This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS88.67 291.62 185.22 390.47 1792.36 190.69 976.15 393.08 182.75 492.19 590.71 280.45 589.27 587.91 890.82 1195.84 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS88.85 191.59 285.67 190.54 1592.29 291.71 376.40 292.41 283.24 292.50 390.64 381.10 289.53 288.02 791.00 895.73 2
DPE-MVScopyleft88.63 391.29 385.53 290.87 892.20 391.98 276.00 590.55 782.09 693.85 190.75 181.25 188.62 787.59 1390.96 995.48 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS88.09 490.84 484.88 690.00 2391.80 591.63 475.80 691.99 381.23 992.54 289.18 580.89 387.99 1487.91 889.70 4494.51 6
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS88.00 590.50 585.08 490.95 791.58 692.03 175.53 1291.15 480.10 1592.27 488.34 1080.80 488.00 1386.99 1891.09 695.16 5
SMA-MVScopyleft87.56 690.17 684.52 991.71 290.57 990.77 875.19 1390.67 680.50 1486.59 1788.86 778.09 1689.92 189.41 190.84 1095.19 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS87.47 789.70 784.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 788.93 678.82 987.42 1986.23 3091.28 393.90 12
SD-MVS86.96 989.45 884.05 1590.13 2089.23 2289.77 1874.59 1489.17 1080.70 1189.93 1189.67 478.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.86.88 1089.23 984.14 1389.78 2688.67 3190.59 1073.46 2788.99 1180.52 1391.26 688.65 879.91 786.96 3086.22 3290.59 1893.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP86.52 1289.01 1083.62 1790.28 1990.09 1390.32 1374.05 2088.32 1479.74 1687.04 1585.59 2376.97 2989.35 388.44 490.35 2994.27 10
DeepPCF-MVS79.04 185.30 2188.93 1181.06 3288.77 3690.48 1085.46 4673.08 2990.97 573.77 3784.81 2285.95 2077.43 2388.22 1087.73 1087.85 8194.34 8
HPM-MVS++copyleft87.09 888.92 1284.95 592.61 187.91 4090.23 1576.06 488.85 1281.20 1087.33 1387.93 1179.47 888.59 888.23 590.15 3593.60 20
APD-MVScopyleft86.84 1188.91 1384.41 1090.66 1190.10 1290.78 775.64 987.38 1778.72 1990.68 1086.82 1680.15 687.13 2586.45 2890.51 2093.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + ACMM85.10 2488.81 1480.77 3589.55 2988.53 3388.59 2872.55 3187.39 1671.90 4390.95 987.55 1274.57 3687.08 2786.54 2687.47 8893.67 17
SteuartSystems-ACMMP85.99 1588.31 1583.27 2190.73 1089.84 1490.27 1474.31 1584.56 3075.88 3087.32 1485.04 2477.31 2489.01 688.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS86.36 1388.19 1684.23 1291.33 489.84 1490.34 1175.56 1087.36 1878.97 1881.19 2886.76 1778.74 1189.30 488.58 290.45 2694.33 9
HFP-MVS86.15 1487.95 1784.06 1490.80 989.20 2389.62 2074.26 1687.52 1580.63 1286.82 1684.19 2978.22 1487.58 1787.19 1690.81 1293.13 24
CSCG85.28 2287.68 1882.49 2589.95 2491.99 488.82 2571.20 3886.41 2279.63 1779.26 2988.36 973.94 4186.64 3286.67 2591.40 294.41 7
ACMMPR85.52 1787.53 1983.17 2290.13 2089.27 2089.30 2173.97 2186.89 2077.14 2586.09 1883.18 3277.74 2087.42 1987.20 1590.77 1392.63 25
MP-MVScopyleft85.50 1887.40 2083.28 2090.65 1289.51 1989.16 2474.11 1983.70 3478.06 2285.54 2084.89 2777.31 2487.40 2287.14 1790.41 2793.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg84.86 2587.21 2182.11 2790.59 1385.47 5589.81 1673.55 2683.95 3273.30 3889.84 1287.23 1475.61 3386.47 3485.46 3989.78 4092.06 32
zzz-MVS85.71 1686.88 2284.34 1190.54 1587.11 4489.77 1874.17 1888.54 1383.08 378.60 3286.10 1978.11 1587.80 1687.46 1490.35 2992.56 26
MCST-MVS85.13 2386.62 2383.39 1890.55 1489.82 1689.29 2273.89 2384.38 3176.03 2979.01 3185.90 2178.47 1287.81 1586.11 3492.11 193.29 22
NCCC85.34 2086.59 2483.88 1691.48 388.88 2589.79 1775.54 1186.67 2177.94 2376.55 3584.99 2578.07 1788.04 1187.68 1190.46 2593.31 21
TSAR-MVS + GP.83.69 3086.58 2580.32 3685.14 5586.96 4584.91 5070.25 4284.71 2973.91 3685.16 2185.63 2277.92 1885.44 4385.71 3789.77 4192.45 27
CP-MVS84.74 2786.43 2682.77 2489.48 3088.13 3988.64 2673.93 2284.92 2576.77 2681.94 2683.50 3077.29 2686.92 3186.49 2790.49 2193.14 23
PGM-MVS84.42 2886.29 2782.23 2690.04 2288.82 2789.23 2371.74 3682.82 3774.61 3384.41 2382.09 3577.03 2887.13 2586.73 2490.73 1592.06 32
DeepC-MVS78.47 284.81 2686.03 2883.37 1989.29 3290.38 1188.61 2776.50 186.25 2377.22 2475.12 3980.28 4577.59 2288.39 988.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS82.36 3685.89 2978.24 4986.40 4889.52 1885.52 4469.52 4982.38 4065.67 6981.35 2782.36 3473.07 4787.31 2486.76 2389.24 5191.56 35
