This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPE-MVS97.83 398.13 397.48 498.83 2399.19 398.99 196.70 196.05 1994.39 1098.30 199.47 397.02 697.75 697.02 1398.98 299.10 8
APDe-MVS97.79 497.96 597.60 199.20 299.10 598.88 296.68 296.81 694.64 697.84 398.02 1097.24 397.74 797.02 1398.97 399.16 5
SED-MVS97.98 198.36 197.54 398.94 1799.29 298.81 396.64 397.14 295.16 497.96 299.61 296.92 1198.00 197.24 898.75 1299.25 2
DVP-MVS97.93 298.23 297.58 299.05 699.31 198.64 596.62 497.56 195.08 596.61 1399.64 197.32 197.91 397.31 698.77 1199.26 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft97.12 1297.05 1797.19 799.04 798.63 1898.45 796.54 594.81 3793.50 1796.10 1997.40 2196.81 1397.05 2096.82 1898.80 798.56 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xxxxxxxxxxxxxcwj95.62 3194.35 4597.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 576.98 13596.23 2696.78 2696.15 3798.79 998.55 24
SF-MVS97.20 1197.29 1397.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 597.57 1896.23 2696.78 2696.15 3798.79 998.55 24
HPM-MVS++copyleft97.22 1097.40 1197.01 1299.08 498.55 2398.19 1496.48 696.02 2093.28 2196.26 1798.71 796.76 1797.30 1496.25 3498.30 4998.68 13
MSP-MVS97.70 598.09 497.24 699.00 1199.17 498.76 496.41 996.91 493.88 1597.72 499.04 696.93 1097.29 1597.31 698.45 3199.23 3
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC96.75 1996.67 2496.85 1799.03 998.44 3398.15 1696.28 1096.32 1292.39 2692.16 3597.55 1996.68 1997.32 1296.65 2198.55 2098.26 36
SMA-MVScopyleft97.53 697.93 697.07 1199.21 199.02 798.08 1996.25 1196.36 1193.57 1696.56 1499.27 496.78 1697.91 397.43 398.51 2198.94 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.35 797.73 796.90 1597.35 4598.66 1397.85 2596.25 1196.86 594.54 996.75 1199.13 596.99 796.94 2396.58 2298.39 3999.20 4
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS97.30 997.41 1097.18 899.02 1098.60 2098.15 1696.24 1396.12 1794.10 1295.54 2597.99 1196.99 797.97 297.17 998.57 1998.50 27
MCST-MVS96.83 1897.06 1696.57 2098.88 2198.47 3198.02 2196.16 1495.58 2490.96 3495.78 2397.84 1396.46 2297.00 2296.17 3698.94 598.55 24
ACMMP_NAP96.93 1697.27 1496.53 2499.06 598.95 898.24 1396.06 1595.66 2290.96 3495.63 2497.71 1596.53 2097.66 996.68 1998.30 4998.61 18
zzz-MVS96.98 1596.68 2397.33 599.09 398.71 1298.43 896.01 1696.11 1895.19 392.89 3397.32 2296.84 1297.20 1696.09 4098.44 3298.46 31
SR-MVS98.93 1996.00 1797.75 14
SteuartSystems-ACMMP97.10 1497.49 996.65 1998.97 1398.95 898.43 895.96 1895.12 2991.46 2996.85 997.60 1796.37 2497.76 597.16 1098.68 1398.97 10
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS92.10 395.22 3594.77 3995.75 3197.77 3898.54 2497.63 2895.96 1895.07 3288.85 4785.35 7391.85 5495.82 2996.88 2597.10 1198.44 3298.63 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary95.02 3893.71 4996.54 2398.51 2797.76 5496.69 4095.94 2093.72 4693.50 1789.01 5290.53 6596.49 2194.51 7993.76 7898.07 7396.69 95
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2198.70 2698.31 3797.97 2295.76 2196.31 1392.01 2891.43 4095.42 4096.46 2297.65 1097.69 198.49 2598.12 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS97.11 1397.19 1597.00 1398.97 1398.73 1198.37 1195.69 2296.60 893.28 2196.87 896.64 2897.27 296.64 3196.33 3298.44 3298.56 19
LS3D91.97 6690.98 8493.12 5997.03 5297.09 7395.33 5895.59 2392.47 5679.26 11281.60 10282.77 9794.39 4494.28 8194.23 6797.14 12394.45 145
MP-MVScopyleft96.56 2196.72 2296.37 2598.93 1998.48 2998.04 2095.55 2494.32 4190.95 3695.88 2297.02 2596.29 2596.77 2896.01 4298.47 2698.56 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DPM-MVS95.07 3694.84 3895.34 3597.44 4497.49 6297.76 2695.52 2594.88 3588.92 4687.25 5896.44 3094.41 4295.78 5196.11 3997.99 8195.95 119
ACMMPR96.92 1796.96 1896.87 1698.99 1298.78 1098.38 1095.52 2596.57 992.81 2596.06 2095.90 3697.07 596.60 3396.34 3198.46 2898.42 32
CP-MVS96.68 2096.59 2696.77 1898.85 2298.58 2198.18 1595.51 2795.34 2692.94 2495.21 2896.25 3196.79 1596.44 3895.77 4598.35 4198.56 19
TSAR-MVS + ACMM96.19 2397.39 1294.78 3897.70 4098.41 3497.72 2795.49 2896.47 1086.66 6696.35 1597.85 1293.99 5097.19 1896.37 2797.12 12499.13 6
