SMA-MVS | | | 77.32 6 | 82.51 6 | 71.26 7 | 75.43 14 | 80.19 8 | 82.22 7 | 58.26 3 | 84.83 6 | 64.36 8 | 78.19 15 | 83.46 5 | 63.61 7 | 81.00 1 | 80.28 1 | 83.66 4 | 89.62 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SteuartSystems-ACMMP | | | 75.23 12 | 79.60 14 | 70.13 13 | 76.81 7 | 78.92 12 | 81.74 8 | 57.99 5 | 75.30 30 | 59.83 26 | 75.69 18 | 78.45 24 | 60.48 29 | 80.58 2 | 79.77 2 | 83.94 3 | 88.52 9 |
Skip Steuart: Steuart Systems R&D Blog. |
SED-MVS | | | 79.21 1 | 84.74 2 | 72.75 1 | 78.66 3 | 81.96 2 | 82.94 5 | 58.16 4 | 86.82 2 | 67.66 1 | 88.29 4 | 86.15 2 | 66.42 1 | 80.41 3 | 78.65 6 | 82.65 17 | 90.92 2 |
|
CNVR-MVS | | | 75.62 11 | 79.91 13 | 70.61 10 | 75.76 10 | 78.82 14 | 81.66 9 | 57.12 13 | 79.77 17 | 63.04 14 | 70.69 24 | 81.15 15 | 62.99 10 | 80.23 4 | 79.54 3 | 83.11 9 | 89.16 7 |
|
ACMMP_NAP | | | 76.15 8 | 81.17 8 | 70.30 11 | 74.09 20 | 79.47 10 | 81.59 12 | 57.09 14 | 81.38 11 | 63.89 11 | 79.02 13 | 80.48 18 | 62.24 18 | 80.05 5 | 79.12 4 | 82.94 12 | 88.64 8 |
|
DVP-MVS | | | 78.77 2 | 84.89 1 | 71.62 4 | 78.04 4 | 82.05 1 | 81.64 10 | 57.96 6 | 87.53 1 | 66.64 2 | 88.77 1 | 86.31 1 | 63.16 9 | 79.99 6 | 78.56 7 | 82.31 22 | 91.03 1 |
|
NCCC | | | 74.27 19 | 77.83 24 | 70.13 13 | 75.70 11 | 77.41 23 | 80.51 15 | 57.09 14 | 78.25 21 | 62.28 18 | 65.54 37 | 78.26 25 | 62.18 19 | 79.13 7 | 78.51 9 | 83.01 11 | 87.68 17 |
|
DeepC-MVS | | 66.32 2 | 73.85 23 | 78.10 22 | 68.90 23 | 67.92 50 | 79.31 11 | 78.16 29 | 59.28 1 | 78.24 22 | 61.13 20 | 67.36 36 | 76.10 33 | 63.40 8 | 79.11 8 | 78.41 10 | 83.52 5 | 88.16 12 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HPM-MVS++ | | | 76.01 9 | 80.47 11 | 70.81 9 | 76.60 8 | 74.96 36 | 80.18 17 | 58.36 2 | 81.96 10 | 63.50 12 | 78.80 14 | 82.53 10 | 64.40 5 | 78.74 9 | 78.84 5 | 81.81 32 | 87.46 18 |
|
DPE-MVS | | | 78.11 3 | 83.84 3 | 71.42 5 | 77.82 6 | 81.32 3 | 82.92 6 | 57.81 8 | 84.04 7 | 63.19 13 | 88.63 2 | 86.00 3 | 64.52 4 | 78.71 10 | 77.63 15 | 82.26 23 | 90.57 3 |
|
HFP-MVS | | | 74.87 14 | 78.86 19 | 70.21 12 | 73.99 21 | 77.91 18 | 80.36 16 | 56.63 16 | 78.41 20 | 64.27 9 | 74.54 20 | 77.75 28 | 62.96 11 | 78.70 11 | 77.82 12 | 83.02 10 | 86.91 21 |
|
DeepPCF-MVS | | 66.49 1 | 74.25 20 | 80.97 9 | 66.41 32 | 67.75 52 | 78.87 13 | 75.61 39 | 54.16 34 | 84.86 5 | 58.22 33 | 77.94 16 | 81.01 16 | 62.52 16 | 78.34 12 | 77.38 16 | 80.16 49 | 88.40 10 |
|
ACMMPR | | | 73.79 24 | 78.41 20 | 68.40 25 | 72.35 28 | 77.79 19 | 79.32 21 | 56.38 19 | 77.67 24 | 58.30 32 | 74.16 21 | 76.66 29 | 61.40 23 | 78.32 13 | 77.80 13 | 82.68 16 | 86.51 22 |
|
APDe-MVS | | | 77.58 5 | 82.93 5 | 71.35 6 | 77.86 5 | 80.55 6 | 83.38 1 | 57.61 9 | 85.57 4 | 61.11 21 | 86.10 6 | 82.98 7 | 64.76 3 | 78.29 14 | 76.78 22 | 83.40 6 | 90.20 4 |
|
PGM-MVS | | | 72.89 26 | 77.13 26 | 67.94 26 | 72.47 27 | 77.25 24 | 79.27 22 | 54.63 30 | 73.71 35 | 57.95 34 | 72.38 22 | 75.33 35 | 60.75 27 | 78.25 15 | 77.36 18 | 82.57 20 | 85.62 29 |
|
zzz-MVS | | | 74.25 20 | 77.97 23 | 69.91 15 | 73.43 24 | 74.06 44 | 79.69 19 | 56.44 18 | 80.74 14 | 64.98 4 | 68.72 30 | 79.98 20 | 62.92 12 | 78.24 16 | 77.77 14 | 81.99 30 | 86.30 23 |
|
MSP-MVS | | | 77.82 4 | 83.46 4 | 71.24 8 | 75.26 16 | 80.22 7 | 82.95 4 | 57.85 7 | 85.90 3 | 64.79 5 | 88.54 3 | 83.43 6 | 66.24 2 | 78.21 17 | 78.56 7 | 80.34 46 | 89.39 6 |
|
MCST-MVS | | | 73.67 25 | 77.39 25 | 69.33 19 | 76.26 9 | 78.19 17 | 78.77 26 | 54.54 31 | 75.33 28 | 59.99 25 | 67.96 32 | 79.23 22 | 62.43 17 | 78.00 18 | 75.71 29 | 84.02 2 | 87.30 19 |
|
DeepC-MVS_fast | | 65.08 3 | 72.00 30 | 76.11 29 | 67.21 29 | 68.93 46 | 77.46 21 | 76.54 35 | 54.35 32 | 74.92 32 | 58.64 31 | 65.18 38 | 74.04 43 | 62.62 15 | 77.92 19 | 77.02 21 | 82.16 29 | 86.21 24 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
X-MVS | | | 71.18 33 | 75.66 33 | 65.96 36 | 71.71 30 | 76.96 26 | 77.26 33 | 55.88 23 | 72.75 38 | 54.48 49 | 64.39 41 | 74.47 38 | 54.19 65 | 77.84 20 | 77.37 17 | 82.21 26 | 85.85 27 |
|
MP-MVS | | | 74.31 18 | 78.87 17 | 68.99 22 | 73.49 23 | 78.56 15 | 79.25 23 | 56.51 17 | 75.33 28 | 60.69 23 | 75.30 19 | 79.12 23 | 61.81 21 | 77.78 21 | 77.93 11 | 82.18 28 | 88.06 13 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CP-MVS | | | 72.63 28 | 76.95 28 | 67.59 27 | 70.67 36 | 75.53 34 | 77.95 31 | 56.01 22 | 75.65 27 | 58.82 29 | 69.16 29 | 76.48 31 | 60.46 30 | 77.66 22 | 77.20 20 | 81.65 36 | 86.97 20 |
|
OPM-MVS | | | 69.33 38 | 71.05 46 | 67.32 28 | 72.34 29 | 75.70 33 | 79.57 20 | 56.34 20 | 55.21 70 | 53.81 54 | 59.51 61 | 68.96 54 | 59.67 33 | 77.61 23 | 76.44 25 | 82.19 27 | 83.88 40 |
|
CSCG | | | 74.68 15 | 79.22 15 | 69.40 18 | 75.69 12 | 80.01 9 | 79.12 24 | 52.83 42 | 79.34 18 | 63.99 10 | 70.49 25 | 82.02 11 | 60.35 31 | 77.48 24 | 77.22 19 | 84.38 1 | 87.97 14 |
|
train_agg | | | 73.89 22 | 78.25 21 | 68.80 24 | 75.25 17 | 72.27 52 | 79.75 18 | 56.05 21 | 74.87 33 | 58.97 28 | 81.83 11 | 79.76 21 | 61.05 26 | 77.39 25 | 76.01 28 | 81.71 35 | 85.61 30 |
|
xxxxxxxxxxxxxcwj | | | 74.63 16 | 77.07 27 | 71.79 2 | 79.32 1 | 80.76 4 | 82.96 2 | 57.49 10 | 82.82 8 | 64.79 5 | 83.69 9 | 52.03 117 | 62.83 13 | 77.13 26 | 75.21 31 | 83.35 7 | 87.85 15 |
|
SF-MVS | | | 77.13 7 | 81.70 7 | 71.79 2 | 79.32 1 | 80.76 4 | 82.96 2 | 57.49 10 | 82.82 8 | 64.79 5 | 83.69 9 | 84.46 4 | 62.83 13 | 77.13 26 | 75.21 31 | 83.35 7 | 87.85 15 |
|
ACMMP | | | 71.57 31 | 75.84 31 | 66.59 31 | 70.30 40 | 76.85 29 | 78.46 28 | 53.95 35 | 73.52 36 | 55.56 39 | 70.13 26 | 71.36 48 | 58.55 38 | 77.00 28 | 76.23 26 | 82.71 15 | 85.81 28 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