xxxxxxxxxxxxxcwj85.35 1985.76 3084.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 761.35 11878.82 987.42 1986.23 3091.28 393.90 12
DeepC-MVS_fast78.24 384.27 2985.50 3182.85 2390.46 1889.24 2187.83 3374.24 1784.88 2676.23 2875.26 3881.05 4377.62 2188.02 1287.62 1290.69 1692.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft83.42 3185.27 3281.26 3188.47 3788.49 3488.31 3172.09 3383.42 3572.77 4182.65 2478.22 5075.18 3486.24 3885.76 3690.74 1492.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
X-MVS83.23 3385.20 3380.92 3489.71 2788.68 2888.21 3273.60 2482.57 3871.81 4677.07 3381.92 3771.72 5986.98 2986.86 2090.47 2292.36 29
CDPH-MVS82.64 3485.03 3479.86 3989.41 3188.31 3688.32 3071.84 3580.11 4567.47 6382.09 2581.44 4171.85 5785.89 4086.15 3390.24 3291.25 38
DPM-MVS83.30 3284.33 3582.11 2789.56 2888.49 3490.33 1273.24 2883.85 3376.46 2772.43 4982.65 3373.02 4886.37 3686.91 1990.03 3789.62 52
MVS_030481.73 3983.86 3679.26 4286.22 5089.18 2486.41 3867.15 6375.28 5570.75 5374.59 4183.49 3174.42 3887.05 2886.34 2990.58 1991.08 40
CANet81.62 4083.41 3779.53 4187.06 4388.59 3285.47 4567.96 5976.59 5374.05 3474.69 4081.98 3672.98 4986.14 3985.47 3889.68 4590.42 46
HQP-MVS81.19 4183.27 3878.76 4687.40 4185.45 5686.95 3570.47 4181.31 4266.91 6679.24 3076.63 5471.67 6084.43 5183.78 5089.19 5492.05 34
CPTT-MVS81.77 3883.10 3980.21 3785.93 5186.45 5087.72 3470.98 3982.54 3971.53 4974.23 4481.49 4076.31 3182.85 6581.87 6288.79 6292.26 30
3Dnovator+75.73 482.40 3582.76 4081.97 2988.02 3889.67 1786.60 3771.48 3781.28 4378.18 2164.78 8477.96 5277.13 2787.32 2386.83 2190.41 2791.48 36
MSLP-MVS++82.09 3782.66 4181.42 3087.03 4487.22 4385.82 4270.04 4380.30 4478.66 2068.67 6981.04 4477.81 1985.19 4784.88 4489.19 5491.31 37
OMC-MVS80.26 4282.59 4277.54 5283.04 6385.54 5483.25 5865.05 7887.32 1972.42 4272.04 5278.97 4773.30 4583.86 5481.60 6688.15 7288.83 56
canonicalmvs79.16 5282.37 4375.41 6282.33 6986.38 5180.80 6463.18 9282.90 3667.34 6472.79 4776.07 5669.62 7083.46 6184.41 4689.20 5390.60 44
TSAR-MVS + COLMAP78.34 5881.64 4474.48 7380.13 8985.01 6081.73 5965.93 7384.75 2861.68 8385.79 1966.27 10371.39 6282.91 6480.78 7586.01 12985.98 78
MVS_111021_HR80.13 4381.46 4578.58 4785.77 5285.17 5983.45 5769.28 5074.08 6170.31 5474.31 4375.26 6073.13 4686.46 3585.15 4289.53 4789.81 50
CLD-MVS79.35 5081.23 4677.16 5485.01 5886.92 4685.87 4160.89 12680.07 4775.35 3272.96 4673.21 6768.43 7885.41 4584.63 4587.41 8985.44 87
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LGP-MVS_train79.83 4481.22 4778.22 5086.28 4985.36 5886.76 3669.59 4777.34 5065.14 7175.68 3770.79 7771.37 6384.60 4984.01 4790.18 3490.74 42
DELS-MVS79.15 5381.07 4876.91 5583.54 6287.31 4284.45 5164.92 7969.98 6969.34 5571.62 5476.26 5569.84 6986.57 3385.90 3589.39 4989.88 49
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet79.08 5480.62 4977.28 5388.90 3583.17 7583.65 5572.41 3274.41 5867.15 6576.78 3474.37 6264.43 9883.70 5783.69 5187.15 9288.19 60
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMP73.23 779.79 4580.53 5078.94 4485.61 5385.68 5385.61 4369.59 4777.33 5171.00 5274.45 4269.16 8971.88 5583.15 6283.37 5589.92 3890.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator73.76 579.75 4680.52 5178.84 4584.94 6087.35 4184.43 5265.54 7478.29 4973.97 3563.00 9275.62 5974.07 4085.00 4885.34 4090.11 3689.04 54
CS-MVS78.36 5780.42 5275.95 6081.17 7483.02 7780.84 6359.46 14571.65 6668.26 5872.53 4878.33 4975.63 3285.79 4183.62 5290.33 3188.01 62
PCF-MVS73.28 679.42 4980.41 5378.26 4884.88 6188.17 3786.08 3969.85 4475.23 5768.43 5768.03 7278.38 4871.76 5881.26 8480.65 8488.56 6591.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS79.21 5180.32 5477.92 5187.46 4088.15 3883.95 5367.48 6274.28 5968.25 5964.70 8577.04 5372.17 5385.42 4485.00 4388.22 6887.62 66
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CS-MVS-test77.69 6080.23 5574.73 6980.20 8683.14 7679.64 7559.70 14271.09 6863.47 7972.28 5075.78 5875.18 3485.58 4283.58 5390.21 3390.15 48
QAPM78.47 5680.22 5676.43 5785.03 5786.75 4880.62 6666.00 7173.77 6265.35 7065.54 8078.02 5172.69 5083.71 5683.36 5688.87 6090.41 47
TAPA-MVS71.42 977.69 6080.05 5774.94 6680.68 8084.52 6281.36 6063.14 9384.77 2764.82 7368.72 6775.91 5771.86 5681.62 7379.55 10187.80 8385.24 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_111021_LR78.13 5979.85 5876.13 5881.12 7681.50 8780.28 6765.25 7676.09 5471.32 5176.49 3672.87 6972.21 5282.79 6681.29 6886.59 11487.91 63