TSAR-MVS + MP.97.31 897.64 896.92 1497.28 4798.56 2298.61 695.48 2996.72 794.03 1496.73 1298.29 897.15 497.61 1196.42 2598.96 499.13 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PCF-MVS90.19 892.98 5592.07 7094.04 4496.39 5897.87 4996.03 4895.47 3087.16 11185.09 8784.81 7793.21 4893.46 6091.98 12591.98 12297.78 9297.51 70
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVS96.07 2696.33 2895.77 3098.94 1798.66 1397.94 2395.41 3195.12 2988.03 5193.00 3296.06 3295.85 2896.65 3096.35 2898.47 2698.48 28
train_agg96.15 2596.64 2595.58 3498.44 2898.03 4598.14 1895.40 3293.90 4587.72 5596.26 1798.10 995.75 3096.25 4395.45 5098.01 7998.47 29
CPTT-MVS95.54 3295.07 3696.10 2697.88 3697.98 4897.92 2494.86 3394.56 4092.16 2791.01 4295.71 3796.97 994.56 7793.50 8596.81 14798.14 43
ACMMPcopyleft95.54 3295.49 3495.61 3398.27 3198.53 2597.16 3594.86 3394.88 3589.34 4295.36 2791.74 5595.50 3395.51 5594.16 6998.50 2398.22 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSLP-MVS++96.05 2795.63 3196.55 2298.33 3098.17 4096.94 3794.61 3594.70 3994.37 1189.20 5195.96 3596.81 1395.57 5497.33 598.24 5798.47 29
PLCcopyleft90.69 494.32 4592.99 5695.87 2997.91 3496.49 8695.95 5194.12 3694.94 3394.09 1385.90 6990.77 6295.58 3294.52 7893.32 9197.55 10795.00 139
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DeepPCF-MVS92.65 295.50 3496.96 1893.79 5196.44 5798.21 3893.51 9294.08 3796.94 389.29 4393.08 3196.77 2793.82 5497.68 897.40 495.59 17098.65 14
CSCG95.68 3095.46 3595.93 2898.71 2599.07 697.13 3693.55 3895.48 2593.35 2090.61 4593.82 4695.16 3594.60 7695.57 4897.70 9999.08 9
CNLPA93.69 5192.50 6295.06 3797.11 5097.36 6493.88 8293.30 3995.64 2393.44 1980.32 10790.73 6394.99 3793.58 9593.33 8997.67 10296.57 100
CDPH-MVS94.80 4295.50 3393.98 4798.34 2998.06 4397.41 3193.23 4092.81 5282.98 9392.51 3494.82 4293.53 5896.08 4696.30 3398.42 3597.94 52
PHI-MVS95.86 2896.93 2194.61 4297.60 4298.65 1796.49 4193.13 4194.07 4387.91 5497.12 797.17 2493.90 5396.46 3696.93 1698.64 1598.10 47
MSDG90.42 8888.25 10792.94 6296.67 5694.41 11293.96 7792.91 4289.59 9286.26 6876.74 12480.92 11190.43 9092.60 11392.08 11997.44 11291.41 171
PGM-MVS96.16 2496.33 2895.95 2799.04 798.63 1898.32 1292.76 4393.42 4890.49 3996.30 1695.31 4196.71 1896.46 3696.02 4198.38 4098.19 40
OPM-MVS91.08 7889.34 9793.11 6096.18 6096.13 9596.39 4392.39 4482.97 14981.74 9682.55 9680.20 11493.97 5294.62 7493.23 9298.00 8095.73 123
OMC-MVS94.49 4494.36 4494.64 4197.17 4997.73 5695.49 5692.25 4596.18 1490.34 4088.51 5392.88 5094.90 3894.92 6494.17 6897.69 10096.15 114
EPNet93.92 4894.40 4393.36 5497.89 3596.55 8496.08 4792.14 4691.65 6389.16 4494.07 3090.17 6987.78 11895.24 5894.97 5897.09 12698.15 42
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP-MVS92.39 6292.49 6392.29 7095.65 6595.94 9795.64 5592.12 4792.46 5779.65 11091.97 3782.68 9892.92 6693.47 10092.77 10497.74 9598.12 45
TSAR-MVS + COLMAP92.39 6292.31 6792.47 6695.35 7396.46 8896.13 4692.04 4895.33 2780.11 10894.95 2977.35 13394.05 4994.49 8093.08 9797.15 12194.53 143
CANet94.85 3994.92 3794.78 3897.25 4898.52 2697.20 3391.81 4993.25 4991.06 3386.29 6594.46 4492.99 6497.02 2196.68 1998.34 4398.20 39
abl_694.78 3897.46 4397.99 4795.76 5291.80 5093.72 4691.25 3191.33 4196.47 2994.28 4798.14 6697.39 74
TSAR-MVS + GP.95.86 2896.95 2094.60 4394.07 8398.11 4296.30 4491.76 5195.67 2191.07 3296.82 1097.69 1695.71 3195.96 4895.75 4698.68 1398.63 15
TAPA-MVS90.35 693.69 5193.52 5093.90 4896.89 5397.62 5996.15 4591.67 5294.94 3385.97 7087.72 5791.96 5394.40 4393.76 9393.06 9998.30 4995.58 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
3Dnovator+90.56 595.06 3794.56 4295.65 3298.11 3298.15 4197.19 3491.59 5395.11 3193.23 2381.99 9994.71 4395.43 3496.48 3596.88 1798.35 4198.63 15
ACMM88.76 1091.70 7390.43 8793.19 5795.56 6695.14 10393.35 9591.48 5492.26 5887.12 6184.02 8179.34 11793.99 5094.07 8792.68 10597.62 10695.50 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_030494.30 4694.68 4093.86 5096.33 5998.48 2997.41 3191.20 5592.75 5386.96 6386.03 6893.81 4792.64 6896.89 2496.54 2498.61 1798.24 37
MVS_111021_HR94.84 4095.91 3093.60 5297.35 4598.46 3295.08 5991.19 5694.18 4285.97 7095.38 2692.56 5193.61 5796.61 3296.25 3498.40 3797.92 54
