region2R | | | 97.07 21 | 96.84 23 | 97.77 34 | 99.46 1 | 93.79 53 | 98.52 10 | 98.24 34 | 93.19 74 | 97.14 37 | 98.34 37 | 91.59 52 | 99.87 7 | 95.46 61 | 99.59 14 | 99.64 10 |
|
MSP-MVS | | | 97.91 1 | 97.81 1 | 98.22 8 | 99.45 2 | 95.36 10 | 98.21 33 | 97.85 108 | 94.92 21 | 98.73 7 | 98.87 5 | 95.08 4 | 99.84 18 | 97.52 2 | 99.67 6 | 99.48 39 |
|
test_0728_SECOND | | | | | 98.51 2 | 99.45 2 | 95.93 3 | 98.21 33 | 98.28 26 | | | | | 99.86 8 | 97.52 2 | 99.67 6 | 99.75 3 |
|
test0726 | | | | | | 99.45 2 | 95.36 10 | 98.31 22 | 98.29 24 | 94.92 21 | 98.99 3 | 98.92 2 | 95.08 4 | | | | |
|
ACMMPR | | | 97.07 21 | 96.84 23 | 97.79 31 | 99.44 5 | 93.88 50 | 98.52 10 | 98.31 22 | 93.21 71 | 97.15 36 | 98.33 40 | 91.35 55 | 99.86 8 | 95.63 53 | 99.59 14 | 99.62 13 |
|
IU-MVS | | | | | | 99.42 6 | 95.39 9 | | 97.94 98 | 90.40 165 | 98.94 4 | | | | 97.41 6 | 99.66 8 | 99.74 5 |
|
test_241102_ONE | | | | | | 99.42 6 | 95.30 15 | | 98.27 28 | 95.09 17 | 99.19 1 | 98.81 7 | 95.54 3 | 99.65 52 | | | |
|
HFP-MVS | | | 97.14 18 | 96.92 19 | 97.83 25 | 99.42 6 | 94.12 43 | 98.52 10 | 98.32 20 | 93.21 71 | 97.18 34 | 98.29 46 | 92.08 37 | 99.83 21 | 95.63 53 | 99.59 14 | 99.54 27 |
|
#test# | | | 97.02 25 | 96.75 30 | 97.83 25 | 99.42 6 | 94.12 43 | 98.15 36 | 98.32 20 | 92.57 98 | 97.18 34 | 98.29 46 | 92.08 37 | 99.83 21 | 95.12 67 | 99.59 14 | 99.54 27 |
|
DVP-MVS | | | 97.59 6 | 97.54 4 | 97.73 37 | 99.40 10 | 93.77 56 | 98.53 9 | 98.29 24 | 95.55 5 | 98.56 11 | 97.81 77 | 93.90 11 | 99.65 52 | 96.62 19 | 99.21 64 | 99.77 1 |
|
mPP-MVS | | | 96.86 34 | 96.60 36 | 97.64 45 | 99.40 10 | 93.44 63 | 98.50 13 | 98.09 63 | 93.27 70 | 95.95 79 | 98.33 40 | 91.04 62 | 99.88 4 | 95.20 64 | 99.57 19 | 99.60 16 |
|
MP-MVS | | | 96.77 39 | 96.45 45 | 97.72 38 | 99.39 12 | 93.80 52 | 98.41 18 | 98.06 72 | 93.37 66 | 95.54 96 | 98.34 37 | 90.59 70 | 99.88 4 | 94.83 77 | 99.54 22 | 99.49 37 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
XVS | | | 97.18 15 | 96.96 17 | 97.81 29 | 99.38 13 | 94.03 48 | 98.59 7 | 98.20 42 | 94.85 23 | 96.59 53 | 98.29 46 | 91.70 48 | 99.80 26 | 95.66 48 | 99.40 44 | 99.62 13 |
|
X-MVStestdata | | | 91.71 189 | 89.67 246 | 97.81 29 | 99.38 13 | 94.03 48 | 98.59 7 | 98.20 42 | 94.85 23 | 96.59 53 | 32.69 346 | 91.70 48 | 99.80 26 | 95.66 48 | 99.40 44 | 99.62 13 |
|
ZNCC-MVS | | | 96.96 29 | 96.67 34 | 97.85 24 | 99.37 15 | 94.12 43 | 98.49 14 | 98.18 46 | 92.64 97 | 96.39 63 | 98.18 54 | 91.61 50 | 99.88 4 | 95.59 58 | 99.55 20 | 99.57 19 |
|
zzz-MVS | | | 97.07 21 | 96.77 29 | 97.97 21 | 99.37 15 | 94.42 30 | 97.15 131 | 98.08 64 | 95.07 18 | 96.11 70 | 98.59 14 | 90.88 66 | 99.90 1 | 96.18 37 | 99.50 31 | 99.58 17 |
|
MTAPA | | | 97.08 20 | 96.78 28 | 97.97 21 | 99.37 15 | 94.42 30 | 97.24 118 | 98.08 64 | 95.07 18 | 96.11 70 | 98.59 14 | 90.88 66 | 99.90 1 | 96.18 37 | 99.50 31 | 99.58 17 |
|
GST-MVS | | | 96.85 35 | 96.52 41 | 97.82 28 | 99.36 18 | 94.14 42 | 98.29 24 | 98.13 54 | 92.72 94 | 96.70 45 | 98.06 59 | 91.35 55 | 99.86 8 | 94.83 77 | 99.28 56 | 99.47 42 |
|
HPM-MVS | | | 96.69 42 | 96.45 45 | 97.40 52 | 99.36 18 | 93.11 72 | 98.87 1 | 98.06 72 | 91.17 141 | 96.40 62 | 97.99 64 | 90.99 63 | 99.58 68 | 95.61 55 | 99.61 13 | 99.49 37 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
PGM-MVS | | | 96.81 37 | 96.53 40 | 97.65 43 | 99.35 20 | 93.53 61 | 97.65 79 | 98.98 1 | 92.22 104 | 97.14 37 | 98.44 24 | 91.17 60 | 99.85 14 | 94.35 86 | 99.46 37 | 99.57 19 |
|
CP-MVS | | | 97.02 25 | 96.81 26 | 97.64 45 | 99.33 21 | 93.54 60 | 98.80 3 | 98.28 26 | 92.99 80 | 96.45 61 | 98.30 45 | 91.90 43 | 99.85 14 | 95.61 55 | 99.68 4 | 99.54 27 |
|
HPM-MVS_fast | | | 96.51 48 | 96.27 49 | 97.22 63 | 99.32 22 | 92.74 80 | 98.74 4 | 98.06 72 | 90.57 161 | 96.77 44 | 98.35 34 | 90.21 74 | 99.53 84 | 94.80 80 | 99.63 11 | 99.38 52 |
|
MCST-MVS | | | 97.18 15 | 96.84 23 | 98.20 9 | 99.30 23 | 95.35 12 | 97.12 133 | 98.07 69 | 93.54 63 | 96.08 72 | 97.69 85 | 93.86 12 | 99.71 37 | 96.50 23 | 99.39 46 | 99.55 25 |
|
test_part2 | | | | | | 99.28 24 | 95.74 6 | | | | 98.10 16 | | | | | | |
|
CPTT-MVS | | | 95.57 73 | 95.19 75 | 96.70 74 | 99.27 25 | 91.48 116 | 98.33 21 | 98.11 59 | 87.79 235 | 95.17 101 | 98.03 61 | 87.09 113 | 99.61 60 | 93.51 103 | 99.42 42 | 99.02 79 |
|
TSAR-MVS + MP. | | | 97.42 7 | 97.33 8 | 97.69 41 | 99.25 26 | 94.24 37 | 98.07 42 | 97.85 108 | 93.72 55 | 98.57 10 | 98.35 34 | 93.69 14 | 99.40 103 | 97.06 7 | 99.46 37 | 99.44 45 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CSCG | | | 96.05 60 | 95.91 57 | 96.46 90 | 99.24 27 | 90.47 153 | 98.30 23 | 98.57 11 | 89.01 193 | 93.97 121 | 97.57 98 | 92.62 27 | 99.76 29 | 94.66 83 | 99.27 58 | 99.15 68 |
|
ACMMP | | | 96.27 55 | 95.93 56 | 97.28 58 | 99.24 27 | 92.62 84 | 98.25 28 | 98.81 3 | 92.99 80 | 94.56 109 | 98.39 31 | 88.96 84 | 99.85 14 | 94.57 85 | 97.63 114 | 99.36 54 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MP-MVS-pluss | | | 96.70 41 | 96.27 49 | 97.98 20 | 99.23 29 | 94.71 25 | 96.96 146 | 98.06 72 | 90.67 152 | 95.55 94 | 98.78 9 | 91.07 61 | 99.86 8 | 96.58 21 | 99.55 20 | 99.38 52 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
DP-MVS Recon | | | 95.68 69 | 95.12 78 | 97.37 53 | 99.19 30 | 94.19 38 | 97.03 135 | 98.08 64 | 88.35 217 | 95.09 103 | 97.65 89 | 89.97 78 | 99.48 93 | 92.08 129 | 98.59 92 | 98.44 131 |
|
DPE-MVS | | | 97.86 2 | 97.65 3 | 98.47 3 | 99.17 31 | 95.78 5 | 97.21 125 | 98.35 19 | 95.16 14 | 98.71 9 | 98.80 8 | 95.05 6 | 99.89 3 | 96.70 18 | 99.73 1 | 99.73 7 |
|
APDe-MVS | | | 97.82 3 | 97.73 2 | 98.08 14 | 99.15 32 | 94.82 24 | 98.81 2 | 98.30 23 | 94.76 31 | 98.30 12 | 98.90 3 | 93.77 13 | 99.68 46 | 97.93 1 | 99.69 3 | 99.75 3 |
|
testtj | | | 96.93 32 | 96.56 39 | 98.05 16 | 99.10 33 | 94.66 26 | 97.78 63 | 98.22 39 | 92.74 93 | 97.59 23 | 98.20 53 | 91.96 42 | 99.86 8 | 94.21 88 | 99.25 60 | 99.63 11 |
|
SR-MVS | | | 97.01 27 | 96.86 21 | 97.47 50 | 99.09 34 | 93.27 69 | 97.98 46 | 98.07 69 | 93.75 54 | 97.45 27 | 98.48 21 | 91.43 54 | 99.59 65 | 96.22 31 | 99.27 58 | 99.54 27 |
|
ACMMP_NAP | | | 97.20 14 | 96.86 21 | 98.23 7 | 99.09 34 | 95.16 19 | 97.60 85 | 98.19 44 | 92.82 90 | 97.93 19 | 98.74 10 | 91.60 51 | 99.86 8 | 96.26 28 | 99.52 24 | 99.67 8 |
|
HPM-MVS++ | | | 97.34 12 | 96.97 16 | 98.47 3 | 99.08 36 | 96.16 2 | 97.55 89 | 97.97 95 | 95.59 4 | 96.61 51 | 97.89 67 | 92.57 29 | 99.84 18 | 95.95 42 | 99.51 28 | 99.40 49 |
|
114514_t | | | 93.95 116 | 93.06 126 | 96.63 77 | 99.07 37 | 91.61 111 | 97.46 99 | 97.96 96 | 77.99 328 | 93.00 142 | 97.57 98 | 86.14 127 | 99.33 108 | 89.22 183 | 99.15 68 | 98.94 90 |
|
SMA-MVS | | | 97.35 11 | 97.03 13 | 98.30 6 | 99.06 38 | 95.42 8 | 97.94 49 | 98.18 46 | 90.57 161 | 98.85 6 | 98.94 1 | 93.33 16 | 99.83 21 | 96.72 17 | 99.68 4 | 99.63 11 |
|
APD-MVS | | | 96.95 30 | 96.60 36 | 98.01 18 | 99.03 39 | 94.93 23 | 97.72 71 | 98.10 61 | 91.50 125 | 98.01 17 | 98.32 42 | 92.33 33 | 99.58 68 | 94.85 75 | 99.51 28 | 99.53 31 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SF-MVS | | | 97.39 10 | 97.13 10 | 98.17 10 | 99.02 40 | 95.28 16 | 98.23 30 | 98.27 28 | 92.37 102 | 98.27 13 | 98.65 12 | 93.33 16 | 99.72 34 | 96.49 24 | 99.52 24 | 99.51 32 |
|
APD-MVS_3200maxsize | | | 96.81 37 | 96.71 32 | 97.12 67 | 99.01 41 | 92.31 91 | 97.98 46 | 98.06 72 | 93.11 77 | 97.44 28 | 98.55 18 | 90.93 64 | 99.55 79 | 96.06 39 | 99.25 60 | 99.51 32 |
|
9.14 | | | | 96.75 30 | | 98.93 42 | | 97.73 68 | 98.23 38 | 91.28 137 | 97.88 21 | 98.44 24 | 93.00 20 | 99.65 52 | 95.76 47 | 99.47 35 | |
|
CDPH-MVS | | | 95.97 63 | 95.38 70 | 97.77 34 | 98.93 42 | 94.44 29 | 96.35 199 | 97.88 102 | 86.98 254 | 96.65 49 | 97.89 67 | 91.99 41 | 99.47 94 | 92.26 120 | 99.46 37 | 99.39 50 |
|
xxxxxxxxxxxxxcwj | | | 97.42 7 | 97.28 9 | 97.83 25 | 98.91 44 | 94.28 33 | 97.02 138 | 98.02 83 | 95.35 8 | 98.27 13 | 98.65 12 | 93.33 16 | 99.72 34 | 96.49 24 | 99.52 24 | 99.51 32 |
|
save fliter | | | | | | 98.91 44 | 94.28 33 | 97.02 138 | 98.02 83 | 95.35 8 | | | | | | | |
|
ETH3 D test6400 | | | 96.16 58 | 95.52 64 | 98.07 15 | 98.90 46 | 95.06 21 | 97.03 135 | 98.21 40 | 88.16 224 | 96.64 50 | 97.70 84 | 91.18 59 | 99.67 48 | 92.44 119 | 99.47 35 | 99.48 39 |
|
ETH3D-3000-0.1 | | | 97.07 21 | 96.71 32 | 98.14 12 | 98.90 46 | 95.33 14 | 97.68 75 | 98.24 34 | 91.57 123 | 97.90 20 | 98.37 32 | 92.61 28 | 99.66 51 | 95.59 58 | 99.51 28 | 99.43 47 |
|
CNVR-MVS | | | 97.68 4 | 97.44 7 | 98.37 5 | 98.90 46 | 95.86 4 | 97.27 116 | 98.08 64 | 95.81 3 | 97.87 22 | 98.31 43 | 94.26 9 | 99.68 46 | 97.02 8 | 99.49 33 | 99.57 19 |
|
abl_6 | | | 96.40 51 | 96.21 51 | 96.98 71 | 98.89 49 | 92.20 96 | 97.89 52 | 98.03 82 | 93.34 69 | 97.22 33 | 98.42 27 | 87.93 98 | 99.72 34 | 95.10 68 | 99.07 75 | 99.02 79 |
|
PAPM_NR | | | 95.01 86 | 94.59 88 | 96.26 105 | 98.89 49 | 90.68 148 | 97.24 118 | 97.73 115 | 91.80 118 | 92.93 147 | 96.62 148 | 89.13 83 | 99.14 125 | 89.21 184 | 97.78 111 | 98.97 86 |
|
OPU-MVS | | | | | 98.55 1 | 98.82 51 | 96.86 1 | 98.25 28 | | | | 98.26 49 | 96.04 1 | 99.24 115 | 95.36 62 | 99.59 14 | 99.56 22 |