OPM-MVS79.68 4879.28 5980.15 3887.99 3986.77 4788.52 2972.72 3064.55 9567.65 6267.87 7374.33 6374.31 3986.37 3685.25 4189.73 4389.81 50
ETV-MVS77.32 6278.81 6075.58 6182.24 7083.64 7079.98 6864.02 8669.64 7363.90 7670.89 5869.94 8373.41 4485.39 4683.91 4989.92 3888.31 59
AdaColmapbinary79.74 4778.62 6181.05 3389.23 3386.06 5284.95 4971.96 3479.39 4875.51 3163.16 9068.84 9476.51 3083.55 5882.85 5788.13 7386.46 76
casdiffmvs76.76 6478.46 6274.77 6880.32 8583.73 6980.65 6563.24 9173.58 6366.11 6869.39 6474.09 6469.49 7282.52 6879.35 10688.84 6186.52 75
ACMM72.26 878.86 5578.13 6379.71 4086.89 4583.40 7286.02 4070.50 4075.28 5571.49 5063.01 9169.26 8873.57 4384.11 5383.98 4889.76 4287.84 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_Blended_VisFu76.57 6577.90 6475.02 6580.56 8186.58 4979.24 7966.18 6864.81 9268.18 6065.61 7871.45 7267.05 8184.16 5281.80 6388.90 5890.92 41
UA-Net74.47 7577.80 6570.59 9285.33 5485.40 5773.54 13965.98 7260.65 12756.00 10972.11 5179.15 4654.63 16483.13 6382.25 5988.04 7581.92 125
UGNet72.78 8577.67 6667.07 13471.65 16183.24 7375.20 11163.62 8864.93 9156.72 10571.82 5373.30 6549.02 17781.02 8980.70 8286.22 12088.67 57
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA77.20 6377.54 6776.80 5682.63 6584.31 6379.77 7264.64 8085.17 2473.18 3956.37 12769.81 8474.53 3781.12 8878.69 11286.04 12887.29 69
PVSNet_BlendedMVS76.21 6677.52 6874.69 7079.46 9283.79 6777.50 9764.34 8469.88 7071.88 4468.54 7070.42 7967.05 8183.48 5979.63 9787.89 7986.87 72
PVSNet_Blended76.21 6677.52 6874.69 7079.46 9283.79 6777.50 9764.34 8469.88 7071.88 4468.54 7070.42 7967.05 8183.48 5979.63 9787.89 7986.87 72
EPP-MVSNet74.00 7977.41 7070.02 9880.53 8283.91 6574.99 11762.68 10665.06 9049.77 14468.68 6872.09 7163.06 10682.49 6980.73 7689.12 5688.91 55
diffmvs74.86 7477.37 7171.93 8275.62 12380.35 10379.42 7860.15 13672.81 6564.63 7471.51 5573.11 6866.53 9179.02 11777.98 12085.25 14386.83 74
IS_MVSNet73.33 8177.34 7268.65 11281.29 7383.47 7174.45 12163.58 8965.75 8648.49 14867.11 7770.61 7854.63 16484.51 5083.58 5389.48 4886.34 77
Vis-MVSNetpermissive72.77 8677.20 7367.59 12474.19 13784.01 6476.61 10761.69 12060.62 12850.61 14070.25 6171.31 7555.57 16083.85 5582.28 5886.90 10188.08 61
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_Test75.37 7177.13 7473.31 7879.07 9581.32 9079.98 6860.12 13769.72 7264.11 7570.53 5973.22 6668.90 7480.14 10479.48 10387.67 8585.50 85
CANet_DTU73.29 8276.96 7569.00 10977.04 11382.06 8379.49 7756.30 16567.85 7653.29 12571.12 5770.37 8161.81 12081.59 7480.96 7386.09 12384.73 99
OpenMVScopyleft70.44 1076.15 6876.82 7675.37 6385.01 5884.79 6178.99 8362.07 11571.27 6767.88 6157.91 12072.36 7070.15 6882.23 7081.41 6788.12 7487.78 65
EIA-MVS75.64 7076.60 7774.53 7282.43 6883.84 6678.32 9062.28 11465.96 8463.28 8168.95 6567.54 9971.61 6182.55 6781.63 6589.24 5185.72 81
Effi-MVS+75.28 7276.20 7874.20 7481.15 7583.24 7381.11 6163.13 9466.37 8060.27 8864.30 8868.88 9370.93 6781.56 7581.69 6488.61 6387.35 67
DI_MVS_plusplus_trai75.13 7376.12 7973.96 7578.18 10081.55 8580.97 6262.54 10868.59 7465.13 7261.43 9474.81 6169.32 7381.01 9079.59 9987.64 8685.89 79
DCV-MVSNet73.65 8075.78 8071.16 8680.19 8779.27 11277.45 9961.68 12166.73 7958.72 9365.31 8169.96 8262.19 11181.29 8380.97 7286.74 10786.91 71
PLCcopyleft68.99 1175.68 6975.31 8176.12 5982.94 6481.26 9179.94 7066.10 6977.15 5266.86 6759.13 11068.53 9673.73 4280.38 9779.04 10787.13 9681.68 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FC-MVSNet-train72.60 8775.07 8269.71 10181.10 7778.79 11873.74 13865.23 7766.10 8353.34 12470.36 6063.40 11256.92 14981.44 7780.96 7387.93 7784.46 103
GeoE74.23 7774.84 8373.52 7680.42 8481.46 8879.77 7261.06 12467.23 7863.67 7759.56 10768.74 9567.90 7980.25 10279.37 10588.31 6787.26 70
MVSTER72.06 8974.24 8469.51 10470.39 17275.97 14876.91 10357.36 16264.64 9461.39 8568.86 6663.76 11063.46 10381.44 7779.70 9687.56 8785.31 89
ET-MVSNet_ETH3D72.46 8874.19 8570.44 9362.50 19681.17 9279.90 7162.46 11164.52 9657.52 10171.49 5659.15 12872.08 5478.61 12281.11 7088.16 7183.29 113
baseline70.45 10374.09 8666.20 14270.95 16975.67 14974.26 12853.57 16968.33 7558.42 9569.87 6271.45 7261.55 12174.84 15374.76 15678.42 17583.72 110
