This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
OPU-MVS89.06 194.62 1375.42 293.57 594.02 4582.45 396.87 1683.77 4896.48 694.88 7
HPM-MVS++copyleft89.02 789.15 788.63 295.01 876.03 192.38 2392.85 5380.26 1387.78 2694.27 3475.89 1696.81 1987.45 1696.44 793.05 86
SMA-MVScopyleft89.08 689.23 688.61 394.25 2873.73 892.40 2093.63 2074.77 10492.29 695.97 274.28 3197.24 888.58 1096.91 194.87 9
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+77.84 485.48 5784.47 7188.51 491.08 8773.49 1593.18 993.78 1880.79 1076.66 17693.37 5760.40 18196.75 2277.20 10793.73 6395.29 2
CNVR-MVS88.93 889.13 888.33 594.77 1073.82 790.51 5993.00 4280.90 988.06 2494.06 4476.43 1396.84 1788.48 1195.99 1594.34 27
SteuartSystems-ACMMP88.72 988.86 988.32 692.14 7572.96 2493.73 393.67 1980.19 1488.10 2394.80 1473.76 3697.11 1087.51 1595.82 2094.90 6
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS89.51 389.91 488.30 794.28 2773.46 1692.90 1494.11 680.27 1291.35 1194.16 3978.35 1096.77 2089.59 194.22 6094.67 16
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC88.06 1388.01 1788.24 894.41 2273.62 991.22 4892.83 5481.50 685.79 4193.47 5673.02 4297.00 1484.90 3094.94 4094.10 35
ZNCC-MVS87.94 1787.85 1988.20 994.39 2473.33 1893.03 1293.81 1776.81 6185.24 4794.32 3371.76 5196.93 1585.53 2695.79 2194.32 28
region2R87.42 2787.20 3188.09 1094.63 1273.55 1193.03 1293.12 3776.73 6684.45 6394.52 2169.09 7696.70 2384.37 4094.83 4694.03 39
ACMMPR87.44 2587.23 3088.08 1194.64 1173.59 1093.04 1093.20 3476.78 6384.66 6094.52 2168.81 7996.65 2684.53 3794.90 4194.00 42
DPE-MVScopyleft89.48 489.98 388.01 1294.80 972.69 3091.59 3994.10 875.90 8392.29 695.66 881.67 497.38 687.44 1796.34 1193.95 44
XVS87.18 3386.91 3688.00 1394.42 2073.33 1892.78 1592.99 4479.14 2183.67 7794.17 3867.45 8896.60 3183.06 5594.50 5294.07 37
X-MVStestdata80.37 13877.83 17288.00 1394.42 2073.33 1892.78 1592.99 4479.14 2183.67 7712.47 35967.45 8896.60 3183.06 5594.50 5294.07 37
ACMMP_NAP88.05 1588.08 1687.94 1593.70 4273.05 2190.86 5293.59 2176.27 7888.14 2295.09 1371.06 5696.67 2587.67 1396.37 1094.09 36
HFP-MVS87.58 2287.47 2487.94 1594.58 1473.54 1393.04 1093.24 3276.78 6384.91 5294.44 2870.78 5896.61 2984.53 3794.89 4293.66 57
#test#87.33 3087.13 3287.94 1594.58 1473.54 1392.34 2593.24 3275.23 9584.91 5294.44 2870.78 5896.61 2983.75 4994.89 4293.66 57
MP-MVScopyleft87.71 2087.64 2287.93 1894.36 2673.88 592.71 1992.65 6377.57 3883.84 7494.40 3272.24 4796.28 3885.65 2595.30 3693.62 64
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
zzz-MVS87.53 2387.41 2687.90 1994.18 3274.25 390.23 6992.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
MTAPA87.23 3287.00 3387.90 1994.18 3274.25 386.58 17792.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
PGM-MVS86.68 4086.27 4487.90 1994.22 3073.38 1790.22 7193.04 3875.53 8983.86 7394.42 3167.87 8596.64 2782.70 6394.57 5193.66 57
GST-MVS87.42 2787.26 2887.89 2294.12 3472.97 2392.39 2293.43 2876.89 5984.68 5893.99 4770.67 6196.82 1884.18 4595.01 3893.90 47
SED-MVS90.08 190.85 187.77 2395.30 270.98 6593.57 594.06 1077.24 4793.10 195.72 682.99 197.44 289.07 696.63 294.88 7
xxxxxxxxxxxxxcwj87.88 1887.92 1887.77 2393.80 3972.35 4290.47 6289.69 16174.31 11389.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
testtj87.78 1987.78 2087.77 2394.55 1672.47 3792.23 2893.49 2574.75 10588.33 2194.43 3073.27 3997.02 1384.18 4594.84 4493.82 52
DeepC-MVS_fast79.65 386.91 3786.62 4087.76 2693.52 4772.37 4191.26 4593.04 3876.62 6884.22 6893.36 5871.44 5496.76 2180.82 7695.33 3494.16 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS89.15 589.63 587.73 2794.49 1871.69 5593.83 293.96 1475.70 8791.06 1296.03 176.84 1297.03 1289.09 395.65 2894.47 23
MCST-MVS87.37 2987.25 2987.73 2794.53 1772.46 3889.82 7893.82 1673.07 13984.86 5792.89 6876.22 1496.33 3684.89 3295.13 3794.40 24
TSAR-MVS + MP.88.02 1688.11 1587.72 2993.68 4472.13 4791.41 4492.35 7374.62 10888.90 1793.85 4975.75 1796.00 5087.80 1294.63 4995.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mPP-MVS86.67 4186.32 4387.72 2994.41 2273.55 1192.74 1792.22 8076.87 6082.81 8894.25 3666.44 9796.24 3982.88 5994.28 5893.38 72
test_0728_SECOND87.71 3195.34 171.43 5893.49 794.23 597.49 189.08 496.41 894.21 32
ETH3 D test640087.50 2487.44 2587.70 3293.71 4171.75 5490.62 5794.05 1370.80 17187.59 2993.51 5377.57 1196.63 2883.31 5095.77 2294.72 15
DeepC-MVS79.81 287.08 3686.88 3787.69 3391.16 8672.32 4490.31 6793.94 1577.12 5382.82 8794.23 3772.13 4997.09 1184.83 3395.37 3193.65 62
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS87.11 3486.92 3587.68 3494.20 3173.86 693.98 192.82 5776.62 6883.68 7694.46 2567.93 8395.95 5284.20 4494.39 5593.23 78
SF-MVS88.46 1088.74 1087.64 3592.78 6471.95 5092.40 2094.74 275.71 8589.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4572.04 4989.80 8093.50 2475.17 9886.34 3695.29 1070.86 5796.00 5088.78 996.04 1294.58 19
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CANet86.45 4386.10 4987.51 3790.09 10670.94 6989.70 8492.59 6581.78 481.32 10491.43 9470.34 6397.23 984.26 4293.36 6494.37 25
ETH3D-3000-0.188.09 1288.29 1387.50 3892.76 6571.89 5391.43 4394.70 374.47 11088.86 1894.61 1975.23 2195.84 5486.62 2395.92 1794.78 13
HPM-MVScopyleft87.11 3486.98 3487.50 3893.88 3872.16 4692.19 2993.33 3176.07 8183.81 7593.95 4869.77 7096.01 4985.15 2894.66 4894.32 28
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3D cwj APD-0.1687.31 3187.27 2787.44 4091.60 8272.45 3990.02 7494.37 471.76 15587.28 3094.27 3475.18 2296.08 4685.16 2795.77 2293.80 55
ACMMPcopyleft85.89 5285.39 5787.38 4193.59 4672.63 3292.74 1793.18 3676.78 6380.73 11393.82 5064.33 11796.29 3782.67 6490.69 9193.23 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS89.60 290.35 287.33 4295.27 571.25 5993.49 792.73 5877.33 4592.12 895.78 480.98 797.40 489.08 496.41 893.33 75
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PHI-MVS86.43 4486.17 4887.24 4390.88 9270.96 6792.27 2794.07 972.45 14485.22 4891.90 8169.47 7296.42 3583.28 5395.94 1694.35 26
APD-MVScopyleft87.44 2587.52 2387.19 4494.24 2972.39 4091.86 3692.83 5473.01 14188.58 1994.52 2173.36 3796.49 3484.26 4295.01 3892.70 96
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDPH-MVS85.76 5485.29 6187.17 4593.49 4871.08 6388.58 11692.42 7168.32 22384.61 6193.48 5472.32 4696.15 4579.00 8795.43 3094.28 30
train_agg86.43 4486.20 4687.13 4693.26 5172.96 2488.75 10891.89 9668.69 21885.00 5093.10 6274.43 2795.41 7284.97 2995.71 2693.02 88
CSCG86.41 4686.19 4787.07 4792.91 6072.48 3690.81 5393.56 2273.95 12183.16 8291.07 10375.94 1595.19 8279.94 8494.38 5693.55 67
Regformer-286.63 4286.53 4186.95 4889.33 12671.24 6288.43 11892.05 8682.50 186.88 3290.09 12274.45 2695.61 6084.38 3990.63 9294.01 41
SR-MVS86.73 3886.67 3986.91 4994.11 3572.11 4892.37 2492.56 6674.50 10986.84 3394.65 1867.31 9095.77 5784.80 3492.85 6892.84 94
DPM-MVS84.93 6784.29 7286.84 5090.20 10473.04 2287.12 15993.04 3869.80 19182.85 8691.22 9873.06 4196.02 4876.72 11494.63 4991.46 136
