This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
region2R97.07 2196.84 2397.77 3499.46 193.79 5398.52 1098.24 3493.19 7497.14 3798.34 3791.59 5299.87 795.46 6199.59 1499.64 10
MSP-MVS97.91 197.81 198.22 899.45 295.36 1098.21 3397.85 10894.92 2198.73 798.87 595.08 499.84 1897.52 299.67 699.48 39
test_0728_SECOND98.51 299.45 295.93 398.21 3398.28 2699.86 897.52 299.67 699.75 3
test072699.45 295.36 1098.31 2298.29 2494.92 2198.99 398.92 295.08 4
ACMMPR97.07 2196.84 2397.79 3199.44 593.88 5098.52 1098.31 2293.21 7197.15 3698.33 4091.35 5599.86 895.63 5399.59 1499.62 13
IU-MVS99.42 695.39 997.94 9890.40 16598.94 497.41 699.66 899.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 1799.19 198.81 795.54 399.65 52
HFP-MVS97.14 1896.92 1997.83 2599.42 694.12 4398.52 1098.32 2093.21 7197.18 3498.29 4692.08 3799.83 2195.63 5399.59 1499.54 27
#test#97.02 2596.75 3097.83 2599.42 694.12 4398.15 3698.32 2092.57 9897.18 3498.29 4692.08 3799.83 2195.12 6799.59 1499.54 27
DVP-MVS97.59 697.54 497.73 3799.40 1093.77 5698.53 998.29 2495.55 598.56 1197.81 7793.90 1199.65 5296.62 1999.21 6499.77 1
mPP-MVS96.86 3496.60 3697.64 4599.40 1093.44 6398.50 1398.09 6393.27 7095.95 7998.33 4091.04 6299.88 495.20 6499.57 1999.60 16
MP-MVScopyleft96.77 3996.45 4597.72 3899.39 1293.80 5298.41 1898.06 7293.37 6695.54 9698.34 3790.59 7099.88 494.83 7799.54 2299.49 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS97.18 1596.96 1797.81 2999.38 1394.03 4898.59 798.20 4294.85 2396.59 5398.29 4691.70 4899.80 2695.66 4899.40 4499.62 13
X-MVStestdata91.71 18989.67 24697.81 2999.38 1394.03 4898.59 798.20 4294.85 2396.59 5332.69 34691.70 4899.80 2695.66 4899.40 4499.62 13
ZNCC-MVS96.96 2996.67 3497.85 2499.37 1594.12 4398.49 1498.18 4692.64 9796.39 6398.18 5491.61 5099.88 495.59 5899.55 2099.57 19
zzz-MVS97.07 2196.77 2997.97 2199.37 1594.42 3097.15 13198.08 6495.07 1896.11 7098.59 1490.88 6699.90 196.18 3799.50 3199.58 17
MTAPA97.08 2096.78 2897.97 2199.37 1594.42 3097.24 11898.08 6495.07 1896.11 7098.59 1490.88 6699.90 196.18 3799.50 3199.58 17
GST-MVS96.85 3596.52 4197.82 2899.36 1894.14 4298.29 2498.13 5492.72 9496.70 4598.06 5991.35 5599.86 894.83 7799.28 5699.47 42
HPM-MVScopyleft96.69 4296.45 4597.40 5299.36 1893.11 7298.87 198.06 7291.17 14196.40 6297.99 6490.99 6399.58 6895.61 5599.61 1399.49 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS96.81 3796.53 4097.65 4399.35 2093.53 6197.65 7998.98 192.22 10497.14 3798.44 2491.17 6099.85 1494.35 8699.46 3799.57 19
CP-MVS97.02 2596.81 2697.64 4599.33 2193.54 6098.80 398.28 2692.99 8096.45 6198.30 4591.90 4399.85 1495.61 5599.68 499.54 27
HPM-MVS_fast96.51 4896.27 4997.22 6399.32 2292.74 8098.74 498.06 7290.57 16196.77 4498.35 3490.21 7499.53 8494.80 8099.63 1199.38 52
MCST-MVS97.18 1596.84 2398.20 999.30 2395.35 1297.12 13398.07 6993.54 6396.08 7297.69 8593.86 1299.71 3796.50 2399.39 4699.55 25
test_part299.28 2495.74 698.10 16
CPTT-MVS95.57 7395.19 7596.70 7499.27 2591.48 11698.33 2198.11 5987.79 23595.17 10198.03 6187.09 11399.61 6093.51 10399.42 4299.02 79
TSAR-MVS + MP.97.42 797.33 897.69 4199.25 2694.24 3798.07 4297.85 10893.72 5598.57 1098.35 3493.69 1499.40 10397.06 799.46 3799.44 45
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG96.05 6095.91 5796.46 9099.24 2790.47 15398.30 2398.57 1189.01 19393.97 12197.57 9892.62 2799.76 2994.66 8399.27 5899.15 68
ACMMPcopyleft96.27 5595.93 5697.28 5899.24 2792.62 8498.25 2898.81 392.99 8094.56 10998.39 3188.96 8499.85 1494.57 8597.63 11499.36 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss96.70 4196.27 4997.98 2099.23 2994.71 2596.96 14698.06 7290.67 15295.55 9498.78 991.07 6199.86 896.58 2199.55 2099.38 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DP-MVS Recon95.68 6995.12 7897.37 5399.19 3094.19 3897.03 13598.08 6488.35 21795.09 10397.65 8989.97 7899.48 9392.08 12998.59 9298.44 131
DPE-MVS97.86 297.65 398.47 399.17 3195.78 597.21 12598.35 1995.16 1498.71 998.80 895.05 699.89 396.70 1899.73 199.73 7
APDe-MVS97.82 397.73 298.08 1499.15 3294.82 2498.81 298.30 2394.76 3198.30 1298.90 393.77 1399.68 4697.93 199.69 399.75 3
testtj96.93 3296.56 3998.05 1699.10 3394.66 2697.78 6398.22 3992.74 9397.59 2398.20 5391.96 4299.86 894.21 8899.25 6099.63 11
SR-MVS97.01 2796.86 2197.47 5099.09 3493.27 6997.98 4698.07 6993.75 5497.45 2798.48 2191.43 5499.59 6596.22 3199.27 5899.54 27
ACMMP_NAP97.20 1496.86 2198.23 799.09 3495.16 1997.60 8598.19 4492.82 9097.93 1998.74 1091.60 5199.86 896.26 2899.52 2499.67 8
HPM-MVS++copyleft97.34 1296.97 1698.47 399.08 3696.16 297.55 8997.97 9595.59 496.61 5197.89 6792.57 2999.84 1895.95 4299.51 2899.40 49
114514_t93.95 11693.06 12696.63 7799.07 3791.61 11197.46 9997.96 9677.99 32893.00 14297.57 9886.14 12799.33 10889.22 18399.15 6898.94 90
SMA-MVS97.35 1197.03 1398.30 699.06 3895.42 897.94 4998.18 4690.57 16198.85 698.94 193.33 1699.83 2196.72 1799.68 499.63 11
APD-MVScopyleft96.95 3096.60 3698.01 1899.03 3994.93 2397.72 7198.10 6191.50 12598.01 1798.32 4292.33 3399.58 6894.85 7599.51 2899.53 31
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS97.39 1097.13 1098.17 1099.02 4095.28 1698.23 3098.27 2892.37 10298.27 1398.65 1293.33 1699.72 3496.49 2499.52 2499.51 32
APD-MVS_3200maxsize96.81 3796.71 3297.12 6799.01 4192.31 9197.98 4698.06 7293.11 7797.44 2898.55 1890.93 6499.55 7996.06 3999.25 6099.51 32
9.1496.75 3098.93 4297.73 6898.23 3891.28 13797.88 2198.44 2493.00 2099.65 5295.76 4799.47 35
CDPH-MVS95.97 6395.38 7097.77 3498.93 4294.44 2996.35 19997.88 10286.98 25496.65 4997.89 6791.99 4199.47 9492.26 12099.46 3799.39 50
xxxxxxxxxxxxxcwj97.42 797.28 997.83 2598.91 4494.28 3397.02 13898.02 8395.35 898.27 1398.65 1293.33 1699.72 3496.49 2499.52 2499.51 32
save fliter98.91 4494.28 3397.02 13898.02 8395.35 8
ETH3 D test640096.16 5895.52 6498.07 1598.90 4695.06 2197.03 13598.21 4088.16 22496.64 5097.70 8491.18 5999.67 4892.44 11999.47 3599.48 39
ETH3D-3000-0.197.07 2196.71 3298.14 1298.90 4695.33 1497.68 7598.24 3491.57 12397.90 2098.37 3292.61 2899.66 5195.59 5899.51 2899.43 47
CNVR-MVS97.68 497.44 798.37 598.90 4695.86 497.27 11698.08 6495.81 397.87 2298.31 4394.26 999.68 4697.02 899.49 3399.57 19
abl_696.40 5196.21 5196.98 7198.89 4992.20 9697.89 5298.03 8293.34 6997.22 3398.42 2787.93 9899.72 3495.10 6899.07 7599.02 79
PAPM_NR95.01 8694.59 8896.26 10598.89 4990.68 14897.24 11897.73 11591.80 11892.93 14796.62 14889.13 8399.14 12589.21 18497.78 11198.97 86
OPU-MVS98.55 198.82 5196.86 198.25 2898.26 4996.04 199.24 11595.36 6299.59 1499.56 22
