This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
SMA-MVScopyleft87.56 690.17 684.52 991.71 290.57 990.77 875.19 1390.67 680.50 1486.59 1788.86 778.09 1689.92 189.41 190.84 1095.19 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS88.85 191.59 285.67 190.54 1592.29 291.71 376.40 292.41 283.24 292.50 390.64 381.10 289.53 288.02 791.00 895.73 2
ACMMP_NAP86.52 1289.01 1083.62 1790.28 1990.09 1390.32 1374.05 2088.32 1479.74 1687.04 1585.59 2376.97 2989.35 388.44 490.35 2994.27 10
CNVR-MVS86.36 1388.19 1684.23 1291.33 489.84 1490.34 1175.56 1087.36 1878.97 1881.19 2886.76 1778.74 1189.30 488.58 290.45 2694.33 9
DVP-MVS88.67 291.62 185.22 390.47 1792.36 190.69 976.15 393.08 182.75 492.19 590.71 280.45 589.27 587.91 890.82 1195.84 1
SteuartSystems-ACMMP85.99 1588.31 1583.27 2190.73 1089.84 1490.27 1474.31 1584.56 3075.88 3087.32 1485.04 2477.31 2489.01 688.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVS88.63 391.29 385.53 290.87 892.20 391.98 276.00 590.55 782.09 693.85 190.75 181.25 188.62 787.59 1390.96 995.48 3
HPM-MVS++copyleft87.09 888.92 1284.95 592.61 187.91 4090.23 1576.06 488.85 1281.20 1087.33 1387.93 1179.47 888.59 888.23 590.15 3493.60 20
DeepC-MVS78.47 284.81 2686.03 2883.37 1989.29 3290.38 1188.61 2776.50 186.25 2377.22 2475.12 3980.28 4577.59 2288.39 988.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS79.04 185.30 2188.93 1181.06 3288.77 3690.48 1085.46 4673.08 2990.97 573.77 3784.81 2285.95 2077.43 2388.22 1087.73 1087.85 7894.34 8
NCCC85.34 2086.59 2483.88 1691.48 388.88 2589.79 1775.54 1186.67 2177.94 2376.55 3584.99 2578.07 1788.04 1187.68 1190.46 2593.31 21
DeepC-MVS_fast78.24 384.27 2985.50 3182.85 2390.46 1889.24 2187.83 3374.24 1784.88 2676.23 2875.26 3881.05 4377.62 2188.02 1287.62 1290.69 1692.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS88.00 590.50 585.08 490.95 791.58 692.03 175.53 1291.15 480.10 1592.27 488.34 1080.80 488.00 1386.99 1891.09 695.16 5
MSP-MVS88.09 490.84 484.88 690.00 2391.80 591.63 475.80 691.99 381.23 992.54 289.18 580.89 387.99 1487.91 889.70 4394.51 6
MCST-MVS85.13 2386.62 2383.39 1890.55 1489.82 1689.29 2273.89 2384.38 3176.03 2979.01 3185.90 2178.47 1287.81 1586.11 3492.11 193.29 22
zzz-MVS85.71 1686.88 2284.34 1190.54 1587.11 4489.77 1874.17 1888.54 1383.08 378.60 3286.10 1978.11 1587.80 1687.46 1490.35 2992.56 26
HFP-MVS86.15 1487.95 1784.06 1490.80 989.20 2389.62 2074.26 1687.52 1580.63 1286.82 1684.19 2978.22 1487.58 1787.19 1690.81 1293.13 24
SD-MVS86.96 989.45 884.05 1590.13 2089.23 2289.77 1874.59 1489.17 1080.70 1189.93 1189.67 478.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
xxxxxxxxxxxxxcwj85.35 1985.76 3084.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 761.35 11578.82 987.42 1986.23 3091.28 393.90 12
SF-MVS87.47 789.70 784.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 788.93 678.82 987.42 1986.23 3091.28 393.90 12
ACMMPR85.52 1787.53 1983.17 2290.13 2089.27 2089.30 2173.97 2186.89 2077.14 2586.09 1883.18 3277.74 2087.42 1987.20 1590.77 1392.63 25
MP-MVScopyleft85.50 1887.40 2083.28 2090.65 1289.51 1989.16 2474.11 1983.70 3478.06 2285.54 2084.89 2777.31 2487.40 2287.14 1790.41 2793.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
3Dnovator+75.73 482.40 3582.76 4081.97 2988.02 3889.67 1786.60 3771.48 3781.28 4378.18 2164.78 8377.96 5177.13 2787.32 2386.83 2190.41 2791.48 36
PHI-MVS82.36 3685.89 2978.24 4986.40 4889.52 1885.52 4469.52 4982.38 4065.67 6981.35 2782.36 3473.07 4587.31 2486.76 2389.24 5091.56 35
PGM-MVS84.42 2886.29 2782.23 2690.04 2288.82 2789.23 2371.74 3682.82 3774.61 3384.41 2382.09 3577.03 2887.13 2586.73 2490.73 1592.06 32
APD-MVScopyleft86.84 1188.91 1384.41 1090.66 1190.10 1290.78 775.64 987.38 1778.72 1990.68 1086.82 1680.15 687.13 2586.45 2890.51 2093.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + ACMM85.10 2488.81 1480.77 3589.55 2988.53 3388.59 2872.55 3187.39 1671.90 4390.95 987.55 1274.57 3487.08 2786.54 2687.47 8593.67 17
MVS_030481.73 3983.86 3679.26 4286.22 5089.18 2486.41 3867.15 6375.28 5570.75 5374.59 4183.49 3174.42 3687.05 2886.34 2990.58 1991.08 40
X-MVS83.23 3385.20 3380.92 3489.71 2788.68 2888.21 3273.60 2482.57 3871.81 4677.07 3381.92 3771.72 5886.98 2986.86 2090.47 2292.36 29