TSAR-MVS + MP. | | | 75.22 13 | 80.06 12 | 69.56 17 | 74.61 18 | 72.74 50 | 80.59 14 | 55.70 24 | 80.80 13 | 62.65 16 | 86.25 5 | 82.92 8 | 62.07 20 | 76.89 29 | 75.66 30 | 81.77 34 | 85.19 33 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APD-MVS | | | 75.80 10 | 80.90 10 | 69.86 16 | 75.42 15 | 78.48 16 | 81.43 13 | 57.44 12 | 80.45 15 | 59.32 27 | 85.28 7 | 80.82 17 | 63.96 6 | 76.89 29 | 76.08 27 | 81.58 38 | 88.30 11 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
3Dnovator+ | | 62.63 4 | 69.51 36 | 72.62 40 | 65.88 37 | 68.21 49 | 76.47 30 | 73.50 49 | 52.74 43 | 70.85 44 | 58.65 30 | 55.97 75 | 69.95 51 | 61.11 25 | 76.80 31 | 75.09 33 | 81.09 42 | 83.23 45 |
|
CLD-MVS | | | 67.02 50 | 71.57 43 | 61.71 52 | 71.01 35 | 74.81 38 | 71.62 53 | 38.91 154 | 71.86 41 | 60.70 22 | 64.97 39 | 67.88 61 | 51.88 88 | 76.77 32 | 74.98 37 | 76.11 92 | 69.75 120 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
DPM-MVS | | | 72.80 27 | 75.90 30 | 69.19 21 | 75.51 13 | 77.68 20 | 81.62 11 | 54.83 27 | 75.96 26 | 62.06 19 | 63.96 43 | 76.58 30 | 58.55 38 | 76.66 33 | 76.77 23 | 82.60 19 | 83.68 42 |
|
CDPH-MVS | | | 71.47 32 | 75.82 32 | 66.41 32 | 72.97 26 | 77.15 25 | 78.14 30 | 54.71 28 | 69.88 48 | 53.07 56 | 70.98 23 | 74.83 37 | 56.95 51 | 76.22 34 | 76.57 24 | 82.62 18 | 85.09 34 |
|
MVS_111021_HR | | | 67.62 47 | 70.39 50 | 64.39 44 | 69.77 42 | 70.45 58 | 71.44 55 | 51.72 48 | 60.77 64 | 55.06 43 | 62.14 53 | 66.40 63 | 58.13 41 | 76.13 35 | 74.79 38 | 80.19 48 | 82.04 49 |
|
HQP-MVS | | | 70.88 34 | 75.02 34 | 66.05 35 | 71.69 31 | 74.47 41 | 77.51 32 | 53.17 39 | 72.89 37 | 54.88 45 | 70.03 27 | 70.48 50 | 57.26 47 | 76.02 36 | 75.01 36 | 81.78 33 | 86.21 24 |
|
LGP-MVS_train | | | 68.87 40 | 72.03 42 | 65.18 40 | 69.33 44 | 74.03 45 | 76.67 34 | 53.88 36 | 68.46 49 | 52.05 59 | 63.21 45 | 63.89 67 | 56.31 55 | 75.99 37 | 74.43 40 | 82.83 14 | 84.18 36 |
|
MVS_0304 | | | 69.49 37 | 73.96 36 | 64.28 46 | 67.92 50 | 76.13 32 | 74.90 42 | 47.60 67 | 63.29 58 | 54.09 53 | 67.44 35 | 76.35 32 | 59.53 34 | 75.81 38 | 75.03 34 | 81.62 37 | 83.70 41 |
|
ACMM | | 60.30 7 | 67.58 48 | 68.82 57 | 66.13 34 | 70.59 37 | 72.01 54 | 76.54 35 | 54.26 33 | 65.64 54 | 54.78 47 | 50.35 102 | 61.72 77 | 58.74 36 | 75.79 39 | 75.03 34 | 81.88 31 | 81.17 52 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PHI-MVS | | | 69.27 39 | 74.84 35 | 62.76 51 | 66.83 54 | 74.83 37 | 73.88 47 | 49.32 61 | 70.61 45 | 50.93 60 | 69.62 28 | 74.84 36 | 57.25 48 | 75.53 40 | 74.32 41 | 78.35 65 | 84.17 37 |
|
SD-MVS | | | 74.43 17 | 78.87 17 | 69.26 20 | 74.39 19 | 73.70 46 | 79.06 25 | 55.24 26 | 81.04 12 | 62.71 15 | 80.18 12 | 82.61 9 | 61.70 22 | 75.43 41 | 73.92 44 | 82.44 21 | 85.22 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MAR-MVS | | | 68.04 45 | 70.74 48 | 64.90 42 | 71.68 32 | 76.33 31 | 74.63 44 | 50.48 56 | 63.81 56 | 55.52 40 | 54.88 81 | 69.90 52 | 57.39 45 | 75.42 42 | 74.79 38 | 79.71 51 | 80.03 56 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
AdaColmap | | | 67.89 46 | 68.85 56 | 66.77 30 | 73.73 22 | 74.30 43 | 75.28 40 | 53.58 37 | 70.24 46 | 57.59 35 | 51.19 99 | 59.19 89 | 60.74 28 | 75.33 43 | 73.72 46 | 79.69 54 | 77.96 67 |
|
TSAR-MVS + ACMM | | | 72.56 29 | 79.07 16 | 64.96 41 | 73.24 25 | 73.16 49 | 78.50 27 | 48.80 65 | 79.34 18 | 55.32 41 | 85.04 8 | 81.49 14 | 58.57 37 | 75.06 44 | 73.75 45 | 75.35 102 | 85.61 30 |
|
ACMP | | 61.42 5 | 68.72 43 | 71.37 44 | 65.64 38 | 69.06 45 | 74.45 42 | 75.88 38 | 53.30 38 | 68.10 50 | 55.74 38 | 61.53 56 | 62.29 73 | 56.97 50 | 74.70 45 | 74.23 42 | 82.88 13 | 84.31 35 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DELS-MVS | | | 65.87 52 | 70.30 52 | 60.71 54 | 64.05 72 | 72.68 51 | 70.90 56 | 45.43 79 | 57.49 67 | 49.05 69 | 64.43 40 | 68.66 55 | 55.11 63 | 74.31 46 | 73.02 49 | 79.70 52 | 81.51 50 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CANet | | | 68.77 41 | 73.01 38 | 63.83 47 | 68.30 47 | 75.19 35 | 73.73 48 | 47.90 66 | 63.86 55 | 54.84 46 | 67.51 34 | 74.36 41 | 57.62 42 | 74.22 47 | 73.57 48 | 80.56 44 | 82.36 46 |
|
3Dnovator | | 60.86 6 | 66.99 51 | 70.32 51 | 63.11 49 | 66.63 55 | 74.52 39 | 71.56 54 | 45.76 75 | 67.37 52 | 55.00 44 | 54.31 86 | 68.19 58 | 58.49 40 | 73.97 48 | 73.63 47 | 81.22 41 | 80.23 55 |
|
ETV-MVS | | | 63.23 61 | 66.08 65 | 59.91 59 | 63.13 76 | 68.13 68 | 67.62 62 | 44.62 89 | 53.39 78 | 46.23 77 | 58.74 63 | 58.19 92 | 57.45 44 | 73.60 49 | 71.38 54 | 80.39 45 | 79.13 59 |
|
CS-MVS | | | 63.45 59 | 65.72 68 | 60.80 53 | 64.20 69 | 67.86 71 | 68.46 60 | 43.50 114 | 53.86 74 | 49.90 64 | 56.44 72 | 60.45 84 | 57.27 46 | 73.56 50 | 70.13 63 | 81.45 40 | 77.73 69 |
|
TSAR-MVS + GP. | | | 69.71 35 | 73.92 37 | 64.80 43 | 68.27 48 | 70.56 57 | 71.90 51 | 50.75 52 | 71.38 42 | 57.46 36 | 68.68 31 | 75.42 34 | 60.10 32 | 73.47 51 | 73.99 43 | 80.32 47 | 83.97 38 |
|
CPTT-MVS | | | 68.76 42 | 73.01 38 | 63.81 48 | 65.42 62 | 73.66 47 | 76.39 37 | 52.08 44 | 72.61 39 | 50.33 62 | 60.73 57 | 72.65 46 | 59.43 35 | 73.32 52 | 72.12 50 | 79.19 58 | 85.99 26 |
|
PVSNet_Blended_VisFu | | | 63.65 58 | 66.92 59 | 59.83 60 | 60.03 89 | 73.44 48 | 66.33 74 | 48.95 63 | 52.20 88 | 50.81 61 | 56.07 74 | 60.25 85 | 53.56 70 | 73.23 53 | 70.01 64 | 79.30 56 | 83.24 44 |
|
MSLP-MVS++ | | | 68.17 44 | 70.72 49 | 65.19 39 | 69.41 43 | 70.64 56 | 74.99 41 | 45.76 75 | 70.20 47 | 60.17 24 | 56.42 73 | 73.01 44 | 61.14 24 | 72.80 54 | 70.54 58 | 79.70 52 | 81.42 51 |
|
QAPM | | | 65.27 54 | 69.49 55 | 60.35 56 | 65.43 61 | 72.20 53 | 65.69 83 | 47.23 68 | 63.46 57 | 49.14 67 | 53.56 87 | 71.04 49 | 57.01 49 | 72.60 55 | 71.41 53 | 77.62 69 | 82.14 48 |
|
EPNet | | | 65.14 56 | 69.54 54 | 60.00 58 | 66.61 56 | 67.67 75 | 67.53 63 | 55.32 25 | 62.67 60 | 46.22 78 | 67.74 33 | 65.93 64 | 48.07 107 | 72.17 56 | 72.12 50 | 76.28 88 | 78.47 64 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
canonicalmvs | | | 65.62 53 | 72.06 41 | 58.11 67 | 63.94 73 | 71.05 55 | 64.49 92 | 43.18 122 | 74.08 34 | 47.35 71 | 64.17 42 | 71.97 47 | 51.17 91 | 71.87 57 | 70.74 55 | 78.51 63 | 80.56 54 |