Fast-Effi-MVS+73.11 8373.66 8772.48 8077.72 10680.88 9778.55 8658.83 15465.19 8860.36 8659.98 10362.42 11571.22 6481.66 7180.61 8688.20 6984.88 97
DROMVSNet73.11 8373.66 8772.48 8077.72 10680.88 9778.55 8658.83 15465.19 8860.36 8659.98 10362.42 11571.22 6481.66 7180.61 8688.20 6984.88 97
Vis-MVSNet (Re-imp)67.83 13373.52 8961.19 16678.37 9976.72 14266.80 17162.96 9565.50 8734.17 19267.19 7669.68 8639.20 19579.39 11379.44 10485.68 13576.73 162
test_part174.24 7673.44 9075.18 6482.02 7282.34 8283.88 5462.40 11260.93 12568.68 5649.25 17769.71 8565.73 9681.26 8481.98 6188.35 6688.60 58
LS3D74.08 7873.39 9174.88 6785.05 5682.62 8079.71 7468.66 5372.82 6458.80 9257.61 12161.31 11971.07 6680.32 9878.87 11186.00 13080.18 139
GBi-Net70.78 9873.37 9267.76 11772.95 14978.00 12575.15 11262.72 10164.13 9851.44 13358.37 11569.02 9057.59 14181.33 8080.72 7786.70 10882.02 119
test170.78 9873.37 9267.76 11772.95 14978.00 12575.15 11262.72 10164.13 9851.44 13358.37 11569.02 9057.59 14181.33 8080.72 7786.70 10882.02 119
thisisatest053071.48 9473.01 9469.70 10273.83 14278.62 12074.53 12059.12 14864.13 9858.63 9464.60 8658.63 13064.27 9980.28 10080.17 9387.82 8284.64 101
tttt051771.41 9572.95 9569.60 10373.70 14478.70 11974.42 12459.12 14863.89 10258.35 9764.56 8758.39 13264.27 9980.29 9980.17 9387.74 8484.69 100
FMVSNet370.49 10272.90 9667.67 12272.88 15277.98 12874.96 11862.72 10164.13 9851.44 13358.37 11569.02 9057.43 14479.43 11279.57 10086.59 11481.81 126
IterMVS-LS71.69 9272.82 9770.37 9477.54 10976.34 14575.13 11560.46 13261.53 12057.57 10064.89 8367.33 10066.04 9477.09 13877.37 13285.48 13985.18 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet270.39 10472.67 9867.72 12072.95 14978.00 12575.15 11262.69 10563.29 10651.25 13755.64 12968.49 9757.59 14180.91 9180.35 9086.70 10882.02 119
Anonymous2023121171.90 9072.48 9971.21 8580.14 8881.53 8676.92 10262.89 9764.46 9758.94 9043.80 18870.98 7662.22 11080.70 9280.19 9286.18 12185.73 80
UniMVSNet_NR-MVSNet70.59 10172.19 10068.72 11077.72 10680.72 9973.81 13669.65 4661.99 11543.23 17360.54 9957.50 13558.57 13479.56 11081.07 7189.34 5083.97 105
baseline170.10 10872.17 10167.69 12179.74 9076.80 14073.91 13264.38 8362.74 11148.30 15064.94 8264.08 10954.17 16681.46 7678.92 10985.66 13676.22 163
Anonymous20240521172.16 10280.85 7981.85 8476.88 10465.40 7562.89 11046.35 18467.99 9862.05 11381.15 8780.38 8985.97 13184.50 102
UniMVSNet (Re)69.53 11371.90 10366.76 13976.42 11680.93 9472.59 14668.03 5861.75 11841.68 17858.34 11857.23 13753.27 16979.53 11180.62 8588.57 6484.90 96
Effi-MVS+-dtu71.82 9171.86 10471.78 8378.77 9680.47 10178.55 8661.67 12260.68 12655.49 11058.48 11465.48 10568.85 7576.92 13975.55 15187.35 9085.46 86
IB-MVS66.94 1271.21 9771.66 10570.68 8979.18 9482.83 7972.61 14561.77 11959.66 13263.44 8053.26 14959.65 12659.16 13376.78 14282.11 6087.90 7887.33 68
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RPSCF67.64 13871.25 10663.43 15961.86 19870.73 17367.26 16650.86 18674.20 6058.91 9167.49 7469.33 8764.10 10171.41 17268.45 18677.61 17777.17 158
EPNet_dtu68.08 12871.00 10764.67 15079.64 9168.62 18175.05 11663.30 9066.36 8145.27 16867.40 7566.84 10243.64 18675.37 14974.98 15581.15 16577.44 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DU-MVS69.63 11270.91 10868.13 11675.99 11879.54 10873.81 13669.20 5161.20 12343.23 17358.52 11253.50 16058.57 13479.22 11480.45 8887.97 7683.97 105
TranMVSNet+NR-MVSNet69.25 11770.81 10967.43 12577.23 11279.46 11073.48 14169.66 4560.43 12939.56 18158.82 11153.48 16255.74 15879.59 10881.21 6988.89 5982.70 115
NR-MVSNet68.79 12270.56 11066.71 14177.48 11079.54 10873.52 14069.20 5161.20 12339.76 18058.52 11250.11 18651.37 17380.26 10180.71 8188.97 5783.59 111
MS-PatchMatch70.17 10770.49 11169.79 10080.98 7877.97 13077.51 9658.95 15162.33 11355.22 11353.14 15265.90 10462.03 11479.08 11677.11 13684.08 15377.91 153
FMVSNet168.84 12170.47 11266.94 13671.35 16677.68 13374.71 11962.35 11356.93 14749.94 14350.01 17264.59 10757.07 14681.33 8080.72 7786.25 11982.00 122
baseline269.69 11170.27 11369.01 10875.72 12277.13 13873.82 13558.94 15261.35 12157.09 10361.68 9357.17 13861.99 11578.10 12776.58 14386.48 11779.85 141
ACMH+66.54 1371.36 9670.09 11472.85 7982.59 6681.13 9378.56 8568.04 5761.55 11952.52 13151.50 16654.14 15368.56 7778.85 11979.50 10286.82 10483.94 107