MVS_111021_LR94.84 4095.57 3294.00 4597.11 5097.72 5894.88 6291.16 5795.24 2888.74 4896.03 2191.52 5894.33 4695.96 4895.01 5797.79 9197.49 71
DELS-MVS93.71 5093.47 5194.00 4596.82 5498.39 3596.80 3991.07 5889.51 9389.94 4183.80 8389.29 7090.95 8497.32 1297.65 298.42 3598.32 35
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator90.28 794.70 4394.34 4695.11 3698.06 3398.21 3896.89 3891.03 5994.72 3891.45 3082.87 9093.10 4994.61 3996.24 4497.08 1298.63 1698.16 41
QAPM94.13 4794.33 4793.90 4897.82 3798.37 3696.47 4290.89 6092.73 5585.63 7785.35 7393.87 4594.17 4895.71 5395.90 4398.40 3798.42 32
PVSNet_BlendedMVS92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9196.39 3995.26 5398.34 4397.81 59
PVSNet_Blended92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9196.39 3995.26 5398.34 4397.81 59
OpenMVScopyleft88.18 1192.51 6091.61 7793.55 5397.74 3998.02 4695.66 5490.46 6389.14 9686.50 6775.80 13190.38 6892.69 6794.99 6195.30 5298.27 5397.63 64
EPNet_dtu88.32 11090.61 8685.64 14096.79 5592.27 16892.03 11590.31 6489.05 9765.44 18389.43 4985.90 8174.22 19292.76 10892.09 11895.02 18192.76 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
COLMAP_ROBcopyleft84.39 1587.61 11486.03 13389.46 10095.54 6894.48 10991.77 11990.14 6587.16 11175.50 12473.41 14376.86 13787.33 12490.05 15889.76 16896.48 15190.46 180
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMP89.13 992.03 6591.70 7692.41 6894.92 7496.44 9093.95 7889.96 6691.81 6285.48 8290.97 4379.12 11892.42 7093.28 10592.55 10897.76 9397.74 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train91.83 6992.04 7191.58 7695.46 6996.18 9495.97 5089.85 6790.45 7677.76 11591.92 3880.07 11592.34 7294.27 8293.47 8698.11 7097.90 57
thres40089.40 10187.58 12091.53 7894.06 8497.21 6994.19 7589.83 6885.69 12481.08 10275.50 13369.76 15791.80 7594.79 7193.51 8298.20 6196.60 98
tfpn200view989.55 9987.86 11391.53 7893.90 9097.26 6694.31 7189.74 6985.87 12281.15 10076.46 12670.38 15391.76 7794.92 6493.51 8298.28 5296.61 97
thres600view789.28 10487.47 12391.39 8194.12 8197.25 6793.94 8089.74 6985.62 12780.63 10675.24 13569.33 15891.66 7994.92 6493.23 9298.27 5396.72 94
thres20089.49 10087.72 11591.55 7793.95 8797.25 6794.34 6989.74 6985.66 12581.18 9976.12 13070.19 15691.80 7594.92 6493.51 8298.27 5396.40 104
baseline190.81 8290.29 8891.42 8093.67 9695.86 9893.94 8089.69 7289.29 9582.85 9482.91 8980.30 11389.60 9495.05 6094.79 6198.80 793.82 154
thres100view90089.36 10287.61 11891.39 8193.90 9096.86 8094.35 6889.66 7385.87 12281.15 10076.46 12670.38 15391.17 8194.09 8693.43 8898.13 6796.16 113
PVSNet_Blended_VisFu91.92 6792.39 6691.36 8495.45 7197.85 5192.25 10889.54 7488.53 10387.47 5879.82 10990.53 6585.47 14396.31 4295.16 5697.99 8198.56 19
casdiffmvs91.72 7291.16 8292.38 6993.16 10197.15 7093.95 7889.49 7591.58 6686.03 6980.75 10680.95 11093.16 6295.25 5795.22 5598.50 2397.23 80
Anonymous20240521188.00 11093.16 10196.38 9193.58 9089.34 7687.92 10765.04 18183.03 9492.07 7392.67 11093.33 8996.96 13497.63 64
Anonymous2023121189.82 9588.18 10891.74 7492.52 11396.09 9693.38 9489.30 7788.95 9885.90 7364.55 18584.39 8792.41 7192.24 12093.06 9996.93 13997.95 51
UGNet91.52 7493.41 5289.32 10294.13 8097.15 7091.83 11889.01 7890.62 7385.86 7486.83 5991.73 5677.40 18394.68 7394.43 6497.71 9798.40 34
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-train90.55 8690.19 9090.97 8793.78 9495.16 10292.11 11388.85 7987.64 10883.38 9284.36 8078.41 12489.53 9594.69 7293.15 9698.15 6497.92 54
diffmvs91.37 7591.09 8391.70 7592.71 11196.47 8794.03 7688.78 8092.74 5485.43 8483.63 8580.37 11291.76 7793.39 10293.78 7797.50 10997.23 80
CLD-MVS92.50 6191.96 7293.13 5893.93 8996.24 9295.69 5388.77 8192.92 5089.01 4588.19 5681.74 10793.13 6393.63 9493.08 9798.23 5897.91 56
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ETV-MVS93.80 4994.57 4192.91 6493.98 8597.50 6193.62 8988.70 8291.95 5987.57 5690.21 4790.79 6194.56 4097.20 1696.35 2899.02 197.98 49
PatchMatch-RL90.30 8988.93 10191.89 7295.41 7295.68 9990.94 12188.67 8389.80 8986.95 6485.90 6972.51 14492.46 6993.56 9792.18 11496.93 13992.89 164
EIA-MVS92.72 5892.96 5792.44 6793.86 9297.76 5493.13 9888.65 8489.78 9086.68 6586.69 6287.57 7193.74 5596.07 4795.32 5198.58 1897.53 69