NCCC97.30 1397.03 1398.11 1398.77 5295.06 2197.34 10898.04 8095.96 297.09 4197.88 6993.18 1999.71 3795.84 4599.17 6799.56 22
DP-MVS92.76 15991.51 17796.52 8298.77 5290.99 13697.38 10696.08 24982.38 30589.29 23097.87 7083.77 15499.69 4381.37 29296.69 14098.89 96
MSLP-MVS++96.94 3197.06 1296.59 8098.72 5491.86 10697.67 7698.49 1294.66 3497.24 3298.41 3092.31 3598.94 14596.61 2099.46 3798.96 87
TEST998.70 5594.19 3896.41 19198.02 8388.17 22296.03 7397.56 10092.74 2399.59 65
train_agg96.30 5495.83 5997.72 3898.70 5594.19 3896.41 19198.02 8388.58 21096.03 7397.56 10092.73 2499.59 6595.04 6999.37 5199.39 50
test_898.67 5794.06 4796.37 19898.01 8788.58 21095.98 7897.55 10292.73 2499.58 68
agg_prior196.22 5795.77 6097.56 4798.67 5793.79 5396.28 20798.00 8988.76 20795.68 8897.55 10292.70 2699.57 7695.01 7099.32 5299.32 56
agg_prior98.67 5793.79 5398.00 8995.68 8899.57 76
test_prior396.46 5096.20 5297.23 6198.67 5792.99 7496.35 19998.00 8992.80 9196.03 7397.59 9692.01 3999.41 10195.01 7099.38 4799.29 58
test_prior97.23 6198.67 5792.99 7498.00 8999.41 10199.29 58
DeepC-MVS_fast93.89 296.93 3296.64 3597.78 3298.64 6294.30 3297.41 10098.04 8094.81 2896.59 5398.37 3291.24 5799.64 5995.16 6599.52 2499.42 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何197.32 5598.60 6393.59 5997.75 11381.58 31195.75 8597.85 7390.04 7799.67 4886.50 23499.13 7098.69 111
原ACMM196.38 9698.59 6491.09 13597.89 10087.41 24695.22 10097.68 8690.25 7299.54 8187.95 20399.12 7398.49 123
AdaColmapbinary94.34 10393.68 10896.31 10098.59 6491.68 11096.59 18297.81 11089.87 17292.15 16097.06 12183.62 15699.54 8189.34 17898.07 10497.70 166
PLCcopyleft91.00 694.11 11093.43 11896.13 11098.58 6691.15 13496.69 17197.39 16287.29 24991.37 17296.71 13488.39 9399.52 8887.33 22297.13 13297.73 164
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
112194.71 9993.83 10397.34 5498.57 6793.64 5896.04 22097.73 11581.56 31295.68 8897.85 7390.23 7399.65 5287.68 21299.12 7398.73 107
SD-MVS97.41 997.53 597.06 6898.57 6794.46 2897.92 5198.14 5394.82 2799.01 298.55 1894.18 1097.41 29096.94 999.64 1099.32 56
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1297.65 4398.46 6994.26 3597.66 12495.52 9790.89 6599.46 9599.25 6099.22 63
MVS_111021_HR96.68 4496.58 3896.99 7098.46 6992.31 9196.20 21498.90 294.30 4395.86 8197.74 8292.33 3399.38 10696.04 4099.42 4299.28 61
OMC-MVS95.09 8594.70 8696.25 10698.46 6991.28 12396.43 18997.57 13392.04 11394.77 10797.96 6687.01 11499.09 13191.31 14796.77 13698.36 138
MG-MVS95.61 7195.38 7096.31 10098.42 7290.53 15196.04 22097.48 14193.47 6495.67 9198.10 5689.17 8299.25 11491.27 14898.77 8599.13 70
PHI-MVS96.77 3996.46 4497.71 4098.40 7394.07 4698.21 3398.45 1589.86 17397.11 4098.01 6392.52 3199.69 4396.03 4199.53 2399.36 54
F-COLMAP93.58 12892.98 12795.37 14998.40 7388.98 20097.18 12797.29 17387.75 23890.49 18997.10 11985.21 13699.50 9186.70 23196.72 13997.63 168
SteuartSystems-ACMMP97.62 597.53 597.87 2398.39 7594.25 3698.43 1798.27 2895.34 1098.11 1598.56 1694.53 899.71 3796.57 2299.62 1299.65 9
Skip Steuart: Steuart Systems R&D Blog.
旧先验198.38 7693.38 6597.75 11398.09 5792.30 3699.01 7899.16 66
CNLPA94.28 10493.53 11396.52 8298.38 7692.55 8696.59 18296.88 21090.13 16991.91 16497.24 11285.21 13699.09 13187.64 21597.83 10997.92 154
Regformer-396.85 3596.80 2797.01 6998.34 7892.02 10296.96 14697.76 11295.01 2097.08 4298.42 2791.71 4799.54 8196.80 1399.13 7099.48 39
Regformer-496.97 2896.87 2097.25 6098.34 7892.66 8396.96 14698.01 8795.12 1697.14 3798.42 2791.82 4499.61 6096.90 1099.13 7099.50 35
TAPA-MVS90.10 792.30 17291.22 18895.56 13798.33 8089.60 17296.79 16297.65 12681.83 30991.52 16997.23 11387.94 9798.91 14871.31 33098.37 9698.17 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Regformer-197.10 1996.96 1797.54 4898.32 8193.48 6296.83 15897.99 9395.20 1397.46 2698.25 5092.48 3299.58 6896.79 1599.29 5499.55 25
Regformer-297.16 1796.99 1597.67 4298.32 8193.84 5196.83 15898.10 6195.24 1197.49 2598.25 5092.57 2999.61 6096.80 1399.29 5499.56 22
TSAR-MVS + GP.96.69 4296.49 4297.27 5998.31 8393.39 6496.79 16296.72 21994.17 4497.44 2897.66 8892.76 2299.33 10896.86 1297.76 11399.08 76
CHOSEN 1792x268894.15 10793.51 11496.06 11398.27 8489.38 18495.18 26098.48 1485.60 27293.76 12597.11 11883.15 16399.61 6091.33 14698.72 8799.19 64
PVSNet_BlendedMVS94.06 11293.92 10194.47 18398.27 8489.46 18196.73 16698.36 1690.17 16794.36 11295.24 21388.02 9599.58 6893.44 10590.72 23094.36 297
PVSNet_Blended94.87 9494.56 8995.81 12398.27 8489.46 18195.47 24698.36 1688.84 20194.36 11296.09 17388.02 9599.58 6893.44 10598.18 10198.40 134
ETH3D cwj APD-0.1696.56 4796.06 5498.05 1698.26 8795.19 1796.99 14398.05 7989.85 17597.26 3198.22 5291.80 4599.69 4394.84 7699.28 5699.27 62
Anonymous2023121190.63 24089.42 25094.27 19198.24 8889.19 19698.05 4397.89 10079.95 32088.25 25594.96 22072.56 29198.13 20689.70 16985.14 28595.49 233
EI-MVSNet-Vis-set96.51 4896.47 4396.63 7798.24 8891.20 12996.89 15397.73 11594.74 3296.49 5798.49 2090.88 6699.58 6896.44 2698.32 9799.13 70
test22298.24 8892.21 9495.33 25197.60 13079.22 32495.25 9997.84 7688.80 8799.15 6898.72 108
HyFIR lowres test93.66 12592.92 12995.87 12198.24 8889.88 16794.58 26898.49 1285.06 27993.78 12495.78 18882.86 17298.67 16891.77 13595.71 15799.07 78
MVS_111021_LR96.24 5696.19 5396.39 9598.23 9291.35 12296.24 21298.79 493.99 4895.80 8397.65 8989.92 7999.24 11595.87 4399.20 6598.58 114
EI-MVSNet-UG-set96.34 5396.30 4896.47 8898.20 9390.93 14096.86 15497.72 11894.67 3396.16 6998.46 2290.43 7199.58 6896.23 3097.96 10798.90 94
PVSNet_Blended_VisFu95.27 7994.91 8196.38 9698.20 9390.86 14297.27 11698.25 3390.21 16694.18 11697.27 11087.48 10799.73 3193.53 10297.77 11298.55 115
Anonymous20240521192.07 18290.83 20095.76 12498.19 9588.75 20497.58 8695.00 28986.00 26893.64 12697.45 10466.24 32399.53 8490.68 15592.71 19699.01 83
PatchMatch-RL92.90 15292.02 15895.56 13798.19 9590.80 14495.27 25697.18 17787.96 22891.86 16695.68 19580.44 21598.99 14184.01 26897.54 11696.89 188
testdata95.46 14798.18 9788.90 20297.66 12482.73 30497.03 4398.07 5890.06 7698.85 15289.67 17098.98 7998.64 113
Anonymous2024052991.98 18490.73 20395.73 12998.14 9889.40 18397.99 4597.72 11879.63 32293.54 12997.41 10669.94 30799.56 7891.04 15191.11 22398.22 142
LFMVS93.60 12792.63 13896.52 8298.13 9991.27 12497.94 4993.39 32190.57 16196.29 6598.31 4369.00 30999.16 12294.18 8995.87 15299.12 73
DeepPCF-MVS93.97 196.61 4597.09 1195.15 15498.09 10086.63 25496.00 22498.15 5195.43 697.95 1898.56 1693.40 1599.36 10796.77 1699.48 3499.45 43
