This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND95.01 1598.79 186.43 4097.09 1097.49 599.61 395.62 499.08 698.99 5
MSP-MVS95.67 196.02 194.64 3998.78 285.93 5697.09 1096.73 7390.27 2797.04 798.05 591.47 599.55 1195.62 499.08 698.45 30
test072698.78 285.93 5697.19 697.47 890.27 2797.64 398.13 191.47 5
IU-MVS98.77 486.00 5396.84 6281.26 23297.26 595.50 699.13 399.03 4
test_241102_ONE98.77 485.99 5497.44 1390.26 2997.71 197.96 792.31 299.38 28
region2R94.43 2194.27 2394.92 2098.65 686.67 3296.92 1897.23 3288.60 6993.58 4297.27 2385.22 5499.54 1592.21 4298.74 2898.56 18
ACMMPR94.43 2194.28 2194.91 2298.63 786.69 3096.94 1497.32 2488.63 6793.53 4597.26 2585.04 5799.54 1592.35 3998.78 2098.50 20
HFP-MVS94.52 1694.40 1894.86 2598.61 886.81 2496.94 1497.34 1988.63 6793.65 3897.21 2886.10 4399.49 2292.35 3998.77 2398.30 39
#test#94.32 2794.14 3094.86 2598.61 886.81 2496.43 3097.34 1987.51 9893.65 3897.21 2886.10 4399.49 2291.68 6098.77 2398.30 39
test_part298.55 1087.22 1696.40 10
XVS94.45 1994.32 1994.85 2798.54 1186.60 3596.93 1697.19 3590.66 2392.85 5497.16 3385.02 5899.49 2291.99 4998.56 4698.47 26
X-MVStestdata88.31 15686.13 19694.85 2798.54 1186.60 3596.93 1697.19 3590.66 2392.85 5423.41 34685.02 5899.49 2291.99 4998.56 4698.47 26
ZNCC-MVS94.47 1794.28 2195.03 1498.52 1386.96 1796.85 2297.32 2488.24 7893.15 5097.04 3886.17 4299.62 192.40 3798.81 1798.52 19
mPP-MVS93.99 3793.78 4094.63 4098.50 1485.90 6196.87 2096.91 5588.70 6591.83 8397.17 3283.96 7099.55 1191.44 6598.64 4298.43 32
DVP-MVS95.42 495.56 494.98 1998.49 1586.52 3796.91 1997.47 891.73 896.10 1296.69 5389.90 899.30 3894.70 898.04 6299.13 1
MP-MVScopyleft94.25 2894.07 3394.77 3498.47 1686.31 4696.71 2596.98 4789.04 5691.98 7797.19 3085.43 5299.56 692.06 4898.79 1898.44 31
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS94.45 1994.20 2795.19 998.46 1787.50 1395.00 10197.12 4087.13 10392.51 6896.30 6989.24 1399.34 3293.46 2098.62 4398.73 10
PGM-MVS93.96 3893.72 4294.68 3798.43 1886.22 4995.30 7997.78 187.45 9993.26 4697.33 2084.62 6399.51 2090.75 7898.57 4598.32 38
zzz-MVS94.47 1794.30 2095.00 1698.42 1986.95 1895.06 9996.97 4891.07 1393.14 5197.56 1384.30 6599.56 693.43 2198.75 2698.47 26
MTAPA94.42 2394.22 2495.00 1698.42 1986.95 1894.36 14996.97 4891.07 1393.14 5197.56 1384.30 6599.56 693.43 2198.75 2698.47 26
GST-MVS94.21 3293.97 3694.90 2498.41 2186.82 2396.54 2997.19 3588.24 7893.26 4696.83 4685.48 5199.59 491.43 6698.40 5198.30 39
HPM-MVScopyleft94.02 3693.88 3794.43 4998.39 2285.78 6397.25 597.07 4486.90 11192.62 6596.80 5084.85 6199.17 4892.43 3598.65 4198.33 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS94.34 2594.21 2694.74 3698.39 2286.64 3497.60 197.24 3088.53 7192.73 6197.23 2685.20 5599.32 3692.15 4598.83 1698.25 48
DPE-MVS95.57 295.67 295.25 798.36 2487.28 1595.56 7097.51 489.13 5497.14 697.91 891.64 499.62 194.61 1099.17 298.86 7
HPM-MVS_fast93.40 5293.22 5093.94 6098.36 2484.83 7497.15 896.80 6885.77 13292.47 6997.13 3482.38 8199.07 5690.51 8098.40 5197.92 73
DP-MVS Recon91.95 7391.28 7893.96 5998.33 2685.92 5894.66 12496.66 8182.69 19890.03 10895.82 9082.30 8499.03 6284.57 14396.48 9596.91 113
APDe-MVS95.46 395.64 394.91 2298.26 2786.29 4897.46 297.40 1789.03 5796.20 1198.10 289.39 1299.34 3295.88 199.03 899.10 3
TSAR-MVS + MP.94.85 1194.94 994.58 4298.25 2886.33 4496.11 4496.62 8488.14 8396.10 1296.96 4289.09 1498.94 7994.48 1198.68 3498.48 22
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 894.91 1095.83 298.25 2889.65 295.92 5496.96 5191.75 794.02 3296.83 4688.12 2099.55 1193.41 2398.94 1198.28 43
testtj94.39 2494.18 2895.00 1698.24 3086.77 2896.16 3997.23 3287.28 10194.85 2397.04 3886.99 3599.52 1991.54 6298.33 5498.71 11
CPTT-MVS91.99 7291.80 7292.55 10498.24 3081.98 14896.76 2496.49 9181.89 21790.24 10496.44 6678.59 12698.61 10189.68 8597.85 6897.06 105
SR-MVS94.23 3094.17 2994.43 4998.21 3285.78 6396.40 3296.90 5688.20 8194.33 2697.40 1784.75 6299.03 6293.35 2497.99 6398.48 22
MP-MVS-pluss94.21 3294.00 3594.85 2798.17 3386.65 3394.82 11397.17 3886.26 12392.83 5697.87 985.57 5099.56 694.37 1398.92 1298.34 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVS95.20 695.07 895.59 398.14 3488.48 696.26 3697.28 2885.90 12997.67 298.10 288.41 1699.56 694.66 999.19 198.71 11
CNVR-MVS95.40 595.37 595.50 598.11 3588.51 595.29 8196.96 5192.09 395.32 1897.08 3689.49 1199.33 3595.10 798.85 1498.66 13
114514_t89.51 12288.50 13192.54 10598.11 3581.99 14795.16 9296.36 9970.19 32585.81 17295.25 10476.70 14398.63 9982.07 17896.86 8597.00 109
ACMMPcopyleft93.24 5692.88 5994.30 5398.09 3785.33 7096.86 2197.45 1188.33 7590.15 10697.03 4081.44 9599.51 2090.85 7795.74 10198.04 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft94.24 2994.07 3394.75 3598.06 3886.90 2195.88 5596.94 5385.68 13595.05 2297.18 3187.31 2999.07 5691.90 5698.61 4498.28 43
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG93.23 5793.05 5493.76 6798.04 3984.07 9496.22 3797.37 1884.15 16690.05 10795.66 9587.77 2299.15 5189.91 8398.27 5698.07 61
ACMMP_NAP94.74 1494.56 1595.28 698.02 4087.70 1095.68 6397.34 1988.28 7795.30 1997.67 1285.90 4799.54 1593.91 1698.95 1098.60 16
OPU-MVS96.21 198.00 4190.85 197.13 997.08 3692.59 198.94 7992.25 4198.99 998.84 8
APD-MVS_3200maxsize93.78 4293.77 4193.80 6697.92 4284.19 9296.30 3496.87 6086.96 10793.92 3497.47 1583.88 7198.96 7892.71 3397.87 6798.26 47
xxxxxxxxxxxxxcwj94.76 1394.85 1294.48 4697.85 4385.63 6695.21 8796.82 6589.44 4395.71 1497.70 1088.28 1899.35 3093.89 1798.78 2098.48 22
save fliter97.85 4385.63 6695.21 8796.82 6589.44 43
SF-MVS94.97 994.90 1195.20 897.84 4587.76 896.65 2797.48 787.76 9295.71 1497.70 1088.28 1899.35 3093.89 1798.78 2098.48 22
NCCC94.81 1294.69 1495.17 1097.83 4687.46 1495.66 6596.93 5492.34 293.94 3396.58 6087.74 2399.44 2692.83 3198.40 5198.62 15
ETH3 D test640093.64 4693.22 5094.92 2097.79 4786.84 2295.31 7697.26 2982.67 19993.81 3696.29 7087.29 3099.27 4189.87 8498.67 3698.65 14
9.1494.47 1697.79 4796.08 4597.44 1386.13 12795.10 2197.40 1788.34 1799.22 4493.25 2698.70 31
CDPH-MVS92.83 6192.30 6794.44 4797.79 4786.11 5194.06 16896.66 8180.09 24492.77 5896.63 5786.62 3799.04 6187.40 11198.66 3998.17 52
ETH3D-3000-0.194.61 1594.44 1795.12 1197.70 5087.71 995.98 5197.44 1386.67 11695.25 2097.31 2187.73 2499.24 4293.11 2998.76 2598.40 33
DP-MVS87.25 19385.36 22192.90 8897.65 5183.24 11494.81 11492.00 26874.99 29481.92 26195.00 11272.66 19799.05 5866.92 30892.33 15996.40 125
