This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVS88.67 291.62 185.22 390.47 1792.36 190.69 976.15 393.08 182.75 492.19 590.71 280.45 589.27 587.91 890.82 1195.84 1
SED-MVS88.85 191.59 285.67 190.54 1592.29 291.71 376.40 292.41 283.24 292.50 390.64 381.10 289.53 288.02 791.00 895.73 2
DPE-MVS88.63 391.29 385.53 290.87 892.20 391.98 276.00 590.55 782.09 693.85 190.75 181.25 188.62 787.59 1390.96 995.48 3
SMA-MVScopyleft87.56 690.17 684.52 991.71 290.57 990.77 875.19 1390.67 680.50 1486.59 1788.86 778.09 1689.92 189.41 190.84 1095.19 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS88.00 590.50 585.08 490.95 791.58 692.03 175.53 1291.15 480.10 1592.27 488.34 1080.80 488.00 1386.99 1891.09 695.16 5
MSP-MVS88.09 490.84 484.88 690.00 2391.80 591.63 475.80 691.99 381.23 992.54 289.18 580.89 387.99 1487.91 889.70 4394.51 6
CSCG85.28 2287.68 1882.49 2589.95 2491.99 488.82 2571.20 3886.41 2279.63 1779.26 2988.36 973.94 3986.64 3286.67 2591.40 294.41 7
DeepPCF-MVS79.04 185.30 2188.93 1181.06 3288.77 3690.48 1085.46 4673.08 2990.97 573.77 3784.81 2285.95 2077.43 2388.22 1087.73 1087.85 7894.34 8
CNVR-MVS86.36 1388.19 1684.23 1291.33 489.84 1490.34 1175.56 1087.36 1878.97 1881.19 2886.76 1778.74 1189.30 488.58 290.45 2694.33 9
ACMMP_NAP86.52 1289.01 1083.62 1790.28 1990.09 1390.32 1374.05 2088.32 1479.74 1687.04 1585.59 2376.97 2989.35 388.44 490.35 2994.27 10
SteuartSystems-ACMMP85.99 1588.31 1583.27 2190.73 1089.84 1490.27 1474.31 1584.56 3075.88 3087.32 1485.04 2477.31 2489.01 688.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
xxxxxxxxxxxxxcwj85.35 1985.76 3084.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 761.35 11578.82 987.42 1986.23 3091.28 393.90 12
SF-MVS87.47 789.70 784.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 788.93 678.82 987.42 1986.23 3091.28 393.90 12
TSAR-MVS + MP.86.88 1089.23 984.14 1389.78 2688.67 3190.59 1073.46 2788.99 1180.52 1391.26 688.65 879.91 786.96 3086.22 3290.59 1893.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft86.84 1188.91 1384.41 1090.66 1190.10 1290.78 775.64 987.38 1778.72 1990.68 1086.82 1680.15 687.13 2586.45 2890.51 2093.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS86.96 989.45 884.05 1590.13 2089.23 2289.77 1874.59 1489.17 1080.70 1189.93 1189.67 478.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + ACMM85.10 2488.81 1480.77 3589.55 2988.53 3388.59 2872.55 3187.39 1671.90 4390.95 987.55 1274.57 3487.08 2786.54 2687.47 8593.67 17
DeepC-MVS78.47 284.81 2686.03 2883.37 1989.29 3290.38 1188.61 2776.50 186.25 2377.22 2475.12 3980.28 4577.59 2288.39 988.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft85.50 1887.40 2083.28 2090.65 1289.51 1989.16 2474.11 1983.70 3478.06 2285.54 2084.89 2777.31 2487.40 2287.14 1790.41 2793.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS++copyleft87.09 888.92 1284.95 592.61 187.91 4090.23 1576.06 488.85 1281.20 1087.33 1387.93 1179.47 888.59 888.23 590.15 3493.60 20
NCCC85.34 2086.59 2483.88 1691.48 388.88 2589.79 1775.54 1186.67 2177.94 2376.55 3584.99 2578.07 1788.04 1187.68 1190.46 2593.31 21
MCST-MVS85.13 2386.62 2383.39 1890.55 1489.82 1689.29 2273.89 2384.38 3176.03 2979.01 3185.90 2178.47 1287.81 1586.11 3492.11 193.29 22
CP-MVS84.74 2786.43 2682.77 2489.48 3088.13 3988.64 2673.93 2284.92 2576.77 2681.94 2683.50 3077.29 2686.92 3186.49 2790.49 2193.14 23
HFP-MVS86.15 1487.95 1784.06 1490.80 989.20 2389.62 2074.26 1687.52 1580.63 1286.82 1684.19 2978.22 1487.58 1787.19 1690.81 1293.13 24
ACMMPR85.52 1787.53 1983.17 2290.13 2089.27 2089.30 2173.97 2186.89 2077.14 2586.09 1883.18 3277.74 2087.42 1987.20 1590.77 1392.63 25
zzz-MVS85.71 1686.88 2284.34 1190.54 1587.11 4489.77 1874.17 1888.54 1383.08 378.60 3286.10 1978.11 1587.80 1687.46 1490.35 2992.56 26
TSAR-MVS + GP.83.69 3086.58 2580.32 3685.14 5586.96 4584.91 5070.25 4284.71 2973.91 3685.16 2185.63 2277.92 1885.44 4185.71 3789.77 4092.45 27
DeepC-MVS_fast78.24 384.27 2985.50 3182.85 2390.46 1889.24 2187.83 3374.24 1784.88 2676.23 2875.26 3881.05 4377.62 2188.02 1287.62 1290.69 1692.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
X-MVS83.23 3385.20 3380.92 3489.71 2788.68 2888.21 3273.60 2482.57 3871.81 4677.07 3381.92 3771.72 5886.98 2986.86 2090.47 2292.36 29