DPM-MVS95.69 6894.92 8098.01 1898.08 10195.71 795.27 25697.62 12990.43 16495.55 9497.07 12091.72 4699.50 9189.62 17298.94 8198.82 102
VNet95.89 6595.45 6797.21 6498.07 10292.94 7797.50 9298.15 5193.87 5097.52 2497.61 9585.29 13599.53 8495.81 4695.27 16399.16 66
MAR-MVS94.22 10593.46 11696.51 8598.00 10392.19 9797.67 7697.47 14488.13 22693.00 14295.84 18184.86 14199.51 8987.99 20298.17 10297.83 161
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS93.07 396.06 5995.66 6197.29 5797.96 10493.17 7197.30 11498.06 7293.92 4993.38 13498.66 1186.83 11599.73 3195.60 5799.22 6398.96 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft87.81 1590.40 24589.28 25393.79 21697.95 10587.13 24396.92 15095.89 25482.83 30386.88 28497.18 11473.77 28799.29 11278.44 30893.62 18894.95 265
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest90.23 24988.98 25793.98 20297.94 10686.64 25196.51 18695.54 26685.38 27385.49 29496.77 13270.28 30499.15 12380.02 29892.87 19396.15 207
TestCases93.98 20297.94 10686.64 25195.54 26685.38 27385.49 29496.77 13270.28 30499.15 12380.02 29892.87 19396.15 207
thres100view90092.43 16591.58 17294.98 16297.92 10889.37 18597.71 7394.66 30192.20 10693.31 13694.90 22478.06 25799.08 13381.40 28994.08 18096.48 199
thres600view792.49 16491.60 17195.18 15397.91 10989.47 17997.65 7994.66 30192.18 11093.33 13594.91 22378.06 25799.10 12881.61 28694.06 18396.98 183
API-MVS94.84 9594.49 9395.90 12097.90 11092.00 10397.80 6197.48 14189.19 18994.81 10696.71 13488.84 8699.17 12188.91 19098.76 8696.53 196
VDD-MVS93.82 12093.08 12596.02 11597.88 11189.96 16697.72 7195.85 25592.43 10095.86 8198.44 2468.42 31399.39 10496.31 2794.85 16998.71 110
tfpn200view992.38 16891.52 17594.95 16597.85 11289.29 19097.41 10094.88 29692.19 10893.27 13894.46 24778.17 25499.08 13381.40 28994.08 18096.48 199
thres40092.42 16691.52 17595.12 15797.85 11289.29 19097.41 10094.88 29692.19 10893.27 13894.46 24778.17 25499.08 13381.40 28994.08 18096.98 183
DELS-MVS96.61 4596.38 4797.30 5697.79 11493.19 7095.96 22698.18 4695.23 1295.87 8097.65 8991.45 5399.70 4295.87 4399.44 4199.00 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet86.66 1892.24 17691.74 16893.73 21797.77 11583.69 29392.88 31196.72 21987.91 23093.00 14294.86 22678.51 24999.05 13786.53 23297.45 12198.47 126
test_yl94.78 9794.23 9896.43 9197.74 11691.22 12596.85 15597.10 18691.23 13995.71 8696.93 12484.30 14799.31 11093.10 11295.12 16598.75 104
DCV-MVSNet94.78 9794.23 9896.43 9197.74 11691.22 12596.85 15597.10 18691.23 13995.71 8696.93 12484.30 14799.31 11093.10 11295.12 16598.75 104
WTY-MVS94.71 9994.02 10096.79 7397.71 11892.05 10096.59 18297.35 16890.61 15894.64 10896.93 12486.41 12199.39 10491.20 15094.71 17598.94 90
UA-Net95.95 6495.53 6397.20 6597.67 11992.98 7697.65 7998.13 5494.81 2896.61 5198.35 3488.87 8599.51 8990.36 15897.35 12499.11 74
IS-MVSNet94.90 9294.52 9296.05 11497.67 11990.56 15098.44 1696.22 24593.21 7193.99 11997.74 8285.55 13398.45 18489.98 16197.86 10899.14 69
PAPR94.18 10693.42 12096.48 8797.64 12191.42 12195.55 24297.71 12288.99 19492.34 15695.82 18389.19 8199.11 12786.14 24097.38 12298.90 94
CANet96.39 5296.02 5597.50 4997.62 12293.38 6597.02 13897.96 9695.42 794.86 10597.81 7787.38 10999.82 2496.88 1199.20 6599.29 58
thres20092.23 17791.39 17894.75 17597.61 12389.03 19996.60 18195.09 28692.08 11293.28 13794.00 27078.39 25299.04 13981.26 29394.18 17996.19 204
Vis-MVSNet (Re-imp)94.15 10793.88 10294.95 16597.61 12387.92 22598.10 3895.80 25792.22 10493.02 14197.45 10484.53 14597.91 24788.24 19897.97 10699.02 79
canonicalmvs96.02 6195.45 6797.75 3697.59 12595.15 2098.28 2597.60 13094.52 3796.27 6696.12 17087.65 10299.18 12096.20 3694.82 17198.91 93
LS3D93.57 12992.61 14096.47 8897.59 12591.61 11197.67 7697.72 11885.17 27790.29 19498.34 3784.60 14399.73 3183.85 27298.27 9898.06 150
alignmvs95.87 6695.23 7497.78 3297.56 12795.19 1797.86 5497.17 17994.39 4096.47 5996.40 15985.89 12899.20 11796.21 3595.11 16798.95 89
EPP-MVSNet95.22 8295.04 7995.76 12497.49 12889.56 17498.67 597.00 19990.69 15194.24 11597.62 9489.79 8098.81 15593.39 10896.49 14498.92 92
PS-MVSNAJ95.37 7695.33 7295.49 14397.35 12990.66 14995.31 25397.48 14193.85 5196.51 5695.70 19488.65 8999.65 5294.80 8098.27 9896.17 205
CS-MVS95.80 6795.65 6296.24 10797.32 13091.43 12098.10 3897.91 9993.38 6595.16 10294.57 24090.21 7498.98 14295.53 6098.67 8998.30 141
ab-mvs93.57 12992.55 14296.64 7597.28 13191.96 10595.40 24897.45 15289.81 17793.22 14096.28 16479.62 23299.46 9590.74 15393.11 19298.50 121
xiu_mvs_v2_base95.32 7895.29 7395.40 14897.22 13290.50 15295.44 24797.44 15693.70 5796.46 6096.18 16788.59 9299.53 8494.79 8297.81 11096.17 205
BH-untuned92.94 15092.62 13993.92 21197.22 13286.16 26396.40 19496.25 24490.06 17089.79 21396.17 16983.19 16198.35 19087.19 22597.27 12797.24 180
baseline192.82 15791.90 16295.55 13997.20 13490.77 14697.19 12694.58 30492.20 10692.36 15496.34 16284.16 15098.21 19889.20 18583.90 30597.68 167
Vis-MVSNetpermissive95.23 8194.81 8296.51 8597.18 13591.58 11498.26 2798.12 5694.38 4194.90 10498.15 5582.28 18698.92 14691.45 14598.58 9399.01 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.02 6195.89 5896.40 9397.16 13692.44 8997.47 9797.77 11194.55 3696.48 5894.51 24291.23 5898.92 14695.65 5198.19 10097.82 162
BH-RMVSNet92.72 16091.97 16094.97 16397.16 13687.99 22496.15 21695.60 26390.62 15791.87 16597.15 11778.41 25198.57 17783.16 27497.60 11598.36 138
MSDG91.42 20390.24 22294.96 16497.15 13888.91 20193.69 29696.32 24085.72 27186.93 28296.47 15480.24 21998.98 14280.57 29595.05 16896.98 183
tttt051792.96 14892.33 15094.87 16897.11 13987.16 24297.97 4892.09 32990.63 15693.88 12397.01 12376.50 26799.06 13690.29 16095.45 16098.38 136
HY-MVS89.66 993.87 11892.95 12896.63 7797.10 14092.49 8895.64 24096.64 22889.05 19293.00 14295.79 18785.77 13199.45 9789.16 18794.35 17797.96 151
thisisatest053093.03 14592.21 15395.49 14397.07 14189.11 19897.49 9692.19 32890.16 16894.09 11796.41 15876.43 27099.05 13790.38 15795.68 15898.31 140
XVG-OURS93.72 12493.35 12194.80 17297.07 14188.61 20794.79 26497.46 14691.97 11693.99 11997.86 7281.74 19798.88 15192.64 11892.67 19896.92 187
sss94.51 10193.80 10496.64 7597.07 14191.97 10496.32 20398.06 7288.94 19794.50 11096.78 13184.60 14399.27 11391.90 13196.02 14898.68 112
EIA-MVS95.53 7495.47 6695.71 13097.06 14489.63 17097.82 5997.87 10493.57 5993.92 12295.04 21990.61 6998.95 14494.62 8498.68 8898.54 116
XVG-OURS-SEG-HR93.86 11993.55 11194.81 17197.06 14488.53 20995.28 25497.45 15291.68 12194.08 11897.68 8682.41 18498.90 14993.84 9892.47 20096.98 183