PAPM_NR91.22 8790.78 8992.52 10697.60 5281.46 16094.37 14896.24 10686.39 12187.41 14394.80 12182.06 9098.48 10782.80 16795.37 10997.61 83
TEST997.53 5386.49 3894.07 16696.78 6981.61 22592.77 5896.20 7587.71 2599.12 53
train_agg93.44 5093.08 5394.52 4497.53 5386.49 3894.07 16696.78 6981.86 21892.77 5896.20 7587.63 2699.12 5392.14 4698.69 3297.94 70
abl_693.18 5893.05 5493.57 7097.52 5584.27 9195.53 7196.67 8087.85 8993.20 4997.22 2780.35 10299.18 4791.91 5397.21 7897.26 96
test_897.49 5686.30 4794.02 17196.76 7281.86 21892.70 6296.20 7587.63 2699.02 66
DeepC-MVS_fast89.43 294.04 3593.79 3994.80 3397.48 5786.78 2695.65 6796.89 5789.40 4692.81 5796.97 4185.37 5399.24 4290.87 7698.69 3298.38 35
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary89.89 11589.07 11992.37 11497.41 5883.03 12094.42 14095.92 12882.81 19686.34 16594.65 12673.89 18099.02 6680.69 20395.51 10495.05 170
agg_prior193.29 5492.97 5794.26 5497.38 5985.92 5893.92 17696.72 7581.96 21292.16 7396.23 7387.85 2198.97 7591.95 5298.55 4897.90 74
agg_prior97.38 5985.92 5896.72 7592.16 7398.97 75
原ACMM192.01 12497.34 6181.05 17096.81 6778.89 25690.45 10295.92 8682.65 7898.84 9080.68 20498.26 5796.14 133
MSLP-MVS++93.72 4394.08 3292.65 10097.31 6283.43 11095.79 5897.33 2290.03 3293.58 4296.96 4284.87 6097.76 15892.19 4498.66 3996.76 116
新几何193.10 7897.30 6384.35 9095.56 15771.09 32291.26 9596.24 7282.87 7798.86 8579.19 22598.10 6096.07 140
test_prior393.60 4793.53 4593.82 6397.29 6484.49 8194.12 15996.88 5887.67 9592.63 6396.39 6786.62 3798.87 8291.50 6398.67 3698.11 59
test_prior93.82 6397.29 6484.49 8196.88 5898.87 8298.11 59
112190.42 10389.49 10893.20 7497.27 6684.46 8492.63 22295.51 16271.01 32391.20 9696.21 7482.92 7699.05 5880.56 20698.07 6196.10 138
PLCcopyleft84.53 789.06 13788.03 14492.15 12297.27 6682.69 13494.29 15195.44 16979.71 24984.01 22794.18 14276.68 14498.75 9477.28 24293.41 14095.02 171
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS94.96 1095.33 693.88 6197.25 6886.69 3096.19 3897.11 4290.42 2596.95 997.27 2389.53 1096.91 22794.38 1298.85 1498.03 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.34 5297.13 6986.15 5096.29 10191.04 9885.08 5699.01 6898.13 5997.86 75
MG-MVS91.77 7691.70 7492.00 12697.08 7080.03 19893.60 18895.18 18387.85 8990.89 9996.47 6582.06 9098.36 11785.07 13597.04 8297.62 82
SteuartSystems-ACMMP95.20 695.32 794.85 2796.99 7186.33 4497.33 397.30 2691.38 1195.39 1797.46 1688.98 1599.40 2794.12 1498.89 1398.82 9
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR93.45 4993.31 4893.84 6296.99 7184.84 7393.24 20597.24 3088.76 6391.60 8895.85 8986.07 4598.66 9691.91 5398.16 5898.03 65
CNLPA89.07 13687.98 14592.34 11596.87 7384.78 7594.08 16593.24 24381.41 22884.46 21195.13 10975.57 15796.62 23777.21 24393.84 13295.61 156
PHI-MVS93.89 4193.65 4394.62 4196.84 7486.43 4096.69 2697.49 585.15 15093.56 4496.28 7185.60 4999.31 3792.45 3498.79 1898.12 57
旧先验196.79 7581.81 15195.67 14896.81 4886.69 3697.66 7196.97 110
ETH3D cwj APD-0.1693.91 3993.53 4595.06 1396.76 7687.78 794.92 10697.21 3484.33 16493.89 3597.09 3587.20 3199.29 4091.90 5698.44 5098.12 57
LFMVS90.08 10889.13 11892.95 8696.71 7782.32 14396.08 4589.91 31686.79 11292.15 7596.81 4862.60 28598.34 12087.18 11593.90 13098.19 51
Anonymous20240521187.68 17186.13 19692.31 11796.66 7880.74 17994.87 11091.49 28380.47 24089.46 11395.44 9854.72 32298.23 12682.19 17689.89 18397.97 68
TAPA-MVS84.62 688.16 16087.01 16791.62 14496.64 7980.65 18094.39 14396.21 11176.38 28086.19 16895.44 9879.75 11098.08 14062.75 32395.29 11196.13 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS90.30 10489.37 11293.07 8196.61 8084.48 8395.68 6395.67 14882.36 20387.85 13592.85 18676.63 14598.80 9280.01 21496.68 8895.91 145
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet92.24 7191.91 7193.24 7396.59 8183.43 11094.84 11296.44 9289.19 5294.08 3195.90 8777.85 13698.17 13088.90 9393.38 14198.13 56
TSAR-MVS + GP.93.66 4593.41 4794.41 5196.59 8186.78 2694.40 14193.93 23289.77 3794.21 2895.59 9787.35 2898.61 10192.72 3296.15 9897.83 77
test22296.55 8381.70 15392.22 23695.01 19068.36 32890.20 10596.14 8080.26 10597.80 6996.05 142
Anonymous2024052988.09 16286.59 18292.58 10396.53 8481.92 15095.99 4995.84 13674.11 30289.06 11995.21 10661.44 29398.81 9183.67 15587.47 22097.01 108
Anonymous2023121186.59 21585.13 22490.98 17096.52 8581.50 15696.14 4196.16 11273.78 30483.65 23692.15 20963.26 28397.37 19382.82 16681.74 27694.06 217
DeepPCF-MVS89.96 194.20 3494.77 1392.49 10796.52 8580.00 20094.00 17397.08 4390.05 3195.65 1697.29 2289.66 998.97 7593.95 1598.71 2998.50 20
testdata90.49 18396.40 8777.89 24695.37 17572.51 31593.63 4096.69 5382.08 8997.65 16483.08 15997.39 7695.94 144
PVSNet_Blended_VisFu91.38 8390.91 8692.80 9196.39 8883.17 11694.87 11096.66 8183.29 18589.27 11594.46 13280.29 10499.17 4887.57 10995.37 10996.05 142
API-MVS90.66 9790.07 9892.45 10996.36 8984.57 7996.06 4795.22 18282.39 20189.13 11694.27 14080.32 10398.46 11080.16 21396.71 8794.33 205
F-COLMAP87.95 16586.80 17291.40 15096.35 9080.88 17594.73 11995.45 16779.65 25082.04 25994.61 12771.13 21098.50 10676.24 25391.05 17094.80 184
VDD-MVS90.74 9389.92 10493.20 7496.27 9183.02 12195.73 6093.86 23388.42 7492.53 6696.84 4562.09 28898.64 9890.95 7492.62 15597.93 72
OMC-MVS91.23 8690.62 9093.08 7996.27 9184.07 9493.52 19095.93 12786.95 10889.51 11196.13 8178.50 12898.35 11985.84 12992.90 15196.83 115
DPM-MVS92.58 6691.74 7395.08 1296.19 9389.31 392.66 22196.56 8983.44 18191.68 8795.04 11186.60 4098.99 7285.60 13197.92 6696.93 112
CHOSEN 1792x268888.84 14387.69 15092.30 11896.14 9481.42 16290.01 27895.86 13574.52 29987.41 14393.94 15175.46 15898.36 11780.36 20995.53 10397.12 104
thres100view90087.63 17686.71 17590.38 18996.12 9578.55 22895.03 10091.58 27987.15 10288.06 13192.29 20568.91 24398.10 13370.13 29091.10 16694.48 201
PVSNet_BlendedMVS89.98 11089.70 10590.82 17296.12 9581.25 16593.92 17696.83 6383.49 18089.10 11792.26 20681.04 9998.85 8886.72 12487.86 21892.35 287
PVSNet_Blended90.73 9490.32 9391.98 12796.12 9581.25 16592.55 22696.83 6382.04 21089.10 11792.56 19681.04 9998.85 8886.72 12495.91 9995.84 149
UA-Net92.83 6192.54 6493.68 6896.10 9884.71 7695.66 6596.39 9791.92 493.22 4896.49 6483.16 7498.87 8284.47 14495.47 10697.45 91
thres600view787.65 17386.67 17790.59 17596.08 9978.72 22494.88 10991.58 27987.06 10588.08 13092.30 20468.91 24398.10 13370.05 29391.10 16694.96 175