UniMVSNet_NR-MVSNet86.80 12185.86 13887.89 11988.17 15994.07 11890.15 13388.51 8584.20 13973.45 13272.38 14870.30 15588.95 10990.25 15292.21 11398.12 6897.62 66
DI_MVS_plusplus_trai91.05 7990.15 9192.11 7192.67 11296.61 8296.03 4888.44 8690.25 7985.92 7273.73 13884.89 8691.92 7494.17 8594.07 7397.68 10197.31 78
TranMVSNet+NR-MVSNet85.57 13784.41 15086.92 12787.67 16993.34 13690.31 12988.43 8783.07 14870.11 15369.99 15965.28 17886.96 12789.73 16192.27 11198.06 7597.17 84
UA-Net90.81 8292.58 6188.74 10894.87 7597.44 6392.61 10288.22 8882.35 15278.93 11385.20 7595.61 3879.56 17896.52 3496.57 2398.23 5894.37 146
IB-MVS85.10 1487.98 11187.97 11287.99 11694.55 7696.86 8084.52 18788.21 8986.48 12088.54 5074.41 13777.74 13074.10 19489.65 16492.85 10398.06 7597.80 61
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IS_MVSNet91.87 6893.35 5390.14 9794.09 8297.73 5693.09 9988.12 9088.71 10079.98 10984.49 7890.63 6487.49 12297.07 1996.96 1598.07 7397.88 58
CS-MVS93.68 5394.33 4792.93 6394.15 7998.04 4494.43 6487.99 9191.64 6487.54 5788.22 5592.09 5294.56 4096.77 2895.85 4498.88 697.71 63
ACMH85.51 1387.31 11886.59 12788.14 11493.96 8694.51 10889.00 15787.99 9181.58 15570.15 15278.41 11571.78 14990.60 8891.30 13491.99 12197.17 12096.58 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MAR-MVS92.71 5992.63 6092.79 6597.70 4097.15 7093.75 8587.98 9390.71 7085.76 7586.28 6686.38 7694.35 4594.95 6295.49 4997.22 11797.44 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)90.54 8792.76 5987.94 11793.73 9596.94 7892.17 11187.91 9488.77 9976.12 12383.68 8490.80 6079.49 17996.34 4196.35 2898.21 6096.46 102
MVSTER91.73 7191.61 7791.86 7393.18 10094.56 10694.37 6787.90 9590.16 8488.69 4989.23 5081.28 10988.92 11195.75 5293.95 7598.12 6896.37 105
EPP-MVSNet92.13 6493.06 5591.05 8693.66 9797.30 6592.18 10987.90 9590.24 8083.63 9086.14 6790.52 6790.76 8694.82 6994.38 6598.18 6397.98 49
DU-MVS86.12 12984.81 14787.66 12087.77 16693.78 12390.15 13387.87 9784.40 13373.45 13270.59 15364.82 18388.95 10990.14 15392.33 11097.76 9397.62 66
NR-MVSNet85.46 13984.54 14986.52 13388.33 15893.78 12390.45 12687.87 9784.40 13371.61 14070.59 15362.09 19282.79 16291.75 12791.75 12698.10 7197.44 72
canonicalmvs93.08 5493.09 5493.07 6194.24 7897.86 5095.45 5787.86 9994.00 4487.47 5888.32 5482.37 10295.13 3693.96 9296.41 2698.27 5398.73 12
TDRefinement84.97 14583.39 16086.81 12992.97 10594.12 11692.18 10987.77 10082.78 15071.31 14468.43 16268.07 16481.10 17489.70 16389.03 17595.55 17291.62 169
Baseline_NR-MVSNet85.28 14183.42 15987.46 12487.77 16690.80 19189.90 14387.69 10183.93 14374.16 12864.72 18366.43 17387.48 12390.14 15390.83 13797.73 9697.11 85
RPSCF89.68 9789.24 9890.20 9492.97 10592.93 15292.30 10687.69 10190.44 7785.12 8691.68 3985.84 8290.69 8787.34 18186.07 18392.46 19390.37 181
ACMH+85.75 1287.19 11986.02 13488.56 10993.42 9894.41 11289.91 14187.66 10383.45 14672.25 13976.42 12871.99 14890.78 8589.86 15990.94 13697.32 11395.11 138
thisisatest053091.04 8091.74 7490.21 9392.93 10797.00 7592.06 11487.63 10490.74 6981.51 9786.81 6082.48 9989.23 10394.81 7093.03 10197.90 8697.33 77
tttt051791.01 8191.71 7590.19 9592.98 10397.07 7491.96 11787.63 10490.61 7481.42 9886.76 6182.26 10389.23 10394.86 6893.03 10197.90 8697.36 75
tfpnnormal83.80 16281.26 18486.77 13089.60 14493.26 14289.72 14687.60 10672.78 19570.44 15060.53 19561.15 19685.55 14192.72 10991.44 13197.71 9796.92 90
TransMVSNet (Re)82.67 17680.93 18784.69 15188.71 15191.50 18387.90 16687.15 10771.54 20068.24 16663.69 18764.67 18578.51 18291.65 12990.73 14397.64 10492.73 167
UniMVSNet (Re)86.22 12785.46 14387.11 12588.34 15794.42 11189.65 14787.10 10884.39 13574.61 12670.41 15668.10 16385.10 14691.17 13791.79 12597.84 8997.94 52
DCV-MVSNet91.24 7691.26 8091.22 8592.84 10893.44 13393.82 8386.75 10991.33 6885.61 7884.00 8285.46 8391.27 8092.91 10793.62 8097.02 13098.05 48
ET-MVSNet_ETH3D89.93 9390.84 8588.87 10679.60 20596.19 9394.43 6486.56 11090.63 7280.75 10590.71 4477.78 12993.73 5691.36 13393.45 8798.15 6495.77 122
UniMVSNet_ETH3D84.57 14881.40 18288.28 11289.34 14794.38 11490.33 12786.50 11174.74 19377.52 11759.90 19662.04 19388.78 11488.82 17492.65 10697.22 11797.24 79