1112_ss93.37 13392.42 14896.21 10897.05 14690.99 13696.31 20496.72 21986.87 25789.83 21296.69 13886.51 11999.14 12588.12 20093.67 18698.50 121
Test_1112_low_res92.84 15691.84 16495.85 12297.04 14789.97 16595.53 24496.64 22885.38 27389.65 21895.18 21485.86 12999.10 12887.70 20993.58 19198.49 123
BH-w/o92.14 18191.75 16693.31 23896.99 14885.73 26795.67 23795.69 25988.73 20889.26 23294.82 22982.97 17098.07 21985.26 25596.32 14796.13 209
3Dnovator+91.43 495.40 7594.48 9498.16 1196.90 14995.34 1398.48 1597.87 10494.65 3588.53 24898.02 6283.69 15599.71 3793.18 11198.96 8099.44 45
UGNet94.04 11493.28 12396.31 10096.85 15091.19 13097.88 5397.68 12394.40 3993.00 14296.18 16773.39 29099.61 6091.72 13698.46 9498.13 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet93.05 14492.07 15596.02 11596.84 15190.39 15798.08 4195.85 25586.22 26595.79 8498.46 2267.59 31699.19 11894.92 7494.85 16998.47 126
RPSCF90.75 23590.86 19690.42 30496.84 15176.29 33295.61 24196.34 23983.89 29391.38 17197.87 7076.45 26898.78 15787.16 22792.23 20396.20 203
MVS_Test94.89 9394.62 8795.68 13196.83 15389.55 17596.70 16997.17 17991.17 14195.60 9396.11 17287.87 9998.76 16093.01 11697.17 13198.72 108
LCM-MVSNet-Re92.50 16292.52 14592.44 26396.82 15481.89 30596.92 15093.71 31892.41 10184.30 30394.60 23985.08 13897.03 30291.51 14297.36 12398.40 134
baseline95.58 7295.42 6996.08 11196.78 15590.41 15697.16 12997.45 15293.69 5895.65 9297.85 7387.29 11098.68 16795.66 4897.25 12899.13 70
Fast-Effi-MVS+93.46 13192.75 13495.59 13696.77 15690.03 15996.81 16197.13 18288.19 22091.30 17694.27 25886.21 12498.63 17187.66 21496.46 14698.12 146
QAPM93.45 13292.27 15296.98 7196.77 15692.62 8498.39 1998.12 5684.50 28788.27 25497.77 8082.39 18599.81 2585.40 25398.81 8498.51 120
casdiffmvs95.64 7095.49 6596.08 11196.76 15890.45 15497.29 11597.44 15694.00 4795.46 9897.98 6587.52 10698.73 16295.64 5297.33 12599.08 76
CHOSEN 280x42093.12 14192.72 13694.34 18996.71 15987.27 23690.29 32797.72 11886.61 26091.34 17395.29 21084.29 14998.41 18593.25 11098.94 8197.35 179
Effi-MVS+94.93 9194.45 9596.36 9896.61 16091.47 11796.41 19197.41 16191.02 14694.50 11095.92 17787.53 10598.78 15793.89 9696.81 13598.84 101
thisisatest051592.29 17391.30 18395.25 15196.60 16188.90 20294.36 27792.32 32787.92 22993.43 13394.57 24077.28 26499.00 14089.42 17695.86 15397.86 158
PCF-MVS89.48 1191.56 19689.95 23496.36 9896.60 16192.52 8792.51 31697.26 17479.41 32388.90 23796.56 15084.04 15299.55 7977.01 31497.30 12697.01 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v1_base_debu95.01 8694.76 8395.75 12696.58 16391.71 10796.25 20997.35 16892.99 8096.70 4596.63 14582.67 17699.44 9896.22 3197.46 11796.11 210
xiu_mvs_v1_base95.01 8694.76 8395.75 12696.58 16391.71 10796.25 20997.35 16892.99 8096.70 4596.63 14582.67 17699.44 9896.22 3197.46 11796.11 210
xiu_mvs_v1_base_debi95.01 8694.76 8395.75 12696.58 16391.71 10796.25 20997.35 16892.99 8096.70 4596.63 14582.67 17699.44 9896.22 3197.46 11796.11 210
MVSTER93.20 13992.81 13194.37 18796.56 16689.59 17397.06 13497.12 18391.24 13891.30 17695.96 17582.02 19198.05 22293.48 10490.55 23295.47 236
3Dnovator91.36 595.19 8494.44 9697.44 5196.56 16693.36 6798.65 698.36 1694.12 4589.25 23398.06 5982.20 18899.77 2893.41 10799.32 5299.18 65
FMVSNet391.78 18890.69 20595.03 15996.53 16892.27 9397.02 13896.93 20389.79 17889.35 22794.65 23777.01 26597.47 28486.12 24188.82 24795.35 248
GBi-Net91.35 20890.27 22094.59 17796.51 16991.18 13197.50 9296.93 20388.82 20389.35 22794.51 24273.87 28497.29 29686.12 24188.82 24795.31 250
test191.35 20890.27 22094.59 17796.51 16991.18 13197.50 9296.93 20388.82 20389.35 22794.51 24273.87 28497.29 29686.12 24188.82 24795.31 250
FMVSNet291.31 21190.08 22994.99 16096.51 16992.21 9497.41 10096.95 20188.82 20388.62 24594.75 23273.87 28497.42 28985.20 25688.55 25395.35 248
ACMH+87.92 1490.20 25089.18 25593.25 24096.48 17286.45 25696.99 14396.68 22588.83 20284.79 30096.22 16670.16 30698.53 17984.42 26688.04 25594.77 286
CANet_DTU94.37 10293.65 10996.55 8196.46 17392.13 9896.21 21396.67 22794.38 4193.53 13097.03 12279.34 23599.71 3790.76 15298.45 9597.82 162
mvs_anonymous93.82 12093.74 10594.06 19896.44 17485.41 27295.81 23397.05 19389.85 17590.09 20596.36 16187.44 10897.75 26093.97 9296.69 14099.02 79
diffmvs95.25 8095.13 7795.63 13396.43 17589.34 18695.99 22597.35 16892.83 8996.31 6497.37 10786.44 12098.67 16896.26 2897.19 13098.87 98
ET-MVSNet_ETH3D91.49 20090.11 22895.63 13396.40 17691.57 11595.34 25093.48 32090.60 16075.58 33195.49 20580.08 22296.79 31194.25 8789.76 24198.52 118
TR-MVS91.48 20190.59 20894.16 19596.40 17687.33 23495.67 23795.34 27587.68 24091.46 17095.52 20476.77 26698.35 19082.85 27893.61 18996.79 192
ACMP89.59 1092.62 16192.14 15494.05 19996.40 17688.20 21897.36 10797.25 17691.52 12488.30 25296.64 14178.46 25098.72 16591.86 13491.48 21795.23 257
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer95.37 7695.16 7695.99 11796.34 17991.21 12798.22 3197.57 13391.42 12996.22 6797.32 10886.20 12597.92 24494.07 9099.05 7698.85 99
lupinMVS94.99 9094.56 8996.29 10396.34 17991.21 12795.83 23296.27 24288.93 19896.22 6796.88 12986.20 12598.85 15295.27 6399.05 7698.82 102
ACMM89.79 892.96 14892.50 14694.35 18896.30 18188.71 20597.58 8697.36 16791.40 13290.53 18896.65 14079.77 22898.75 16191.24 14991.64 21395.59 232
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS92.29 17391.94 16193.34 23796.25 18286.97 24696.57 18597.05 19390.67 15289.50 22494.80 23086.59 11697.64 26889.91 16386.11 27495.40 244
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP_MVS93.78 12293.43 11894.82 16996.21 18389.99 16297.74 6697.51 13994.85 2391.34 17396.64 14181.32 20298.60 17493.02 11492.23 20395.86 216
plane_prior796.21 18389.98 164
ACMH87.59 1690.53 24289.42 25093.87 21296.21 18387.92 22597.24 11896.94 20288.45 21483.91 30996.27 16571.92 29298.62 17384.43 26589.43 24395.05 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDS-MVSNet94.14 10993.54 11295.93 11896.18 18691.46 11896.33 20297.04 19588.97 19693.56 12796.51 15287.55 10497.89 24889.80 16695.95 15098.44 131
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LTVRE_ROB88.41 1390.99 22589.92 23594.19 19396.18 18689.55 17596.31 20497.09 18887.88 23185.67 29295.91 17878.79 24798.57 17781.50 28789.98 23894.44 295
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test92.94 15092.56 14194.10 19696.16 18888.26 21597.65 7997.46 14691.29 13490.12 20297.16 11579.05 23998.73 16292.25 12291.89 21195.31 250