CPTT-MVS81.77 3883.10 3980.21 3785.93 5186.45 5087.72 3470.98 3982.54 3971.53 4974.23 4481.49 4076.31 3182.85 6481.87 6188.79 6192.26 30
ACMMPcopyleft83.42 3185.27 3281.26 3188.47 3788.49 3488.31 3172.09 3383.42 3572.77 4182.65 2478.22 4975.18 3386.24 3885.76 3690.74 1492.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
train_agg84.86 2587.21 2182.11 2790.59 1385.47 5589.81 1673.55 2683.95 3273.30 3889.84 1287.23 1475.61 3286.47 3485.46 3989.78 3992.06 32
PGM-MVS84.42 2886.29 2782.23 2690.04 2288.82 2789.23 2371.74 3682.82 3774.61 3384.41 2382.09 3577.03 2887.13 2586.73 2490.73 1592.06 32
HQP-MVS81.19 4183.27 3878.76 4687.40 4185.45 5686.95 3570.47 4181.31 4266.91 6579.24 3076.63 5371.67 5984.43 5083.78 5089.19 5392.05 34
PHI-MVS82.36 3685.89 2978.24 4986.40 4889.52 1885.52 4469.52 4982.38 4065.67 6981.35 2782.36 3473.07 4587.31 2486.76 2389.24 5091.56 35
3Dnovator+75.73 482.40 3582.76 4081.97 2988.02 3889.67 1786.60 3771.48 3781.28 4378.18 2164.78 8377.96 5177.13 2787.32 2386.83 2190.41 2791.48 36
MSLP-MVS++82.09 3782.66 4181.42 3087.03 4487.22 4385.82 4270.04 4380.30 4478.66 2068.67 6781.04 4477.81 1985.19 4684.88 4489.19 5391.31 37
CDPH-MVS82.64 3485.03 3479.86 3989.41 3188.31 3688.32 3071.84 3580.11 4567.47 6282.09 2581.44 4171.85 5685.89 4086.15 3390.24 3291.25 38
PCF-MVS73.28 679.42 4980.41 5278.26 4884.88 6188.17 3786.08 3969.85 4475.23 5768.43 5768.03 7078.38 4871.76 5781.26 8280.65 8388.56 6491.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_030481.73 3983.86 3679.26 4286.22 5089.18 2486.41 3867.15 6375.28 5570.75 5374.59 4183.49 3174.42 3687.05 2886.34 2990.58 1991.08 40
PVSNet_Blended_VisFu76.57 6477.90 6375.02 6580.56 8186.58 4979.24 7766.18 6864.81 8968.18 5965.61 7771.45 7067.05 7884.16 5181.80 6288.90 5790.92 41
LGP-MVS_train79.83 4481.22 4778.22 5086.28 4985.36 5886.76 3669.59 4777.34 5065.14 7175.68 3770.79 7571.37 6284.60 4884.01 4790.18 3390.74 42
abl_679.05 4387.27 4288.85 2683.62 5668.25 5581.68 4172.94 4073.79 4584.45 2872.55 5089.66 4590.64 43
canonicalmvs79.16 5282.37 4375.41 6282.33 6986.38 5180.80 6363.18 9282.90 3667.34 6372.79 4776.07 5569.62 6883.46 6084.41 4689.20 5290.60 44
ACMP73.23 779.79 4580.53 5078.94 4485.61 5385.68 5385.61 4369.59 4777.33 5171.00 5274.45 4269.16 8871.88 5483.15 6183.37 5389.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CANet81.62 4083.41 3779.53 4187.06 4388.59 3285.47 4567.96 5976.59 5374.05 3474.69 4081.98 3672.98 4886.14 3985.47 3889.68 4490.42 46
QAPM78.47 5680.22 5476.43 5785.03 5786.75 4880.62 6666.00 7173.77 6265.35 7065.54 7978.02 5072.69 4983.71 5583.36 5488.87 5990.41 47
DELS-MVS79.15 5381.07 4876.91 5583.54 6287.31 4284.45 5164.92 7969.98 6769.34 5571.62 5276.26 5469.84 6786.57 3385.90 3589.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPM-MVS79.68 4879.28 5780.15 3887.99 3986.77 4788.52 2972.72 3064.55 9267.65 6167.87 7174.33 6174.31 3786.37 3685.25 4189.73 4289.81 49
MVS_111021_HR80.13 4381.46 4578.58 4785.77 5285.17 5983.45 5769.28 5074.08 6170.31 5474.31 4375.26 5873.13 4486.46 3585.15 4289.53 4689.81 49
DPM-MVS83.30 3284.33 3582.11 2789.56 2888.49 3490.33 1273.24 2883.85 3376.46 2772.43 4882.65 3373.02 4786.37 3686.91 1990.03 3689.62 51
anonymousdsp65.28 14967.98 13862.13 15958.73 20073.98 15967.10 16550.69 18548.41 18847.66 15354.27 13552.75 16961.45 12176.71 14080.20 8987.13 9389.53 52
3Dnovator73.76 579.75 4680.52 5178.84 4584.94 6087.35 4184.43 5265.54 7478.29 4973.97 3563.00 9175.62 5774.07 3885.00 4785.34 4090.11 3589.04 53
EPP-MVSNet74.00 7777.41 6970.02 9580.53 8283.91 6574.99 11462.68 10665.06 8749.77 14168.68 6672.09 6963.06 10382.49 6880.73 7589.12 5588.91 54
OMC-MVS80.26 4282.59 4277.54 5283.04 6385.54 5483.25 5865.05 7887.32 1972.42 4272.04 5078.97 4773.30 4383.86 5381.60 6588.15 6988.83 55
UGNet72.78 8277.67 6567.07 13171.65 15883.24 7475.20 10863.62 8864.93 8856.72 10271.82 5173.30 6349.02 17481.02 8780.70 8186.22 11788.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_part174.24 7573.44 8775.18 6482.02 7282.34 8183.88 5462.40 11360.93 12268.68 5649.25 17369.71 8465.73 9381.26 8281.98 6088.35 6588.60 57
ETV-MVS77.32 6078.81 5875.58 6182.24 7083.64 7079.98 6864.02 8669.64 7163.90 7670.89 5669.94 8273.41 4285.39 4483.91 4989.92 3788.31 58
