test_0728_SECOND | | | | | 95.01 15 | 98.79 1 | 86.43 41 | 97.09 11 | 97.49 5 | | | | | 99.61 3 | 95.62 5 | 99.08 7 | 98.99 5 |
|
DVP-MVS | | | 95.67 2 | 96.02 2 | 94.64 40 | 98.78 2 | 85.93 58 | 97.09 11 | 96.73 77 | 90.27 28 | 97.04 8 | 98.05 6 | 91.47 6 | 99.55 12 | 95.62 5 | 99.08 7 | 98.45 32 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 98.78 2 | 85.93 58 | 97.19 6 | 97.47 8 | 90.27 28 | 97.64 4 | 98.13 1 | 91.47 6 | | | | |
|
SED-MVS | | | 95.91 1 | 96.28 1 | 94.80 33 | 98.77 4 | 85.99 55 | 97.13 9 | 97.44 12 | 90.31 26 | 97.71 1 | 98.07 4 | 92.31 2 | 99.58 5 | 95.66 2 | 99.13 3 | 98.84 8 |
|
IU-MVS | | | | | | 98.77 4 | 86.00 54 | | 96.84 63 | 81.26 240 | 97.26 6 | | | | 95.50 7 | 99.13 3 | 99.03 4 |
|
test_241102_ONE | | | | | | 98.77 4 | 85.99 55 | | 97.44 12 | 90.26 30 | 97.71 1 | 97.96 8 | 92.31 2 | 99.38 29 | | | |
|
region2R | | | 94.43 22 | 94.27 24 | 94.92 20 | 98.65 7 | 86.67 32 | 96.92 19 | 97.23 32 | 88.60 71 | 93.58 47 | 97.27 27 | 85.22 56 | 99.54 16 | 92.21 46 | 98.74 29 | 98.56 19 |
|
ACMMPR | | | 94.43 22 | 94.28 22 | 94.91 22 | 98.63 8 | 86.69 30 | 96.94 15 | 97.32 24 | 88.63 69 | 93.53 50 | 97.26 29 | 85.04 59 | 99.54 16 | 92.35 43 | 98.78 21 | 98.50 22 |
|
HFP-MVS | | | 94.52 17 | 94.40 19 | 94.86 25 | 98.61 9 | 86.81 24 | 96.94 15 | 97.34 19 | 88.63 69 | 93.65 43 | 97.21 32 | 86.10 45 | 99.49 23 | 92.35 43 | 98.77 24 | 98.30 41 |
|
#test# | | | 94.32 28 | 94.14 31 | 94.86 25 | 98.61 9 | 86.81 24 | 96.43 31 | 97.34 19 | 87.51 101 | 93.65 43 | 97.21 32 | 86.10 45 | 99.49 23 | 91.68 66 | 98.77 24 | 98.30 41 |
|
test_part2 | | | | | | 98.55 11 | 87.22 16 | | | | 96.40 11 | | | | | | |
|
XVS | | | 94.45 20 | 94.32 20 | 94.85 27 | 98.54 12 | 86.60 36 | 96.93 17 | 97.19 35 | 90.66 23 | 92.85 60 | 97.16 37 | 85.02 60 | 99.49 23 | 91.99 54 | 98.56 47 | 98.47 28 |
|
X-MVStestdata | | | 88.31 161 | 86.13 203 | 94.85 27 | 98.54 12 | 86.60 36 | 96.93 17 | 97.19 35 | 90.66 23 | 92.85 60 | 23.41 359 | 85.02 60 | 99.49 23 | 91.99 54 | 98.56 47 | 98.47 28 |
|
ZNCC-MVS | | | 94.47 18 | 94.28 22 | 95.03 14 | 98.52 14 | 86.96 17 | 96.85 23 | 97.32 24 | 88.24 81 | 93.15 55 | 97.04 42 | 86.17 44 | 99.62 1 | 92.40 41 | 98.81 18 | 98.52 20 |
|
mPP-MVS | | | 93.99 38 | 93.78 43 | 94.63 41 | 98.50 15 | 85.90 63 | 96.87 21 | 96.91 56 | 88.70 67 | 91.83 89 | 97.17 36 | 83.96 74 | 99.55 12 | 91.44 71 | 98.64 43 | 98.43 34 |
|
MSP-MVS | | | 95.42 5 | 95.56 5 | 94.98 19 | 98.49 16 | 86.52 38 | 96.91 20 | 97.47 8 | 91.73 8 | 96.10 13 | 96.69 58 | 89.90 9 | 99.30 39 | 94.70 9 | 98.04 64 | 99.13 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MP-MVS |  | | 94.25 29 | 94.07 34 | 94.77 35 | 98.47 17 | 86.31 47 | 96.71 26 | 96.98 48 | 89.04 58 | 91.98 83 | 97.19 34 | 85.43 54 | 99.56 7 | 92.06 53 | 98.79 19 | 98.44 33 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MCST-MVS | | | 94.45 20 | 94.20 28 | 95.19 9 | 98.46 18 | 87.50 13 | 95.00 107 | 97.12 40 | 87.13 108 | 92.51 74 | 96.30 74 | 89.24 14 | 99.34 33 | 93.46 21 | 98.62 44 | 98.73 11 |
|
PGM-MVS | | | 93.96 40 | 93.72 45 | 94.68 38 | 98.43 19 | 86.22 50 | 95.30 85 | 97.78 1 | 87.45 104 | 93.26 51 | 97.33 24 | 84.62 65 | 99.51 21 | 90.75 84 | 98.57 46 | 98.32 40 |
|
zzz-MVS | | | 94.47 18 | 94.30 21 | 95.00 16 | 98.42 20 | 86.95 18 | 95.06 105 | 96.97 49 | 91.07 13 | 93.14 56 | 97.56 14 | 84.30 67 | 99.56 7 | 93.43 22 | 98.75 27 | 98.47 28 |
|
MTAPA | | | 94.42 24 | 94.22 25 | 95.00 16 | 98.42 20 | 86.95 18 | 94.36 155 | 96.97 49 | 91.07 13 | 93.14 56 | 97.56 14 | 84.30 67 | 99.56 7 | 93.43 22 | 98.75 27 | 98.47 28 |
|
GST-MVS | | | 94.21 33 | 93.97 38 | 94.90 24 | 98.41 22 | 86.82 23 | 96.54 30 | 97.19 35 | 88.24 81 | 93.26 51 | 96.83 51 | 85.48 53 | 99.59 4 | 91.43 72 | 98.40 53 | 98.30 41 |
|
HPM-MVS |  | | 94.02 37 | 93.88 39 | 94.43 50 | 98.39 23 | 85.78 65 | 97.25 5 | 97.07 44 | 86.90 116 | 92.62 71 | 96.80 55 | 84.85 63 | 99.17 50 | 92.43 39 | 98.65 42 | 98.33 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 94.34 26 | 94.21 27 | 94.74 37 | 98.39 23 | 86.64 34 | 97.60 1 | 97.24 30 | 88.53 73 | 92.73 67 | 97.23 30 | 85.20 57 | 99.32 37 | 92.15 49 | 98.83 17 | 98.25 50 |
|
DPE-MVS |  | | 95.57 3 | 95.67 3 | 95.25 7 | 98.36 25 | 87.28 15 | 95.56 75 | 97.51 4 | 89.13 56 | 97.14 7 | 97.91 9 | 91.64 5 | 99.62 1 | 94.61 11 | 99.17 2 | 98.86 7 |
|
HPM-MVS_fast | | | 93.40 55 | 93.22 54 | 93.94 61 | 98.36 25 | 84.83 76 | 97.15 8 | 96.80 69 | 85.77 138 | 92.47 75 | 97.13 38 | 82.38 86 | 99.07 58 | 90.51 86 | 98.40 53 | 97.92 75 |
|
DP-MVS Recon | | | 91.95 76 | 91.28 82 | 93.96 60 | 98.33 27 | 85.92 60 | 94.66 130 | 96.66 85 | 82.69 206 | 90.03 114 | 95.82 95 | 82.30 89 | 99.03 64 | 84.57 151 | 96.48 100 | 96.91 117 |
|
APDe-MVS | | | 95.46 4 | 95.64 4 | 94.91 22 | 98.26 28 | 86.29 49 | 97.46 2 | 97.40 17 | 89.03 59 | 96.20 12 | 98.10 2 | 89.39 13 | 99.34 33 | 95.88 1 | 99.03 9 | 99.10 3 |
|
TSAR-MVS + MP. | | | 94.85 12 | 94.94 10 | 94.58 43 | 98.25 29 | 86.33 45 | 96.11 49 | 96.62 88 | 88.14 86 | 96.10 13 | 96.96 46 | 89.09 15 | 98.94 84 | 94.48 12 | 98.68 35 | 98.48 24 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HPM-MVS++ |  | | 95.14 9 | 94.91 11 | 95.83 2 | 98.25 29 | 89.65 2 | 95.92 59 | 96.96 52 | 91.75 7 | 94.02 35 | 96.83 51 | 88.12 21 | 99.55 12 | 93.41 24 | 98.94 12 | 98.28 45 |
|
testtj | | | 94.39 25 | 94.18 29 | 95.00 16 | 98.24 31 | 86.77 28 | 96.16 43 | 97.23 32 | 87.28 106 | 94.85 24 | 97.04 42 | 86.99 37 | 99.52 20 | 91.54 68 | 98.33 56 | 98.71 12 |
|
CPTT-MVS | | | 91.99 75 | 91.80 76 | 92.55 108 | 98.24 31 | 81.98 155 | 96.76 25 | 96.49 95 | 81.89 225 | 90.24 110 | 96.44 71 | 78.59 131 | 98.61 107 | 89.68 91 | 97.85 71 | 97.06 109 |
|
SR-MVS | | | 94.23 31 | 94.17 30 | 94.43 50 | 98.21 33 | 85.78 65 | 96.40 33 | 96.90 57 | 88.20 84 | 94.33 27 | 97.40 21 | 84.75 64 | 99.03 64 | 93.35 25 | 97.99 65 | 98.48 24 |
|
MP-MVS-pluss | | | 94.21 33 | 94.00 37 | 94.85 27 | 98.17 34 | 86.65 33 | 94.82 119 | 97.17 38 | 86.26 129 | 92.83 62 | 97.87 10 | 85.57 52 | 99.56 7 | 94.37 14 | 98.92 13 | 98.34 38 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ZD-MVS | | | | | | 98.15 35 | 86.62 35 | | 97.07 44 | 83.63 183 | 94.19 30 | 96.91 48 | 87.57 29 | 99.26 43 | 91.99 54 | 98.44 51 | |
|
SMA-MVS |  | | 95.20 7 | 95.07 9 | 95.59 3 | 98.14 36 | 88.48 6 | 96.26 39 | 97.28 28 | 85.90 135 | 97.67 3 | 98.10 2 | 88.41 17 | 99.56 7 | 94.66 10 | 99.19 1 | 98.71 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test1172 | | | 93.97 39 | 94.07 34 | 93.66 71 | 98.11 37 | 83.45 115 | 96.26 39 | 96.84 63 | 88.33 77 | 94.19 30 | 97.43 18 | 84.24 69 | 99.01 70 | 93.26 27 | 97.98 66 | 98.52 20 |
|
CNVR-MVS | | | 95.40 6 | 95.37 6 | 95.50 5 | 98.11 37 | 88.51 5 | 95.29 87 | 96.96 52 | 92.09 3 | 95.32 19 | 97.08 40 | 89.49 12 | 99.33 36 | 95.10 8 | 98.85 15 | 98.66 14 |
|
114514_t | | | 89.51 126 | 88.50 136 | 92.54 109 | 98.11 37 | 81.99 154 | 95.16 98 | 96.36 103 | 70.19 338 | 85.81 179 | 95.25 110 | 76.70 148 | 98.63 105 | 82.07 186 | 96.86 90 | 97.00 113 |
|
ACMMP |  | | 93.24 59 | 92.88 63 | 94.30 54 | 98.09 40 | 85.33 72 | 96.86 22 | 97.45 11 | 88.33 77 | 90.15 112 | 97.03 44 | 81.44 100 | 99.51 21 | 90.85 83 | 95.74 106 | 98.04 66 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
APD-MVS |  | | 94.24 30 | 94.07 34 | 94.75 36 | 98.06 41 | 86.90 21 | 95.88 60 | 96.94 54 | 85.68 141 | 95.05 23 | 97.18 35 | 87.31 31 | 99.07 58 | 91.90 62 | 98.61 45 | 98.28 45 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CSCG | | | 93.23 60 | 93.05 58 | 93.76 69 | 98.04 42 | 84.07 98 | 96.22 41 | 97.37 18 | 84.15 173 | 90.05 113 | 95.66 100 | 87.77 23 | 99.15 53 | 89.91 89 | 98.27 58 | 98.07 63 |
|
ACMMP_NAP | | | 94.74 14 | 94.56 16 | 95.28 6 | 98.02 43 | 87.70 10 | 95.68 68 | 97.34 19 | 88.28 80 | 95.30 20 | 97.67 13 | 85.90 49 | 99.54 16 | 93.91 17 | 98.95 11 | 98.60 17 |
|
OPU-MVS | | | | | 96.21 1 | 98.00 44 | 90.85 1 | 97.13 9 | | | | 97.08 40 | 92.59 1 | 98.94 84 | 92.25 45 | 98.99 10 | 98.84 8 |
|
SR-MVS-dyc-post | | | 93.82 44 | 93.82 40 | 93.82 64 | 97.92 45 | 84.57 81 | 96.28 37 | 96.76 73 | 87.46 102 | 93.75 40 | 97.43 18 | 84.24 69 | 99.01 70 | 92.73 34 | 97.80 72 | 97.88 77 |
|
RE-MVS-def | | | | 93.68 46 | | 97.92 45 | 84.57 81 | 96.28 37 | 96.76 73 | 87.46 102 | 93.75 40 | 97.43 18 | 82.94 80 | | 92.73 34 | 97.80 72 | 97.88 77 |
|
APD-MVS_3200maxsize | | | 93.78 45 | 93.77 44 | 93.80 68 | 97.92 45 | 84.19 96 | 96.30 35 | 96.87 61 | 86.96 112 | 93.92 37 | 97.47 16 | 83.88 75 | 98.96 83 | 92.71 37 | 97.87 70 | 98.26 49 |
|
xxxxxxxxxxxxxcwj | | | 94.65 15 | 94.70 14 | 94.48 47 | 97.85 48 | 85.63 68 | 95.21 93 | 95.47 169 | 89.44 45 | 95.71 15 | 97.70 11 | 88.28 19 | 99.35 31 | 93.89 18 | 98.78 21 | 98.48 24 |
|
save fliter | | | | | | 97.85 48 | 85.63 68 | 95.21 93 | 96.82 67 | 89.44 45 | | | | | | | |
|
SF-MVS | | | 94.97 10 | 94.90 12 | 95.20 8 | 97.84 50 | 87.76 8 | 96.65 28 | 97.48 7 | 87.76 95 | 95.71 15 | 97.70 11 | 88.28 19 | 99.35 31 | 93.89 18 | 98.78 21 | 98.48 24 |
|
NCCC | | | 94.81 13 | 94.69 15 | 95.17 10 | 97.83 51 | 87.46 14 | 95.66 70 | 96.93 55 | 92.34 2 | 93.94 36 | 96.58 65 | 87.74 24 | 99.44 27 | 92.83 33 | 98.40 53 | 98.62 16 |
|
ETH3 D test6400 | | | 93.64 49 | 93.22 54 | 94.92 20 | 97.79 52 | 86.84 22 | 95.31 82 | 97.26 29 | 82.67 207 | 93.81 39 | 96.29 75 | 87.29 32 | 99.27 42 | 89.87 90 | 98.67 37 | 98.65 15 |
|