|
NCCC | | | 97.30 13 | 97.03 13 | 98.11 13 | 98.77 52 | 95.06 21 | 97.34 108 | 98.04 80 | 95.96 2 | 97.09 41 | 97.88 69 | 93.18 19 | 99.71 37 | 95.84 45 | 99.17 67 | 99.56 22 |
|
DP-MVS | | | 92.76 159 | 91.51 177 | 96.52 82 | 98.77 52 | 90.99 136 | 97.38 106 | 96.08 249 | 82.38 305 | 89.29 230 | 97.87 70 | 83.77 154 | 99.69 43 | 81.37 292 | 96.69 140 | 98.89 96 |
|
MSLP-MVS++ | | | 96.94 31 | 97.06 12 | 96.59 80 | 98.72 54 | 91.86 106 | 97.67 76 | 98.49 12 | 94.66 34 | 97.24 32 | 98.41 30 | 92.31 35 | 98.94 145 | 96.61 20 | 99.46 37 | 98.96 87 |
|
TEST9 | | | | | | 98.70 55 | 94.19 38 | 96.41 191 | 98.02 83 | 88.17 222 | 96.03 73 | 97.56 100 | 92.74 23 | 99.59 65 | | | |
|
train_agg | | | 96.30 54 | 95.83 59 | 97.72 38 | 98.70 55 | 94.19 38 | 96.41 191 | 98.02 83 | 88.58 210 | 96.03 73 | 97.56 100 | 92.73 24 | 99.59 65 | 95.04 69 | 99.37 51 | 99.39 50 |
|
test_8 | | | | | | 98.67 57 | 94.06 47 | 96.37 198 | 98.01 87 | 88.58 210 | 95.98 78 | 97.55 102 | 92.73 24 | 99.58 68 | | | |
|
agg_prior1 | | | 96.22 57 | 95.77 60 | 97.56 47 | 98.67 57 | 93.79 53 | 96.28 207 | 98.00 89 | 88.76 207 | 95.68 88 | 97.55 102 | 92.70 26 | 99.57 76 | 95.01 70 | 99.32 52 | 99.32 56 |
|
agg_prior | | | | | | 98.67 57 | 93.79 53 | | 98.00 89 | | 95.68 88 | | | 99.57 76 | | | |
|
test_prior3 | | | 96.46 50 | 96.20 52 | 97.23 61 | 98.67 57 | 92.99 74 | 96.35 199 | 98.00 89 | 92.80 91 | 96.03 73 | 97.59 96 | 92.01 39 | 99.41 101 | 95.01 70 | 99.38 47 | 99.29 58 |
|
test_prior | | | | | 97.23 61 | 98.67 57 | 92.99 74 | | 98.00 89 | | | | | 99.41 101 | | | 99.29 58 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 32 | 96.64 35 | 97.78 32 | 98.64 62 | 94.30 32 | 97.41 100 | 98.04 80 | 94.81 28 | 96.59 53 | 98.37 32 | 91.24 57 | 99.64 59 | 95.16 65 | 99.52 24 | 99.42 48 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
新几何1 | | | | | 97.32 55 | 98.60 63 | 93.59 59 | | 97.75 113 | 81.58 311 | 95.75 85 | 97.85 73 | 90.04 77 | 99.67 48 | 86.50 234 | 99.13 70 | 98.69 111 |
|
原ACMM1 | | | | | 96.38 96 | 98.59 64 | 91.09 135 | | 97.89 100 | 87.41 246 | 95.22 100 | 97.68 86 | 90.25 72 | 99.54 81 | 87.95 203 | 99.12 73 | 98.49 123 |
|
AdaColmap | | | 94.34 103 | 93.68 108 | 96.31 100 | 98.59 64 | 91.68 110 | 96.59 182 | 97.81 110 | 89.87 172 | 92.15 160 | 97.06 121 | 83.62 156 | 99.54 81 | 89.34 178 | 98.07 104 | 97.70 166 |
|
PLC | | 91.00 6 | 94.11 110 | 93.43 118 | 96.13 110 | 98.58 66 | 91.15 134 | 96.69 171 | 97.39 162 | 87.29 249 | 91.37 172 | 96.71 134 | 88.39 93 | 99.52 88 | 87.33 222 | 97.13 132 | 97.73 164 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
1121 | | | 94.71 99 | 93.83 103 | 97.34 54 | 98.57 67 | 93.64 58 | 96.04 220 | 97.73 115 | 81.56 312 | 95.68 88 | 97.85 73 | 90.23 73 | 99.65 52 | 87.68 212 | 99.12 73 | 98.73 107 |
|
SD-MVS | | | 97.41 9 | 97.53 5 | 97.06 68 | 98.57 67 | 94.46 28 | 97.92 51 | 98.14 53 | 94.82 27 | 99.01 2 | 98.55 18 | 94.18 10 | 97.41 290 | 96.94 9 | 99.64 10 | 99.32 56 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test12 | | | | | 97.65 43 | 98.46 69 | 94.26 35 | | 97.66 124 | | 95.52 97 | | 90.89 65 | 99.46 95 | | 99.25 60 | 99.22 63 |
|
MVS_111021_HR | | | 96.68 44 | 96.58 38 | 96.99 70 | 98.46 69 | 92.31 91 | 96.20 214 | 98.90 2 | 94.30 43 | 95.86 81 | 97.74 82 | 92.33 33 | 99.38 106 | 96.04 40 | 99.42 42 | 99.28 61 |
|
OMC-MVS | | | 95.09 85 | 94.70 86 | 96.25 106 | 98.46 69 | 91.28 123 | 96.43 189 | 97.57 133 | 92.04 113 | 94.77 107 | 97.96 66 | 87.01 114 | 99.09 131 | 91.31 147 | 96.77 136 | 98.36 138 |
|
MG-MVS | | | 95.61 71 | 95.38 70 | 96.31 100 | 98.42 72 | 90.53 151 | 96.04 220 | 97.48 141 | 93.47 64 | 95.67 91 | 98.10 56 | 89.17 82 | 99.25 114 | 91.27 148 | 98.77 85 | 99.13 70 |
|
PHI-MVS | | | 96.77 39 | 96.46 44 | 97.71 40 | 98.40 73 | 94.07 46 | 98.21 33 | 98.45 15 | 89.86 173 | 97.11 40 | 98.01 63 | 92.52 31 | 99.69 43 | 96.03 41 | 99.53 23 | 99.36 54 |
|
F-COLMAP | | | 93.58 128 | 92.98 127 | 95.37 149 | 98.40 73 | 88.98 200 | 97.18 127 | 97.29 173 | 87.75 238 | 90.49 189 | 97.10 119 | 85.21 136 | 99.50 91 | 86.70 231 | 96.72 139 | 97.63 168 |
|
SteuartSystems-ACMMP | | | 97.62 5 | 97.53 5 | 97.87 23 | 98.39 75 | 94.25 36 | 98.43 17 | 98.27 28 | 95.34 10 | 98.11 15 | 98.56 16 | 94.53 8 | 99.71 37 | 96.57 22 | 99.62 12 | 99.65 9 |
Skip Steuart: Steuart Systems R&D Blog. |
旧先验1 | | | | | | 98.38 76 | 93.38 65 | | 97.75 113 | | | 98.09 57 | 92.30 36 | | | 99.01 78 | 99.16 66 |
|
CNLPA | | | 94.28 104 | 93.53 113 | 96.52 82 | 98.38 76 | 92.55 86 | 96.59 182 | 96.88 210 | 90.13 169 | 91.91 164 | 97.24 112 | 85.21 136 | 99.09 131 | 87.64 215 | 97.83 109 | 97.92 154 |
|
Regformer-3 | | | 96.85 35 | 96.80 27 | 97.01 69 | 98.34 78 | 92.02 102 | 96.96 146 | 97.76 112 | 95.01 20 | 97.08 42 | 98.42 27 | 91.71 47 | 99.54 81 | 96.80 13 | 99.13 70 | 99.48 39 |
|
Regformer-4 | | | 96.97 28 | 96.87 20 | 97.25 60 | 98.34 78 | 92.66 83 | 96.96 146 | 98.01 87 | 95.12 16 | 97.14 37 | 98.42 27 | 91.82 44 | 99.61 60 | 96.90 10 | 99.13 70 | 99.50 35 |
|
TAPA-MVS | | 90.10 7 | 92.30 172 | 91.22 188 | 95.56 137 | 98.33 80 | 89.60 172 | 96.79 162 | 97.65 126 | 81.83 309 | 91.52 169 | 97.23 113 | 87.94 97 | 98.91 148 | 71.31 330 | 98.37 96 | 98.17 144 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
Regformer-1 | | | 97.10 19 | 96.96 17 | 97.54 48 | 98.32 81 | 93.48 62 | 96.83 158 | 97.99 93 | 95.20 13 | 97.46 26 | 98.25 50 | 92.48 32 | 99.58 68 | 96.79 15 | 99.29 54 | 99.55 25 |
|
Regformer-2 | | | 97.16 17 | 96.99 15 | 97.67 42 | 98.32 81 | 93.84 51 | 96.83 158 | 98.10 61 | 95.24 11 | 97.49 25 | 98.25 50 | 92.57 29 | 99.61 60 | 96.80 13 | 99.29 54 | 99.56 22 |
|
TSAR-MVS + GP. | | | 96.69 42 | 96.49 42 | 97.27 59 | 98.31 83 | 93.39 64 | 96.79 162 | 96.72 219 | 94.17 44 | 97.44 28 | 97.66 88 | 92.76 22 | 99.33 108 | 96.86 12 | 97.76 113 | 99.08 76 |
|
CHOSEN 1792x2688 | | | 94.15 107 | 93.51 114 | 96.06 113 | 98.27 84 | 89.38 184 | 95.18 260 | 98.48 14 | 85.60 272 | 93.76 125 | 97.11 118 | 83.15 163 | 99.61 60 | 91.33 146 | 98.72 87 | 99.19 64 |
|
PVSNet_BlendedMVS | | | 94.06 112 | 93.92 101 | 94.47 183 | 98.27 84 | 89.46 181 | 96.73 166 | 98.36 16 | 90.17 167 | 94.36 112 | 95.24 213 | 88.02 95 | 99.58 68 | 93.44 105 | 90.72 230 | 94.36 297 |
|
PVSNet_Blended | | | 94.87 94 | 94.56 89 | 95.81 123 | 98.27 84 | 89.46 181 | 95.47 246 | 98.36 16 | 88.84 201 | 94.36 112 | 96.09 173 | 88.02 95 | 99.58 68 | 93.44 105 | 98.18 101 | 98.40 134 |
|
ETH3D cwj APD-0.16 | | | 96.56 47 | 96.06 54 | 98.05 16 | 98.26 87 | 95.19 17 | 96.99 143 | 98.05 79 | 89.85 175 | 97.26 31 | 98.22 52 | 91.80 45 | 99.69 43 | 94.84 76 | 99.28 56 | 99.27 62 |
|
Anonymous20231211 | | | 90.63 240 | 89.42 250 | 94.27 191 | 98.24 88 | 89.19 196 | 98.05 43 | 97.89 100 | 79.95 320 | 88.25 255 | 94.96 220 | 72.56 291 | 98.13 206 | 89.70 169 | 85.14 285 | 95.49 233 |
|
EI-MVSNet-Vis-set | | | 96.51 48 | 96.47 43 | 96.63 77 | 98.24 88 | 91.20 129 | 96.89 153 | 97.73 115 | 94.74 32 | 96.49 57 | 98.49 20 | 90.88 66 | 99.58 68 | 96.44 26 | 98.32 97 | 99.13 70 |
|
test222 | | | | | | 98.24 88 | 92.21 94 | 95.33 251 | 97.60 130 | 79.22 324 | 95.25 99 | 97.84 76 | 88.80 87 | | | 99.15 68 | 98.72 108 |
|
HyFIR lowres test | | | 93.66 125 | 92.92 129 | 95.87 121 | 98.24 88 | 89.88 167 | 94.58 268 | 98.49 12 | 85.06 279 | 93.78 124 | 95.78 188 | 82.86 172 | 98.67 168 | 91.77 135 | 95.71 157 | 99.07 78 |
|
MVS_111021_LR | | | 96.24 56 | 96.19 53 | 96.39 95 | 98.23 92 | 91.35 122 | 96.24 212 | 98.79 4 | 93.99 48 | 95.80 83 | 97.65 89 | 89.92 79 | 99.24 115 | 95.87 43 | 99.20 65 | 98.58 114 |
|
EI-MVSNet-UG-set | | | 96.34 53 | 96.30 48 | 96.47 88 | 98.20 93 | 90.93 140 | 96.86 154 | 97.72 118 | 94.67 33 | 96.16 69 | 98.46 22 | 90.43 71 | 99.58 68 | 96.23 30 | 97.96 107 | 98.90 94 |
|
PVSNet_Blended_VisFu | | | 95.27 79 | 94.91 81 | 96.38 96 | 98.20 93 | 90.86 142 | 97.27 116 | 98.25 33 | 90.21 166 | 94.18 116 | 97.27 110 | 87.48 107 | 99.73 31 | 93.53 102 | 97.77 112 | 98.55 115 |
|
Anonymous202405211 | | | 92.07 182 | 90.83 200 | 95.76 124 | 98.19 95 | 88.75 204 | 97.58 86 | 95.00 289 | 86.00 268 | 93.64 126 | 97.45 104 | 66.24 323 | 99.53 84 | 90.68 155 | 92.71 196 | 99.01 83 |
|
PatchMatch-RL | | | 92.90 152 | 92.02 158 | 95.56 137 | 98.19 95 | 90.80 144 | 95.27 256 | 97.18 177 | 87.96 228 | 91.86 166 | 95.68 195 | 80.44 215 | 98.99 141 | 84.01 268 | 97.54 116 | 96.89 188 |
|
testdata | | | | | 95.46 147 | 98.18 97 | 88.90 202 | | 97.66 124 | 82.73 304 | 97.03 43 | 98.07 58 | 90.06 76 | 98.85 152 | 89.67 170 | 98.98 79 | 98.64 113 |
|
Anonymous20240529 | | | 91.98 184 | 90.73 203 | 95.73 129 | 98.14 98 | 89.40 183 | 97.99 45 | 97.72 118 | 79.63 322 | 93.54 129 | 97.41 106 | 69.94 307 | 99.56 78 | 91.04 151 | 91.11 223 | 98.22 142 |
|
LFMVS | | | 93.60 127 | 92.63 138 | 96.52 82 | 98.13 99 | 91.27 124 | 97.94 49 | 93.39 321 | 90.57 161 | 96.29 65 | 98.31 43 | 69.00 309 | 99.16 122 | 94.18 89 | 95.87 152 | 99.12 73 |
|
DeepPCF-MVS | | 93.97 1 | 96.61 45 | 97.09 11 | 95.15 154 | 98.09 100 | 86.63 254 | 96.00 224 | 98.15 51 | 95.43 6 | 97.95 18 | 98.56 16 | 93.40 15 | 99.36 107 | 96.77 16 | 99.48 34 | 99.45 43 |