TSAR-MVS + MP.86.88 1089.23 984.14 1389.78 2688.67 3190.59 1073.46 2788.99 1180.52 1391.26 688.65 879.91 786.96 3086.22 3290.59 1893.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CP-MVS84.74 2786.43 2682.77 2489.48 3088.13 3988.64 2673.93 2284.92 2576.77 2681.94 2683.50 3077.29 2686.92 3186.49 2790.49 2193.14 23
CSCG85.28 2287.68 1882.49 2589.95 2491.99 488.82 2571.20 3886.41 2279.63 1779.26 2988.36 973.94 3986.64 3286.67 2591.40 294.41 7
DELS-MVS79.15 5381.07 4876.91 5583.54 6287.31 4284.45 5164.92 7969.98 6769.34 5571.62 5276.26 5469.84 6786.57 3385.90 3589.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
train_agg84.86 2587.21 2182.11 2790.59 1385.47 5589.81 1673.55 2683.95 3273.30 3889.84 1287.23 1475.61 3286.47 3485.46 3989.78 3992.06 32
MVS_111021_HR80.13 4381.46 4578.58 4785.77 5285.17 5983.45 5769.28 5074.08 6170.31 5474.31 4375.26 5873.13 4486.46 3585.15 4289.53 4689.81 49
DPM-MVS83.30 3284.33 3582.11 2789.56 2888.49 3490.33 1273.24 2883.85 3376.46 2772.43 4882.65 3373.02 4786.37 3686.91 1990.03 3689.62 51
OPM-MVS79.68 4879.28 5780.15 3887.99 3986.77 4788.52 2972.72 3064.55 9267.65 6167.87 7174.33 6174.31 3786.37 3685.25 4189.73 4289.81 49
ACMMPcopyleft83.42 3185.27 3281.26 3188.47 3788.49 3488.31 3172.09 3383.42 3572.77 4182.65 2478.22 4975.18 3386.24 3885.76 3690.74 1492.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet81.62 4083.41 3779.53 4187.06 4388.59 3285.47 4567.96 5976.59 5374.05 3474.69 4081.98 3672.98 4886.14 3985.47 3889.68 4490.42 46
CDPH-MVS82.64 3485.03 3479.86 3989.41 3188.31 3688.32 3071.84 3580.11 4567.47 6282.09 2581.44 4171.85 5685.89 4086.15 3390.24 3291.25 38
TSAR-MVS + GP.83.69 3086.58 2580.32 3685.14 5586.96 4584.91 5070.25 4284.71 2973.91 3685.16 2185.63 2277.92 1885.44 4185.71 3789.77 4092.45 27
MAR-MVS79.21 5180.32 5377.92 5187.46 4088.15 3883.95 5367.48 6274.28 5968.25 5864.70 8477.04 5272.17 5285.42 4285.00 4388.22 6687.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS79.35 5081.23 4677.16 5485.01 5886.92 4685.87 4160.89 12680.07 4775.35 3272.96 4673.21 6568.43 7685.41 4384.63 4587.41 8685.44 85
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ETV-MVS77.32 6078.81 5875.58 6182.24 7083.64 7079.98 6864.02 8669.64 7163.90 7670.89 5669.94 8273.41 4285.39 4483.91 4989.92 3788.31 58
CS-MVS76.92 6278.01 6275.64 6081.47 7383.59 7180.68 6462.47 11168.39 7365.83 6867.84 7270.74 7673.07 4585.31 4582.79 5690.33 3187.42 65
MSLP-MVS++82.09 3782.66 4181.42 3087.03 4487.22 4385.82 4270.04 4380.30 4478.66 2068.67 6781.04 4477.81 1985.19 4684.88 4489.19 5391.31 37
3Dnovator73.76 579.75 4680.52 5178.84 4584.94 6087.35 4184.43 5265.54 7478.29 4973.97 3563.00 9175.62 5774.07 3885.00 4785.34 4090.11 3589.04 53
LGP-MVS_train79.83 4481.22 4778.22 5086.28 4985.36 5886.76 3669.59 4777.34 5065.14 7175.68 3770.79 7571.37 6284.60 4884.01 4790.18 3390.74 42
IS_MVSNet73.33 7977.34 7168.65 10981.29 7483.47 7274.45 11863.58 8965.75 8448.49 14567.11 7670.61 7754.63 16184.51 4983.58 5289.48 4786.34 75
HQP-MVS81.19 4183.27 3878.76 4687.40 4185.45 5686.95 3570.47 4181.31 4266.91 6579.24 3076.63 5371.67 5984.43 5083.78 5089.19 5392.05 34
PVSNet_Blended_VisFu76.57 6477.90 6375.02 6580.56 8186.58 4979.24 7766.18 6864.81 8968.18 5965.61 7771.45 7067.05 7884.16 5181.80 6288.90 5790.92 41
ACMM72.26 878.86 5578.13 6179.71 4086.89 4583.40 7386.02 4070.50 4075.28 5571.49 5063.01 9069.26 8773.57 4184.11 5283.98 4889.76 4187.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OMC-MVS80.26 4282.59 4277.54 5283.04 6385.54 5483.25 5865.05 7887.32 1972.42 4272.04 5078.97 4773.30 4383.86 5381.60 6588.15 6988.83 55
Vis-MVSNetpermissive72.77 8377.20 7267.59 12174.19 13484.01 6476.61 10461.69 12160.62 12550.61 13770.25 5971.31 7355.57 15783.85 5482.28 5786.90 9888.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
QAPM78.47 5680.22 5476.43 5785.03 5786.75 4880.62 6666.00 7173.77 6265.35 7065.54 7978.02 5072.69 4983.71 5583.36 5488.87 5990.41 47
EPNet79.08 5480.62 4977.28 5388.90 3583.17 7683.65 5572.41 3274.41 5867.15 6476.78 3474.37 6064.43 9583.70 5683.69 5187.15 8988.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AdaColmapbinary79.74 4778.62 5981.05 3389.23 3386.06 5284.95 4971.96 3479.39 4875.51 3163.16 8968.84 9376.51 3083.55 5782.85 5588.13 7086.46 74