9.14 | | | | 94.47 17 | | 97.79 52 | | 96.08 50 | 97.44 12 | 86.13 133 | 95.10 22 | 97.40 21 | 88.34 18 | 99.22 46 | 93.25 28 | 98.70 32 | |
|
CDPH-MVS | | | 92.83 64 | 92.30 71 | 94.44 48 | 97.79 52 | 86.11 52 | 94.06 174 | 96.66 85 | 80.09 253 | 92.77 64 | 96.63 62 | 86.62 39 | 99.04 63 | 87.40 118 | 98.66 40 | 98.17 54 |
|
ETH3D-3000-0.1 | | | 94.61 16 | 94.44 18 | 95.12 11 | 97.70 55 | 87.71 9 | 95.98 56 | 97.44 12 | 86.67 121 | 95.25 21 | 97.31 25 | 87.73 25 | 99.24 44 | 93.11 31 | 98.76 26 | 98.40 35 |
|
DP-MVS | | | 87.25 199 | 85.36 229 | 92.90 91 | 97.65 56 | 83.24 120 | 94.81 120 | 92.00 280 | 74.99 307 | 81.92 270 | 95.00 118 | 72.66 203 | 99.05 60 | 66.92 321 | 92.33 164 | 96.40 130 |
|
PAPM_NR | | | 91.22 90 | 90.78 93 | 92.52 110 | 97.60 57 | 81.46 168 | 94.37 154 | 96.24 110 | 86.39 127 | 87.41 149 | 94.80 127 | 82.06 95 | 98.48 113 | 82.80 175 | 95.37 114 | 97.61 87 |
|
TEST9 | | | | | | 97.53 58 | 86.49 39 | 94.07 172 | 96.78 70 | 81.61 233 | 92.77 64 | 96.20 80 | 87.71 26 | 99.12 55 | | | |
|
train_agg | | | 93.44 53 | 93.08 57 | 94.52 45 | 97.53 58 | 86.49 39 | 94.07 172 | 96.78 70 | 81.86 226 | 92.77 64 | 96.20 80 | 87.63 27 | 99.12 55 | 92.14 50 | 98.69 33 | 97.94 72 |
|
abl_6 | | | 93.18 61 | 93.05 58 | 93.57 73 | 97.52 60 | 84.27 95 | 95.53 76 | 96.67 84 | 87.85 92 | 93.20 54 | 97.22 31 | 80.35 107 | 99.18 49 | 91.91 59 | 97.21 83 | 97.26 100 |
|
test_8 | | | | | | 97.49 61 | 86.30 48 | 94.02 177 | 96.76 73 | 81.86 226 | 92.70 68 | 96.20 80 | 87.63 27 | 99.02 68 | | | |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 36 | 93.79 42 | 94.80 33 | 97.48 62 | 86.78 26 | 95.65 72 | 96.89 58 | 89.40 48 | 92.81 63 | 96.97 45 | 85.37 55 | 99.24 44 | 90.87 82 | 98.69 33 | 98.38 37 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap |  | | 89.89 119 | 89.07 124 | 92.37 118 | 97.41 63 | 83.03 126 | 94.42 146 | 95.92 133 | 82.81 204 | 86.34 172 | 94.65 132 | 73.89 186 | 99.02 68 | 80.69 211 | 95.51 109 | 95.05 176 |
|
agg_prior1 | | | 93.29 57 | 92.97 61 | 94.26 55 | 97.38 64 | 85.92 60 | 93.92 182 | 96.72 79 | 81.96 220 | 92.16 79 | 96.23 78 | 87.85 22 | 98.97 80 | 91.95 58 | 98.55 49 | 97.90 76 |
|
agg_prior | | | | | | 97.38 64 | 85.92 60 | | 96.72 79 | | 92.16 79 | | | 98.97 80 | | | |
|
原ACMM1 | | | | | 92.01 129 | 97.34 66 | 81.05 178 | | 96.81 68 | 78.89 267 | 90.45 108 | 95.92 91 | 82.65 83 | 98.84 96 | 80.68 212 | 98.26 59 | 96.14 138 |
|
MSLP-MVS++ | | | 93.72 46 | 94.08 33 | 92.65 104 | 97.31 67 | 83.43 116 | 95.79 63 | 97.33 22 | 90.03 33 | 93.58 47 | 96.96 46 | 84.87 62 | 97.76 164 | 92.19 48 | 98.66 40 | 96.76 120 |
|
新几何1 | | | | | 93.10 81 | 97.30 68 | 84.35 94 | | 95.56 161 | 71.09 335 | 91.26 101 | 96.24 77 | 82.87 82 | 98.86 91 | 79.19 233 | 98.10 62 | 96.07 145 |
|
test_prior3 | | | 93.60 50 | 93.53 49 | 93.82 64 | 97.29 69 | 84.49 85 | 94.12 165 | 96.88 59 | 87.67 98 | 92.63 69 | 96.39 72 | 86.62 39 | 98.87 88 | 91.50 69 | 98.67 37 | 98.11 61 |
|
test_prior | | | | | 93.82 64 | 97.29 69 | 84.49 85 | | 96.88 59 | | | | | 98.87 88 | | | 98.11 61 |
|
1121 | | | 90.42 107 | 89.49 113 | 93.20 77 | 97.27 71 | 84.46 88 | 92.63 230 | 95.51 167 | 71.01 336 | 91.20 102 | 96.21 79 | 82.92 81 | 99.05 60 | 80.56 214 | 98.07 63 | 96.10 143 |
|
PLC |  | 84.53 7 | 89.06 141 | 88.03 149 | 92.15 126 | 97.27 71 | 82.69 140 | 94.29 157 | 95.44 175 | 79.71 258 | 84.01 236 | 94.18 148 | 76.68 149 | 98.75 100 | 77.28 250 | 93.41 145 | 95.02 177 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
SD-MVS | | | 94.96 11 | 95.33 7 | 93.88 62 | 97.25 73 | 86.69 30 | 96.19 42 | 97.11 42 | 90.42 25 | 96.95 10 | 97.27 27 | 89.53 11 | 96.91 235 | 94.38 13 | 98.85 15 | 98.03 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test12 | | | | | 94.34 53 | 97.13 74 | 86.15 51 | | 96.29 105 | | 91.04 104 | | 85.08 58 | 99.01 70 | | 98.13 61 | 97.86 79 |
|
MG-MVS | | | 91.77 79 | 91.70 78 | 92.00 131 | 97.08 75 | 80.03 206 | 93.60 195 | 95.18 189 | 87.85 92 | 90.89 105 | 96.47 70 | 82.06 95 | 98.36 123 | 85.07 143 | 97.04 87 | 97.62 86 |
|
SteuartSystems-ACMMP | | | 95.20 7 | 95.32 8 | 94.85 27 | 96.99 76 | 86.33 45 | 97.33 3 | 97.30 26 | 91.38 11 | 95.39 18 | 97.46 17 | 88.98 16 | 99.40 28 | 94.12 15 | 98.89 14 | 98.82 10 |
Skip Steuart: Steuart Systems R&D Blog. |
MVS_111021_HR | | | 93.45 52 | 93.31 52 | 93.84 63 | 96.99 76 | 84.84 75 | 93.24 212 | 97.24 30 | 88.76 65 | 91.60 94 | 95.85 94 | 86.07 47 | 98.66 102 | 91.91 59 | 98.16 60 | 98.03 67 |
|
CNLPA | | | 89.07 140 | 87.98 151 | 92.34 119 | 96.87 78 | 84.78 77 | 94.08 171 | 93.24 251 | 81.41 236 | 84.46 220 | 95.13 115 | 75.57 163 | 96.62 245 | 77.21 251 | 93.84 137 | 95.61 162 |
|
PHI-MVS | | | 93.89 43 | 93.65 47 | 94.62 42 | 96.84 79 | 86.43 41 | 96.69 27 | 97.49 5 | 85.15 157 | 93.56 49 | 96.28 76 | 85.60 51 | 99.31 38 | 92.45 38 | 98.79 19 | 98.12 59 |
|
旧先验1 | | | | | | 96.79 80 | 81.81 158 | | 95.67 153 | | | 96.81 53 | 86.69 38 | | | 97.66 76 | 96.97 114 |
|
ETH3D cwj APD-0.16 | | | 93.91 41 | 93.53 49 | 95.06 13 | 96.76 81 | 87.78 7 | 94.92 112 | 97.21 34 | 84.33 171 | 93.89 38 | 97.09 39 | 87.20 33 | 99.29 41 | 91.90 62 | 98.44 51 | 98.12 59 |
|
LFMVS | | | 90.08 112 | 89.13 123 | 92.95 89 | 96.71 82 | 82.32 150 | 96.08 50 | 89.91 328 | 86.79 117 | 92.15 81 | 96.81 53 | 62.60 295 | 98.34 126 | 87.18 122 | 93.90 135 | 98.19 53 |
|
Anonymous202405211 | | | 87.68 177 | 86.13 203 | 92.31 121 | 96.66 83 | 80.74 188 | 94.87 116 | 91.49 295 | 80.47 249 | 89.46 119 | 95.44 104 | 54.72 333 | 98.23 132 | 82.19 184 | 89.89 188 | 97.97 70 |
|
TAPA-MVS | | 84.62 6 | 88.16 165 | 87.01 173 | 91.62 149 | 96.64 84 | 80.65 189 | 94.39 149 | 96.21 115 | 76.38 292 | 86.19 175 | 95.44 104 | 79.75 115 | 98.08 146 | 62.75 336 | 95.29 116 | 96.13 139 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MAR-MVS | | | 90.30 108 | 89.37 117 | 93.07 84 | 96.61 85 | 84.48 87 | 95.68 68 | 95.67 153 | 82.36 211 | 87.85 141 | 92.85 194 | 76.63 150 | 98.80 98 | 80.01 222 | 96.68 93 | 95.91 150 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
VNet | | | 92.24 74 | 91.91 75 | 93.24 76 | 96.59 86 | 83.43 116 | 94.84 118 | 96.44 96 | 89.19 54 | 94.08 34 | 95.90 92 | 77.85 141 | 98.17 136 | 88.90 100 | 93.38 146 | 98.13 58 |
|
TSAR-MVS + GP. | | | 93.66 48 | 93.41 51 | 94.41 52 | 96.59 86 | 86.78 26 | 94.40 147 | 93.93 238 | 89.77 39 | 94.21 29 | 95.59 103 | 87.35 30 | 98.61 107 | 92.72 36 | 96.15 103 | 97.83 81 |
|
test222 | | | | | | 96.55 88 | 81.70 160 | 92.22 244 | 95.01 196 | 68.36 341 | 90.20 111 | 96.14 85 | 80.26 110 | | | 97.80 72 | 96.05 147 |
|
Anonymous20240529 | | | 88.09 167 | 86.59 188 | 92.58 107 | 96.53 89 | 81.92 157 | 95.99 54 | 95.84 141 | 74.11 315 | 89.06 125 | 95.21 112 | 61.44 303 | 98.81 97 | 83.67 163 | 87.47 225 | 97.01 112 |
|
Anonymous20231211 | | | 86.59 222 | 85.13 232 | 90.98 177 | 96.52 90 | 81.50 164 | 96.14 45 | 96.16 116 | 73.78 317 | 83.65 245 | 92.15 217 | 63.26 293 | 97.37 201 | 82.82 174 | 81.74 281 | 94.06 224 |
|
DeepPCF-MVS | | 89.96 1 | 94.20 35 | 94.77 13 | 92.49 111 | 96.52 90 | 80.00 208 | 94.00 179 | 97.08 43 | 90.05 32 | 95.65 17 | 97.29 26 | 89.66 10 | 98.97 80 | 93.95 16 | 98.71 30 | 98.50 22 |
|
testdata | | | | | 90.49 190 | 96.40 92 | 77.89 254 | | 95.37 181 | 72.51 328 | 93.63 45 | 96.69 58 | 82.08 94 | 97.65 172 | 83.08 167 | 97.39 81 | 95.94 149 |
|
PVSNet_Blended_VisFu | | | 91.38 86 | 90.91 90 | 92.80 94 | 96.39 93 | 83.17 122 | 94.87 116 | 96.66 85 | 83.29 193 | 89.27 121 | 94.46 138 | 80.29 109 | 99.17 50 | 87.57 116 | 95.37 114 | 96.05 147 |
|
API-MVS | | | 90.66 101 | 90.07 103 | 92.45 113 | 96.36 94 | 84.57 81 | 96.06 52 | 95.22 188 | 82.39 209 | 89.13 122 | 94.27 146 | 80.32 108 | 98.46 116 | 80.16 221 | 96.71 92 | 94.33 212 |
|
F-COLMAP | | | 87.95 170 | 86.80 178 | 91.40 156 | 96.35 95 | 80.88 184 | 94.73 125 | 95.45 173 | 79.65 259 | 82.04 268 | 94.61 133 | 71.13 217 | 98.50 112 | 76.24 261 | 91.05 175 | 94.80 190 |
|
VDD-MVS | | | 90.74 97 | 89.92 109 | 93.20 77 | 96.27 96 | 83.02 127 | 95.73 65 | 93.86 241 | 88.42 76 | 92.53 72 | 96.84 50 | 62.09 298 | 98.64 104 | 90.95 80 | 92.62 160 | 97.93 74 |
|
OMC-MVS | | | 91.23 89 | 90.62 94 | 93.08 82 | 96.27 96 | 84.07 98 | 93.52 197 | 95.93 132 | 86.95 113 | 89.51 117 | 96.13 86 | 78.50 133 | 98.35 125 | 85.84 136 | 92.90 156 | 96.83 119 |
|
DPM-MVS | | | 92.58 69 | 91.74 77 | 95.08 12 | 96.19 98 | 89.31 3 | 92.66 229 | 96.56 93 | 83.44 189 | 91.68 93 | 95.04 117 | 86.60 42 | 98.99 77 | 85.60 139 | 97.92 69 | 96.93 116 |
|
CHOSEN 1792x2688 | | | 88.84 148 | 87.69 156 | 92.30 122 | 96.14 99 | 81.42 170 | 90.01 287 | 95.86 140 | 74.52 312 | 87.41 149 | 93.94 157 | 75.46 164 | 98.36 123 | 80.36 217 | 95.53 108 | 97.12 108 |
|
thres100view900 | | | 87.63 182 | 86.71 181 | 90.38 196 | 96.12 100 | 78.55 236 | 95.03 106 | 91.58 291 | 87.15 107 | 88.06 137 | 92.29 213 | 68.91 252 | 98.10 139 | 70.13 300 | 91.10 171 | 94.48 208 |
|
PVSNet_BlendedMVS | | | 89.98 114 | 89.70 110 | 90.82 179 | 96.12 100 | 81.25 173 | 93.92 182 | 96.83 65 | 83.49 188 | 89.10 123 | 92.26 214 | 81.04 104 | 98.85 94 | 86.72 130 | 87.86 223 | 92.35 294 |
|
PVSNet_Blended | | | 90.73 98 | 90.32 97 | 91.98 132 | 96.12 100 | 81.25 173 | 92.55 234 | 96.83 65 | 82.04 218 | 89.10 123 | 92.56 204 | 81.04 104 | 98.85 94 | 86.72 130 | 95.91 104 | 95.84 154 |
|
UA-Net | | | 92.83 64 | 92.54 68 | 93.68 70 | 96.10 103 | 84.71 78 | 95.66 70 | 96.39 101 | 91.92 4 | 93.22 53 | 96.49 69 | 83.16 78 | 98.87 88 | 84.47 152 | 95.47 111 | 97.45 95 |