DeepC-MVS88.79 393.31 5392.99 5694.26 5496.07 10085.83 6294.89 10896.99 4689.02 5889.56 11097.37 1982.51 8099.38 2892.20 4398.30 5597.57 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D87.89 16686.32 19192.59 10296.07 10082.92 12595.23 8594.92 19875.66 28782.89 24995.98 8472.48 20099.21 4568.43 30095.23 11495.64 155
HyFIR lowres test88.09 16286.81 17191.93 13196.00 10280.63 18190.01 27895.79 14073.42 30787.68 14092.10 21473.86 18197.96 14980.75 20291.70 16297.19 100
tfpn200view987.58 18086.64 17890.41 18695.99 10378.64 22694.58 12791.98 27086.94 10988.09 12891.77 22469.18 24098.10 13370.13 29091.10 16694.48 201
thres40087.62 17886.64 17890.57 17695.99 10378.64 22694.58 12791.98 27086.94 10988.09 12891.77 22469.18 24098.10 13370.13 29091.10 16694.96 175
MVS_111021_LR92.47 6892.29 6892.98 8495.99 10384.43 8893.08 21096.09 11688.20 8191.12 9795.72 9481.33 9797.76 15891.74 5897.37 7796.75 117
PatchMatch-RL86.77 21185.54 21590.47 18595.88 10682.71 13390.54 26892.31 25979.82 24884.32 21991.57 23468.77 24596.39 25673.16 27693.48 13992.32 288
EPP-MVSNet91.70 7991.56 7592.13 12395.88 10680.50 18697.33 395.25 17986.15 12589.76 10995.60 9683.42 7398.32 12387.37 11393.25 14497.56 87
IS-MVSNet91.43 8291.09 8392.46 10895.87 10881.38 16396.95 1393.69 23889.72 3989.50 11295.98 8478.57 12797.77 15783.02 16196.50 9498.22 50
PAPR90.02 10989.27 11692.29 11995.78 10980.95 17392.68 22096.22 10881.91 21586.66 15893.75 16482.23 8598.44 11479.40 22494.79 11697.48 89
Vis-MVSNet (Re-imp)89.59 12089.44 11090.03 20495.74 11075.85 27795.61 6890.80 30187.66 9787.83 13695.40 10176.79 14196.46 25378.37 23096.73 8697.80 78
test_yl90.69 9590.02 10292.71 9695.72 11182.41 14094.11 16195.12 18585.63 13691.49 8994.70 12274.75 16598.42 11586.13 12792.53 15697.31 94
DCV-MVSNet90.69 9590.02 10292.71 9695.72 11182.41 14094.11 16195.12 18585.63 13691.49 8994.70 12274.75 16598.42 11586.13 12792.53 15697.31 94
canonicalmvs93.27 5592.75 6094.85 2795.70 11387.66 1196.33 3396.41 9590.00 3394.09 3094.60 12882.33 8398.62 10092.40 3792.86 15298.27 45
CANet93.54 4893.20 5294.55 4395.65 11485.73 6594.94 10496.69 7991.89 590.69 10095.88 8881.99 9299.54 1593.14 2897.95 6598.39 34
3Dnovator+87.14 492.42 6991.37 7695.55 495.63 11588.73 497.07 1296.77 7190.84 1684.02 22696.62 5875.95 15199.34 3287.77 10697.68 7098.59 17
alignmvs93.08 5992.50 6594.81 3295.62 11687.61 1295.99 4996.07 11889.77 3794.12 2994.87 11680.56 10198.66 9692.42 3693.10 14798.15 54
CS-MVS92.60 6592.56 6392.73 9595.55 11782.35 14296.14 4196.85 6188.71 6491.44 9191.51 23584.13 6798.48 10791.27 6797.47 7597.34 93
Regformer-194.22 3194.13 3194.51 4595.54 11886.36 4394.57 12996.44 9291.69 994.32 2796.56 6287.05 3499.03 6293.35 2497.65 7298.15 54
Regformer-294.33 2694.22 2494.68 3795.54 11886.75 2994.57 12996.70 7791.84 694.41 2496.56 6287.19 3299.13 5293.50 1997.65 7298.16 53
WTY-MVS89.60 11988.92 12391.67 14395.47 12081.15 16992.38 23094.78 20883.11 18889.06 11994.32 13578.67 12596.61 24081.57 19090.89 17297.24 97
DELS-MVS93.43 5193.25 4993.97 5895.42 12185.04 7293.06 21297.13 3990.74 2091.84 8195.09 11086.32 4199.21 4591.22 6898.45 4997.65 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-393.68 4493.64 4493.81 6595.36 12284.61 7794.68 12195.83 13791.27 1293.60 4196.71 5185.75 4898.86 8592.87 3096.65 8997.96 69
Regformer-493.91 3993.81 3894.19 5695.36 12285.47 6894.68 12196.41 9591.60 1093.75 3796.71 5185.95 4699.10 5593.21 2796.65 8998.01 67
thres20087.21 19786.24 19490.12 19995.36 12278.53 22993.26 20292.10 26486.42 12088.00 13391.11 24869.24 23998.00 14669.58 29491.04 17193.83 231
Vis-MVSNetpermissive91.75 7791.23 7993.29 7195.32 12583.78 10196.14 4195.98 12389.89 3490.45 10296.58 6075.09 16198.31 12484.75 14196.90 8397.78 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
BH-RMVSNet88.37 15487.48 15591.02 16595.28 12679.45 21092.89 21793.07 24685.45 14286.91 15394.84 12070.35 22397.76 15873.97 27194.59 12195.85 148
COLMAP_ROBcopyleft80.39 1683.96 25682.04 26289.74 21695.28 12679.75 20594.25 15392.28 26075.17 29278.02 29893.77 16258.60 31197.84 15565.06 31685.92 23291.63 298
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJ91.18 8890.92 8591.96 12995.26 12882.60 13792.09 24195.70 14686.27 12291.84 8192.46 19879.70 11298.99 7289.08 9195.86 10094.29 206
BH-untuned88.60 15088.13 14390.01 20695.24 12978.50 23193.29 20094.15 22684.75 15884.46 21193.40 16675.76 15297.40 18977.59 23994.52 12394.12 212
ETV-MVS92.74 6392.66 6192.97 8595.20 13084.04 9695.07 9696.51 9090.73 2192.96 5391.19 24284.06 6898.34 12091.72 5996.54 9296.54 124
EIA-MVS91.95 7391.94 7091.98 12795.16 13180.01 19995.36 7396.73 7388.44 7289.34 11492.16 20883.82 7298.45 11389.35 8897.06 8197.48 89
ab-mvs89.41 12888.35 13592.60 10195.15 13282.65 13592.20 23795.60 15583.97 17088.55 12393.70 16574.16 17698.21 12982.46 17289.37 19196.94 111
VDDNet89.56 12188.49 13392.76 9395.07 13382.09 14596.30 3493.19 24481.05 23691.88 7996.86 4461.16 29898.33 12288.43 9992.49 15897.84 76
AllTest83.42 26181.39 26689.52 22495.01 13477.79 25093.12 20790.89 29977.41 27276.12 30793.34 16754.08 32597.51 17368.31 30184.27 24593.26 254
TestCases89.52 22495.01 13477.79 25090.89 29977.41 27276.12 30793.34 16754.08 32597.51 17368.31 30184.27 24593.26 254
EI-MVSNet-Vis-set93.01 6092.92 5893.29 7195.01 13483.51 10994.48 13395.77 14190.87 1592.52 6796.67 5584.50 6499.00 7191.99 4994.44 12697.36 92
xiu_mvs_v2_base91.13 8990.89 8791.86 13494.97 13782.42 13892.24 23595.64 15386.11 12891.74 8693.14 17879.67 11598.89 8189.06 9295.46 10794.28 207
tttt051788.61 14987.78 14991.11 16094.96 13877.81 24995.35 7489.69 32085.09 15288.05 13294.59 12966.93 25798.48 10783.27 15892.13 16197.03 107
baseline188.10 16187.28 16190.57 17694.96 13880.07 19494.27 15291.29 28886.74 11387.41 14394.00 14876.77 14296.20 26480.77 20179.31 30895.44 160
Test_1112_low_res87.65 17386.51 18491.08 16194.94 14079.28 21891.77 24694.30 22076.04 28583.51 24092.37 20177.86 13597.73 16278.69 22989.13 19796.22 131
1112_ss88.42 15287.33 15991.72 14194.92 14180.98 17192.97 21594.54 21278.16 26983.82 23193.88 15678.78 12397.91 15379.45 22089.41 19096.26 130
QAPM89.51 12288.15 14293.59 6994.92 14184.58 7896.82 2396.70 7778.43 26483.41 24296.19 7873.18 19299.30 3877.11 24596.54 9296.89 114
BH-w/o87.57 18187.05 16689.12 23394.90 14377.90 24592.41 22893.51 24082.89 19583.70 23491.34 23675.75 15397.07 21775.49 25893.49 13792.39 285
thisisatest053088.67 14787.61 15391.86 13494.87 14480.07 19494.63 12589.90 31784.00 16988.46 12593.78 16166.88 25998.46 11083.30 15792.65 15497.06 105
EI-MVSNet-UG-set92.74 6392.62 6293.12 7794.86 14583.20 11594.40 14195.74 14490.71 2292.05 7696.60 5984.00 6998.99 7291.55 6193.63 13497.17 101