MVS_Test91.81 7092.19 6891.37 8393.24 9996.95 7794.43 6486.25 11291.45 6783.45 9186.31 6485.15 8492.93 6593.99 8894.71 6297.92 8596.77 93
CDS-MVSNet88.34 10988.71 10287.90 11890.70 13794.54 10792.38 10486.02 11380.37 16179.42 11179.30 11083.43 9182.04 16693.39 10294.01 7496.86 14595.93 120
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive89.36 10291.49 7986.88 12892.10 11797.60 6092.16 11285.89 11484.21 13875.20 12582.58 9487.13 7277.40 18395.90 5095.63 4798.51 2197.36 75
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268888.57 10787.82 11489.44 10195.46 6996.89 7993.74 8685.87 11589.63 9177.42 11861.38 19283.31 9288.80 11393.44 10193.16 9595.37 17596.95 89
test_part187.53 11584.97 14490.52 8892.11 11693.31 13893.32 9685.79 11679.56 16987.38 6062.89 18978.60 12189.25 10290.65 14792.17 11595.24 17797.62 66
GBi-Net90.21 9090.11 9290.32 9188.66 15393.65 12994.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9893.97 8994.16 6998.31 4695.47 129
test190.21 9090.11 9290.32 9188.66 15393.65 12994.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9893.97 8994.16 6998.31 4695.47 129
FMVSNet390.19 9290.06 9490.34 9088.69 15293.85 12194.58 6385.78 11790.03 8585.56 7977.38 11786.13 7789.22 10593.29 10494.36 6698.20 6195.40 133
v14883.61 16482.10 17385.37 14187.34 17392.94 15187.48 16985.72 12078.92 17173.87 13065.71 17764.69 18481.78 17087.82 17789.35 17296.01 15995.26 135
FMVSNet289.61 9889.14 9990.16 9688.66 15393.65 12994.25 7285.44 12188.57 10284.96 8873.53 14083.82 8989.38 9894.23 8394.68 6398.31 4695.47 129
v2v48284.51 15083.05 16686.20 13587.25 17593.28 14090.22 13185.40 12279.94 16769.78 15567.74 16465.15 18087.57 12089.12 17090.55 14796.97 13295.60 126
pm-mvs184.55 14983.46 15685.82 13688.16 16093.39 13589.05 15685.36 12374.03 19472.43 13865.08 18071.11 15082.30 16593.48 9991.70 12797.64 10495.43 132
baseline288.97 10589.50 9688.36 11091.14 12995.30 10090.13 13585.17 12487.24 11080.80 10484.46 7978.44 12385.60 14093.54 9891.87 12397.31 11495.66 124
pmmvs486.00 13284.28 15188.00 11587.80 16492.01 17589.94 14084.91 12586.79 11480.98 10373.41 14366.34 17488.12 11689.31 16788.90 17696.24 15793.20 162
FC-MVSNet-test86.15 12889.10 10082.71 17889.83 14193.18 14487.88 16784.69 12686.54 11762.18 19382.39 9783.31 9274.18 19392.52 11591.86 12497.50 10993.88 153
CANet_DTU90.74 8592.93 5888.19 11394.36 7796.61 8294.34 6984.66 12790.66 7168.75 16290.41 4686.89 7489.78 9395.46 5694.87 5997.25 11695.62 125
GA-MVS85.08 14385.65 14084.42 15589.77 14294.25 11589.26 15184.62 12881.19 15862.25 19275.72 13268.44 16284.14 15493.57 9691.68 12996.49 15094.71 142
USDC86.73 12385.96 13687.63 12291.64 12193.97 11992.76 10184.58 12988.19 10470.67 14980.10 10867.86 16589.43 9691.81 12689.77 16796.69 14990.05 184
baseline91.19 7791.89 7390.38 8992.76 10995.04 10493.55 9184.54 13092.92 5085.71 7686.68 6386.96 7389.28 10192.00 12492.62 10796.46 15296.99 87
FMVSNet187.33 11786.00 13588.89 10587.13 17992.83 15593.08 10084.46 13181.35 15782.20 9566.33 17277.96 12788.96 10893.97 8994.16 6997.54 10895.38 134
Effi-MVS+89.79 9689.83 9589.74 9892.98 10396.45 8993.48 9384.24 13287.62 10976.45 12181.76 10077.56 13293.48 5994.61 7593.59 8197.82 9097.22 82
WR-MVS83.14 17083.38 16182.87 17687.55 17093.29 13986.36 18084.21 13380.05 16566.41 17766.91 16866.92 17075.66 19088.96 17290.56 14697.05 12896.96 88
HyFIR lowres test87.87 11286.42 12989.57 9995.56 6696.99 7692.37 10584.15 13486.64 11577.17 11957.65 19883.97 8891.08 8392.09 12392.44 10997.09 12695.16 136
thisisatest051585.70 13487.00 12484.19 15888.16 16093.67 12884.20 18984.14 13583.39 14772.91 13476.79 12374.75 14278.82 18192.57 11491.26 13496.94 13696.56 101
TinyColmap84.04 15882.01 17586.42 13490.87 13391.84 17788.89 15984.07 13682.11 15469.89 15471.08 15160.81 19789.04 10790.52 14989.19 17395.76 16288.50 192
V4284.48 15283.36 16285.79 13887.14 17893.28 14090.03 13683.98 13780.30 16271.20 14566.90 16967.17 16785.55 14189.35 16590.27 15296.82 14696.27 111
PEN-MVS82.49 17881.58 17983.56 16686.93 18292.05 17486.71 17783.84 13876.94 18364.68 18667.24 16560.11 20081.17 17387.78 17890.70 14498.02 7896.21 112
DTE-MVSNet81.76 18381.04 18582.60 18086.63 18691.48 18585.97 18383.70 13976.45 18762.44 19167.16 16659.98 20178.98 18087.15 18289.93 16497.88 8895.12 137