PVSNet_BlendedMVS76.21 6577.52 6774.69 6979.46 9083.79 6777.50 9464.34 8469.88 6871.88 4468.54 6870.42 7867.05 7883.48 5879.63 9587.89 7686.87 70
PVSNet_Blended76.21 6577.52 6774.69 6979.46 9083.79 6777.50 9464.34 8469.88 6871.88 4468.54 6870.42 7867.05 7883.48 5879.63 9587.89 7686.87 70
canonicalmvs79.16 5282.37 4375.41 6282.33 6986.38 5180.80 6363.18 9282.90 3667.34 6372.79 4776.07 5569.62 6883.46 6084.41 4689.20 5290.60 44
ACMP73.23 779.79 4580.53 5078.94 4485.61 5385.68 5385.61 4369.59 4777.33 5171.00 5274.45 4269.16 8871.88 5483.15 6183.37 5389.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UA-Net74.47 7477.80 6470.59 8985.33 5485.40 5773.54 13665.98 7260.65 12456.00 10672.11 4979.15 4654.63 16183.13 6282.25 5888.04 7281.92 122
TSAR-MVS + COLMAP78.34 5781.64 4474.48 7280.13 8785.01 6081.73 5965.93 7384.75 2861.68 8185.79 1966.27 10171.39 6182.91 6380.78 7486.01 12685.98 76
CPTT-MVS81.77 3883.10 3980.21 3785.93 5186.45 5087.72 3470.98 3982.54 3971.53 4974.23 4481.49 4076.31 3182.85 6481.87 6188.79 6192.26 30
MVS_111021_LR78.13 5879.85 5676.13 5881.12 7681.50 8680.28 6765.25 7676.09 5471.32 5176.49 3672.87 6772.21 5182.79 6581.29 6786.59 11187.91 61
EIA-MVS75.64 6976.60 7674.53 7182.43 6883.84 6678.32 8762.28 11565.96 8263.28 7968.95 6367.54 9771.61 6082.55 6681.63 6489.24 5085.72 79
casdiffmvs76.76 6378.46 6074.77 6880.32 8483.73 6980.65 6563.24 9173.58 6366.11 6769.39 6274.09 6269.49 7082.52 6779.35 10388.84 6086.52 73
EPP-MVSNet74.00 7777.41 6970.02 9580.53 8283.91 6574.99 11462.68 10665.06 8749.77 14168.68 6672.09 6963.06 10382.49 6880.73 7589.12 5588.91 54
OpenMVScopyleft70.44 1076.15 6776.82 7575.37 6385.01 5884.79 6178.99 8162.07 11671.27 6667.88 6057.91 11772.36 6870.15 6682.23 6981.41 6688.12 7187.78 63
Fast-Effi-MVS+73.11 8173.66 8572.48 7877.72 10480.88 9578.55 8458.83 15265.19 8660.36 8459.98 10262.42 11371.22 6381.66 7080.61 8588.20 6784.88 95
TAPA-MVS71.42 977.69 5980.05 5574.94 6680.68 8084.52 6281.36 6063.14 9384.77 2764.82 7368.72 6575.91 5671.86 5581.62 7179.55 9987.80 8085.24 88
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU73.29 8076.96 7469.00 10677.04 11082.06 8279.49 7556.30 16267.85 7553.29 12271.12 5570.37 8061.81 11781.59 7280.96 7286.09 12084.73 96
Effi-MVS+75.28 7176.20 7774.20 7381.15 7583.24 7481.11 6163.13 9466.37 7860.27 8564.30 8768.88 9270.93 6581.56 7381.69 6388.61 6287.35 66
baseline170.10 10572.17 9867.69 11879.74 8876.80 13773.91 12964.38 8362.74 10848.30 14764.94 8164.08 10754.17 16381.46 7478.92 10685.66 13376.22 160
FC-MVSNet-train72.60 8475.07 8169.71 9881.10 7778.79 11573.74 13565.23 7766.10 8153.34 12170.36 5863.40 11056.92 14681.44 7580.96 7287.93 7484.46 100
MVSTER72.06 8674.24 8269.51 10170.39 16975.97 14576.91 10057.36 15964.64 9161.39 8368.86 6463.76 10863.46 10081.44 7579.70 9487.56 8485.31 87
EG-PatchMatch MVS67.24 14066.94 14767.60 12078.73 9581.35 8773.28 14059.49 14246.89 19251.42 13343.65 18553.49 15855.50 15881.38 7780.66 8287.15 8981.17 128
GBi-Net70.78 9573.37 8967.76 11472.95 14678.00 12275.15 10962.72 10164.13 9551.44 13058.37 11269.02 8957.59 13881.33 7880.72 7686.70 10582.02 116
test170.78 9573.37 8967.76 11472.95 14678.00 12275.15 10962.72 10164.13 9551.44 13058.37 11269.02 8957.59 13881.33 7880.72 7686.70 10582.02 116
FMVSNet168.84 11870.47 10966.94 13371.35 16377.68 13074.71 11662.35 11456.93 14449.94 14050.01 16964.59 10557.07 14381.33 7880.72 7686.25 11682.00 119
DCV-MVSNet73.65 7875.78 7971.16 8380.19 8579.27 10977.45 9661.68 12266.73 7758.72 9065.31 8069.96 8162.19 10881.29 8180.97 7186.74 10486.91 69
test_part174.24 7573.44 8775.18 6482.02 7282.34 8183.88 5462.40 11360.93 12268.68 5649.25 17369.71 8465.73 9381.26 8281.98 6088.35 6588.60 57
PCF-MVS73.28 679.42 4980.41 5278.26 4884.88 6188.17 3786.08 3969.85 4475.23 5768.43 5768.03 7078.38 4871.76 5781.26 8280.65 8388.56 6491.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
gg-mvs-nofinetune62.55 16365.05 16159.62 17278.72 9677.61 13170.83 15053.63 16539.71 20422.04 20536.36 19764.32 10647.53 17681.16 8479.03 10585.00 14477.17 155
Anonymous20240521172.16 9980.85 7981.85 8376.88 10165.40 7562.89 10746.35 18067.99 9662.05 11081.15 8580.38 8785.97 12884.50 99