HY-MVS83.01 1289.03 13887.94 14792.29 11994.86 14582.77 12792.08 24294.49 21381.52 22786.93 15292.79 19278.32 13198.23 12679.93 21590.55 17395.88 147
Fast-Effi-MVS+89.41 12888.64 12891.71 14294.74 14780.81 17793.54 18995.10 18783.11 18886.82 15690.67 25979.74 11197.75 16180.51 20893.55 13596.57 122
ACMP84.23 889.01 14088.35 13590.99 16894.73 14881.27 16495.07 9695.89 13386.48 11883.67 23594.30 13669.33 23597.99 14787.10 12088.55 20293.72 240
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet78.82 1885.55 23384.65 23588.23 25894.72 14971.93 30687.12 31292.75 25278.80 25984.95 20290.53 26164.43 27996.71 23474.74 26693.86 13196.06 141
LCM-MVSNet-Re88.30 15788.32 13888.27 25594.71 15072.41 30593.15 20690.98 29587.77 9179.25 29291.96 22078.35 13095.75 28483.04 16095.62 10296.65 120
HQP_MVS90.60 10190.19 9591.82 13794.70 15182.73 13195.85 5696.22 10890.81 1786.91 15394.86 11774.23 17298.12 13188.15 10189.99 17994.63 187
plane_prior794.70 15182.74 130
ACMH+81.04 1485.05 24483.46 25189.82 21294.66 15379.37 21294.44 13894.12 22982.19 20678.04 29792.82 18958.23 31297.54 17173.77 27382.90 26292.54 279
ACMM84.12 989.14 13488.48 13491.12 15794.65 15481.22 16795.31 7696.12 11585.31 14685.92 17194.34 13370.19 22698.06 14285.65 13088.86 20094.08 216
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
plane_prior194.59 155
3Dnovator86.66 591.73 7890.82 8894.44 4794.59 15586.37 4297.18 797.02 4589.20 5184.31 22196.66 5673.74 18499.17 4886.74 12197.96 6497.79 79
plane_prior694.52 15782.75 12874.23 172
UGNet89.95 11288.95 12292.95 8694.51 15883.31 11395.70 6295.23 18089.37 4787.58 14193.94 15164.00 28098.78 9383.92 15096.31 9796.74 118
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test89.45 12588.90 12491.12 15794.47 15981.49 15895.30 7996.14 11386.73 11485.45 18695.16 10769.89 22898.10 13387.70 10789.23 19593.77 236
LGP-MVS_train91.12 15794.47 15981.49 15896.14 11386.73 11485.45 18695.16 10769.89 22898.10 13387.70 10789.23 19593.77 236
baseline92.39 7092.29 6892.69 9994.46 16181.77 15294.14 15896.27 10289.22 5091.88 7996.00 8382.35 8297.99 14791.05 7095.27 11398.30 39
ACMH80.38 1785.36 23683.68 24790.39 18794.45 16280.63 18194.73 11994.85 20282.09 20777.24 30292.65 19460.01 30597.58 16872.25 27984.87 24192.96 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB82.13 1386.26 22384.90 23090.34 19294.44 16381.50 15692.31 23494.89 19983.03 19079.63 28992.67 19369.69 23197.79 15671.20 28286.26 23191.72 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
casdiffmvs92.51 6792.43 6692.74 9494.41 16481.98 14894.54 13196.23 10789.57 4191.96 7896.17 7982.58 7998.01 14590.95 7495.45 10898.23 49
MVS_Test91.31 8591.11 8191.93 13194.37 16580.14 19193.46 19395.80 13986.46 11991.35 9493.77 16282.21 8698.09 13987.57 10994.95 11597.55 88
NP-MVS94.37 16582.42 13893.98 149
TR-MVS86.78 20885.76 21389.82 21294.37 16578.41 23392.47 22792.83 24981.11 23586.36 16492.40 20068.73 24697.48 17573.75 27489.85 18593.57 244
Effi-MVS+91.59 8191.11 8193.01 8394.35 16883.39 11294.60 12695.10 18787.10 10490.57 10193.10 18081.43 9698.07 14189.29 8994.48 12497.59 85
CLD-MVS89.47 12488.90 12491.18 15694.22 16982.07 14692.13 23996.09 11687.90 8785.37 19592.45 19974.38 17097.56 17087.15 11690.43 17493.93 222
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC94.17 17094.39 14388.81 6085.43 189
ACMP_Plane94.17 17094.39 14388.81 6085.43 189
HQP-MVS89.80 11689.28 11591.34 15294.17 17081.56 15494.39 14396.04 12188.81 6085.43 18993.97 15073.83 18297.96 14987.11 11889.77 18694.50 198
XVG-OURS89.40 13088.70 12791.52 14694.06 17381.46 16091.27 25896.07 11886.14 12688.89 12195.77 9268.73 24697.26 20187.39 11289.96 18195.83 150
sss88.93 14188.26 14190.94 17194.05 17480.78 17891.71 24995.38 17381.55 22688.63 12293.91 15575.04 16295.47 29682.47 17191.61 16396.57 122
PCF-MVS84.11 1087.74 17086.08 20092.70 9894.02 17584.43 8889.27 28895.87 13473.62 30684.43 21394.33 13478.48 12998.86 8570.27 28694.45 12594.81 183
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 19185.98 20391.08 16194.01 17683.10 11795.14 9394.94 19383.57 17684.37 21491.64 22766.59 26496.34 26078.23 23385.36 23793.79 232
test187.26 19185.98 20391.08 16194.01 17683.10 11795.14 9394.94 19383.57 17684.37 21491.64 22766.59 26496.34 26078.23 23385.36 23793.79 232
FMVSNet287.19 19885.82 20991.30 15394.01 17683.67 10494.79 11594.94 19383.57 17683.88 22992.05 21866.59 26496.51 24877.56 24085.01 24093.73 239
XVG-OURS-SEG-HR89.95 11289.45 10991.47 14894.00 17981.21 16891.87 24496.06 12085.78 13188.55 12395.73 9374.67 16897.27 19988.71 9689.64 18895.91 145
FIs90.51 10290.35 9290.99 16893.99 18080.98 17195.73 6097.54 389.15 5386.72 15794.68 12481.83 9497.24 20385.18 13488.31 21094.76 185
xiu_mvs_v1_base_debu90.64 9890.05 9992.40 11093.97 18184.46 8493.32 19595.46 16485.17 14792.25 7094.03 14370.59 21898.57 10390.97 7194.67 11794.18 208
xiu_mvs_v1_base90.64 9890.05 9992.40 11093.97 18184.46 8493.32 19595.46 16485.17 14792.25 7094.03 14370.59 21898.57 10390.97 7194.67 11794.18 208
xiu_mvs_v1_base_debi90.64 9890.05 9992.40 11093.97 18184.46 8493.32 19595.46 16485.17 14792.25 7094.03 14370.59 21898.57 10390.97 7194.67 11794.18 208
VPA-MVSNet89.62 11888.96 12191.60 14593.86 18482.89 12695.46 7297.33 2287.91 8688.43 12693.31 17074.17 17597.40 18987.32 11482.86 26394.52 196
MVSFormer91.68 8091.30 7792.80 9193.86 18483.88 9995.96 5295.90 13184.66 16091.76 8494.91 11477.92 13397.30 19589.64 8697.11 7997.24 97
lupinMVS90.92 9190.21 9493.03 8293.86 18483.88 9992.81 21893.86 23379.84 24791.76 8494.29 13777.92 13398.04 14390.48 8197.11 7997.17 101
IterMVS-LS88.36 15587.91 14889.70 21993.80 18778.29 23793.73 18295.08 18985.73 13384.75 20491.90 22279.88 10896.92 22683.83 15182.51 26493.89 224
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 24883.09 25490.14 19893.80 18780.05 19689.18 29193.09 24578.89 25678.19 29591.91 22165.86 27397.27 19968.47 29988.45 20693.11 263
FMVSNet387.40 18886.11 19891.30 15393.79 18983.64 10594.20 15694.81 20683.89 17184.37 21491.87 22368.45 24996.56 24578.23 23385.36 23793.70 241
FC-MVSNet-test90.27 10590.18 9690.53 17993.71 19079.85 20495.77 5997.59 289.31 4886.27 16694.67 12581.93 9397.01 22184.26 14688.09 21494.71 186
TAMVS89.21 13388.29 13991.96 12993.71 19082.62 13693.30 19994.19 22482.22 20587.78 13893.94 15178.83 12196.95 22477.70 23892.98 15096.32 127
ET-MVSNet_ETH3D87.51 18385.91 20792.32 11693.70 19283.93 9792.33 23290.94 29784.16 16572.09 32492.52 19769.90 22795.85 27989.20 9088.36 20997.17 101
