.05 21684.05 23490.46 27175.96 15596.77 23982.76 17679.36 31493.46 256
PS-MVSNAJss89.97 11589.62 11191.02 17291.90 24680.85 18595.26 9095.98 12886.26 12986.21 17494.29 14379.70 11797.65 17288.87 10188.10 21794.57 200
ITE_SJBPF88.24 26391.88 24777.05 27292.92 25785.54 14580.13 29293.30 17957.29 32596.20 27272.46 28784.71 24691.49 307
EI-MVSNet89.10 13988.86 13189.80 22191.84 24878.30 24493.70 19295.01 19685.73 13987.15 15395.28 10879.87 11497.21 21483.81 16087.36 22893.88 232
CVMVSNet84.69 25884.79 24184.37 31791.84 24864.92 34893.70 19291.47 29666.19 34486.16 17695.28 10867.18 26493.33 32980.89 20890.42 18094.88 186
MVS-HIRNet73.70 31672.20 31978.18 33191.81 25056.42 35582.94 34482.58 35055.24 35068.88 34366.48 35155.32 33195.13 30758.12 34588.42 21283.01 346
PatchmatchNetpermissive85.85 23684.70 24289.29 23591.76 25175.54 28888.49 30991.30 29981.63 23285.05 20988.70 30171.71 21096.24 27174.61 27689.05 20396.08 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TransMVSNet (Re)84.43 26083.06 26388.54 25491.72 25278.44 24095.18 9692.82 26082.73 20579.67 29892.12 21973.49 19295.96 28271.10 29568.73 34291.21 314
IterMVS-SCA-FT85.45 24184.53 24688.18 26591.71 25376.87 27490.19 28492.65 26585.40 15081.44 27390.54 26966.79 27095.00 31181.04 20381.05 29092.66 284
TinyColmap79.76 30377.69 30585.97 30391.71 25373.12 30589.55 29190.36 31975.03 30672.03 33990.19 27546.22 35196.19 27463.11 33481.03 29188.59 340
MDTV_nov1_ep1383.56 25891.69 25569.93 33387.75 31791.54 29378.60 27484.86 21288.90 29669.54 24196.03 27870.25 29788.93 204
miper_enhance_ethall86.90 21086.18 20289.06 24191.66 25677.58 26590.22 28394.82 21179.16 26484.48 21989.10 29379.19 12496.66 24384.06 15682.94 26492.94 276
DTE-MVSNet86.11 23185.48 22587.98 26991.65 25774.92 29094.93 11195.75 14887.36 10582.26 26493.04 19072.85 20195.82 28974.04 27877.46 32393.20 266
MIMVSNet82.59 27580.53 28088.76 24791.51 25878.32 24386.57 32590.13 32279.32 26080.70 28288.69 30252.98 34093.07 33366.03 32488.86 20594.90 185
pm-mvs186.61 22085.54 22389.82 21891.44 25980.18 19795.28 8994.85 20883.84 17981.66 27192.62 20372.45 20896.48 25879.67 22678.06 31892.82 281
Baseline_NR-MVSNet87.07 20786.63 18688.40 25791.44 25977.87 25594.23 16192.57 26684.12 17485.74 18192.08 22377.25 14296.04 27782.29 18379.94 30891.30 311
IterMVS84.88 25483.98 25287.60 27591.44 25976.03 28490.18 28592.41 26883.24 19581.06 27990.42 27366.60 27394.28 31879.46 22780.98 29592.48 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DWT-MVSNet_test84.95 25383.68 25588.77 24691.43 26273.75 30091.74 25690.98 30780.66 24883.84 23987.36 31962.44 29697.11 22078.84 23685.81 23895.46 165
MS-PatchMatch85.05 25184.16 24887.73 27391.42 26378.51 23891.25 26693.53 24777.50 28380.15 29091.58 24061.99 29995.51 29975.69 26594.35 13289.16 335