|
thres600view7 | | | 87.65 179 | 86.67 183 | 90.59 183 | 96.08 104 | 78.72 232 | 94.88 115 | 91.58 291 | 87.06 110 | 88.08 136 | 92.30 212 | 68.91 252 | 98.10 139 | 70.05 303 | 91.10 171 | 94.96 181 |
|
DeepC-MVS | | 88.79 3 | 93.31 56 | 92.99 60 | 94.26 55 | 96.07 105 | 85.83 64 | 94.89 114 | 96.99 47 | 89.02 60 | 89.56 116 | 97.37 23 | 82.51 85 | 99.38 29 | 92.20 47 | 98.30 57 | 97.57 90 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
LS3D | | | 87.89 171 | 86.32 198 | 92.59 106 | 96.07 105 | 82.92 131 | 95.23 91 | 94.92 204 | 75.66 299 | 82.89 258 | 95.98 89 | 72.48 206 | 99.21 47 | 68.43 310 | 95.23 119 | 95.64 161 |
|
hse-mvs3 | | | 90.80 95 | 90.15 101 | 92.75 97 | 96.01 107 | 82.66 141 | 95.43 78 | 95.53 165 | 89.80 37 | 93.08 58 | 95.64 101 | 75.77 157 | 99.00 75 | 92.07 52 | 78.05 319 | 96.60 125 |
|
HyFIR lowres test | | | 88.09 167 | 86.81 177 | 91.93 136 | 96.00 108 | 80.63 190 | 90.01 287 | 95.79 145 | 73.42 320 | 87.68 146 | 92.10 222 | 73.86 187 | 97.96 155 | 80.75 210 | 91.70 167 | 97.19 104 |
|
tfpn200view9 | | | 87.58 186 | 86.64 184 | 90.41 193 | 95.99 109 | 78.64 234 | 94.58 133 | 91.98 282 | 86.94 114 | 88.09 134 | 91.77 232 | 69.18 249 | 98.10 139 | 70.13 300 | 91.10 171 | 94.48 208 |
|
thres400 | | | 87.62 184 | 86.64 184 | 90.57 184 | 95.99 109 | 78.64 234 | 94.58 133 | 91.98 282 | 86.94 114 | 88.09 134 | 91.77 232 | 69.18 249 | 98.10 139 | 70.13 300 | 91.10 171 | 94.96 181 |
|
MVS_111021_LR | | | 92.47 71 | 92.29 72 | 92.98 87 | 95.99 109 | 84.43 92 | 93.08 217 | 96.09 120 | 88.20 84 | 91.12 103 | 95.72 99 | 81.33 102 | 97.76 164 | 91.74 64 | 97.37 82 | 96.75 121 |
|
test_part1 | | | 89.00 145 | 87.99 150 | 92.04 128 | 95.94 112 | 83.81 105 | 96.14 45 | 96.05 125 | 86.44 125 | 85.69 182 | 93.73 171 | 71.57 212 | 97.66 171 | 85.80 137 | 80.54 300 | 94.66 193 |
|
PatchMatch-RL | | | 86.77 218 | 85.54 223 | 90.47 192 | 95.88 113 | 82.71 139 | 90.54 276 | 92.31 271 | 79.82 257 | 84.32 228 | 91.57 242 | 68.77 254 | 96.39 264 | 73.16 284 | 93.48 144 | 92.32 295 |
|
EPP-MVSNet | | | 91.70 82 | 91.56 79 | 92.13 127 | 95.88 113 | 80.50 194 | 97.33 3 | 95.25 185 | 86.15 131 | 89.76 115 | 95.60 102 | 83.42 77 | 98.32 129 | 87.37 120 | 93.25 149 | 97.56 91 |
|
IS-MVSNet | | | 91.43 85 | 91.09 87 | 92.46 112 | 95.87 115 | 81.38 171 | 96.95 14 | 93.69 246 | 89.72 41 | 89.50 118 | 95.98 89 | 78.57 132 | 97.77 163 | 83.02 169 | 96.50 99 | 98.22 52 |
|
PAPR | | | 90.02 113 | 89.27 121 | 92.29 123 | 95.78 116 | 80.95 182 | 92.68 228 | 96.22 112 | 81.91 223 | 86.66 165 | 93.75 170 | 82.23 90 | 98.44 120 | 79.40 232 | 94.79 121 | 97.48 93 |
|
Vis-MVSNet (Re-imp) | | | 89.59 124 | 89.44 115 | 90.03 210 | 95.74 117 | 75.85 285 | 95.61 73 | 90.80 313 | 87.66 100 | 87.83 142 | 95.40 107 | 76.79 146 | 96.46 261 | 78.37 238 | 96.73 91 | 97.80 82 |
|
test_yl | | | 90.69 99 | 90.02 107 | 92.71 100 | 95.72 118 | 82.41 147 | 94.11 167 | 95.12 191 | 85.63 142 | 91.49 95 | 94.70 128 | 74.75 171 | 98.42 121 | 86.13 134 | 92.53 161 | 97.31 98 |
|
DCV-MVSNet | | | 90.69 99 | 90.02 107 | 92.71 100 | 95.72 118 | 82.41 147 | 94.11 167 | 95.12 191 | 85.63 142 | 91.49 95 | 94.70 128 | 74.75 171 | 98.42 121 | 86.13 134 | 92.53 161 | 97.31 98 |
|
canonicalmvs | | | 93.27 58 | 92.75 64 | 94.85 27 | 95.70 120 | 87.66 11 | 96.33 34 | 96.41 99 | 90.00 34 | 94.09 33 | 94.60 134 | 82.33 88 | 98.62 106 | 92.40 41 | 92.86 157 | 98.27 47 |
|
CANet | | | 93.54 51 | 93.20 56 | 94.55 44 | 95.65 121 | 85.73 67 | 94.94 110 | 96.69 83 | 91.89 5 | 90.69 106 | 95.88 93 | 81.99 97 | 99.54 16 | 93.14 30 | 97.95 68 | 98.39 36 |
|
3Dnovator+ | | 87.14 4 | 92.42 72 | 91.37 80 | 95.55 4 | 95.63 122 | 88.73 4 | 97.07 13 | 96.77 72 | 90.84 16 | 84.02 235 | 96.62 63 | 75.95 156 | 99.34 33 | 87.77 113 | 97.68 75 | 98.59 18 |
|
alignmvs | | | 93.08 62 | 92.50 69 | 94.81 32 | 95.62 123 | 87.61 12 | 95.99 54 | 96.07 122 | 89.77 39 | 94.12 32 | 94.87 122 | 80.56 106 | 98.66 102 | 92.42 40 | 93.10 152 | 98.15 56 |
|
CS-MVS | | | 92.60 68 | 92.56 67 | 92.73 99 | 95.55 124 | 82.35 149 | 96.14 45 | 96.85 62 | 88.71 66 | 91.44 97 | 91.51 243 | 84.13 71 | 98.48 113 | 91.27 73 | 97.47 80 | 97.34 97 |
|
Regformer-1 | | | 94.22 32 | 94.13 32 | 94.51 46 | 95.54 125 | 86.36 44 | 94.57 135 | 96.44 96 | 91.69 9 | 94.32 28 | 96.56 67 | 87.05 36 | 99.03 64 | 93.35 25 | 97.65 77 | 98.15 56 |
|
Regformer-2 | | | 94.33 27 | 94.22 25 | 94.68 38 | 95.54 125 | 86.75 29 | 94.57 135 | 96.70 81 | 91.84 6 | 94.41 25 | 96.56 67 | 87.19 34 | 99.13 54 | 93.50 20 | 97.65 77 | 98.16 55 |
|
WTY-MVS | | | 89.60 123 | 88.92 128 | 91.67 148 | 95.47 127 | 81.15 177 | 92.38 238 | 94.78 214 | 83.11 196 | 89.06 125 | 94.32 141 | 78.67 130 | 96.61 248 | 81.57 198 | 90.89 177 | 97.24 101 |
|
DELS-MVS | | | 93.43 54 | 93.25 53 | 93.97 59 | 95.42 128 | 85.04 74 | 93.06 219 | 97.13 39 | 90.74 20 | 91.84 87 | 95.09 116 | 86.32 43 | 99.21 47 | 91.22 74 | 98.45 50 | 97.65 85 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Regformer-3 | | | 93.68 47 | 93.64 48 | 93.81 67 | 95.36 129 | 84.61 79 | 94.68 127 | 95.83 142 | 91.27 12 | 93.60 46 | 96.71 56 | 85.75 50 | 98.86 91 | 92.87 32 | 96.65 94 | 97.96 71 |
|
Regformer-4 | | | 93.91 41 | 93.81 41 | 94.19 57 | 95.36 129 | 85.47 70 | 94.68 127 | 96.41 99 | 91.60 10 | 93.75 40 | 96.71 56 | 85.95 48 | 99.10 57 | 93.21 29 | 96.65 94 | 98.01 69 |
|
thres200 | | | 87.21 203 | 86.24 201 | 90.12 206 | 95.36 129 | 78.53 237 | 93.26 209 | 92.10 276 | 86.42 126 | 88.00 139 | 91.11 256 | 69.24 248 | 98.00 152 | 69.58 304 | 91.04 176 | 93.83 237 |
|
Vis-MVSNet |  | | 91.75 80 | 91.23 83 | 93.29 74 | 95.32 132 | 83.78 106 | 96.14 45 | 95.98 128 | 89.89 35 | 90.45 108 | 96.58 65 | 75.09 167 | 98.31 130 | 84.75 149 | 96.90 88 | 97.78 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
BH-RMVSNet | | | 88.37 159 | 87.48 161 | 91.02 172 | 95.28 133 | 79.45 218 | 92.89 224 | 93.07 255 | 85.45 148 | 86.91 160 | 94.84 126 | 70.35 231 | 97.76 164 | 73.97 279 | 94.59 126 | 95.85 153 |
|
COLMAP_ROB |  | 80.39 16 | 83.96 263 | 82.04 270 | 89.74 222 | 95.28 133 | 79.75 213 | 94.25 159 | 92.28 272 | 75.17 305 | 78.02 308 | 93.77 168 | 58.60 322 | 97.84 161 | 65.06 329 | 85.92 237 | 91.63 305 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PS-MVSNAJ | | | 91.18 91 | 90.92 89 | 91.96 134 | 95.26 135 | 82.60 144 | 92.09 249 | 95.70 151 | 86.27 128 | 91.84 87 | 92.46 206 | 79.70 117 | 98.99 77 | 89.08 98 | 95.86 105 | 94.29 213 |
|
BH-untuned | | | 88.60 155 | 88.13 148 | 90.01 212 | 95.24 136 | 78.50 239 | 93.29 207 | 94.15 232 | 84.75 165 | 84.46 220 | 93.40 174 | 75.76 158 | 97.40 197 | 77.59 247 | 94.52 128 | 94.12 219 |
|
ETV-MVS | | | 92.74 66 | 92.66 65 | 92.97 88 | 95.20 137 | 84.04 100 | 95.07 102 | 96.51 94 | 90.73 21 | 92.96 59 | 91.19 250 | 84.06 72 | 98.34 126 | 91.72 65 | 96.54 97 | 96.54 129 |
|
EIA-MVS | | | 91.95 76 | 91.94 74 | 91.98 132 | 95.16 138 | 80.01 207 | 95.36 79 | 96.73 77 | 88.44 74 | 89.34 120 | 92.16 216 | 83.82 76 | 98.45 119 | 89.35 95 | 97.06 86 | 97.48 93 |
|
ab-mvs | | | 89.41 132 | 88.35 140 | 92.60 105 | 95.15 139 | 82.65 142 | 92.20 245 | 95.60 160 | 83.97 177 | 88.55 129 | 93.70 172 | 74.16 182 | 98.21 135 | 82.46 180 | 89.37 196 | 96.94 115 |
|
VDDNet | | | 89.56 125 | 88.49 138 | 92.76 96 | 95.07 140 | 82.09 152 | 96.30 35 | 93.19 253 | 81.05 245 | 91.88 85 | 96.86 49 | 61.16 308 | 98.33 128 | 88.43 106 | 92.49 163 | 97.84 80 |
|
AllTest | | | 83.42 269 | 81.39 275 | 89.52 230 | 95.01 141 | 77.79 258 | 93.12 214 | 90.89 311 | 77.41 284 | 76.12 320 | 93.34 175 | 54.08 336 | 97.51 181 | 68.31 311 | 84.27 250 | 93.26 260 |
|
TestCases | | | | | 89.52 230 | 95.01 141 | 77.79 258 | | 90.89 311 | 77.41 284 | 76.12 320 | 93.34 175 | 54.08 336 | 97.51 181 | 68.31 311 | 84.27 250 | 93.26 260 |
|
EI-MVSNet-Vis-set | | | 93.01 63 | 92.92 62 | 93.29 74 | 95.01 141 | 83.51 114 | 94.48 139 | 95.77 146 | 90.87 15 | 92.52 73 | 96.67 60 | 84.50 66 | 99.00 75 | 91.99 54 | 94.44 131 | 97.36 96 |
|
xiu_mvs_v2_base | | | 91.13 92 | 90.89 91 | 91.86 139 | 94.97 144 | 82.42 145 | 92.24 243 | 95.64 158 | 86.11 134 | 91.74 92 | 93.14 186 | 79.67 120 | 98.89 87 | 89.06 99 | 95.46 112 | 94.28 214 |
|
tttt0517 | | | 88.61 154 | 87.78 155 | 91.11 167 | 94.96 145 | 77.81 257 | 95.35 80 | 89.69 332 | 85.09 159 | 88.05 138 | 94.59 135 | 66.93 267 | 98.48 113 | 83.27 166 | 92.13 166 | 97.03 111 |
|
baseline1 | | | 88.10 166 | 87.28 167 | 90.57 184 | 94.96 145 | 80.07 202 | 94.27 158 | 91.29 300 | 86.74 118 | 87.41 149 | 94.00 154 | 76.77 147 | 96.20 272 | 80.77 209 | 79.31 315 | 95.44 166 |
|
Test_1112_low_res | | | 87.65 179 | 86.51 191 | 91.08 168 | 94.94 147 | 79.28 226 | 91.77 254 | 94.30 226 | 76.04 297 | 83.51 249 | 92.37 209 | 77.86 140 | 97.73 168 | 78.69 237 | 89.13 202 | 96.22 136 |
|
1112_ss | | | 88.42 157 | 87.33 165 | 91.72 146 | 94.92 148 | 80.98 180 | 92.97 222 | 94.54 218 | 78.16 281 | 83.82 240 | 93.88 162 | 78.78 128 | 97.91 159 | 79.45 228 | 89.41 195 | 96.26 135 |
|
QAPM | | | 89.51 126 | 88.15 147 | 93.59 72 | 94.92 148 | 84.58 80 | 96.82 24 | 96.70 81 | 78.43 276 | 83.41 251 | 96.19 83 | 73.18 198 | 99.30 39 | 77.11 253 | 96.54 97 | 96.89 118 |
|
BH-w/o | | | 87.57 187 | 87.05 172 | 89.12 239 | 94.90 150 | 77.90 253 | 92.41 236 | 93.51 248 | 82.89 203 | 83.70 243 | 91.34 244 | 75.75 159 | 97.07 224 | 75.49 266 | 93.49 142 | 92.39 292 |