|
EG-PatchMatch MVS | | | 56.98 103 | 58.24 124 | 55.50 89 | 64.66 65 | 68.62 64 | 61.48 103 | 43.63 109 | 38.44 185 | 41.44 100 | 38.05 175 | 46.18 154 | 43.95 125 | 71.71 58 | 70.61 57 | 77.87 66 | 74.08 100 |
|
PCF-MVS | | 59.98 8 | 67.32 49 | 71.04 47 | 62.97 50 | 64.77 64 | 74.49 40 | 74.78 43 | 49.54 59 | 67.44 51 | 54.39 52 | 58.35 66 | 72.81 45 | 55.79 61 | 71.54 59 | 69.24 67 | 78.57 60 | 83.41 43 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test_part1 | | | 63.06 62 | 65.27 71 | 60.47 55 | 66.24 60 | 70.17 59 | 71.86 52 | 45.36 81 | 53.75 75 | 49.61 65 | 44.85 144 | 65.53 65 | 48.93 98 | 71.39 60 | 70.65 56 | 80.82 43 | 80.59 53 |
|
ACMH | | 52.42 13 | 58.24 94 | 59.56 111 | 56.70 83 | 66.34 58 | 69.59 60 | 66.71 71 | 49.12 62 | 46.08 134 | 28.90 157 | 42.67 164 | 41.20 181 | 52.60 81 | 71.39 60 | 70.28 60 | 76.51 84 | 75.72 88 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OMC-MVS | | | 65.16 55 | 71.35 45 | 57.94 71 | 52.95 143 | 68.82 63 | 69.00 57 | 38.28 161 | 79.89 16 | 55.20 42 | 62.76 49 | 68.31 57 | 56.14 58 | 71.30 62 | 68.70 73 | 76.06 94 | 79.67 57 |
|
Fast-Effi-MVS+ | | | 60.36 74 | 63.35 81 | 56.87 81 | 58.70 94 | 65.86 93 | 65.08 88 | 37.11 167 | 53.00 83 | 45.36 82 | 52.12 94 | 56.07 104 | 56.27 56 | 71.28 63 | 69.42 66 | 78.71 59 | 75.69 89 |
|
IS_MVSNet | | | 57.95 97 | 64.26 78 | 50.60 117 | 61.62 81 | 65.25 100 | 57.18 126 | 45.42 80 | 50.79 92 | 26.49 168 | 57.81 68 | 60.05 86 | 34.51 168 | 71.24 64 | 70.20 62 | 78.36 64 | 74.44 96 |
|
Vis-MVSNet | | | 58.48 88 | 65.70 69 | 50.06 122 | 53.40 140 | 67.20 81 | 60.24 112 | 43.32 119 | 48.83 110 | 30.23 150 | 62.38 52 | 61.61 78 | 40.35 143 | 71.03 65 | 69.77 65 | 72.82 129 | 79.11 60 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EIA-MVS | | | 61.53 72 | 63.79 80 | 58.89 64 | 63.82 74 | 67.61 76 | 65.35 86 | 42.15 132 | 49.98 96 | 45.66 80 | 57.47 70 | 56.62 99 | 56.59 54 | 70.91 66 | 69.15 68 | 79.78 50 | 74.80 94 |
|
EPP-MVSNet | | | 59.39 78 | 65.45 70 | 52.32 112 | 60.96 84 | 67.70 74 | 58.42 120 | 44.75 87 | 49.71 98 | 27.23 165 | 59.03 62 | 62.20 74 | 43.34 129 | 70.71 67 | 69.13 69 | 79.25 57 | 79.63 58 |
|
casdiffmvs | | | 64.09 57 | 68.13 58 | 59.37 62 | 61.81 78 | 68.32 67 | 68.48 59 | 44.45 92 | 61.95 61 | 49.12 68 | 63.04 46 | 69.67 53 | 53.83 68 | 70.46 68 | 66.06 110 | 78.55 61 | 77.43 70 |
|
PVSNet_BlendedMVS | | | 61.63 70 | 64.82 74 | 57.91 73 | 57.21 115 | 67.55 77 | 63.47 98 | 46.08 73 | 54.72 71 | 52.46 57 | 58.59 64 | 60.73 80 | 51.82 89 | 70.46 68 | 65.20 124 | 76.44 85 | 76.50 82 |
|
PVSNet_Blended | | | 61.63 70 | 64.82 74 | 57.91 73 | 57.21 115 | 67.55 77 | 63.47 98 | 46.08 73 | 54.72 71 | 52.46 57 | 58.59 64 | 60.73 80 | 51.82 89 | 70.46 68 | 65.20 124 | 76.44 85 | 76.50 82 |
|
Effi-MVS+ | | | 63.28 60 | 65.96 66 | 60.17 57 | 64.26 68 | 68.06 69 | 68.78 58 | 45.71 77 | 54.08 73 | 46.64 75 | 55.92 76 | 63.13 71 | 55.94 59 | 70.38 71 | 71.43 52 | 79.68 55 | 78.70 62 |
|
MVS_111021_LR | | | 63.05 63 | 66.43 62 | 59.10 63 | 61.33 82 | 63.77 109 | 65.87 80 | 43.58 110 | 60.20 65 | 53.70 55 | 62.09 54 | 62.38 72 | 55.84 60 | 70.24 72 | 68.08 78 | 74.30 109 | 78.28 66 |
|
OpenMVS | | 57.13 9 | 62.81 64 | 65.75 67 | 59.39 61 | 66.47 57 | 69.52 61 | 64.26 94 | 43.07 124 | 61.34 63 | 50.19 63 | 47.29 119 | 64.41 66 | 54.60 64 | 70.18 73 | 68.62 75 | 77.73 67 | 78.89 61 |
|
ACMH+ | | 53.71 12 | 59.26 79 | 60.28 97 | 58.06 68 | 64.17 71 | 68.46 65 | 67.51 64 | 50.93 51 | 52.46 87 | 35.83 129 | 40.83 169 | 45.12 163 | 52.32 84 | 69.88 74 | 69.00 71 | 77.59 71 | 76.21 85 |
|
CNLPA | | | 62.78 65 | 66.31 63 | 58.65 65 | 58.47 97 | 68.41 66 | 65.98 79 | 41.22 139 | 78.02 23 | 56.04 37 | 46.65 122 | 59.50 88 | 57.50 43 | 69.67 75 | 65.27 122 | 72.70 133 | 76.67 77 |
|
TSAR-MVS + COLMAP | | | 62.65 66 | 69.90 53 | 54.19 95 | 46.31 180 | 66.73 85 | 65.49 85 | 41.36 137 | 76.57 25 | 46.31 76 | 76.80 17 | 56.68 98 | 53.27 78 | 69.50 76 | 66.65 100 | 72.40 138 | 76.36 84 |
|
DCV-MVSNet | | | 59.49 77 | 64.00 79 | 54.23 94 | 61.81 78 | 64.33 106 | 61.42 104 | 43.77 103 | 52.85 84 | 38.94 117 | 55.62 78 | 62.15 75 | 43.24 132 | 69.39 77 | 67.66 86 | 76.22 90 | 75.97 86 |
|
Anonymous202405211 | | | | 60.60 93 | | 63.44 75 | 66.71 88 | 61.00 108 | 47.23 68 | 50.62 94 | | 36.85 178 | 60.63 83 | 43.03 133 | 69.17 78 | 67.72 85 | 75.41 99 | 72.54 105 |
|
DI_MVS_plusplus_trai | | | 61.88 68 | 65.17 73 | 58.06 68 | 60.05 88 | 65.26 98 | 66.03 77 | 44.22 93 | 55.75 69 | 46.73 73 | 54.64 84 | 68.12 59 | 54.13 67 | 69.13 79 | 66.66 99 | 77.18 76 | 76.61 78 |
|
TranMVSNet+NR-MVSNet | | | 55.87 112 | 60.14 102 | 50.88 116 | 59.46 93 | 63.82 108 | 57.93 122 | 52.98 40 | 48.94 108 | 20.52 181 | 52.87 89 | 47.33 141 | 36.81 161 | 69.12 80 | 69.03 70 | 77.56 72 | 69.89 119 |
|
LS3D | | | 60.20 76 | 61.70 85 | 58.45 66 | 64.18 70 | 67.77 72 | 67.19 65 | 48.84 64 | 61.67 62 | 41.27 103 | 45.89 134 | 51.81 118 | 54.18 66 | 68.78 81 | 66.50 105 | 75.03 104 | 69.48 126 |
|
UniMVSNet_NR-MVSNet | | | 56.94 105 | 61.14 88 | 52.05 114 | 60.02 90 | 65.21 101 | 57.44 124 | 52.93 41 | 49.37 102 | 24.31 175 | 54.62 85 | 50.54 124 | 39.04 147 | 68.69 82 | 68.84 72 | 78.53 62 | 70.72 113 |
|
FC-MVSNet-train | | | 58.40 90 | 63.15 82 | 52.85 108 | 64.29 67 | 61.84 118 | 55.98 138 | 46.47 71 | 53.06 81 | 34.96 132 | 61.95 55 | 56.37 102 | 39.49 145 | 68.67 83 | 68.36 77 | 75.92 96 | 71.81 108 |
|
MSDG | | | 58.46 89 | 58.97 117 | 57.85 75 | 66.27 59 | 66.23 91 | 67.72 61 | 42.33 128 | 53.43 77 | 43.68 89 | 43.39 155 | 45.35 159 | 49.75 95 | 68.66 84 | 67.77 83 | 77.38 73 | 67.96 135 |
|
NR-MVSNet | | | 55.35 118 | 59.46 112 | 50.56 118 | 61.33 82 | 62.97 112 | 57.91 123 | 51.80 46 | 48.62 116 | 20.59 180 | 51.99 95 | 44.73 169 | 34.10 171 | 68.58 85 | 68.64 74 | 77.66 68 | 70.67 117 |
|