CDS-MVSNet89.45 12588.51 13092.29 11993.62 19383.61 10793.01 21394.68 21181.95 21387.82 13793.24 17478.69 12496.99 22280.34 21093.23 14596.28 129
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet (Re)89.80 11689.07 11992.01 12493.60 19484.52 8094.78 11697.47 889.26 4986.44 16392.32 20382.10 8897.39 19284.81 14080.84 29094.12 212
VPNet88.20 15987.47 15690.39 18793.56 19579.46 20994.04 16995.54 16088.67 6686.96 15194.58 13069.33 23597.15 20984.05 14980.53 29594.56 194
thisisatest051587.33 18985.99 20291.37 15193.49 19679.55 20790.63 26789.56 32380.17 24287.56 14290.86 25367.07 25698.28 12581.50 19193.02 14996.29 128
mvs_anonymous89.37 13189.32 11389.51 22693.47 19774.22 28691.65 25294.83 20482.91 19485.45 18693.79 16081.23 9896.36 25986.47 12694.09 12897.94 70
CANet_DTU90.26 10689.41 11192.81 9093.46 19883.01 12293.48 19194.47 21489.43 4587.76 13994.23 14170.54 22299.03 6284.97 13696.39 9696.38 126
UniMVSNet_NR-MVSNet89.92 11489.29 11491.81 13993.39 19983.72 10294.43 13997.12 4089.80 3686.46 16093.32 16983.16 7497.23 20584.92 13781.02 28694.49 200
Effi-MVS+-dtu88.65 14888.35 13589.54 22393.33 20076.39 27294.47 13694.36 21787.70 9385.43 18989.56 28173.45 18797.26 20185.57 13291.28 16594.97 172
mvs-test189.45 12589.14 11790.38 18993.33 20077.63 25594.95 10394.36 21787.70 9387.10 15092.81 19073.45 18798.03 14485.57 13293.04 14895.48 158
WR-MVS88.38 15387.67 15290.52 18193.30 20280.18 18993.26 20295.96 12588.57 7085.47 18592.81 19076.12 14796.91 22781.24 19382.29 26694.47 203
WR-MVS_H87.80 16987.37 15889.10 23493.23 20378.12 24095.61 6897.30 2687.90 8783.72 23392.01 21979.65 11696.01 27276.36 25080.54 29493.16 261
test_040281.30 28479.17 28987.67 26893.19 20478.17 23992.98 21491.71 27575.25 29176.02 30990.31 26559.23 30996.37 25750.22 33783.63 25288.47 329
OPM-MVS90.12 10789.56 10791.82 13793.14 20583.90 9894.16 15795.74 14488.96 5987.86 13495.43 10072.48 20097.91 15388.10 10490.18 17893.65 242
CP-MVSNet87.63 17687.26 16388.74 24493.12 20676.59 26995.29 8196.58 8788.43 7383.49 24192.98 18375.28 15995.83 28078.97 22681.15 28293.79 232
diffmvs91.37 8491.23 7991.77 14093.09 20780.27 18892.36 23195.52 16187.03 10691.40 9394.93 11380.08 10697.44 18092.13 4794.56 12297.61 83
nrg03091.08 9090.39 9193.17 7693.07 20886.91 2096.41 3196.26 10388.30 7688.37 12794.85 11982.19 8797.64 16691.09 6982.95 25894.96 175
PAPM86.68 21285.39 21990.53 17993.05 20979.33 21789.79 28194.77 20978.82 25881.95 26093.24 17476.81 14097.30 19566.94 30693.16 14694.95 178
DU-MVS89.34 13288.50 13191.85 13693.04 21083.72 10294.47 13696.59 8689.50 4286.46 16093.29 17277.25 13797.23 20584.92 13781.02 28694.59 191
NR-MVSNet88.58 15187.47 15691.93 13193.04 21084.16 9394.77 11796.25 10589.05 5580.04 28593.29 17279.02 12097.05 21981.71 18980.05 30094.59 191
jason90.80 9290.10 9792.90 8893.04 21083.53 10893.08 21094.15 22680.22 24191.41 9294.91 11476.87 13997.93 15290.28 8296.90 8397.24 97
jason: jason.
RRT_test8_iter0586.90 20486.36 18888.52 24993.00 21373.27 29494.32 15095.96 12585.50 14184.26 22292.86 18560.76 30097.70 16388.32 10082.29 26694.60 190
PS-CasMVS87.32 19086.88 16888.63 24792.99 21476.33 27495.33 7596.61 8588.22 8083.30 24693.07 18173.03 19495.79 28378.36 23181.00 28893.75 238
MVSTER88.84 14388.29 13990.51 18292.95 21580.44 18793.73 18295.01 19084.66 16087.15 14793.12 17972.79 19697.21 20787.86 10587.36 22393.87 227
RPSCF85.07 24384.27 23987.48 27492.91 21670.62 31891.69 25192.46 25776.20 28482.67 25295.22 10563.94 28197.29 19877.51 24185.80 23494.53 195
FMVSNet185.85 22984.11 24191.08 16192.81 21783.10 11795.14 9394.94 19381.64 22382.68 25191.64 22759.01 31096.34 26075.37 26083.78 24893.79 232
tfpnnormal84.72 25083.23 25389.20 23192.79 21880.05 19694.48 13395.81 13882.38 20281.08 26991.21 24169.01 24296.95 22461.69 32580.59 29390.58 316
OpenMVScopyleft83.78 1188.74 14687.29 16093.08 7992.70 21985.39 6996.57 2896.43 9478.74 26180.85 27196.07 8269.64 23299.01 6878.01 23696.65 8994.83 182
TranMVSNet+NR-MVSNet88.84 14387.95 14691.49 14792.68 22083.01 12294.92 10696.31 10089.88 3585.53 18093.85 15876.63 14596.96 22381.91 18279.87 30394.50 198
MVS87.44 18686.10 19991.44 14992.61 22183.62 10692.63 22295.66 15067.26 32981.47 26392.15 20977.95 13298.22 12879.71 21795.48 10592.47 282
CHOSEN 280x42085.15 24283.99 24388.65 24692.47 22278.40 23479.68 33792.76 25174.90 29681.41 26589.59 27969.85 23095.51 29279.92 21695.29 11192.03 292
UniMVSNet_ETH3D87.53 18286.37 18791.00 16792.44 22378.96 22394.74 11895.61 15484.07 16885.36 19694.52 13159.78 30797.34 19482.93 16287.88 21796.71 119
131487.51 18386.57 18390.34 19292.42 22479.74 20692.63 22295.35 17778.35 26580.14 28291.62 23174.05 17797.15 20981.05 19493.53 13694.12 212
cl-mvsnet286.78 20885.98 20389.18 23292.34 22577.62 25690.84 26494.13 22881.33 23083.97 22890.15 26873.96 17996.60 24284.19 14782.94 25993.33 252
PEN-MVS86.80 20786.27 19388.40 25192.32 22675.71 27995.18 9096.38 9887.97 8482.82 25093.15 17773.39 19095.92 27576.15 25479.03 31093.59 243
cl_fuxian87.14 20086.50 18589.04 23692.20 22777.26 26191.22 26094.70 21082.01 21184.34 21890.43 26378.81 12296.61 24083.70 15481.09 28393.25 256
SCA86.32 22285.18 22389.73 21892.15 22876.60 26891.12 26191.69 27783.53 17985.50 18388.81 28866.79 26096.48 25076.65 24890.35 17696.12 135
XXY-MVS87.65 17386.85 17090.03 20492.14 22980.60 18393.76 18195.23 18082.94 19284.60 20694.02 14674.27 17195.49 29581.04 19583.68 25194.01 220
miper_ehance_all_eth87.22 19686.62 18189.02 23792.13 23077.40 26090.91 26394.81 20681.28 23184.32 21990.08 27079.26 11896.62 23783.81 15282.94 25993.04 266
IB-MVS80.51 1585.24 24183.26 25291.19 15592.13 23079.86 20391.75 24791.29 28883.28 18680.66 27488.49 29461.28 29498.46 11080.99 19879.46 30695.25 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 22184.98 22790.80 17392.10 23280.92 17490.24 27295.91 13073.10 31083.57 23988.39 29565.15 27597.46 17784.90 13991.43 16494.03 219
Fast-Effi-MVS+-dtu87.44 18686.72 17489.63 22192.04 23377.68 25494.03 17093.94 23185.81 13082.42 25391.32 23970.33 22497.06 21880.33 21190.23 17794.14 211
cl-mvsnet_86.52 21785.78 21088.75 24292.03 23476.46 27090.74 26594.30 22081.83 22083.34 24490.78 25775.74 15596.57 24381.74 18781.54 27893.22 258
cl-mvsnet186.53 21685.78 21088.75 24292.02 23576.45 27190.74 26594.30 22081.83 22083.34 24490.82 25575.75 15396.57 24381.73 18881.52 27993.24 257
RRT_MVS88.86 14287.68 15192.39 11392.02 23586.09 5294.38 14794.94 19385.45 14287.14 14993.84 15965.88 27297.11 21388.73 9586.77 23093.98 221