ACMH65.37 1470.71 10070.00 11571.54 8482.51 6782.47 8177.78 9468.13 5656.19 15446.06 16454.30 13751.20 18068.68 7680.66 9380.72 7786.07 12484.45 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSDG71.52 9369.87 11673.44 7782.21 7179.35 11179.52 7664.59 8166.15 8261.87 8253.21 15156.09 14365.85 9578.94 11878.50 11486.60 11376.85 161
v870.23 10569.86 11770.67 9074.69 13279.82 10778.79 8459.18 14758.80 13658.20 9855.00 13457.33 13666.31 9377.51 13276.71 14186.82 10483.88 108
CDS-MVSNet67.65 13769.83 11865.09 14675.39 12576.55 14374.42 12463.75 8753.55 17249.37 14659.41 10862.45 11444.44 18479.71 10779.82 9583.17 15977.36 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v1070.22 10669.76 11970.74 8774.79 13180.30 10579.22 8059.81 14057.71 14356.58 10754.22 14255.31 14666.95 8478.28 12577.47 12987.12 9885.07 93
V4268.76 12369.63 12067.74 11964.93 19278.01 12478.30 9156.48 16458.65 13756.30 10854.26 14057.03 13964.85 9777.47 13377.01 13785.60 13784.96 95
CostFormer68.92 12069.58 12168.15 11575.98 12076.17 14778.22 9251.86 18165.80 8561.56 8463.57 8962.83 11361.85 11870.40 18568.67 18279.42 17179.62 144
Fast-Effi-MVS+-dtu68.34 12569.47 12267.01 13575.15 12677.97 13077.12 10155.40 16757.87 13846.68 16056.17 12860.39 12062.36 10976.32 14676.25 14785.35 14281.34 129
v2v48270.05 10969.46 12370.74 8774.62 13380.32 10479.00 8260.62 12957.41 14556.89 10455.43 13355.14 14866.39 9277.25 13577.14 13586.90 10183.57 112
v114469.93 11069.36 12470.61 9174.89 13080.93 9479.11 8160.64 12855.97 15655.31 11253.85 14454.14 15366.54 9078.10 12777.44 13087.14 9585.09 92
CHOSEN 1792x268869.20 11869.26 12569.13 10676.86 11478.93 11477.27 10060.12 13761.86 11754.42 11442.54 19261.61 11766.91 8678.55 12378.14 11979.23 17383.23 114
IterMVS-SCA-FT66.89 14669.22 12664.17 15271.30 16775.64 15071.33 15053.17 17357.63 14449.08 14760.72 9760.05 12463.09 10574.99 15273.92 15977.07 18181.57 128
GA-MVS68.14 12669.17 12766.93 13773.77 14378.50 12274.45 12158.28 15755.11 16148.44 14960.08 10153.99 15661.50 12278.43 12477.57 12785.13 14480.54 135
PMMVS65.06 15369.17 12760.26 17155.25 21063.43 19766.71 17243.01 20662.41 11250.64 13969.44 6367.04 10163.29 10474.36 15673.54 16282.68 16073.99 179
HyFIR lowres test69.47 11568.94 12970.09 9776.77 11582.93 7876.63 10660.17 13559.00 13554.03 11840.54 19765.23 10667.89 8076.54 14578.30 11785.03 14680.07 140
v119269.50 11468.83 13070.29 9574.49 13480.92 9678.55 8660.54 13055.04 16254.21 11552.79 15852.33 17366.92 8577.88 12977.35 13387.04 9985.51 84
thisisatest051567.40 14168.78 13165.80 14470.02 17475.24 15569.36 15857.37 16154.94 16553.67 12255.53 13254.85 14958.00 13978.19 12678.91 11086.39 11883.78 109
Baseline_NR-MVSNet67.53 14068.77 13266.09 14375.99 11874.75 15972.43 14768.41 5461.33 12238.33 18551.31 16754.13 15556.03 15479.22 11478.19 11885.37 14182.45 117
tfpn200view968.11 12768.72 13367.40 12677.83 10478.93 11474.28 12662.81 9856.64 14946.82 15852.65 15953.47 16356.59 15080.41 9478.43 11586.11 12280.52 136
v14419269.34 11668.68 13470.12 9674.06 13880.54 10078.08 9360.54 13054.99 16454.13 11752.92 15652.80 17166.73 8877.13 13776.72 14087.15 9285.63 82
thres40067.95 13068.62 13567.17 13177.90 10178.59 12174.27 12762.72 10156.34 15345.77 16653.00 15453.35 16656.46 15180.21 10378.43 11585.91 13380.43 137
thres20067.98 12968.55 13667.30 12977.89 10378.86 11674.18 13062.75 9956.35 15246.48 16152.98 15553.54 15956.46 15180.41 9477.97 12186.05 12679.78 143
thres600view767.68 13568.43 13766.80 13877.90 10178.86 11673.84 13462.75 9956.07 15544.70 17152.85 15752.81 17055.58 15980.41 9477.77 12386.05 12680.28 138
v192192069.03 11968.32 13869.86 9974.03 13980.37 10277.55 9560.25 13454.62 16653.59 12352.36 16251.50 17966.75 8777.17 13676.69 14286.96 10085.56 83
IterMVS66.36 14768.30 13964.10 15369.48 17974.61 16073.41 14250.79 18757.30 14648.28 15160.64 9859.92 12560.85 12974.14 15772.66 16681.80 16278.82 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres100view90067.60 13968.02 14067.12 13377.83 10477.75 13273.90 13362.52 10956.64 14946.82 15852.65 15953.47 16355.92 15578.77 12077.62 12685.72 13479.23 146
anonymousdsp65.28 15267.98 14162.13 16258.73 20473.98 16267.10 16850.69 18848.41 19247.66 15654.27 13852.75 17261.45 12476.71 14380.20 9187.13 9689.53 53
USDC67.36 14267.90 14266.74 14071.72 15975.23 15671.58 14960.28 13367.45 7750.54 14160.93 9545.20 20062.08 11276.56 14474.50 15784.25 15275.38 171