LGP-MVS_train94.10 19696.16 18888.26 21597.46 14691.29 13490.12 20297.16 11579.05 23998.73 16292.25 12291.89 21195.31 250
TAMVS94.01 11593.46 11695.64 13296.16 18890.45 15496.71 16896.89 20989.27 18793.46 13296.92 12787.29 11097.94 24088.70 19495.74 15598.53 117
plane_prior196.14 191
CLD-MVS92.98 14792.53 14494.32 19096.12 19289.20 19495.28 25497.47 14492.66 9589.90 20995.62 19780.58 21298.40 18692.73 11792.40 20195.38 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior696.10 19390.00 16081.32 202
cl-mvsnet291.21 21590.56 21093.14 24596.09 19486.80 24894.41 27596.58 23487.80 23488.58 24793.99 27180.85 21097.62 27189.87 16586.93 26594.99 264
Effi-MVS+-dtu93.08 14293.21 12492.68 26096.02 19583.25 29697.14 13296.72 21993.85 5191.20 18393.44 28983.08 16598.30 19391.69 13995.73 15696.50 198
mvs-test193.63 12693.69 10793.46 23296.02 19584.61 28297.24 11896.72 21993.85 5192.30 15795.76 18983.08 16598.89 15091.69 13996.54 14396.87 189
NP-MVS95.99 19789.81 16995.87 179
ADS-MVSNet289.45 26188.59 26292.03 27295.86 19882.26 30490.93 32394.32 31183.23 30191.28 17991.81 31379.01 24395.99 31879.52 30091.39 21997.84 159
ADS-MVSNet89.89 25688.68 26193.53 22895.86 19884.89 27990.93 32395.07 28783.23 30191.28 17991.81 31379.01 24397.85 25079.52 30091.39 21997.84 159
HQP-NCC95.86 19896.65 17493.55 6090.14 196
ACMP_Plane95.86 19896.65 17493.55 6090.14 196
HQP-MVS93.19 14092.74 13594.54 18295.86 19889.33 18796.65 17497.39 16293.55 6090.14 19695.87 17980.95 20598.50 18192.13 12692.10 20895.78 223
EI-MVSNet93.03 14592.88 13093.48 23095.77 20386.98 24596.44 18797.12 18390.66 15491.30 17697.64 9286.56 11798.05 22289.91 16390.55 23295.41 240
CVMVSNet91.23 21491.75 16689.67 31095.77 20374.69 33496.44 18794.88 29685.81 26992.18 15997.64 9279.07 23895.58 32588.06 20195.86 15398.74 106
RRT_test8_iter0591.19 21990.78 20192.41 26595.76 20583.14 29797.32 11197.46 14691.37 13389.07 23695.57 19970.33 30398.21 19893.56 10186.62 27095.89 215
FIs94.09 11193.70 10695.27 15095.70 20692.03 10198.10 3898.68 793.36 6890.39 19296.70 13687.63 10397.94 24092.25 12290.50 23495.84 219
VPA-MVSNet93.24 13792.48 14795.51 14195.70 20692.39 9097.86 5498.66 992.30 10392.09 16295.37 20880.49 21498.40 18693.95 9385.86 27595.75 227
SCA91.84 18791.18 19093.83 21395.59 20884.95 27894.72 26595.58 26590.82 14792.25 15893.69 28075.80 27398.10 21186.20 23895.98 14998.45 128
cl_fuxian91.38 20590.89 19492.88 25395.58 20986.30 25894.68 26696.84 21588.17 22288.83 24294.23 26185.65 13297.47 28489.36 17784.63 29394.89 273
VPNet92.23 17791.31 18294.99 16095.56 21090.96 13897.22 12497.86 10792.96 8690.96 18496.62 14875.06 27898.20 20091.90 13183.65 30795.80 222
miper_ehance_all_eth91.59 19391.13 19192.97 25095.55 21186.57 25594.47 27196.88 21087.77 23688.88 23994.01 26986.22 12397.54 27789.49 17486.93 26594.79 283
IterMVS-SCA-FT90.31 24689.81 24091.82 27895.52 21284.20 28694.30 28096.15 24790.61 15887.39 27294.27 25875.80 27396.44 31487.34 22186.88 26994.82 278
jason94.84 9594.39 9796.18 10995.52 21290.93 14096.09 21896.52 23589.28 18696.01 7797.32 10884.70 14298.77 15995.15 6698.91 8398.85 99
jason: jason.
FC-MVSNet-test93.94 11793.57 11095.04 15895.48 21491.45 11998.12 3798.71 593.37 6690.23 19596.70 13687.66 10197.85 25091.49 14390.39 23595.83 220
IterMVS90.15 25289.67 24691.61 28595.48 21483.72 29094.33 27996.12 24889.99 17187.31 27594.15 26675.78 27596.27 31786.97 22986.89 26894.83 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet189.88 25788.31 26594.59 17795.41 21691.18 13197.50 9296.93 20386.62 25987.41 27194.51 24265.94 32597.29 29683.04 27687.43 26195.31 250
UniMVSNet (Re)93.31 13592.55 14295.61 13595.39 21793.34 6897.39 10498.71 593.14 7690.10 20494.83 22887.71 10098.03 22691.67 14183.99 30195.46 237
MVS-HIRNet82.47 30581.21 30686.26 32095.38 21869.21 34188.96 33589.49 33966.28 33780.79 31874.08 34068.48 31297.39 29171.93 32895.47 15992.18 325
PatchmatchNetpermissive91.91 18591.35 17993.59 22595.38 21884.11 28793.15 30795.39 26989.54 17992.10 16193.68 28282.82 17498.13 20684.81 25995.32 16298.52 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl-mvsnet_90.96 22890.32 21692.89 25295.37 22086.21 26194.46 27396.64 22887.82 23288.15 25894.18 26482.98 16997.54 27787.70 20985.59 27794.92 271
cl-mvsnet190.97 22790.33 21592.88 25395.36 22186.19 26294.46 27396.63 23187.82 23288.18 25794.23 26182.99 16897.53 27987.72 20785.57 27894.93 269
miper_enhance_ethall91.54 19891.01 19293.15 24495.35 22287.07 24493.97 28996.90 20786.79 25889.17 23493.43 29186.55 11897.64 26889.97 16286.93 26594.74 287
UniMVSNet_NR-MVSNet93.37 13392.67 13795.47 14695.34 22392.83 7897.17 12898.58 1092.98 8590.13 20095.80 18488.37 9497.85 25091.71 13783.93 30295.73 229
ITE_SJBPF92.43 26495.34 22385.37 27395.92 25291.47 12687.75 26696.39 16071.00 29997.96 23782.36 28389.86 24093.97 307
OpenMVScopyleft89.19 1292.86 15491.68 16996.40 9395.34 22392.73 8198.27 2698.12 5684.86 28285.78 29197.75 8178.89 24699.74 3087.50 21998.65 9096.73 193
eth_miper_zixun_eth91.02 22490.59 20892.34 26795.33 22684.35 28394.10 28696.90 20788.56 21288.84 24194.33 25384.08 15197.60 27388.77 19384.37 29895.06 262
miper_lstm_enhance90.50 24490.06 23291.83 27795.33 22683.74 28993.86 29196.70 22487.56 24387.79 26493.81 27783.45 15996.92 30887.39 22084.62 29494.82 278
131492.81 15892.03 15795.14 15595.33 22689.52 17896.04 22097.44 15687.72 23986.25 28895.33 20983.84 15398.79 15689.26 18197.05 13397.11 181
PAPM91.52 19990.30 21895.20 15295.30 22989.83 16893.38 30396.85 21486.26 26488.59 24695.80 18484.88 14098.15 20575.67 31895.93 15197.63 168
Fast-Effi-MVS+-dtu92.29 17391.99 15993.21 24395.27 23085.52 27097.03 13596.63 23192.09 11189.11 23595.14 21680.33 21898.08 21687.54 21894.74 17496.03 213
Patchmatch-test89.42 26287.99 26893.70 22095.27 23085.11 27488.98 33494.37 30981.11 31387.10 27893.69 28082.28 18697.50 28274.37 32194.76 17298.48 125
PVSNet_082.17 1985.46 29883.64 30090.92 29595.27 23079.49 32390.55 32695.60 26383.76 29683.00 31289.95 31971.09 29897.97 23382.75 28060.79 34095.31 250
IB-MVS87.33 1789.91 25588.28 26694.79 17395.26 23387.70 23195.12 26193.95 31789.35 18587.03 27992.49 30170.74 30199.19 11889.18 18681.37 31897.49 177
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
nrg03094.05 11393.31 12296.27 10495.22 23494.59 2798.34 2097.46 14692.93 8791.21 18296.64 14187.23 11298.22 19794.99 7385.80 27695.98 214
MDTV_nov1_ep1390.76 20295.22 23480.33 31693.03 31095.28 27688.14 22592.84 14893.83 27481.34 20198.08 21682.86 27794.34 178