TSAR-MVS + GP.85.71 5585.33 5886.84 5091.34 8472.50 3589.07 9887.28 22476.41 7185.80 4090.22 12074.15 3495.37 7881.82 6891.88 7692.65 100
test1286.80 5292.63 6870.70 7691.79 10182.71 8971.67 5296.16 4494.50 5293.54 68
DeepPCF-MVS80.84 188.10 1188.56 1186.73 5392.24 7369.03 10589.57 8693.39 3077.53 4289.79 1494.12 4178.98 996.58 3385.66 2495.72 2594.58 19
SD-MVS88.06 1388.50 1286.71 5492.60 7172.71 2891.81 3793.19 3577.87 3390.32 1394.00 4674.83 2493.78 13987.63 1494.27 5993.65 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-186.41 4686.33 4286.64 5589.33 12670.93 7088.43 11891.39 11582.14 386.65 3490.09 12274.39 2995.01 9183.97 4790.63 9293.97 43
agg_prior186.22 4886.09 5086.62 5692.85 6171.94 5188.59 11591.78 10268.96 21384.41 6493.18 6174.94 2394.93 9284.75 3595.33 3493.01 89
3Dnovator76.31 583.38 8282.31 9186.59 5787.94 17772.94 2790.64 5692.14 8477.21 4975.47 20192.83 7058.56 18894.72 10473.24 14492.71 7092.13 118
HPM-MVS_fast85.35 6184.95 6686.57 5893.69 4370.58 8092.15 3191.62 10673.89 12482.67 9094.09 4262.60 13995.54 6580.93 7492.93 6693.57 66
Regformer-485.68 5685.45 5686.35 5988.95 14369.67 9588.29 12891.29 11781.73 585.36 4590.01 12572.62 4495.35 7983.28 5387.57 12594.03 39
test_prior386.73 3886.86 3886.33 6092.61 6969.59 9688.85 10492.97 4775.41 9184.91 5293.54 5174.28 3195.48 6783.31 5095.86 1893.91 45
test_prior86.33 6092.61 6969.59 9692.97 4795.48 6793.91 45
MVS_111021_HR85.14 6484.75 6886.32 6291.65 8172.70 2985.98 19290.33 14376.11 8082.08 9491.61 8871.36 5594.17 12281.02 7392.58 7392.08 119
SR-MVS-dyc-post85.77 5385.61 5486.23 6393.06 5770.63 7791.88 3492.27 7673.53 13285.69 4294.45 2665.00 11495.56 6282.75 6091.87 7792.50 103
APD-MVS_3200maxsize85.97 5085.88 5186.22 6492.69 6769.53 9891.93 3392.99 4473.54 13185.94 3794.51 2465.80 10695.61 6083.04 5792.51 7493.53 69
DP-MVS Recon83.11 8782.09 9486.15 6594.44 1970.92 7188.79 10692.20 8170.53 17879.17 12591.03 10664.12 11996.03 4768.39 18490.14 9991.50 133
EPNet83.72 7582.92 8386.14 6684.22 24369.48 9991.05 5085.27 24881.30 776.83 17191.65 8566.09 10195.56 6276.00 11993.85 6293.38 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test117286.20 4986.22 4586.12 6793.95 3769.89 9191.79 3892.28 7575.07 9986.40 3594.58 2065.00 11495.56 6284.34 4192.60 7292.90 92
abl_685.23 6284.95 6686.07 6892.23 7470.48 8190.80 5492.08 8573.51 13485.26 4694.16 3962.75 13895.92 5382.46 6691.30 8691.81 126
canonicalmvs85.91 5185.87 5286.04 6989.84 11269.44 10390.45 6593.00 4276.70 6788.01 2591.23 9773.28 3893.91 13481.50 7088.80 11394.77 14
hse-mvs383.15 8482.19 9286.02 7090.56 9770.85 7388.15 13589.16 17776.02 8284.67 5991.39 9561.54 15795.50 6682.71 6275.48 26991.72 128
alignmvs85.48 5785.32 5985.96 7189.51 12069.47 10089.74 8292.47 6776.17 7987.73 2891.46 9370.32 6493.78 13981.51 6988.95 11094.63 18
DELS-MVS85.41 6085.30 6085.77 7288.49 16067.93 13485.52 20893.44 2778.70 2883.63 7989.03 15174.57 2595.71 5980.26 8294.04 6193.66 57
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-385.23 6285.07 6385.70 7388.95 14369.01 10788.29 12889.91 15580.95 885.01 4990.01 12572.45 4594.19 12082.50 6587.57 12593.90 47
ETV-MVS84.90 6984.67 6985.59 7489.39 12468.66 12188.74 11092.64 6479.97 1784.10 7085.71 23869.32 7495.38 7580.82 7691.37 8492.72 95
UA-Net85.08 6684.96 6585.45 7592.07 7668.07 13289.78 8190.86 13082.48 284.60 6293.20 6069.35 7395.22 8171.39 15790.88 9093.07 85
Vis-MVSNetpermissive83.46 7982.80 8585.43 7690.25 10368.74 11590.30 6890.13 14976.33 7780.87 11292.89 6861.00 17094.20 11972.45 15190.97 8893.35 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EI-MVSNet-Vis-set84.19 7183.81 7385.31 7788.18 16967.85 13587.66 14689.73 16080.05 1682.95 8389.59 13570.74 6094.82 10080.66 7984.72 16093.28 77
mvs-test180.88 11979.40 13785.29 7885.13 23169.75 9489.28 8988.10 20574.99 10076.44 18286.72 20957.27 20094.26 11873.53 13783.18 18091.87 123
MAR-MVS81.84 10480.70 11285.27 7991.32 8571.53 5789.82 7890.92 12769.77 19278.50 13686.21 22962.36 14594.52 10865.36 20992.05 7589.77 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+83.62 7783.08 7985.24 8088.38 16567.45 14188.89 10289.15 17875.50 9082.27 9288.28 17069.61 7194.45 11077.81 10187.84 12393.84 51
MVSFormer82.85 9082.05 9685.24 8087.35 19370.21 8390.50 6090.38 13968.55 22081.32 10489.47 13861.68 15493.46 15678.98 8890.26 9792.05 120
CS-MVS84.76 7084.61 7085.22 8289.66 11466.43 15890.23 6993.56 2276.52 7082.59 9185.93 23370.41 6295.80 5579.93 8592.68 7193.42 71
OPM-MVS83.50 7882.95 8285.14 8388.79 15170.95 6889.13 9791.52 10977.55 4180.96 11191.75 8360.71 17394.50 10979.67 8686.51 14489.97 192
HQP_MVS83.64 7683.14 7885.14 8390.08 10768.71 11791.25 4692.44 6879.12 2378.92 12991.00 10760.42 17995.38 7578.71 9086.32 14691.33 138
EI-MVSNet-UG-set83.81 7383.38 7685.09 8587.87 17867.53 14087.44 15289.66 16279.74 1882.23 9389.41 14470.24 6594.74 10379.95 8383.92 16892.99 90
QAPM80.88 11979.50 13585.03 8688.01 17668.97 10991.59 3992.00 9066.63 23875.15 21592.16 7657.70 19495.45 6963.52 21988.76 11490.66 158
casdiffmvs85.11 6585.14 6285.01 8787.20 20065.77 17287.75 14492.83 5477.84 3484.36 6792.38 7472.15 4893.93 13381.27 7290.48 9495.33 1
PCF-MVS73.52 780.38 13778.84 14985.01 8787.71 18568.99 10883.65 24491.46 11463.00 27877.77 15390.28 11766.10 10095.09 8961.40 24188.22 12290.94 150
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
nrg03083.88 7283.53 7484.96 8986.77 20869.28 10490.46 6492.67 6074.79 10382.95 8391.33 9672.70 4393.09 17280.79 7879.28 22692.50 103
VDD-MVS83.01 8982.36 9084.96 8991.02 8966.40 15988.91 10188.11 20477.57 3884.39 6693.29 5952.19 23693.91 13477.05 10988.70 11594.57 21
PVSNet_Blended_VisFu82.62 9381.83 10184.96 8990.80 9469.76 9388.74 11091.70 10569.39 19878.96 12788.46 16565.47 10894.87 9974.42 12988.57 11690.24 174
CPTT-MVS83.73 7483.33 7784.92 9293.28 5070.86 7292.09 3290.38 13968.75 21779.57 12192.83 7060.60 17793.04 17680.92 7591.56 8290.86 152
test_part182.78 9182.08 9584.89 9390.66 9566.97 15290.96 5192.93 5077.19 5080.53 11590.04 12463.44 12495.39 7476.04 11876.90 24692.31 110
OMC-MVS82.69 9281.97 9984.85 9488.75 15367.42 14287.98 13790.87 12974.92 10279.72 12091.65 8562.19 14993.96 12775.26 12686.42 14593.16 83
EIA-MVS83.31 8382.80 8584.82 9589.59 11665.59 17488.21 13192.68 5974.66 10778.96 12786.42 22569.06 7795.26 8075.54 12490.09 10093.62 64
PAPM_NR83.02 8882.41 8884.82 9592.47 7266.37 16087.93 14191.80 10073.82 12577.32 16190.66 11267.90 8494.90 9670.37 16589.48 10793.19 82
baseline84.93 6784.98 6484.80 9787.30 19865.39 17987.30 15592.88 5177.62 3684.04 7292.26 7571.81 5093.96 12781.31 7190.30 9695.03 4
lupinMVS81.39 11380.27 12284.76 9887.35 19370.21 8385.55 20486.41 23562.85 28181.32 10488.61 16061.68 15492.24 19978.41 9690.26 9791.83 124
jason81.39 11380.29 12184.70 9986.63 21069.90 9085.95 19386.77 23163.24 27481.07 11089.47 13861.08 16992.15 20278.33 9790.07 10292.05 120
jason: jason.