|
DPM-MVS | | | 95.69 68 | 94.92 80 | 98.01 18 | 98.08 101 | 95.71 7 | 95.27 256 | 97.62 129 | 90.43 164 | 95.55 94 | 97.07 120 | 91.72 46 | 99.50 91 | 89.62 172 | 98.94 81 | 98.82 102 |
|
VNet | | | 95.89 65 | 95.45 67 | 97.21 64 | 98.07 102 | 92.94 77 | 97.50 92 | 98.15 51 | 93.87 50 | 97.52 24 | 97.61 95 | 85.29 135 | 99.53 84 | 95.81 46 | 95.27 163 | 99.16 66 |
|
MAR-MVS | | | 94.22 105 | 93.46 116 | 96.51 85 | 98.00 103 | 92.19 97 | 97.67 76 | 97.47 144 | 88.13 226 | 93.00 142 | 95.84 181 | 84.86 141 | 99.51 89 | 87.99 202 | 98.17 102 | 97.83 161 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS | | 93.07 3 | 96.06 59 | 95.66 61 | 97.29 57 | 97.96 104 | 93.17 71 | 97.30 114 | 98.06 72 | 93.92 49 | 93.38 134 | 98.66 11 | 86.83 115 | 99.73 31 | 95.60 57 | 99.22 63 | 98.96 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
COLMAP_ROB | | 87.81 15 | 90.40 245 | 89.28 253 | 93.79 216 | 97.95 105 | 87.13 243 | 96.92 150 | 95.89 254 | 82.83 303 | 86.88 284 | 97.18 114 | 73.77 287 | 99.29 112 | 78.44 308 | 93.62 188 | 94.95 265 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
AllTest | | | 90.23 249 | 88.98 257 | 93.98 202 | 97.94 106 | 86.64 251 | 96.51 186 | 95.54 266 | 85.38 273 | 85.49 294 | 96.77 132 | 70.28 304 | 99.15 123 | 80.02 298 | 92.87 193 | 96.15 207 |
|
TestCases | | | | | 93.98 202 | 97.94 106 | 86.64 251 | | 95.54 266 | 85.38 273 | 85.49 294 | 96.77 132 | 70.28 304 | 99.15 123 | 80.02 298 | 92.87 193 | 96.15 207 |
|
thres100view900 | | | 92.43 165 | 91.58 172 | 94.98 162 | 97.92 108 | 89.37 185 | 97.71 73 | 94.66 301 | 92.20 106 | 93.31 136 | 94.90 224 | 78.06 257 | 99.08 133 | 81.40 289 | 94.08 180 | 96.48 199 |
|
thres600view7 | | | 92.49 164 | 91.60 171 | 95.18 153 | 97.91 109 | 89.47 179 | 97.65 79 | 94.66 301 | 92.18 110 | 93.33 135 | 94.91 223 | 78.06 257 | 99.10 128 | 81.61 286 | 94.06 183 | 96.98 183 |
|
API-MVS | | | 94.84 95 | 94.49 93 | 95.90 120 | 97.90 110 | 92.00 103 | 97.80 61 | 97.48 141 | 89.19 189 | 94.81 106 | 96.71 134 | 88.84 86 | 99.17 121 | 88.91 190 | 98.76 86 | 96.53 196 |
|
VDD-MVS | | | 93.82 120 | 93.08 125 | 96.02 115 | 97.88 111 | 89.96 166 | 97.72 71 | 95.85 255 | 92.43 100 | 95.86 81 | 98.44 24 | 68.42 313 | 99.39 104 | 96.31 27 | 94.85 169 | 98.71 110 |
|
tfpn200view9 | | | 92.38 168 | 91.52 175 | 94.95 165 | 97.85 112 | 89.29 190 | 97.41 100 | 94.88 296 | 92.19 108 | 93.27 138 | 94.46 247 | 78.17 254 | 99.08 133 | 81.40 289 | 94.08 180 | 96.48 199 |
|
thres400 | | | 92.42 166 | 91.52 175 | 95.12 157 | 97.85 112 | 89.29 190 | 97.41 100 | 94.88 296 | 92.19 108 | 93.27 138 | 94.46 247 | 78.17 254 | 99.08 133 | 81.40 289 | 94.08 180 | 96.98 183 |
|
DELS-MVS | | | 96.61 45 | 96.38 47 | 97.30 56 | 97.79 114 | 93.19 70 | 95.96 226 | 98.18 46 | 95.23 12 | 95.87 80 | 97.65 89 | 91.45 53 | 99.70 42 | 95.87 43 | 99.44 41 | 99.00 85 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PVSNet | | 86.66 18 | 92.24 176 | 91.74 168 | 93.73 217 | 97.77 115 | 83.69 293 | 92.88 311 | 96.72 219 | 87.91 230 | 93.00 142 | 94.86 226 | 78.51 249 | 99.05 137 | 86.53 232 | 97.45 121 | 98.47 126 |
|
test_yl | | | 94.78 97 | 94.23 98 | 96.43 91 | 97.74 116 | 91.22 125 | 96.85 155 | 97.10 186 | 91.23 139 | 95.71 86 | 96.93 124 | 84.30 147 | 99.31 110 | 93.10 112 | 95.12 165 | 98.75 104 |
|
DCV-MVSNet | | | 94.78 97 | 94.23 98 | 96.43 91 | 97.74 116 | 91.22 125 | 96.85 155 | 97.10 186 | 91.23 139 | 95.71 86 | 96.93 124 | 84.30 147 | 99.31 110 | 93.10 112 | 95.12 165 | 98.75 104 |
|
WTY-MVS | | | 94.71 99 | 94.02 100 | 96.79 73 | 97.71 118 | 92.05 100 | 96.59 182 | 97.35 168 | 90.61 158 | 94.64 108 | 96.93 124 | 86.41 121 | 99.39 104 | 91.20 150 | 94.71 175 | 98.94 90 |
|
UA-Net | | | 95.95 64 | 95.53 63 | 97.20 65 | 97.67 119 | 92.98 76 | 97.65 79 | 98.13 54 | 94.81 28 | 96.61 51 | 98.35 34 | 88.87 85 | 99.51 89 | 90.36 158 | 97.35 124 | 99.11 74 |
|
IS-MVSNet | | | 94.90 92 | 94.52 92 | 96.05 114 | 97.67 119 | 90.56 150 | 98.44 16 | 96.22 245 | 93.21 71 | 93.99 119 | 97.74 82 | 85.55 133 | 98.45 184 | 89.98 161 | 97.86 108 | 99.14 69 |
|
PAPR | | | 94.18 106 | 93.42 120 | 96.48 87 | 97.64 121 | 91.42 121 | 95.55 242 | 97.71 122 | 88.99 194 | 92.34 156 | 95.82 183 | 89.19 81 | 99.11 127 | 86.14 240 | 97.38 122 | 98.90 94 |
|
CANet | | | 96.39 52 | 96.02 55 | 97.50 49 | 97.62 122 | 93.38 65 | 97.02 138 | 97.96 96 | 95.42 7 | 94.86 105 | 97.81 77 | 87.38 109 | 99.82 24 | 96.88 11 | 99.20 65 | 99.29 58 |
|
thres200 | | | 92.23 177 | 91.39 178 | 94.75 175 | 97.61 123 | 89.03 199 | 96.60 181 | 95.09 286 | 92.08 112 | 93.28 137 | 94.00 270 | 78.39 252 | 99.04 139 | 81.26 293 | 94.18 179 | 96.19 204 |
|
Vis-MVSNet (Re-imp) | | | 94.15 107 | 93.88 102 | 94.95 165 | 97.61 123 | 87.92 225 | 98.10 38 | 95.80 257 | 92.22 104 | 93.02 141 | 97.45 104 | 84.53 145 | 97.91 247 | 88.24 198 | 97.97 106 | 99.02 79 |
|
canonicalmvs | | | 96.02 61 | 95.45 67 | 97.75 36 | 97.59 125 | 95.15 20 | 98.28 25 | 97.60 130 | 94.52 37 | 96.27 66 | 96.12 170 | 87.65 102 | 99.18 120 | 96.20 36 | 94.82 171 | 98.91 93 |
|
LS3D | | | 93.57 129 | 92.61 140 | 96.47 88 | 97.59 125 | 91.61 111 | 97.67 76 | 97.72 118 | 85.17 277 | 90.29 194 | 98.34 37 | 84.60 143 | 99.73 31 | 83.85 272 | 98.27 98 | 98.06 150 |
|
alignmvs | | | 95.87 66 | 95.23 74 | 97.78 32 | 97.56 127 | 95.19 17 | 97.86 54 | 97.17 179 | 94.39 40 | 96.47 59 | 96.40 159 | 85.89 128 | 99.20 117 | 96.21 35 | 95.11 167 | 98.95 89 |
|
EPP-MVSNet | | | 95.22 82 | 95.04 79 | 95.76 124 | 97.49 128 | 89.56 174 | 98.67 5 | 97.00 199 | 90.69 151 | 94.24 115 | 97.62 94 | 89.79 80 | 98.81 155 | 93.39 108 | 96.49 144 | 98.92 92 |
|
PS-MVSNAJ | | | 95.37 76 | 95.33 72 | 95.49 143 | 97.35 129 | 90.66 149 | 95.31 253 | 97.48 141 | 93.85 51 | 96.51 56 | 95.70 194 | 88.65 89 | 99.65 52 | 94.80 80 | 98.27 98 | 96.17 205 |
|
CS-MVS | | | 95.80 67 | 95.65 62 | 96.24 107 | 97.32 130 | 91.43 120 | 98.10 38 | 97.91 99 | 93.38 65 | 95.16 102 | 94.57 240 | 90.21 74 | 98.98 142 | 95.53 60 | 98.67 89 | 98.30 141 |
|
ab-mvs | | | 93.57 129 | 92.55 142 | 96.64 75 | 97.28 131 | 91.96 105 | 95.40 248 | 97.45 152 | 89.81 177 | 93.22 140 | 96.28 164 | 79.62 232 | 99.46 95 | 90.74 153 | 93.11 192 | 98.50 121 |
|
xiu_mvs_v2_base | | | 95.32 78 | 95.29 73 | 95.40 148 | 97.22 132 | 90.50 152 | 95.44 247 | 97.44 156 | 93.70 57 | 96.46 60 | 96.18 167 | 88.59 92 | 99.53 84 | 94.79 82 | 97.81 110 | 96.17 205 |
|
BH-untuned | | | 92.94 150 | 92.62 139 | 93.92 211 | 97.22 132 | 86.16 263 | 96.40 194 | 96.25 244 | 90.06 170 | 89.79 213 | 96.17 169 | 83.19 161 | 98.35 190 | 87.19 225 | 97.27 127 | 97.24 180 |
|
baseline1 | | | 92.82 157 | 91.90 162 | 95.55 139 | 97.20 134 | 90.77 146 | 97.19 126 | 94.58 304 | 92.20 106 | 92.36 154 | 96.34 162 | 84.16 150 | 98.21 198 | 89.20 185 | 83.90 305 | 97.68 167 |
|
Vis-MVSNet | | | 95.23 81 | 94.81 82 | 96.51 85 | 97.18 135 | 91.58 114 | 98.26 27 | 98.12 56 | 94.38 41 | 94.90 104 | 98.15 55 | 82.28 186 | 98.92 146 | 91.45 145 | 98.58 93 | 99.01 83 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
ETV-MVS | | | 96.02 61 | 95.89 58 | 96.40 93 | 97.16 136 | 92.44 89 | 97.47 97 | 97.77 111 | 94.55 36 | 96.48 58 | 94.51 242 | 91.23 58 | 98.92 146 | 95.65 51 | 98.19 100 | 97.82 162 |
|
BH-RMVSNet | | | 92.72 160 | 91.97 160 | 94.97 163 | 97.16 136 | 87.99 224 | 96.15 216 | 95.60 263 | 90.62 157 | 91.87 165 | 97.15 117 | 78.41 251 | 98.57 177 | 83.16 274 | 97.60 115 | 98.36 138 |
|
MSDG | | | 91.42 203 | 90.24 222 | 94.96 164 | 97.15 138 | 88.91 201 | 93.69 296 | 96.32 240 | 85.72 271 | 86.93 282 | 96.47 154 | 80.24 219 | 98.98 142 | 80.57 295 | 95.05 168 | 96.98 183 |
|
tttt0517 | | | 92.96 148 | 92.33 150 | 94.87 168 | 97.11 139 | 87.16 242 | 97.97 48 | 92.09 329 | 90.63 156 | 93.88 123 | 97.01 123 | 76.50 267 | 99.06 136 | 90.29 160 | 95.45 160 | 98.38 136 |
|
HY-MVS | | 89.66 9 | 93.87 118 | 92.95 128 | 96.63 77 | 97.10 140 | 92.49 88 | 95.64 240 | 96.64 228 | 89.05 192 | 93.00 142 | 95.79 187 | 85.77 131 | 99.45 97 | 89.16 187 | 94.35 177 | 97.96 151 |
|
thisisatest0530 | | | 93.03 145 | 92.21 153 | 95.49 143 | 97.07 141 | 89.11 198 | 97.49 96 | 92.19 328 | 90.16 168 | 94.09 117 | 96.41 158 | 76.43 270 | 99.05 137 | 90.38 157 | 95.68 158 | 98.31 140 |
|
XVG-OURS | | | 93.72 124 | 93.35 121 | 94.80 172 | 97.07 141 | 88.61 207 | 94.79 264 | 97.46 146 | 91.97 116 | 93.99 119 | 97.86 72 | 81.74 197 | 98.88 151 | 92.64 118 | 92.67 198 | 96.92 187 |
|
sss | | | 94.51 101 | 93.80 104 | 96.64 75 | 97.07 141 | 91.97 104 | 96.32 203 | 98.06 72 | 88.94 197 | 94.50 110 | 96.78 131 | 84.60 143 | 99.27 113 | 91.90 131 | 96.02 148 | 98.68 112 |
|
EIA-MVS | | | 95.53 74 | 95.47 66 | 95.71 130 | 97.06 144 | 89.63 170 | 97.82 59 | 97.87 104 | 93.57 59 | 93.92 122 | 95.04 219 | 90.61 69 | 98.95 144 | 94.62 84 | 98.68 88 | 98.54 116 |
|
XVG-OURS-SEG-HR | | | 93.86 119 | 93.55 111 | 94.81 171 | 97.06 144 | 88.53 209 | 95.28 254 | 97.45 152 | 91.68 121 | 94.08 118 | 97.68 86 | 82.41 184 | 98.90 149 | 93.84 98 | 92.47 200 | 96.98 183 |
|