v124068.64 12467.89 14369.51 10473.89 14180.26 10676.73 10559.97 13953.43 17453.08 12651.82 16550.84 18266.62 8976.79 14176.77 13986.78 10685.34 88
v14867.85 13267.53 14468.23 11473.25 14777.57 13674.26 12857.36 16255.70 15757.45 10253.53 14555.42 14561.96 11675.23 15073.92 15985.08 14581.32 130
GG-mvs-BLEND46.86 20567.51 14522.75 2110.05 22276.21 14664.69 1810.04 21961.90 1160.09 22355.57 13071.32 740.08 21870.54 18167.19 19071.58 20069.86 187
pm-mvs165.62 14967.42 14663.53 15873.66 14576.39 14469.66 15560.87 12749.73 18943.97 17251.24 16857.00 14048.16 17879.89 10577.84 12284.85 15079.82 142
WR-MVS63.03 16267.40 14757.92 18175.14 12777.60 13560.56 19466.10 6954.11 17123.88 20353.94 14353.58 15834.50 19973.93 15877.71 12487.35 9080.94 132
pmmvs467.89 13167.39 14868.48 11371.60 16373.57 16374.45 12160.98 12564.65 9357.97 9954.95 13551.73 17861.88 11773.78 15975.11 15383.99 15577.91 153
UniMVSNet_ETH3D67.18 14467.03 14967.36 12774.44 13578.12 12374.07 13166.38 6652.22 17946.87 15748.64 17851.84 17756.96 14777.29 13478.53 11385.42 14082.59 116
v7n67.05 14566.94 15067.17 13172.35 15478.97 11373.26 14458.88 15351.16 18550.90 13848.21 18050.11 18660.96 12577.70 13077.38 13186.68 11185.05 94
EG-PatchMatch MVS67.24 14366.94 15067.60 12378.73 9781.35 8973.28 14359.49 14346.89 19651.42 13643.65 18953.49 16155.50 16181.38 7980.66 8387.15 9281.17 131
COLMAP_ROBcopyleft62.73 1567.66 13666.76 15268.70 11180.49 8377.98 12875.29 11062.95 9663.62 10449.96 14247.32 18350.72 18358.57 13476.87 14075.50 15284.94 14875.33 172
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL67.78 13466.65 15369.10 10773.01 14872.69 16668.49 16161.85 11862.93 10960.20 8956.83 12650.42 18469.52 7175.62 14874.46 15881.51 16373.62 180
SCA65.40 15166.58 15464.02 15470.65 17073.37 16467.35 16553.46 17163.66 10354.14 11660.84 9660.20 12361.50 12269.96 18668.14 18777.01 18269.91 186
CVMVSNet62.55 16665.89 15558.64 17966.95 18569.15 17866.49 17556.29 16652.46 17832.70 19359.27 10958.21 13450.09 17571.77 17171.39 17179.31 17278.99 148
WR-MVS_H61.83 17765.87 15657.12 18471.72 15976.87 13961.45 19266.19 6751.97 18222.92 20753.13 15352.30 17533.80 20071.03 17775.00 15486.65 11280.78 133
PEN-MVS62.96 16365.77 15759.70 17473.98 14075.45 15263.39 18767.61 6152.49 17725.49 20253.39 14649.12 18940.85 19271.94 17077.26 13486.86 10380.72 134
TransMVSNet (Re)64.74 15565.66 15863.66 15777.40 11175.33 15469.86 15462.67 10747.63 19441.21 17950.01 17252.33 17345.31 18379.57 10977.69 12585.49 13877.07 160
CR-MVSNet64.83 15465.54 15964.01 15570.64 17169.41 17665.97 17652.74 17657.81 14052.65 12854.27 13856.31 14260.92 12672.20 16873.09 16481.12 16675.69 168
CP-MVSNet62.68 16565.49 16059.40 17771.84 15775.34 15362.87 18967.04 6452.64 17627.19 20053.38 14748.15 19141.40 19071.26 17375.68 14986.07 12482.00 122
MDTV_nov1_ep1364.37 15765.24 16163.37 16068.94 18170.81 17272.40 14850.29 19060.10 13153.91 12060.07 10259.15 12857.21 14569.43 18967.30 18977.47 17869.78 188
FC-MVSNet-test56.90 19165.20 16247.21 20266.98 18463.20 19949.11 21058.60 15659.38 13411.50 21765.60 7956.68 14124.66 20971.17 17571.36 17272.38 19969.02 190
PS-CasMVS62.38 17165.06 16359.25 17871.73 15875.21 15762.77 19066.99 6551.94 18326.96 20152.00 16447.52 19441.06 19171.16 17675.60 15085.97 13181.97 124
gg-mvs-nofinetune62.55 16665.05 16459.62 17578.72 9877.61 13470.83 15353.63 16839.71 20822.04 20936.36 20164.32 10847.53 17981.16 8679.03 10885.00 14777.17 158
TDRefinement66.09 14865.03 16567.31 12869.73 17676.75 14175.33 10864.55 8260.28 13049.72 14545.63 18642.83 20360.46 13075.75 14775.95 14884.08 15378.04 152
DTE-MVSNet61.85 17564.96 16658.22 18074.32 13674.39 16161.01 19367.85 6051.76 18421.91 21053.28 14848.17 19037.74 19672.22 16776.44 14486.52 11678.49 150
PatchmatchNetpermissive64.21 15964.65 16763.69 15671.29 16868.66 18069.63 15651.70 18363.04 10753.77 12159.83 10658.34 13360.23 13168.54 19266.06 19475.56 18868.08 192
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-mter60.84 18164.62 16856.42 18655.99 20864.18 19265.39 17834.23 21154.39 16946.21 16357.40 12459.49 12755.86 15671.02 17869.65 17680.87 16876.20 164
test-LLR64.42 15664.36 16964.49 15175.02 12863.93 19466.61 17361.96 11654.41 16747.77 15357.46 12260.25 12155.20 16270.80 17969.33 17780.40 16974.38 176