ET-MVSNet_ETH3D78.63 17576.63 20484.64 10086.73 20969.47 10085.01 21484.61 25569.54 19666.51 30486.59 21850.16 26291.75 21476.26 11584.24 16692.69 98
EPP-MVSNet83.40 8183.02 8184.57 10190.13 10564.47 19592.32 2690.73 13174.45 11279.35 12491.10 10169.05 7895.12 8472.78 14887.22 13394.13 34
UGNet80.83 12379.59 13384.54 10288.04 17468.09 13189.42 8788.16 20376.95 5776.22 18689.46 14049.30 27393.94 13068.48 18290.31 9591.60 129
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test82.08 9981.27 10584.50 10389.23 13468.76 11390.22 7191.94 9475.37 9376.64 17791.51 9054.29 21994.91 9478.44 9483.78 16989.83 197
LGP-MVS_train84.50 10389.23 13468.76 11391.94 9475.37 9376.64 17791.51 9054.29 21994.91 9478.44 9483.78 16989.83 197
MSLP-MVS++85.43 5985.76 5384.45 10591.93 7870.24 8290.71 5592.86 5277.46 4484.22 6892.81 7267.16 9292.94 17880.36 8094.35 5790.16 176
Effi-MVS+-dtu80.03 14478.57 15384.42 10685.13 23168.74 11588.77 10788.10 20574.99 10074.97 22083.49 27457.27 20093.36 15973.53 13780.88 20491.18 142
RRT_MVS79.88 14778.38 15884.38 10785.42 22570.60 7988.71 11288.75 19672.30 14978.83 13189.14 14644.44 30392.18 20178.50 9379.33 22590.35 170
HQP-MVS82.61 9482.02 9784.37 10889.33 12666.98 15089.17 9292.19 8276.41 7177.23 16490.23 11960.17 18295.11 8577.47 10485.99 15191.03 146
ACMP74.13 681.51 11280.57 11484.36 10989.42 12268.69 12089.97 7691.50 11374.46 11175.04 21990.41 11653.82 22494.54 10677.56 10382.91 18389.86 196
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
原ACMM184.35 11093.01 5968.79 11192.44 6863.96 27281.09 10991.57 8966.06 10295.45 6967.19 19594.82 4788.81 229
PS-MVSNAJss82.07 10081.31 10484.34 11186.51 21167.27 14689.27 9091.51 11071.75 15679.37 12390.22 12063.15 13294.27 11477.69 10282.36 19191.49 134
thisisatest053079.40 15777.76 17684.31 11287.69 18765.10 18587.36 15384.26 26270.04 18577.42 15888.26 17249.94 26594.79 10270.20 16684.70 16193.03 87
CLD-MVS82.31 9681.65 10284.29 11388.47 16167.73 13885.81 19992.35 7375.78 8478.33 14186.58 22064.01 12094.35 11176.05 11787.48 13090.79 153
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
API-MVS81.99 10281.23 10684.26 11490.94 9070.18 8891.10 4989.32 16971.51 16278.66 13488.28 17065.26 10995.10 8864.74 21591.23 8787.51 256
114514_t80.68 13079.51 13484.20 11594.09 3667.27 14689.64 8591.11 12458.75 31574.08 22990.72 11158.10 19095.04 9069.70 17289.42 10890.30 172
IS-MVSNet83.15 8482.81 8484.18 11689.94 11063.30 21991.59 3988.46 20179.04 2579.49 12292.16 7665.10 11194.28 11367.71 18791.86 7994.95 5
MVS_111021_LR82.61 9482.11 9384.11 11788.82 14871.58 5685.15 21186.16 24074.69 10680.47 11691.04 10462.29 14690.55 24480.33 8190.08 10190.20 175
Anonymous2024052980.19 14278.89 14884.10 11890.60 9664.75 18988.95 10090.90 12865.97 24680.59 11491.17 10049.97 26493.73 14569.16 17882.70 18893.81 53
OpenMVScopyleft72.83 1079.77 14878.33 16184.09 11985.17 22869.91 8990.57 5890.97 12666.70 23472.17 24791.91 8054.70 21693.96 12761.81 23890.95 8988.41 240
AdaColmapbinary80.58 13479.42 13684.06 12093.09 5668.91 11089.36 8888.97 18769.27 20175.70 19889.69 13057.20 20295.77 5763.06 22588.41 12087.50 257
AUN-MVS79.21 16277.60 18184.05 12188.71 15467.61 13985.84 19787.26 22569.08 20877.23 16488.14 17753.20 22993.47 15575.50 12573.45 29591.06 145
112180.84 12179.77 12884.05 12193.11 5570.78 7484.66 22185.42 24757.37 32481.76 10292.02 7863.41 12594.12 12367.28 19292.93 6687.26 263
VDDNet81.52 11080.67 11384.05 12190.44 10064.13 20189.73 8385.91 24371.11 16683.18 8193.48 5450.54 25993.49 15473.40 14188.25 12194.54 22
xiu_mvs_v1_base_debu80.80 12679.72 13084.03 12487.35 19370.19 8585.56 20188.77 19269.06 20981.83 9688.16 17350.91 25392.85 18078.29 9887.56 12789.06 214
xiu_mvs_v1_base80.80 12679.72 13084.03 12487.35 19370.19 8585.56 20188.77 19269.06 20981.83 9688.16 17350.91 25392.85 18078.29 9887.56 12789.06 214
xiu_mvs_v1_base_debi80.80 12679.72 13084.03 12487.35 19370.19 8585.56 20188.77 19269.06 20981.83 9688.16 17350.91 25392.85 18078.29 9887.56 12789.06 214
PAPR81.66 10880.89 11183.99 12790.27 10264.00 20286.76 17391.77 10468.84 21677.13 16989.50 13667.63 8694.88 9867.55 18988.52 11893.09 84
XVG-OURS80.41 13679.23 14283.97 12885.64 22169.02 10683.03 25790.39 13871.09 16777.63 15591.49 9254.62 21891.35 22575.71 12083.47 17691.54 131
XVG-OURS-SEG-HR80.81 12479.76 12983.96 12985.60 22268.78 11283.54 24990.50 13670.66 17676.71 17591.66 8460.69 17491.26 22776.94 11181.58 19891.83 124
HyFIR lowres test77.53 20375.40 21883.94 13089.59 11666.62 15580.36 28088.64 19856.29 33076.45 17985.17 25157.64 19593.28 16161.34 24383.10 18291.91 122
tttt051779.40 15777.91 16983.90 13188.10 17263.84 20588.37 12584.05 26471.45 16376.78 17389.12 14849.93 26794.89 9770.18 16783.18 18092.96 91
PS-MVSNAJ81.69 10681.02 11083.70 13289.51 12068.21 13084.28 23590.09 15070.79 17281.26 10885.62 24263.15 13294.29 11275.62 12288.87 11288.59 235
xiu_mvs_v2_base81.69 10681.05 10983.60 13389.15 13768.03 13384.46 22990.02 15170.67 17581.30 10786.53 22363.17 13194.19 12075.60 12388.54 11788.57 236
ACMM73.20 880.78 12979.84 12783.58 13489.31 13168.37 12589.99 7591.60 10770.28 18277.25 16289.66 13153.37 22793.53 15374.24 13282.85 18488.85 227
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LFMVS81.82 10581.23 10683.57 13591.89 7963.43 21789.84 7781.85 29477.04 5683.21 8093.10 6252.26 23593.43 15871.98 15289.95 10393.85 49
Fast-Effi-MVS+80.81 12479.92 12583.47 13688.85 14564.51 19285.53 20689.39 16770.79 17278.49 13785.06 25467.54 8793.58 14867.03 19886.58 14292.32 109
CHOSEN 1792x268877.63 20275.69 21183.44 13789.98 10968.58 12378.70 29887.50 22056.38 32975.80 19786.84 20558.67 18791.40 22461.58 24085.75 15490.34 171
新几何183.42 13893.13 5370.71 7585.48 24657.43 32381.80 9991.98 7963.28 12792.27 19664.60 21692.99 6587.27 262
DP-MVS76.78 21574.57 22783.42 13893.29 4969.46 10288.55 11783.70 26863.98 27170.20 26488.89 15354.01 22394.80 10146.66 32781.88 19686.01 289
MVS_Test83.15 8483.06 8083.41 14086.86 20463.21 22186.11 19092.00 9074.31 11382.87 8589.44 14370.03 6693.21 16377.39 10688.50 11993.81 53
LS3D76.95 21374.82 22583.37 14190.45 9967.36 14589.15 9686.94 22961.87 29169.52 27690.61 11351.71 24794.53 10746.38 33086.71 14188.21 242
IB-MVS68.01 1575.85 22973.36 24183.31 14284.76 23566.03 16383.38 25085.06 25070.21 18469.40 27781.05 29845.76 29694.66 10565.10 21275.49 26889.25 211
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MG-MVS83.41 8083.45 7583.28 14392.74 6662.28 23588.17 13389.50 16575.22 9681.49 10392.74 7366.75 9395.11 8572.85 14791.58 8192.45 106
jajsoiax79.29 16077.96 16783.27 14484.68 23766.57 15789.25 9190.16 14869.20 20575.46 20389.49 13745.75 29793.13 17076.84 11280.80 20690.11 180