tpm284.08 26282.94 26487.48 28091.39 26471.27 32189.23 29990.37 31871.95 33184.64 21489.33 29167.30 26196.55 25575.17 27087.09 23294.63 194
v887.50 19186.71 18189.89 21591.37 26579.40 21994.50 13895.38 17984.81 16483.60 24791.33 24576.05 15397.42 19082.84 17380.51 30492.84 280
ADS-MVSNet281.66 28479.71 29287.50 27891.35 26674.19 29783.33 34188.48 33872.90 32582.24 26585.77 33164.98 28693.20 33164.57 33083.74 25495.12 174
ADS-MVSNet81.56 28679.78 29086.90 29491.35 26671.82 31883.33 34189.16 33672.90 32582.24 26585.77 33164.98 28693.76 32464.57 33083.74 25495.12 174
GA-MVS86.61 22085.27 23090.66 18191.33 26878.71 23390.40 27893.81 24485.34 15185.12 20889.57 28961.25 30597.11 22080.99 20689.59 19496.15 137
miper_lstm_enhance85.27 24784.59 24587.31 28291.28 26974.63 29187.69 31894.09 23681.20 24381.36 27589.85 28574.97 17094.30 31781.03 20579.84 31193.01 274
XVG-ACMP-BASELINE86.00 23284.84 24089.45 23391.20 27078.00 25091.70 25895.55 16285.05 16082.97 25792.25 21554.49 33497.48 18382.93 17087.45 22792.89 278
v1087.25 19986.38 19389.85 21691.19 27179.50 21694.48 13995.45 17383.79 18083.62 24691.19 25075.13 16697.42 19081.94 18980.60 29892.63 285
FMVSNet581.52 28779.60 29387.27 28391.17 27277.95 25191.49 26292.26 27376.87 28976.16 31987.91 31351.67 34192.34 33767.74 31581.16 28691.52 306
USDC82.76 27281.26 27787.26 28491.17 27274.55 29289.27 29793.39 25078.26 27975.30 32592.08 22354.43 33596.63 24471.64 28985.79 24090.61 322
CostFormer85.77 23884.94 23788.26 26291.16 27472.58 31489.47 29591.04 30676.26 29586.45 16989.97 28270.74 22496.86 23882.35 18187.07 23395.34 171
baseline286.50 22585.39 22789.84 21791.12 27576.70 27591.88 25188.58 33782.35 21279.95 29590.95 26073.42 19597.63 17580.27 22089.95 18795.19 173
tpm cat181.96 27880.27 28487.01 29191.09 27671.02 32587.38 32191.53 29466.25 34380.17 28986.35 32768.22 26096.15 27569.16 30582.29 27193.86 235
tpmvs83.35 27182.07 26987.20 28991.07 27771.00 32688.31 31291.70 28878.91 26680.49 28687.18 32369.30 24797.08 22368.12 31483.56 25893.51 254
v114487.61 18586.79 17990.06 20991.01 27879.34 22293.95 18195.42 17883.36 19285.66 18491.31 24874.98 16997.42 19083.37 16482.06 27493.42 257
v2v48287.84 17287.06 17190.17 20290.99 27979.23 22994.00 17995.13 19084.87 16285.53 18892.07 22574.45 17597.45 18684.71 15081.75 28093.85 236
SixPastTwentyTwo83.91 26582.90 26586.92 29390.99 27970.67 32893.48 19891.99 28185.54 14577.62 31192.11 22160.59 31196.87 23776.05 26377.75 32093.20 266
test-LLR85.87 23585.41 22687.25 28590.95 28171.67 31989.55 29189.88 33083.41 19084.54 21787.95 31167.25 26295.11 30881.82 19293.37 14794.97 178
test-mter84.54 25983.64 25787.25 28590.95 28171.67 31989.55 29189.88 33079.17 26384.54 21787.95 31155.56 32995.11 30881.82 19293.37 14794.97 178
v14887.04 20886.32 19889.21 23690.94 28377.26 26993.71 19194.43 22184.84 16384.36 22690.80 26476.04 15497.05 22682.12 18579.60 31293.31 259