TESTMET0.1,161.10 18064.36 16957.29 18357.53 20563.93 19466.61 17336.22 21054.41 16747.77 15357.46 12260.25 12155.20 16270.80 17969.33 17780.40 16974.38 176
pmmvs562.37 17264.04 17160.42 16965.03 19071.67 17067.17 16752.70 17850.30 18644.80 16954.23 14151.19 18149.37 17672.88 16273.48 16383.45 15674.55 175
PatchT61.97 17464.04 17159.55 17660.49 20067.40 18456.54 20148.65 19656.69 14852.65 12851.10 16952.14 17660.92 12672.20 16873.09 16478.03 17675.69 168
tpm cat165.41 15063.81 17367.28 13075.61 12472.88 16575.32 10952.85 17562.97 10863.66 7853.24 15053.29 16861.83 11965.54 19664.14 19874.43 19374.60 174
tfpnnormal64.27 15863.64 17465.02 14775.84 12175.61 15171.24 15262.52 10947.79 19342.97 17542.65 19144.49 20152.66 17178.77 12076.86 13884.88 14979.29 145
tpm62.41 16963.15 17561.55 16572.24 15563.79 19671.31 15146.12 20457.82 13955.33 11159.90 10554.74 15053.63 16767.24 19564.29 19770.65 20374.25 178
dps64.00 16062.99 17665.18 14573.29 14672.07 16868.98 16053.07 17457.74 14258.41 9655.55 13147.74 19360.89 12869.53 18867.14 19176.44 18571.19 184
pmmvs662.41 16962.88 17761.87 16371.38 16575.18 15867.76 16459.45 14641.64 20442.52 17737.33 19952.91 16946.87 18077.67 13176.26 14683.23 15879.18 147
RPMNet61.71 17962.88 17760.34 17069.51 17869.41 17663.48 18649.23 19257.81 14045.64 16750.51 17050.12 18553.13 17068.17 19468.49 18581.07 16775.62 170
TAMVS59.58 18562.81 17955.81 18866.03 18865.64 19163.86 18548.74 19549.95 18837.07 18954.77 13658.54 13144.44 18472.29 16571.79 16874.70 19266.66 194
LTVRE_ROB59.44 1661.82 17862.64 18060.87 16872.83 15377.19 13764.37 18358.97 15033.56 21328.00 19952.59 16142.21 20463.93 10274.52 15476.28 14577.15 18082.13 118
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CMPMVSbinary47.78 1762.49 16862.52 18162.46 16170.01 17570.66 17462.97 18851.84 18251.98 18156.71 10642.87 19053.62 15757.80 14072.23 16670.37 17475.45 19075.91 165
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SixPastTwentyTwo61.84 17662.45 18261.12 16769.20 18072.20 16762.03 19157.40 16046.54 19738.03 18757.14 12541.72 20558.12 13869.67 18771.58 17081.94 16178.30 151
pmmvs-eth3d63.52 16162.44 18364.77 14966.82 18770.12 17569.41 15759.48 14454.34 17052.71 12746.24 18544.35 20256.93 14872.37 16373.77 16183.30 15775.91 165
tpmrst62.00 17362.35 18461.58 16471.62 16264.14 19369.07 15948.22 20062.21 11453.93 11958.26 11955.30 14755.81 15763.22 20162.62 20070.85 20270.70 185
EPMVS60.00 18461.97 18557.71 18268.46 18263.17 20064.54 18248.23 19963.30 10544.72 17060.19 10056.05 14450.85 17465.27 19962.02 20169.44 20563.81 199
CHOSEN 280x42058.70 18761.88 18654.98 19155.45 20950.55 21264.92 18040.36 20755.21 15938.13 18648.31 17963.76 11063.03 10773.73 16068.58 18468.00 20873.04 181
test0.0.03 158.80 18661.58 18755.56 18975.02 12868.45 18259.58 19861.96 11652.74 17529.57 19649.75 17554.56 15131.46 20271.19 17469.77 17575.75 18664.57 197
MIMVSNet58.52 18861.34 18855.22 19060.76 19967.01 18666.81 17049.02 19456.43 15138.90 18340.59 19654.54 15240.57 19373.16 16171.65 16975.30 19166.00 195
TinyColmap62.84 16461.03 18964.96 14869.61 17771.69 16968.48 16259.76 14155.41 15847.69 15547.33 18234.20 21262.76 10874.52 15472.59 16781.44 16471.47 183
PM-MVS60.48 18260.94 19059.94 17258.85 20366.83 18764.27 18451.39 18455.03 16348.03 15250.00 17440.79 20758.26 13769.20 19067.13 19278.84 17477.60 155
MDTV_nov1_ep13_2view60.16 18360.51 19159.75 17365.39 18969.05 17968.00 16348.29 19851.99 18045.95 16548.01 18149.64 18853.39 16868.83 19166.52 19377.47 17869.55 189
FMVSNet557.24 18960.02 19253.99 19456.45 20762.74 20165.27 17947.03 20155.14 16039.55 18240.88 19453.42 16541.83 18772.35 16471.10 17373.79 19564.50 198
EU-MVSNet54.63 19558.69 19349.90 20056.99 20662.70 20256.41 20250.64 18945.95 19923.14 20650.42 17146.51 19636.63 19765.51 19764.85 19675.57 18774.91 173
ADS-MVSNet55.94 19358.01 19453.54 19662.48 19758.48 20659.12 19946.20 20359.65 13342.88 17652.34 16353.31 16746.31 18162.00 20360.02 20464.23 21060.24 206
testgi54.39 19757.86 19550.35 19971.59 16467.24 18554.95 20353.25 17243.36 20123.78 20444.64 18747.87 19224.96 20770.45 18268.66 18373.60 19662.78 202
Anonymous2023120656.36 19257.80 19654.67 19270.08 17366.39 18860.46 19557.54 15949.50 19129.30 19733.86 20446.64 19535.18 19870.44 18368.88 18175.47 18968.88 191
gm-plane-assit57.00 19057.62 19756.28 18776.10 11762.43 20347.62 21146.57 20233.84 21223.24 20537.52 19840.19 20859.61 13279.81 10677.55 12884.55 15172.03 182