test-LLR86.88 12088.28 10585.24 14491.22 12792.07 17287.41 17083.62 14084.58 13169.33 15883.00 8782.79 9584.24 15192.26 11889.81 16595.64 16893.44 157
test0.0.03 185.58 13687.69 11783.11 17191.22 12792.54 16385.60 18683.62 14085.66 12567.84 16982.79 9279.70 11673.51 19691.15 13890.79 13896.88 14391.23 174
IterMVS-LS88.60 10688.45 10388.78 10792.02 11892.44 16692.00 11683.57 14286.52 11878.90 11478.61 11481.34 10889.12 10690.68 14693.18 9497.10 12596.35 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet83.11 17282.15 17284.23 15787.20 17692.70 15786.42 17983.53 14377.83 17867.67 17066.89 17060.53 19982.47 16389.23 16990.65 14598.08 7297.20 83
PS-CasMVS82.53 17781.54 18083.68 16487.08 18192.54 16386.20 18183.46 14476.46 18665.73 18265.71 17759.41 20481.61 17189.06 17190.55 14798.03 7797.07 86
v114484.03 15982.88 16785.37 14187.17 17793.15 14790.18 13283.31 14578.83 17267.85 16865.99 17464.99 18186.79 12990.75 14390.33 15196.90 14196.15 114
CVMVSNet83.83 16185.53 14181.85 18589.60 14490.92 18787.81 16883.21 14680.11 16460.16 19776.47 12578.57 12276.79 18589.76 16090.13 15593.51 18492.75 166
WR-MVS_H82.86 17582.66 16983.10 17287.44 17293.33 13785.71 18583.20 14777.36 18068.20 16766.37 17165.23 17976.05 18989.35 16590.13 15597.99 8196.89 91
v119283.56 16582.35 17084.98 14686.84 18492.84 15390.01 13882.70 14878.54 17366.48 17664.88 18262.91 18786.91 12890.72 14490.25 15396.94 13696.32 108
Fast-Effi-MVS+88.56 10887.99 11189.22 10391.56 12495.21 10192.29 10782.69 14986.82 11377.73 11676.24 12973.39 14393.36 6194.22 8493.64 7997.65 10396.43 103
Effi-MVS+-dtu87.51 11688.13 10986.77 13091.10 13094.90 10590.91 12282.67 15083.47 14571.55 14181.11 10577.04 13489.41 9792.65 11291.68 12995.00 18296.09 116
MDA-MVSNet-bldmvs73.81 19772.56 20175.28 19772.52 21088.87 19674.95 20582.67 15071.57 19855.02 20465.96 17542.84 21576.11 18870.61 20781.47 19990.38 20486.59 196
pmmvs680.90 18578.77 19183.38 16985.84 19191.61 18186.01 18282.54 15264.17 20770.43 15154.14 20567.06 16980.73 17590.50 15089.17 17494.74 18394.75 141
v14419283.48 16682.23 17184.94 14786.65 18592.84 15389.63 14882.48 15377.87 17767.36 17265.33 17963.50 18686.51 13189.72 16289.99 16397.03 12996.35 106
v884.45 15483.30 16385.80 13787.53 17192.95 15090.31 12982.46 15480.46 16071.43 14266.99 16767.16 16886.14 13789.26 16890.22 15496.94 13696.06 117
SixPastTwentyTwo83.12 17183.44 15882.74 17787.71 16893.11 14882.30 19482.33 15579.24 17064.33 18778.77 11362.75 18884.11 15588.11 17687.89 17895.70 16694.21 149
LTVRE_ROB81.71 1682.44 17981.84 17783.13 17089.01 14892.99 14988.90 15882.32 15666.26 20654.02 20774.68 13659.62 20388.87 11290.71 14592.02 12095.68 16796.62 96
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v192192083.30 16882.09 17484.70 15086.59 18892.67 15989.82 14482.23 15778.32 17465.76 18164.64 18462.35 19086.78 13090.34 15190.02 16197.02 13096.31 109
pmnet_mix0280.14 18880.21 18980.06 18886.61 18789.66 19480.40 19882.20 15882.29 15361.35 19471.52 14966.67 17276.75 18682.55 19980.18 20293.05 18888.62 190
pmmvs583.37 16782.68 16884.18 15987.13 17993.18 14486.74 17682.08 15976.48 18567.28 17371.26 15062.70 18984.71 14890.77 14290.12 15897.15 12194.24 147
PMMVS89.88 9491.19 8188.35 11189.73 14391.97 17690.62 12481.92 16090.57 7580.58 10792.16 3586.85 7591.17 8192.31 11791.35 13396.11 15893.11 163
N_pmnet77.55 19576.68 19878.56 19385.43 19587.30 20278.84 20081.88 16178.30 17560.61 19561.46 19162.15 19174.03 19582.04 20080.69 20190.59 20384.81 202
v124082.88 17481.66 17884.29 15686.46 18992.52 16589.06 15581.82 16277.16 18165.09 18564.17 18661.50 19486.36 13290.12 15590.13 15596.95 13596.04 118
testgi81.94 18184.09 15279.43 19189.53 14690.83 19082.49 19381.75 16380.59 15959.46 19982.82 9165.75 17567.97 19890.10 15689.52 17095.39 17489.03 187
CMPMVSbinary61.19 1779.86 18977.46 19782.66 17991.54 12591.82 17883.25 19081.57 16470.51 20268.64 16359.89 19766.77 17179.63 17784.00 19684.30 19291.34 19884.89 201
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch87.63 11387.61 11887.65 12193.95 8794.09 11792.60 10381.52 16586.64 11576.41 12273.46 14285.94 8085.01 14792.23 12190.00 16296.43 15490.93 177
v1084.18 15583.17 16585.37 14187.34 17392.68 15890.32 12881.33 16679.93 16869.23 16066.33 17265.74 17687.03 12690.84 14190.38 14996.97 13296.29 110