CNLPA77.20 6177.54 6676.80 5682.63 6584.31 6379.77 7264.64 8085.17 2473.18 3956.37 12469.81 8374.53 3581.12 8678.69 10986.04 12587.29 68
UGNet72.78 8277.67 6567.07 13171.65 15883.24 7475.20 10863.62 8864.93 8856.72 10271.82 5173.30 6349.02 17481.02 8780.70 8186.22 11788.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DI_MVS_plusplus_trai75.13 7276.12 7873.96 7478.18 9881.55 8480.97 6262.54 10868.59 7265.13 7261.43 9374.81 5969.32 7181.01 8879.59 9787.64 8385.89 77
FMVSNet270.39 10172.67 9567.72 11772.95 14678.00 12275.15 10962.69 10563.29 10351.25 13455.64 12668.49 9557.59 13880.91 8980.35 8886.70 10582.02 116
Anonymous2023121171.90 8772.48 9671.21 8280.14 8681.53 8576.92 9962.89 9764.46 9458.94 8743.80 18470.98 7462.22 10780.70 9080.19 9086.18 11885.73 78
ACMH65.37 1470.71 9770.00 11271.54 8182.51 6782.47 8077.78 9168.13 5656.19 15146.06 16154.30 13451.20 17768.68 7480.66 9180.72 7686.07 12184.45 101
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpn200view968.11 12468.72 13067.40 12377.83 10278.93 11174.28 12362.81 9856.64 14646.82 15552.65 15653.47 16056.59 14780.41 9278.43 11286.11 11980.52 133
thres600view767.68 13268.43 13466.80 13577.90 9978.86 11373.84 13162.75 9956.07 15244.70 16852.85 15452.81 16755.58 15680.41 9277.77 12086.05 12380.28 135
thres20067.98 12668.55 13367.30 12677.89 10178.86 11374.18 12762.75 9956.35 14946.48 15852.98 15253.54 15656.46 14880.41 9277.97 11886.05 12379.78 140
PLCcopyleft68.99 1175.68 6875.31 8076.12 5982.94 6481.26 8979.94 7066.10 6977.15 5266.86 6659.13 10768.53 9473.73 4080.38 9579.04 10487.13 9381.68 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D74.08 7673.39 8874.88 6785.05 5682.62 7979.71 7368.66 5372.82 6458.80 8957.61 11861.31 11671.07 6480.32 9678.87 10886.00 12780.18 136
tttt051771.41 9272.95 9269.60 10073.70 14178.70 11674.42 12159.12 14663.89 9958.35 9464.56 8658.39 12964.27 9680.29 9780.17 9187.74 8184.69 97
thisisatest053071.48 9173.01 9169.70 9973.83 13978.62 11774.53 11759.12 14664.13 9558.63 9164.60 8558.63 12764.27 9680.28 9880.17 9187.82 7984.64 98
NR-MVSNet68.79 11970.56 10766.71 13877.48 10779.54 10573.52 13769.20 5161.20 12039.76 17758.52 10950.11 18351.37 17080.26 9980.71 8088.97 5683.59 108
thres40067.95 12768.62 13267.17 12877.90 9978.59 11874.27 12462.72 10156.34 15045.77 16353.00 15153.35 16356.46 14880.21 10078.43 11285.91 13080.43 134
MVS_Test75.37 7077.13 7373.31 7679.07 9381.32 8879.98 6860.12 13769.72 7064.11 7570.53 5773.22 6468.90 7280.14 10179.48 10187.67 8285.50 83
pm-mvs165.62 14667.42 14363.53 15573.66 14276.39 14169.66 15260.87 12749.73 18543.97 16951.24 16557.00 13748.16 17579.89 10277.84 11984.85 14779.82 139
gm-plane-assit57.00 18757.62 19456.28 18476.10 11462.43 20047.62 20746.57 19833.84 20723.24 20137.52 19440.19 20459.61 12979.81 10377.55 12584.55 14872.03 179
CDS-MVSNet67.65 13469.83 11565.09 14375.39 12276.55 14074.42 12163.75 8753.55 16949.37 14359.41 10562.45 11244.44 18179.71 10479.82 9383.17 15677.36 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TranMVSNet+NR-MVSNet69.25 11470.81 10667.43 12277.23 10979.46 10773.48 13869.66 4560.43 12639.56 17858.82 10853.48 15955.74 15579.59 10581.21 6888.89 5882.70 112
TransMVSNet (Re)64.74 15265.66 15563.66 15477.40 10875.33 15169.86 15162.67 10747.63 19041.21 17650.01 16952.33 17045.31 18079.57 10677.69 12285.49 13577.07 157
UniMVSNet_NR-MVSNet70.59 9872.19 9768.72 10777.72 10480.72 9673.81 13369.65 4661.99 11243.23 17060.54 9857.50 13258.57 13179.56 10781.07 7089.34 4983.97 102
UniMVSNet (Re)69.53 11071.90 10066.76 13676.42 11380.93 9272.59 14368.03 5861.75 11541.68 17558.34 11557.23 13453.27 16679.53 10880.62 8488.57 6384.90 94
FMVSNet370.49 9972.90 9367.67 11972.88 14977.98 12574.96 11562.72 10164.13 9551.44 13058.37 11269.02 8957.43 14179.43 10979.57 9886.59 11181.81 123
Vis-MVSNet (Re-imp)67.83 13073.52 8661.19 16378.37 9776.72 13966.80 16862.96 9565.50 8534.17 18867.19 7569.68 8539.20 19179.39 11079.44 10285.68 13276.73 159
DU-MVS69.63 10970.91 10568.13 11375.99 11579.54 10573.81 13369.20 5161.20 12043.23 17058.52 10953.50 15758.57 13179.22 11180.45 8687.97 7383.97 102
Baseline_NR-MVSNet67.53 13768.77 12966.09 14075.99 11574.75 15672.43 14468.41 5461.33 11938.33 18151.31 16454.13 15256.03 15179.22 11178.19 11585.37 13882.45 114