MVS91.71 18990.44 21295.51 14195.20 23691.59 11396.04 22097.45 15273.44 33587.36 27395.60 19885.42 13499.10 12885.97 24597.46 11795.83 220
tfpnnormal89.70 26088.40 26493.60 22495.15 23790.10 15897.56 8898.16 5087.28 25086.16 28994.63 23877.57 26298.05 22274.48 31984.59 29592.65 319
tpmrst91.44 20291.32 18191.79 28095.15 23779.20 32693.42 30295.37 27188.55 21393.49 13193.67 28382.49 18298.27 19490.41 15689.34 24497.90 155
WR-MVS92.34 16991.53 17494.77 17495.13 23990.83 14396.40 19497.98 9491.88 11789.29 23095.54 20382.50 18197.80 25589.79 16785.27 28395.69 230
tpm cat188.36 27587.21 27791.81 27995.13 23980.55 31492.58 31595.70 25874.97 33287.45 26991.96 31178.01 25998.17 20480.39 29788.74 25096.72 194
WR-MVS_H92.00 18391.35 17993.95 20695.09 24189.47 17998.04 4498.68 791.46 12788.34 25094.68 23585.86 12997.56 27585.77 24884.24 29994.82 278
CP-MVSNet91.89 18691.24 18693.82 21495.05 24288.57 20897.82 5998.19 4491.70 12088.21 25695.76 18981.96 19297.52 28187.86 20484.65 29295.37 247
DWT-MVSNet_test90.76 23389.89 23693.38 23595.04 24383.70 29295.85 23194.30 31288.19 22090.46 19092.80 29673.61 28898.50 18188.16 19990.58 23197.95 153
test_040286.46 29084.79 29491.45 28895.02 24485.55 26996.29 20694.89 29580.90 31482.21 31393.97 27268.21 31497.29 29662.98 33888.68 25291.51 329
cascas91.20 21690.08 22994.58 18194.97 24589.16 19793.65 29897.59 13279.90 32189.40 22592.92 29575.36 27798.36 18992.14 12594.75 17396.23 202
PS-CasMVS91.55 19790.84 19993.69 22194.96 24688.28 21497.84 5898.24 3491.46 12788.04 26095.80 18479.67 23097.48 28387.02 22884.54 29695.31 250
DU-MVS92.90 15292.04 15695.49 14394.95 24792.83 7897.16 12998.24 3493.02 7990.13 20095.71 19283.47 15797.85 25091.71 13783.93 30295.78 223
NR-MVSNet92.34 16991.27 18595.53 14094.95 24793.05 7397.39 10498.07 6992.65 9684.46 30195.71 19285.00 13997.77 25989.71 16883.52 30895.78 223
RRT_MVS93.21 13892.32 15195.91 11994.92 24994.15 4196.92 15096.86 21391.42 12991.28 17996.43 15679.66 23198.10 21193.29 10990.06 23795.46 237
tpmvs89.83 25989.15 25691.89 27594.92 24980.30 31793.11 30895.46 26886.28 26388.08 25992.65 29880.44 21598.52 18081.47 28889.92 23996.84 190
PMMVS92.86 15492.34 14994.42 18694.92 24986.73 25094.53 27096.38 23884.78 28494.27 11495.12 21883.13 16498.40 18691.47 14496.49 14498.12 146
tpm289.96 25489.21 25492.23 26994.91 25281.25 30893.78 29394.42 30780.62 31891.56 16893.44 28976.44 26997.94 24085.60 25092.08 21097.49 177
TinyColmap86.82 28885.35 29191.21 29194.91 25282.99 29893.94 29094.02 31683.58 29781.56 31594.68 23562.34 33298.13 20675.78 31687.35 26492.52 321
UniMVSNet_ETH3D91.34 21090.22 22594.68 17694.86 25487.86 22897.23 12397.46 14687.99 22789.90 20996.92 12766.35 32198.23 19690.30 15990.99 22697.96 151
CostFormer91.18 22090.70 20492.62 26194.84 25581.76 30694.09 28794.43 30684.15 29092.72 14993.77 27879.43 23498.20 20090.70 15492.18 20697.90 155
MIMVSNet88.50 27486.76 28093.72 21994.84 25587.77 23091.39 32094.05 31486.41 26287.99 26292.59 30063.27 32995.82 32177.44 31092.84 19597.57 175
FMVSNet587.29 28585.79 28791.78 28194.80 25787.28 23595.49 24595.28 27684.09 29183.85 31091.82 31262.95 33094.17 33278.48 30785.34 28293.91 308
TranMVSNet+NR-MVSNet92.50 16291.63 17095.14 15594.76 25892.07 9997.53 9098.11 5992.90 8889.56 22196.12 17083.16 16297.60 27389.30 17983.20 31195.75 227
XXY-MVS92.16 17991.23 18794.95 16594.75 25990.94 13997.47 9797.43 15989.14 19088.90 23796.43 15679.71 22998.24 19589.56 17387.68 25895.67 231
EPMVS90.70 23889.81 24093.37 23694.73 26084.21 28593.67 29788.02 34089.50 18192.38 15393.49 28777.82 26197.78 25786.03 24492.68 19798.11 149
D2MVS91.30 21290.95 19392.35 26694.71 26185.52 27096.18 21598.21 4088.89 19986.60 28593.82 27679.92 22697.95 23989.29 18090.95 22793.56 311
USDC88.94 26587.83 27092.27 26894.66 26284.96 27793.86 29195.90 25387.34 24883.40 31195.56 20167.43 31798.19 20282.64 28289.67 24293.66 310
MVS_030488.79 26987.57 27192.46 26294.65 26386.15 26496.40 19497.17 17986.44 26188.02 26191.71 31556.68 33797.03 30284.47 26492.58 19994.19 303
GA-MVS91.38 20590.31 21794.59 17794.65 26387.62 23294.34 27896.19 24690.73 15090.35 19393.83 27471.84 29397.96 23787.22 22493.61 18998.21 143
OPM-MVS93.28 13692.76 13294.82 16994.63 26590.77 14696.65 17497.18 17793.72 5591.68 16797.26 11179.33 23698.63 17192.13 12692.28 20295.07 261
test-LLR91.42 20391.19 18992.12 27094.59 26680.66 31194.29 28192.98 32391.11 14390.76 18692.37 30379.02 24198.07 21988.81 19196.74 13797.63 168
test-mter90.19 25189.54 24992.12 27094.59 26680.66 31194.29 28192.98 32387.68 24090.76 18692.37 30367.67 31598.07 21988.81 19196.74 13797.63 168
dp88.90 26788.26 26790.81 29794.58 26876.62 33192.85 31294.93 29485.12 27890.07 20793.07 29375.81 27298.12 20980.53 29687.42 26297.71 165
PEN-MVS91.20 21690.44 21293.48 23094.49 26987.91 22797.76 6498.18 4691.29 13487.78 26595.74 19180.35 21797.33 29485.46 25282.96 31295.19 259
gg-mvs-nofinetune87.82 28085.61 28894.44 18494.46 27089.27 19391.21 32284.61 34580.88 31589.89 21174.98 33871.50 29597.53 27985.75 24997.21 12996.51 197
CR-MVSNet90.82 23289.77 24293.95 20694.45 27187.19 24090.23 32895.68 26186.89 25692.40 15192.36 30680.91 20797.05 30081.09 29493.95 18497.60 173
RPMNet88.52 27386.72 28293.95 20694.45 27187.19 24090.23 32894.99 29177.87 33092.40 15187.55 33180.17 22197.05 30068.84 33493.95 18497.60 173
TESTMET0.1,190.06 25389.42 25091.97 27394.41 27380.62 31394.29 28191.97 33187.28 25090.44 19192.47 30268.79 31097.67 26588.50 19796.60 14297.61 172
TransMVSNet (Re)88.94 26587.56 27293.08 24794.35 27488.45 21297.73 6895.23 28087.47 24484.26 30495.29 21079.86 22797.33 29479.44 30474.44 33293.45 314
MS-PatchMatch90.27 24789.77 24291.78 28194.33 27584.72 28195.55 24296.73 21886.17 26686.36 28795.28 21271.28 29797.80 25584.09 26798.14 10392.81 318
baseline291.63 19290.86 19693.94 20994.33 27586.32 25795.92 22891.64 33389.37 18486.94 28194.69 23481.62 19998.69 16688.64 19594.57 17696.81 191
XVG-ACMP-BASELINE90.93 22990.21 22693.09 24694.31 27785.89 26595.33 25197.26 17491.06 14589.38 22695.44 20768.61 31198.60 17489.46 17591.05 22494.79 283
pm-mvs190.72 23789.65 24893.96 20594.29 27889.63 17097.79 6296.82 21689.07 19186.12 29095.48 20678.61 24897.78 25786.97 22981.67 31694.46 294
v891.29 21390.53 21193.57 22794.15 27988.12 22297.34 10897.06 19288.99 19488.32 25194.26 26083.08 16598.01 22887.62 21683.92 30494.57 292
v1091.04 22390.23 22393.49 22994.12 28088.16 22197.32 11197.08 18988.26 21988.29 25394.22 26382.17 18997.97 23386.45 23584.12 30094.33 298
Patchmtry88.64 27287.25 27592.78 25794.09 28186.64 25189.82 33195.68 26180.81 31787.63 26892.36 30680.91 20797.03 30278.86 30685.12 28694.67 289