EPNet79.08 5480.62 4977.28 5388.90 3583.17 7683.65 5572.41 3274.41 5867.15 6476.78 3474.37 6064.43 9583.70 5683.69 5187.15 8988.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive72.77 8377.20 7267.59 12174.19 13484.01 6476.61 10461.69 12160.62 12550.61 13770.25 5971.31 7355.57 15783.85 5482.28 5786.90 9888.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_LR78.13 5879.85 5676.13 5881.12 7681.50 8680.28 6765.25 7676.09 5471.32 5176.49 3672.87 6772.21 5182.79 6581.29 6786.59 11187.91 61
ACMM72.26 878.86 5578.13 6179.71 4086.89 4583.40 7386.02 4070.50 4075.28 5571.49 5063.01 9069.26 8773.57 4184.11 5283.98 4889.76 4187.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft70.44 1076.15 6776.82 7575.37 6385.01 5884.79 6178.99 8162.07 11671.27 6667.88 6057.91 11772.36 6870.15 6682.23 6981.41 6688.12 7187.78 63
MAR-MVS79.21 5180.32 5377.92 5187.46 4088.15 3883.95 5367.48 6274.28 5968.25 5864.70 8477.04 5272.17 5285.42 4285.00 4388.22 6687.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CS-MVS76.92 6278.01 6275.64 6081.47 7383.59 7180.68 6462.47 11168.39 7365.83 6867.84 7270.74 7673.07 4585.31 4582.79 5690.33 3187.42 65
Effi-MVS+75.28 7176.20 7774.20 7381.15 7583.24 7481.11 6163.13 9466.37 7860.27 8564.30 8768.88 9270.93 6581.56 7381.69 6388.61 6287.35 66
IB-MVS66.94 1271.21 9471.66 10270.68 8679.18 9282.83 7872.61 14261.77 12059.66 12963.44 7853.26 14659.65 12359.16 13076.78 13982.11 5987.90 7587.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CNLPA77.20 6177.54 6676.80 5682.63 6584.31 6379.77 7264.64 8085.17 2473.18 3956.37 12469.81 8374.53 3581.12 8678.69 10986.04 12587.29 68
DCV-MVSNet73.65 7875.78 7971.16 8380.19 8579.27 10977.45 9661.68 12266.73 7758.72 9065.31 8069.96 8162.19 10881.29 8180.97 7186.74 10486.91 69
PVSNet_BlendedMVS76.21 6577.52 6774.69 6979.46 9083.79 6777.50 9464.34 8469.88 6871.88 4468.54 6870.42 7867.05 7883.48 5879.63 9587.89 7686.87 70
PVSNet_Blended76.21 6577.52 6774.69 6979.46 9083.79 6777.50 9464.34 8469.88 6871.88 4468.54 6870.42 7867.05 7883.48 5879.63 9587.89 7686.87 70
diffmvs74.86 7377.37 7071.93 7975.62 12080.35 10079.42 7660.15 13672.81 6564.63 7471.51 5373.11 6666.53 8879.02 11477.98 11785.25 14086.83 72
casdiffmvs76.76 6378.46 6074.77 6880.32 8483.73 6980.65 6563.24 9173.58 6366.11 6769.39 6274.09 6269.49 7082.52 6779.35 10388.84 6086.52 73
AdaColmapbinary79.74 4778.62 5981.05 3389.23 3386.06 5284.95 4971.96 3479.39 4875.51 3163.16 8968.84 9376.51 3083.55 5782.85 5588.13 7086.46 74
IS_MVSNet73.33 7977.34 7168.65 10981.29 7483.47 7274.45 11863.58 8965.75 8448.49 14567.11 7670.61 7754.63 16184.51 4983.58 5289.48 4786.34 75
TSAR-MVS + COLMAP78.34 5781.64 4474.48 7280.13 8785.01 6081.73 5965.93 7384.75 2861.68 8185.79 1966.27 10171.39 6182.91 6380.78 7486.01 12685.98 76
DI_MVS_plusplus_trai75.13 7276.12 7873.96 7478.18 9881.55 8480.97 6262.54 10868.59 7265.13 7261.43 9374.81 5969.32 7181.01 8879.59 9787.64 8385.89 77
Anonymous2023121171.90 8772.48 9671.21 8280.14 8681.53 8576.92 9962.89 9764.46 9458.94 8743.80 18470.98 7462.22 10780.70 9080.19 9086.18 11885.73 78
EIA-MVS75.64 6976.60 7674.53 7182.43 6883.84 6678.32 8762.28 11565.96 8263.28 7968.95 6367.54 9771.61 6082.55 6681.63 6489.24 5085.72 79
v14419269.34 11368.68 13170.12 9374.06 13580.54 9778.08 9060.54 13054.99 16154.13 11452.92 15352.80 16866.73 8577.13 13476.72 13787.15 8985.63 80
v192192069.03 11668.32 13569.86 9674.03 13680.37 9977.55 9260.25 13454.62 16353.59 12052.36 15951.50 17666.75 8477.17 13376.69 13986.96 9785.56 81
v119269.50 11168.83 12770.29 9274.49 13180.92 9478.55 8460.54 13055.04 15954.21 11252.79 15552.33 17066.92 8277.88 12677.35 13087.04 9685.51 82
MVS_Test75.37 7077.13 7373.31 7679.07 9381.32 8879.98 6860.12 13769.72 7064.11 7570.53 5773.22 6468.90 7280.14 10179.48 10187.67 8285.50 83
Effi-MVS+-dtu71.82 8871.86 10171.78 8078.77 9480.47 9878.55 8461.67 12360.68 12355.49 10758.48 11165.48 10368.85 7376.92 13675.55 14887.35 8785.46 84
CLD-MVS79.35 5081.23 4677.16 5485.01 5886.92 4685.87 4160.89 12680.07 4775.35 3272.96 4673.21 6568.43 7685.41 4384.63 4587.41 8685.44 85
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v124068.64 12167.89 14069.51 10173.89 13880.26 10376.73 10259.97 13953.43 17053.08 12351.82 16250.84 17966.62 8676.79 13876.77 13686.78 10385.34 86