mvs_tets88.06 16987.28 16790.38 19690.94 28379.88 21095.22 9295.66 15585.10 15884.21 23393.94 15763.53 29297.40 19788.50 10588.40 21393.87 233
MVP-Stereo85.97 23384.86 23989.32 23490.92 28582.19 15192.11 24894.19 23078.76 27178.77 30491.63 23868.38 25996.56 25375.01 27393.95 13489.20 334
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test81.37 28979.30 29587.58 27690.92 28574.16 29880.99 34787.68 34270.52 33776.63 31788.81 29771.21 21692.76 33560.01 34486.93 23495.83 155
jajsoiax88.24 16387.50 16090.48 19190.89 28780.14 19995.31 8295.65 15784.97 16184.24 23294.02 15265.31 28497.42 19088.56 10488.52 20993.89 230
tpmrst85.35 24484.99 23486.43 29990.88 28867.88 34088.71 30691.43 29780.13 25286.08 17788.80 29973.05 19996.02 27982.48 17883.40 26295.40 168
gg-mvs-nofinetune81.77 28179.37 29488.99 24490.85 28977.73 26186.29 32679.63 35574.88 31083.19 25669.05 35060.34 31296.11 27675.46 26794.64 12593.11 270
D2MVS85.90 23485.09 23388.35 25990.79 29077.42 26791.83 25395.70 15180.77 24780.08 29390.02 28066.74 27296.37 26581.88 19187.97 22191.26 312
OurMVSNet-221017-085.35 24484.64 24487.49 27990.77 29172.59 31394.01 17894.40 22284.72 16679.62 30093.17 18461.91 30096.72 24081.99 18881.16 28693.16 268
v119287.25 19986.33 19790.00 21390.76 29279.04 23093.80 18695.48 16882.57 20885.48 19391.18 25273.38 19797.42 19082.30 18282.06 27493.53 251
test_djsdf89.03 14288.64 13390.21 20190.74 29379.28 22695.96 5795.90 13684.66 16785.33 20692.94 19274.02 18497.30 20389.64 9288.53 20894.05 225
v7n86.81 21385.76 22089.95 21490.72 29479.25 22895.07 10295.92 13384.45 17082.29 26390.86 26172.60 20597.53 18079.42 23180.52 30393.08 272
PVSNet_073.20 2077.22 31274.83 31784.37 31790.70 29571.10 32483.09 34389.67 33372.81 32773.93 33283.13 33960.79 30993.70 32568.54 30850.84 35388.30 342
v14419287.19 20486.35 19689.74 22290.64 29678.24 24693.92 18295.43 17681.93 22285.51 19091.05 25874.21 18097.45 18682.86 17281.56 28293.53 251
MVS_030483.46 26881.92 27188.10 26790.63 29777.49 26693.26 20993.75 24580.04 25480.44 28787.24 32247.94 34895.55 29675.79 26488.16 21691.26 312
V4287.68 17786.86 17590.15 20490.58 29880.14 19994.24 16095.28 18483.66 18285.67 18391.33 24574.73 17397.41 19584.43 15381.83 27892.89 278
CR-MVSNet85.35 24483.76 25490.12 20690.58 29879.34 22285.24 33291.96 28478.27 27885.55 18687.87 31471.03 21995.61 29473.96 28089.36 19795.40 168
RPMNet83.95 26481.53 27491.21 16190.58 29879.34 22285.24 33296.76 7371.44 33385.55 18682.97 34070.87 22298.91 8661.01 34089.36 19795.40 168
v192192086.97 20986.06 20889.69 22690.53 30178.11 24993.80 18695.43 17681.90 22485.33 20691.05 25872.66 20397.41 19582.05 18781.80 27993.53 251
v124086.78 21585.85 21589.56 22890.45 30277.79 25893.61 19495.37 18181.65 23085.43 19891.15 25471.50 21497.43 18981.47 20082.05 27693.47 255