PatchT88.87 26887.42 27393.22 24294.08 28285.10 27589.51 33294.64 30381.92 30892.36 15488.15 32980.05 22397.01 30572.43 32693.65 18797.54 176
V4291.58 19590.87 19593.73 21794.05 28388.50 21097.32 11196.97 20088.80 20689.71 21494.33 25382.54 18098.05 22289.01 18885.07 28794.64 291
DTE-MVSNet90.56 24189.75 24493.01 24893.95 28487.25 23797.64 8397.65 12690.74 14987.12 27695.68 19579.97 22597.00 30683.33 27381.66 31794.78 285
tpm90.25 24889.74 24591.76 28393.92 28579.73 32293.98 28893.54 31988.28 21891.99 16393.25 29277.51 26397.44 28787.30 22387.94 25698.12 146
PS-MVSNAJss93.74 12393.51 11494.44 18493.91 28689.28 19297.75 6597.56 13692.50 9989.94 20896.54 15188.65 8998.18 20393.83 9990.90 22895.86 216
v114491.37 20790.60 20793.68 22293.89 28788.23 21796.84 15797.03 19788.37 21689.69 21694.39 24982.04 19097.98 23087.80 20685.37 28194.84 275
v2v48291.59 19390.85 19893.80 21593.87 28888.17 22096.94 14996.88 21089.54 17989.53 22294.90 22481.70 19898.02 22789.25 18285.04 28995.20 258
v14890.99 22590.38 21492.81 25693.83 28985.80 26696.78 16496.68 22589.45 18288.75 24493.93 27382.96 17197.82 25487.83 20583.25 30994.80 281
Baseline_NR-MVSNet91.20 21690.62 20692.95 25193.83 28988.03 22397.01 14295.12 28588.42 21589.70 21595.13 21783.47 15797.44 28789.66 17183.24 31093.37 315
EPNet_dtu91.71 18991.28 18492.99 24993.76 29183.71 29196.69 17195.28 27693.15 7587.02 28095.95 17683.37 16097.38 29279.46 30396.84 13497.88 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v119291.07 22190.23 22393.58 22693.70 29287.82 22996.73 16697.07 19087.77 23689.58 21994.32 25580.90 20997.97 23386.52 23385.48 27994.95 265
GG-mvs-BLEND93.62 22393.69 29389.20 19492.39 31883.33 34687.98 26389.84 32171.00 29996.87 30982.08 28595.40 16194.80 281
v14419291.06 22290.28 21993.39 23493.66 29487.23 23996.83 15897.07 19087.43 24589.69 21694.28 25781.48 20098.00 22987.18 22684.92 29194.93 269
v192192090.85 23190.03 23393.29 23993.55 29586.96 24796.74 16597.04 19587.36 24789.52 22394.34 25280.23 22097.97 23386.27 23685.21 28494.94 267
v7n90.76 23389.86 23793.45 23393.54 29687.60 23397.70 7497.37 16588.85 20087.65 26794.08 26881.08 20498.10 21184.68 26183.79 30694.66 290
JIA-IIPM88.26 27787.04 27991.91 27493.52 29781.42 30789.38 33394.38 30880.84 31690.93 18580.74 33679.22 23797.92 24482.76 27991.62 21496.38 201
v124090.70 23889.85 23893.23 24193.51 29886.80 24896.61 17997.02 19887.16 25289.58 21994.31 25679.55 23397.98 23085.52 25185.44 28094.90 272
test_djsdf93.07 14392.76 13294.00 20193.49 29988.70 20698.22 3197.57 13391.42 12990.08 20695.55 20282.85 17397.92 24494.07 9091.58 21595.40 244
SixPastTwentyTwo89.15 26488.54 26390.98 29493.49 29980.28 31896.70 16994.70 30090.78 14884.15 30695.57 19971.78 29497.71 26384.63 26285.07 28794.94 267
mvs_tets92.31 17191.76 16593.94 20993.41 30188.29 21397.63 8497.53 13792.04 11388.76 24396.45 15574.62 28098.09 21593.91 9591.48 21795.45 239
OurMVSNet-221017-090.51 24390.19 22791.44 28993.41 30181.25 30896.98 14596.28 24191.68 12186.55 28696.30 16374.20 28397.98 23088.96 18987.40 26395.09 260
pmmvs490.93 22989.85 23894.17 19493.34 30390.79 14594.60 26796.02 25084.62 28587.45 26995.15 21581.88 19597.45 28687.70 20987.87 25794.27 302
jajsoiax92.42 16691.89 16394.03 20093.33 30488.50 21097.73 6897.53 13792.00 11588.85 24096.50 15375.62 27698.11 21093.88 9791.56 21695.48 234
gm-plane-assit93.22 30578.89 32884.82 28393.52 28698.64 17087.72 207
MVP-Stereo90.74 23690.08 22992.71 25893.19 30688.20 21895.86 23096.27 24286.07 26784.86 29994.76 23177.84 26097.75 26083.88 27198.01 10592.17 326
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet88.72 27188.90 25888.20 31393.15 30774.21 33596.63 17894.22 31385.18 27687.32 27495.97 17476.16 27194.98 32985.27 25486.17 27295.41 240
MDA-MVSNet-bldmvs85.00 29982.95 30291.17 29393.13 30883.33 29594.56 26995.00 28984.57 28665.13 33992.65 29870.45 30295.85 31973.57 32477.49 32594.33 298
K. test v387.64 28286.75 28190.32 30593.02 30979.48 32496.61 17992.08 33090.66 15480.25 32394.09 26767.21 31996.65 31385.96 24680.83 32094.83 276
pmmvs589.86 25888.87 25992.82 25592.86 31086.23 26096.26 20895.39 26984.24 28987.12 27694.51 24274.27 28297.36 29387.61 21787.57 25994.86 274
testgi87.97 27887.21 27790.24 30692.86 31080.76 31096.67 17394.97 29291.74 11985.52 29395.83 18262.66 33194.47 33176.25 31588.36 25495.48 234
EPNet95.20 8394.56 8997.14 6692.80 31292.68 8297.85 5794.87 29996.64 192.46 15097.80 7986.23 12299.65 5293.72 10098.62 9199.10 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
N_pmnet78.73 30878.71 30978.79 32392.80 31246.50 35094.14 28543.71 35378.61 32680.83 31791.66 31674.94 27996.36 31567.24 33584.45 29793.50 312
EG-PatchMatch MVS87.02 28785.44 28991.76 28392.67 31485.00 27696.08 21996.45 23683.41 30079.52 32593.49 28757.10 33697.72 26279.34 30590.87 22992.56 320
Gipumacopyleft67.86 31265.41 31475.18 32692.66 31573.45 33666.50 34594.52 30553.33 34257.80 34266.07 34230.81 34589.20 34048.15 34278.88 32462.90 342
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp92.16 17991.55 17393.97 20492.58 31689.55 17597.51 9197.42 16089.42 18388.40 24994.84 22780.66 21197.88 24991.87 13391.28 22194.48 293
test0.0.03 189.37 26388.70 26091.41 29092.47 31785.63 26895.22 25992.70 32591.11 14386.91 28393.65 28479.02 24193.19 33778.00 30989.18 24595.41 240
our_test_388.78 27087.98 26991.20 29292.45 31882.53 30093.61 30095.69 25985.77 27084.88 29893.71 27979.99 22496.78 31279.47 30286.24 27194.28 301
ppachtmachnet_test88.35 27687.29 27491.53 28692.45 31883.57 29493.75 29495.97 25184.28 28885.32 29794.18 26479.00 24596.93 30775.71 31784.99 29094.10 304
YYNet185.87 29584.23 29890.78 30092.38 32082.46 30293.17 30595.14 28482.12 30767.69 33592.36 30678.16 25695.50 32777.31 31279.73 32294.39 296
MDA-MVSNet_test_wron85.87 29584.23 29890.80 29992.38 32082.57 29993.17 30595.15 28382.15 30667.65 33692.33 30978.20 25395.51 32677.33 31179.74 32194.31 300
LF4IMVS87.94 27987.25 27589.98 30892.38 32080.05 32194.38 27695.25 27987.59 24284.34 30294.74 23364.31 32897.66 26784.83 25887.45 26092.23 324
lessismore_v090.45 30391.96 32379.09 32787.19 34380.32 32294.39 24966.31 32297.55 27684.00 26976.84 32794.70 288
pmmvs687.81 28186.19 28492.69 25991.32 32486.30 25897.34 10896.41 23780.59 31984.05 30894.37 25167.37 31897.67 26584.75 26079.51 32394.09 306
Anonymous2023120687.09 28686.14 28589.93 30991.22 32580.35 31596.11 21795.35 27283.57 29884.16 30593.02 29473.54 28995.61 32372.16 32786.14 27393.84 309