MVSTER72.06 8674.24 8269.51 10170.39 16975.97 14576.91 10057.36 15964.64 9161.39 8368.86 6463.76 10863.46 10081.44 7579.70 9487.56 8485.31 87
TAPA-MVS71.42 977.69 5980.05 5574.94 6680.68 8084.52 6281.36 6063.14 9384.77 2764.82 7368.72 6575.91 5671.86 5581.62 7179.55 9987.80 8085.24 88
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IterMVS-LS71.69 8972.82 9470.37 9177.54 10676.34 14275.13 11260.46 13261.53 11757.57 9764.89 8267.33 9866.04 9177.09 13577.37 12985.48 13685.18 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114469.93 10769.36 12170.61 8874.89 12780.93 9279.11 7960.64 12855.97 15355.31 10953.85 14154.14 15066.54 8778.10 12477.44 12787.14 9285.09 90
v1070.22 10369.76 11670.74 8474.79 12880.30 10279.22 7859.81 14057.71 14056.58 10454.22 13955.31 14366.95 8178.28 12277.47 12687.12 9585.07 91
v7n67.05 14266.94 14767.17 12872.35 15178.97 11073.26 14158.88 15151.16 18150.90 13548.21 17650.11 18360.96 12277.70 12777.38 12886.68 10885.05 92
V4268.76 12069.63 11767.74 11664.93 18978.01 12178.30 8856.48 16158.65 13456.30 10554.26 13757.03 13664.85 9477.47 13077.01 13485.60 13484.96 93
UniMVSNet (Re)69.53 11071.90 10066.76 13676.42 11380.93 9272.59 14368.03 5861.75 11541.68 17558.34 11557.23 13453.27 16679.53 10880.62 8488.57 6384.90 94
Fast-Effi-MVS+73.11 8173.66 8572.48 7877.72 10480.88 9578.55 8458.83 15265.19 8660.36 8459.98 10262.42 11371.22 6381.66 7080.61 8588.20 6784.88 95
CANet_DTU73.29 8076.96 7469.00 10677.04 11082.06 8279.49 7556.30 16267.85 7553.29 12271.12 5570.37 8061.81 11781.59 7280.96 7286.09 12084.73 96
tttt051771.41 9272.95 9269.60 10073.70 14178.70 11674.42 12159.12 14663.89 9958.35 9464.56 8658.39 12964.27 9680.29 9780.17 9187.74 8184.69 97
thisisatest053071.48 9173.01 9169.70 9973.83 13978.62 11774.53 11759.12 14664.13 9558.63 9164.60 8558.63 12764.27 9680.28 9880.17 9187.82 7984.64 98
Anonymous20240521172.16 9980.85 7981.85 8376.88 10165.40 7562.89 10746.35 18067.99 9662.05 11081.15 8580.38 8785.97 12884.50 99
FC-MVSNet-train72.60 8475.07 8169.71 9881.10 7778.79 11573.74 13565.23 7766.10 8153.34 12170.36 5863.40 11056.92 14681.44 7580.96 7287.93 7484.46 100
ACMH65.37 1470.71 9770.00 11271.54 8182.51 6782.47 8077.78 9168.13 5656.19 15146.06 16154.30 13451.20 17768.68 7480.66 9180.72 7686.07 12184.45 101
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet70.59 9872.19 9768.72 10777.72 10480.72 9673.81 13369.65 4661.99 11243.23 17060.54 9857.50 13258.57 13179.56 10781.07 7089.34 4983.97 102
DU-MVS69.63 10970.91 10568.13 11375.99 11579.54 10573.81 13369.20 5161.20 12043.23 17058.52 10953.50 15758.57 13179.22 11180.45 8687.97 7383.97 102
ACMH+66.54 1371.36 9370.09 11172.85 7782.59 6681.13 9178.56 8368.04 5761.55 11652.52 12851.50 16354.14 15068.56 7578.85 11679.50 10086.82 10183.94 104
v870.23 10269.86 11470.67 8774.69 12979.82 10478.79 8259.18 14558.80 13358.20 9555.00 13157.33 13366.31 9077.51 12976.71 13886.82 10183.88 105
thisisatest051567.40 13868.78 12865.80 14170.02 17175.24 15269.36 15557.37 15854.94 16253.67 11955.53 12954.85 14658.00 13678.19 12378.91 10786.39 11583.78 106
baseline70.45 10074.09 8466.20 13970.95 16675.67 14674.26 12553.57 16668.33 7458.42 9269.87 6071.45 7061.55 11874.84 15074.76 15378.42 17283.72 107
NR-MVSNet68.79 11970.56 10766.71 13877.48 10779.54 10573.52 13769.20 5161.20 12039.76 17758.52 10950.11 18351.37 17080.26 9980.71 8088.97 5683.59 108
v2v48270.05 10669.46 12070.74 8474.62 13080.32 10179.00 8060.62 12957.41 14256.89 10155.43 13055.14 14566.39 8977.25 13277.14 13286.90 9883.57 109
ET-MVSNet_ETH3D72.46 8574.19 8370.44 9062.50 19281.17 9079.90 7162.46 11264.52 9357.52 9871.49 5459.15 12572.08 5378.61 11981.11 6988.16 6883.29 110
CHOSEN 1792x268869.20 11569.26 12269.13 10376.86 11178.93 11177.27 9760.12 13761.86 11454.42 11142.54 18861.61 11466.91 8378.55 12078.14 11679.23 17083.23 111
TranMVSNet+NR-MVSNet69.25 11470.81 10667.43 12277.23 10979.46 10773.48 13869.66 4560.43 12639.56 17858.82 10853.48 15955.74 15579.59 10581.21 6888.89 5882.70 112
UniMVSNet_ETH3D67.18 14167.03 14667.36 12474.44 13278.12 12074.07 12866.38 6652.22 17546.87 15448.64 17451.84 17456.96 14477.29 13178.53 11085.42 13782.59 113