MVS_Test | | | 62.40 67 | 66.23 64 | 57.94 71 | 59.77 92 | 64.77 104 | 66.50 73 | 41.76 133 | 57.26 68 | 49.33 66 | 62.68 50 | 67.47 62 | 53.50 73 | 68.57 86 | 66.25 107 | 76.77 81 | 76.58 79 |
|
Anonymous20231211 | | | 57.71 99 | 60.79 91 | 54.13 96 | 61.68 80 | 65.81 94 | 60.81 109 | 43.70 107 | 51.97 89 | 39.67 112 | 34.82 183 | 63.59 68 | 43.31 130 | 68.55 87 | 66.63 101 | 75.59 97 | 74.13 99 |
|
TAPA-MVS | | 54.74 10 | 60.85 73 | 66.61 60 | 54.12 97 | 47.38 176 | 65.33 96 | 65.35 86 | 36.51 170 | 75.16 31 | 48.82 70 | 54.70 83 | 63.51 69 | 53.31 77 | 68.36 88 | 64.97 128 | 73.37 121 | 74.27 97 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MS-PatchMatch | | | 58.19 96 | 60.20 100 | 55.85 87 | 65.17 63 | 64.16 107 | 64.82 89 | 41.48 136 | 50.95 91 | 42.17 98 | 45.38 139 | 56.42 100 | 48.08 106 | 68.30 89 | 66.70 98 | 73.39 120 | 69.46 128 |
|
CANet_DTU | | | 58.88 82 | 64.68 76 | 52.12 113 | 55.77 123 | 66.75 84 | 63.92 95 | 37.04 168 | 53.32 79 | 37.45 125 | 59.81 59 | 61.81 76 | 44.43 124 | 68.25 90 | 67.47 89 | 74.12 111 | 75.33 92 |
|
UGNet | | | 57.03 102 | 65.25 72 | 47.44 150 | 46.54 179 | 66.73 85 | 56.30 133 | 43.28 120 | 50.06 95 | 32.99 136 | 62.57 51 | 63.26 70 | 33.31 173 | 68.25 90 | 67.58 87 | 72.20 141 | 78.29 65 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PLC | | 52.09 14 | 59.21 80 | 62.47 83 | 55.41 90 | 53.24 141 | 64.84 103 | 64.47 93 | 40.41 148 | 65.92 53 | 44.53 86 | 46.19 130 | 55.69 105 | 55.33 62 | 68.24 92 | 65.30 121 | 74.50 107 | 71.09 111 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
UA-Net | | | 58.50 87 | 64.68 76 | 51.30 115 | 66.97 53 | 67.13 82 | 53.68 154 | 45.65 78 | 49.51 101 | 31.58 144 | 62.91 47 | 68.47 56 | 35.85 164 | 68.20 93 | 67.28 90 | 74.03 112 | 69.24 130 |
|
MVSTER | | | 57.19 101 | 61.11 89 | 52.62 110 | 50.82 163 | 58.79 145 | 61.55 102 | 37.86 164 | 48.81 111 | 41.31 102 | 57.43 71 | 52.10 116 | 48.60 102 | 68.19 94 | 66.75 97 | 75.56 98 | 75.68 90 |
|
DU-MVS | | | 55.41 117 | 59.59 108 | 50.54 119 | 54.60 131 | 62.97 112 | 57.44 124 | 51.80 46 | 48.62 116 | 24.31 175 | 51.99 95 | 47.00 144 | 39.04 147 | 68.11 95 | 67.75 84 | 76.03 95 | 70.72 113 |
|
Baseline_NR-MVSNet | | | 53.50 129 | 57.89 126 | 48.37 141 | 54.60 131 | 59.25 142 | 56.10 134 | 51.84 45 | 49.32 103 | 17.92 188 | 45.38 139 | 47.68 136 | 36.93 160 | 68.11 95 | 65.95 112 | 72.84 128 | 69.57 124 |
|
Effi-MVS+-dtu | | | 60.34 75 | 62.32 84 | 58.03 70 | 64.31 66 | 67.44 79 | 65.99 78 | 42.26 129 | 49.55 99 | 42.00 99 | 48.92 109 | 59.79 87 | 56.27 56 | 68.07 97 | 67.03 91 | 77.35 74 | 75.45 91 |
|
GBi-Net | | | 55.20 119 | 60.25 98 | 49.31 125 | 52.42 146 | 61.44 120 | 57.03 127 | 44.04 97 | 49.18 105 | 30.47 146 | 48.28 111 | 58.19 92 | 38.22 150 | 68.05 98 | 66.96 92 | 73.69 116 | 69.65 121 |
|
test1 | | | 55.20 119 | 60.25 98 | 49.31 125 | 52.42 146 | 61.44 120 | 57.03 127 | 44.04 97 | 49.18 105 | 30.47 146 | 48.28 111 | 58.19 92 | 38.22 150 | 68.05 98 | 66.96 92 | 73.69 116 | 69.65 121 |
|
FMVSNet1 | | | 54.08 127 | 58.68 119 | 48.71 135 | 50.90 162 | 61.35 123 | 56.73 131 | 43.94 101 | 45.91 135 | 29.32 156 | 42.72 163 | 56.26 103 | 37.70 155 | 68.05 98 | 66.96 92 | 73.69 116 | 69.50 125 |
|
v10 | | | 59.17 81 | 60.60 93 | 57.50 76 | 57.95 100 | 66.73 85 | 67.09 69 | 44.11 94 | 46.85 127 | 45.42 81 | 48.18 115 | 51.07 120 | 53.63 69 | 67.84 101 | 66.59 103 | 76.79 80 | 76.92 75 |
|
UniMVSNet (Re) | | | 55.15 122 | 60.39 96 | 49.03 131 | 55.31 125 | 64.59 105 | 55.77 139 | 50.63 53 | 48.66 115 | 20.95 179 | 51.47 97 | 50.40 125 | 34.41 170 | 67.81 102 | 67.89 80 | 77.11 79 | 71.88 107 |
|
v1144 | | | 58.88 82 | 60.16 101 | 57.39 77 | 58.03 99 | 67.26 80 | 67.14 67 | 44.46 91 | 45.17 139 | 44.33 87 | 47.81 116 | 49.92 128 | 53.20 79 | 67.77 103 | 66.62 102 | 77.15 77 | 76.58 79 |
|
tttt0517 | | | 56.53 109 | 59.59 108 | 52.95 107 | 52.66 145 | 60.99 127 | 59.21 117 | 40.51 144 | 47.89 122 | 40.40 108 | 52.50 93 | 46.04 155 | 49.78 93 | 67.75 104 | 67.83 81 | 75.15 103 | 74.17 98 |
|
v7n | | | 55.67 114 | 57.46 132 | 53.59 100 | 56.06 121 | 65.29 97 | 61.06 107 | 43.26 121 | 40.17 176 | 37.99 121 | 40.79 170 | 45.27 162 | 47.09 111 | 67.67 105 | 66.21 108 | 76.08 93 | 76.82 76 |
|
thisisatest0530 | | | 56.68 107 | 59.68 106 | 53.19 104 | 52.97 142 | 60.96 128 | 59.41 115 | 40.51 144 | 48.26 119 | 41.06 105 | 52.67 90 | 46.30 151 | 49.78 93 | 67.66 106 | 67.83 81 | 75.39 100 | 74.07 101 |
|
TransMVSNet (Re) | | | 51.92 142 | 55.38 141 | 47.88 147 | 60.95 85 | 59.90 136 | 53.95 151 | 45.14 83 | 39.47 179 | 24.85 172 | 43.87 150 | 46.51 150 | 29.15 180 | 67.55 107 | 65.23 123 | 73.26 125 | 65.16 156 |
|
v8 | | | 58.88 82 | 60.57 95 | 56.92 80 | 57.35 110 | 65.69 95 | 66.69 72 | 42.64 126 | 47.89 122 | 45.77 79 | 49.04 107 | 52.98 113 | 52.77 80 | 67.51 108 | 65.57 117 | 76.26 89 | 75.30 93 |
|
V42 | | | 56.97 104 | 60.14 102 | 53.28 102 | 48.16 172 | 62.78 115 | 66.30 75 | 37.93 163 | 47.44 124 | 42.68 94 | 48.19 114 | 52.59 115 | 51.90 87 | 67.46 109 | 65.94 113 | 72.72 131 | 76.55 81 |
|
v1192 | | | 58.51 86 | 59.66 107 | 57.17 78 | 57.82 101 | 67.72 73 | 66.21 76 | 44.83 86 | 44.15 147 | 43.49 90 | 46.68 121 | 47.94 132 | 53.55 71 | 67.39 110 | 66.51 104 | 77.13 78 | 77.20 73 |
|
v2v482 | | | 58.69 85 | 60.12 104 | 57.03 79 | 57.16 117 | 66.05 92 | 67.17 66 | 43.52 112 | 46.33 131 | 45.19 83 | 49.46 106 | 51.02 121 | 52.51 82 | 67.30 111 | 66.03 111 | 76.61 82 | 74.62 95 |
|
diffmvs | | | 61.64 69 | 66.55 61 | 55.90 86 | 56.63 119 | 63.71 110 | 67.13 68 | 41.27 138 | 59.49 66 | 46.70 74 | 63.93 44 | 68.01 60 | 50.46 92 | 67.30 111 | 65.51 118 | 73.24 126 | 77.87 68 |
|
anonymousdsp | | | 52.84 132 | 57.78 128 | 47.06 151 | 40.24 195 | 58.95 144 | 53.70 153 | 33.54 186 | 36.51 192 | 32.69 139 | 43.88 149 | 45.40 158 | 47.97 108 | 67.17 113 | 70.28 60 | 74.22 110 | 82.29 47 |