test_djsdf80.30 13979.32 14083.27 14483.98 24865.37 18090.50 6090.38 13968.55 22076.19 18788.70 15656.44 20693.46 15678.98 8880.14 21690.97 149
test_yl81.17 11580.47 11783.24 14689.13 13863.62 20886.21 18789.95 15372.43 14781.78 10089.61 13357.50 19793.58 14870.75 16086.90 13792.52 101
DCV-MVSNet81.17 11580.47 11783.24 14689.13 13863.62 20886.21 18789.95 15372.43 14781.78 10089.61 13357.50 19793.58 14870.75 16086.90 13792.52 101
mvs_tets79.13 16477.77 17583.22 14884.70 23666.37 16089.17 9290.19 14769.38 19975.40 20689.46 14044.17 30593.15 16876.78 11380.70 20890.14 177
thisisatest051577.33 20775.38 21983.18 14985.27 22763.80 20682.11 26483.27 27765.06 25575.91 19383.84 26849.54 26994.27 11467.24 19486.19 14891.48 135
CDS-MVSNet79.07 16677.70 17883.17 15087.60 18868.23 12984.40 23386.20 23967.49 22876.36 18386.54 22261.54 15790.79 24061.86 23787.33 13190.49 165
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v7n78.97 16977.58 18283.14 15183.45 25665.51 17588.32 12691.21 12073.69 12772.41 24486.32 22857.93 19193.81 13869.18 17775.65 26590.11 180
BH-RMVSNet79.61 15078.44 15683.14 15189.38 12565.93 16784.95 21687.15 22673.56 13078.19 14489.79 12956.67 20593.36 15959.53 25586.74 14090.13 178
UniMVSNet (Re)81.60 10981.11 10883.09 15388.38 16564.41 19687.60 14793.02 4178.42 3178.56 13588.16 17369.78 6993.26 16269.58 17476.49 25391.60 129
PLCcopyleft70.83 1178.05 19176.37 20883.08 15491.88 8067.80 13688.19 13289.46 16664.33 26569.87 27388.38 16753.66 22593.58 14858.86 26282.73 18687.86 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v119279.59 15178.43 15783.07 15583.55 25564.52 19186.93 16590.58 13470.83 17077.78 15285.90 23459.15 18593.94 13073.96 13477.19 24390.76 154
v2v48280.23 14079.29 14183.05 15683.62 25364.14 20087.04 16189.97 15273.61 12878.18 14587.22 19761.10 16893.82 13776.11 11676.78 25191.18 142
TAMVS78.89 17177.51 18383.03 15787.80 18167.79 13784.72 22085.05 25167.63 22576.75 17487.70 18262.25 14790.82 23958.53 26687.13 13490.49 165
v114480.03 14479.03 14583.01 15883.78 25164.51 19287.11 16090.57 13571.96 15478.08 14886.20 23061.41 16093.94 13074.93 12777.23 24190.60 161
cascas76.72 21674.64 22682.99 15985.78 21965.88 16982.33 26289.21 17560.85 29772.74 23981.02 29947.28 28493.75 14367.48 19085.02 15689.34 209
anonymousdsp78.60 17677.15 18982.98 16080.51 31067.08 14887.24 15789.53 16465.66 24975.16 21487.19 19952.52 23092.25 19877.17 10879.34 22489.61 204
v1079.74 14978.67 15082.97 16184.06 24664.95 18687.88 14390.62 13373.11 13875.11 21686.56 22161.46 15994.05 12673.68 13575.55 26789.90 194
UniMVSNet_NR-MVSNet81.88 10381.54 10382.92 16288.46 16263.46 21587.13 15892.37 7280.19 1478.38 13989.14 14671.66 5393.05 17470.05 16876.46 25492.25 113
DU-MVS81.12 11780.52 11682.90 16387.80 18163.46 21587.02 16291.87 9879.01 2678.38 13989.07 14965.02 11293.05 17470.05 16876.46 25492.20 115
PVSNet_Blended80.98 11880.34 11982.90 16388.85 14565.40 17784.43 23192.00 9067.62 22678.11 14685.05 25566.02 10394.27 11471.52 15489.50 10689.01 219
CANet_DTU80.61 13179.87 12682.83 16585.60 22263.17 22487.36 15388.65 19776.37 7575.88 19588.44 16653.51 22693.07 17373.30 14289.74 10592.25 113
V4279.38 15978.24 16382.83 16581.10 30465.50 17685.55 20489.82 15671.57 16178.21 14386.12 23160.66 17593.18 16775.64 12175.46 27189.81 199
Anonymous2023121178.97 16977.69 17982.81 16790.54 9864.29 19890.11 7391.51 11065.01 25776.16 19188.13 17850.56 25893.03 17769.68 17377.56 23991.11 144
v192192079.22 16178.03 16682.80 16883.30 25963.94 20486.80 16990.33 14369.91 18977.48 15785.53 24358.44 18993.75 14373.60 13676.85 24990.71 157
v879.97 14679.02 14682.80 16884.09 24564.50 19487.96 13890.29 14674.13 12075.24 21386.81 20662.88 13793.89 13674.39 13075.40 27390.00 188
TAPA-MVS73.13 979.15 16377.94 16882.79 17089.59 11662.99 22888.16 13491.51 11065.77 24777.14 16891.09 10260.91 17193.21 16350.26 31087.05 13592.17 117
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v14419279.47 15478.37 15982.78 17183.35 25763.96 20386.96 16390.36 14269.99 18677.50 15685.67 24060.66 17593.77 14174.27 13176.58 25290.62 159
NR-MVSNet80.23 14079.38 13882.78 17187.80 18163.34 21886.31 18491.09 12579.01 2672.17 24789.07 14967.20 9192.81 18366.08 20475.65 26592.20 115
diffmvs82.10 9881.88 10082.76 17383.00 26963.78 20783.68 24389.76 15872.94 14282.02 9589.85 12865.96 10590.79 24082.38 6787.30 13293.71 56
v124078.99 16877.78 17482.64 17483.21 26163.54 21286.62 17690.30 14569.74 19577.33 16085.68 23957.04 20393.76 14273.13 14576.92 24590.62 159
Fast-Effi-MVS+-dtu78.02 19276.49 20582.62 17583.16 26566.96 15386.94 16487.45 22272.45 14471.49 25484.17 26354.79 21591.58 21867.61 18880.31 21389.30 210
RPMNet73.51 25070.49 26682.58 17681.32 30165.19 18275.92 31492.27 7657.60 32272.73 24076.45 33352.30 23495.43 7148.14 32277.71 23687.11 269
F-COLMAP76.38 22374.33 23282.50 17789.28 13266.95 15488.41 12189.03 18264.05 26966.83 29888.61 16046.78 28792.89 17957.48 27478.55 22887.67 251
TranMVSNet+NR-MVSNet80.84 12180.31 12082.42 17887.85 17962.33 23387.74 14591.33 11680.55 1177.99 14989.86 12765.23 11092.62 18467.05 19775.24 27992.30 111
MVSTER79.01 16777.88 17182.38 17983.07 26664.80 18884.08 24088.95 18869.01 21278.69 13287.17 20054.70 21692.43 19074.69 12880.57 21089.89 195
PVSNet_BlendedMVS80.60 13280.02 12382.36 18088.85 14565.40 17786.16 18992.00 9069.34 20078.11 14686.09 23266.02 10394.27 11471.52 15482.06 19387.39 258
EI-MVSNet80.52 13579.98 12482.12 18184.28 24163.19 22386.41 18188.95 18874.18 11878.69 13287.54 18866.62 9492.43 19072.57 15080.57 21090.74 156
IterMVS-LS80.06 14379.38 13882.11 18285.89 21763.20 22286.79 17089.34 16874.19 11775.45 20486.72 20966.62 9492.39 19272.58 14976.86 24890.75 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
bset_n11_16_dypcd77.12 20975.47 21582.06 18381.12 30365.99 16581.37 27383.20 28069.94 18876.09 19283.38 27647.75 28192.26 19778.51 9277.91 23587.95 244
BH-untuned79.47 15478.60 15282.05 18489.19 13665.91 16886.07 19188.52 20072.18 15075.42 20587.69 18361.15 16793.54 15260.38 24886.83 13986.70 277
ACMH+68.96 1476.01 22774.01 23482.03 18588.60 15765.31 18188.86 10387.55 21870.25 18367.75 28787.47 19041.27 32093.19 16658.37 26775.94 26287.60 253
Anonymous20240521178.25 18377.01 19181.99 18691.03 8860.67 25384.77 21983.90 26670.65 17780.00 11891.20 9941.08 32291.43 22365.21 21085.26 15593.85 49
GA-MVS76.87 21475.17 22381.97 18782.75 27562.58 23081.44 27286.35 23872.16 15274.74 22382.89 28046.20 29292.02 20668.85 18181.09 20291.30 140
CNLPA78.08 18976.79 19881.97 18790.40 10171.07 6487.59 14884.55 25666.03 24572.38 24589.64 13257.56 19686.04 29559.61 25483.35 17788.79 230