pmmvs-eth3d79.78 19077.58 19582.34 18281.57 20387.46 20182.92 19181.28 16775.33 19271.34 14361.88 19052.41 20881.59 17287.56 17986.90 18195.36 17691.48 170
TAMVS84.94 14684.95 14584.93 14888.82 14993.18 14488.44 16381.28 16777.16 18173.76 13175.43 13476.57 13882.04 16690.59 14890.79 13895.22 17890.94 176
Anonymous2023120678.09 19378.11 19478.07 19485.19 19689.17 19580.99 19681.24 16975.46 19158.25 20154.78 20459.90 20266.73 20188.94 17388.26 17796.01 15990.25 182
v7n82.25 18081.54 18083.07 17385.55 19492.58 16186.68 17881.10 17076.54 18465.97 18062.91 18860.56 19882.36 16491.07 13990.35 15096.77 14896.80 92
test20.0376.41 19678.49 19373.98 19885.64 19387.50 20075.89 20380.71 17170.84 20151.07 21068.06 16361.40 19554.99 20788.28 17587.20 18095.58 17186.15 197
anonymousdsp84.51 15085.85 13982.95 17586.30 19093.51 13285.77 18480.38 17278.25 17663.42 19073.51 14172.20 14684.64 14993.21 10692.16 11697.19 11998.14 43
CHOSEN 280x42090.77 8492.14 6989.17 10493.86 9292.81 15693.16 9780.22 17390.21 8184.67 8989.89 4891.38 5990.57 8994.94 6392.11 11792.52 19293.65 156
MIMVSNet173.19 19873.70 19972.60 20165.42 21386.69 20475.56 20479.65 17467.87 20555.30 20345.24 20856.41 20663.79 20386.98 18387.66 17995.85 16185.04 200
EU-MVSNet78.43 19180.25 18876.30 19683.81 19987.27 20380.99 19679.52 17576.01 18854.12 20670.44 15564.87 18267.40 20086.23 18785.54 18791.95 19791.41 171
FMVSNet584.47 15384.72 14884.18 15983.30 20088.43 19788.09 16579.42 17684.25 13774.14 12973.15 14578.74 11983.65 15791.19 13691.19 13596.46 15286.07 198
PM-MVS80.29 18779.30 19081.45 18781.91 20288.23 19882.61 19279.01 17779.99 16667.15 17469.07 16051.39 20982.92 16187.55 18085.59 18595.08 17993.28 160
EG-PatchMatch MVS81.70 18481.31 18382.15 18388.75 15093.81 12287.14 17378.89 17871.57 19864.12 18961.20 19468.46 16176.73 18791.48 13090.77 14097.28 11591.90 168
IterMVS-SCA-FT85.44 14086.71 12583.97 16290.59 13890.84 18989.73 14578.34 17984.07 14266.40 17877.27 12278.66 12083.06 15991.20 13590.10 16095.72 16594.78 140
Fast-Effi-MVS+-dtu86.25 12587.70 11684.56 15390.37 14093.70 12690.54 12578.14 18083.50 14465.37 18481.59 10375.83 14186.09 13991.70 12891.70 12796.88 14395.84 121
IterMVS85.25 14286.49 12883.80 16390.42 13990.77 19290.02 13778.04 18184.10 14066.27 17977.28 12178.41 12483.01 16090.88 14089.72 16995.04 18094.24 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDTV_nov1_ep1386.64 12487.50 12285.65 13990.73 13593.69 12789.96 13978.03 18289.48 9476.85 12084.92 7682.42 10186.14 13786.85 18586.15 18292.17 19488.97 189
new-patchmatchnet72.32 19971.09 20273.74 19981.17 20484.86 20672.21 20877.48 18368.32 20454.89 20555.10 20249.31 21263.68 20479.30 20376.46 20593.03 18984.32 203
TESTMET0.1,186.11 13088.28 10583.59 16587.80 16492.07 17287.41 17077.12 18484.58 13169.33 15883.00 8782.79 9584.24 15192.26 11889.81 16595.64 16893.44 157
test-mter86.09 13188.38 10483.43 16887.89 16392.61 16086.89 17577.11 18584.30 13668.62 16482.57 9582.45 10084.34 15092.40 11690.11 15995.74 16394.21 149
FPMVS69.87 20267.10 20573.10 20084.09 19878.35 21079.40 19976.41 18671.92 19657.71 20254.06 20650.04 21056.72 20571.19 20668.70 20784.25 20875.43 207
CostFormer86.78 12286.05 13287.62 12392.15 11593.20 14391.55 12075.83 18788.11 10685.29 8581.76 10076.22 13987.80 11784.45 19385.21 18993.12 18793.42 159
tpm cat184.13 15681.99 17686.63 13291.74 12091.50 18390.68 12375.69 18886.12 12185.44 8372.39 14770.72 15185.16 14580.89 20281.56 19891.07 20090.71 178
dps85.00 14483.21 16487.08 12690.73 13592.55 16289.34 14975.29 18984.94 12887.01 6279.27 11167.69 16687.27 12584.22 19483.56 19492.83 19090.25 182
gm-plane-assit77.65 19478.50 19276.66 19587.96 16285.43 20564.70 21174.50 19064.15 20851.26 20961.32 19358.17 20584.11 15595.16 5993.83 7697.45 11191.41 171
PMVScopyleft56.77 1861.27 20458.64 20664.35 20475.66 20654.60 21453.62 21374.23 19153.69 21158.37 20044.27 20949.38 21144.16 21069.51 20865.35 20980.07 21073.66 208
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tpm83.16 16983.64 15482.60 18090.75 13491.05 18688.49 16273.99 19282.36 15167.08 17578.10 11668.79 15984.17 15385.95 18985.96 18491.09 19993.23 161