MS-PatchMatch70.17 10470.49 10869.79 9780.98 7877.97 12777.51 9358.95 14962.33 11055.22 11053.14 14965.90 10262.03 11179.08 11377.11 13384.08 15077.91 150
diffmvs74.86 7377.37 7071.93 7975.62 12080.35 10079.42 7660.15 13672.81 6564.63 7471.51 5373.11 6666.53 8879.02 11477.98 11785.25 14086.83 72
MSDG71.52 9069.87 11373.44 7582.21 7179.35 10879.52 7464.59 8166.15 8061.87 8053.21 14856.09 14065.85 9278.94 11578.50 11186.60 11076.85 158
ACMH+66.54 1371.36 9370.09 11172.85 7782.59 6681.13 9178.56 8368.04 5761.55 11652.52 12851.50 16354.14 15068.56 7578.85 11679.50 10086.82 10183.94 104
thres100view90067.60 13668.02 13767.12 13077.83 10277.75 12973.90 13062.52 10956.64 14646.82 15552.65 15653.47 16055.92 15278.77 11777.62 12385.72 13179.23 143
tfpnnormal64.27 15563.64 17165.02 14475.84 11875.61 14871.24 14962.52 10947.79 18942.97 17242.65 18744.49 19752.66 16878.77 11776.86 13584.88 14679.29 142
ET-MVSNet_ETH3D72.46 8574.19 8370.44 9062.50 19281.17 9079.90 7162.46 11264.52 9357.52 9871.49 5459.15 12572.08 5378.61 11981.11 6988.16 6883.29 110
CHOSEN 1792x268869.20 11569.26 12269.13 10376.86 11178.93 11177.27 9760.12 13761.86 11454.42 11142.54 18861.61 11466.91 8378.55 12078.14 11679.23 17083.23 111
GA-MVS68.14 12369.17 12466.93 13473.77 14078.50 11974.45 11858.28 15455.11 15848.44 14660.08 10053.99 15361.50 11978.43 12177.57 12485.13 14180.54 132
v1070.22 10369.76 11670.74 8474.79 12880.30 10279.22 7859.81 14057.71 14056.58 10454.22 13955.31 14366.95 8178.28 12277.47 12687.12 9585.07 91
thisisatest051567.40 13868.78 12865.80 14170.02 17175.24 15269.36 15557.37 15854.94 16253.67 11955.53 12954.85 14658.00 13678.19 12378.91 10786.39 11583.78 106
v114469.93 10769.36 12170.61 8874.89 12780.93 9279.11 7960.64 12855.97 15355.31 10953.85 14154.14 15066.54 8778.10 12477.44 12787.14 9285.09 90
baseline269.69 10870.27 11069.01 10575.72 11977.13 13573.82 13258.94 15061.35 11857.09 10061.68 9257.17 13561.99 11278.10 12476.58 14086.48 11479.85 138
v119269.50 11168.83 12770.29 9274.49 13180.92 9478.55 8460.54 13055.04 15954.21 11252.79 15552.33 17066.92 8277.88 12677.35 13087.04 9685.51 82
v7n67.05 14266.94 14767.17 12872.35 15178.97 11073.26 14158.88 15151.16 18150.90 13548.21 17650.11 18360.96 12277.70 12777.38 12886.68 10885.05 92
pmmvs662.41 16662.88 17461.87 16071.38 16275.18 15567.76 16159.45 14441.64 20042.52 17437.33 19552.91 16646.87 17777.67 12876.26 14383.23 15579.18 144
v870.23 10269.86 11470.67 8774.69 12979.82 10478.79 8259.18 14558.80 13358.20 9555.00 13157.33 13366.31 9077.51 12976.71 13886.82 10183.88 105
V4268.76 12069.63 11767.74 11664.93 18978.01 12178.30 8856.48 16158.65 13456.30 10554.26 13757.03 13664.85 9477.47 13077.01 13485.60 13484.96 93
UniMVSNet_ETH3D67.18 14167.03 14667.36 12474.44 13278.12 12074.07 12866.38 6652.22 17546.87 15448.64 17451.84 17456.96 14477.29 13178.53 11085.42 13782.59 113
v2v48270.05 10669.46 12070.74 8474.62 13080.32 10179.00 8060.62 12957.41 14256.89 10155.43 13055.14 14566.39 8977.25 13277.14 13286.90 9883.57 109
v192192069.03 11668.32 13569.86 9674.03 13680.37 9977.55 9260.25 13454.62 16353.59 12052.36 15951.50 17666.75 8477.17 13376.69 13986.96 9785.56 81
v14419269.34 11368.68 13170.12 9374.06 13580.54 9778.08 9060.54 13054.99 16154.13 11452.92 15352.80 16866.73 8577.13 13476.72 13787.15 8985.63 80
IterMVS-LS71.69 8972.82 9470.37 9177.54 10676.34 14275.13 11260.46 13261.53 11757.57 9764.89 8267.33 9866.04 9177.09 13577.37 12985.48 13685.18 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu71.82 8871.86 10171.78 8078.77 9480.47 9878.55 8461.67 12360.68 12355.49 10758.48 11165.48 10368.85 7376.92 13675.55 14887.35 8785.46 84
COLMAP_ROBcopyleft62.73 1567.66 13366.76 14968.70 10880.49 8377.98 12575.29 10762.95 9663.62 10149.96 13947.32 17950.72 18058.57 13176.87 13775.50 14984.94 14575.33 169
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v124068.64 12167.89 14069.51 10173.89 13880.26 10376.73 10259.97 13953.43 17053.08 12351.82 16250.84 17966.62 8676.79 13876.77 13686.78 10385.34 86
IB-MVS66.94 1271.21 9471.66 10270.68 8679.18 9282.83 7872.61 14261.77 12059.66 12963.44 7853.26 14659.65 12359.16 13076.78 13982.11 5987.90 7587.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