pmnet_mix0255.30 19457.01 19853.30 19764.14 19359.09 20558.39 20050.24 19153.47 17338.68 18449.75 17545.86 19840.14 19465.38 19860.22 20368.19 20765.33 196
test20.0353.93 19856.28 19951.19 19872.19 15665.83 18953.20 20561.08 12342.74 20222.08 20837.07 20045.76 19924.29 21070.44 18369.04 17974.31 19463.05 201
ambc53.42 20064.99 19163.36 19849.96 20847.07 19537.12 18828.97 20816.36 22041.82 18875.10 15167.34 18871.55 20175.72 167
MIMVSNet149.27 20153.25 20144.62 20444.61 21261.52 20453.61 20452.18 17941.62 20518.68 21328.14 21041.58 20625.50 20568.46 19369.04 17973.15 19762.37 203
MDA-MVSNet-bldmvs53.37 19953.01 20253.79 19543.67 21467.95 18359.69 19757.92 15843.69 20032.41 19441.47 19327.89 21752.38 17256.97 20965.99 19576.68 18367.13 193
MVS-HIRNet54.41 19652.10 20357.11 18558.99 20256.10 20949.68 20949.10 19346.18 19852.15 13233.18 20546.11 19756.10 15363.19 20259.70 20576.64 18460.25 205
N_pmnet47.35 20350.13 20444.11 20559.98 20151.64 21151.86 20644.80 20549.58 19020.76 21140.65 19540.05 20929.64 20359.84 20555.15 20757.63 21154.00 209
FPMVS51.87 20050.00 20554.07 19366.83 18657.25 20760.25 19650.91 18550.25 18734.36 19136.04 20232.02 21441.49 18958.98 20756.07 20670.56 20459.36 207
new-patchmatchnet46.97 20449.47 20644.05 20662.82 19556.55 20845.35 21252.01 18042.47 20317.04 21535.73 20335.21 21121.84 21361.27 20454.83 20865.26 20960.26 204
pmmvs347.65 20249.08 20745.99 20344.61 21254.79 21050.04 20731.95 21433.91 21129.90 19530.37 20633.53 21346.31 18163.50 20063.67 19973.14 19863.77 200
PMVScopyleft39.38 1846.06 20643.30 20849.28 20162.93 19438.75 21441.88 21353.50 17033.33 21435.46 19028.90 20931.01 21533.04 20158.61 20854.63 20968.86 20657.88 208
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet38.40 20742.64 20933.44 20837.54 21745.00 21336.60 21432.72 21340.27 20612.72 21629.89 20728.90 21624.78 20853.17 21052.90 21056.31 21248.34 210
Gipumacopyleft36.38 20835.80 21037.07 20745.76 21133.90 21529.81 21548.47 19739.91 20718.02 2148.00 2188.14 22225.14 20659.29 20661.02 20255.19 21340.31 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS225.60 20929.75 21120.76 21228.00 21830.93 21623.10 21729.18 21523.14 2161.46 22218.23 21416.54 2195.08 21640.22 21141.40 21237.76 21437.79 213
test_method22.26 21025.94 21217.95 2133.24 2217.17 22123.83 2167.27 21737.35 21020.44 21221.87 21339.16 21018.67 21434.56 21220.84 21634.28 21520.64 217
MVEpermissive19.12 1920.47 21323.27 21317.20 21412.66 22025.41 21710.52 22134.14 21214.79 2196.53 2218.79 2174.68 22316.64 21529.49 21441.63 21122.73 21938.11 212
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN21.77 21118.24 21425.89 20940.22 21519.58 21812.46 22039.87 20818.68 2186.71 2199.57 2154.31 22522.36 21219.89 21627.28 21433.73 21628.34 215
EMVS20.98 21217.15 21525.44 21039.51 21619.37 21912.66 21939.59 20919.10 2176.62 2209.27 2164.40 22422.43 21117.99 21724.40 21531.81 21725.53 216
testmvs0.09 2140.15 2160.02 2160.01 2230.02 2230.05 2240.01 2200.11 2200.01 2240.26 2200.01 2260.06 2200.10 2180.10 2170.01 2210.43 219
test1230.09 2140.14 2170.02 2160.00 2240.02 2230.02 2250.01 2200.09 2210.00 2250.30 2190.00 2270.08 2180.03 2190.09 2180.01 2210.45 218
uanet_test0.00 2160.00 2180.00 2180.00 2240.00 2250.00 2260.00 2220.00 2220.00 2250.00 2210.00 2270.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2240.00 2250.00 2260.00 2220.00 2220.00 2250.00 2210.00 2270.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2240.00 2250.00 2260.00 2220.00 2220.00 2250.00 2210.00 2270.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def46.24 162
9.1486.88 15
SR-MVS88.99 3473.57 2587.54 13
our_test_367.93 18370.99 17166.89 169
MTAPA83.48 186.45 18
MTMP82.66 584.91 26
Patchmatch-RL test2.85 223
tmp_tt14.50 21514.68 2197.17 22110.46 2222.21 21837.73 20928.71 19825.26 21116.98 2184.37 21731.49 21329.77 21326.56 218
XVS86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
X-MVStestdata86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
abl_679.05 4387.27 4288.85 2683.62 5668.25 5581.68 4172.94 4073.79 4584.45 2872.55 5189.66 4690.64 43
mPP-MVS89.90 2581.29 42
NP-MVS80.10 46
Patchmtry65.80 19065.97 17652.74 17652.65 128
DeepMVS_CXcopyleft18.74 22018.55 2188.02 21626.96 2157.33 21823.81 21213.05 22125.99 20425.17 21522.45 22036.25 214