|
thisisatest0530 | | | 88.67 152 | 87.61 159 | 91.86 139 | 94.87 151 | 80.07 202 | 94.63 131 | 89.90 329 | 84.00 176 | 88.46 131 | 93.78 167 | 66.88 269 | 98.46 116 | 83.30 165 | 92.65 159 | 97.06 109 |
|
EI-MVSNet-UG-set | | | 92.74 66 | 92.62 66 | 93.12 80 | 94.86 152 | 83.20 121 | 94.40 147 | 95.74 149 | 90.71 22 | 92.05 82 | 96.60 64 | 84.00 73 | 98.99 77 | 91.55 67 | 93.63 139 | 97.17 105 |
|
HY-MVS | | 83.01 12 | 89.03 142 | 87.94 153 | 92.29 123 | 94.86 152 | 82.77 133 | 92.08 250 | 94.49 219 | 81.52 235 | 86.93 158 | 92.79 200 | 78.32 136 | 98.23 132 | 79.93 223 | 90.55 178 | 95.88 152 |
|
AUN-MVS | | | 87.78 175 | 86.54 190 | 91.48 153 | 94.82 154 | 81.05 178 | 93.91 185 | 93.93 238 | 83.00 199 | 86.93 158 | 93.53 173 | 69.50 242 | 97.67 170 | 86.14 133 | 77.12 325 | 95.73 159 |
|
Fast-Effi-MVS+ | | | 89.41 132 | 88.64 133 | 91.71 147 | 94.74 155 | 80.81 186 | 93.54 196 | 95.10 193 | 83.11 196 | 86.82 163 | 90.67 268 | 79.74 116 | 97.75 167 | 80.51 216 | 93.55 140 | 96.57 127 |
|
ACMP | | 84.23 8 | 89.01 144 | 88.35 140 | 90.99 175 | 94.73 156 | 81.27 172 | 95.07 102 | 95.89 138 | 86.48 123 | 83.67 244 | 94.30 142 | 69.33 244 | 97.99 153 | 87.10 127 | 88.55 207 | 93.72 246 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PVSNet | | 78.82 18 | 85.55 240 | 84.65 243 | 88.23 264 | 94.72 157 | 71.93 317 | 87.12 322 | 92.75 262 | 78.80 270 | 84.95 211 | 90.53 270 | 64.43 289 | 96.71 242 | 74.74 274 | 93.86 136 | 96.06 146 |
|
LCM-MVSNet-Re | | | 88.30 162 | 88.32 143 | 88.27 261 | 94.71 158 | 72.41 316 | 93.15 213 | 90.98 307 | 87.77 94 | 79.25 302 | 91.96 228 | 78.35 135 | 95.75 292 | 83.04 168 | 95.62 107 | 96.65 124 |
|
HQP_MVS | | | 90.60 105 | 90.19 99 | 91.82 142 | 94.70 159 | 82.73 137 | 95.85 61 | 96.22 112 | 90.81 17 | 86.91 160 | 94.86 123 | 74.23 178 | 98.12 137 | 88.15 108 | 89.99 184 | 94.63 194 |
|
plane_prior7 | | | | | | 94.70 159 | 82.74 136 | | | | | | | | | | |
|
ACMH+ | | 81.04 14 | 85.05 251 | 83.46 259 | 89.82 218 | 94.66 161 | 79.37 220 | 94.44 144 | 94.12 235 | 82.19 214 | 78.04 307 | 92.82 197 | 58.23 323 | 97.54 179 | 73.77 281 | 82.90 267 | 92.54 286 |
|
ACMM | | 84.12 9 | 89.14 138 | 88.48 139 | 91.12 164 | 94.65 162 | 81.22 175 | 95.31 82 | 96.12 119 | 85.31 152 | 85.92 178 | 94.34 139 | 70.19 234 | 98.06 148 | 85.65 138 | 88.86 205 | 94.08 223 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
plane_prior1 | | | | | | 94.59 163 | | | | | | | | | | | |
|
3Dnovator | | 86.66 5 | 91.73 81 | 90.82 92 | 94.44 48 | 94.59 163 | 86.37 43 | 97.18 7 | 97.02 46 | 89.20 53 | 84.31 230 | 96.66 61 | 73.74 190 | 99.17 50 | 86.74 128 | 97.96 67 | 97.79 83 |
|
plane_prior6 | | | | | | 94.52 165 | 82.75 134 | | | | | | 74.23 178 | | | | |
|
UGNet | | | 89.95 116 | 88.95 127 | 92.95 89 | 94.51 166 | 83.31 119 | 95.70 67 | 95.23 186 | 89.37 49 | 87.58 147 | 93.94 157 | 64.00 290 | 98.78 99 | 83.92 158 | 96.31 102 | 96.74 122 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LPG-MVS_test | | | 89.45 129 | 88.90 129 | 91.12 164 | 94.47 167 | 81.49 166 | 95.30 85 | 96.14 117 | 86.73 119 | 85.45 195 | 95.16 113 | 69.89 236 | 98.10 139 | 87.70 114 | 89.23 200 | 93.77 242 |
|
LGP-MVS_train | | | | | 91.12 164 | 94.47 167 | 81.49 166 | | 96.14 117 | 86.73 119 | 85.45 195 | 95.16 113 | 69.89 236 | 98.10 139 | 87.70 114 | 89.23 200 | 93.77 242 |
|
baseline | | | 92.39 73 | 92.29 72 | 92.69 103 | 94.46 169 | 81.77 159 | 94.14 164 | 96.27 106 | 89.22 52 | 91.88 85 | 96.00 88 | 82.35 87 | 97.99 153 | 91.05 76 | 95.27 118 | 98.30 41 |
|
ACMH | | 80.38 17 | 85.36 243 | 83.68 255 | 90.39 194 | 94.45 170 | 80.63 190 | 94.73 125 | 94.85 208 | 82.09 215 | 77.24 312 | 92.65 202 | 60.01 315 | 97.58 176 | 72.25 288 | 84.87 245 | 92.96 275 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LTVRE_ROB | | 82.13 13 | 86.26 230 | 84.90 238 | 90.34 199 | 94.44 171 | 81.50 164 | 92.31 242 | 94.89 205 | 83.03 198 | 79.63 299 | 92.67 201 | 69.69 239 | 97.79 162 | 71.20 291 | 86.26 236 | 91.72 303 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
casdiffmvs | | | 92.51 70 | 92.43 70 | 92.74 98 | 94.41 172 | 81.98 155 | 94.54 137 | 96.23 111 | 89.57 43 | 91.96 84 | 96.17 84 | 82.58 84 | 98.01 151 | 90.95 80 | 95.45 113 | 98.23 51 |
|
MVS_Test | | | 91.31 88 | 91.11 85 | 91.93 136 | 94.37 173 | 80.14 199 | 93.46 200 | 95.80 144 | 86.46 124 | 91.35 100 | 93.77 168 | 82.21 91 | 98.09 145 | 87.57 116 | 94.95 120 | 97.55 92 |
|
NP-MVS | | | | | | 94.37 173 | 82.42 145 | | | | | 93.98 155 | | | | | |
|
TR-MVS | | | 86.78 215 | 85.76 220 | 89.82 218 | 94.37 173 | 78.41 241 | 92.47 235 | 92.83 259 | 81.11 244 | 86.36 171 | 92.40 208 | 68.73 255 | 97.48 183 | 73.75 282 | 89.85 190 | 93.57 250 |
|
Effi-MVS+ | | | 91.59 84 | 91.11 85 | 93.01 86 | 94.35 176 | 83.39 118 | 94.60 132 | 95.10 193 | 87.10 109 | 90.57 107 | 93.10 188 | 81.43 101 | 98.07 147 | 89.29 96 | 94.48 129 | 97.59 89 |
|
CLD-MVS | | | 89.47 128 | 88.90 129 | 91.18 163 | 94.22 177 | 82.07 153 | 92.13 247 | 96.09 120 | 87.90 90 | 85.37 204 | 92.45 207 | 74.38 176 | 97.56 178 | 87.15 123 | 90.43 179 | 93.93 229 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HQP-NCC | | | | | | 94.17 178 | | 94.39 149 | | 88.81 62 | 85.43 198 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 178 | | 94.39 149 | | 88.81 62 | 85.43 198 | | | | | | |
|
HQP-MVS | | | 89.80 120 | 89.28 120 | 91.34 158 | 94.17 178 | 81.56 162 | 94.39 149 | 96.04 126 | 88.81 62 | 85.43 198 | 93.97 156 | 73.83 188 | 97.96 155 | 87.11 125 | 89.77 191 | 94.50 205 |
|
XVG-OURS | | | 89.40 134 | 88.70 132 | 91.52 151 | 94.06 181 | 81.46 168 | 91.27 265 | 96.07 122 | 86.14 132 | 88.89 127 | 95.77 97 | 68.73 255 | 97.26 209 | 87.39 119 | 89.96 186 | 95.83 155 |
|
sss | | | 88.93 146 | 88.26 146 | 90.94 178 | 94.05 182 | 80.78 187 | 91.71 257 | 95.38 179 | 81.55 234 | 88.63 128 | 93.91 161 | 75.04 168 | 95.47 303 | 82.47 179 | 91.61 168 | 96.57 127 |
|
PCF-MVS | | 84.11 10 | 87.74 176 | 86.08 207 | 92.70 102 | 94.02 183 | 84.43 92 | 89.27 297 | 95.87 139 | 73.62 319 | 84.43 222 | 94.33 140 | 78.48 134 | 98.86 91 | 70.27 296 | 94.45 130 | 94.81 189 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
GBi-Net | | | 87.26 197 | 85.98 210 | 91.08 168 | 94.01 184 | 83.10 123 | 95.14 99 | 94.94 199 | 83.57 184 | 84.37 223 | 91.64 235 | 66.59 274 | 96.34 268 | 78.23 241 | 85.36 241 | 93.79 238 |
|
test1 | | | 87.26 197 | 85.98 210 | 91.08 168 | 94.01 184 | 83.10 123 | 95.14 99 | 94.94 199 | 83.57 184 | 84.37 223 | 91.64 235 | 66.59 274 | 96.34 268 | 78.23 241 | 85.36 241 | 93.79 238 |
|
FMVSNet2 | | | 87.19 204 | 85.82 216 | 91.30 159 | 94.01 184 | 83.67 109 | 94.79 121 | 94.94 199 | 83.57 184 | 83.88 238 | 92.05 226 | 66.59 274 | 96.51 256 | 77.56 248 | 85.01 244 | 93.73 245 |
|
XVG-OURS-SEG-HR | | | 89.95 116 | 89.45 114 | 91.47 154 | 94.00 187 | 81.21 176 | 91.87 252 | 96.06 124 | 85.78 137 | 88.55 129 | 95.73 98 | 74.67 174 | 97.27 207 | 88.71 103 | 89.64 193 | 95.91 150 |
|
FIs | | | 90.51 106 | 90.35 96 | 90.99 175 | 93.99 188 | 80.98 180 | 95.73 65 | 97.54 3 | 89.15 55 | 86.72 164 | 94.68 130 | 81.83 99 | 97.24 211 | 85.18 142 | 88.31 215 | 94.76 191 |
|
xiu_mvs_v1_base_debu | | | 90.64 102 | 90.05 104 | 92.40 114 | 93.97 189 | 84.46 88 | 93.32 202 | 95.46 170 | 85.17 154 | 92.25 76 | 94.03 149 | 70.59 226 | 98.57 109 | 90.97 77 | 94.67 122 | 94.18 215 |
|
xiu_mvs_v1_base | | | 90.64 102 | 90.05 104 | 92.40 114 | 93.97 189 | 84.46 88 | 93.32 202 | 95.46 170 | 85.17 154 | 92.25 76 | 94.03 149 | 70.59 226 | 98.57 109 | 90.97 77 | 94.67 122 | 94.18 215 |
|
xiu_mvs_v1_base_debi | | | 90.64 102 | 90.05 104 | 92.40 114 | 93.97 189 | 84.46 88 | 93.32 202 | 95.46 170 | 85.17 154 | 92.25 76 | 94.03 149 | 70.59 226 | 98.57 109 | 90.97 77 | 94.67 122 | 94.18 215 |
|
VPA-MVSNet | | | 89.62 122 | 88.96 126 | 91.60 150 | 93.86 192 | 82.89 132 | 95.46 77 | 97.33 22 | 87.91 89 | 88.43 132 | 93.31 178 | 74.17 181 | 97.40 197 | 87.32 121 | 82.86 268 | 94.52 203 |
|
MVSFormer | | | 91.68 83 | 91.30 81 | 92.80 94 | 93.86 192 | 83.88 103 | 95.96 57 | 95.90 136 | 84.66 167 | 91.76 90 | 94.91 120 | 77.92 138 | 97.30 203 | 89.64 92 | 97.11 84 | 97.24 101 |
|
lupinMVS | | | 90.92 94 | 90.21 98 | 93.03 85 | 93.86 192 | 83.88 103 | 92.81 226 | 93.86 241 | 79.84 256 | 91.76 90 | 94.29 143 | 77.92 138 | 98.04 149 | 90.48 87 | 97.11 84 | 97.17 105 |
|
IterMVS-LS | | | 88.36 160 | 87.91 154 | 89.70 225 | 93.80 195 | 78.29 245 | 93.73 189 | 95.08 195 | 85.73 139 | 84.75 213 | 91.90 230 | 79.88 113 | 96.92 234 | 83.83 159 | 82.51 269 | 93.89 230 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 84.86 255 | 83.09 262 | 90.14 205 | 93.80 195 | 80.05 204 | 89.18 300 | 93.09 254 | 78.89 267 | 78.19 305 | 91.91 229 | 65.86 283 | 97.27 207 | 68.47 309 | 88.45 211 | 93.11 270 |
|
FMVSNet3 | | | 87.40 194 | 86.11 205 | 91.30 159 | 93.79 197 | 83.64 110 | 94.20 162 | 94.81 212 | 83.89 178 | 84.37 223 | 91.87 231 | 68.45 258 | 96.56 253 | 78.23 241 | 85.36 241 | 93.70 247 |
|
FC-MVSNet-test | | | 90.27 109 | 90.18 100 | 90.53 186 | 93.71 198 | 79.85 212 | 95.77 64 | 97.59 2 | 89.31 50 | 86.27 173 | 94.67 131 | 81.93 98 | 97.01 229 | 84.26 154 | 88.09 219 | 94.71 192 |
|
TAMVS | | | 89.21 137 | 88.29 144 | 91.96 134 | 93.71 198 | 82.62 143 | 93.30 206 | 94.19 230 | 82.22 213 | 87.78 144 | 93.94 157 | 78.83 126 | 96.95 232 | 77.70 246 | 92.98 155 | 96.32 132 |