Baseline_NR-MVSNet67.53 13768.77 12966.09 14075.99 11574.75 15672.43 14468.41 5461.33 11938.33 18151.31 16454.13 15256.03 15179.22 11178.19 11585.37 13882.45 114
LTVRE_ROB59.44 1661.82 17562.64 17760.87 16572.83 15077.19 13464.37 18058.97 14833.56 20828.00 19552.59 15842.21 20063.93 9974.52 15176.28 14277.15 17782.13 115
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GBi-Net70.78 9573.37 8967.76 11472.95 14678.00 12275.15 10962.72 10164.13 9551.44 13058.37 11269.02 8957.59 13881.33 7880.72 7686.70 10582.02 116
test170.78 9573.37 8967.76 11472.95 14678.00 12275.15 10962.72 10164.13 9551.44 13058.37 11269.02 8957.59 13881.33 7880.72 7686.70 10582.02 116
FMVSNet270.39 10172.67 9567.72 11772.95 14678.00 12275.15 10962.69 10563.29 10351.25 13455.64 12668.49 9557.59 13880.91 8980.35 8886.70 10582.02 116
CP-MVSNet62.68 16265.49 15759.40 17471.84 15475.34 15062.87 18667.04 6452.64 17227.19 19653.38 14448.15 18841.40 18771.26 17075.68 14686.07 12182.00 119
FMVSNet168.84 11870.47 10966.94 13371.35 16377.68 13074.71 11662.35 11456.93 14449.94 14050.01 16964.59 10557.07 14381.33 7880.72 7686.25 11682.00 119
PS-CasMVS62.38 16865.06 16059.25 17571.73 15575.21 15462.77 18766.99 6551.94 17926.96 19752.00 16147.52 19141.06 18871.16 17375.60 14785.97 12881.97 121
UA-Net74.47 7477.80 6470.59 8985.33 5485.40 5773.54 13665.98 7260.65 12456.00 10672.11 4979.15 4654.63 16183.13 6282.25 5888.04 7281.92 122
FMVSNet370.49 9972.90 9367.67 11972.88 14977.98 12574.96 11562.72 10164.13 9551.44 13058.37 11269.02 8957.43 14179.43 10979.57 9886.59 11181.81 123
PLCcopyleft68.99 1175.68 6875.31 8076.12 5982.94 6481.26 8979.94 7066.10 6977.15 5266.86 6659.13 10768.53 9473.73 4080.38 9579.04 10487.13 9381.68 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-SCA-FT66.89 14369.22 12364.17 14971.30 16475.64 14771.33 14753.17 17057.63 14149.08 14460.72 9660.05 12163.09 10274.99 14973.92 15677.07 17881.57 125
Fast-Effi-MVS+-dtu68.34 12269.47 11967.01 13275.15 12377.97 12777.12 9855.40 16457.87 13546.68 15756.17 12560.39 11762.36 10676.32 14376.25 14485.35 13981.34 126
v14867.85 12967.53 14168.23 11173.25 14477.57 13374.26 12557.36 15955.70 15457.45 9953.53 14255.42 14261.96 11375.23 14773.92 15685.08 14281.32 127
EG-PatchMatch MVS67.24 14066.94 14767.60 12078.73 9581.35 8773.28 14059.49 14246.89 19251.42 13343.65 18553.49 15855.50 15881.38 7780.66 8287.15 8981.17 128
WR-MVS63.03 15967.40 14457.92 17875.14 12477.60 13260.56 19166.10 6954.11 16823.88 19953.94 14053.58 15534.50 19573.93 15577.71 12187.35 8780.94 129
WR-MVS_H61.83 17465.87 15357.12 18171.72 15676.87 13661.45 18966.19 6751.97 17822.92 20353.13 15052.30 17233.80 19671.03 17475.00 15186.65 10980.78 130
PEN-MVS62.96 16065.77 15459.70 17173.98 13775.45 14963.39 18467.61 6152.49 17325.49 19853.39 14349.12 18640.85 18971.94 16777.26 13186.86 10080.72 131
GA-MVS68.14 12369.17 12466.93 13473.77 14078.50 11974.45 11858.28 15455.11 15848.44 14660.08 10053.99 15361.50 11978.43 12177.57 12485.13 14180.54 132
tfpn200view968.11 12468.72 13067.40 12377.83 10278.93 11174.28 12362.81 9856.64 14646.82 15552.65 15653.47 16056.59 14780.41 9278.43 11286.11 11980.52 133
thres40067.95 12768.62 13267.17 12877.90 9978.59 11874.27 12462.72 10156.34 15045.77 16353.00 15153.35 16356.46 14880.21 10078.43 11285.91 13080.43 134
thres600view767.68 13268.43 13466.80 13577.90 9978.86 11373.84 13162.75 9956.07 15244.70 16852.85 15452.81 16755.58 15680.41 9277.77 12086.05 12380.28 135
LS3D74.08 7673.39 8874.88 6785.05 5682.62 7979.71 7368.66 5372.82 6458.80 8957.61 11861.31 11671.07 6480.32 9678.87 10886.00 12780.18 136
HyFIR lowres test69.47 11268.94 12670.09 9476.77 11282.93 7776.63 10360.17 13559.00 13254.03 11540.54 19365.23 10467.89 7776.54 14278.30 11485.03 14380.07 137
baseline269.69 10870.27 11069.01 10575.72 11977.13 13573.82 13258.94 15061.35 11857.09 10061.68 9257.17 13561.99 11278.10 12476.58 14086.48 11479.85 138
pm-mvs165.62 14667.42 14363.53 15573.66 14276.39 14169.66 15260.87 12749.73 18543.97 16951.24 16557.00 13748.16 17579.89 10277.84 11984.85 14779.82 139
thres20067.98 12668.55 13367.30 12677.89 10178.86 11374.18 12762.75 9956.35 14946.48 15852.98 15253.54 15656.46 14880.41 9277.97 11886.05 12379.78 140