1112_ss | | | 93.37 133 | 92.42 148 | 96.21 108 | 97.05 146 | 90.99 136 | 96.31 204 | 96.72 219 | 86.87 257 | 89.83 212 | 96.69 138 | 86.51 119 | 99.14 125 | 88.12 200 | 93.67 186 | 98.50 121 |
|
Test_1112_low_res | | | 92.84 156 | 91.84 164 | 95.85 122 | 97.04 147 | 89.97 165 | 95.53 244 | 96.64 228 | 85.38 273 | 89.65 218 | 95.18 214 | 85.86 129 | 99.10 128 | 87.70 209 | 93.58 191 | 98.49 123 |
|
BH-w/o | | | 92.14 181 | 91.75 166 | 93.31 238 | 96.99 148 | 85.73 267 | 95.67 237 | 95.69 259 | 88.73 208 | 89.26 232 | 94.82 229 | 82.97 170 | 98.07 219 | 85.26 255 | 96.32 147 | 96.13 209 |
|
3Dnovator+ | | 91.43 4 | 95.40 75 | 94.48 94 | 98.16 11 | 96.90 149 | 95.34 13 | 98.48 15 | 97.87 104 | 94.65 35 | 88.53 248 | 98.02 62 | 83.69 155 | 99.71 37 | 93.18 111 | 98.96 80 | 99.44 45 |
|
UGNet | | | 94.04 114 | 93.28 123 | 96.31 100 | 96.85 150 | 91.19 130 | 97.88 53 | 97.68 123 | 94.40 39 | 93.00 142 | 96.18 167 | 73.39 290 | 99.61 60 | 91.72 136 | 98.46 94 | 98.13 145 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
VDDNet | | | 93.05 144 | 92.07 155 | 96.02 115 | 96.84 151 | 90.39 157 | 98.08 41 | 95.85 255 | 86.22 265 | 95.79 84 | 98.46 22 | 67.59 316 | 99.19 118 | 94.92 74 | 94.85 169 | 98.47 126 |
|
RPSCF | | | 90.75 235 | 90.86 196 | 90.42 304 | 96.84 151 | 76.29 332 | 95.61 241 | 96.34 239 | 83.89 293 | 91.38 171 | 97.87 70 | 76.45 268 | 98.78 157 | 87.16 227 | 92.23 203 | 96.20 203 |
|
MVS_Test | | | 94.89 93 | 94.62 87 | 95.68 131 | 96.83 153 | 89.55 175 | 96.70 169 | 97.17 179 | 91.17 141 | 95.60 93 | 96.11 172 | 87.87 99 | 98.76 160 | 93.01 116 | 97.17 131 | 98.72 108 |
|
LCM-MVSNet-Re | | | 92.50 162 | 92.52 145 | 92.44 263 | 96.82 154 | 81.89 305 | 96.92 150 | 93.71 318 | 92.41 101 | 84.30 303 | 94.60 239 | 85.08 138 | 97.03 302 | 91.51 142 | 97.36 123 | 98.40 134 |
|
baseline | | | 95.58 72 | 95.42 69 | 96.08 111 | 96.78 155 | 90.41 156 | 97.16 129 | 97.45 152 | 93.69 58 | 95.65 92 | 97.85 73 | 87.29 110 | 98.68 167 | 95.66 48 | 97.25 128 | 99.13 70 |
|
Fast-Effi-MVS+ | | | 93.46 131 | 92.75 134 | 95.59 136 | 96.77 156 | 90.03 159 | 96.81 161 | 97.13 182 | 88.19 220 | 91.30 176 | 94.27 258 | 86.21 124 | 98.63 171 | 87.66 214 | 96.46 146 | 98.12 146 |
|
QAPM | | | 93.45 132 | 92.27 152 | 96.98 71 | 96.77 156 | 92.62 84 | 98.39 19 | 98.12 56 | 84.50 287 | 88.27 254 | 97.77 80 | 82.39 185 | 99.81 25 | 85.40 253 | 98.81 84 | 98.51 120 |
|
casdiffmvs | | | 95.64 70 | 95.49 65 | 96.08 111 | 96.76 158 | 90.45 154 | 97.29 115 | 97.44 156 | 94.00 47 | 95.46 98 | 97.98 65 | 87.52 106 | 98.73 162 | 95.64 52 | 97.33 125 | 99.08 76 |
|
CHOSEN 280x420 | | | 93.12 141 | 92.72 136 | 94.34 189 | 96.71 159 | 87.27 236 | 90.29 327 | 97.72 118 | 86.61 260 | 91.34 173 | 95.29 210 | 84.29 149 | 98.41 185 | 93.25 110 | 98.94 81 | 97.35 179 |
|
Effi-MVS+ | | | 94.93 91 | 94.45 95 | 96.36 98 | 96.61 160 | 91.47 117 | 96.41 191 | 97.41 161 | 91.02 146 | 94.50 110 | 95.92 177 | 87.53 105 | 98.78 157 | 93.89 96 | 96.81 135 | 98.84 101 |
|
thisisatest0515 | | | 92.29 173 | 91.30 183 | 95.25 151 | 96.60 161 | 88.90 202 | 94.36 277 | 92.32 327 | 87.92 229 | 93.43 133 | 94.57 240 | 77.28 264 | 99.00 140 | 89.42 176 | 95.86 153 | 97.86 158 |
|
PCF-MVS | | 89.48 11 | 91.56 196 | 89.95 234 | 96.36 98 | 96.60 161 | 92.52 87 | 92.51 316 | 97.26 174 | 79.41 323 | 88.90 237 | 96.56 150 | 84.04 152 | 99.55 79 | 77.01 314 | 97.30 126 | 97.01 182 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
xiu_mvs_v1_base_debu | | | 95.01 86 | 94.76 83 | 95.75 126 | 96.58 163 | 91.71 107 | 96.25 209 | 97.35 168 | 92.99 80 | 96.70 45 | 96.63 145 | 82.67 176 | 99.44 98 | 96.22 31 | 97.46 117 | 96.11 210 |
|
xiu_mvs_v1_base | | | 95.01 86 | 94.76 83 | 95.75 126 | 96.58 163 | 91.71 107 | 96.25 209 | 97.35 168 | 92.99 80 | 96.70 45 | 96.63 145 | 82.67 176 | 99.44 98 | 96.22 31 | 97.46 117 | 96.11 210 |
|
xiu_mvs_v1_base_debi | | | 95.01 86 | 94.76 83 | 95.75 126 | 96.58 163 | 91.71 107 | 96.25 209 | 97.35 168 | 92.99 80 | 96.70 45 | 96.63 145 | 82.67 176 | 99.44 98 | 96.22 31 | 97.46 117 | 96.11 210 |
|
MVSTER | | | 93.20 139 | 92.81 131 | 94.37 187 | 96.56 166 | 89.59 173 | 97.06 134 | 97.12 183 | 91.24 138 | 91.30 176 | 95.96 175 | 82.02 191 | 98.05 222 | 93.48 104 | 90.55 232 | 95.47 236 |
|
3Dnovator | | 91.36 5 | 95.19 84 | 94.44 96 | 97.44 51 | 96.56 166 | 93.36 67 | 98.65 6 | 98.36 16 | 94.12 45 | 89.25 233 | 98.06 59 | 82.20 188 | 99.77 28 | 93.41 107 | 99.32 52 | 99.18 65 |
|
FMVSNet3 | | | 91.78 188 | 90.69 205 | 95.03 159 | 96.53 168 | 92.27 93 | 97.02 138 | 96.93 203 | 89.79 178 | 89.35 227 | 94.65 237 | 77.01 265 | 97.47 284 | 86.12 241 | 88.82 247 | 95.35 248 |
|
GBi-Net | | | 91.35 208 | 90.27 220 | 94.59 177 | 96.51 169 | 91.18 131 | 97.50 92 | 96.93 203 | 88.82 203 | 89.35 227 | 94.51 242 | 73.87 284 | 97.29 296 | 86.12 241 | 88.82 247 | 95.31 250 |
|
test1 | | | 91.35 208 | 90.27 220 | 94.59 177 | 96.51 169 | 91.18 131 | 97.50 92 | 96.93 203 | 88.82 203 | 89.35 227 | 94.51 242 | 73.87 284 | 97.29 296 | 86.12 241 | 88.82 247 | 95.31 250 |
|
FMVSNet2 | | | 91.31 211 | 90.08 229 | 94.99 160 | 96.51 169 | 92.21 94 | 97.41 100 | 96.95 201 | 88.82 203 | 88.62 245 | 94.75 232 | 73.87 284 | 97.42 289 | 85.20 256 | 88.55 253 | 95.35 248 |
|
ACMH+ | | 87.92 14 | 90.20 250 | 89.18 255 | 93.25 240 | 96.48 172 | 86.45 256 | 96.99 143 | 96.68 225 | 88.83 202 | 84.79 300 | 96.22 166 | 70.16 306 | 98.53 179 | 84.42 266 | 88.04 255 | 94.77 286 |
|
CANet_DTU | | | 94.37 102 | 93.65 109 | 96.55 81 | 96.46 173 | 92.13 98 | 96.21 213 | 96.67 227 | 94.38 41 | 93.53 130 | 97.03 122 | 79.34 235 | 99.71 37 | 90.76 152 | 98.45 95 | 97.82 162 |
|
mvs_anonymous | | | 93.82 120 | 93.74 105 | 94.06 198 | 96.44 174 | 85.41 272 | 95.81 233 | 97.05 193 | 89.85 175 | 90.09 205 | 96.36 161 | 87.44 108 | 97.75 260 | 93.97 92 | 96.69 140 | 99.02 79 |
|
diffmvs | | | 95.25 80 | 95.13 77 | 95.63 133 | 96.43 175 | 89.34 186 | 95.99 225 | 97.35 168 | 92.83 89 | 96.31 64 | 97.37 107 | 86.44 120 | 98.67 168 | 96.26 28 | 97.19 130 | 98.87 98 |
|
ET-MVSNet_ETH3D | | | 91.49 200 | 90.11 228 | 95.63 133 | 96.40 176 | 91.57 115 | 95.34 250 | 93.48 320 | 90.60 160 | 75.58 331 | 95.49 205 | 80.08 222 | 96.79 311 | 94.25 87 | 89.76 241 | 98.52 118 |
|
TR-MVS | | | 91.48 201 | 90.59 208 | 94.16 195 | 96.40 176 | 87.33 234 | 95.67 237 | 95.34 275 | 87.68 240 | 91.46 170 | 95.52 204 | 76.77 266 | 98.35 190 | 82.85 278 | 93.61 189 | 96.79 192 |
|
ACMP | | 89.59 10 | 92.62 161 | 92.14 154 | 94.05 199 | 96.40 176 | 88.20 218 | 97.36 107 | 97.25 176 | 91.52 124 | 88.30 252 | 96.64 141 | 78.46 250 | 98.72 165 | 91.86 134 | 91.48 217 | 95.23 257 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MVSFormer | | | 95.37 76 | 95.16 76 | 95.99 117 | 96.34 179 | 91.21 127 | 98.22 31 | 97.57 133 | 91.42 129 | 96.22 67 | 97.32 108 | 86.20 125 | 97.92 244 | 94.07 90 | 99.05 76 | 98.85 99 |
|
lupinMVS | | | 94.99 90 | 94.56 89 | 96.29 103 | 96.34 179 | 91.21 127 | 95.83 232 | 96.27 242 | 88.93 198 | 96.22 67 | 96.88 129 | 86.20 125 | 98.85 152 | 95.27 63 | 99.05 76 | 98.82 102 |
|
ACMM | | 89.79 8 | 92.96 148 | 92.50 146 | 94.35 188 | 96.30 181 | 88.71 205 | 97.58 86 | 97.36 167 | 91.40 132 | 90.53 188 | 96.65 140 | 79.77 228 | 98.75 161 | 91.24 149 | 91.64 213 | 95.59 232 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS-LS | | | 92.29 173 | 91.94 161 | 93.34 237 | 96.25 182 | 86.97 246 | 96.57 185 | 97.05 193 | 90.67 152 | 89.50 224 | 94.80 230 | 86.59 116 | 97.64 268 | 89.91 163 | 86.11 274 | 95.40 244 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HQP_MVS | | | 93.78 122 | 93.43 118 | 94.82 169 | 96.21 183 | 89.99 162 | 97.74 66 | 97.51 139 | 94.85 23 | 91.34 173 | 96.64 141 | 81.32 202 | 98.60 174 | 93.02 114 | 92.23 203 | 95.86 216 |
|
plane_prior7 | | | | | | 96.21 183 | 89.98 164 | | | | | | | | | | |
|
ACMH | | 87.59 16 | 90.53 242 | 89.42 250 | 93.87 212 | 96.21 183 | 87.92 225 | 97.24 118 | 96.94 202 | 88.45 214 | 83.91 309 | 96.27 165 | 71.92 292 | 98.62 173 | 84.43 265 | 89.43 243 | 95.05 263 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CDS-MVSNet | | | 94.14 109 | 93.54 112 | 95.93 118 | 96.18 186 | 91.46 118 | 96.33 202 | 97.04 195 | 88.97 196 | 93.56 127 | 96.51 152 | 87.55 104 | 97.89 248 | 89.80 166 | 95.95 150 | 98.44 131 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
LTVRE_ROB | | 88.41 13 | 90.99 225 | 89.92 235 | 94.19 193 | 96.18 186 | 89.55 175 | 96.31 204 | 97.09 188 | 87.88 231 | 85.67 292 | 95.91 178 | 78.79 247 | 98.57 177 | 81.50 287 | 89.98 238 | 94.44 295 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
LPG-MVS_test | | | 92.94 150 | 92.56 141 | 94.10 196 | 96.16 188 | 88.26 215 | 97.65 79 | 97.46 146 | 91.29 134 | 90.12 202 | 97.16 115 | 79.05 239 | 98.73 162 | 92.25 122 | 91.89 211 | 95.31 250 |
|
LGP-MVS_train | | | | | 94.10 196 | 96.16 188 | 88.26 215 | | 97.46 146 | 91.29 134 | 90.12 202 | 97.16 115 | 79.05 239 | 98.73 162 | 92.25 122 | 91.89 211 | 95.31 250 |
|
TAMVS | | | 94.01 115 | 93.46 116 | 95.64 132 | 96.16 188 | 90.45 154 | 96.71 168 | 96.89 209 | 89.27 187 | 93.46 132 | 96.92 127 | 87.29 110 | 97.94 240 | 88.70 194 | 95.74 155 | 98.53 117 |