tpm84.73 25684.02 25086.87 29690.33 30368.90 33689.06 30189.94 32780.85 24685.75 18089.86 28468.54 25795.97 28177.76 24584.05 25295.75 158
EG-PatchMatch MVS82.37 27780.34 28388.46 25690.27 30479.35 22192.80 22794.33 22577.14 28873.26 33590.18 27647.47 35096.72 24070.25 29787.32 23089.30 332
EPNet_dtu86.49 22785.94 21388.14 26690.24 30572.82 30894.11 16792.20 27486.66 12279.42 30192.36 21073.52 19195.81 29071.26 29093.66 13895.80 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS83.90 26682.70 26887.51 27790.23 30672.67 31088.62 30881.96 35281.37 23785.01 21088.34 30566.31 27794.45 31375.30 26987.12 23195.43 167
EPNet91.79 7891.02 8894.10 5890.10 30785.25 7396.03 5392.05 27892.83 187.39 15295.78 9679.39 12299.01 7088.13 11097.48 7998.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT82.68 27481.27 27686.89 29590.09 30870.94 32784.06 33890.15 32174.91 30885.63 18583.57 33769.37 24394.87 31265.19 32688.50 21094.84 187
Patchmtry82.71 27380.93 27988.06 26890.05 30976.37 28184.74 33691.96 28472.28 33081.32 27687.87 31471.03 21995.50 30168.97 30680.15 30692.32 295
pmmvs485.43 24283.86 25390.16 20390.02 31082.97 13090.27 27992.67 26475.93 29880.73 28191.74 23471.05 21895.73 29378.85 23583.46 26091.78 302
TESTMET0.1,183.74 26782.85 26686.42 30089.96 31171.21 32389.55 29187.88 33977.41 28483.37 25287.31 32056.71 32693.65 32680.62 21392.85 15894.40 211
dp81.47 28880.23 28585.17 31289.92 31265.49 34686.74 32390.10 32376.30 29481.10 27787.12 32462.81 29495.92 28368.13 31379.88 30994.09 222
K. test v381.59 28580.15 28785.91 30689.89 31369.42 33592.57 23387.71 34185.56 14473.44 33489.71 28755.58 32895.52 29877.17 25269.76 33692.78 282
MDA-MVSNet-bldmvs78.85 30876.31 31186.46 29889.76 31473.88 29988.79 30590.42 31679.16 26459.18 35088.33 30660.20 31394.04 32062.00 33768.96 34091.48 308
GG-mvs-BLEND87.94 27189.73 31577.91 25287.80 31578.23 35780.58 28483.86 33559.88 31695.33 30571.20 29192.22 16590.60 324
gm-plane-assit89.60 31668.00 33877.28 28788.99 29497.57 17779.44 229
anonymousdsp87.84 17287.09 17090.12 20689.13 31780.54 19394.67 12995.55 16282.05 21683.82 24092.12 21971.47 21597.15 21687.15 12387.80 22492.67 283
N_pmnet68.89 31968.44 32270.23 33589.07 31828.79 36588.06 31319.50 36569.47 33971.86 34084.93 33361.24 30691.75 34254.70 34877.15 32490.15 326
pmmvs584.21 26182.84 26788.34 26088.95 31976.94 27392.41 23691.91 28675.63 30080.28 28891.18 25264.59 28895.57 29577.09 25483.47 25992.53 287
PMMVS85.71 23984.96 23687.95 27088.90 32077.09 27188.68 30790.06 32472.32 32986.47 16690.76 26672.15 20994.40 31481.78 19493.49 14292.36 293
JIA-IIPM81.04 29278.98 30287.25 28588.64 32173.48 30281.75 34689.61 33473.19 32282.05 26773.71 34766.07 28195.87 28671.18 29384.60 24792.41 291