CostFormer68.92 11769.58 11868.15 11275.98 11776.17 14478.22 8951.86 17865.80 8361.56 8263.57 8862.83 11161.85 11570.40 18268.67 17979.42 16879.62 141
tfpnnormal64.27 15563.64 17165.02 14475.84 11875.61 14871.24 14962.52 10947.79 18942.97 17242.65 18744.49 19752.66 16878.77 11776.86 13584.88 14679.29 142
thres100view90067.60 13668.02 13767.12 13077.83 10277.75 12973.90 13062.52 10956.64 14646.82 15552.65 15653.47 16055.92 15278.77 11777.62 12385.72 13179.23 143
pmmvs662.41 16662.88 17461.87 16071.38 16275.18 15567.76 16159.45 14441.64 20042.52 17437.33 19552.91 16646.87 17777.67 12876.26 14383.23 15579.18 144
CVMVSNet62.55 16365.89 15258.64 17666.95 18269.15 17566.49 17256.29 16352.46 17432.70 18959.27 10658.21 13150.09 17271.77 16871.39 16879.31 16978.99 145
IterMVS66.36 14468.30 13664.10 15069.48 17674.61 15773.41 13950.79 18457.30 14348.28 14860.64 9759.92 12260.85 12674.14 15472.66 16381.80 15978.82 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DTE-MVSNet61.85 17264.96 16358.22 17774.32 13374.39 15861.01 19067.85 6051.76 18021.91 20653.28 14548.17 18737.74 19272.22 16476.44 14186.52 11378.49 147
SixPastTwentyTwo61.84 17362.45 17961.12 16469.20 17772.20 16462.03 18857.40 15746.54 19338.03 18357.14 12241.72 20158.12 13569.67 18471.58 16781.94 15878.30 148
TDRefinement66.09 14565.03 16267.31 12569.73 17376.75 13875.33 10564.55 8260.28 12749.72 14245.63 18242.83 19960.46 12775.75 14475.95 14584.08 15078.04 149
MS-PatchMatch70.17 10470.49 10869.79 9780.98 7877.97 12777.51 9358.95 14962.33 11055.22 11053.14 14965.90 10262.03 11179.08 11377.11 13384.08 15077.91 150
pmmvs467.89 12867.39 14568.48 11071.60 16073.57 16074.45 11860.98 12564.65 9057.97 9654.95 13251.73 17561.88 11473.78 15675.11 15083.99 15277.91 150
PM-MVS60.48 17960.94 18759.94 16958.85 19966.83 18464.27 18151.39 18155.03 16048.03 14950.00 17140.79 20358.26 13469.20 18767.13 18978.84 17177.60 152
EPNet_dtu68.08 12571.00 10464.67 14779.64 8968.62 17875.05 11363.30 9066.36 7945.27 16567.40 7466.84 10043.64 18375.37 14674.98 15281.15 16277.44 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CDS-MVSNet67.65 13469.83 11565.09 14375.39 12276.55 14074.42 12163.75 8753.55 16949.37 14359.41 10562.45 11244.44 18179.71 10479.82 9383.17 15677.36 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gg-mvs-nofinetune62.55 16365.05 16159.62 17278.72 9677.61 13170.83 15053.63 16539.71 20422.04 20536.36 19764.32 10647.53 17681.16 8479.03 10585.00 14477.17 155
RPSCF67.64 13571.25 10363.43 15661.86 19470.73 17067.26 16350.86 18374.20 6058.91 8867.49 7369.33 8664.10 9871.41 16968.45 18377.61 17477.17 155
TransMVSNet (Re)64.74 15265.66 15563.66 15477.40 10875.33 15169.86 15162.67 10747.63 19041.21 17650.01 16952.33 17045.31 18079.57 10677.69 12285.49 13577.07 157
MSDG71.52 9069.87 11373.44 7582.21 7179.35 10879.52 7464.59 8166.15 8061.87 8053.21 14856.09 14065.85 9278.94 11578.50 11186.60 11076.85 158
Vis-MVSNet (Re-imp)67.83 13073.52 8661.19 16378.37 9776.72 13966.80 16862.96 9565.50 8534.17 18867.19 7569.68 8539.20 19179.39 11079.44 10285.68 13276.73 159
baseline170.10 10572.17 9867.69 11879.74 8876.80 13773.91 12964.38 8362.74 10848.30 14764.94 8164.08 10754.17 16381.46 7478.92 10685.66 13376.22 160
test-mter60.84 17864.62 16556.42 18355.99 20464.18 18965.39 17534.23 20754.39 16646.21 16057.40 12159.49 12455.86 15371.02 17569.65 17380.87 16576.20 161
pmmvs-eth3d63.52 15862.44 18064.77 14666.82 18470.12 17269.41 15459.48 14354.34 16752.71 12446.24 18144.35 19856.93 14572.37 16073.77 15883.30 15475.91 162
CMPMVSbinary47.78 1762.49 16562.52 17862.46 15870.01 17270.66 17162.97 18551.84 17951.98 17756.71 10342.87 18653.62 15457.80 13772.23 16370.37 17175.45 18775.91 162
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc53.42 19664.99 18863.36 19549.96 20447.07 19137.12 18428.97 20416.36 21541.82 18575.10 14867.34 18571.55 19875.72 164
CR-MVSNet64.83 15165.54 15664.01 15270.64 16869.41 17365.97 17352.74 17357.81 13752.65 12554.27 13556.31 13960.92 12372.20 16573.09 16181.12 16375.69 165
PatchT61.97 17164.04 16859.55 17360.49 19667.40 18156.54 19748.65 19256.69 14552.65 12551.10 16652.14 17360.92 12372.20 16573.09 16178.03 17375.69 165