|
plane_prior1 | | | | | | 96.14 191 | | | | | | | | | | | |
|
CLD-MVS | | | 92.98 147 | 92.53 144 | 94.32 190 | 96.12 192 | 89.20 194 | 95.28 254 | 97.47 144 | 92.66 95 | 89.90 209 | 95.62 197 | 80.58 212 | 98.40 186 | 92.73 117 | 92.40 201 | 95.38 246 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
plane_prior6 | | | | | | 96.10 193 | 90.00 160 | | | | | | 81.32 202 | | | | |
|
cl-mvsnet2 | | | 91.21 215 | 90.56 210 | 93.14 245 | 96.09 194 | 86.80 248 | 94.41 275 | 96.58 234 | 87.80 234 | 88.58 247 | 93.99 271 | 80.85 210 | 97.62 271 | 89.87 165 | 86.93 265 | 94.99 264 |
|
Effi-MVS+-dtu | | | 93.08 142 | 93.21 124 | 92.68 260 | 96.02 195 | 83.25 296 | 97.14 132 | 96.72 219 | 93.85 51 | 91.20 183 | 93.44 289 | 83.08 165 | 98.30 193 | 91.69 139 | 95.73 156 | 96.50 198 |
|
mvs-test1 | | | 93.63 126 | 93.69 107 | 93.46 232 | 96.02 195 | 84.61 282 | 97.24 118 | 96.72 219 | 93.85 51 | 92.30 157 | 95.76 189 | 83.08 165 | 98.89 150 | 91.69 139 | 96.54 143 | 96.87 189 |
|
NP-MVS | | | | | | 95.99 197 | 89.81 169 | | | | | 95.87 179 | | | | | |
|
ADS-MVSNet2 | | | 89.45 261 | 88.59 262 | 92.03 272 | 95.86 198 | 82.26 304 | 90.93 323 | 94.32 311 | 83.23 301 | 91.28 179 | 91.81 313 | 79.01 243 | 95.99 318 | 79.52 300 | 91.39 219 | 97.84 159 |
|
ADS-MVSNet | | | 89.89 256 | 88.68 261 | 93.53 228 | 95.86 198 | 84.89 279 | 90.93 323 | 95.07 287 | 83.23 301 | 91.28 179 | 91.81 313 | 79.01 243 | 97.85 250 | 79.52 300 | 91.39 219 | 97.84 159 |
|
HQP-NCC | | | | | | 95.86 198 | | 96.65 174 | | 93.55 60 | 90.14 196 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 198 | | 96.65 174 | | 93.55 60 | 90.14 196 | | | | | | |
|
HQP-MVS | | | 93.19 140 | 92.74 135 | 94.54 182 | 95.86 198 | 89.33 187 | 96.65 174 | 97.39 162 | 93.55 60 | 90.14 196 | 95.87 179 | 80.95 205 | 98.50 181 | 92.13 126 | 92.10 208 | 95.78 223 |
|
EI-MVSNet | | | 93.03 145 | 92.88 130 | 93.48 230 | 95.77 203 | 86.98 245 | 96.44 187 | 97.12 183 | 90.66 154 | 91.30 176 | 97.64 92 | 86.56 117 | 98.05 222 | 89.91 163 | 90.55 232 | 95.41 240 |
|
CVMVSNet | | | 91.23 214 | 91.75 166 | 89.67 310 | 95.77 203 | 74.69 334 | 96.44 187 | 94.88 296 | 85.81 269 | 92.18 159 | 97.64 92 | 79.07 238 | 95.58 325 | 88.06 201 | 95.86 153 | 98.74 106 |
|
RRT_test8_iter05 | | | 91.19 219 | 90.78 201 | 92.41 265 | 95.76 205 | 83.14 297 | 97.32 111 | 97.46 146 | 91.37 133 | 89.07 236 | 95.57 199 | 70.33 303 | 98.21 198 | 93.56 101 | 86.62 270 | 95.89 215 |
|
FIs | | | 94.09 111 | 93.70 106 | 95.27 150 | 95.70 206 | 92.03 101 | 98.10 38 | 98.68 7 | 93.36 68 | 90.39 192 | 96.70 136 | 87.63 103 | 97.94 240 | 92.25 122 | 90.50 234 | 95.84 219 |
|
VPA-MVSNet | | | 93.24 137 | 92.48 147 | 95.51 141 | 95.70 206 | 92.39 90 | 97.86 54 | 98.66 9 | 92.30 103 | 92.09 162 | 95.37 208 | 80.49 214 | 98.40 186 | 93.95 93 | 85.86 275 | 95.75 227 |
|
SCA | | | 91.84 187 | 91.18 190 | 93.83 213 | 95.59 208 | 84.95 278 | 94.72 265 | 95.58 265 | 90.82 147 | 92.25 158 | 93.69 280 | 75.80 273 | 98.10 211 | 86.20 238 | 95.98 149 | 98.45 128 |
|
cl_fuxian | | | 91.38 205 | 90.89 194 | 92.88 253 | 95.58 209 | 86.30 258 | 94.68 266 | 96.84 215 | 88.17 222 | 88.83 242 | 94.23 261 | 85.65 132 | 97.47 284 | 89.36 177 | 84.63 293 | 94.89 273 |
|
VPNet | | | 92.23 177 | 91.31 182 | 94.99 160 | 95.56 210 | 90.96 138 | 97.22 124 | 97.86 107 | 92.96 86 | 90.96 184 | 96.62 148 | 75.06 278 | 98.20 200 | 91.90 131 | 83.65 307 | 95.80 222 |
|
miper_ehance_all_eth | | | 91.59 193 | 91.13 191 | 92.97 250 | 95.55 211 | 86.57 255 | 94.47 271 | 96.88 210 | 87.77 236 | 88.88 239 | 94.01 269 | 86.22 123 | 97.54 277 | 89.49 174 | 86.93 265 | 94.79 283 |
|
IterMVS-SCA-FT | | | 90.31 246 | 89.81 240 | 91.82 278 | 95.52 212 | 84.20 286 | 94.30 280 | 96.15 247 | 90.61 158 | 87.39 272 | 94.27 258 | 75.80 273 | 96.44 314 | 87.34 221 | 86.88 269 | 94.82 278 |
|
jason | | | 94.84 95 | 94.39 97 | 96.18 109 | 95.52 212 | 90.93 140 | 96.09 218 | 96.52 235 | 89.28 186 | 96.01 77 | 97.32 108 | 84.70 142 | 98.77 159 | 95.15 66 | 98.91 83 | 98.85 99 |
jason: jason. |
FC-MVSNet-test | | | 93.94 117 | 93.57 110 | 95.04 158 | 95.48 214 | 91.45 119 | 98.12 37 | 98.71 5 | 93.37 66 | 90.23 195 | 96.70 136 | 87.66 101 | 97.85 250 | 91.49 143 | 90.39 235 | 95.83 220 |
|
IterMVS | | | 90.15 252 | 89.67 246 | 91.61 285 | 95.48 214 | 83.72 290 | 94.33 279 | 96.12 248 | 89.99 171 | 87.31 275 | 94.15 266 | 75.78 275 | 96.27 317 | 86.97 229 | 86.89 268 | 94.83 276 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 89.88 257 | 88.31 265 | 94.59 177 | 95.41 216 | 91.18 131 | 97.50 92 | 96.93 203 | 86.62 259 | 87.41 271 | 94.51 242 | 65.94 325 | 97.29 296 | 83.04 276 | 87.43 261 | 95.31 250 |
|
UniMVSNet (Re) | | | 93.31 135 | 92.55 142 | 95.61 135 | 95.39 217 | 93.34 68 | 97.39 104 | 98.71 5 | 93.14 76 | 90.10 204 | 94.83 228 | 87.71 100 | 98.03 226 | 91.67 141 | 83.99 301 | 95.46 237 |
|
MVS-HIRNet | | | 82.47 305 | 81.21 306 | 86.26 320 | 95.38 218 | 69.21 341 | 88.96 335 | 89.49 339 | 66.28 337 | 80.79 318 | 74.08 340 | 68.48 312 | 97.39 291 | 71.93 328 | 95.47 159 | 92.18 325 |
|
PatchmatchNet | | | 91.91 185 | 91.35 179 | 93.59 225 | 95.38 218 | 84.11 287 | 93.15 307 | 95.39 269 | 89.54 179 | 92.10 161 | 93.68 282 | 82.82 174 | 98.13 206 | 84.81 259 | 95.32 162 | 98.52 118 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
cl-mvsnet_ | | | 90.96 228 | 90.32 216 | 92.89 252 | 95.37 220 | 86.21 261 | 94.46 273 | 96.64 228 | 87.82 232 | 88.15 258 | 94.18 264 | 82.98 169 | 97.54 277 | 87.70 209 | 85.59 277 | 94.92 271 |
|
cl-mvsnet1 | | | 90.97 227 | 90.33 215 | 92.88 253 | 95.36 221 | 86.19 262 | 94.46 273 | 96.63 231 | 87.82 232 | 88.18 257 | 94.23 261 | 82.99 168 | 97.53 279 | 87.72 207 | 85.57 278 | 94.93 269 |
|
miper_enhance_ethall | | | 91.54 198 | 91.01 192 | 93.15 244 | 95.35 222 | 87.07 244 | 93.97 289 | 96.90 207 | 86.79 258 | 89.17 234 | 93.43 291 | 86.55 118 | 97.64 268 | 89.97 162 | 86.93 265 | 94.74 287 |
|
UniMVSNet_NR-MVSNet | | | 93.37 133 | 92.67 137 | 95.47 146 | 95.34 223 | 92.83 78 | 97.17 128 | 98.58 10 | 92.98 85 | 90.13 200 | 95.80 184 | 88.37 94 | 97.85 250 | 91.71 137 | 83.93 302 | 95.73 229 |
|
ITE_SJBPF | | | | | 92.43 264 | 95.34 223 | 85.37 273 | | 95.92 252 | 91.47 126 | 87.75 266 | 96.39 160 | 71.00 299 | 97.96 237 | 82.36 283 | 89.86 240 | 93.97 307 |
|
OpenMVS | | 89.19 12 | 92.86 154 | 91.68 169 | 96.40 93 | 95.34 223 | 92.73 81 | 98.27 26 | 98.12 56 | 84.86 282 | 85.78 291 | 97.75 81 | 78.89 246 | 99.74 30 | 87.50 219 | 98.65 90 | 96.73 193 |
|
eth_miper_zixun_eth | | | 91.02 224 | 90.59 208 | 92.34 267 | 95.33 226 | 84.35 283 | 94.10 286 | 96.90 207 | 88.56 212 | 88.84 241 | 94.33 253 | 84.08 151 | 97.60 273 | 88.77 193 | 84.37 298 | 95.06 262 |
|
miper_lstm_enhance | | | 90.50 244 | 90.06 232 | 91.83 277 | 95.33 226 | 83.74 289 | 93.86 291 | 96.70 224 | 87.56 243 | 87.79 264 | 93.81 277 | 83.45 159 | 96.92 308 | 87.39 220 | 84.62 294 | 94.82 278 |
|
1314 | | | 92.81 158 | 92.03 157 | 95.14 155 | 95.33 226 | 89.52 178 | 96.04 220 | 97.44 156 | 87.72 239 | 86.25 288 | 95.33 209 | 83.84 153 | 98.79 156 | 89.26 181 | 97.05 133 | 97.11 181 |
|
PAPM | | | 91.52 199 | 90.30 218 | 95.20 152 | 95.30 229 | 89.83 168 | 93.38 303 | 96.85 214 | 86.26 264 | 88.59 246 | 95.80 184 | 84.88 140 | 98.15 205 | 75.67 318 | 95.93 151 | 97.63 168 |
|
Fast-Effi-MVS+-dtu | | | 92.29 173 | 91.99 159 | 93.21 243 | 95.27 230 | 85.52 270 | 97.03 135 | 96.63 231 | 92.09 111 | 89.11 235 | 95.14 216 | 80.33 218 | 98.08 216 | 87.54 218 | 94.74 174 | 96.03 213 |
|
Patchmatch-test | | | 89.42 262 | 87.99 268 | 93.70 220 | 95.27 230 | 85.11 274 | 88.98 334 | 94.37 309 | 81.11 313 | 87.10 278 | 93.69 280 | 82.28 186 | 97.50 282 | 74.37 321 | 94.76 172 | 98.48 125 |
|
PVSNet_0 | | 82.17 19 | 85.46 298 | 83.64 300 | 90.92 295 | 95.27 230 | 79.49 323 | 90.55 326 | 95.60 263 | 83.76 296 | 83.00 312 | 89.95 319 | 71.09 298 | 97.97 233 | 82.75 280 | 60.79 340 | 95.31 250 |
|
IB-MVS | | 87.33 17 | 89.91 255 | 88.28 266 | 94.79 173 | 95.26 233 | 87.70 231 | 95.12 261 | 93.95 317 | 89.35 185 | 87.03 279 | 92.49 301 | 70.74 301 | 99.19 118 | 89.18 186 | 81.37 318 | 97.49 177 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
nrg030 | | | 94.05 113 | 93.31 122 | 96.27 104 | 95.22 234 | 94.59 27 | 98.34 20 | 97.46 146 | 92.93 87 | 91.21 182 | 96.64 141 | 87.23 112 | 98.22 197 | 94.99 73 | 85.80 276 | 95.98 214 |
|
MDTV_nov1_ep13 | | | | 90.76 202 | | 95.22 234 | 80.33 316 | 93.03 310 | 95.28 276 | 88.14 225 | 92.84 148 | 93.83 274 | 81.34 201 | 98.08 216 | 82.86 277 | 94.34 178 | |
|
MVS | | | 91.71 189 | 90.44 212 | 95.51 141 | 95.20 236 | 91.59 113 | 96.04 220 | 97.45 152 | 73.44 335 | 87.36 273 | 95.60 198 | 85.42 134 | 99.10 128 | 85.97 245 | 97.46 117 | 95.83 220 |
|
tfpnnormal | | | 89.70 260 | 88.40 264 | 93.60 224 | 95.15 237 | 90.10 158 | 97.56 88 | 98.16 50 | 87.28 250 | 86.16 289 | 94.63 238 | 77.57 262 | 98.05 222 | 74.48 319 | 84.59 295 | 92.65 319 |
|