MDTV_nov1_ep13_2view80.43 18680.94 18679.84 18984.82 19790.87 18884.23 18873.80 19380.28 16364.33 18770.05 15868.77 16079.67 17684.83 19283.50 19592.17 19488.25 195
PatchmatchNetpermissive85.70 13486.65 12684.60 15291.79 11993.40 13489.27 15073.62 19490.19 8272.63 13782.74 9381.93 10687.64 11984.99 19184.29 19392.64 19189.00 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS85.77 13386.24 13185.23 14592.76 10993.78 12389.91 14173.60 19590.19 8274.22 12782.18 9878.06 12687.55 12185.61 19085.38 18893.32 18688.48 193
tpmrst83.72 16383.45 15784.03 16192.21 11491.66 18088.74 16073.58 19688.14 10572.67 13677.37 12072.11 14786.34 13382.94 19882.05 19790.63 20289.86 185
CR-MVSNet85.48 13886.29 13084.53 15491.08 13292.10 17089.18 15273.30 19784.75 12971.08 14673.12 14677.91 12886.27 13591.48 13090.75 14196.27 15693.94 151
Patchmtry92.39 16789.18 15273.30 19771.08 146
SCA86.25 12587.52 12184.77 14991.59 12293.90 12089.11 15473.25 19990.38 7872.84 13583.26 8683.79 9088.49 11586.07 18885.56 18693.33 18589.67 186
MIMVSNet82.97 17384.00 15381.77 18682.23 20192.25 16987.40 17272.73 20081.48 15669.55 15668.79 16172.42 14581.82 16992.23 12192.25 11296.89 14288.61 191
PatchT83.86 16085.51 14281.94 18488.41 15691.56 18278.79 20171.57 20184.08 14171.08 14670.62 15276.13 14086.27 13591.48 13090.75 14195.52 17393.94 151
RPMNet84.82 14785.90 13783.56 16691.10 13092.10 17088.73 16171.11 20284.75 12968.79 16173.56 13977.62 13185.33 14490.08 15789.43 17196.32 15593.77 155
ADS-MVSNet84.08 15784.95 14583.05 17491.53 12691.75 17988.16 16470.70 20389.96 8869.51 15778.83 11276.97 13686.29 13484.08 19584.60 19192.13 19688.48 193
MVS-HIRNet78.16 19277.57 19678.83 19285.83 19287.76 19976.67 20270.22 20475.82 19067.39 17155.61 20070.52 15281.96 16886.67 18685.06 19090.93 20181.58 204
new_pmnet72.29 20073.25 20071.16 20375.35 20781.38 20773.72 20769.27 20575.97 18949.84 21156.27 19956.12 20769.08 19781.73 20180.86 20089.72 20680.44 205
gg-mvs-nofinetune81.83 18283.58 15579.80 19091.57 12396.54 8593.79 8468.80 20662.71 20943.01 21455.28 20185.06 8583.65 15796.13 4594.86 6097.98 8494.46 144
Gipumacopyleft58.52 20556.17 20761.27 20567.14 21258.06 21352.16 21468.40 20769.00 20345.02 21322.79 21120.57 21855.11 20676.27 20479.33 20479.80 21167.16 210
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs371.13 20171.06 20371.21 20273.54 20980.19 20871.69 20964.86 20862.04 21052.10 20854.92 20348.00 21375.03 19183.75 19783.24 19690.04 20585.27 199
E-PMN40.00 20735.74 21044.98 20857.69 21639.15 21828.05 21662.70 20935.52 21417.78 21720.90 21214.36 22044.47 20935.89 21247.86 21159.15 21456.47 212
EMVS39.04 20934.32 21144.54 20958.25 21539.35 21727.61 21762.55 21035.99 21316.40 21820.04 21414.77 21944.80 20833.12 21344.10 21257.61 21552.89 213
PMMVS253.68 20655.72 20851.30 20658.84 21467.02 21254.23 21260.97 21147.50 21219.42 21634.81 21031.97 21630.88 21265.84 20969.99 20683.47 20972.92 209
MVEpermissive39.81 1939.52 20841.58 20937.11 21033.93 21749.06 21526.45 21854.22 21229.46 21524.15 21520.77 21310.60 22134.42 21151.12 21165.27 21049.49 21664.81 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft71.82 21168.37 21048.05 21377.38 17946.88 21265.77 17647.03 21467.48 19964.27 21076.89 21276.72 206
tmp_tt50.24 20768.55 21146.86 21648.90 21518.28 21486.51 11968.32 16570.19 15765.33 17726.69 21374.37 20566.80 20870.72 213
testmvs4.35 2106.54 2121.79 2120.60 2181.82 2193.06 2200.95 2157.22 2160.88 22012.38 2151.25 2223.87 2156.09 2145.58 2131.40 21711.42 215
test1233.48 2115.31 2131.34 2130.20 2201.52 2202.17 2210.58 2166.13 2170.31 2219.85 2160.31 2233.90 2142.65 2155.28 2140.87 21811.46 214
GG-mvs-BLEND62.84 20390.21 8930.91 2110.57 21994.45 11086.99 1740.34 21788.71 1000.98 21981.55 10491.58 570.86 21692.66 11191.43 13295.73 16491.11 175
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def60.19 196
9.1497.28 23
our_test_386.93 18289.77 19381.61 195
ambc67.96 20473.69 20879.79 20973.82 20671.61 19759.80 19846.00 20720.79 21766.15 20286.92 18480.11 20389.13 20790.50 179
MTAPA95.36 297.46 20
MTMP95.70 196.90 26
Patchmatch-RL test18.47 219
XVS95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
X-MVStestdata95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
mPP-MVS98.76 2495.49 39
NP-MVS91.63 65