|
ET-MVSNet_ETH3D | | | 87.51 189 | 85.91 214 | 92.32 120 | 93.70 200 | 83.93 101 | 92.33 240 | 90.94 309 | 84.16 172 | 72.09 338 | 92.52 205 | 69.90 235 | 95.85 287 | 89.20 97 | 88.36 214 | 97.17 105 |
|
CDS-MVSNet | | | 89.45 129 | 88.51 135 | 92.29 123 | 93.62 201 | 83.61 112 | 93.01 220 | 94.68 217 | 81.95 221 | 87.82 143 | 93.24 182 | 78.69 129 | 96.99 230 | 80.34 218 | 93.23 150 | 96.28 134 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
UniMVSNet (Re) | | | 89.80 120 | 89.07 124 | 92.01 129 | 93.60 202 | 84.52 84 | 94.78 122 | 97.47 8 | 89.26 51 | 86.44 170 | 92.32 211 | 82.10 93 | 97.39 200 | 84.81 148 | 80.84 296 | 94.12 219 |
|
VPNet | | | 88.20 164 | 87.47 162 | 90.39 194 | 93.56 203 | 79.46 217 | 94.04 175 | 95.54 164 | 88.67 68 | 86.96 157 | 94.58 136 | 69.33 244 | 97.15 216 | 84.05 157 | 80.53 302 | 94.56 201 |
|
thisisatest0515 | | | 87.33 195 | 85.99 209 | 91.37 157 | 93.49 204 | 79.55 215 | 90.63 275 | 89.56 335 | 80.17 251 | 87.56 148 | 90.86 261 | 67.07 266 | 98.28 131 | 81.50 199 | 93.02 154 | 96.29 133 |
|
mvs_anonymous | | | 89.37 135 | 89.32 118 | 89.51 232 | 93.47 205 | 74.22 296 | 91.65 260 | 94.83 210 | 82.91 202 | 85.45 195 | 93.79 166 | 81.23 103 | 96.36 267 | 86.47 132 | 94.09 133 | 97.94 72 |
|
CANet_DTU | | | 90.26 110 | 89.41 116 | 92.81 93 | 93.46 206 | 83.01 128 | 93.48 198 | 94.47 220 | 89.43 47 | 87.76 145 | 94.23 147 | 70.54 230 | 99.03 64 | 84.97 144 | 96.39 101 | 96.38 131 |
|
UniMVSNet_NR-MVSNet | | | 89.92 118 | 89.29 119 | 91.81 144 | 93.39 207 | 83.72 107 | 94.43 145 | 97.12 40 | 89.80 37 | 86.46 167 | 93.32 177 | 83.16 78 | 97.23 212 | 84.92 145 | 81.02 292 | 94.49 207 |
|
Effi-MVS+-dtu | | | 88.65 153 | 88.35 140 | 89.54 229 | 93.33 208 | 76.39 280 | 94.47 142 | 94.36 223 | 87.70 96 | 85.43 198 | 89.56 290 | 73.45 193 | 97.26 209 | 85.57 140 | 91.28 170 | 94.97 178 |
|
mvs-test1 | | | 89.45 129 | 89.14 122 | 90.38 196 | 93.33 208 | 77.63 263 | 94.95 109 | 94.36 223 | 87.70 96 | 87.10 156 | 92.81 198 | 73.45 193 | 98.03 150 | 85.57 140 | 93.04 153 | 95.48 164 |
|
WR-MVS | | | 88.38 158 | 87.67 158 | 90.52 188 | 93.30 210 | 80.18 197 | 93.26 209 | 95.96 130 | 88.57 72 | 85.47 194 | 92.81 198 | 76.12 152 | 96.91 235 | 81.24 201 | 82.29 271 | 94.47 210 |
|
WR-MVS_H | | | 87.80 174 | 87.37 164 | 89.10 240 | 93.23 211 | 78.12 248 | 95.61 73 | 97.30 26 | 87.90 90 | 83.72 242 | 92.01 227 | 79.65 121 | 96.01 280 | 76.36 258 | 80.54 300 | 93.16 268 |
|
test_0402 | | | 81.30 291 | 79.17 299 | 87.67 274 | 93.19 212 | 78.17 247 | 92.98 221 | 91.71 287 | 75.25 304 | 76.02 322 | 90.31 274 | 59.23 319 | 96.37 265 | 50.22 350 | 83.63 257 | 88.47 341 |
|
OPM-MVS | | | 90.12 111 | 89.56 112 | 91.82 142 | 93.14 213 | 83.90 102 | 94.16 163 | 95.74 149 | 88.96 61 | 87.86 140 | 95.43 106 | 72.48 206 | 97.91 159 | 88.10 111 | 90.18 183 | 93.65 248 |
|
CP-MVSNet | | | 87.63 182 | 87.26 169 | 88.74 250 | 93.12 214 | 76.59 277 | 95.29 87 | 96.58 91 | 88.43 75 | 83.49 250 | 92.98 191 | 75.28 165 | 95.83 288 | 78.97 234 | 81.15 288 | 93.79 238 |
|
diffmvs | | | 91.37 87 | 91.23 83 | 91.77 145 | 93.09 215 | 80.27 196 | 92.36 239 | 95.52 166 | 87.03 111 | 91.40 99 | 94.93 119 | 80.08 111 | 97.44 188 | 92.13 51 | 94.56 127 | 97.61 87 |
|
nrg030 | | | 91.08 93 | 90.39 95 | 93.17 79 | 93.07 216 | 86.91 20 | 96.41 32 | 96.26 107 | 88.30 79 | 88.37 133 | 94.85 125 | 82.19 92 | 97.64 174 | 91.09 75 | 82.95 263 | 94.96 181 |
|
PAPM | | | 86.68 219 | 85.39 227 | 90.53 186 | 93.05 217 | 79.33 225 | 89.79 290 | 94.77 215 | 78.82 269 | 81.95 269 | 93.24 182 | 76.81 145 | 97.30 203 | 66.94 319 | 93.16 151 | 94.95 184 |
|
DU-MVS | | | 89.34 136 | 88.50 136 | 91.85 141 | 93.04 218 | 83.72 107 | 94.47 142 | 96.59 90 | 89.50 44 | 86.46 167 | 93.29 180 | 77.25 142 | 97.23 212 | 84.92 145 | 81.02 292 | 94.59 198 |
|
NR-MVSNet | | | 88.58 156 | 87.47 162 | 91.93 136 | 93.04 218 | 84.16 97 | 94.77 123 | 96.25 109 | 89.05 57 | 80.04 294 | 93.29 180 | 79.02 125 | 97.05 226 | 81.71 197 | 80.05 307 | 94.59 198 |
|
jason | | | 90.80 95 | 90.10 102 | 92.90 91 | 93.04 218 | 83.53 113 | 93.08 217 | 94.15 232 | 80.22 250 | 91.41 98 | 94.91 120 | 76.87 144 | 97.93 158 | 90.28 88 | 96.90 88 | 97.24 101 |
jason: jason. |
RRT_test8_iter05 | | | 86.90 210 | 86.36 195 | 88.52 255 | 93.00 221 | 73.27 304 | 94.32 156 | 95.96 130 | 85.50 147 | 84.26 231 | 92.86 193 | 60.76 310 | 97.70 169 | 88.32 107 | 82.29 271 | 94.60 197 |
|
PS-CasMVS | | | 87.32 196 | 86.88 174 | 88.63 253 | 92.99 222 | 76.33 282 | 95.33 81 | 96.61 89 | 88.22 83 | 83.30 255 | 93.07 189 | 73.03 200 | 95.79 291 | 78.36 239 | 81.00 294 | 93.75 244 |
|
MVSTER | | | 88.84 148 | 88.29 144 | 90.51 189 | 92.95 223 | 80.44 195 | 93.73 189 | 95.01 196 | 84.66 167 | 87.15 153 | 93.12 187 | 72.79 202 | 97.21 214 | 87.86 112 | 87.36 228 | 93.87 233 |
|
RPSCF | | | 85.07 250 | 84.27 247 | 87.48 280 | 92.91 224 | 70.62 329 | 91.69 259 | 92.46 267 | 76.20 296 | 82.67 261 | 95.22 111 | 63.94 291 | 97.29 206 | 77.51 249 | 85.80 239 | 94.53 202 |
|
FMVSNet1 | | | 85.85 236 | 84.11 249 | 91.08 168 | 92.81 225 | 83.10 123 | 95.14 99 | 94.94 199 | 81.64 231 | 82.68 260 | 91.64 235 | 59.01 321 | 96.34 268 | 75.37 268 | 83.78 253 | 93.79 238 |
|
tfpnnormal | | | 84.72 257 | 83.23 261 | 89.20 237 | 92.79 226 | 80.05 204 | 94.48 139 | 95.81 143 | 82.38 210 | 81.08 278 | 91.21 249 | 69.01 251 | 96.95 232 | 61.69 338 | 80.59 299 | 90.58 325 |
|
OpenMVS |  | 83.78 11 | 88.74 151 | 87.29 166 | 93.08 82 | 92.70 227 | 85.39 71 | 96.57 29 | 96.43 98 | 78.74 272 | 80.85 280 | 96.07 87 | 69.64 240 | 99.01 70 | 78.01 244 | 96.65 94 | 94.83 188 |
|
TranMVSNet+NR-MVSNet | | | 88.84 148 | 87.95 152 | 91.49 152 | 92.68 228 | 83.01 128 | 94.92 112 | 96.31 104 | 89.88 36 | 85.53 188 | 93.85 164 | 76.63 150 | 96.96 231 | 81.91 190 | 79.87 310 | 94.50 205 |
|
MVS | | | 87.44 192 | 86.10 206 | 91.44 155 | 92.61 229 | 83.62 111 | 92.63 230 | 95.66 155 | 67.26 342 | 81.47 272 | 92.15 217 | 77.95 137 | 98.22 134 | 79.71 225 | 95.48 110 | 92.47 289 |
|
CHOSEN 280x420 | | | 85.15 249 | 83.99 251 | 88.65 252 | 92.47 230 | 78.40 242 | 79.68 349 | 92.76 261 | 74.90 309 | 81.41 274 | 89.59 288 | 69.85 238 | 95.51 299 | 79.92 224 | 95.29 116 | 92.03 299 |
|
UniMVSNet_ETH3D | | | 87.53 188 | 86.37 194 | 91.00 174 | 92.44 231 | 78.96 231 | 94.74 124 | 95.61 159 | 84.07 175 | 85.36 205 | 94.52 137 | 59.78 317 | 97.34 202 | 82.93 170 | 87.88 222 | 96.71 123 |
|
1314 | | | 87.51 189 | 86.57 189 | 90.34 199 | 92.42 232 | 79.74 214 | 92.63 230 | 95.35 183 | 78.35 277 | 80.14 291 | 91.62 239 | 74.05 183 | 97.15 216 | 81.05 202 | 93.53 141 | 94.12 219 |
|
cl-mvsnet2 | | | 86.78 215 | 85.98 210 | 89.18 238 | 92.34 233 | 77.62 264 | 90.84 272 | 94.13 234 | 81.33 238 | 83.97 237 | 90.15 277 | 73.96 185 | 96.60 250 | 84.19 155 | 82.94 264 | 93.33 258 |
|
PEN-MVS | | | 86.80 214 | 86.27 200 | 88.40 257 | 92.32 234 | 75.71 287 | 95.18 96 | 96.38 102 | 87.97 87 | 82.82 259 | 93.15 185 | 73.39 196 | 95.92 283 | 76.15 262 | 79.03 317 | 93.59 249 |
|
cl_fuxian | | | 87.14 206 | 86.50 192 | 89.04 242 | 92.20 235 | 77.26 269 | 91.22 267 | 94.70 216 | 82.01 219 | 84.34 227 | 90.43 272 | 78.81 127 | 96.61 248 | 83.70 162 | 81.09 289 | 93.25 262 |
|
SCA | | | 86.32 229 | 85.18 231 | 89.73 224 | 92.15 236 | 76.60 276 | 91.12 268 | 91.69 289 | 83.53 187 | 85.50 191 | 88.81 297 | 66.79 270 | 96.48 258 | 76.65 256 | 90.35 181 | 96.12 140 |
|
XXY-MVS | | | 87.65 179 | 86.85 176 | 90.03 210 | 92.14 237 | 80.60 192 | 93.76 188 | 95.23 186 | 82.94 201 | 84.60 215 | 94.02 152 | 74.27 177 | 95.49 302 | 81.04 203 | 83.68 256 | 94.01 227 |
|
miper_ehance_all_eth | | | 87.22 202 | 86.62 187 | 89.02 243 | 92.13 238 | 77.40 268 | 90.91 271 | 94.81 212 | 81.28 239 | 84.32 228 | 90.08 279 | 79.26 123 | 96.62 245 | 83.81 160 | 82.94 264 | 93.04 273 |
|
IB-MVS | | 80.51 15 | 85.24 248 | 83.26 260 | 91.19 162 | 92.13 238 | 79.86 211 | 91.75 255 | 91.29 300 | 83.28 194 | 80.66 283 | 88.49 303 | 61.28 304 | 98.46 116 | 80.99 206 | 79.46 313 | 95.25 172 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
cascas | | | 86.43 228 | 84.98 235 | 90.80 180 | 92.10 240 | 80.92 183 | 90.24 281 | 95.91 135 | 73.10 323 | 83.57 248 | 88.39 304 | 65.15 285 | 97.46 185 | 84.90 147 | 91.43 169 | 94.03 226 |
|
Fast-Effi-MVS+-dtu | | | 87.44 192 | 86.72 180 | 89.63 227 | 92.04 241 | 77.68 262 | 94.03 176 | 93.94 237 | 85.81 136 | 82.42 262 | 91.32 247 | 70.33 232 | 97.06 225 | 80.33 219 | 90.23 182 | 94.14 218 |
|
cl-mvsnet_ | | | 86.52 224 | 85.78 217 | 88.75 248 | 92.03 242 | 76.46 278 | 90.74 273 | 94.30 226 | 81.83 228 | 83.34 253 | 90.78 265 | 75.74 161 | 96.57 251 | 81.74 195 | 81.54 283 | 93.22 265 |
|
cl-mvsnet1 | | | 86.53 223 | 85.78 217 | 88.75 248 | 92.02 243 | 76.45 279 | 90.74 273 | 94.30 226 | 81.83 228 | 83.34 253 | 90.82 263 | 75.75 159 | 96.57 251 | 81.73 196 | 81.52 284 | 93.24 263 |
|
RRT_MVS | | | 88.86 147 | 87.68 157 | 92.39 117 | 92.02 243 | 86.09 53 | 94.38 153 | 94.94 199 | 85.45 148 | 87.14 155 | 93.84 165 | 65.88 282 | 97.11 220 | 88.73 102 | 86.77 235 | 93.98 228 |
|
eth_miper_zixun_eth | | | 86.50 225 | 85.77 219 | 88.68 251 | 91.94 245 | 75.81 286 | 90.47 277 | 94.89 205 | 82.05 216 | 84.05 234 | 90.46 271 | 75.96 155 | 96.77 239 | 82.76 176 | 79.36 314 | 93.46 256 |
|