tpmrst | | | 91.44 202 | 91.32 181 | 91.79 280 | 95.15 237 | 79.20 326 | 93.42 302 | 95.37 271 | 88.55 213 | 93.49 131 | 93.67 283 | 82.49 182 | 98.27 194 | 90.41 156 | 89.34 244 | 97.90 155 |
|
WR-MVS | | | 92.34 169 | 91.53 174 | 94.77 174 | 95.13 239 | 90.83 143 | 96.40 194 | 97.98 94 | 91.88 117 | 89.29 230 | 95.54 203 | 82.50 181 | 97.80 255 | 89.79 167 | 85.27 283 | 95.69 230 |
|
tpm cat1 | | | 88.36 275 | 87.21 277 | 91.81 279 | 95.13 239 | 80.55 314 | 92.58 315 | 95.70 258 | 74.97 332 | 87.45 269 | 91.96 311 | 78.01 259 | 98.17 204 | 80.39 297 | 88.74 250 | 96.72 194 |
|
WR-MVS_H | | | 92.00 183 | 91.35 179 | 93.95 206 | 95.09 241 | 89.47 179 | 98.04 44 | 98.68 7 | 91.46 127 | 88.34 250 | 94.68 235 | 85.86 129 | 97.56 275 | 85.77 248 | 84.24 299 | 94.82 278 |
|
CP-MVSNet | | | 91.89 186 | 91.24 186 | 93.82 214 | 95.05 242 | 88.57 208 | 97.82 59 | 98.19 44 | 91.70 120 | 88.21 256 | 95.76 189 | 81.96 192 | 97.52 281 | 87.86 204 | 84.65 292 | 95.37 247 |
|
DWT-MVSNet_test | | | 90.76 233 | 89.89 236 | 93.38 235 | 95.04 243 | 83.70 292 | 95.85 231 | 94.30 312 | 88.19 220 | 90.46 190 | 92.80 296 | 73.61 288 | 98.50 181 | 88.16 199 | 90.58 231 | 97.95 153 |
|
test_0402 | | | 86.46 290 | 84.79 294 | 91.45 288 | 95.02 244 | 85.55 269 | 96.29 206 | 94.89 295 | 80.90 314 | 82.21 313 | 93.97 272 | 68.21 314 | 97.29 296 | 62.98 338 | 88.68 252 | 91.51 329 |
|
cascas | | | 91.20 216 | 90.08 229 | 94.58 181 | 94.97 245 | 89.16 197 | 93.65 298 | 97.59 132 | 79.90 321 | 89.40 225 | 92.92 295 | 75.36 277 | 98.36 189 | 92.14 125 | 94.75 173 | 96.23 202 |
|
PS-CasMVS | | | 91.55 197 | 90.84 199 | 93.69 221 | 94.96 246 | 88.28 214 | 97.84 58 | 98.24 34 | 91.46 127 | 88.04 260 | 95.80 184 | 79.67 230 | 97.48 283 | 87.02 228 | 84.54 296 | 95.31 250 |
|
DU-MVS | | | 92.90 152 | 92.04 156 | 95.49 143 | 94.95 247 | 92.83 78 | 97.16 129 | 98.24 34 | 93.02 79 | 90.13 200 | 95.71 192 | 83.47 157 | 97.85 250 | 91.71 137 | 83.93 302 | 95.78 223 |
|
NR-MVSNet | | | 92.34 169 | 91.27 185 | 95.53 140 | 94.95 247 | 93.05 73 | 97.39 104 | 98.07 69 | 92.65 96 | 84.46 301 | 95.71 192 | 85.00 139 | 97.77 259 | 89.71 168 | 83.52 308 | 95.78 223 |
|
RRT_MVS | | | 93.21 138 | 92.32 151 | 95.91 119 | 94.92 249 | 94.15 41 | 96.92 150 | 96.86 213 | 91.42 129 | 91.28 179 | 96.43 156 | 79.66 231 | 98.10 211 | 93.29 109 | 90.06 237 | 95.46 237 |
|
tpmvs | | | 89.83 259 | 89.15 256 | 91.89 275 | 94.92 249 | 80.30 317 | 93.11 308 | 95.46 268 | 86.28 263 | 88.08 259 | 92.65 298 | 80.44 215 | 98.52 180 | 81.47 288 | 89.92 239 | 96.84 190 |
|
PMMVS | | | 92.86 154 | 92.34 149 | 94.42 186 | 94.92 249 | 86.73 250 | 94.53 270 | 96.38 238 | 84.78 284 | 94.27 114 | 95.12 218 | 83.13 164 | 98.40 186 | 91.47 144 | 96.49 144 | 98.12 146 |
|
tpm2 | | | 89.96 254 | 89.21 254 | 92.23 269 | 94.91 252 | 81.25 308 | 93.78 293 | 94.42 307 | 80.62 318 | 91.56 168 | 93.44 289 | 76.44 269 | 97.94 240 | 85.60 250 | 92.08 210 | 97.49 177 |
|
TinyColmap | | | 86.82 288 | 85.35 291 | 91.21 291 | 94.91 252 | 82.99 298 | 93.94 290 | 94.02 316 | 83.58 297 | 81.56 315 | 94.68 235 | 62.34 332 | 98.13 206 | 75.78 316 | 87.35 264 | 92.52 321 |
|
UniMVSNet_ETH3D | | | 91.34 210 | 90.22 225 | 94.68 176 | 94.86 254 | 87.86 228 | 97.23 123 | 97.46 146 | 87.99 227 | 89.90 209 | 96.92 127 | 66.35 321 | 98.23 196 | 90.30 159 | 90.99 226 | 97.96 151 |
|
CostFormer | | | 91.18 220 | 90.70 204 | 92.62 261 | 94.84 255 | 81.76 306 | 94.09 287 | 94.43 306 | 84.15 290 | 92.72 149 | 93.77 278 | 79.43 234 | 98.20 200 | 90.70 154 | 92.18 206 | 97.90 155 |
|
MIMVSNet | | | 88.50 274 | 86.76 280 | 93.72 219 | 94.84 255 | 87.77 230 | 91.39 320 | 94.05 314 | 86.41 262 | 87.99 262 | 92.59 300 | 63.27 329 | 95.82 321 | 77.44 310 | 92.84 195 | 97.57 175 |
|
FMVSNet5 | | | 87.29 285 | 85.79 287 | 91.78 281 | 94.80 257 | 87.28 235 | 95.49 245 | 95.28 276 | 84.09 291 | 83.85 310 | 91.82 312 | 62.95 330 | 94.17 332 | 78.48 307 | 85.34 282 | 93.91 308 |
|
TranMVSNet+NR-MVSNet | | | 92.50 162 | 91.63 170 | 95.14 155 | 94.76 258 | 92.07 99 | 97.53 90 | 98.11 59 | 92.90 88 | 89.56 221 | 96.12 170 | 83.16 162 | 97.60 273 | 89.30 179 | 83.20 311 | 95.75 227 |
|
XXY-MVS | | | 92.16 179 | 91.23 187 | 94.95 165 | 94.75 259 | 90.94 139 | 97.47 97 | 97.43 159 | 89.14 190 | 88.90 237 | 96.43 156 | 79.71 229 | 98.24 195 | 89.56 173 | 87.68 258 | 95.67 231 |
|
EPMVS | | | 90.70 238 | 89.81 240 | 93.37 236 | 94.73 260 | 84.21 285 | 93.67 297 | 88.02 340 | 89.50 181 | 92.38 153 | 93.49 287 | 77.82 261 | 97.78 257 | 86.03 244 | 92.68 197 | 98.11 149 |
|
D2MVS | | | 91.30 212 | 90.95 193 | 92.35 266 | 94.71 261 | 85.52 270 | 96.18 215 | 98.21 40 | 88.89 199 | 86.60 285 | 93.82 276 | 79.92 226 | 97.95 239 | 89.29 180 | 90.95 227 | 93.56 311 |
|
USDC | | | 88.94 265 | 87.83 270 | 92.27 268 | 94.66 262 | 84.96 277 | 93.86 291 | 95.90 253 | 87.34 248 | 83.40 311 | 95.56 201 | 67.43 317 | 98.19 202 | 82.64 282 | 89.67 242 | 93.66 310 |
|
MVS_0304 | | | 88.79 269 | 87.57 271 | 92.46 262 | 94.65 263 | 86.15 264 | 96.40 194 | 97.17 179 | 86.44 261 | 88.02 261 | 91.71 315 | 56.68 337 | 97.03 302 | 84.47 264 | 92.58 199 | 94.19 303 |
|
GA-MVS | | | 91.38 205 | 90.31 217 | 94.59 177 | 94.65 263 | 87.62 232 | 94.34 278 | 96.19 246 | 90.73 150 | 90.35 193 | 93.83 274 | 71.84 293 | 97.96 237 | 87.22 224 | 93.61 189 | 98.21 143 |
|
OPM-MVS | | | 93.28 136 | 92.76 132 | 94.82 169 | 94.63 265 | 90.77 146 | 96.65 174 | 97.18 177 | 93.72 55 | 91.68 167 | 97.26 111 | 79.33 236 | 98.63 171 | 92.13 126 | 92.28 202 | 95.07 261 |
|
test-LLR | | | 91.42 203 | 91.19 189 | 92.12 270 | 94.59 266 | 80.66 311 | 94.29 281 | 92.98 323 | 91.11 143 | 90.76 186 | 92.37 303 | 79.02 241 | 98.07 219 | 88.81 191 | 96.74 137 | 97.63 168 |
|
test-mter | | | 90.19 251 | 89.54 249 | 92.12 270 | 94.59 266 | 80.66 311 | 94.29 281 | 92.98 323 | 87.68 240 | 90.76 186 | 92.37 303 | 67.67 315 | 98.07 219 | 88.81 191 | 96.74 137 | 97.63 168 |
|
dp | | | 88.90 267 | 88.26 267 | 90.81 297 | 94.58 268 | 76.62 331 | 92.85 312 | 94.93 294 | 85.12 278 | 90.07 207 | 93.07 293 | 75.81 272 | 98.12 209 | 80.53 296 | 87.42 262 | 97.71 165 |
|
PEN-MVS | | | 91.20 216 | 90.44 212 | 93.48 230 | 94.49 269 | 87.91 227 | 97.76 64 | 98.18 46 | 91.29 134 | 87.78 265 | 95.74 191 | 80.35 217 | 97.33 294 | 85.46 252 | 82.96 312 | 95.19 259 |
|
gg-mvs-nofinetune | | | 87.82 280 | 85.61 288 | 94.44 184 | 94.46 270 | 89.27 193 | 91.21 322 | 84.61 345 | 80.88 315 | 89.89 211 | 74.98 338 | 71.50 295 | 97.53 279 | 85.75 249 | 97.21 129 | 96.51 197 |
|
CR-MVSNet | | | 90.82 232 | 89.77 242 | 93.95 206 | 94.45 271 | 87.19 240 | 90.23 328 | 95.68 261 | 86.89 256 | 92.40 151 | 92.36 306 | 80.91 207 | 97.05 300 | 81.09 294 | 93.95 184 | 97.60 173 |
|
RPMNet | | | 88.52 273 | 86.72 282 | 93.95 206 | 94.45 271 | 87.19 240 | 90.23 328 | 94.99 291 | 77.87 330 | 92.40 151 | 87.55 331 | 80.17 221 | 97.05 300 | 68.84 334 | 93.95 184 | 97.60 173 |
|
TESTMET0.1,1 | | | 90.06 253 | 89.42 250 | 91.97 273 | 94.41 273 | 80.62 313 | 94.29 281 | 91.97 331 | 87.28 250 | 90.44 191 | 92.47 302 | 68.79 310 | 97.67 265 | 88.50 197 | 96.60 142 | 97.61 172 |
|
TransMVSNet (Re) | | | 88.94 265 | 87.56 272 | 93.08 247 | 94.35 274 | 88.45 212 | 97.73 68 | 95.23 280 | 87.47 244 | 84.26 304 | 95.29 210 | 79.86 227 | 97.33 294 | 79.44 304 | 74.44 332 | 93.45 314 |
|
MS-PatchMatch | | | 90.27 247 | 89.77 242 | 91.78 281 | 94.33 275 | 84.72 281 | 95.55 242 | 96.73 218 | 86.17 266 | 86.36 287 | 95.28 212 | 71.28 297 | 97.80 255 | 84.09 267 | 98.14 103 | 92.81 318 |
|
baseline2 | | | 91.63 192 | 90.86 196 | 93.94 209 | 94.33 275 | 86.32 257 | 95.92 228 | 91.64 333 | 89.37 184 | 86.94 281 | 94.69 234 | 81.62 199 | 98.69 166 | 88.64 195 | 94.57 176 | 96.81 191 |
|
XVG-ACMP-BASELINE | | | 90.93 229 | 90.21 226 | 93.09 246 | 94.31 277 | 85.89 265 | 95.33 251 | 97.26 174 | 91.06 145 | 89.38 226 | 95.44 207 | 68.61 311 | 98.60 174 | 89.46 175 | 91.05 224 | 94.79 283 |
|
pm-mvs1 | | | 90.72 237 | 89.65 248 | 93.96 205 | 94.29 278 | 89.63 170 | 97.79 62 | 96.82 216 | 89.07 191 | 86.12 290 | 95.48 206 | 78.61 248 | 97.78 257 | 86.97 229 | 81.67 316 | 94.46 294 |
|
v8 | | | 91.29 213 | 90.53 211 | 93.57 227 | 94.15 279 | 88.12 222 | 97.34 108 | 97.06 192 | 88.99 194 | 88.32 251 | 94.26 260 | 83.08 165 | 98.01 228 | 87.62 216 | 83.92 304 | 94.57 292 |
|
v10 | | | 91.04 223 | 90.23 223 | 93.49 229 | 94.12 280 | 88.16 221 | 97.32 111 | 97.08 189 | 88.26 219 | 88.29 253 | 94.22 263 | 82.17 189 | 97.97 233 | 86.45 235 | 84.12 300 | 94.33 298 |
|
Patchmtry | | | 88.64 272 | 87.25 275 | 92.78 257 | 94.09 281 | 86.64 251 | 89.82 331 | 95.68 261 | 80.81 317 | 87.63 268 | 92.36 306 | 80.91 207 | 97.03 302 | 78.86 306 | 85.12 286 | 94.67 289 |
|
PatchT | | | 88.87 268 | 87.42 273 | 93.22 242 | 94.08 282 | 85.10 275 | 89.51 332 | 94.64 303 | 81.92 308 | 92.36 154 | 88.15 329 | 80.05 223 | 97.01 305 | 72.43 326 | 93.65 187 | 97.54 176 |
|
V42 | | | 91.58 195 | 90.87 195 | 93.73 217 | 94.05 283 | 88.50 210 | 97.32 111 | 96.97 200 | 88.80 206 | 89.71 214 | 94.33 253 | 82.54 180 | 98.05 222 | 89.01 188 | 85.07 287 | 94.64 291 |
|