anonymousdsp65.28 14967.98 13862.13 15958.73 20073.98 15967.10 16550.69 18548.41 18847.66 15354.27 13552.75 16961.45 12176.71 14080.20 8987.13 9389.53 52
USDC67.36 13967.90 13966.74 13771.72 15675.23 15371.58 14660.28 13367.45 7650.54 13860.93 9445.20 19662.08 10976.56 14174.50 15484.25 14975.38 168
HyFIR lowres test69.47 11268.94 12670.09 9476.77 11282.93 7776.63 10360.17 13559.00 13254.03 11540.54 19365.23 10467.89 7776.54 14278.30 11485.03 14380.07 137
Fast-Effi-MVS+-dtu68.34 12269.47 11967.01 13275.15 12377.97 12777.12 9855.40 16457.87 13546.68 15756.17 12560.39 11762.36 10676.32 14376.25 14485.35 13981.34 126
TDRefinement66.09 14565.03 16267.31 12569.73 17376.75 13875.33 10564.55 8260.28 12749.72 14245.63 18242.83 19960.46 12775.75 14475.95 14584.08 15078.04 149
PatchMatch-RL67.78 13166.65 15069.10 10473.01 14572.69 16368.49 15861.85 11962.93 10660.20 8656.83 12350.42 18169.52 6975.62 14574.46 15581.51 16073.62 177
EPNet_dtu68.08 12571.00 10464.67 14779.64 8968.62 17875.05 11363.30 9066.36 7945.27 16567.40 7466.84 10043.64 18375.37 14674.98 15281.15 16277.44 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v14867.85 12967.53 14168.23 11173.25 14477.57 13374.26 12557.36 15955.70 15457.45 9953.53 14255.42 14261.96 11375.23 14773.92 15685.08 14281.32 127
ambc53.42 19664.99 18863.36 19549.96 20447.07 19137.12 18428.97 20416.36 21541.82 18575.10 14867.34 18571.55 19875.72 164
IterMVS-SCA-FT66.89 14369.22 12364.17 14971.30 16475.64 14771.33 14753.17 17057.63 14149.08 14460.72 9660.05 12163.09 10274.99 14973.92 15677.07 17881.57 125
baseline70.45 10074.09 8466.20 13970.95 16675.67 14674.26 12553.57 16668.33 7458.42 9269.87 6071.45 7061.55 11874.84 15074.76 15378.42 17283.72 107
TinyColmap62.84 16161.03 18664.96 14569.61 17471.69 16668.48 15959.76 14155.41 15547.69 15247.33 17834.20 20762.76 10574.52 15172.59 16481.44 16171.47 180
LTVRE_ROB59.44 1661.82 17562.64 17760.87 16572.83 15077.19 13464.37 18058.97 14833.56 20828.00 19552.59 15842.21 20063.93 9974.52 15176.28 14277.15 17782.13 115
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMMVS65.06 15069.17 12460.26 16855.25 20663.43 19466.71 16943.01 20262.41 10950.64 13669.44 6167.04 9963.29 10174.36 15373.54 15982.68 15773.99 176
IterMVS66.36 14468.30 13664.10 15069.48 17674.61 15773.41 13950.79 18457.30 14348.28 14860.64 9759.92 12260.85 12674.14 15472.66 16381.80 15978.82 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS63.03 15967.40 14457.92 17875.14 12477.60 13260.56 19166.10 6954.11 16823.88 19953.94 14053.58 15534.50 19573.93 15577.71 12187.35 8780.94 129
pmmvs467.89 12867.39 14568.48 11071.60 16073.57 16074.45 11860.98 12564.65 9057.97 9654.95 13251.73 17561.88 11473.78 15675.11 15083.99 15277.91 150
CHOSEN 280x42058.70 18461.88 18354.98 18855.45 20550.55 20864.92 17740.36 20355.21 15638.13 18248.31 17563.76 10863.03 10473.73 15768.58 18168.00 20473.04 178
MIMVSNet58.52 18561.34 18555.22 18760.76 19567.01 18366.81 16749.02 19056.43 14838.90 18040.59 19254.54 14940.57 19073.16 15871.65 16675.30 18866.00 192
pmmvs562.37 16964.04 16860.42 16665.03 18771.67 16767.17 16452.70 17550.30 18244.80 16654.23 13851.19 17849.37 17372.88 15973.48 16083.45 15374.55 172
pmmvs-eth3d63.52 15862.44 18064.77 14666.82 18470.12 17269.41 15459.48 14354.34 16752.71 12446.24 18144.35 19856.93 14572.37 16073.77 15883.30 15475.91 162
FMVSNet557.24 18660.02 18953.99 19156.45 20362.74 19865.27 17647.03 19755.14 15739.55 17940.88 19053.42 16241.83 18472.35 16171.10 17073.79 19264.50 194
TAMVS59.58 18262.81 17655.81 18566.03 18565.64 18863.86 18248.74 19149.95 18437.07 18554.77 13358.54 12844.44 18172.29 16271.79 16574.70 18966.66 191
CMPMVSbinary47.78 1762.49 16562.52 17862.46 15870.01 17270.66 17162.97 18551.84 17951.98 17756.71 10342.87 18653.62 15457.80 13772.23 16370.37 17175.45 18775.91 162
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DTE-MVSNet61.85 17264.96 16358.22 17774.32 13374.39 15861.01 19067.85 6051.76 18021.91 20653.28 14548.17 18737.74 19272.22 16476.44 14186.52 11378.49 147
CR-MVSNet64.83 15165.54 15664.01 15270.64 16869.41 17365.97 17352.74 17357.81 13752.65 12554.27 13556.31 13960.92 12372.20 16573.09 16181.12 16375.69 165