|
Fast-Effi-MVS+-dtu | | | 56.30 110 | 59.29 114 | 52.82 109 | 58.64 96 | 64.89 102 | 65.56 84 | 32.89 189 | 45.80 136 | 35.04 131 | 45.89 134 | 54.14 109 | 49.41 96 | 67.16 114 | 66.45 106 | 75.37 101 | 70.69 115 |
|
baseline1 | | | 54.48 126 | 58.69 118 | 49.57 123 | 60.63 87 | 58.29 152 | 55.70 140 | 44.95 85 | 49.20 104 | 29.62 153 | 54.77 82 | 54.75 107 | 35.29 165 | 67.15 115 | 64.08 134 | 71.21 148 | 62.58 169 |
|
CHOSEN 1792x2688 | | | 55.85 113 | 58.01 125 | 53.33 101 | 57.26 114 | 62.82 114 | 63.29 100 | 41.55 135 | 46.65 129 | 38.34 118 | 34.55 184 | 53.50 110 | 52.43 83 | 67.10 116 | 67.56 88 | 67.13 163 | 73.92 102 |
|
FMVSNet2 | | | 55.04 123 | 59.95 105 | 49.31 125 | 52.42 146 | 61.44 120 | 57.03 127 | 44.08 96 | 49.55 99 | 30.40 149 | 46.89 120 | 58.84 90 | 38.22 150 | 67.07 117 | 66.21 108 | 73.69 116 | 69.65 121 |
|
ET-MVSNet_ETH3D | | | 58.38 91 | 61.57 86 | 54.67 93 | 42.15 192 | 65.26 98 | 65.70 81 | 43.82 102 | 48.84 109 | 42.34 96 | 59.76 60 | 47.76 135 | 56.68 53 | 67.02 118 | 68.60 76 | 77.33 75 | 73.73 103 |
|
v144192 | | | 58.23 95 | 59.40 113 | 56.87 81 | 57.56 102 | 66.89 83 | 65.70 81 | 45.01 84 | 44.06 148 | 42.88 92 | 46.61 123 | 48.09 131 | 53.49 74 | 66.94 119 | 65.90 114 | 76.61 82 | 77.29 71 |
|
v1921920 | | | 57.89 98 | 59.02 116 | 56.58 84 | 57.55 103 | 66.66 89 | 64.72 91 | 44.70 88 | 43.55 151 | 42.73 93 | 46.17 131 | 46.93 145 | 53.51 72 | 66.78 120 | 65.75 116 | 76.29 87 | 77.28 72 |
|
CDS-MVSNet | | | 52.42 135 | 57.06 134 | 47.02 152 | 53.92 138 | 58.30 151 | 55.50 142 | 46.47 71 | 42.52 163 | 29.38 155 | 49.50 105 | 52.85 114 | 28.49 183 | 66.70 121 | 66.89 95 | 68.34 158 | 62.63 168 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IB-MVS | | 54.11 11 | 58.36 92 | 60.70 92 | 55.62 88 | 58.67 95 | 68.02 70 | 61.56 101 | 43.15 123 | 46.09 133 | 44.06 88 | 44.24 147 | 50.99 123 | 48.71 101 | 66.70 121 | 70.33 59 | 77.60 70 | 78.50 63 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tfpn200view9 | | | 52.53 134 | 55.51 139 | 49.06 130 | 57.31 111 | 60.24 132 | 55.42 144 | 43.77 103 | 42.85 159 | 27.81 161 | 43.00 161 | 45.06 165 | 37.32 157 | 66.38 123 | 64.54 130 | 72.71 132 | 66.54 141 |
|
thres600view7 | | | 51.91 143 | 55.14 143 | 48.14 143 | 57.43 107 | 60.18 133 | 54.60 149 | 43.73 105 | 42.61 162 | 25.20 171 | 43.10 160 | 44.47 172 | 35.19 166 | 66.36 124 | 63.28 142 | 72.66 134 | 66.01 149 |
|
thres200 | | | 52.39 136 | 55.37 142 | 48.90 132 | 57.39 108 | 60.18 133 | 55.60 141 | 43.73 105 | 42.93 157 | 27.41 163 | 43.35 156 | 45.09 164 | 36.61 162 | 66.36 124 | 63.92 137 | 72.66 134 | 65.78 151 |
|
v1240 | | | 57.55 100 | 58.63 120 | 56.29 85 | 57.30 113 | 66.48 90 | 63.77 96 | 44.56 90 | 42.77 161 | 42.48 95 | 45.64 137 | 46.28 152 | 53.46 75 | 66.32 126 | 65.80 115 | 76.16 91 | 77.13 74 |
|
gg-mvs-nofinetune | | | 49.07 160 | 52.56 160 | 45.00 161 | 61.99 77 | 59.78 137 | 53.55 156 | 41.63 134 | 31.62 201 | 12.08 196 | 29.56 195 | 53.28 112 | 29.57 179 | 66.27 127 | 64.49 132 | 71.19 149 | 62.92 165 |
|
UniMVSNet_ETH3D | | | 52.62 133 | 55.98 137 | 48.70 136 | 51.04 160 | 60.71 130 | 56.87 130 | 46.74 70 | 42.52 163 | 26.96 166 | 42.50 165 | 45.95 156 | 37.87 154 | 66.22 128 | 65.15 127 | 72.74 130 | 68.78 133 |
|
thres400 | | | 52.38 137 | 55.51 139 | 48.74 134 | 57.49 106 | 60.10 135 | 55.45 143 | 43.54 111 | 42.90 158 | 26.72 167 | 43.34 157 | 45.03 167 | 36.61 162 | 66.20 129 | 64.53 131 | 72.66 134 | 66.43 142 |
|
thisisatest0515 | | | 53.85 128 | 56.84 135 | 50.37 120 | 50.25 166 | 58.17 153 | 55.99 137 | 39.90 151 | 41.88 166 | 38.16 120 | 45.91 133 | 45.30 160 | 44.58 123 | 66.15 130 | 66.89 95 | 73.36 122 | 73.57 104 |
|
tfpnnormal | | | 50.16 152 | 52.19 164 | 47.78 149 | 56.86 118 | 58.37 150 | 54.15 150 | 44.01 100 | 38.35 187 | 25.94 169 | 36.10 179 | 37.89 194 | 34.50 169 | 65.93 131 | 63.42 140 | 71.26 147 | 65.28 154 |
|
GA-MVS | | | 55.67 114 | 58.33 122 | 52.58 111 | 55.23 128 | 63.09 111 | 61.08 106 | 40.15 150 | 42.95 156 | 37.02 127 | 52.61 91 | 47.68 136 | 47.51 109 | 65.92 132 | 65.35 119 | 74.49 108 | 70.68 116 |
|
pm-mvs1 | | | 51.02 146 | 55.55 138 | 45.73 156 | 54.16 135 | 58.52 147 | 50.92 161 | 42.56 127 | 40.32 175 | 25.67 170 | 43.66 152 | 50.34 126 | 30.06 178 | 65.85 133 | 63.97 136 | 70.99 150 | 66.21 145 |
|
COLMAP_ROB | | 46.52 15 | 51.99 141 | 54.86 145 | 48.63 137 | 49.13 170 | 61.73 119 | 60.53 110 | 36.57 169 | 53.14 80 | 32.95 137 | 37.10 176 | 38.68 192 | 40.49 142 | 65.72 134 | 63.08 143 | 72.11 142 | 64.60 159 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ambc | | | | 45.54 192 | | 50.66 165 | 52.63 173 | 40.99 197 | | 38.36 186 | 24.67 173 | 22.62 204 | 13.94 213 | 29.14 181 | 65.71 135 | 58.06 168 | 58.60 188 | 67.43 137 |
|
baseline2 | | | 55.89 111 | 57.82 127 | 53.64 98 | 57.36 109 | 61.09 126 | 59.75 113 | 40.45 146 | 47.38 125 | 41.26 104 | 51.23 98 | 46.90 146 | 48.11 105 | 65.63 136 | 64.38 133 | 74.90 105 | 68.16 134 |
|
FMVSNet3 | | | 54.78 124 | 59.58 110 | 49.17 128 | 52.37 149 | 61.31 124 | 56.72 132 | 44.04 97 | 49.18 105 | 30.47 146 | 48.28 111 | 58.19 92 | 38.09 153 | 65.48 137 | 65.20 124 | 73.31 123 | 69.45 129 |
|
HyFIR lowres test | | | 56.87 106 | 58.60 121 | 54.84 91 | 56.62 120 | 69.27 62 | 64.77 90 | 42.21 130 | 45.66 137 | 37.50 124 | 33.08 186 | 57.47 97 | 53.33 76 | 65.46 138 | 67.94 79 | 74.60 106 | 71.35 110 |
|
IterMVS-LS | | | 58.30 93 | 61.39 87 | 54.71 92 | 59.92 91 | 58.40 149 | 59.42 114 | 43.64 108 | 48.71 113 | 40.25 110 | 57.53 69 | 58.55 91 | 52.15 86 | 65.42 139 | 65.34 120 | 72.85 127 | 75.77 87 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v148 | | | 55.58 116 | 57.61 131 | 53.20 103 | 54.59 133 | 61.86 117 | 61.18 105 | 38.70 159 | 44.30 146 | 42.25 97 | 47.53 117 | 50.24 127 | 48.73 100 | 65.15 140 | 62.61 150 | 73.79 114 | 71.61 109 |