RPMNet61.71 17662.88 17460.34 16769.51 17569.41 17363.48 18349.23 18857.81 13745.64 16450.51 16750.12 18253.13 16768.17 19168.49 18281.07 16475.62 167
USDC67.36 13967.90 13966.74 13771.72 15675.23 15371.58 14660.28 13367.45 7650.54 13860.93 9445.20 19662.08 10976.56 14174.50 15484.25 14975.38 168
COLMAP_ROBcopyleft62.73 1567.66 13366.76 14968.70 10880.49 8377.98 12575.29 10762.95 9663.62 10149.96 13947.32 17950.72 18058.57 13176.87 13775.50 14984.94 14575.33 169
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EU-MVSNet54.63 19158.69 19049.90 19656.99 20262.70 19956.41 19850.64 18645.95 19523.14 20250.42 16846.51 19336.63 19365.51 19464.85 19375.57 18474.91 170
tpm cat165.41 14763.81 17067.28 12775.61 12172.88 16275.32 10652.85 17262.97 10563.66 7753.24 14753.29 16561.83 11665.54 19364.14 19574.43 19074.60 171
pmmvs562.37 16964.04 16860.42 16665.03 18771.67 16767.17 16452.70 17550.30 18244.80 16654.23 13851.19 17849.37 17372.88 15973.48 16083.45 15374.55 172
test-LLR64.42 15364.36 16664.49 14875.02 12563.93 19166.61 17061.96 11754.41 16447.77 15057.46 11960.25 11855.20 15970.80 17669.33 17480.40 16674.38 173
TESTMET0.1,161.10 17764.36 16657.29 18057.53 20163.93 19166.61 17036.22 20654.41 16447.77 15057.46 11960.25 11855.20 15970.80 17669.33 17480.40 16674.38 173
tpm62.41 16663.15 17261.55 16272.24 15263.79 19371.31 14846.12 20057.82 13655.33 10859.90 10354.74 14753.63 16467.24 19264.29 19470.65 20074.25 175
PMMVS65.06 15069.17 12460.26 16855.25 20663.43 19466.71 16943.01 20262.41 10950.64 13669.44 6167.04 9963.29 10174.36 15373.54 15982.68 15773.99 176
PatchMatch-RL67.78 13166.65 15069.10 10473.01 14572.69 16368.49 15861.85 11962.93 10660.20 8656.83 12350.42 18169.52 6975.62 14574.46 15581.51 16073.62 177
CHOSEN 280x42058.70 18461.88 18354.98 18855.45 20550.55 20864.92 17740.36 20355.21 15638.13 18248.31 17563.76 10863.03 10473.73 15768.58 18168.00 20473.04 178
gm-plane-assit57.00 18757.62 19456.28 18476.10 11462.43 20047.62 20746.57 19833.84 20723.24 20137.52 19440.19 20459.61 12979.81 10377.55 12584.55 14872.03 179
TinyColmap62.84 16161.03 18664.96 14569.61 17471.69 16668.48 15959.76 14155.41 15547.69 15247.33 17834.20 20762.76 10574.52 15172.59 16481.44 16171.47 180
dps64.00 15762.99 17365.18 14273.29 14372.07 16568.98 15753.07 17157.74 13958.41 9355.55 12847.74 19060.89 12569.53 18567.14 18876.44 18271.19 181
tpmrst62.00 17062.35 18161.58 16171.62 15964.14 19069.07 15648.22 19662.21 11153.93 11658.26 11655.30 14455.81 15463.22 19762.62 19770.85 19970.70 182
SCA65.40 14866.58 15164.02 15170.65 16773.37 16167.35 16253.46 16863.66 10054.14 11360.84 9560.20 12061.50 11969.96 18368.14 18477.01 17969.91 183
GG-mvs-BLEND46.86 20167.51 14222.75 2070.05 21776.21 14364.69 1780.04 21461.90 1130.09 21855.57 12771.32 720.08 21370.54 17867.19 18771.58 19769.86 184
MDTV_nov1_ep1364.37 15465.24 15863.37 15768.94 17870.81 16972.40 14550.29 18760.10 12853.91 11760.07 10159.15 12557.21 14269.43 18667.30 18677.47 17569.78 185
MDTV_nov1_ep13_2view60.16 18060.51 18859.75 17065.39 18669.05 17668.00 16048.29 19451.99 17645.95 16248.01 17749.64 18553.39 16568.83 18866.52 19077.47 17569.55 186
FC-MVSNet-test56.90 18865.20 15947.21 19866.98 18163.20 19649.11 20658.60 15359.38 13111.50 21265.60 7856.68 13824.66 20571.17 17271.36 16972.38 19669.02 187
Anonymous2023120656.36 18957.80 19354.67 18970.08 17066.39 18560.46 19257.54 15649.50 18729.30 19333.86 20046.64 19235.18 19470.44 18068.88 17875.47 18668.88 188
PatchmatchNetpermissive64.21 15664.65 16463.69 15371.29 16568.66 17769.63 15351.70 18063.04 10453.77 11859.83 10458.34 13060.23 12868.54 18966.06 19175.56 18568.08 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs53.37 19553.01 19853.79 19243.67 21067.95 18059.69 19457.92 15543.69 19632.41 19041.47 18927.89 21252.38 16956.97 20565.99 19276.68 18067.13 190
TAMVS59.58 18262.81 17655.81 18566.03 18565.64 18863.86 18248.74 19149.95 18437.07 18554.77 13358.54 12844.44 18172.29 16271.79 16574.70 18966.66 191
MIMVSNet58.52 18561.34 18555.22 18760.76 19567.01 18366.81 16749.02 19056.43 14838.90 18040.59 19254.54 14940.57 19073.16 15871.65 16675.30 18866.00 192
test0.0.03 158.80 18361.58 18455.56 18675.02 12568.45 17959.58 19561.96 11752.74 17129.57 19249.75 17254.56 14831.46 19871.19 17169.77 17275.75 18364.57 193