PS-MVSNAJss | | | 89.97 115 | 89.62 111 | 91.02 172 | 91.90 246 | 80.85 185 | 95.26 90 | 95.98 128 | 86.26 129 | 86.21 174 | 94.29 143 | 79.70 117 | 97.65 172 | 88.87 101 | 88.10 217 | 94.57 200 |
|
ITE_SJBPF | | | | | 88.24 263 | 91.88 247 | 77.05 272 | | 92.92 257 | 85.54 145 | 80.13 292 | 93.30 179 | 57.29 325 | 96.20 272 | 72.46 287 | 84.71 246 | 91.49 307 |
|
EI-MVSNet | | | 89.10 139 | 88.86 131 | 89.80 221 | 91.84 248 | 78.30 244 | 93.70 192 | 95.01 196 | 85.73 139 | 87.15 153 | 95.28 108 | 79.87 114 | 97.21 214 | 83.81 160 | 87.36 228 | 93.88 232 |
|
CVMVSNet | | | 84.69 258 | 84.79 241 | 84.37 317 | 91.84 248 | 64.92 348 | 93.70 192 | 91.47 296 | 66.19 344 | 86.16 176 | 95.28 108 | 67.18 264 | 93.33 329 | 80.89 208 | 90.42 180 | 94.88 186 |
|
MVS-HIRNet | | | 73.70 316 | 72.20 319 | 78.18 331 | 91.81 250 | 56.42 355 | 82.94 344 | 82.58 350 | 55.24 350 | 68.88 343 | 66.48 351 | 55.32 331 | 95.13 307 | 58.12 345 | 88.42 212 | 83.01 346 |
|
PatchmatchNet |  | | 85.85 236 | 84.70 242 | 89.29 235 | 91.76 251 | 75.54 288 | 88.49 309 | 91.30 299 | 81.63 232 | 85.05 209 | 88.70 301 | 71.71 210 | 96.24 271 | 74.61 276 | 89.05 203 | 96.08 144 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TransMVSNet (Re) | | | 84.43 260 | 83.06 263 | 88.54 254 | 91.72 252 | 78.44 240 | 95.18 96 | 92.82 260 | 82.73 205 | 79.67 298 | 92.12 219 | 73.49 192 | 95.96 282 | 71.10 295 | 68.73 342 | 91.21 314 |
|
IterMVS-SCA-FT | | | 85.45 241 | 84.53 246 | 88.18 265 | 91.71 253 | 76.87 274 | 90.19 284 | 92.65 265 | 85.40 150 | 81.44 273 | 90.54 269 | 66.79 270 | 95.00 311 | 81.04 203 | 81.05 290 | 92.66 284 |
|
TinyColmap | | | 79.76 303 | 77.69 305 | 85.97 303 | 91.71 253 | 73.12 305 | 89.55 291 | 90.36 319 | 75.03 306 | 72.03 339 | 90.19 275 | 46.22 351 | 96.19 274 | 63.11 334 | 81.03 291 | 88.59 340 |
|
MDTV_nov1_ep13 | | | | 83.56 258 | | 91.69 255 | 69.93 333 | 87.75 317 | 91.54 293 | 78.60 274 | 84.86 212 | 88.90 296 | 69.54 241 | 96.03 278 | 70.25 297 | 88.93 204 | |
|
miper_enhance_ethall | | | 86.90 210 | 86.18 202 | 89.06 241 | 91.66 256 | 77.58 265 | 90.22 283 | 94.82 211 | 79.16 264 | 84.48 219 | 89.10 293 | 79.19 124 | 96.66 243 | 84.06 156 | 82.94 264 | 92.94 276 |
|
DTE-MVSNet | | | 86.11 231 | 85.48 225 | 87.98 269 | 91.65 257 | 74.92 290 | 94.93 111 | 95.75 148 | 87.36 105 | 82.26 264 | 93.04 190 | 72.85 201 | 95.82 289 | 74.04 278 | 77.46 323 | 93.20 266 |
|
MIMVSNet | | | 82.59 275 | 80.53 280 | 88.76 247 | 91.51 258 | 78.32 243 | 86.57 325 | 90.13 322 | 79.32 260 | 80.70 282 | 88.69 302 | 52.98 340 | 93.07 333 | 66.03 324 | 88.86 205 | 94.90 185 |
|
pm-mvs1 | | | 86.61 220 | 85.54 223 | 89.82 218 | 91.44 259 | 80.18 197 | 95.28 89 | 94.85 208 | 83.84 179 | 81.66 271 | 92.62 203 | 72.45 208 | 96.48 258 | 79.67 226 | 78.06 318 | 92.82 281 |
|
Baseline_NR-MVSNet | | | 87.07 207 | 86.63 186 | 88.40 257 | 91.44 259 | 77.87 255 | 94.23 161 | 92.57 266 | 84.12 174 | 85.74 181 | 92.08 223 | 77.25 142 | 96.04 277 | 82.29 183 | 79.94 308 | 91.30 311 |
|
IterMVS | | | 84.88 254 | 83.98 252 | 87.60 275 | 91.44 259 | 76.03 284 | 90.18 285 | 92.41 268 | 83.24 195 | 81.06 279 | 90.42 273 | 66.60 273 | 94.28 318 | 79.46 227 | 80.98 295 | 92.48 288 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DWT-MVSNet_test | | | 84.95 253 | 83.68 255 | 88.77 246 | 91.43 262 | 73.75 300 | 91.74 256 | 90.98 307 | 80.66 248 | 83.84 239 | 87.36 319 | 62.44 296 | 97.11 220 | 78.84 236 | 85.81 238 | 95.46 165 |
|
MS-PatchMatch | | | 85.05 251 | 84.16 248 | 87.73 273 | 91.42 263 | 78.51 238 | 91.25 266 | 93.53 247 | 77.50 283 | 80.15 290 | 91.58 240 | 61.99 299 | 95.51 299 | 75.69 265 | 94.35 132 | 89.16 335 |
|
tpm2 | | | 84.08 262 | 82.94 264 | 87.48 280 | 91.39 264 | 71.27 321 | 89.23 299 | 90.37 318 | 71.95 331 | 84.64 214 | 89.33 291 | 67.30 261 | 96.55 255 | 75.17 270 | 87.09 232 | 94.63 194 |
|
v8 | | | 87.50 191 | 86.71 181 | 89.89 215 | 91.37 265 | 79.40 219 | 94.50 138 | 95.38 179 | 84.81 164 | 83.60 247 | 91.33 245 | 76.05 153 | 97.42 190 | 82.84 173 | 80.51 304 | 92.84 280 |
|
ADS-MVSNet2 | | | 81.66 284 | 79.71 292 | 87.50 278 | 91.35 266 | 74.19 297 | 83.33 341 | 88.48 338 | 72.90 325 | 82.24 265 | 85.77 331 | 64.98 286 | 93.20 331 | 64.57 330 | 83.74 254 | 95.12 174 |
|
ADS-MVSNet | | | 81.56 286 | 79.78 290 | 86.90 294 | 91.35 266 | 71.82 318 | 83.33 341 | 89.16 336 | 72.90 325 | 82.24 265 | 85.77 331 | 64.98 286 | 93.76 324 | 64.57 330 | 83.74 254 | 95.12 174 |
|
GA-MVS | | | 86.61 220 | 85.27 230 | 90.66 181 | 91.33 268 | 78.71 233 | 90.40 278 | 93.81 244 | 85.34 151 | 85.12 208 | 89.57 289 | 61.25 305 | 97.11 220 | 80.99 206 | 89.59 194 | 96.15 137 |
|
miper_lstm_enhance | | | 85.27 247 | 84.59 245 | 87.31 282 | 91.28 269 | 74.63 291 | 87.69 318 | 94.09 236 | 81.20 243 | 81.36 275 | 89.85 285 | 74.97 170 | 94.30 317 | 81.03 205 | 79.84 311 | 93.01 274 |
|
XVG-ACMP-BASELINE | | | 86.00 232 | 84.84 240 | 89.45 233 | 91.20 270 | 78.00 250 | 91.70 258 | 95.55 162 | 85.05 160 | 82.97 257 | 92.25 215 | 54.49 334 | 97.48 183 | 82.93 170 | 87.45 227 | 92.89 278 |
|
v10 | | | 87.25 199 | 86.38 193 | 89.85 216 | 91.19 271 | 79.50 216 | 94.48 139 | 95.45 173 | 83.79 180 | 83.62 246 | 91.19 250 | 75.13 166 | 97.42 190 | 81.94 189 | 80.60 298 | 92.63 285 |
|
FMVSNet5 | | | 81.52 287 | 79.60 293 | 87.27 283 | 91.17 272 | 77.95 251 | 91.49 262 | 92.26 273 | 76.87 289 | 76.16 319 | 87.91 313 | 51.67 341 | 92.34 337 | 67.74 315 | 81.16 286 | 91.52 306 |
|
USDC | | | 82.76 272 | 81.26 277 | 87.26 284 | 91.17 272 | 74.55 292 | 89.27 297 | 93.39 250 | 78.26 279 | 75.30 325 | 92.08 223 | 54.43 335 | 96.63 244 | 71.64 289 | 85.79 240 | 90.61 322 |
|
CostFormer | | | 85.77 238 | 84.94 237 | 88.26 262 | 91.16 274 | 72.58 314 | 89.47 295 | 91.04 306 | 76.26 295 | 86.45 169 | 89.97 282 | 70.74 224 | 96.86 238 | 82.35 181 | 87.07 233 | 95.34 171 |
|
baseline2 | | | 86.50 225 | 85.39 227 | 89.84 217 | 91.12 275 | 76.70 275 | 91.88 251 | 88.58 337 | 82.35 212 | 79.95 295 | 90.95 260 | 73.42 195 | 97.63 175 | 80.27 220 | 89.95 187 | 95.19 173 |
|
tpm cat1 | | | 81.96 278 | 80.27 284 | 87.01 291 | 91.09 276 | 71.02 325 | 87.38 321 | 91.53 294 | 66.25 343 | 80.17 289 | 86.35 327 | 68.22 260 | 96.15 275 | 69.16 305 | 82.29 271 | 93.86 235 |
|
tpmvs | | | 83.35 271 | 82.07 269 | 87.20 289 | 91.07 277 | 71.00 326 | 88.31 312 | 91.70 288 | 78.91 266 | 80.49 286 | 87.18 323 | 69.30 247 | 97.08 223 | 68.12 314 | 83.56 258 | 93.51 254 |
|
v1144 | | | 87.61 185 | 86.79 179 | 90.06 209 | 91.01 278 | 79.34 222 | 93.95 181 | 95.42 178 | 83.36 192 | 85.66 184 | 91.31 248 | 74.98 169 | 97.42 190 | 83.37 164 | 82.06 274 | 93.42 257 |
|
v2v482 | | | 87.84 172 | 87.06 171 | 90.17 202 | 90.99 279 | 79.23 229 | 94.00 179 | 95.13 190 | 84.87 162 | 85.53 188 | 92.07 225 | 74.45 175 | 97.45 186 | 84.71 150 | 81.75 280 | 93.85 236 |
|
SixPastTwentyTwo | | | 83.91 265 | 82.90 265 | 86.92 293 | 90.99 279 | 70.67 328 | 93.48 198 | 91.99 281 | 85.54 145 | 77.62 311 | 92.11 221 | 60.59 311 | 96.87 237 | 76.05 263 | 77.75 320 | 93.20 266 |
|
test-LLR | | | 85.87 235 | 85.41 226 | 87.25 285 | 90.95 281 | 71.67 319 | 89.55 291 | 89.88 330 | 83.41 190 | 84.54 217 | 87.95 311 | 67.25 262 | 95.11 308 | 81.82 192 | 93.37 147 | 94.97 178 |
|
test-mter | | | 84.54 259 | 83.64 257 | 87.25 285 | 90.95 281 | 71.67 319 | 89.55 291 | 89.88 330 | 79.17 263 | 84.54 217 | 87.95 311 | 55.56 329 | 95.11 308 | 81.82 192 | 93.37 147 | 94.97 178 |
|
v148 | | | 87.04 208 | 86.32 198 | 89.21 236 | 90.94 283 | 77.26 269 | 93.71 191 | 94.43 221 | 84.84 163 | 84.36 226 | 90.80 264 | 76.04 154 | 97.05 226 | 82.12 185 | 79.60 312 | 93.31 259 |
|
mvs_tets | | | 88.06 169 | 87.28 167 | 90.38 196 | 90.94 283 | 79.88 210 | 95.22 92 | 95.66 155 | 85.10 158 | 84.21 233 | 93.94 157 | 63.53 292 | 97.40 197 | 88.50 105 | 88.40 213 | 93.87 233 |
|
MVP-Stereo | | | 85.97 233 | 84.86 239 | 89.32 234 | 90.92 285 | 82.19 151 | 92.11 248 | 94.19 230 | 78.76 271 | 78.77 304 | 91.63 238 | 68.38 259 | 96.56 253 | 75.01 273 | 93.95 134 | 89.20 334 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Patchmatch-test | | | 81.37 289 | 79.30 295 | 87.58 276 | 90.92 285 | 74.16 298 | 80.99 347 | 87.68 342 | 70.52 337 | 76.63 317 | 88.81 297 | 71.21 216 | 92.76 335 | 60.01 344 | 86.93 234 | 95.83 155 |
|
jajsoiax | | | 88.24 163 | 87.50 160 | 90.48 191 | 90.89 287 | 80.14 199 | 95.31 82 | 95.65 157 | 84.97 161 | 84.24 232 | 94.02 152 | 65.31 284 | 97.42 190 | 88.56 104 | 88.52 209 | 93.89 230 |
|
tpmrst | | | 85.35 244 | 84.99 234 | 86.43 299 | 90.88 288 | 67.88 340 | 88.71 306 | 91.43 297 | 80.13 252 | 86.08 177 | 88.80 299 | 73.05 199 | 96.02 279 | 82.48 178 | 83.40 262 | 95.40 168 |
|
gg-mvs-nofinetune | | | 81.77 281 | 79.37 294 | 88.99 244 | 90.85 289 | 77.73 261 | 86.29 326 | 79.63 355 | 74.88 310 | 83.19 256 | 69.05 350 | 60.34 312 | 96.11 276 | 75.46 267 | 94.64 125 | 93.11 270 |
|
D2MVS | | | 85.90 234 | 85.09 233 | 88.35 259 | 90.79 290 | 77.42 267 | 91.83 253 | 95.70 151 | 80.77 247 | 80.08 293 | 90.02 280 | 66.74 272 | 96.37 265 | 81.88 191 | 87.97 221 | 91.26 312 |
|
OurMVSNet-221017-0 | | | 85.35 244 | 84.64 244 | 87.49 279 | 90.77 291 | 72.59 313 | 94.01 178 | 94.40 222 | 84.72 166 | 79.62 300 | 93.17 184 | 61.91 300 | 96.72 240 | 81.99 188 | 81.16 286 | 93.16 268 |
|
v1192 | | | 87.25 199 | 86.33 197 | 90.00 213 | 90.76 292 | 79.04 230 | 93.80 186 | 95.48 168 | 82.57 208 | 85.48 193 | 91.18 252 | 73.38 197 | 97.42 190 | 82.30 182 | 82.06 274 | 93.53 251 |