MVS78.19 18776.99 19381.78 18985.66 22066.99 14984.66 22190.47 13755.08 33472.02 24985.27 24863.83 12294.11 12566.10 20389.80 10484.24 308
ACMH67.68 1675.89 22873.93 23581.77 19088.71 15466.61 15688.62 11489.01 18469.81 19066.78 29986.70 21441.95 31991.51 22255.64 28678.14 23487.17 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D79.10 16578.24 16381.70 19186.85 20560.24 25987.28 15688.79 19174.25 11676.84 17090.53 11549.48 27091.56 21967.98 18582.15 19293.29 76
VNet82.21 9782.41 8881.62 19290.82 9360.93 24984.47 22789.78 15776.36 7684.07 7191.88 8264.71 11690.26 24670.68 16288.89 11193.66 57
XVG-ACMP-BASELINE76.11 22674.27 23381.62 19283.20 26264.67 19083.60 24789.75 15969.75 19371.85 25087.09 20232.78 34492.11 20369.99 17080.43 21288.09 243
eth_miper_zixun_eth77.92 19576.69 20281.61 19483.00 26961.98 23883.15 25389.20 17669.52 19774.86 22284.35 26161.76 15392.56 18771.50 15672.89 29990.28 173
PAPM77.68 20176.40 20781.51 19587.29 19961.85 24083.78 24289.59 16364.74 25971.23 25588.70 15662.59 14093.66 14752.66 29787.03 13689.01 219
v14878.72 17377.80 17381.47 19682.73 27661.96 23986.30 18588.08 20773.26 13776.18 18885.47 24562.46 14392.36 19471.92 15373.82 29290.09 182
LTVRE_ROB69.57 1376.25 22474.54 22981.41 19788.60 15764.38 19779.24 29189.12 18170.76 17469.79 27587.86 18049.09 27593.20 16556.21 28580.16 21486.65 278
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GBi-Net78.40 17977.40 18481.40 19887.60 18863.01 22588.39 12289.28 17071.63 15875.34 20887.28 19354.80 21291.11 23062.72 22679.57 21990.09 182
test178.40 17977.40 18481.40 19887.60 18863.01 22588.39 12289.28 17071.63 15875.34 20887.28 19354.80 21291.11 23062.72 22679.57 21990.09 182
FMVSNet177.44 20476.12 21081.40 19886.81 20763.01 22588.39 12289.28 17070.49 17974.39 22687.28 19349.06 27691.11 23060.91 24578.52 22990.09 182
RRT_test8_iter0578.38 18177.40 18481.34 20186.00 21658.86 26886.55 17991.26 11872.13 15375.91 19387.42 19144.97 30093.73 14577.02 11075.30 27691.45 137
baseline275.70 23073.83 23881.30 20283.26 26061.79 24282.57 26080.65 30366.81 23166.88 29683.42 27557.86 19392.19 20063.47 22079.57 21989.91 193
cl_fuxian78.75 17277.91 16981.26 20382.89 27361.56 24484.09 23989.13 18069.97 18775.56 19984.29 26266.36 9892.09 20473.47 14075.48 26990.12 179
cl-mvsnet278.07 19077.01 19181.23 20482.37 28561.83 24183.55 24887.98 20968.96 21375.06 21883.87 26661.40 16191.88 21273.53 13776.39 25689.98 191
FMVSNet278.20 18677.21 18881.20 20587.60 18862.89 22987.47 15189.02 18371.63 15875.29 21287.28 19354.80 21291.10 23362.38 23079.38 22389.61 204
TR-MVS77.44 20476.18 20981.20 20588.24 16863.24 22084.61 22586.40 23667.55 22777.81 15186.48 22454.10 22193.15 16857.75 27382.72 18787.20 264
ab-mvs79.51 15278.97 14781.14 20788.46 16260.91 25083.84 24189.24 17470.36 18079.03 12688.87 15463.23 13090.21 24865.12 21182.57 18992.28 112
MVP-Stereo76.12 22574.46 23181.13 20885.37 22669.79 9284.42 23287.95 21065.03 25667.46 29085.33 24753.28 22891.73 21658.01 27183.27 17881.85 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
miper_ehance_all_eth78.59 17777.76 17681.08 20982.66 27861.56 24483.65 24489.15 17868.87 21575.55 20083.79 27066.49 9692.03 20573.25 14376.39 25689.64 203
FIs82.07 10082.42 8781.04 21088.80 15058.34 27388.26 13093.49 2576.93 5878.47 13891.04 10469.92 6892.34 19569.87 17184.97 15792.44 107
FMVSNet377.88 19676.85 19680.97 21186.84 20662.36 23286.52 18088.77 19271.13 16575.34 20886.66 21654.07 22291.10 23362.72 22679.57 21989.45 207
miper_enhance_ethall77.87 19776.86 19580.92 21281.65 29261.38 24682.68 25888.98 18565.52 25175.47 20182.30 28865.76 10792.00 20772.95 14676.39 25689.39 208
BH-w/o78.21 18577.33 18780.84 21388.81 14965.13 18484.87 21787.85 21469.75 19374.52 22584.74 25861.34 16293.11 17158.24 26985.84 15384.27 307
COLMAP_ROBcopyleft66.92 1773.01 25770.41 26880.81 21487.13 20265.63 17388.30 12784.19 26362.96 27963.80 32287.69 18338.04 33292.56 18746.66 32774.91 28184.24 308
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPA-MVSNet80.60 13280.55 11580.76 21588.07 17360.80 25286.86 16791.58 10875.67 8880.24 11789.45 14263.34 12690.25 24770.51 16479.22 22791.23 141
EG-PatchMatch MVS74.04 24571.82 25480.71 21684.92 23467.42 14285.86 19688.08 20766.04 24464.22 31883.85 26735.10 34092.56 18757.44 27580.83 20582.16 326
cl-mvsnet_77.72 19976.76 19980.58 21782.49 28260.48 25683.09 25487.87 21269.22 20374.38 22785.22 25062.10 15091.53 22071.09 15875.41 27289.73 202
cl-mvsnet177.72 19976.76 19980.58 21782.48 28360.48 25683.09 25487.86 21369.22 20374.38 22785.24 24962.10 15091.53 22071.09 15875.40 27389.74 201
MSDG73.36 25370.99 26280.49 21984.51 23965.80 17080.71 27786.13 24165.70 24865.46 30983.74 27144.60 30190.91 23851.13 30376.89 24784.74 303
pmmvs474.03 24671.91 25280.39 22081.96 28968.32 12681.45 27182.14 29059.32 30969.87 27385.13 25252.40 23388.13 28060.21 25074.74 28384.73 304
HY-MVS69.67 1277.95 19477.15 18980.36 22187.57 19260.21 26083.37 25187.78 21566.11 24275.37 20787.06 20463.27 12890.48 24561.38 24282.43 19090.40 169
mvs_anonymous79.42 15679.11 14480.34 22284.45 24057.97 27982.59 25987.62 21767.40 22976.17 19088.56 16368.47 8089.59 25770.65 16386.05 15093.47 70
1112_ss77.40 20676.43 20680.32 22389.11 14260.41 25883.65 24487.72 21662.13 28973.05 23786.72 20962.58 14189.97 25162.11 23580.80 20690.59 162
WR-MVS79.49 15379.22 14380.27 22488.79 15158.35 27285.06 21388.61 19978.56 2977.65 15488.34 16863.81 12390.66 24364.98 21377.22 24291.80 127
131476.53 21775.30 22280.21 22583.93 24962.32 23484.66 22188.81 19060.23 30170.16 26784.07 26555.30 21090.73 24267.37 19183.21 17987.59 255
IterMVS-SCA-FT75.43 23473.87 23780.11 22682.69 27764.85 18781.57 27083.47 27469.16 20670.49 26184.15 26451.95 24288.15 27969.23 17672.14 30487.34 260
FC-MVSNet-test81.52 11082.02 9780.03 22788.42 16455.97 30987.95 13993.42 2977.10 5477.38 15990.98 10969.96 6791.79 21368.46 18384.50 16292.33 108
testdata79.97 22890.90 9164.21 19984.71 25359.27 31085.40 4492.91 6762.02 15289.08 26668.95 18091.37 8486.63 279
SCA74.22 24372.33 25079.91 22984.05 24762.17 23679.96 28579.29 31766.30 24172.38 24580.13 30851.95 24288.60 27459.25 25777.67 23888.96 223
thres40076.50 21875.37 22079.86 23089.13 13857.65 28585.17 20983.60 26973.41 13576.45 17986.39 22652.12 23791.95 20848.33 31883.75 17190.00 188
test_040272.79 26070.44 26779.84 23188.13 17065.99 16585.93 19484.29 26065.57 25067.40 29285.49 24446.92 28692.61 18535.88 34874.38 28680.94 332
OurMVSNet-221017-074.26 24272.42 24979.80 23283.76 25259.59 26485.92 19586.64 23266.39 24066.96 29587.58 18539.46 32691.60 21765.76 20769.27 31688.22 241