|
gm-plane-assit | | | 44.74 180 | 45.95 188 | 43.33 169 | 60.88 86 | 46.79 194 | 36.97 202 | 32.24 192 | 24.15 207 | 11.79 197 | 29.26 196 | 32.97 202 | 46.64 112 | 65.09 141 | 62.95 145 | 71.45 146 | 60.42 176 |
|
thres100view900 | | | 52.04 140 | 54.81 146 | 48.80 133 | 57.31 111 | 59.33 140 | 55.30 145 | 42.92 125 | 42.85 159 | 27.81 161 | 43.00 161 | 45.06 165 | 36.99 159 | 64.74 142 | 63.51 139 | 72.47 137 | 65.21 155 |
|
pmmvs6 | | | 48.35 164 | 51.64 166 | 44.51 164 | 51.92 152 | 57.94 156 | 49.44 167 | 42.17 131 | 34.45 194 | 24.62 174 | 28.87 197 | 46.90 146 | 29.07 182 | 64.60 143 | 63.08 143 | 69.83 154 | 65.68 152 |
|
TDRefinement | | | 49.31 155 | 52.44 161 | 45.67 158 | 30.44 205 | 59.42 139 | 59.24 116 | 39.78 152 | 48.76 112 | 31.20 145 | 35.73 180 | 29.90 205 | 42.81 134 | 64.24 144 | 62.59 151 | 70.55 151 | 66.43 142 |
|
USDC | | | 51.11 145 | 53.71 150 | 48.08 145 | 44.76 184 | 55.99 163 | 53.01 158 | 40.90 140 | 52.49 86 | 36.14 128 | 44.67 145 | 33.66 201 | 43.27 131 | 63.23 145 | 61.10 156 | 70.39 153 | 64.82 157 |
|
EPNet_dtu | | | 52.05 139 | 58.26 123 | 44.81 162 | 54.10 136 | 50.09 181 | 52.01 159 | 40.82 142 | 53.03 82 | 27.41 163 | 54.90 80 | 57.96 96 | 26.72 185 | 62.97 146 | 62.70 149 | 67.78 161 | 66.19 147 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Vis-MVSNet (Re-imp) | | | 50.37 150 | 57.73 130 | 41.80 176 | 57.53 104 | 54.35 166 | 45.70 184 | 45.24 82 | 49.80 97 | 13.43 194 | 58.23 67 | 56.42 100 | 20.11 195 | 62.96 147 | 63.36 141 | 68.76 157 | 58.96 181 |
|
CMPMVS | | 37.70 17 | 49.24 157 | 52.71 158 | 45.19 159 | 45.97 182 | 51.23 177 | 47.44 176 | 29.31 194 | 43.04 155 | 44.69 84 | 34.45 185 | 48.35 130 | 43.64 126 | 62.59 148 | 59.82 162 | 60.08 184 | 69.48 126 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs4 | | | 54.66 125 | 56.07 136 | 53.00 106 | 54.63 130 | 57.08 160 | 60.43 111 | 44.10 95 | 51.69 90 | 40.55 107 | 46.55 126 | 44.79 168 | 45.95 117 | 62.54 149 | 63.66 138 | 72.36 139 | 66.20 146 |
|
IterMVS-SCA-FT | | | 52.18 138 | 57.75 129 | 45.68 157 | 51.01 161 | 62.06 116 | 55.10 147 | 34.75 176 | 44.85 140 | 32.86 138 | 51.13 100 | 51.22 119 | 48.74 99 | 62.47 150 | 61.51 154 | 51.61 202 | 71.02 112 |
|
IterMVS | | | 53.45 130 | 57.12 133 | 49.17 128 | 49.23 169 | 60.93 129 | 59.05 118 | 34.63 178 | 44.53 142 | 33.22 134 | 51.09 101 | 51.01 122 | 48.38 103 | 62.43 151 | 60.79 158 | 70.54 152 | 69.05 131 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
LTVRE_ROB | | 44.17 16 | 47.06 174 | 50.15 177 | 43.44 168 | 51.39 155 | 58.42 148 | 42.90 194 | 43.51 113 | 22.27 208 | 14.85 192 | 41.94 168 | 34.57 199 | 45.43 118 | 62.28 152 | 62.77 148 | 62.56 180 | 68.83 132 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TinyColmap | | | 47.08 172 | 47.56 186 | 46.52 153 | 42.35 191 | 53.44 169 | 51.77 160 | 40.70 143 | 43.44 153 | 31.92 142 | 29.78 194 | 23.72 210 | 45.04 122 | 61.99 153 | 59.54 164 | 67.35 162 | 61.03 173 |
|
pmmvs-eth3d | | | 51.33 144 | 52.25 163 | 50.26 121 | 50.82 163 | 54.65 165 | 56.03 136 | 43.45 118 | 43.51 152 | 37.20 126 | 39.20 173 | 39.04 191 | 42.28 135 | 61.85 154 | 62.78 147 | 71.78 144 | 64.72 158 |
|
WR-MVS | | | 48.78 162 | 55.06 144 | 41.45 177 | 55.50 124 | 60.40 131 | 43.77 192 | 49.99 58 | 41.92 165 | 8.10 206 | 45.24 142 | 45.56 157 | 17.47 196 | 61.57 155 | 64.60 129 | 73.85 113 | 66.14 148 |
|
baseline | | | 55.19 121 | 60.88 90 | 48.55 138 | 49.87 167 | 58.10 154 | 58.70 119 | 34.75 176 | 52.82 85 | 39.48 116 | 60.18 58 | 60.86 79 | 45.41 119 | 61.05 156 | 60.74 159 | 63.10 176 | 72.41 106 |
|
PatchMatch-RL | | | 50.11 153 | 51.56 167 | 48.43 139 | 46.23 181 | 51.94 174 | 50.21 164 | 38.62 160 | 46.62 130 | 37.51 123 | 42.43 166 | 39.38 189 | 52.24 85 | 60.98 157 | 59.56 163 | 65.76 167 | 60.01 179 |
|
PEN-MVS | | | 49.21 158 | 54.32 148 | 43.24 171 | 54.33 134 | 59.26 141 | 47.04 178 | 51.37 50 | 41.67 167 | 9.97 201 | 46.22 129 | 41.80 180 | 22.97 192 | 60.52 158 | 64.03 135 | 73.73 115 | 66.75 140 |
|
DTE-MVSNet | | | 48.03 168 | 53.28 155 | 41.91 175 | 54.64 129 | 57.50 158 | 44.63 191 | 51.66 49 | 41.02 171 | 7.97 207 | 46.26 128 | 40.90 182 | 20.24 194 | 60.45 159 | 62.89 146 | 72.33 140 | 63.97 161 |
|
CostFormer | | | 56.57 108 | 59.13 115 | 53.60 99 | 57.52 105 | 61.12 125 | 66.94 70 | 35.95 172 | 53.44 76 | 44.68 85 | 55.87 77 | 54.44 108 | 48.21 104 | 60.37 160 | 58.33 167 | 68.27 159 | 70.33 118 |
|
SixPastTwentyTwo | | | 47.55 171 | 50.25 176 | 44.41 165 | 47.30 177 | 54.31 167 | 47.81 173 | 40.36 149 | 33.76 195 | 19.93 183 | 43.75 151 | 32.77 203 | 42.07 136 | 59.82 161 | 60.94 157 | 68.98 155 | 66.37 144 |
|
PMMVS | | | 49.20 159 | 54.28 149 | 43.28 170 | 34.13 200 | 45.70 196 | 48.98 168 | 26.09 202 | 46.31 132 | 34.92 133 | 55.22 79 | 53.47 111 | 47.48 110 | 59.43 162 | 59.04 165 | 68.05 160 | 60.77 174 |
|
dps | | | 50.42 149 | 51.20 170 | 49.51 124 | 55.88 122 | 56.07 162 | 53.73 152 | 38.89 155 | 43.66 149 | 40.36 109 | 45.66 136 | 37.63 196 | 45.23 120 | 59.05 163 | 56.18 171 | 62.94 177 | 60.16 177 |
|
MDTV_nov1_ep13_2view | | | 47.62 170 | 49.72 179 | 45.18 160 | 48.05 173 | 53.70 168 | 54.90 148 | 33.80 184 | 39.90 178 | 29.79 152 | 38.85 174 | 41.89 179 | 39.17 146 | 58.99 164 | 55.55 176 | 65.34 170 | 59.17 180 |
|
CR-MVSNet | | | 50.47 148 | 52.61 159 | 47.98 146 | 49.03 171 | 52.94 170 | 48.27 170 | 38.86 156 | 44.41 143 | 39.59 113 | 44.34 146 | 44.65 171 | 46.63 113 | 58.97 165 | 60.31 160 | 65.48 168 | 62.66 166 |
|
PatchT | | | 48.08 166 | 51.03 171 | 44.64 163 | 42.96 189 | 50.12 180 | 40.36 198 | 35.09 174 | 43.17 154 | 39.59 113 | 42.00 167 | 39.96 188 | 46.63 113 | 58.97 165 | 60.31 160 | 63.21 175 | 62.66 166 |
|
MIMVSNet | | | 43.79 184 | 48.53 182 | 38.27 186 | 41.46 193 | 48.97 184 | 50.81 162 | 32.88 190 | 44.55 141 | 22.07 177 | 32.05 187 | 47.15 142 | 24.76 188 | 58.73 167 | 56.09 173 | 57.63 191 | 52.14 190 |