eth_miper_zixun_eth86.50 21885.77 21288.68 24591.94 23775.81 27890.47 26994.89 19982.05 20884.05 22590.46 26275.96 15096.77 23182.76 16879.36 30793.46 250
PS-MVSNAJss89.97 11189.62 10691.02 16591.90 23880.85 17695.26 8495.98 12386.26 12386.21 16794.29 13779.70 11297.65 16488.87 9488.10 21294.57 193
ITE_SJBPF88.24 25791.88 23977.05 26492.92 24785.54 13980.13 28393.30 17157.29 31496.20 26472.46 27884.71 24291.49 300
EI-MVSNet89.10 13588.86 12689.80 21591.84 24078.30 23693.70 18595.01 19085.73 13387.15 14795.28 10279.87 10997.21 20783.81 15287.36 22393.88 226
CVMVSNet84.69 25184.79 23384.37 30891.84 24064.92 33593.70 18591.47 28466.19 33186.16 16995.28 10267.18 25593.33 31980.89 20090.42 17594.88 180
MVS-HIRNet73.70 30572.20 30778.18 32091.81 24256.42 34282.94 33282.58 33855.24 33768.88 32966.48 33855.32 32095.13 30058.12 33288.42 20783.01 334
PatchmatchNetpermissive85.85 22984.70 23489.29 22991.76 24375.54 28088.49 29991.30 28781.63 22485.05 20088.70 29271.71 20496.24 26374.61 26889.05 19896.08 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TransMVSNet (Re)84.43 25383.06 25588.54 24891.72 24478.44 23295.18 9092.82 25082.73 19779.67 28892.12 21173.49 18695.96 27471.10 28568.73 33191.21 307
IterMVS-SCA-FT85.45 23484.53 23888.18 25991.71 24576.87 26690.19 27592.65 25585.40 14481.44 26490.54 26066.79 26095.00 30481.04 19581.05 28492.66 277
TinyColmap79.76 29477.69 29585.97 29791.71 24573.12 29589.55 28290.36 30775.03 29372.03 32590.19 26646.22 33896.19 26663.11 32181.03 28588.59 328
MDTV_nov1_ep1383.56 25091.69 24769.93 32287.75 30791.54 28178.60 26284.86 20388.90 28769.54 23396.03 27070.25 28788.93 199
miper_enhance_ethall86.90 20486.18 19589.06 23591.66 24877.58 25790.22 27494.82 20579.16 25384.48 21089.10 28479.19 11996.66 23584.06 14882.94 25992.94 269
DTE-MVSNet86.11 22485.48 21787.98 26391.65 24974.92 28294.93 10595.75 14387.36 10082.26 25593.04 18272.85 19595.82 28174.04 27077.46 31593.20 259
MIMVSNet82.59 26980.53 27388.76 24191.51 25078.32 23586.57 31590.13 31079.32 25180.70 27388.69 29352.98 32793.07 32366.03 31188.86 20094.90 179
pm-mvs186.61 21385.54 21589.82 21291.44 25180.18 18995.28 8394.85 20283.84 17281.66 26292.62 19572.45 20296.48 25079.67 21878.06 31192.82 274
Baseline_NR-MVSNet87.07 20186.63 18088.40 25191.44 25177.87 24794.23 15592.57 25684.12 16785.74 17492.08 21577.25 13796.04 26982.29 17579.94 30191.30 304
IterMVS84.88 24783.98 24487.60 26991.44 25176.03 27690.18 27692.41 25883.24 18781.06 27090.42 26466.60 26394.28 31079.46 21980.98 28992.48 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DWT-MVSNet_test84.95 24683.68 24788.77 24091.43 25473.75 29091.74 24890.98 29580.66 23983.84 23087.36 30962.44 28697.11 21378.84 22885.81 23395.46 159
MS-PatchMatch85.05 24484.16 24087.73 26791.42 25578.51 23091.25 25993.53 23977.50 27180.15 28191.58 23261.99 28995.51 29275.69 25794.35 12789.16 323
tpm284.08 25582.94 25687.48 27491.39 25671.27 31089.23 29090.37 30671.95 31884.64 20589.33 28267.30 25296.55 24775.17 26287.09 22794.63 187
v887.50 18586.71 17589.89 20991.37 25779.40 21194.50 13295.38 17384.81 15783.60 23891.33 23776.05 14897.42 18282.84 16580.51 29792.84 273
ADS-MVSNet281.66 27779.71 28487.50 27291.35 25874.19 28783.33 32988.48 32672.90 31282.24 25685.77 31764.98 27693.20 32164.57 31783.74 24995.12 168
ADS-MVSNet81.56 27979.78 28286.90 28891.35 25871.82 30783.33 32989.16 32472.90 31282.24 25685.77 31764.98 27693.76 31464.57 31783.74 24995.12 168
GA-MVS86.61 21385.27 22290.66 17491.33 26078.71 22590.40 27093.81 23685.34 14585.12 19989.57 28061.25 29597.11 21380.99 19889.59 18996.15 132
miper_lstm_enhance85.27 24084.59 23787.31 27691.28 26174.63 28387.69 30894.09 23081.20 23481.36 26689.85 27674.97 16494.30 30981.03 19779.84 30493.01 267
XVG-ACMP-BASELINE86.00 22584.84 23289.45 22791.20 26278.00 24291.70 25095.55 15885.05 15382.97 24892.25 20754.49 32397.48 17582.93 16287.45 22292.89 271
v1087.25 19386.38 18689.85 21091.19 26379.50 20894.48 13395.45 16783.79 17383.62 23791.19 24275.13 16097.42 18281.94 18180.60 29292.63 278
FMVSNet581.52 28079.60 28587.27 27791.17 26477.95 24391.49 25492.26 26176.87 27776.16 30687.91 30451.67 32892.34 32567.74 30581.16 28091.52 299
USDC82.76 26681.26 26887.26 27891.17 26474.55 28489.27 28893.39 24278.26 26775.30 31192.08 21554.43 32496.63 23671.64 28085.79 23590.61 313
CostFormer85.77 23184.94 22988.26 25691.16 26672.58 30489.47 28691.04 29476.26 28386.45 16289.97 27370.74 21696.86 23082.35 17387.07 22895.34 165
baseline286.50 21885.39 21989.84 21191.12 26776.70 26791.88 24388.58 32582.35 20479.95 28690.95 25273.42 18997.63 16780.27 21289.95 18295.19 167
tpm cat181.96 27280.27 27687.01 28591.09 26871.02 31487.38 31191.53 28266.25 33080.17 28086.35 31568.22 25196.15 26769.16 29582.29 26693.86 229
tpmvs83.35 26482.07 26187.20 28391.07 26971.00 31588.31 30291.70 27678.91 25580.49 27787.18 31269.30 23897.08 21668.12 30483.56 25393.51 248
v114487.61 17986.79 17390.06 20391.01 27079.34 21493.95 17595.42 17283.36 18485.66 17691.31 24074.98 16397.42 18283.37 15682.06 26993.42 251
v2v48287.84 16787.06 16590.17 19590.99 27179.23 22194.00 17395.13 18484.87 15585.53 18092.07 21774.45 16997.45 17884.71 14281.75 27593.85 230
SixPastTwentyTwo83.91 25782.90 25786.92 28790.99 27170.67 31793.48 19191.99 26985.54 13977.62 30192.11 21360.59 30196.87 22976.05 25577.75 31293.20 259
test-LLR85.87 22885.41 21887.25 27990.95 27371.67 30889.55 28289.88 31883.41 18284.54 20887.95 30267.25 25395.11 30181.82 18493.37 14294.97 172
test-mter84.54 25283.64 24987.25 27990.95 27371.67 30889.55 28289.88 31879.17 25284.54 20887.95 30255.56 31895.11 30181.82 18493.37 14294.97 172
v14887.04 20286.32 19189.21 23090.94 27577.26 26193.71 18494.43 21584.84 15684.36 21790.80 25676.04 14997.05 21982.12 17779.60 30593.31 253
mvs_tets88.06 16487.28 16190.38 18990.94 27579.88 20295.22 8695.66 15085.10 15184.21 22493.94 15163.53 28297.40 18988.50 9888.40 20893.87 227
MVP-Stereo85.97 22684.86 23189.32 22890.92 27782.19 14492.11 24094.19 22478.76 26078.77 29491.63 23068.38 25096.56 24575.01 26593.95 12989.20 322
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test81.37 28279.30 28787.58 27090.92 27774.16 28880.99 33587.68 33070.52 32476.63 30588.81 28871.21 20992.76 32460.01 33186.93 22995.83 150
jajsoiax88.24 15887.50 15490.48 18490.89 27980.14 19195.31 7695.65 15284.97 15484.24 22394.02 14665.31 27497.42 18288.56 9788.52 20493.89 224
tpmrst85.35 23784.99 22686.43 29390.88 28067.88 32888.71 29691.43 28580.13 24386.08 17088.80 29073.05 19396.02 27182.48 17083.40 25795.40 162