SixPastTwentyTwo73.37 25171.26 26179.70 23385.08 23357.89 28185.57 20083.56 27171.03 16865.66 30885.88 23542.10 31792.57 18659.11 25963.34 33388.65 234
thres600view776.50 21875.44 21679.68 23489.40 12357.16 29085.53 20683.23 27873.79 12676.26 18587.09 20251.89 24491.89 21148.05 32383.72 17490.00 188
CR-MVSNet73.37 25171.27 26079.67 23581.32 30165.19 18275.92 31480.30 30959.92 30472.73 24081.19 29652.50 23186.69 29059.84 25277.71 23687.11 269
D2MVS74.82 23873.21 24279.64 23679.81 31762.56 23180.34 28187.35 22364.37 26468.86 28082.66 28446.37 28990.10 25067.91 18681.24 20186.25 282
AllTest70.96 27168.09 28379.58 23785.15 22963.62 20884.58 22679.83 31362.31 28760.32 33286.73 20732.02 34588.96 27050.28 30871.57 30886.15 285
TestCases79.58 23785.15 22963.62 20879.83 31362.31 28760.32 33286.73 20732.02 34588.96 27050.28 30871.57 30886.15 285
tfpn200view976.42 22175.37 22079.55 23989.13 13857.65 28585.17 20983.60 26973.41 13576.45 17986.39 22652.12 23791.95 20848.33 31883.75 17189.07 212
thres100view90076.50 21875.55 21479.33 24089.52 11956.99 29385.83 19883.23 27873.94 12276.32 18487.12 20151.89 24491.95 20848.33 31883.75 17189.07 212
CostFormer75.24 23773.90 23679.27 24182.65 27958.27 27480.80 27482.73 28661.57 29275.33 21183.13 27855.52 20891.07 23664.98 21378.34 23388.45 238
Test_1112_low_res76.40 22275.44 21679.27 24189.28 13258.09 27581.69 26887.07 22759.53 30872.48 24386.67 21561.30 16389.33 26160.81 24780.15 21590.41 168
DWT-MVSNet_test73.70 24871.86 25379.21 24382.91 27258.94 26782.34 26182.17 28965.21 25271.05 25878.31 32244.21 30490.17 24963.29 22477.28 24088.53 237
K. test v371.19 26968.51 27779.21 24383.04 26857.78 28484.35 23476.91 32872.90 14362.99 32582.86 28139.27 32791.09 23561.65 23952.66 34688.75 231
lessismore_v078.97 24581.01 30557.15 29165.99 35161.16 33082.82 28239.12 32891.34 22659.67 25346.92 35188.43 239
pm-mvs177.25 20876.68 20378.93 24684.22 24358.62 27186.41 18188.36 20271.37 16473.31 23388.01 17961.22 16689.15 26564.24 21773.01 29889.03 218
thres20075.55 23274.47 23078.82 24787.78 18457.85 28283.07 25683.51 27272.44 14675.84 19684.42 26052.08 23991.75 21447.41 32583.64 17586.86 273
VPNet78.69 17478.66 15178.76 24888.31 16755.72 31184.45 23086.63 23376.79 6278.26 14290.55 11459.30 18489.70 25666.63 19977.05 24490.88 151
tpm273.26 25471.46 25678.63 24983.34 25856.71 29880.65 27880.40 30856.63 32873.55 23182.02 29351.80 24691.24 22856.35 28478.42 23287.95 244
pmmvs674.69 23973.39 24078.61 25081.38 29857.48 28886.64 17587.95 21064.99 25870.18 26586.61 21750.43 26089.52 25862.12 23470.18 31488.83 228
WR-MVS_H78.51 17878.49 15478.56 25188.02 17556.38 30488.43 11892.67 6077.14 5273.89 23087.55 18766.25 9989.24 26358.92 26173.55 29490.06 186
RPSCF73.23 25571.46 25678.54 25282.50 28159.85 26182.18 26382.84 28558.96 31271.15 25789.41 14445.48 29984.77 30558.82 26371.83 30691.02 148
pmmvs-eth3d70.50 27667.83 28778.52 25377.37 33266.18 16281.82 26581.51 29658.90 31363.90 32180.42 30642.69 31286.28 29458.56 26565.30 32983.11 319
PatchmatchNetpermissive73.12 25671.33 25978.49 25483.18 26360.85 25179.63 28778.57 31964.13 26671.73 25179.81 31351.20 25185.97 29657.40 27676.36 25988.66 233
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS74.29 24172.94 24578.35 25581.53 29563.49 21481.58 26982.49 28768.06 22469.99 27083.69 27251.66 24885.54 29865.85 20671.64 30786.01 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ITE_SJBPF78.22 25681.77 29160.57 25483.30 27669.25 20267.54 28987.20 19836.33 33787.28 28854.34 29074.62 28486.80 274
ppachtmachnet_test70.04 28067.34 29378.14 25779.80 31861.13 24779.19 29380.59 30459.16 31165.27 31179.29 31446.75 28887.29 28749.33 31466.72 32386.00 291
tfpnnormal74.39 24073.16 24378.08 25886.10 21558.05 27684.65 22487.53 21970.32 18171.22 25685.63 24154.97 21189.86 25243.03 33975.02 28086.32 281
Vis-MVSNet (Re-imp)78.36 18278.45 15578.07 25988.64 15651.78 33186.70 17479.63 31574.14 11975.11 21690.83 11061.29 16489.75 25458.10 27091.60 8092.69 98
TransMVSNet (Re)75.39 23674.56 22877.86 26085.50 22457.10 29286.78 17186.09 24272.17 15171.53 25387.34 19263.01 13689.31 26256.84 28161.83 33487.17 265
PEN-MVS77.73 19877.69 17977.84 26187.07 20353.91 32187.91 14291.18 12177.56 4073.14 23688.82 15561.23 16589.17 26459.95 25172.37 30190.43 167
CP-MVSNet78.22 18478.34 16077.84 26187.83 18054.54 31687.94 14091.17 12277.65 3573.48 23288.49 16462.24 14888.43 27662.19 23274.07 28790.55 163
PS-CasMVS78.01 19378.09 16577.77 26387.71 18554.39 31888.02 13691.22 11977.50 4373.26 23488.64 15960.73 17288.41 27761.88 23673.88 29190.53 164
baseline176.98 21276.75 20177.66 26488.13 17055.66 31285.12 21281.89 29273.04 14076.79 17288.90 15262.43 14487.78 28463.30 22371.18 31089.55 206
OpenMVS_ROBcopyleft64.09 1970.56 27568.19 28077.65 26580.26 31159.41 26685.01 21482.96 28458.76 31465.43 31082.33 28737.63 33491.23 22945.34 33576.03 26182.32 324
Patchmatch-RL test70.24 27867.78 28977.61 26677.43 33159.57 26571.16 33070.33 34262.94 28068.65 28272.77 34050.62 25785.49 29969.58 17466.58 32587.77 250
Baseline_NR-MVSNet78.15 18878.33 16177.61 26685.79 21856.21 30786.78 17185.76 24473.60 12977.93 15087.57 18665.02 11288.99 26767.14 19675.33 27587.63 252
DTE-MVSNet76.99 21176.80 19777.54 26886.24 21353.06 32887.52 14990.66 13277.08 5572.50 24288.67 15860.48 17889.52 25857.33 27770.74 31290.05 187
LCM-MVSNet-Re77.05 21076.94 19477.36 26987.20 20051.60 33280.06 28380.46 30775.20 9767.69 28886.72 20962.48 14288.98 26863.44 22189.25 10991.51 132
tpm cat170.57 27468.31 27977.35 27082.41 28457.95 28078.08 30380.22 31152.04 34068.54 28477.66 32852.00 24187.84 28351.77 29972.07 30586.25 282
MS-PatchMatch73.83 24772.67 24677.30 27183.87 25066.02 16481.82 26584.66 25461.37 29568.61 28382.82 28247.29 28388.21 27859.27 25684.32 16577.68 341
MVS_030472.48 26170.89 26477.24 27282.20 28659.68 26284.11 23883.49 27367.10 23066.87 29780.59 30435.00 34187.40 28659.07 26079.58 21884.63 305
EPNet_dtu75.46 23374.86 22477.23 27382.57 28054.60 31586.89 16683.09 28271.64 15766.25 30685.86 23655.99 20788.04 28154.92 28886.55 14389.05 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance74.11 24473.11 24477.13 27480.11 31359.62 26372.23 32886.92 23066.76 23370.40 26282.92 27956.93 20482.92 31669.06 17972.63 30088.87 226
TDRefinement67.49 29464.34 30376.92 27573.47 34761.07 24884.86 21882.98 28359.77 30558.30 33885.13 25226.06 35087.89 28247.92 32460.59 33881.81 328
JIA-IIPM66.32 30362.82 31376.82 27677.09 33361.72 24365.34 34675.38 33158.04 31964.51 31662.32 34742.05 31886.51 29251.45 30269.22 31782.21 325
PatchMatch-RL72.38 26370.90 26376.80 27788.60 15767.38 14479.53 28876.17 33062.75 28369.36 27882.00 29445.51 29884.89 30453.62 29380.58 20978.12 340