DTE-MVSNet | | | 90.56 241 | 89.75 244 | 93.01 248 | 93.95 284 | 87.25 237 | 97.64 83 | 97.65 126 | 90.74 149 | 87.12 276 | 95.68 195 | 79.97 225 | 97.00 306 | 83.33 273 | 81.66 317 | 94.78 285 |
|
tpm | | | 90.25 248 | 89.74 245 | 91.76 283 | 93.92 285 | 79.73 322 | 93.98 288 | 93.54 319 | 88.28 218 | 91.99 163 | 93.25 292 | 77.51 263 | 97.44 287 | 87.30 223 | 87.94 256 | 98.12 146 |
|
PS-MVSNAJss | | | 93.74 123 | 93.51 114 | 94.44 184 | 93.91 286 | 89.28 192 | 97.75 65 | 97.56 136 | 92.50 99 | 89.94 208 | 96.54 151 | 88.65 89 | 98.18 203 | 93.83 99 | 90.90 228 | 95.86 216 |
|
v1144 | | | 91.37 207 | 90.60 207 | 93.68 222 | 93.89 287 | 88.23 217 | 96.84 157 | 97.03 197 | 88.37 216 | 89.69 216 | 94.39 249 | 82.04 190 | 97.98 230 | 87.80 206 | 85.37 281 | 94.84 275 |
|
v2v482 | | | 91.59 193 | 90.85 198 | 93.80 215 | 93.87 288 | 88.17 220 | 96.94 149 | 96.88 210 | 89.54 179 | 89.53 222 | 94.90 224 | 81.70 198 | 98.02 227 | 89.25 182 | 85.04 289 | 95.20 258 |
|
v148 | | | 90.99 225 | 90.38 214 | 92.81 256 | 93.83 289 | 85.80 266 | 96.78 164 | 96.68 225 | 89.45 182 | 88.75 244 | 93.93 273 | 82.96 171 | 97.82 254 | 87.83 205 | 83.25 309 | 94.80 281 |
|
Baseline_NR-MVSNet | | | 91.20 216 | 90.62 206 | 92.95 251 | 93.83 289 | 88.03 223 | 97.01 142 | 95.12 285 | 88.42 215 | 89.70 215 | 95.13 217 | 83.47 157 | 97.44 287 | 89.66 171 | 83.24 310 | 93.37 315 |
|
EPNet_dtu | | | 91.71 189 | 91.28 184 | 92.99 249 | 93.76 291 | 83.71 291 | 96.69 171 | 95.28 276 | 93.15 75 | 87.02 280 | 95.95 176 | 83.37 160 | 97.38 292 | 79.46 303 | 96.84 134 | 97.88 157 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v1192 | | | 91.07 221 | 90.23 223 | 93.58 226 | 93.70 292 | 87.82 229 | 96.73 166 | 97.07 190 | 87.77 236 | 89.58 219 | 94.32 255 | 80.90 209 | 97.97 233 | 86.52 233 | 85.48 279 | 94.95 265 |
|
GG-mvs-BLEND | | | | | 93.62 223 | 93.69 293 | 89.20 194 | 92.39 318 | 83.33 346 | | 87.98 263 | 89.84 321 | 71.00 299 | 96.87 309 | 82.08 285 | 95.40 161 | 94.80 281 |
|
v144192 | | | 91.06 222 | 90.28 219 | 93.39 234 | 93.66 294 | 87.23 239 | 96.83 158 | 97.07 190 | 87.43 245 | 89.69 216 | 94.28 257 | 81.48 200 | 98.00 229 | 87.18 226 | 84.92 291 | 94.93 269 |
|
v1921920 | | | 90.85 231 | 90.03 233 | 93.29 239 | 93.55 295 | 86.96 247 | 96.74 165 | 97.04 195 | 87.36 247 | 89.52 223 | 94.34 252 | 80.23 220 | 97.97 233 | 86.27 236 | 85.21 284 | 94.94 267 |
|
v7n | | | 90.76 233 | 89.86 237 | 93.45 233 | 93.54 296 | 87.60 233 | 97.70 74 | 97.37 165 | 88.85 200 | 87.65 267 | 94.08 268 | 81.08 204 | 98.10 211 | 84.68 261 | 83.79 306 | 94.66 290 |
|
JIA-IIPM | | | 88.26 277 | 87.04 279 | 91.91 274 | 93.52 297 | 81.42 307 | 89.38 333 | 94.38 308 | 80.84 316 | 90.93 185 | 80.74 336 | 79.22 237 | 97.92 244 | 82.76 279 | 91.62 214 | 96.38 201 |
|
v1240 | | | 90.70 238 | 89.85 238 | 93.23 241 | 93.51 298 | 86.80 248 | 96.61 179 | 97.02 198 | 87.16 252 | 89.58 219 | 94.31 256 | 79.55 233 | 97.98 230 | 85.52 251 | 85.44 280 | 94.90 272 |
|
test_djsdf | | | 93.07 143 | 92.76 132 | 94.00 201 | 93.49 299 | 88.70 206 | 98.22 31 | 97.57 133 | 91.42 129 | 90.08 206 | 95.55 202 | 82.85 173 | 97.92 244 | 94.07 90 | 91.58 215 | 95.40 244 |
|
SixPastTwentyTwo | | | 89.15 264 | 88.54 263 | 90.98 294 | 93.49 299 | 80.28 318 | 96.70 169 | 94.70 300 | 90.78 148 | 84.15 306 | 95.57 199 | 71.78 294 | 97.71 263 | 84.63 262 | 85.07 287 | 94.94 267 |
|
mvs_tets | | | 92.31 171 | 91.76 165 | 93.94 209 | 93.41 301 | 88.29 213 | 97.63 84 | 97.53 137 | 92.04 113 | 88.76 243 | 96.45 155 | 74.62 280 | 98.09 215 | 93.91 95 | 91.48 217 | 95.45 239 |
|
OurMVSNet-221017-0 | | | 90.51 243 | 90.19 227 | 91.44 289 | 93.41 301 | 81.25 308 | 96.98 145 | 96.28 241 | 91.68 121 | 86.55 286 | 96.30 163 | 74.20 283 | 97.98 230 | 88.96 189 | 87.40 263 | 95.09 260 |
|
pmmvs4 | | | 90.93 229 | 89.85 238 | 94.17 194 | 93.34 303 | 90.79 145 | 94.60 267 | 96.02 250 | 84.62 285 | 87.45 269 | 95.15 215 | 81.88 195 | 97.45 286 | 87.70 209 | 87.87 257 | 94.27 302 |
|
jajsoiax | | | 92.42 166 | 91.89 163 | 94.03 200 | 93.33 304 | 88.50 210 | 97.73 68 | 97.53 137 | 92.00 115 | 88.85 240 | 96.50 153 | 75.62 276 | 98.11 210 | 93.88 97 | 91.56 216 | 95.48 234 |
|
gm-plane-assit | | | | | | 93.22 305 | 78.89 328 | | | 84.82 283 | | 93.52 286 | | 98.64 170 | 87.72 207 | | |
|
MVP-Stereo | | | 90.74 236 | 90.08 229 | 92.71 258 | 93.19 306 | 88.20 218 | 95.86 230 | 96.27 242 | 86.07 267 | 84.86 299 | 94.76 231 | 77.84 260 | 97.75 260 | 83.88 271 | 98.01 105 | 92.17 326 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
EU-MVSNet | | | 88.72 271 | 88.90 258 | 88.20 313 | 93.15 307 | 74.21 335 | 96.63 178 | 94.22 313 | 85.18 276 | 87.32 274 | 95.97 174 | 76.16 271 | 94.98 329 | 85.27 254 | 86.17 272 | 95.41 240 |
|
MDA-MVSNet-bldmvs | | | 85.00 299 | 82.95 302 | 91.17 293 | 93.13 308 | 83.33 295 | 94.56 269 | 95.00 289 | 84.57 286 | 65.13 339 | 92.65 298 | 70.45 302 | 95.85 319 | 73.57 324 | 77.49 325 | 94.33 298 |
|
K. test v3 | | | 87.64 282 | 86.75 281 | 90.32 305 | 93.02 309 | 79.48 324 | 96.61 179 | 92.08 330 | 90.66 154 | 80.25 323 | 94.09 267 | 67.21 319 | 96.65 313 | 85.96 246 | 80.83 320 | 94.83 276 |
|
pmmvs5 | | | 89.86 258 | 88.87 259 | 92.82 255 | 92.86 310 | 86.23 260 | 96.26 208 | 95.39 269 | 84.24 289 | 87.12 276 | 94.51 242 | 74.27 282 | 97.36 293 | 87.61 217 | 87.57 259 | 94.86 274 |
|
testgi | | | 87.97 278 | 87.21 277 | 90.24 306 | 92.86 310 | 80.76 310 | 96.67 173 | 94.97 292 | 91.74 119 | 85.52 293 | 95.83 182 | 62.66 331 | 94.47 331 | 76.25 315 | 88.36 254 | 95.48 234 |
|
EPNet | | | 95.20 83 | 94.56 89 | 97.14 66 | 92.80 312 | 92.68 82 | 97.85 57 | 94.87 299 | 96.64 1 | 92.46 150 | 97.80 79 | 86.23 122 | 99.65 52 | 93.72 100 | 98.62 91 | 99.10 75 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
N_pmnet | | | 78.73 308 | 78.71 309 | 78.79 323 | 92.80 312 | 46.50 350 | 94.14 285 | 43.71 353 | 78.61 326 | 80.83 317 | 91.66 316 | 74.94 279 | 96.36 315 | 67.24 335 | 84.45 297 | 93.50 312 |
|
EG-PatchMatch MVS | | | 87.02 287 | 85.44 289 | 91.76 283 | 92.67 314 | 85.00 276 | 96.08 219 | 96.45 236 | 83.41 300 | 79.52 325 | 93.49 287 | 57.10 336 | 97.72 262 | 79.34 305 | 90.87 229 | 92.56 320 |
|
Gipuma | | | 67.86 312 | 65.41 314 | 75.18 326 | 92.66 315 | 73.45 336 | 66.50 345 | 94.52 305 | 53.33 342 | 57.80 342 | 66.07 342 | 30.81 345 | 89.20 340 | 48.15 342 | 78.88 324 | 62.90 342 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
anonymousdsp | | | 92.16 179 | 91.55 173 | 93.97 204 | 92.58 316 | 89.55 175 | 97.51 91 | 97.42 160 | 89.42 183 | 88.40 249 | 94.84 227 | 80.66 211 | 97.88 249 | 91.87 133 | 91.28 221 | 94.48 293 |
|
test0.0.03 1 | | | 89.37 263 | 88.70 260 | 91.41 290 | 92.47 317 | 85.63 268 | 95.22 259 | 92.70 325 | 91.11 143 | 86.91 283 | 93.65 284 | 79.02 241 | 93.19 337 | 78.00 309 | 89.18 245 | 95.41 240 |
|
our_test_3 | | | 88.78 270 | 87.98 269 | 91.20 292 | 92.45 318 | 82.53 300 | 93.61 300 | 95.69 259 | 85.77 270 | 84.88 298 | 93.71 279 | 79.99 224 | 96.78 312 | 79.47 302 | 86.24 271 | 94.28 301 |
|
ppachtmachnet_test | | | 88.35 276 | 87.29 274 | 91.53 286 | 92.45 318 | 83.57 294 | 93.75 294 | 95.97 251 | 84.28 288 | 85.32 297 | 94.18 264 | 79.00 245 | 96.93 307 | 75.71 317 | 84.99 290 | 94.10 304 |
|
YYNet1 | | | 85.87 295 | 84.23 298 | 90.78 300 | 92.38 320 | 82.46 302 | 93.17 305 | 95.14 284 | 82.12 307 | 67.69 335 | 92.36 306 | 78.16 256 | 95.50 327 | 77.31 312 | 79.73 322 | 94.39 296 |
|
MDA-MVSNet_test_wron | | | 85.87 295 | 84.23 298 | 90.80 299 | 92.38 320 | 82.57 299 | 93.17 305 | 95.15 283 | 82.15 306 | 67.65 336 | 92.33 309 | 78.20 253 | 95.51 326 | 77.33 311 | 79.74 321 | 94.31 300 |
|
LF4IMVS | | | 87.94 279 | 87.25 275 | 89.98 308 | 92.38 320 | 80.05 321 | 94.38 276 | 95.25 279 | 87.59 242 | 84.34 302 | 94.74 233 | 64.31 328 | 97.66 267 | 84.83 258 | 87.45 260 | 92.23 324 |
|
lessismore_v0 | | | | | 90.45 303 | 91.96 323 | 79.09 327 | | 87.19 343 | | 80.32 322 | 94.39 249 | 66.31 322 | 97.55 276 | 84.00 269 | 76.84 327 | 94.70 288 |
|
pmmvs6 | | | 87.81 281 | 86.19 284 | 92.69 259 | 91.32 324 | 86.30 258 | 97.34 108 | 96.41 237 | 80.59 319 | 84.05 308 | 94.37 251 | 67.37 318 | 97.67 265 | 84.75 260 | 79.51 323 | 94.09 306 |
|
Anonymous20231206 | | | 87.09 286 | 86.14 285 | 89.93 309 | 91.22 325 | 80.35 315 | 96.11 217 | 95.35 272 | 83.57 298 | 84.16 305 | 93.02 294 | 73.54 289 | 95.61 323 | 72.16 327 | 86.14 273 | 93.84 309 |
|
DeepMVS_CX | | | | | 74.68 327 | 90.84 326 | 64.34 345 | | 81.61 348 | 65.34 338 | 67.47 337 | 88.01 330 | 48.60 342 | 80.13 345 | 62.33 339 | 73.68 334 | 79.58 339 |
|
test20.03 | | | 86.14 293 | 85.40 290 | 88.35 311 | 90.12 327 | 80.06 320 | 95.90 229 | 95.20 281 | 88.59 209 | 81.29 316 | 93.62 285 | 71.43 296 | 92.65 338 | 71.26 331 | 81.17 319 | 92.34 323 |
|
OpenMVS_ROB | | 81.14 20 | 84.42 301 | 82.28 303 | 90.83 296 | 90.06 328 | 84.05 288 | 95.73 236 | 94.04 315 | 73.89 334 | 80.17 324 | 91.53 317 | 59.15 334 | 97.64 268 | 66.92 336 | 89.05 246 | 90.80 332 |
|
UnsupCasMVSNet_eth | | | 85.99 294 | 84.45 296 | 90.62 301 | 89.97 329 | 82.40 303 | 93.62 299 | 97.37 165 | 89.86 173 | 78.59 328 | 92.37 303 | 65.25 327 | 95.35 328 | 82.27 284 | 70.75 335 | 94.10 304 |