|
CP-MVSNet | | | 48.37 163 | 53.53 152 | 42.34 173 | 51.35 156 | 58.01 155 | 46.56 179 | 50.54 54 | 41.62 168 | 10.61 198 | 46.53 127 | 40.68 185 | 23.18 190 | 58.71 168 | 61.83 152 | 71.81 143 | 67.36 139 |
|
PS-CasMVS | | | 48.18 165 | 53.25 156 | 42.27 174 | 51.26 157 | 57.94 156 | 46.51 180 | 50.52 55 | 41.30 169 | 10.56 199 | 45.35 141 | 40.34 187 | 23.04 191 | 58.66 169 | 61.79 153 | 71.74 145 | 67.38 138 |
|
SCA | | | 50.99 147 | 53.22 157 | 48.40 140 | 51.07 159 | 56.78 161 | 50.25 163 | 39.05 153 | 48.31 118 | 41.38 101 | 49.54 104 | 46.70 149 | 46.00 116 | 58.31 170 | 56.28 170 | 62.65 178 | 56.60 186 |
|
pmmvs5 | | | 47.07 173 | 51.02 172 | 42.46 172 | 45.18 183 | 51.47 176 | 48.23 172 | 33.09 188 | 38.17 188 | 28.62 159 | 46.60 124 | 43.48 176 | 30.74 176 | 58.28 171 | 58.63 166 | 68.92 156 | 60.48 175 |
|
TAMVS | | | 44.02 183 | 49.18 180 | 37.99 188 | 47.03 178 | 45.97 195 | 45.04 187 | 28.47 197 | 39.11 182 | 20.23 182 | 43.22 159 | 48.52 129 | 28.49 183 | 58.15 172 | 57.95 169 | 58.71 186 | 51.36 192 |
|
MDTV_nov1_ep13 | | | 50.32 151 | 52.43 162 | 47.86 148 | 49.87 167 | 54.70 164 | 58.10 121 | 34.29 180 | 45.59 138 | 37.71 122 | 47.44 118 | 47.42 140 | 41.86 137 | 58.07 173 | 55.21 179 | 65.34 170 | 58.56 182 |
|
WR-MVS_H | | | 47.65 169 | 53.67 151 | 40.63 180 | 51.45 154 | 59.74 138 | 44.71 190 | 49.37 60 | 40.69 173 | 7.61 208 | 46.04 132 | 44.34 174 | 17.32 197 | 57.79 174 | 61.18 155 | 73.30 124 | 65.86 150 |
|
FMVSNet5 | | | 40.96 189 | 45.81 190 | 35.29 194 | 34.30 199 | 44.55 199 | 47.28 177 | 28.84 196 | 40.76 172 | 21.62 178 | 29.85 193 | 42.44 177 | 24.77 187 | 57.53 175 | 55.00 180 | 54.93 194 | 50.56 195 |
|
test-mter | | | 45.30 179 | 50.37 173 | 39.38 183 | 33.65 202 | 46.99 191 | 47.59 174 | 18.59 208 | 38.75 183 | 28.00 160 | 43.28 158 | 46.82 148 | 41.50 139 | 57.28 176 | 55.78 174 | 66.93 166 | 63.70 163 |
|
PatchmatchNet | | | 49.92 154 | 51.29 168 | 48.32 142 | 51.83 153 | 51.86 175 | 53.38 157 | 37.63 166 | 47.90 121 | 40.83 106 | 48.54 110 | 45.30 160 | 45.19 121 | 56.86 177 | 53.99 188 | 61.08 183 | 54.57 189 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test-LLR | | | 49.28 156 | 50.29 174 | 48.10 144 | 55.26 126 | 47.16 189 | 49.52 165 | 43.48 116 | 39.22 180 | 31.98 140 | 43.65 153 | 47.93 133 | 41.29 140 | 56.80 178 | 55.36 177 | 67.08 164 | 61.94 170 |
|
TESTMET0.1,1 | | | 46.09 178 | 50.29 174 | 41.18 178 | 36.91 198 | 47.16 189 | 49.52 165 | 20.32 207 | 39.22 180 | 31.98 140 | 43.65 153 | 47.93 133 | 41.29 140 | 56.80 178 | 55.36 177 | 67.08 164 | 61.94 170 |
|
CHOSEN 280x420 | | | 40.80 190 | 45.05 193 | 35.84 193 | 32.95 203 | 29.57 208 | 44.98 188 | 23.71 205 | 37.54 190 | 18.42 186 | 31.36 190 | 47.07 143 | 46.41 115 | 56.71 180 | 54.65 184 | 48.55 204 | 58.47 183 |
|
Anonymous20231206 | | | 42.28 186 | 45.89 189 | 38.07 187 | 51.96 151 | 48.98 183 | 43.66 193 | 38.81 158 | 38.74 184 | 14.32 193 | 26.74 199 | 40.90 182 | 20.94 193 | 56.64 181 | 54.67 183 | 58.71 186 | 54.59 188 |
|
CVMVSNet | | | 46.38 177 | 52.01 165 | 39.81 182 | 42.40 190 | 50.26 179 | 46.15 181 | 37.68 165 | 40.03 177 | 15.09 191 | 46.56 125 | 47.56 138 | 33.72 172 | 56.50 182 | 55.65 175 | 63.80 174 | 67.53 136 |
|
test20.03 | | | 40.38 193 | 44.20 194 | 35.92 192 | 53.73 139 | 49.05 182 | 38.54 200 | 43.49 115 | 32.55 198 | 9.54 202 | 27.88 198 | 39.12 190 | 12.24 203 | 56.28 183 | 54.69 182 | 57.96 190 | 49.83 199 |
|
RPSCF | | | 46.41 175 | 54.42 147 | 37.06 190 | 25.70 212 | 45.14 197 | 45.39 186 | 20.81 206 | 62.79 59 | 35.10 130 | 44.92 143 | 55.60 106 | 43.56 127 | 56.12 184 | 52.45 192 | 51.80 201 | 63.91 162 |
|
PM-MVS | | | 44.55 182 | 48.13 184 | 40.37 181 | 32.85 204 | 46.82 193 | 46.11 182 | 29.28 195 | 40.48 174 | 29.99 151 | 39.98 172 | 34.39 200 | 41.80 138 | 56.08 185 | 53.88 190 | 62.19 181 | 65.31 153 |
|
test0.0.03 1 | | | 43.15 185 | 46.95 187 | 38.72 185 | 55.26 126 | 50.56 178 | 42.48 195 | 43.48 116 | 38.16 189 | 15.11 190 | 35.07 182 | 44.69 170 | 16.47 198 | 55.95 186 | 54.34 185 | 59.54 185 | 49.87 198 |
|
tpm cat1 | | | 53.30 131 | 53.41 153 | 53.17 105 | 58.16 98 | 59.15 143 | 63.73 97 | 38.27 162 | 50.73 93 | 46.98 72 | 45.57 138 | 44.00 175 | 49.20 97 | 55.90 187 | 54.02 186 | 62.65 178 | 64.50 160 |
|
testgi | | | 38.71 195 | 43.64 195 | 32.95 196 | 52.30 150 | 48.63 185 | 35.59 205 | 35.05 175 | 31.58 202 | 9.03 205 | 30.29 191 | 40.75 184 | 11.19 208 | 55.30 188 | 53.47 191 | 54.53 197 | 45.48 202 |
|
FC-MVSNet-test | | | 39.65 194 | 48.35 183 | 29.49 199 | 44.43 185 | 39.28 205 | 30.23 208 | 40.44 147 | 43.59 150 | 3.12 214 | 53.00 88 | 42.03 178 | 10.02 210 | 55.09 189 | 54.77 181 | 48.66 203 | 50.71 194 |
|
MIMVSNet1 | | | 35.51 198 | 41.41 198 | 28.63 200 | 27.53 209 | 43.36 200 | 38.09 201 | 33.82 183 | 32.01 199 | 6.77 209 | 21.63 205 | 35.43 198 | 11.97 205 | 55.05 190 | 53.99 188 | 53.59 199 | 48.36 201 |
|
GG-mvs-BLEND | | | 36.62 197 | 53.39 154 | 17.06 206 | 0.01 217 | 58.61 146 | 48.63 169 | 0.01 214 | 47.13 126 | 0.02 218 | 43.98 148 | 60.64 82 | 0.03 213 | 54.92 191 | 51.47 194 | 53.64 198 | 56.99 185 |
|
tpm | | | 48.82 161 | 51.27 169 | 45.96 155 | 54.10 136 | 47.35 188 | 56.05 135 | 30.23 193 | 46.70 128 | 43.21 91 | 52.54 92 | 47.55 139 | 37.28 158 | 54.11 192 | 50.50 195 | 54.90 195 | 60.12 178 |
|
RPMNet | | | 46.41 175 | 48.72 181 | 43.72 166 | 47.77 175 | 52.94 170 | 46.02 183 | 33.92 182 | 44.41 143 | 31.82 143 | 36.89 177 | 37.42 197 | 37.41 156 | 53.88 193 | 54.02 186 | 65.37 169 | 61.47 172 |
|
EU-MVSNet | | | 40.63 192 | 45.65 191 | 34.78 195 | 39.11 196 | 46.94 192 | 40.02 199 | 34.03 181 | 33.50 196 | 10.37 200 | 35.57 181 | 37.80 195 | 23.65 189 | 51.90 194 | 50.21 196 | 61.49 182 | 63.62 164 |
|