Gipumacopyleft57.99 32454.91 32667.24 33788.51 32265.59 34552.21 35790.33 32043.58 35542.84 35551.18 35620.29 36185.07 35234.77 35570.45 33551.05 354
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet81.32 29080.95 27882.42 32688.50 32363.67 34993.32 20291.33 29864.02 34680.57 28592.83 19661.21 30792.27 33876.34 25980.38 30591.32 310
our_test_381.93 27980.46 28286.33 30188.46 32473.48 30288.46 31091.11 30276.46 29076.69 31688.25 30766.89 26894.36 31568.75 30779.08 31691.14 316
ppachtmachnet_test81.84 28080.07 28887.15 29088.46 32474.43 29589.04 30292.16 27575.33 30377.75 30988.99 29466.20 27895.37 30465.12 32877.60 32191.65 304
lessismore_v086.04 30288.46 32468.78 33780.59 35373.01 33690.11 27855.39 33096.43 26375.06 27265.06 34492.90 277
test0.0.03 182.41 27681.69 27284.59 31588.23 32772.89 30790.24 28187.83 34083.41 19079.86 29689.78 28667.25 26288.99 34865.18 32783.42 26191.90 301
bset_n11_16_dypcd86.83 21285.55 22290.65 18288.22 32881.70 16088.88 30490.42 31685.26 15385.49 19290.69 26767.11 26597.02 22889.51 9484.39 24893.23 264
MDA-MVSNet_test_wron79.21 30777.19 30985.29 31088.22 32872.77 30985.87 32890.06 32474.34 31362.62 34987.56 31766.14 27991.99 34066.90 32273.01 33091.10 319
YYNet179.22 30677.20 30885.28 31188.20 33072.66 31185.87 32890.05 32674.33 31462.70 34887.61 31666.09 28092.03 33966.94 31972.97 33191.15 315
pmmvs683.42 26981.60 27388.87 24588.01 33177.87 25594.96 10894.24 22974.67 31178.80 30391.09 25760.17 31496.49 25777.06 25575.40 32892.23 297
testgi80.94 29580.20 28683.18 32287.96 33266.29 34391.28 26490.70 31583.70 18178.12 30692.84 19551.37 34290.82 34563.34 33382.46 27092.43 290
Anonymous2023120681.03 29379.77 29184.82 31487.85 33370.26 33191.42 26392.08 27773.67 31877.75 30989.25 29262.43 29793.08 33261.50 33982.00 27791.12 317
OpenMVS_ROBcopyleft74.94 1979.51 30477.03 31086.93 29287.00 33476.23 28392.33 24090.74 31468.93 34074.52 32988.23 30849.58 34596.62 24557.64 34684.29 24987.94 343
LF4IMVS80.37 29879.07 30184.27 31986.64 33569.87 33489.39 29691.05 30576.38 29274.97 32790.00 28147.85 34994.25 31974.55 27780.82 29788.69 339
MIMVSNet179.38 30577.28 30785.69 30786.35 33673.67 30191.61 26192.75 26278.11 28272.64 33788.12 30948.16 34791.97 34160.32 34177.49 32291.43 309
KD-MVS_2432*160078.50 30976.02 31485.93 30486.22 33774.47 29384.80 33492.33 26979.29 26176.98 31485.92 32953.81 33893.97 32167.39 31657.42 35089.36 330
miper_refine_blended78.50 30976.02 31485.93 30486.22 33774.47 29384.80 33492.33 26979.29 26176.98 31485.92 32953.81 33893.97 32167.39 31657.42 35089.36 330
CL-MVSNet_2432*160081.74 28280.53 28085.36 30985.96 33972.45 31590.25 28093.07 25581.24 24179.85 29787.29 32170.93 22192.52 33666.95 31869.23 33891.11 318
test20.0379.95 30179.08 30082.55 32585.79 34067.74 34191.09 26991.08 30381.23 24274.48 33089.96 28361.63 30190.15 34660.08 34276.38 32689.76 328