|
test_djsdf | | | 89.03 142 | 88.64 133 | 90.21 201 | 90.74 293 | 79.28 226 | 95.96 57 | 95.90 136 | 84.66 167 | 85.33 206 | 92.94 192 | 74.02 184 | 97.30 203 | 89.64 92 | 88.53 208 | 94.05 225 |
|
v7n | | | 86.81 213 | 85.76 220 | 89.95 214 | 90.72 294 | 79.25 228 | 95.07 102 | 95.92 133 | 84.45 170 | 82.29 263 | 90.86 261 | 72.60 205 | 97.53 180 | 79.42 231 | 80.52 303 | 93.08 272 |
|
PVSNet_0 | | 73.20 20 | 77.22 312 | 74.83 317 | 84.37 317 | 90.70 295 | 71.10 324 | 83.09 343 | 89.67 333 | 72.81 327 | 73.93 332 | 83.13 339 | 60.79 309 | 93.70 325 | 68.54 308 | 50.84 353 | 88.30 342 |
|
v144192 | | | 87.19 204 | 86.35 196 | 89.74 222 | 90.64 296 | 78.24 246 | 93.92 182 | 95.43 176 | 81.93 222 | 85.51 190 | 91.05 258 | 74.21 180 | 97.45 186 | 82.86 172 | 81.56 282 | 93.53 251 |
|
MVS_0304 | | | 83.46 268 | 81.92 271 | 88.10 267 | 90.63 297 | 77.49 266 | 93.26 209 | 93.75 245 | 80.04 254 | 80.44 287 | 87.24 322 | 47.94 348 | 95.55 296 | 75.79 264 | 88.16 216 | 91.26 312 |
|
V42 | | | 87.68 177 | 86.86 175 | 90.15 204 | 90.58 298 | 80.14 199 | 94.24 160 | 95.28 184 | 83.66 182 | 85.67 183 | 91.33 245 | 74.73 173 | 97.41 195 | 84.43 153 | 81.83 278 | 92.89 278 |
|
CR-MVSNet | | | 85.35 244 | 83.76 254 | 90.12 206 | 90.58 298 | 79.34 222 | 85.24 332 | 91.96 284 | 78.27 278 | 85.55 186 | 87.87 314 | 71.03 219 | 95.61 294 | 73.96 280 | 89.36 197 | 95.40 168 |
|
RPMNet | | | 83.95 264 | 81.53 274 | 91.21 161 | 90.58 298 | 79.34 222 | 85.24 332 | 96.76 73 | 71.44 333 | 85.55 186 | 82.97 340 | 70.87 222 | 98.91 86 | 61.01 340 | 89.36 197 | 95.40 168 |
|
v1921920 | | | 86.97 209 | 86.06 208 | 89.69 226 | 90.53 301 | 78.11 249 | 93.80 186 | 95.43 176 | 81.90 224 | 85.33 206 | 91.05 258 | 72.66 203 | 97.41 195 | 82.05 187 | 81.80 279 | 93.53 251 |
|
v1240 | | | 86.78 215 | 85.85 215 | 89.56 228 | 90.45 302 | 77.79 258 | 93.61 194 | 95.37 181 | 81.65 230 | 85.43 198 | 91.15 254 | 71.50 214 | 97.43 189 | 81.47 200 | 82.05 276 | 93.47 255 |
|
tpm | | | 84.73 256 | 84.02 250 | 86.87 296 | 90.33 303 | 68.90 336 | 89.06 301 | 89.94 327 | 80.85 246 | 85.75 180 | 89.86 284 | 68.54 257 | 95.97 281 | 77.76 245 | 84.05 252 | 95.75 158 |
|
EG-PatchMatch MVS | | | 82.37 277 | 80.34 283 | 88.46 256 | 90.27 304 | 79.35 221 | 92.80 227 | 94.33 225 | 77.14 288 | 73.26 335 | 90.18 276 | 47.47 350 | 96.72 240 | 70.25 297 | 87.32 230 | 89.30 332 |
|
EPNet_dtu | | | 86.49 227 | 85.94 213 | 88.14 266 | 90.24 305 | 72.82 308 | 94.11 167 | 92.20 274 | 86.66 122 | 79.42 301 | 92.36 210 | 73.52 191 | 95.81 290 | 71.26 290 | 93.66 138 | 95.80 157 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPMVS | | | 83.90 266 | 82.70 268 | 87.51 277 | 90.23 306 | 72.67 310 | 88.62 308 | 81.96 352 | 81.37 237 | 85.01 210 | 88.34 305 | 66.31 277 | 94.45 313 | 75.30 269 | 87.12 231 | 95.43 167 |
|
EPNet | | | 91.79 78 | 91.02 88 | 94.10 58 | 90.10 307 | 85.25 73 | 96.03 53 | 92.05 278 | 92.83 1 | 87.39 152 | 95.78 96 | 79.39 122 | 99.01 70 | 88.13 110 | 97.48 79 | 98.05 65 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PatchT | | | 82.68 274 | 81.27 276 | 86.89 295 | 90.09 308 | 70.94 327 | 84.06 338 | 90.15 321 | 74.91 308 | 85.63 185 | 83.57 337 | 69.37 243 | 94.87 312 | 65.19 326 | 88.50 210 | 94.84 187 |
|
Patchmtry | | | 82.71 273 | 80.93 279 | 88.06 268 | 90.05 309 | 76.37 281 | 84.74 336 | 91.96 284 | 72.28 330 | 81.32 276 | 87.87 314 | 71.03 219 | 95.50 301 | 68.97 306 | 80.15 306 | 92.32 295 |
|
pmmvs4 | | | 85.43 242 | 83.86 253 | 90.16 203 | 90.02 310 | 82.97 130 | 90.27 279 | 92.67 264 | 75.93 298 | 80.73 281 | 91.74 234 | 71.05 218 | 95.73 293 | 78.85 235 | 83.46 260 | 91.78 302 |
|
TESTMET0.1,1 | | | 83.74 267 | 82.85 266 | 86.42 300 | 89.96 311 | 71.21 323 | 89.55 291 | 87.88 339 | 77.41 284 | 83.37 252 | 87.31 320 | 56.71 326 | 93.65 326 | 80.62 213 | 92.85 158 | 94.40 211 |
|
dp | | | 81.47 288 | 80.23 285 | 85.17 312 | 89.92 312 | 65.49 346 | 86.74 323 | 90.10 323 | 76.30 294 | 81.10 277 | 87.12 324 | 62.81 294 | 95.92 283 | 68.13 313 | 79.88 309 | 94.09 222 |
|
K. test v3 | | | 81.59 285 | 80.15 287 | 85.91 306 | 89.89 313 | 69.42 335 | 92.57 233 | 87.71 341 | 85.56 144 | 73.44 334 | 89.71 287 | 55.58 328 | 95.52 298 | 77.17 252 | 69.76 336 | 92.78 282 |
|
MDA-MVSNet-bldmvs | | | 78.85 308 | 76.31 311 | 86.46 298 | 89.76 314 | 73.88 299 | 88.79 305 | 90.42 316 | 79.16 264 | 59.18 350 | 88.33 306 | 60.20 313 | 94.04 320 | 62.00 337 | 68.96 340 | 91.48 308 |
|
GG-mvs-BLEND | | | | | 87.94 271 | 89.73 315 | 77.91 252 | 87.80 315 | 78.23 357 | | 80.58 284 | 83.86 335 | 59.88 316 | 95.33 305 | 71.20 291 | 92.22 165 | 90.60 324 |
|
gm-plane-assit | | | | | | 89.60 316 | 68.00 338 | | | 77.28 287 | | 88.99 294 | | 97.57 177 | 79.44 229 | | |
|
anonymousdsp | | | 87.84 172 | 87.09 170 | 90.12 206 | 89.13 317 | 80.54 193 | 94.67 129 | 95.55 162 | 82.05 216 | 83.82 240 | 92.12 219 | 71.47 215 | 97.15 216 | 87.15 123 | 87.80 224 | 92.67 283 |
|
N_pmnet | | | 68.89 319 | 68.44 322 | 70.23 335 | 89.07 318 | 28.79 365 | 88.06 313 | 19.50 365 | 69.47 339 | 71.86 340 | 84.93 333 | 61.24 306 | 91.75 342 | 54.70 348 | 77.15 324 | 90.15 326 |
|
pmmvs5 | | | 84.21 261 | 82.84 267 | 88.34 260 | 88.95 319 | 76.94 273 | 92.41 236 | 91.91 286 | 75.63 300 | 80.28 288 | 91.18 252 | 64.59 288 | 95.57 295 | 77.09 254 | 83.47 259 | 92.53 287 |
|
PMMVS | | | 85.71 239 | 84.96 236 | 87.95 270 | 88.90 320 | 77.09 271 | 88.68 307 | 90.06 324 | 72.32 329 | 86.47 166 | 90.76 266 | 72.15 209 | 94.40 314 | 81.78 194 | 93.49 142 | 92.36 293 |
|
JIA-IIPM | | | 81.04 292 | 78.98 302 | 87.25 285 | 88.64 321 | 73.48 302 | 81.75 346 | 89.61 334 | 73.19 322 | 82.05 267 | 73.71 347 | 66.07 281 | 95.87 286 | 71.18 293 | 84.60 247 | 92.41 291 |
|
Gipuma |  | | 57.99 324 | 54.91 326 | 67.24 337 | 88.51 322 | 65.59 345 | 52.21 357 | 90.33 320 | 43.58 355 | 42.84 355 | 51.18 356 | 20.29 361 | 85.07 352 | 34.77 355 | 70.45 335 | 51.05 354 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
EU-MVSNet | | | 81.32 290 | 80.95 278 | 82.42 326 | 88.50 323 | 63.67 349 | 93.32 202 | 91.33 298 | 64.02 346 | 80.57 285 | 92.83 196 | 61.21 307 | 92.27 338 | 76.34 259 | 80.38 305 | 91.32 310 |
|
our_test_3 | | | 81.93 279 | 80.46 282 | 86.33 301 | 88.46 324 | 73.48 302 | 88.46 310 | 91.11 302 | 76.46 290 | 76.69 316 | 88.25 307 | 66.89 268 | 94.36 315 | 68.75 307 | 79.08 316 | 91.14 316 |
|
ppachtmachnet_test | | | 81.84 280 | 80.07 288 | 87.15 290 | 88.46 324 | 74.43 295 | 89.04 302 | 92.16 275 | 75.33 303 | 77.75 309 | 88.99 294 | 66.20 278 | 95.37 304 | 65.12 328 | 77.60 321 | 91.65 304 |
|
lessismore_v0 | | | | | 86.04 302 | 88.46 324 | 68.78 337 | | 80.59 353 | | 73.01 336 | 90.11 278 | 55.39 330 | 96.43 263 | 75.06 272 | 65.06 344 | 92.90 277 |
|
test0.0.03 1 | | | 82.41 276 | 81.69 272 | 84.59 315 | 88.23 327 | 72.89 307 | 90.24 281 | 87.83 340 | 83.41 190 | 79.86 296 | 89.78 286 | 67.25 262 | 88.99 348 | 65.18 327 | 83.42 261 | 91.90 301 |
|
bset_n11_16_dypcd | | | 86.83 212 | 85.55 222 | 90.65 182 | 88.22 328 | 81.70 160 | 88.88 304 | 90.42 316 | 85.26 153 | 85.49 192 | 90.69 267 | 67.11 265 | 97.02 228 | 89.51 94 | 84.39 248 | 93.23 264 |
|
MDA-MVSNet_test_wron | | | 79.21 307 | 77.19 309 | 85.29 310 | 88.22 328 | 72.77 309 | 85.87 328 | 90.06 324 | 74.34 313 | 62.62 349 | 87.56 317 | 66.14 279 | 91.99 340 | 66.90 322 | 73.01 330 | 91.10 319 |
|
YYNet1 | | | 79.22 306 | 77.20 308 | 85.28 311 | 88.20 330 | 72.66 311 | 85.87 328 | 90.05 326 | 74.33 314 | 62.70 348 | 87.61 316 | 66.09 280 | 92.03 339 | 66.94 319 | 72.97 331 | 91.15 315 |
|
pmmvs6 | | | 83.42 269 | 81.60 273 | 88.87 245 | 88.01 331 | 77.87 255 | 94.96 108 | 94.24 229 | 74.67 311 | 78.80 303 | 91.09 257 | 60.17 314 | 96.49 257 | 77.06 255 | 75.40 328 | 92.23 297 |
|
testgi | | | 80.94 295 | 80.20 286 | 83.18 322 | 87.96 332 | 66.29 343 | 91.28 264 | 90.70 315 | 83.70 181 | 78.12 306 | 92.84 195 | 51.37 342 | 90.82 345 | 63.34 333 | 82.46 270 | 92.43 290 |
|
Anonymous20231206 | | | 81.03 293 | 79.77 291 | 84.82 314 | 87.85 333 | 70.26 331 | 91.42 263 | 92.08 277 | 73.67 318 | 77.75 309 | 89.25 292 | 62.43 297 | 93.08 332 | 61.50 339 | 82.00 277 | 91.12 317 |
|
OpenMVS_ROB |  | 74.94 19 | 79.51 304 | 77.03 310 | 86.93 292 | 87.00 334 | 76.23 283 | 92.33 240 | 90.74 314 | 68.93 340 | 74.52 329 | 88.23 308 | 49.58 345 | 96.62 245 | 57.64 346 | 84.29 249 | 87.94 343 |
|
LF4IMVS | | | 80.37 298 | 79.07 301 | 84.27 319 | 86.64 335 | 69.87 334 | 89.39 296 | 91.05 305 | 76.38 292 | 74.97 327 | 90.00 281 | 47.85 349 | 94.25 319 | 74.55 277 | 80.82 297 | 88.69 339 |
|
MIMVSNet1 | | | 79.38 305 | 77.28 307 | 85.69 307 | 86.35 336 | 73.67 301 | 91.61 261 | 92.75 262 | 78.11 282 | 72.64 337 | 88.12 309 | 48.16 347 | 91.97 341 | 60.32 341 | 77.49 322 | 91.43 309 |
|
KD-MVS_2432*1600 | | | 78.50 309 | 76.02 314 | 85.93 304 | 86.22 337 | 74.47 293 | 84.80 334 | 92.33 269 | 79.29 261 | 76.98 314 | 85.92 329 | 53.81 338 | 93.97 321 | 67.39 316 | 57.42 350 | 89.36 330 |
|
miper_refine_blended | | | 78.50 309 | 76.02 314 | 85.93 304 | 86.22 337 | 74.47 293 | 84.80 334 | 92.33 269 | 79.29 261 | 76.98 314 | 85.92 329 | 53.81 338 | 93.97 321 | 67.39 316 | 57.42 350 | 89.36 330 |
|
CL-MVSNet_2432*1600 | | | 81.74 282 | 80.53 280 | 85.36 309 | 85.96 339 | 72.45 315 | 90.25 280 | 93.07 255 | 81.24 241 | 79.85 297 | 87.29 321 | 70.93 221 | 92.52 336 | 66.95 318 | 69.23 338 | 91.11 318 |