EPMVS | | | 44.66 181 | 47.86 185 | 40.92 179 | 47.97 174 | 44.70 198 | 47.58 175 | 33.27 187 | 48.11 120 | 29.58 154 | 49.65 103 | 44.38 173 | 34.65 167 | 51.71 195 | 47.90 199 | 52.49 200 | 48.57 200 |
|
PMVS | | 27.84 18 | 33.81 200 | 35.28 204 | 32.09 197 | 34.13 200 | 24.81 210 | 32.51 207 | 26.48 201 | 26.41 205 | 19.37 184 | 23.76 202 | 24.02 209 | 25.18 186 | 50.78 196 | 47.24 200 | 54.89 196 | 49.95 197 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVS-HIRNet | | | 42.24 187 | 41.15 199 | 43.51 167 | 44.06 188 | 40.74 201 | 35.77 204 | 35.35 173 | 35.38 193 | 38.34 118 | 25.63 201 | 38.55 193 | 43.48 128 | 50.77 197 | 47.03 201 | 64.07 172 | 49.98 196 |
|
pmmvs3 | | | 35.10 199 | 38.47 201 | 31.17 198 | 26.37 211 | 40.47 202 | 34.51 206 | 18.09 209 | 24.75 206 | 16.88 189 | 23.05 203 | 26.69 207 | 32.69 174 | 50.73 198 | 51.60 193 | 58.46 189 | 51.98 191 |
|
MDA-MVSNet-bldmvs | | | 41.36 188 | 43.15 197 | 39.27 184 | 28.74 207 | 52.68 172 | 44.95 189 | 40.84 141 | 32.89 197 | 18.13 187 | 31.61 189 | 22.09 211 | 38.97 149 | 50.45 199 | 56.11 172 | 64.01 173 | 56.23 187 |
|
tpmrst | | | 48.08 166 | 49.88 178 | 45.98 154 | 52.71 144 | 48.11 186 | 53.62 155 | 33.70 185 | 48.70 114 | 39.74 111 | 48.96 108 | 46.23 153 | 40.29 144 | 50.14 200 | 49.28 197 | 55.80 192 | 57.71 184 |
|
new-patchmatchnet | | | 33.24 201 | 37.20 202 | 28.62 201 | 44.32 187 | 38.26 206 | 29.68 209 | 36.05 171 | 31.97 200 | 6.33 210 | 26.59 200 | 27.33 206 | 11.12 209 | 50.08 201 | 41.05 205 | 44.23 206 | 45.15 203 |
|
FPMVS | | | 38.36 196 | 40.41 200 | 35.97 191 | 38.92 197 | 39.85 203 | 45.50 185 | 25.79 203 | 41.13 170 | 18.70 185 | 30.10 192 | 24.56 208 | 31.86 175 | 49.42 202 | 46.80 202 | 55.04 193 | 51.03 193 |
|
Gipuma | | | 25.87 203 | 26.91 206 | 24.66 203 | 28.98 206 | 20.17 211 | 20.46 210 | 34.62 179 | 29.55 203 | 9.10 203 | 4.91 213 | 5.31 217 | 15.76 200 | 49.37 203 | 49.10 198 | 39.03 207 | 29.95 207 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ADS-MVSNet | | | 40.67 191 | 43.38 196 | 37.50 189 | 44.36 186 | 39.79 204 | 42.09 196 | 32.67 191 | 44.34 145 | 28.87 158 | 40.76 171 | 40.37 186 | 30.22 177 | 48.34 204 | 45.87 203 | 46.81 205 | 44.21 204 |
|
N_pmnet | | | 32.67 202 | 36.85 203 | 27.79 202 | 40.55 194 | 32.13 207 | 35.80 203 | 26.79 200 | 37.24 191 | 9.10 203 | 32.02 188 | 30.94 204 | 16.30 199 | 47.22 205 | 41.21 204 | 38.21 208 | 37.21 205 |
|
new_pmnet | | | 23.19 204 | 28.17 205 | 17.37 204 | 17.03 213 | 24.92 209 | 19.66 211 | 16.16 211 | 27.05 204 | 4.42 211 | 20.77 206 | 19.20 212 | 12.19 204 | 37.71 206 | 36.38 206 | 34.77 209 | 31.17 206 |
|
PMMVS2 | | | 15.84 205 | 19.68 207 | 11.35 208 | 15.74 214 | 16.95 212 | 13.31 212 | 17.64 210 | 16.08 210 | 0.36 217 | 13.12 207 | 11.47 214 | 1.69 212 | 28.82 207 | 27.24 208 | 19.38 212 | 24.09 209 |
|
MVE | | 12.28 19 | 13.53 208 | 15.72 208 | 10.96 209 | 7.39 215 | 15.71 213 | 6.05 215 | 23.73 204 | 10.29 214 | 3.01 215 | 5.77 212 | 3.41 218 | 11.91 206 | 20.11 208 | 29.79 207 | 13.67 213 | 24.98 208 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 15.09 206 | 13.19 209 | 17.30 205 | 27.80 208 | 12.62 214 | 7.81 214 | 27.54 198 | 14.62 212 | 3.19 212 | 6.89 210 | 2.52 220 | 15.09 201 | 15.93 209 | 20.22 209 | 22.38 210 | 19.53 210 |
|
tmp_tt | | | | | 5.40 210 | 3.97 216 | 2.35 217 | 3.26 217 | 0.44 213 | 17.56 209 | 12.09 195 | 11.48 209 | 7.14 215 | 1.98 211 | 15.68 210 | 15.49 211 | 10.69 214 | |
|
EMVS | | | 14.49 207 | 12.45 210 | 16.87 207 | 27.02 210 | 12.56 215 | 8.13 213 | 27.19 199 | 15.05 211 | 3.14 213 | 6.69 211 | 2.67 219 | 15.08 202 | 14.60 211 | 18.05 210 | 20.67 211 | 17.56 212 |
|
DeepMVS_CX | | | | | | | 6.95 216 | 5.98 216 | 2.25 212 | 11.73 213 | 2.07 216 | 11.85 208 | 5.43 216 | 11.75 207 | 11.40 212 | | 8.10 215 | 18.38 211 |
|
testmvs | | | 0.01 209 | 0.02 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.01 219 | 0.00 215 | 0.01 215 | 0.00 219 | 0.03 215 | 0.00 221 | 0.01 214 | 0.01 213 | 0.01 212 | 0.00 216 | 0.06 214 |
|
uanet_test | | | 0.00 211 | 0.00 213 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 220 | 0.00 215 | 0.00 217 | 0.00 219 | 0.00 216 | 0.00 221 | 0.00 216 | 0.00 214 | 0.00 214 | 0.00 216 | 0.00 215 |
|
sosnet-low-res | | | 0.00 211 | 0.00 213 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 220 | 0.00 215 | 0.00 217 | 0.00 219 | 0.00 216 | 0.00 221 | 0.00 216 | 0.00 214 | 0.00 214 | 0.00 216 | 0.00 215 |
|
sosnet | | | 0.00 211 | 0.00 213 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 220 | 0.00 215 | 0.00 217 | 0.00 219 | 0.00 216 | 0.00 221 | 0.00 216 | 0.00 214 | 0.00 214 | 0.00 216 | 0.00 215 |
|
test123 | | | 0.01 209 | 0.02 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 220 | 0.00 215 | 0.01 215 | 0.00 219 | 0.04 214 | 0.00 221 | 0.01 214 | 0.00 214 | 0.01 212 | 0.00 216 | 0.07 213 |
|
RE-MVS-def | | | | | | | | | | | 33.01 135 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 81.81 12 | | | | | |
|
SR-MVS | | | | | | 71.46 34 | | | 54.67 29 | | | | 81.54 13 | | | | | |
|
our_test_3 | | | | | | 51.15 158 | 57.31 159 | 55.12 146 | | | | | | | | | | |
|
MTAPA | | | | | | | | | | | 65.14 3 | | 80.20 19 | | | | | |
|
MTMP | | | | | | | | | | | 62.63 17 | | 78.04 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 1.04 218 | | | | | | | | | | |
|
XVS | | | | | | 70.49 38 | 76.96 26 | 74.36 45 | | | 54.48 49 | | 74.47 38 | | | | 82.24 24 | |
|
X-MVStestdata | | | | | | 70.49 38 | 76.96 26 | 74.36 45 | | | 54.48 49 | | 74.47 38 | | | | 82.24 24 | |
|
abl_6 | | | | | 64.36 45 | 70.08 41 | 77.45 22 | 72.88 50 | 50.15 57 | 71.31 43 | 54.77 48 | 62.79 48 | 77.99 27 | 56.80 52 | | | 81.50 39 | 83.91 39 |
|
mPP-MVS | | | | | | 71.67 33 | | | | | | | 74.36 41 | | | | | |
|
NP-MVS | | | | | | | | | | 72.00 40 | | | | | | | | |
|
Patchmtry | | | | | | | 47.61 187 | 48.27 170 | 38.86 156 | | 39.59 113 | | | | | | | |
|