gg-mvs-nofinetune81.77 27579.37 28688.99 23890.85 28177.73 25386.29 31679.63 34374.88 29783.19 24769.05 33760.34 30296.11 26875.46 25994.64 12093.11 263
D2MVS85.90 22785.09 22588.35 25390.79 28277.42 25991.83 24595.70 14680.77 23880.08 28490.02 27166.74 26296.37 25781.88 18387.97 21691.26 305
OurMVSNet-221017-085.35 23784.64 23687.49 27390.77 28372.59 30394.01 17294.40 21684.72 15979.62 29093.17 17661.91 29096.72 23281.99 18081.16 28093.16 261
v119287.25 19386.33 19090.00 20790.76 28479.04 22293.80 17995.48 16382.57 20085.48 18491.18 24473.38 19197.42 18282.30 17482.06 26993.53 245
test_djsdf89.03 13888.64 12890.21 19490.74 28579.28 21895.96 5295.90 13184.66 16085.33 19792.94 18474.02 17897.30 19589.64 8688.53 20394.05 218
v7n86.81 20685.76 21389.95 20890.72 28679.25 22095.07 9695.92 12884.45 16382.29 25490.86 25372.60 19997.53 17279.42 22380.52 29693.08 265
PVSNet_073.20 2077.22 30174.83 30584.37 30890.70 28771.10 31383.09 33189.67 32172.81 31473.93 31883.13 32660.79 29993.70 31568.54 29850.84 34088.30 330
v14419287.19 19886.35 18989.74 21690.64 28878.24 23893.92 17695.43 17081.93 21485.51 18291.05 25074.21 17497.45 17882.86 16481.56 27793.53 245
MVS_030483.46 26081.92 26388.10 26190.63 28977.49 25893.26 20293.75 23780.04 24580.44 27887.24 31147.94 33595.55 28975.79 25688.16 21191.26 305
V4287.68 17186.86 16990.15 19790.58 29080.14 19194.24 15495.28 17883.66 17585.67 17591.33 23774.73 16797.41 18784.43 14581.83 27392.89 271
CR-MVSNet85.35 23783.76 24690.12 19990.58 29079.34 21485.24 32291.96 27278.27 26685.55 17887.87 30571.03 21295.61 28673.96 27289.36 19295.40 162
RPMNet83.18 26580.87 27290.12 19990.58 29079.34 21485.24 32290.78 30271.44 32085.55 17882.97 32770.87 21495.61 28661.01 32789.36 19295.40 162
v192192086.97 20386.06 20189.69 22090.53 29378.11 24193.80 17995.43 17081.90 21685.33 19791.05 25072.66 19797.41 18782.05 17981.80 27493.53 245
v124086.78 20885.85 20889.56 22290.45 29477.79 25093.61 18795.37 17581.65 22285.43 18991.15 24671.50 20797.43 18181.47 19282.05 27193.47 249
tpm84.73 24984.02 24286.87 29090.33 29568.90 32589.06 29289.94 31580.85 23785.75 17389.86 27568.54 24895.97 27377.76 23784.05 24795.75 153
EG-PatchMatch MVS82.37 27180.34 27588.46 25090.27 29679.35 21392.80 21994.33 21977.14 27673.26 32190.18 26747.47 33796.72 23270.25 28787.32 22589.30 320
EPNet_dtu86.49 22085.94 20688.14 26090.24 29772.82 29894.11 16192.20 26286.66 11779.42 29192.36 20273.52 18595.81 28271.26 28193.66 13395.80 152
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS83.90 25882.70 26087.51 27190.23 29872.67 30088.62 29881.96 34081.37 22985.01 20188.34 29666.31 26794.45 30675.30 26187.12 22695.43 161
EPNet91.79 7591.02 8494.10 5790.10 29985.25 7196.03 4892.05 26692.83 187.39 14695.78 9179.39 11799.01 6888.13 10397.48 7498.05 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT82.68 26881.27 26786.89 28990.09 30070.94 31684.06 32690.15 30974.91 29585.63 17783.57 32469.37 23494.87 30565.19 31388.50 20594.84 181
Patchmtry82.71 26780.93 27188.06 26290.05 30176.37 27384.74 32491.96 27272.28 31781.32 26787.87 30571.03 21295.50 29468.97 29680.15 29992.32 288
pmmvs485.43 23583.86 24590.16 19690.02 30282.97 12490.27 27192.67 25475.93 28680.73 27291.74 22671.05 21195.73 28578.85 22783.46 25591.78 295
TESTMET0.1,183.74 25982.85 25886.42 29489.96 30371.21 31289.55 28287.88 32777.41 27283.37 24387.31 31056.71 31593.65 31680.62 20592.85 15394.40 204
dp81.47 28180.23 27785.17 30389.92 30465.49 33486.74 31390.10 31176.30 28281.10 26887.12 31362.81 28495.92 27568.13 30379.88 30294.09 215
K. test v381.59 27880.15 27985.91 29889.89 30569.42 32492.57 22587.71 32985.56 13873.44 32089.71 27855.58 31795.52 29177.17 24469.76 32792.78 275
MDA-MVSNet-bldmvs78.85 29976.31 30186.46 29289.76 30673.88 28988.79 29590.42 30579.16 25359.18 33788.33 29760.20 30394.04 31262.00 32468.96 32991.48 301
GG-mvs-BLEND87.94 26589.73 30777.91 24487.80 30578.23 34580.58 27583.86 32259.88 30695.33 29871.20 28292.22 16090.60 315
gm-plane-assit89.60 30868.00 32777.28 27588.99 28597.57 16979.44 221
anonymousdsp87.84 16787.09 16490.12 19989.13 30980.54 18494.67 12395.55 15882.05 20883.82 23192.12 21171.47 20897.15 20987.15 11687.80 21992.67 276
N_pmnet68.89 30868.44 31070.23 32489.07 31028.79 35288.06 30319.50 35369.47 32671.86 32684.93 32061.24 29691.75 33054.70 33577.15 31690.15 317
pmmvs584.21 25482.84 25988.34 25488.95 31176.94 26592.41 22891.91 27475.63 28880.28 27991.18 24464.59 27895.57 28877.09 24683.47 25492.53 280
PMMVS85.71 23284.96 22887.95 26488.90 31277.09 26388.68 29790.06 31272.32 31686.47 15990.76 25872.15 20394.40 30781.78 18693.49 13792.36 286
JIA-IIPM81.04 28578.98 29287.25 27988.64 31373.48 29281.75 33489.61 32273.19 30982.05 25873.71 33466.07 27195.87 27871.18 28484.60 24392.41 284
Gipumacopyleft57.99 31354.91 31467.24 32688.51 31465.59 33352.21 34590.33 30843.58 34242.84 34251.18 34320.29 34885.07 34034.77 34270.45 32651.05 342
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet81.32 28380.95 27082.42 31588.50 31563.67 33693.32 19591.33 28664.02 33380.57 27692.83 18861.21 29792.27 32676.34 25180.38 29891.32 303
our_test_381.93 27380.46 27486.33 29588.46 31673.48 29288.46 30091.11 29076.46 27876.69 30488.25 29866.89 25894.36 30868.75 29779.08 30991.14 309
ppachtmachnet_test81.84 27480.07 28087.15 28488.46 31674.43 28589.04 29392.16 26375.33 29077.75 29988.99 28566.20 26895.37 29765.12 31577.60 31391.65 297
lessismore_v086.04 29688.46 31668.78 32680.59 34173.01 32290.11 26955.39 31996.43 25575.06 26465.06 33392.90 270
test0.0.03 182.41 27081.69 26484.59 30688.23 31972.89 29790.24 27287.83 32883.41 18279.86 28789.78 27767.25 25388.99 33665.18 31483.42 25691.90 294
MDA-MVSNet_test_wron79.21 29877.19 29985.29 30188.22 32072.77 29985.87 31890.06 31274.34 30062.62 33687.56 30866.14 26991.99 32866.90 30973.01 32191.10 311
YYNet179.22 29777.20 29885.28 30288.20 32172.66 30185.87 31890.05 31474.33 30162.70 33587.61 30766.09 27092.03 32766.94 30672.97 32291.15 308
pmmvs683.42 26181.60 26588.87 23988.01 32277.87 24794.96 10294.24 22374.67 29878.80 29391.09 24960.17 30496.49 24977.06 24775.40 31992.23 290
testgi80.94 28880.20 27883.18 31287.96 32366.29 33191.28 25790.70 30483.70 17478.12 29692.84 18751.37 32990.82 33363.34 32082.46 26592.43 283
Anonymous2023120681.03 28679.77 28384.82 30587.85 32470.26 32091.42 25592.08 26573.67 30577.75 29989.25 28362.43 28793.08 32261.50 32682.00 27291.12 310
OpenMVS_ROBcopyleft74.94 1979.51 29577.03 30086.93 28687.00 32576.23 27592.33 23290.74 30368.93 32774.52 31588.23 29949.58 33196.62 23757.64 33384.29 24487.94 331