|
test20.03 | | | 79.95 301 | 79.08 300 | 82.55 325 | 85.79 340 | 67.74 341 | 91.09 269 | 91.08 303 | 81.23 242 | 74.48 330 | 89.96 283 | 61.63 301 | 90.15 346 | 60.08 342 | 76.38 326 | 89.76 328 |
|
Anonymous20240521 | | | 80.44 297 | 79.21 297 | 84.11 320 | 85.75 341 | 67.89 339 | 92.86 225 | 93.23 252 | 75.61 301 | 75.59 324 | 87.47 318 | 50.03 343 | 94.33 316 | 71.14 294 | 81.21 285 | 90.12 327 |
|
DIV-MVS_2432*1600 | | | 80.20 299 | 79.24 296 | 83.07 323 | 85.64 342 | 65.29 347 | 91.01 270 | 93.93 238 | 78.71 273 | 76.32 318 | 86.40 326 | 59.20 320 | 92.93 334 | 72.59 286 | 69.35 337 | 91.00 320 |
|
Patchmatch-RL test | | | 81.67 283 | 79.96 289 | 86.81 297 | 85.42 343 | 71.23 322 | 82.17 345 | 87.50 343 | 78.47 275 | 77.19 313 | 82.50 341 | 70.81 223 | 93.48 327 | 82.66 177 | 72.89 332 | 95.71 160 |
|
UnsupCasMVSNet_eth | | | 80.07 300 | 78.27 304 | 85.46 308 | 85.24 344 | 72.63 312 | 88.45 311 | 94.87 207 | 82.99 200 | 71.64 341 | 88.07 310 | 56.34 327 | 91.75 342 | 73.48 283 | 63.36 347 | 92.01 300 |
|
pmmvs-eth3d | | | 80.97 294 | 78.72 303 | 87.74 272 | 84.99 345 | 79.97 209 | 90.11 286 | 91.65 290 | 75.36 302 | 73.51 333 | 86.03 328 | 59.45 318 | 93.96 323 | 75.17 270 | 72.21 333 | 89.29 333 |
|
CMPMVS |  | 59.16 21 | 80.52 296 | 79.20 298 | 84.48 316 | 83.98 346 | 67.63 342 | 89.95 289 | 93.84 243 | 64.79 345 | 66.81 346 | 91.14 255 | 57.93 324 | 95.17 306 | 76.25 260 | 88.10 217 | 90.65 321 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
UnsupCasMVSNet_bld | | | 76.23 315 | 73.27 318 | 85.09 313 | 83.79 347 | 72.92 306 | 85.65 331 | 93.47 249 | 71.52 332 | 68.84 344 | 79.08 345 | 49.77 344 | 93.21 330 | 66.81 323 | 60.52 349 | 89.13 337 |
|
PM-MVS | | | 78.11 311 | 76.12 313 | 84.09 321 | 83.54 348 | 70.08 332 | 88.97 303 | 85.27 347 | 79.93 255 | 74.73 328 | 86.43 325 | 34.70 355 | 93.48 327 | 79.43 230 | 72.06 334 | 88.72 338 |
|
DSMNet-mixed | | | 76.94 313 | 76.29 312 | 78.89 329 | 83.10 349 | 56.11 356 | 87.78 316 | 79.77 354 | 60.65 348 | 75.64 323 | 88.71 300 | 61.56 302 | 88.34 349 | 60.07 343 | 89.29 199 | 92.21 298 |
|
new_pmnet | | | 72.15 317 | 70.13 320 | 78.20 330 | 82.95 350 | 65.68 344 | 83.91 339 | 82.40 351 | 62.94 347 | 64.47 347 | 79.82 344 | 42.85 353 | 86.26 351 | 57.41 347 | 74.44 329 | 82.65 347 |
|
new-patchmatchnet | | | 76.41 314 | 75.17 316 | 80.13 328 | 82.65 351 | 59.61 351 | 87.66 319 | 91.08 303 | 78.23 280 | 69.85 342 | 83.22 338 | 54.76 332 | 91.63 344 | 64.14 332 | 64.89 345 | 89.16 335 |
|
ambc | | | | | 83.06 324 | 79.99 352 | 63.51 350 | 77.47 350 | 92.86 258 | | 74.34 331 | 84.45 334 | 28.74 356 | 95.06 310 | 73.06 285 | 68.89 341 | 90.61 322 |
|
TDRefinement | | | 79.81 302 | 77.34 306 | 87.22 288 | 79.24 353 | 75.48 289 | 93.12 214 | 92.03 279 | 76.45 291 | 75.01 326 | 91.58 240 | 49.19 346 | 96.44 262 | 70.22 299 | 69.18 339 | 89.75 329 |
|
pmmvs3 | | | 71.81 318 | 68.71 321 | 81.11 327 | 75.86 354 | 70.42 330 | 86.74 323 | 83.66 349 | 58.95 349 | 68.64 345 | 80.89 343 | 36.93 354 | 89.52 347 | 63.10 335 | 63.59 346 | 83.39 345 |
|
DeepMVS_CX |  | | | | 56.31 340 | 74.23 355 | 51.81 358 | | 56.67 363 | 44.85 354 | 48.54 354 | 75.16 346 | 27.87 357 | 58.74 360 | 40.92 353 | 52.22 352 | 58.39 353 |
|
FPMVS | | | 64.63 321 | 62.55 323 | 70.88 334 | 70.80 356 | 56.71 353 | 84.42 337 | 84.42 348 | 51.78 352 | 49.57 352 | 81.61 342 | 23.49 358 | 81.48 354 | 40.61 354 | 76.25 327 | 74.46 350 |
|
PMMVS2 | | | 59.60 322 | 56.40 325 | 69.21 336 | 68.83 357 | 46.58 360 | 73.02 354 | 77.48 358 | 55.07 351 | 49.21 353 | 72.95 349 | 17.43 363 | 80.04 355 | 49.32 351 | 44.33 354 | 80.99 349 |
|
wuyk23d | | | 21.27 331 | 20.48 334 | 23.63 344 | 68.59 358 | 36.41 363 | 49.57 358 | 6.85 366 | 9.37 360 | 7.89 362 | 4.46 364 | 4.03 367 | 31.37 361 | 17.47 360 | 16.07 360 | 3.12 358 |
|
E-PMN | | | 43.23 327 | 42.29 329 | 46.03 341 | 65.58 359 | 37.41 362 | 73.51 352 | 64.62 359 | 33.99 357 | 28.47 360 | 47.87 357 | 19.90 362 | 67.91 357 | 22.23 358 | 24.45 356 | 32.77 355 |
|
LCM-MVSNet | | | 66.00 320 | 62.16 324 | 77.51 332 | 64.51 360 | 58.29 352 | 83.87 340 | 90.90 310 | 48.17 353 | 54.69 351 | 73.31 348 | 16.83 364 | 86.75 350 | 65.47 325 | 61.67 348 | 87.48 344 |
|
EMVS | | | 42.07 328 | 41.12 330 | 44.92 342 | 63.45 361 | 35.56 364 | 73.65 351 | 63.48 360 | 33.05 358 | 26.88 361 | 45.45 358 | 21.27 360 | 67.14 358 | 19.80 359 | 23.02 358 | 32.06 356 |
|
MVE |  | 39.65 23 | 43.39 326 | 38.59 332 | 57.77 339 | 56.52 362 | 48.77 359 | 55.38 356 | 58.64 362 | 29.33 359 | 28.96 359 | 52.65 355 | 4.68 366 | 64.62 359 | 28.11 357 | 33.07 355 | 59.93 352 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 58.88 323 | 54.22 327 | 72.86 333 | 56.50 363 | 56.67 354 | 80.75 348 | 86.00 344 | 73.09 324 | 37.39 356 | 64.63 353 | 22.17 359 | 79.49 356 | 43.51 352 | 23.96 357 | 82.43 348 |
|
PMVS |  | 47.18 22 | 52.22 325 | 48.46 328 | 63.48 338 | 45.72 364 | 46.20 361 | 73.41 353 | 78.31 356 | 41.03 356 | 30.06 358 | 65.68 352 | 6.05 365 | 83.43 353 | 30.04 356 | 65.86 343 | 60.80 351 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 35.64 329 | 39.24 331 | 24.84 343 | 14.87 365 | 23.90 366 | 62.71 355 | 51.51 364 | 6.58 361 | 36.66 357 | 62.08 354 | 44.37 352 | 30.34 362 | 52.40 349 | 22.00 359 | 20.27 357 |
|
testmvs | | | 8.92 332 | 11.52 335 | 1.12 346 | 1.06 366 | 0.46 368 | 86.02 327 | 0.65 367 | 0.62 362 | 2.74 363 | 9.52 362 | 0.31 369 | 0.45 364 | 2.38 361 | 0.39 361 | 2.46 360 |
|
test123 | | | 8.76 333 | 11.22 336 | 1.39 345 | 0.85 367 | 0.97 367 | 85.76 330 | 0.35 368 | 0.54 363 | 2.45 364 | 8.14 363 | 0.60 368 | 0.48 363 | 2.16 362 | 0.17 362 | 2.71 359 |
|
uanet_test | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
cdsmvs_eth3d_5k | | | 22.14 330 | 29.52 333 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 95.76 147 | 0.00 364 | 0.00 365 | 94.29 143 | 75.66 162 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
pcd_1.5k_mvsjas | | | 6.64 335 | 8.86 338 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 79.70 117 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet-low-res | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uncertanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
Regformer | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
ab-mvs-re | | | 7.82 334 | 10.43 337 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 93.88 162 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
test_241102_TWO | | | | | | | | | 97.44 12 | 90.31 26 | 97.62 5 | 98.07 4 | 91.46 8 | 99.58 5 | 95.66 2 | 99.12 6 | 98.98 6 |
|
test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 8 | 98.05 6 | 92.09 4 | 99.55 12 | 95.64 4 | 99.13 3 | 99.13 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 140 |
|
sam_mvs1 | | | | | | | | | | | | | 71.70 211 | | | | 96.12 140 |
|
sam_mvs | | | | | | | | | | | | | 70.60 225 | | | | |
|
MTGPA |  | | | | | | | | 96.97 49 | | | | | | | | |
|
test_post1 | | | | | | | | 88.00 314 | | | | 9.81 361 | 69.31 246 | 95.53 297 | 76.65 256 | | |
|
test_post | | | | | | | | | | | | 10.29 360 | 70.57 229 | 95.91 285 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 336 | 71.53 213 | 96.48 258 | | | |
|
MTMP | | | | | | | | 96.16 43 | 60.64 361 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.91 59 | 98.71 30 | 98.07 63 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.54 85 | 98.68 35 | 98.27 47 |
|
test_prior4 | | | | | | | 85.96 57 | 94.11 167 | | | | | | | | | |
|
test_prior2 | | | | | | | | 94.12 165 | | 87.67 98 | 92.63 69 | 96.39 72 | 86.62 39 | | 91.50 69 | 98.67 37 | |
|
旧先验2 | | | | | | | | 93.36 201 | | 71.25 334 | 94.37 26 | | | 97.13 219 | 86.74 128 | | |
|
新几何2 | | | | | | | | 93.11 216 | | | | | | | | | |
|
无先验 | | | | | | | | 93.28 208 | 96.26 107 | 73.95 316 | | | | 99.05 60 | 80.56 214 | | 96.59 126 |
|
原ACMM2 | | | | | | | | 92.94 223 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.75 100 | 78.30 240 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 35 | | | | |
|
testdata1 | | | | | | | | 92.15 246 | | 87.94 88 | | | | | | | |
|
plane_prior5 | | | | | | | | | 96.22 112 | | | | | 98.12 137 | 88.15 108 | 89.99 184 | 94.63 194 |
|
plane_prior4 | | | | | | | | | | | | 94.86 123 | | | | | |
|
plane_prior3 | | | | | | | 82.75 134 | | | 90.26 30 | 86.91 160 | | | | | | |
|
plane_prior2 | | | | | | | | 95.85 61 | | 90.81 17 | | | | | | | |
|
plane_prior | | | | | | | 82.73 137 | 95.21 93 | | 89.66 42 | | | | | | 89.88 189 | |
|
n2 | | | | | | | | | 0.00 369 | | | | | | | | |
|
nn | | | | | | | | | 0.00 369 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 345 | | | | | | | | |
|
test11 | | | | | | | | | 96.57 92 | | | | | | | | |
|
door | | | | | | | | | 85.33 346 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 162 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 125 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 198 | | | 97.96 155 | | | 94.51 204 |
|
HQP3-MVS | | | | | | | | | 96.04 126 | | | | | | | 89.77 191 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 188 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 357 | 87.62 320 | | 73.32 321 | 84.59 216 | | 70.33 232 | | 74.65 275 | | 95.50 163 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 225 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 220 | |
|
Test By Simon | | | | | | | | | | | | | 80.02 112 | | | | |
|