tpmvs71.09 27069.29 27376.49 27882.04 28856.04 30878.92 29681.37 29864.05 26967.18 29478.28 32349.74 26889.77 25349.67 31372.37 30183.67 313
CMPMVSbinary51.72 2170.19 27968.16 28176.28 27973.15 34957.55 28779.47 28983.92 26548.02 34456.48 34384.81 25643.13 30986.42 29362.67 22981.81 19784.89 301
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC70.33 27768.37 27876.21 28080.60 30856.23 30679.19 29386.49 23460.89 29661.29 32985.47 24531.78 34789.47 26053.37 29476.21 26082.94 323
gg-mvs-nofinetune69.95 28167.96 28475.94 28183.07 26654.51 31777.23 30970.29 34363.11 27670.32 26362.33 34643.62 30788.69 27353.88 29287.76 12484.62 306
MDA-MVSNet-bldmvs66.68 29963.66 30775.75 28279.28 32560.56 25573.92 32578.35 32064.43 26250.13 34979.87 31244.02 30683.67 31146.10 33156.86 34183.03 321
PVSNet64.34 1872.08 26670.87 26575.69 28386.21 21456.44 30274.37 32480.73 30262.06 29070.17 26682.23 29042.86 31183.31 31454.77 28984.45 16487.32 261
pmmvs571.55 26770.20 27075.61 28477.83 32956.39 30381.74 26780.89 29957.76 32067.46 29084.49 25949.26 27485.32 30157.08 27975.29 27785.11 300
our_test_369.14 28567.00 29575.57 28579.80 31858.80 26977.96 30477.81 32259.55 30762.90 32678.25 32447.43 28283.97 30951.71 30067.58 32283.93 312
WTY-MVS75.65 23175.68 21275.57 28586.40 21256.82 29577.92 30682.40 28865.10 25476.18 18887.72 18163.13 13580.90 32360.31 24981.96 19489.00 221
Patchmtry70.74 27269.16 27475.49 28780.72 30654.07 32074.94 32380.30 30958.34 31670.01 26881.19 29652.50 23186.54 29153.37 29471.09 31185.87 292
GG-mvs-BLEND75.38 28881.59 29455.80 31079.32 29069.63 34567.19 29373.67 33943.24 30888.90 27250.41 30584.50 16281.45 329
ambc75.24 28973.16 34850.51 33963.05 35087.47 22164.28 31777.81 32717.80 35689.73 25557.88 27260.64 33785.49 293
CL-MVSNet_2432*160072.37 26471.46 25675.09 29079.49 32353.53 32380.76 27685.01 25269.12 20770.51 26082.05 29257.92 19284.13 30852.27 29866.00 32787.60 253
XXY-MVS75.41 23575.56 21374.96 29183.59 25457.82 28380.59 27983.87 26766.54 23974.93 22188.31 16963.24 12980.09 32662.16 23376.85 24986.97 271
MIMVSNet70.69 27369.30 27274.88 29284.52 23856.35 30575.87 31679.42 31664.59 26067.76 28682.41 28641.10 32181.54 32146.64 32981.34 19986.75 276
ADS-MVSNet266.20 30663.33 30874.82 29379.92 31558.75 27067.55 34375.19 33253.37 33765.25 31275.86 33442.32 31480.53 32541.57 34268.91 31885.18 297
TinyColmap67.30 29764.81 30174.76 29481.92 29056.68 29980.29 28281.49 29760.33 29956.27 34483.22 27724.77 35187.66 28545.52 33369.47 31579.95 336
test-LLR72.94 25972.43 24874.48 29581.35 29958.04 27778.38 29977.46 32466.66 23569.95 27179.00 31748.06 27979.24 32766.13 20184.83 15886.15 285
test-mter71.41 26870.39 26974.48 29581.35 29958.04 27778.38 29977.46 32460.32 30069.95 27179.00 31736.08 33879.24 32766.13 20184.83 15886.15 285
tpm72.37 26471.71 25574.35 29782.19 28752.00 32979.22 29277.29 32664.56 26172.95 23883.68 27351.35 24983.26 31558.33 26875.80 26387.81 249
CVMVSNet72.99 25872.58 24774.25 29884.28 24150.85 33786.41 18183.45 27544.56 34573.23 23587.54 18849.38 27185.70 29765.90 20578.44 23186.19 284
FMVSNet569.50 28367.96 28474.15 29982.97 27155.35 31380.01 28482.12 29162.56 28563.02 32381.53 29536.92 33581.92 31948.42 31774.06 28885.17 299
MIMVSNet168.58 29066.78 29773.98 30080.07 31451.82 33080.77 27584.37 25764.40 26359.75 33582.16 29136.47 33683.63 31242.73 34070.33 31386.48 280
Anonymous2024052168.80 28867.22 29473.55 30174.33 34254.11 31983.18 25285.61 24558.15 31761.68 32880.94 30130.71 34881.27 32257.00 28073.34 29785.28 296
sss73.60 24973.64 23973.51 30282.80 27455.01 31476.12 31281.69 29562.47 28674.68 22485.85 23757.32 19978.11 33360.86 24680.93 20387.39 258
KD-MVS_2432*160066.22 30463.89 30573.21 30375.47 34053.42 32570.76 33384.35 25864.10 26766.52 30278.52 32034.55 34284.98 30250.40 30650.33 34981.23 330
miper_refine_blended66.22 30463.89 30573.21 30375.47 34053.42 32570.76 33384.35 25864.10 26766.52 30278.52 32034.55 34284.98 30250.40 30650.33 34981.23 330
PM-MVS66.41 30264.14 30473.20 30573.92 34456.45 30178.97 29564.96 35463.88 27364.72 31580.24 30719.84 35583.44 31366.24 20064.52 33179.71 337
tpmrst72.39 26272.13 25173.18 30680.54 30949.91 34079.91 28679.08 31863.11 27671.69 25279.95 31055.32 20982.77 31765.66 20873.89 29086.87 272
TESTMET0.1,169.89 28269.00 27572.55 30779.27 32656.85 29478.38 29974.71 33657.64 32168.09 28577.19 33037.75 33376.70 33863.92 21884.09 16784.10 311
DIV-MVS_2432*160068.81 28767.59 29272.46 30874.29 34345.45 34777.93 30587.00 22863.12 27563.99 32078.99 31942.32 31484.77 30556.55 28364.09 33287.16 267
CHOSEN 280x42066.51 30164.71 30271.90 30981.45 29663.52 21357.98 35168.95 34953.57 33662.59 32776.70 33146.22 29175.29 34555.25 28779.68 21776.88 343
EPMVS69.02 28668.16 28171.59 31079.61 32149.80 34277.40 30866.93 35062.82 28270.01 26879.05 31545.79 29577.86 33556.58 28275.26 27887.13 268
YYNet165.03 30762.91 31171.38 31175.85 33656.60 30069.12 34074.66 33757.28 32554.12 34577.87 32645.85 29474.48 34749.95 31161.52 33683.05 320
MDA-MVSNet_test_wron65.03 30762.92 31071.37 31275.93 33556.73 29669.09 34174.73 33557.28 32554.03 34677.89 32545.88 29374.39 34849.89 31261.55 33582.99 322
UnsupCasMVSNet_eth67.33 29665.99 29971.37 31273.48 34651.47 33475.16 31985.19 24965.20 25360.78 33180.93 30342.35 31377.20 33757.12 27853.69 34585.44 294
PMMVS69.34 28468.67 27671.35 31475.67 33762.03 23775.17 31873.46 33850.00 34368.68 28179.05 31552.07 24078.13 33261.16 24482.77 18573.90 344
EU-MVSNet68.53 29167.61 29171.31 31578.51 32847.01 34684.47 22784.27 26142.27 34666.44 30584.79 25740.44 32483.76 31058.76 26468.54 32183.17 317
Anonymous2023120668.60 28967.80 28871.02 31680.23 31250.75 33878.30 30280.47 30656.79 32766.11 30782.63 28546.35 29078.95 32943.62 33875.70 26483.36 316
dp66.80 29865.43 30070.90 31779.74 32048.82 34375.12 32174.77 33459.61 30664.08 31977.23 32942.89 31080.72 32448.86 31666.58 32583.16 318
PatchT68.46 29267.85 28670.29 31880.70 30743.93 35072.47 32774.88 33360.15 30270.55 25976.57 33249.94 26581.59 32050.58 30474.83 28285.34 295
UnsupCasMVSNet_bld63.70 31261.53 31670.21 31973.69 34551.39 33572.82 32681.89 29255.63 33257.81 33971.80 34238.67 32978.61 33049.26 31552.21 34780.63 333
Patchmatch-test64.82 30963.24 30969.57 32079.42 32449.82 34163.49 34969.05 34851.98 34159.95 33480.13 30850.91 25370.98 35140.66 34473.57 29387.90 247
LF4IMVS64.02 31162.19 31469.50 32170.90 35153.29 32776.13 31177.18 32752.65 33958.59 33680.98 30023.55 35276.52 33953.06 29666.66 32478.68 339
test20.0367.45 29566.95 29668.94 32275.48 33944.84 34977.50 30777.67 32366.66 23563.01 32483.80 26947.02 28578.40 33142.53 34168.86 32083.58 314