FMVSNet557.24 18660.02 18953.99 19156.45 20362.74 19865.27 17647.03 19755.14 15739.55 17940.88 19053.42 16241.83 18472.35 16171.10 17073.79 19264.50 194
EPMVS60.00 18161.97 18257.71 17968.46 17963.17 19764.54 17948.23 19563.30 10244.72 16760.19 9956.05 14150.85 17165.27 19562.02 19869.44 20263.81 195
pmmvs347.65 19849.08 20345.99 19944.61 20854.79 20650.04 20331.95 21033.91 20629.90 19130.37 20233.53 20846.31 17863.50 19663.67 19673.14 19563.77 196
test20.0353.93 19456.28 19551.19 19472.19 15365.83 18653.20 20161.08 12442.74 19822.08 20437.07 19645.76 19524.29 20670.44 18069.04 17674.31 19163.05 197
testgi54.39 19357.86 19250.35 19571.59 16167.24 18254.95 19953.25 16943.36 19723.78 20044.64 18347.87 18924.96 20370.45 17968.66 18073.60 19362.78 198
MIMVSNet149.27 19753.25 19744.62 20044.61 20861.52 20153.61 20052.18 17641.62 20118.68 20828.14 20641.58 20225.50 20168.46 19069.04 17673.15 19462.37 199
new-patchmatchnet46.97 20049.47 20244.05 20262.82 19156.55 20445.35 20852.01 17742.47 19917.04 21035.73 19935.21 20621.84 20961.27 20054.83 20465.26 20560.26 200
MVS-HIRNet54.41 19252.10 19957.11 18258.99 19856.10 20549.68 20549.10 18946.18 19452.15 12933.18 20146.11 19456.10 15063.19 19859.70 20176.64 18160.25 201
ADS-MVSNet55.94 19058.01 19153.54 19362.48 19358.48 20259.12 19646.20 19959.65 13042.88 17352.34 16053.31 16446.31 17862.00 19960.02 20064.23 20660.24 202
FPMVS51.87 19650.00 20154.07 19066.83 18357.25 20360.25 19350.91 18250.25 18334.36 18736.04 19832.02 20941.49 18658.98 20356.07 20270.56 20159.36 203
PMVScopyleft39.38 1846.06 20243.30 20449.28 19762.93 19038.75 21041.88 20953.50 16733.33 20935.46 18628.90 20531.01 21033.04 19758.61 20454.63 20568.86 20357.88 204
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
N_pmnet47.35 19950.13 20044.11 20159.98 19751.64 20751.86 20244.80 20149.58 18620.76 20740.65 19140.05 20529.64 19959.84 20155.15 20357.63 20754.00 205
new_pmnet38.40 20342.64 20533.44 20437.54 21345.00 20936.60 21032.72 20940.27 20212.72 21129.89 20328.90 21124.78 20453.17 20652.90 20656.31 20848.34 206
Gipumacopyleft36.38 20435.80 20637.07 20345.76 20733.90 21129.81 21148.47 19339.91 20318.02 2098.00 2138.14 21725.14 20259.29 20261.02 19955.19 20940.31 207
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive19.12 1920.47 20823.27 20817.20 20912.66 21625.41 21310.52 21634.14 20814.79 2146.53 2168.79 2124.68 21816.64 21029.49 20941.63 20722.73 21438.11 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS225.60 20529.75 20720.76 20828.00 21430.93 21223.10 21229.18 21123.14 2111.46 21718.23 20916.54 2145.08 21140.22 20741.40 20837.76 21037.79 209
DeepMVS_CXcopyleft18.74 21618.55 2138.02 21226.96 2107.33 21323.81 20813.05 21625.99 20025.17 21022.45 21536.25 210
E-PMN21.77 20618.24 20925.89 20540.22 21119.58 21412.46 21539.87 20418.68 2136.71 2149.57 2104.31 22022.36 20819.89 21127.28 21033.73 21128.34 211
EMVS20.98 20717.15 21025.44 20639.51 21219.37 21512.66 21439.59 20519.10 2126.62 2159.27 2114.40 21922.43 20717.99 21224.40 21131.81 21225.53 212
test1230.09 2090.14 2120.02 2110.00 2190.02 2180.02 2200.01 2150.09 2160.00 2200.30 2140.00 2220.08 2130.03 2140.09 2130.01 2160.45 213
testmvs0.09 2090.15 2110.02 2110.01 2180.02 2180.05 2190.01 2150.11 2150.01 2190.26 2150.01 2210.06 2150.10 2130.10 2120.01 2160.43 214
uanet_test0.00 2110.00 2130.00 2130.00 2190.00 2200.00 2210.00 2170.00 2170.00 2200.00 2160.00 2220.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2190.00 2200.00 2210.00 2170.00 2170.00 2200.00 2160.00 2220.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2190.00 2200.00 2210.00 2170.00 2170.00 2200.00 2160.00 2220.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def46.24 159
9.1486.88 15
SR-MVS88.99 3473.57 2587.54 13
our_test_367.93 18070.99 16866.89 166
MTAPA83.48 186.45 18
MTMP82.66 584.91 26
Patchmatch-RL test2.85 218
tmp_tt14.50 21014.68 2157.17 21710.46 2172.21 21337.73 20528.71 19425.26 20716.98 2134.37 21231.49 20829.77 20926.56 213
XVS86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
X-MVStestdata86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
mPP-MVS89.90 2581.29 42
NP-MVS80.10 46
Patchmtry65.80 18765.97 17352.74 17352.65 125