DeepMVS_CXcopyleft74.68 32790.84 32664.34 34581.61 34865.34 33867.47 33788.01 33048.60 34280.13 34562.33 33973.68 33479.58 339
test20.0386.14 29385.40 29088.35 31190.12 32780.06 32095.90 22995.20 28188.59 20981.29 31693.62 28571.43 29692.65 33871.26 33181.17 31992.34 323
OpenMVS_ROBcopyleft81.14 2084.42 30182.28 30390.83 29690.06 32884.05 28895.73 23694.04 31573.89 33480.17 32491.53 31759.15 33497.64 26866.92 33689.05 24690.80 332
UnsupCasMVSNet_eth85.99 29484.45 29690.62 30189.97 32982.40 30393.62 29997.37 16589.86 17378.59 32892.37 30365.25 32795.35 32882.27 28470.75 33594.10 304
DSMNet-mixed86.34 29186.12 28687.00 31889.88 33070.43 33894.93 26390.08 33877.97 32985.42 29692.78 29774.44 28193.96 33374.43 32095.14 16496.62 195
new_pmnet82.89 30481.12 30788.18 31489.63 33180.18 31991.77 31992.57 32676.79 33175.56 33288.23 32861.22 33394.48 33071.43 32982.92 31389.87 334
MIMVSNet184.93 30083.05 30190.56 30289.56 33284.84 28095.40 24895.35 27283.91 29280.38 32192.21 31057.23 33593.34 33670.69 33382.75 31593.50 312
CMPMVSbinary62.92 2185.62 29784.92 29387.74 31589.14 33373.12 33794.17 28496.80 21773.98 33373.65 33394.93 22266.36 32097.61 27283.95 27091.28 22192.48 322
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Patchmatch-RL test87.38 28386.24 28390.81 29788.74 33478.40 32988.12 33693.17 32287.11 25382.17 31489.29 32381.95 19395.60 32488.64 19577.02 32698.41 133
pmmvs-eth3d86.22 29284.45 29691.53 28688.34 33587.25 23794.47 27195.01 28883.47 29979.51 32689.61 32269.75 30895.71 32283.13 27576.73 32891.64 327
UnsupCasMVSNet_bld82.13 30679.46 30890.14 30788.00 33682.47 30190.89 32596.62 23378.94 32575.61 33084.40 33456.63 33896.31 31677.30 31366.77 33991.63 328
PM-MVS83.48 30281.86 30588.31 31287.83 33777.59 33093.43 30191.75 33286.91 25580.63 31989.91 32044.42 34395.84 32085.17 25776.73 32891.50 330
testing_287.33 28485.03 29294.22 19287.77 33889.32 18994.97 26297.11 18589.22 18871.64 33488.73 32455.16 33997.94 24091.95 13088.73 25195.41 240
new-patchmatchnet83.18 30381.87 30487.11 31786.88 33975.99 33393.70 29595.18 28285.02 28077.30 32988.40 32665.99 32493.88 33474.19 32370.18 33691.47 331
ambc86.56 31983.60 34070.00 34085.69 33894.97 29280.60 32088.45 32537.42 34496.84 31082.69 28175.44 33092.86 317
pmmvs379.97 30777.50 31087.39 31682.80 34179.38 32592.70 31490.75 33770.69 33678.66 32787.47 33251.34 34193.40 33573.39 32569.65 33789.38 335
TDRefinement86.53 28984.76 29591.85 27682.23 34284.25 28496.38 19795.35 27284.97 28184.09 30794.94 22165.76 32698.34 19284.60 26374.52 33192.97 316
PMMVS270.19 31166.92 31380.01 32276.35 34365.67 34386.22 33787.58 34264.83 33962.38 34080.29 33726.78 34988.49 34163.79 33754.07 34185.88 336
FPMVS71.27 31069.85 31175.50 32574.64 34459.03 34691.30 32191.50 33458.80 34057.92 34188.28 32729.98 34785.53 34353.43 34082.84 31481.95 338
E-PMN53.28 31552.56 31855.43 33074.43 34547.13 34983.63 34176.30 34942.23 34442.59 34562.22 34428.57 34874.40 34631.53 34531.51 34344.78 343
wuyk23d25.11 31924.57 32226.74 33373.98 34639.89 35357.88 3469.80 35412.27 34810.39 3496.97 3517.03 35336.44 35025.43 34717.39 3473.89 348
EMVS52.08 31751.31 31954.39 33172.62 34745.39 35183.84 34075.51 35041.13 34540.77 34659.65 34530.08 34673.60 34728.31 34629.90 34544.18 344
LCM-MVSNet72.55 30969.39 31282.03 32170.81 34865.42 34490.12 33094.36 31055.02 34165.88 33881.72 33524.16 35189.96 33974.32 32268.10 33890.71 333
MVEpermissive50.73 2353.25 31648.81 32066.58 32965.34 34957.50 34772.49 34470.94 35140.15 34639.28 34763.51 3436.89 35473.48 34838.29 34442.38 34268.76 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high63.94 31359.58 31577.02 32461.24 35066.06 34285.66 33987.93 34178.53 32742.94 34471.04 34125.42 35080.71 34452.60 34130.83 34484.28 337
PMVScopyleft53.92 2258.58 31455.40 31668.12 32851.00 35148.64 34878.86 34287.10 34446.77 34335.84 34874.28 3398.76 35286.34 34242.07 34373.91 33369.38 340
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 31853.82 31746.29 33233.73 35245.30 35278.32 34367.24 35218.02 34750.93 34387.05 33352.99 34053.11 34970.76 33225.29 34640.46 345
testmvs13.36 32116.33 3234.48 3355.04 3532.26 35593.18 3043.28 3552.70 3498.24 35021.66 3472.29 3562.19 3517.58 3482.96 3489.00 347
test12313.04 32215.66 3245.18 3344.51 3543.45 35492.50 3171.81 3562.50 3507.58 35120.15 3483.67 3552.18 3527.13 3491.07 3499.90 346
uanet_test0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
cdsmvs_eth3d_5k23.24 32030.99 3210.00 3360.00 3550.00 3560.00 34797.63 1280.00 3510.00 35296.88 12984.38 1460.00 3530.00 3500.00 3500.00 349
pcd_1.5k_mvsjas7.39 3249.85 3260.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 35288.65 890.00 3530.00 3500.00 3500.00 349
sosnet-low-res0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
sosnet0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
uncertanet0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
Regformer0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
ab-mvs-re8.06 32310.74 3250.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 35296.69 1380.00 3570.00 3530.00 3500.00 3500.00 349
uanet0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
test_241102_TWO98.27 2895.13 1598.93 598.89 494.99 799.85 1497.52 299.65 999.74 5
test_0728_THIRD94.78 3098.73 798.87 595.87 299.84 1897.45 599.72 299.77 1
GSMVS98.45 128
test_part10.00 3360.00 3560.00 34798.26 320.00 3570.00 3530.00 3500.00 3500.00 349
sam_mvs182.76 17598.45 128
sam_mvs81.94 194
MTGPAbinary98.08 64
test_post192.81 31316.58 35080.53 21397.68 26486.20 238
test_post17.58 34981.76 19698.08 216
patchmatchnet-post90.45 31882.65 17998.10 211
MTMP97.86 5482.03 347
test9_res94.81 7999.38 4799.45 43
agg_prior293.94 9499.38 4799.50 35
test_prior493.66 5796.42 190
test_prior296.35 19992.80 9196.03 7397.59 9692.01 3995.01 7099.38 47
旧先验295.94 22781.66 31097.34 3098.82 15492.26 120
新几何295.79 234
无先验95.79 23497.87 10483.87 29599.65 5287.68 21298.89 96
原ACMM295.67 237
testdata299.67 4885.96 246
segment_acmp92.89 21
testdata195.26 25893.10 78
plane_prior597.51 13998.60 17493.02 11492.23 20395.86 216
plane_prior496.64 141
plane_prior390.00 16094.46 3891.34 173
plane_prior297.74 6694.85 23
plane_prior89.99 16297.24 11894.06 4692.16 207
n20.00 357
nn0.00 357
door-mid91.06 336
test1197.88 102
door91.13 335
HQP5-MVS89.33 187
BP-MVS92.13 126
HQP4-MVS90.14 19698.50 18195.78 223
HQP3-MVS97.39 16292.10 208
HQP2-MVS80.95 205
MDTV_nov1_ep13_2view70.35 33993.10 30983.88 29493.55 12882.47 18386.25 23798.38 136
ACMMP++_ref90.30 236
ACMMP++91.02 225
Test By Simon88.73 88