test0.0.03 168.00 29367.69 29068.90 32377.55 33047.43 34475.70 31772.95 34066.66 23566.56 30082.29 28948.06 27975.87 34244.97 33674.51 28583.41 315
PVSNet_057.27 2061.67 31459.27 31768.85 32479.61 32157.44 28968.01 34273.44 33955.93 33158.54 33770.41 34344.58 30277.55 33647.01 32635.91 35271.55 346
ADS-MVSNet64.36 31062.88 31268.78 32579.92 31547.17 34567.55 34371.18 34153.37 33765.25 31275.86 33442.32 31473.99 34941.57 34268.91 31885.18 297
pmmvs357.79 31654.26 32068.37 32664.02 35556.72 29775.12 32165.17 35240.20 34852.93 34769.86 34420.36 35475.48 34445.45 33455.25 34472.90 345
LCM-MVSNet54.25 31849.68 32467.97 32753.73 35845.28 34866.85 34580.78 30135.96 35239.45 35262.23 3488.70 36378.06 33448.24 32151.20 34880.57 334
testgi66.67 30066.53 29867.08 32875.62 33841.69 35375.93 31376.50 32966.11 24265.20 31486.59 21835.72 33974.71 34643.71 33773.38 29684.84 302
ANet_high50.57 32246.10 32563.99 32948.67 36139.13 35470.99 33280.85 30061.39 29431.18 35457.70 35117.02 35773.65 35031.22 35015.89 35879.18 338
MVS-HIRNet59.14 31557.67 31863.57 33081.65 29243.50 35171.73 32965.06 35339.59 35051.43 34857.73 35038.34 33182.58 31839.53 34573.95 28964.62 349
new-patchmatchnet61.73 31361.73 31561.70 33172.74 35024.50 36369.16 33978.03 32161.40 29356.72 34275.53 33638.42 33076.48 34045.95 33257.67 34084.13 310
DSMNet-mixed57.77 31756.90 31960.38 33267.70 35335.61 35669.18 33853.97 35732.30 35557.49 34079.88 31140.39 32568.57 35338.78 34672.37 30176.97 342
FPMVS53.68 31951.64 32259.81 33365.08 35451.03 33669.48 33769.58 34641.46 34740.67 35172.32 34116.46 35870.00 35224.24 35365.42 32858.40 350
PMVScopyleft37.38 2244.16 32440.28 32755.82 33440.82 36342.54 35265.12 34763.99 35534.43 35324.48 35657.12 3523.92 36576.17 34117.10 35655.52 34348.75 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 32341.86 32655.16 33577.03 33451.52 33332.50 35780.52 30532.46 35427.12 35535.02 3559.52 36275.50 34322.31 35460.21 33938.45 353
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet50.91 32150.29 32352.78 33668.58 35234.94 35863.71 34856.63 35639.73 34944.95 35065.47 34521.93 35358.48 35534.98 34956.62 34264.92 348
N_pmnet52.79 32053.26 32151.40 33778.99 3277.68 36669.52 3363.89 36551.63 34257.01 34174.98 33740.83 32365.96 35437.78 34764.67 33080.56 335
PMMVS240.82 32538.86 32846.69 33853.84 35716.45 36448.61 35449.92 35837.49 35131.67 35360.97 3498.14 36456.42 35628.42 35130.72 35367.19 347
MVEpermissive26.22 2330.37 32825.89 33243.81 33944.55 36235.46 35728.87 35839.07 36118.20 35818.58 35940.18 3542.68 36647.37 35917.07 35723.78 35548.60 352
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 32630.64 32935.15 34052.87 35927.67 36057.09 35247.86 35924.64 35616.40 36033.05 35611.23 36054.90 35714.46 35818.15 35622.87 355
EMVS30.81 32729.65 33034.27 34150.96 36025.95 36256.58 35346.80 36024.01 35715.53 36130.68 35712.47 35954.43 35812.81 35917.05 35722.43 356
DeepMVS_CXcopyleft27.40 34240.17 36426.90 36124.59 36417.44 35923.95 35748.61 3539.77 36126.48 36018.06 35524.47 35428.83 354
wuyk23d16.82 33115.94 33419.46 34358.74 35631.45 35939.22 3553.74 3666.84 3606.04 3622.70 3621.27 36724.29 36110.54 36014.40 3602.63 358
tmp_tt18.61 33021.40 33310.23 3444.82 36510.11 36534.70 35630.74 3631.48 36123.91 35826.07 35828.42 34913.41 36227.12 35215.35 3597.17 357
test1236.12 3338.11 3360.14 3450.06 3670.09 36771.05 3310.03 3680.04 3630.25 3641.30 3640.05 3680.03 3640.21 3620.01 3620.29 359
testmvs6.04 3348.02 3370.10 3460.08 3660.03 36869.74 3350.04 3670.05 3620.31 3631.68 3630.02 3690.04 3630.24 3610.02 3610.25 360
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k19.96 32926.61 3310.00 3470.00 3680.00 3690.00 35989.26 1730.00 3640.00 36588.61 16061.62 1560.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas5.26 3357.02 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36563.15 1320.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re7.23 3329.64 3350.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36586.72 2090.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ZD-MVS94.38 2572.22 4592.67 6070.98 16987.75 2794.07 4374.01 3596.70 2384.66 3694.84 44
RE-MVS-def85.48 5593.06 5770.63 7791.88 3492.27 7673.53 13285.69 4294.45 2663.87 12182.75 6091.87 7792.50 103
IU-MVS95.30 271.25 5992.95 4966.81 23192.39 588.94 896.63 294.85 10
test_241102_TWO94.06 1077.24 4792.78 495.72 681.26 697.44 289.07 696.58 494.26 31
test_241102_ONE95.30 270.98 6594.06 1077.17 5193.10 195.39 982.99 197.27 7
9.1488.26 1492.84 6391.52 4294.75 173.93 12388.57 2094.67 1775.57 2095.79 5686.77 2095.76 24
save fliter93.80 3972.35 4290.47 6291.17 12274.31 113
test_0728_THIRD78.38 3292.12 895.78 481.46 597.40 489.42 296.57 594.67 16
test072695.27 571.25 5993.60 494.11 677.33 4592.81 395.79 380.98 7
GSMVS88.96 223
test_part295.06 772.65 3191.80 10
sam_mvs151.32 25088.96 223
sam_mvs50.01 263
MTGPAbinary92.02 87
test_post178.90 2975.43 36148.81 27885.44 30059.25 257
test_post5.46 36050.36 26184.24 307
patchmatchnet-post74.00 33851.12 25288.60 274
MTMP92.18 3032.83 362
gm-plane-assit81.40 29753.83 32262.72 28480.94 30192.39 19263.40 222
test9_res84.90 3095.70 2792.87 93
TEST993.26 5172.96 2488.75 10891.89 9668.44 22285.00 5093.10 6274.36 3095.41 72
test_893.13 5372.57 3488.68 11391.84 9968.69 21884.87 5693.10 6274.43 2795.16 83
agg_prior282.91 5895.45 2992.70 96
agg_prior92.85 6171.94 5191.78 10284.41 6494.93 92
test_prior472.60 3389.01 99
test_prior288.85 10475.41 9184.91 5293.54 5174.28 3183.31 5095.86 18
旧先验286.56 17858.10 31887.04 3188.98 26874.07 133
新几何286.29 186
旧先验191.96 7765.79 17186.37 23793.08 6669.31 7592.74 6988.74 232
无先验87.48 15088.98 18560.00 30394.12 12367.28 19288.97 222
原ACMM286.86 167
test22291.50 8368.26 12884.16 23683.20 28054.63 33579.74 11991.63 8758.97 18691.42 8386.77 275
testdata291.01 23762.37 231
segment_acmp73.08 40
testdata184.14 23775.71 85
plane_prior790.08 10768.51 124
plane_prior689.84 11268.70 11960.42 179
plane_prior592.44 6895.38 7578.71 9086.32 14691.33 138
plane_prior491.00 107
plane_prior368.60 12278.44 3078.92 129
plane_prior291.25 4679.12 23
plane_prior189.90 111
plane_prior68.71 11790.38 6677.62 3686.16 149
n20.00 369
nn0.00 369
door-mid69.98 344
test1192.23 79
door69.44 347
HQP5-MVS66.98 150
HQP-NCC89.33 12689.17 9276.41 7177.23 164
ACMP_Plane89.33 12689.17 9276.41 7177.23 164
BP-MVS77.47 104
HQP4-MVS77.24 16395.11 8591.03 146
HQP3-MVS92.19 8285.99 151
HQP2-MVS60.17 182
NP-MVS89.62 11568.32 12690.24 118
MDTV_nov1_ep13_2view37.79 35575.16 31955.10 33366.53 30149.34 27253.98 29187.94 246
MDTV_nov1_ep1369.97 27183.18 26353.48 32477.10 31080.18 31260.45 29869.33 27980.44 30548.89 27786.90 28951.60 30178.51 230
ACMMP++_ref81.95 195
ACMMP++81.25 200
Test By Simon64.33 117