PatchT61.97 17164.04 16859.55 17360.49 19667.40 18156.54 19748.65 19256.69 14552.65 12551.10 16652.14 17360.92 12372.20 16573.09 16178.03 17375.69 165
PEN-MVS62.96 16065.77 15459.70 17173.98 13775.45 14963.39 18467.61 6152.49 17325.49 19853.39 14349.12 18640.85 18971.94 16777.26 13186.86 10080.72 131
CVMVSNet62.55 16365.89 15258.64 17666.95 18269.15 17566.49 17256.29 16352.46 17432.70 18959.27 10658.21 13150.09 17271.77 16871.39 16879.31 16978.99 145
RPSCF67.64 13571.25 10363.43 15661.86 19470.73 17067.26 16350.86 18374.20 6058.91 8867.49 7369.33 8664.10 9871.41 16968.45 18377.61 17477.17 155
CP-MVSNet62.68 16265.49 15759.40 17471.84 15475.34 15062.87 18667.04 6452.64 17227.19 19653.38 14448.15 18841.40 18771.26 17075.68 14686.07 12182.00 119
test0.0.03 158.80 18361.58 18455.56 18675.02 12568.45 17959.58 19561.96 11752.74 17129.57 19249.75 17254.56 14831.46 19871.19 17169.77 17275.75 18364.57 193
FC-MVSNet-test56.90 18865.20 15947.21 19866.98 18163.20 19649.11 20658.60 15359.38 13111.50 21265.60 7856.68 13824.66 20571.17 17271.36 16972.38 19669.02 187
PS-CasMVS62.38 16865.06 16059.25 17571.73 15575.21 15462.77 18766.99 6551.94 17926.96 19752.00 16147.52 19141.06 18871.16 17375.60 14785.97 12881.97 121
WR-MVS_H61.83 17465.87 15357.12 18171.72 15676.87 13661.45 18966.19 6751.97 17822.92 20353.13 15052.30 17233.80 19671.03 17475.00 15186.65 10980.78 130
test-mter60.84 17864.62 16556.42 18355.99 20464.18 18965.39 17534.23 20754.39 16646.21 16057.40 12159.49 12455.86 15371.02 17569.65 17380.87 16576.20 161
test-LLR64.42 15364.36 16664.49 14875.02 12563.93 19166.61 17061.96 11754.41 16447.77 15057.46 11960.25 11855.20 15970.80 17669.33 17480.40 16674.38 173
TESTMET0.1,161.10 17764.36 16657.29 18057.53 20163.93 19166.61 17036.22 20654.41 16447.77 15057.46 11960.25 11855.20 15970.80 17669.33 17480.40 16674.38 173
GG-mvs-BLEND46.86 20167.51 14222.75 2070.05 21776.21 14364.69 1780.04 21461.90 1130.09 21855.57 12771.32 720.08 21370.54 17867.19 18771.58 19769.86 184
testgi54.39 19357.86 19250.35 19571.59 16167.24 18254.95 19953.25 16943.36 19723.78 20044.64 18347.87 18924.96 20370.45 17968.66 18073.60 19362.78 198
Anonymous2023120656.36 18957.80 19354.67 18970.08 17066.39 18560.46 19257.54 15649.50 18729.30 19333.86 20046.64 19235.18 19470.44 18068.88 17875.47 18668.88 188
test20.0353.93 19456.28 19551.19 19472.19 15365.83 18653.20 20161.08 12442.74 19822.08 20437.07 19645.76 19524.29 20670.44 18069.04 17674.31 19163.05 197
CostFormer68.92 11769.58 11868.15 11275.98 11776.17 14478.22 8951.86 17865.80 8361.56 8263.57 8862.83 11161.85 11570.40 18268.67 17979.42 16879.62 141
SCA65.40 14866.58 15164.02 15170.65 16773.37 16167.35 16253.46 16863.66 10054.14 11360.84 9560.20 12061.50 11969.96 18368.14 18477.01 17969.91 183
SixPastTwentyTwo61.84 17362.45 17961.12 16469.20 17772.20 16462.03 18857.40 15746.54 19338.03 18357.14 12241.72 20158.12 13569.67 18471.58 16781.94 15878.30 148
dps64.00 15762.99 17365.18 14273.29 14372.07 16568.98 15753.07 17157.74 13958.41 9355.55 12847.74 19060.89 12569.53 18567.14 18876.44 18271.19 181
MDTV_nov1_ep1364.37 15465.24 15863.37 15768.94 17870.81 16972.40 14550.29 18760.10 12853.91 11760.07 10159.15 12557.21 14269.43 18667.30 18677.47 17569.78 185
PM-MVS60.48 17960.94 18759.94 16958.85 19966.83 18464.27 18151.39 18155.03 16048.03 14950.00 17140.79 20358.26 13469.20 18767.13 18978.84 17177.60 152
MDTV_nov1_ep13_2view60.16 18060.51 18859.75 17065.39 18669.05 17668.00 16048.29 19451.99 17645.95 16248.01 17749.64 18553.39 16568.83 18866.52 19077.47 17569.55 186
PatchmatchNetpermissive64.21 15664.65 16463.69 15371.29 16568.66 17769.63 15351.70 18063.04 10453.77 11859.83 10458.34 13060.23 12868.54 18966.06 19175.56 18568.08 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet149.27 19753.25 19744.62 20044.61 20861.52 20153.61 20052.18 17641.62 20118.68 20828.14 20641.58 20225.50 20168.46 19069.04 17673.15 19462.37 199
RPMNet61.71 17662.88 17460.34 16769.51 17569.41 17363.48 18349.23 18857.81 13745.64 16450.51 16750.12 18253.13 16768.17 19168.49 18281.07 16475.62 167
tpm62.41 16663.15 17261.55 16272.24 15263.79 19371.31 14846.12 20057.82 13655.33 10859.90 10354.74 14753.63 16467.24 19264.29 19470.65 20074.25 175