Anonymous2024052180.44 29779.21 29784.11 32085.75 34167.89 33992.86 22593.23 25275.61 30175.59 32487.47 31850.03 34394.33 31671.14 29481.21 28590.12 327
DIV-MVS_2432*160080.20 29979.24 29683.07 32385.64 34265.29 34791.01 27093.93 23878.71 27376.32 31886.40 32659.20 32092.93 33472.59 28669.35 33791.00 320
Patchmatch-RL test81.67 28379.96 28986.81 29785.42 34371.23 32282.17 34587.50 34378.47 27577.19 31382.50 34170.81 22393.48 32782.66 17772.89 33295.71 160
UnsupCasMVSNet_eth80.07 30078.27 30485.46 30885.24 34472.63 31288.45 31194.87 20782.99 20071.64 34188.07 31056.34 32791.75 34273.48 28363.36 34792.01 300
pmmvs-eth3d80.97 29478.72 30387.74 27284.99 34579.97 20990.11 28691.65 29075.36 30273.51 33386.03 32859.45 31893.96 32375.17 27072.21 33389.29 333
CMPMVSbinary59.16 2180.52 29679.20 29884.48 31683.98 34667.63 34289.95 28993.84 24364.79 34566.81 34691.14 25557.93 32495.17 30676.25 26088.10 21790.65 321
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld76.23 31573.27 31885.09 31383.79 34772.92 30685.65 33193.47 24971.52 33268.84 34479.08 34549.77 34493.21 33066.81 32360.52 34989.13 337
PM-MVS78.11 31176.12 31384.09 32183.54 34870.08 33288.97 30385.27 34779.93 25574.73 32886.43 32534.70 35593.48 32779.43 23072.06 33488.72 338
DSMNet-mixed76.94 31376.29 31278.89 32983.10 34956.11 35687.78 31679.77 35460.65 34875.64 32388.71 30061.56 30288.34 34960.07 34389.29 19992.21 298
new_pmnet72.15 31770.13 32078.20 33082.95 35065.68 34483.91 33982.40 35162.94 34764.47 34779.82 34442.85 35386.26 35157.41 34774.44 32982.65 347
new-patchmatchnet76.41 31475.17 31680.13 32882.65 35159.61 35187.66 31991.08 30378.23 28069.85 34283.22 33854.76 33291.63 34464.14 33264.89 34589.16 335
ambc83.06 32479.99 35263.51 35077.47 35092.86 25874.34 33184.45 33428.74 35695.06 31073.06 28568.89 34190.61 322
TDRefinement79.81 30277.34 30687.22 28879.24 35375.48 28993.12 21492.03 27976.45 29175.01 32691.58 24049.19 34696.44 26270.22 29969.18 33989.75 329
pmmvs371.81 31868.71 32181.11 32775.86 35470.42 33086.74 32383.66 34958.95 34968.64 34580.89 34336.93 35489.52 34763.10 33563.59 34683.39 345
DeepMVS_CXcopyleft56.31 34074.23 35551.81 35856.67 36344.85 35448.54 35475.16 34627.87 35758.74 36040.92 35352.22 35258.39 353
FPMVS64.63 32162.55 32370.88 33470.80 35656.71 35384.42 33784.42 34851.78 35249.57 35281.61 34223.49 35881.48 35440.61 35476.25 32774.46 350
PMMVS259.60 32256.40 32569.21 33668.83 35746.58 36073.02 35477.48 35855.07 35149.21 35372.95 34917.43 36380.04 35549.32 35144.33 35480.99 349
wuyk23d21.27 33120.48 33423.63 34468.59 35836.41 36349.57 3586.85 3669.37 3607.89 3624.46 3644.03 36731.37 36117.47 36016.07 3603.12 358
E-PMN43.23 32742.29 32946.03 34165.58 35937.41 36273.51 35264.62 35933.99 35728.47 36047.87 35719.90 36267.91 35722.23 35824.45 35632.77 355