|
DSMNet-mixed | | | 86.34 291 | 86.12 286 | 87.00 318 | 89.88 330 | 70.43 338 | 94.93 263 | 90.08 338 | 77.97 329 | 85.42 296 | 92.78 297 | 74.44 281 | 93.96 333 | 74.43 320 | 95.14 164 | 96.62 195 |
|
new_pmnet | | | 82.89 304 | 81.12 307 | 88.18 314 | 89.63 331 | 80.18 319 | 91.77 319 | 92.57 326 | 76.79 331 | 75.56 332 | 88.23 328 | 61.22 333 | 94.48 330 | 71.43 329 | 82.92 313 | 89.87 334 |
|
MIMVSNet1 | | | 84.93 300 | 83.05 301 | 90.56 302 | 89.56 332 | 84.84 280 | 95.40 248 | 95.35 272 | 83.91 292 | 80.38 321 | 92.21 310 | 57.23 335 | 93.34 336 | 70.69 333 | 82.75 315 | 93.50 312 |
|
CMPMVS | | 62.92 21 | 85.62 297 | 84.92 293 | 87.74 315 | 89.14 333 | 73.12 337 | 94.17 284 | 96.80 217 | 73.98 333 | 73.65 333 | 94.93 222 | 66.36 320 | 97.61 272 | 83.95 270 | 91.28 221 | 92.48 322 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Patchmatch-RL test | | | 87.38 283 | 86.24 283 | 90.81 297 | 88.74 334 | 78.40 329 | 88.12 336 | 93.17 322 | 87.11 253 | 82.17 314 | 89.29 323 | 81.95 193 | 95.60 324 | 88.64 195 | 77.02 326 | 98.41 133 |
|
pmmvs-eth3d | | | 86.22 292 | 84.45 296 | 91.53 286 | 88.34 335 | 87.25 237 | 94.47 271 | 95.01 288 | 83.47 299 | 79.51 326 | 89.61 322 | 69.75 308 | 95.71 322 | 83.13 275 | 76.73 328 | 91.64 327 |
|
UnsupCasMVSNet_bld | | | 82.13 306 | 79.46 308 | 90.14 307 | 88.00 336 | 82.47 301 | 90.89 325 | 96.62 233 | 78.94 325 | 75.61 330 | 84.40 334 | 56.63 338 | 96.31 316 | 77.30 313 | 66.77 339 | 91.63 328 |
|
PM-MVS | | | 83.48 302 | 81.86 305 | 88.31 312 | 87.83 337 | 77.59 330 | 93.43 301 | 91.75 332 | 86.91 255 | 80.63 319 | 89.91 320 | 44.42 343 | 95.84 320 | 85.17 257 | 76.73 328 | 91.50 330 |
|
testing_2 | | | 87.33 284 | 85.03 292 | 94.22 192 | 87.77 338 | 89.32 189 | 94.97 262 | 97.11 185 | 89.22 188 | 71.64 334 | 88.73 324 | 55.16 339 | 97.94 240 | 91.95 130 | 88.73 251 | 95.41 240 |
|
new-patchmatchnet | | | 83.18 303 | 81.87 304 | 87.11 317 | 86.88 339 | 75.99 333 | 93.70 295 | 95.18 282 | 85.02 280 | 77.30 329 | 88.40 326 | 65.99 324 | 93.88 334 | 74.19 323 | 70.18 336 | 91.47 331 |
|
ambc | | | | | 86.56 319 | 83.60 340 | 70.00 340 | 85.69 338 | 94.97 292 | | 80.60 320 | 88.45 325 | 37.42 344 | 96.84 310 | 82.69 281 | 75.44 330 | 92.86 317 |
|
pmmvs3 | | | 79.97 307 | 77.50 310 | 87.39 316 | 82.80 341 | 79.38 325 | 92.70 314 | 90.75 337 | 70.69 336 | 78.66 327 | 87.47 332 | 51.34 341 | 93.40 335 | 73.39 325 | 69.65 337 | 89.38 335 |
|
TDRefinement | | | 86.53 289 | 84.76 295 | 91.85 276 | 82.23 342 | 84.25 284 | 96.38 197 | 95.35 272 | 84.97 281 | 84.09 307 | 94.94 221 | 65.76 326 | 98.34 192 | 84.60 263 | 74.52 331 | 92.97 316 |
|
PMMVS2 | | | 70.19 311 | 66.92 313 | 80.01 322 | 76.35 343 | 65.67 343 | 86.22 337 | 87.58 342 | 64.83 339 | 62.38 340 | 80.29 337 | 26.78 349 | 88.49 341 | 63.79 337 | 54.07 341 | 85.88 336 |
|
FPMVS | | | 71.27 310 | 69.85 311 | 75.50 325 | 74.64 344 | 59.03 346 | 91.30 321 | 91.50 334 | 58.80 340 | 57.92 341 | 88.28 327 | 29.98 347 | 85.53 343 | 53.43 340 | 82.84 314 | 81.95 338 |
|
E-PMN | | | 53.28 315 | 52.56 318 | 55.43 330 | 74.43 345 | 47.13 349 | 83.63 341 | 76.30 349 | 42.23 344 | 42.59 345 | 62.22 344 | 28.57 348 | 74.40 346 | 31.53 345 | 31.51 343 | 44.78 343 |
|
wuyk23d | | | 25.11 319 | 24.57 322 | 26.74 333 | 73.98 346 | 39.89 353 | 57.88 346 | 9.80 354 | 12.27 348 | 10.39 349 | 6.97 351 | 7.03 353 | 36.44 350 | 25.43 347 | 17.39 347 | 3.89 348 |
|
EMVS | | | 52.08 317 | 51.31 319 | 54.39 331 | 72.62 347 | 45.39 351 | 83.84 340 | 75.51 350 | 41.13 345 | 40.77 346 | 59.65 345 | 30.08 346 | 73.60 347 | 28.31 346 | 29.90 345 | 44.18 344 |
|
LCM-MVSNet | | | 72.55 309 | 69.39 312 | 82.03 321 | 70.81 348 | 65.42 344 | 90.12 330 | 94.36 310 | 55.02 341 | 65.88 338 | 81.72 335 | 24.16 351 | 89.96 339 | 74.32 322 | 68.10 338 | 90.71 333 |
|
MVE | | 50.73 23 | 53.25 316 | 48.81 320 | 66.58 329 | 65.34 349 | 57.50 347 | 72.49 344 | 70.94 351 | 40.15 346 | 39.28 347 | 63.51 343 | 6.89 354 | 73.48 348 | 38.29 344 | 42.38 342 | 68.76 341 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 63.94 313 | 59.58 315 | 77.02 324 | 61.24 350 | 66.06 342 | 85.66 339 | 87.93 341 | 78.53 327 | 42.94 344 | 71.04 341 | 25.42 350 | 80.71 344 | 52.60 341 | 30.83 344 | 84.28 337 |
|
PMVS | | 53.92 22 | 58.58 314 | 55.40 316 | 68.12 328 | 51.00 351 | 48.64 348 | 78.86 342 | 87.10 344 | 46.77 343 | 35.84 348 | 74.28 339 | 8.76 352 | 86.34 342 | 42.07 343 | 73.91 333 | 69.38 340 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 51.94 318 | 53.82 317 | 46.29 332 | 33.73 352 | 45.30 352 | 78.32 343 | 67.24 352 | 18.02 347 | 50.93 343 | 87.05 333 | 52.99 340 | 53.11 349 | 70.76 332 | 25.29 346 | 40.46 345 |
|
testmvs | | | 13.36 321 | 16.33 323 | 4.48 335 | 5.04 353 | 2.26 355 | 93.18 304 | 3.28 355 | 2.70 349 | 8.24 350 | 21.66 347 | 2.29 356 | 2.19 351 | 7.58 348 | 2.96 348 | 9.00 347 |
|
test123 | | | 13.04 322 | 15.66 324 | 5.18 334 | 4.51 354 | 3.45 354 | 92.50 317 | 1.81 356 | 2.50 350 | 7.58 351 | 20.15 348 | 3.67 355 | 2.18 352 | 7.13 349 | 1.07 349 | 9.90 346 |
|
uanet_test | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
cdsmvs_eth3d_5k | | | 23.24 320 | 30.99 321 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 97.63 128 | 0.00 351 | 0.00 352 | 96.88 129 | 84.38 146 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
pcd_1.5k_mvsjas | | | 7.39 324 | 9.85 326 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 88.65 89 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
sosnet-low-res | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
sosnet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
uncertanet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
Regformer | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
ab-mvs-re | | | 8.06 323 | 10.74 325 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 96.69 138 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
uanet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
test_241102_TWO | | | | | | | | | 98.27 28 | 95.13 15 | 98.93 5 | 98.89 4 | 94.99 7 | 99.85 14 | 97.52 2 | 99.65 9 | 99.74 5 |
|
test_0728_THIRD | | | | | | | | | | 94.78 30 | 98.73 7 | 98.87 5 | 95.87 2 | 99.84 18 | 97.45 5 | 99.72 2 | 99.77 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 128 |
|
test_part1 | | | | | 0.00 336 | | 0.00 356 | 0.00 347 | 98.26 32 | | | | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
sam_mvs1 | | | | | | | | | | | | | 82.76 175 | | | | 98.45 128 |
|
sam_mvs | | | | | | | | | | | | | 81.94 194 | | | | |
|
MTGPA | | | | | | | | | 98.08 64 | | | | | | | | |
|
test_post1 | | | | | | | | 92.81 313 | | | | 16.58 350 | 80.53 213 | 97.68 264 | 86.20 238 | | |
|
test_post | | | | | | | | | | | | 17.58 349 | 81.76 196 | 98.08 216 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 318 | 82.65 179 | 98.10 211 | | | |
|
MTMP | | | | | | | | 97.86 54 | 82.03 347 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 79 | 99.38 47 | 99.45 43 |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 94 | 99.38 47 | 99.50 35 |
|
test_prior4 | | | | | | | 93.66 57 | 96.42 190 | | | | | | | | | |
|
test_prior2 | | | | | | | | 96.35 199 | | 92.80 91 | 96.03 73 | 97.59 96 | 92.01 39 | | 95.01 70 | 99.38 47 | |
|
旧先验2 | | | | | | | | 95.94 227 | | 81.66 310 | 97.34 30 | | | 98.82 154 | 92.26 120 | | |
|
新几何2 | | | | | | | | 95.79 234 | | | | | | | | | |
|
无先验 | | | | | | | | 95.79 234 | 97.87 104 | 83.87 295 | | | | 99.65 52 | 87.68 212 | | 98.89 96 |
|
原ACMM2 | | | | | | | | 95.67 237 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.67 48 | 85.96 246 | | |
|
segment_acmp | | | | | | | | | | | | | 92.89 21 | | | | |
|
testdata1 | | | | | | | | 95.26 258 | | 93.10 78 | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.51 139 | | | | | 98.60 174 | 93.02 114 | 92.23 203 | 95.86 216 |
|
plane_prior4 | | | | | | | | | | | | 96.64 141 | | | | | |
|
plane_prior3 | | | | | | | 90.00 160 | | | 94.46 38 | 91.34 173 | | | | | | |
|
plane_prior2 | | | | | | | | 97.74 66 | | 94.85 23 | | | | | | | |
|
plane_prior | | | | | | | 89.99 162 | 97.24 118 | | 94.06 46 | | | | | | 92.16 207 | |
|
n2 | | | | | | | | | 0.00 357 | | | | | | | | |
|
nn | | | | | | | | | 0.00 357 | | | | | | | | |
|
door-mid | | | | | | | | | 91.06 336 | | | | | | | | |
|
test11 | | | | | | | | | 97.88 102 | | | | | | | | |
|
door | | | | | | | | | 91.13 335 | | | | | | | | |
|
HQP5-MVS | | | | | | | 89.33 187 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.13 126 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 196 | | | 98.50 181 | | | 95.78 223 |
|
HQP3-MVS | | | | | | | | | 97.39 162 | | | | | | | 92.10 208 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 205 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 339 | 93.10 309 | | 83.88 294 | 93.55 128 | | 82.47 183 | | 86.25 237 | | 98.38 136 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 236 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 225 | |
|
Test By Simon | | | | | | | | | | | | | 88.73 88 | | | | |
|