tpm cat165.41 14763.81 17067.28 12775.61 12172.88 16275.32 10652.85 17262.97 10563.66 7753.24 14753.29 16561.83 11665.54 19364.14 19574.43 19074.60 171
EU-MVSNet54.63 19158.69 19049.90 19656.99 20262.70 19956.41 19850.64 18645.95 19523.14 20250.42 16846.51 19336.63 19365.51 19464.85 19375.57 18474.91 170
EPMVS60.00 18161.97 18257.71 17968.46 17963.17 19764.54 17948.23 19563.30 10244.72 16760.19 9956.05 14150.85 17165.27 19562.02 19869.44 20263.81 195
pmmvs347.65 19849.08 20345.99 19944.61 20854.79 20650.04 20331.95 21033.91 20629.90 19130.37 20233.53 20846.31 17863.50 19663.67 19673.14 19563.77 196
tpmrst62.00 17062.35 18161.58 16171.62 15964.14 19069.07 15648.22 19662.21 11153.93 11658.26 11655.30 14455.81 15463.22 19762.62 19770.85 19970.70 182
MVS-HIRNet54.41 19252.10 19957.11 18258.99 19856.10 20549.68 20549.10 18946.18 19452.15 12933.18 20146.11 19456.10 15063.19 19859.70 20176.64 18160.25 201
ADS-MVSNet55.94 19058.01 19153.54 19362.48 19358.48 20259.12 19646.20 19959.65 13042.88 17352.34 16053.31 16446.31 17862.00 19960.02 20064.23 20660.24 202
new-patchmatchnet46.97 20049.47 20244.05 20262.82 19156.55 20445.35 20852.01 17742.47 19917.04 21035.73 19935.21 20621.84 20961.27 20054.83 20465.26 20560.26 200
N_pmnet47.35 19950.13 20044.11 20159.98 19751.64 20751.86 20244.80 20149.58 18620.76 20740.65 19140.05 20529.64 19959.84 20155.15 20357.63 20754.00 205
Gipumacopyleft36.38 20435.80 20637.07 20345.76 20733.90 21129.81 21148.47 19339.91 20318.02 2098.00 2138.14 21725.14 20259.29 20261.02 19955.19 20940.31 207
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS51.87 19650.00 20154.07 19066.83 18357.25 20360.25 19350.91 18250.25 18334.36 18736.04 19832.02 20941.49 18658.98 20356.07 20270.56 20159.36 203
PMVScopyleft39.38 1846.06 20243.30 20449.28 19762.93 19038.75 21041.88 20953.50 16733.33 20935.46 18628.90 20531.01 21033.04 19758.61 20454.63 20568.86 20357.88 204
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MDA-MVSNet-bldmvs53.37 19553.01 19853.79 19243.67 21067.95 18059.69 19457.92 15543.69 19632.41 19041.47 18927.89 21252.38 16956.97 20565.99 19276.68 18067.13 190
new_pmnet38.40 20342.64 20533.44 20437.54 21345.00 20936.60 21032.72 20940.27 20212.72 21129.89 20328.90 21124.78 20453.17 20652.90 20656.31 20848.34 206
PMMVS225.60 20529.75 20720.76 20828.00 21430.93 21223.10 21229.18 21123.14 2111.46 21718.23 20916.54 2145.08 21140.22 20741.40 20837.76 21037.79 209
tmp_tt14.50 21014.68 2157.17 21710.46 2172.21 21337.73 20528.71 19425.26 20716.98 2134.37 21231.49 20829.77 20926.56 213
MVEpermissive19.12 1920.47 20823.27 20817.20 20912.66 21625.41 21310.52 21634.14 20814.79 2146.53 2168.79 2124.68 21816.64 21029.49 20941.63 20722.73 21438.11 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft18.74 21618.55 2138.02 21226.96 2107.33 21323.81 20813.05 21625.99 20025.17 21022.45 21536.25 210
E-PMN21.77 20618.24 20925.89 20540.22 21119.58 21412.46 21539.87 20418.68 2136.71 2149.57 2104.31 22022.36 20819.89 21127.28 21033.73 21128.34 211
EMVS20.98 20717.15 21025.44 20639.51 21219.37 21512.66 21439.59 20519.10 2126.62 2159.27 2114.40 21922.43 20717.99 21224.40 21131.81 21225.53 212
testmvs0.09 2090.15 2110.02 2110.01 2180.02 2180.05 2190.01 2150.11 2150.01 2190.26 2150.01 2210.06 2150.10 2130.10 2120.01 2160.43 214
test1230.09 2090.14 2120.02 2110.00 2190.02 2180.02 2200.01 2150.09 2160.00 2200.30 2140.00 2220.08 2130.03 2140.09 2130.01 2160.45 213
uanet_test0.00 2110.00 2130.00 2130.00 2190.00 2200.00 2210.00 2170.00 2170.00 2200.00 2160.00 2220.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2190.00 2200.00 2210.00 2170.00 2170.00 2200.00 2160.00 2220.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2190.00 2200.00 2210.00 2170.00 2170.00 2200.00 2160.00 2220.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def46.24 159
9.1486.88 15
SR-MVS88.99 3473.57 2587.54 13
our_test_367.93 18070.99 16866.89 166
MTAPA83.48 186.45 18
MTMP82.66 584.91 26
Patchmatch-RL test2.85 218
XVS86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
X-MVStestdata86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
abl_679.05 4387.27 4288.85 2683.62 5668.25 5581.68 4172.94 4073.79 4584.45 2872.55 5089.66 4590.64 43
mPP-MVS89.90 2581.29 42
NP-MVS80.10 46
Patchmtry65.80 18765.97 17352.74 17352.65 125