LCM-MVSNet66.00 32062.16 32477.51 33264.51 36058.29 35283.87 34090.90 31048.17 35354.69 35173.31 34816.83 36486.75 35065.47 32561.67 34887.48 344
EMVS42.07 32841.12 33044.92 34263.45 36135.56 36473.65 35163.48 36033.05 35826.88 36145.45 35821.27 36067.14 35819.80 35923.02 35832.06 356
MVEpermissive39.65 2343.39 32638.59 33257.77 33956.52 36248.77 35955.38 35658.64 36229.33 35928.96 35952.65 3554.68 36664.62 35928.11 35733.07 35559.93 352
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high58.88 32354.22 32772.86 33356.50 36356.67 35480.75 34886.00 34473.09 32437.39 35664.63 35322.17 35979.49 35643.51 35223.96 35782.43 348
PMVScopyleft47.18 2252.22 32548.46 32863.48 33845.72 36446.20 36173.41 35378.31 35641.03 35630.06 35865.68 3526.05 36583.43 35330.04 35665.86 34360.80 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt35.64 32939.24 33124.84 34314.87 36523.90 36662.71 35551.51 3646.58 36136.66 35762.08 35444.37 35230.34 36252.40 34922.00 35920.27 357
testmvs8.92 33211.52 3351.12 3461.06 3660.46 36886.02 3270.65 3670.62 3622.74 3639.52 3620.31 3690.45 3642.38 3610.39 3612.46 360
test1238.76 33311.22 3361.39 3450.85 3670.97 36785.76 3300.35 3680.54 3632.45 3648.14 3630.60 3680.48 3632.16 3620.17 3622.71 359
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k22.14 33029.52 3330.00 3470.00 3680.00 3690.00 35995.76 1470.00 3640.00 36594.29 14375.66 1620.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas6.64 3358.86 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36579.70 1170.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re7.82 33410.43 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36593.88 1620.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
GSMVS96.12 140
sam_mvs171.70 21196.12 140
sam_mvs70.60 225
MTGPAbinary96.97 49
test_post188.00 3149.81 36169.31 24695.53 29776.65 256
test_post10.29 36070.57 22995.91 285
patchmatchnet-post83.76 33671.53 21396.48 258
MTMP96.16 4360.64 361
test9_res91.91 5998.71 3098.07 63
agg_prior290.54 8598.68 3598.27 47
test_prior485.96 5794.11 167
test_prior294.12 16587.67 9892.63 6996.39 7286.62 3991.50 6998.67 37
旧先验293.36 20171.25 33494.37 2697.13 21986.74 128
新几何293.11 216
无先验93.28 20896.26 10773.95 31699.05 6080.56 21496.59 126
原ACMM292.94 223
testdata298.75 10078.30 240
segment_acmp87.16 35
testdata192.15 24687.94 88
plane_prior596.22 11298.12 13788.15 10889.99 18494.63 194
plane_prior494.86 123
plane_prior382.75 13490.26 3086.91 160
plane_prior295.85 6190.81 17
plane_prior82.73 13795.21 9389.66 4289.88 189
n20.00 369
nn0.00 369
door-mid85.49 345
test1196.57 92
door85.33 346
HQP5-MVS81.56 162
BP-MVS87.11 125
HQP4-MVS85.43 19897.96 15594.51 204
HQP3-MVS96.04 12689.77 191
HQP2-MVS73.83 188
MDTV_nov1_ep13_2view55.91 35787.62 32073.32 32184.59 21670.33 23274.65 27595.50 163
ACMMP++_ref87.47 225
ACMMP++88.01 220
Test By Simon80.02 112