LF4IMVS80.37 29079.07 29184.27 31086.64 32669.87 32389.39 28791.05 29376.38 28074.97 31390.00 27247.85 33694.25 31174.55 26980.82 29188.69 327
MIMVSNet179.38 29677.28 29785.69 29986.35 32773.67 29191.61 25392.75 25278.11 27072.64 32388.12 30048.16 33491.97 32960.32 32877.49 31491.43 302
test20.0379.95 29279.08 29082.55 31485.79 32867.74 32991.09 26291.08 29181.23 23374.48 31689.96 27461.63 29190.15 33460.08 32976.38 31789.76 318
Patchmatch-RL test81.67 27679.96 28186.81 29185.42 32971.23 31182.17 33387.50 33178.47 26377.19 30382.50 32870.81 21593.48 31782.66 16972.89 32395.71 154
UnsupCasMVSNet_eth80.07 29178.27 29485.46 30085.24 33072.63 30288.45 30194.87 20182.99 19171.64 32788.07 30156.34 31691.75 33073.48 27563.36 33692.01 293
testing_283.40 26381.02 26990.56 17885.06 33180.51 18591.37 25695.57 15682.92 19367.06 33285.54 31949.47 33297.24 20386.74 12185.44 23693.93 222
pmmvs-eth3d80.97 28778.72 29387.74 26684.99 33279.97 20190.11 27791.65 27875.36 28973.51 31986.03 31659.45 30893.96 31375.17 26272.21 32489.29 321
CMPMVSbinary59.16 2180.52 28979.20 28884.48 30783.98 33367.63 33089.95 28093.84 23564.79 33266.81 33391.14 24757.93 31395.17 29976.25 25288.10 21290.65 312
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld76.23 30473.27 30685.09 30483.79 33472.92 29685.65 32193.47 24171.52 31968.84 33079.08 33249.77 33093.21 32066.81 31060.52 33889.13 325
PM-MVS78.11 30076.12 30384.09 31183.54 33570.08 32188.97 29485.27 33579.93 24674.73 31486.43 31434.70 34293.48 31779.43 22272.06 32588.72 326
DSMNet-mixed76.94 30276.29 30278.89 31883.10 33656.11 34387.78 30679.77 34260.65 33575.64 31088.71 29161.56 29288.34 33760.07 33089.29 19492.21 291
new_pmnet72.15 30670.13 30878.20 31982.95 33765.68 33283.91 32782.40 33962.94 33464.47 33479.82 33142.85 34086.26 33957.41 33474.44 32082.65 335
new-patchmatchnet76.41 30375.17 30480.13 31782.65 33859.61 33887.66 30991.08 29178.23 26869.85 32883.22 32554.76 32191.63 33264.14 31964.89 33489.16 323
ambc83.06 31379.99 33963.51 33777.47 33892.86 24874.34 31784.45 32128.74 34395.06 30373.06 27768.89 33090.61 313
TDRefinement79.81 29377.34 29687.22 28279.24 34075.48 28193.12 20792.03 26776.45 27975.01 31291.58 23249.19 33396.44 25470.22 28969.18 32889.75 319
pmmvs371.81 30768.71 30981.11 31675.86 34170.42 31986.74 31383.66 33758.95 33668.64 33180.89 33036.93 34189.52 33563.10 32263.59 33583.39 333
DeepMVS_CXcopyleft56.31 32974.23 34251.81 34556.67 35144.85 34148.54 34175.16 33327.87 34458.74 34840.92 34052.22 33958.39 341
FPMVS64.63 31062.55 31170.88 32370.80 34356.71 34084.42 32584.42 33651.78 33949.57 33981.61 32923.49 34581.48 34240.61 34176.25 31874.46 338
PMMVS259.60 31156.40 31369.21 32568.83 34446.58 34773.02 34277.48 34655.07 33849.21 34072.95 33617.43 35080.04 34349.32 33844.33 34180.99 337
wuyk23d21.27 32020.48 32223.63 33368.59 34536.41 35049.57 3466.85 3549.37 3477.89 3494.46 3514.03 35431.37 34917.47 34716.07 3473.12 346
E-PMN43.23 31642.29 31746.03 33065.58 34637.41 34973.51 34064.62 34733.99 34428.47 34747.87 34419.90 34967.91 34522.23 34524.45 34332.77 343
LCM-MVSNet66.00 30962.16 31277.51 32164.51 34758.29 33983.87 32890.90 29848.17 34054.69 33873.31 33516.83 35186.75 33865.47 31261.67 33787.48 332
EMVS42.07 31741.12 31844.92 33163.45 34835.56 35173.65 33963.48 34833.05 34526.88 34845.45 34521.27 34767.14 34619.80 34623.02 34532.06 344
MVEpermissive39.65 2343.39 31538.59 32057.77 32856.52 34948.77 34655.38 34458.64 35029.33 34628.96 34652.65 3424.68 35364.62 34728.11 34433.07 34259.93 340
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high58.88 31254.22 31572.86 32256.50 35056.67 34180.75 33686.00 33273.09 31137.39 34364.63 34022.17 34679.49 34443.51 33923.96 34482.43 336
PMVScopyleft47.18 2252.22 31448.46 31663.48 32745.72 35146.20 34873.41 34178.31 34441.03 34330.06 34565.68 3396.05 35283.43 34130.04 34365.86 33260.80 339
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt35.64 31839.24 31924.84 33214.87 35223.90 35362.71 34351.51 3526.58 34836.66 34462.08 34144.37 33930.34 35052.40 33622.00 34620.27 345
testmvs8.92 32111.52 3231.12 3351.06 3530.46 35586.02 3170.65 3550.62 3492.74 3509.52 3490.31 3560.45 3522.38 3480.39 3482.46 348
test1238.76 32211.22 3241.39 3340.85 3540.97 35485.76 3200.35 3560.54 3502.45 3518.14 3500.60 3550.48 3512.16 3490.17 3492.71 347
uanet_test0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
cdsmvs_eth3d_5k22.14 31929.52 3210.00 3360.00 3550.00 3560.00 34795.76 1420.00 3510.00 35294.29 13775.66 1560.00 3530.00 3500.00 3500.00 349
pcd_1.5k_mvsjas6.64 3248.86 3260.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 35279.70 1120.00 3530.00 3500.00 3500.00 349
sosnet-low-res0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
sosnet0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
uncertanet0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
Regformer0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
ab-mvs-re7.82 32310.43 3250.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 35293.88 1560.00 3570.00 3530.00 3500.00 3500.00 349
uanet0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
test_241102_TWO97.44 1390.31 2697.62 498.07 491.46 799.58 595.66 299.12 598.98 6
test_0728_THIRD90.75 1997.04 798.05 592.09 399.55 1195.64 399.13 399.13 1
GSMVS96.12 135
test_part10.00 3360.00 3560.00 34797.45 110.00 3570.00 3530.00 3500.00 3500.00 349
sam_mvs171.70 20596.12 135
sam_mvs70.60 217
MTGPAbinary96.97 48
test_post188.00 3049.81 34869.31 23795.53 29076.65 248
test_post10.29 34770.57 22195.91 277
patchmatchnet-post83.76 32371.53 20696.48 250
MTMP96.16 3960.64 349
test9_res91.91 5398.71 2998.07 61
agg_prior290.54 7998.68 3498.27 45
test_prior485.96 5594.11 161
test_prior294.12 15987.67 9592.63 6396.39 6786.62 3791.50 6398.67 36
旧先验293.36 19471.25 32194.37 2597.13 21286.74 121
新几何293.11 209
无先验93.28 20196.26 10373.95 30399.05 5880.56 20696.59 121
原ACMM292.94 216
testdata298.75 9478.30 232
segment_acmp87.16 33
testdata192.15 23887.94 85
plane_prior596.22 10898.12 13188.15 10189.99 17994.63 187
plane_prior494.86 117
plane_prior382.75 12890.26 2986.91 153
plane_prior295.85 5690.81 17
plane_prior82.73 13195.21 8789.66 4089.88 184
n20.00 357
nn0.00 357
door-mid85.49 333
test1196.57 88
door85.33 334
HQP5-MVS81.56 154
BP-MVS87.11 118
HQP4-MVS85.43 18997.96 14994.51 197
HQP3-MVS96.04 12189.77 186
HQP2-MVS73.83 182
MDTV_nov1_ep13_2view55.91 34487.62 31073.32 30884.59 20770.33 22474.65 26795.50 157
ACMMP++_ref87.47 220
ACMMP++88.01 215
Test By Simon80.02 107