test_0728_SECOND | | | | | 95.01 15 | 98.79 1 | 86.43 40 | 97.09 10 | 97.49 5 | | | | | 99.61 3 | 95.62 4 | 99.08 6 | 98.99 5 |
|
MSP-MVS | | | 95.67 1 | 96.02 1 | 94.64 39 | 98.78 2 | 85.93 56 | 97.09 10 | 96.73 73 | 90.27 27 | 97.04 7 | 98.05 5 | 91.47 5 | 99.55 11 | 95.62 4 | 99.08 6 | 98.45 30 |
|
test0726 | | | | | | 98.78 2 | 85.93 56 | 97.19 6 | 97.47 8 | 90.27 27 | 97.64 3 | 98.13 1 | 91.47 5 | | | | |
|
IU-MVS | | | | | | 98.77 4 | 86.00 53 | | 96.84 62 | 81.26 232 | 97.26 5 | | | | 95.50 6 | 99.13 3 | 99.03 4 |
|
test_241102_ONE | | | | | | 98.77 4 | 85.99 54 | | 97.44 13 | 90.26 29 | 97.71 1 | 97.96 7 | 92.31 2 | 99.38 28 | | | |
|
region2R | | | 94.43 21 | 94.27 23 | 94.92 20 | 98.65 6 | 86.67 32 | 96.92 18 | 97.23 32 | 88.60 69 | 93.58 42 | 97.27 23 | 85.22 54 | 99.54 15 | 92.21 42 | 98.74 28 | 98.56 18 |
|
ACMMPR | | | 94.43 21 | 94.28 21 | 94.91 22 | 98.63 7 | 86.69 30 | 96.94 14 | 97.32 24 | 88.63 67 | 93.53 45 | 97.26 25 | 85.04 57 | 99.54 15 | 92.35 39 | 98.78 20 | 98.50 20 |
|
HFP-MVS | | | 94.52 16 | 94.40 18 | 94.86 25 | 98.61 8 | 86.81 24 | 96.94 14 | 97.34 19 | 88.63 67 | 93.65 38 | 97.21 28 | 86.10 43 | 99.49 22 | 92.35 39 | 98.77 23 | 98.30 39 |
|
#test# | | | 94.32 27 | 94.14 30 | 94.86 25 | 98.61 8 | 86.81 24 | 96.43 30 | 97.34 19 | 87.51 98 | 93.65 38 | 97.21 28 | 86.10 43 | 99.49 22 | 91.68 60 | 98.77 23 | 98.30 39 |
|
test_part2 | | | | | | 98.55 10 | 87.22 16 | | | | 96.40 10 | | | | | | |
|
XVS | | | 94.45 19 | 94.32 19 | 94.85 27 | 98.54 11 | 86.60 35 | 96.93 16 | 97.19 35 | 90.66 23 | 92.85 54 | 97.16 33 | 85.02 58 | 99.49 22 | 91.99 49 | 98.56 46 | 98.47 26 |
|
X-MVStestdata | | | 88.31 156 | 86.13 196 | 94.85 27 | 98.54 11 | 86.60 35 | 96.93 16 | 97.19 35 | 90.66 23 | 92.85 54 | 23.41 346 | 85.02 58 | 99.49 22 | 91.99 49 | 98.56 46 | 98.47 26 |
|
ZNCC-MVS | | | 94.47 17 | 94.28 21 | 95.03 14 | 98.52 13 | 86.96 17 | 96.85 22 | 97.32 24 | 88.24 78 | 93.15 50 | 97.04 38 | 86.17 42 | 99.62 1 | 92.40 37 | 98.81 17 | 98.52 19 |
|
mPP-MVS | | | 93.99 37 | 93.78 40 | 94.63 40 | 98.50 14 | 85.90 61 | 96.87 20 | 96.91 55 | 88.70 65 | 91.83 83 | 97.17 32 | 83.96 70 | 99.55 11 | 91.44 65 | 98.64 42 | 98.43 32 |
|
DVP-MVS | | | 95.42 4 | 95.56 4 | 94.98 19 | 98.49 15 | 86.52 37 | 96.91 19 | 97.47 8 | 91.73 8 | 96.10 12 | 96.69 53 | 89.90 8 | 99.30 38 | 94.70 8 | 98.04 62 | 99.13 1 |
|
MP-MVS | | | 94.25 28 | 94.07 33 | 94.77 34 | 98.47 16 | 86.31 46 | 96.71 25 | 96.98 47 | 89.04 56 | 91.98 77 | 97.19 30 | 85.43 52 | 99.56 6 | 92.06 48 | 98.79 18 | 98.44 31 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MCST-MVS | | | 94.45 19 | 94.20 27 | 95.19 9 | 98.46 17 | 87.50 13 | 95.00 101 | 97.12 40 | 87.13 103 | 92.51 68 | 96.30 69 | 89.24 13 | 99.34 32 | 93.46 20 | 98.62 43 | 98.73 10 |
|
PGM-MVS | | | 93.96 38 | 93.72 42 | 94.68 37 | 98.43 18 | 86.22 49 | 95.30 79 | 97.78 1 | 87.45 99 | 93.26 46 | 97.33 20 | 84.62 63 | 99.51 20 | 90.75 78 | 98.57 45 | 98.32 38 |
|
zzz-MVS | | | 94.47 17 | 94.30 20 | 95.00 16 | 98.42 19 | 86.95 18 | 95.06 99 | 96.97 48 | 91.07 13 | 93.14 51 | 97.56 13 | 84.30 65 | 99.56 6 | 93.43 21 | 98.75 26 | 98.47 26 |
|
MTAPA | | | 94.42 23 | 94.22 24 | 95.00 16 | 98.42 19 | 86.95 18 | 94.36 149 | 96.97 48 | 91.07 13 | 93.14 51 | 97.56 13 | 84.30 65 | 99.56 6 | 93.43 21 | 98.75 26 | 98.47 26 |
|
GST-MVS | | | 94.21 32 | 93.97 36 | 94.90 24 | 98.41 21 | 86.82 23 | 96.54 29 | 97.19 35 | 88.24 78 | 93.26 46 | 96.83 46 | 85.48 51 | 99.59 4 | 91.43 66 | 98.40 51 | 98.30 39 |
|
HPM-MVS | | | 94.02 36 | 93.88 37 | 94.43 49 | 98.39 22 | 85.78 63 | 97.25 5 | 97.07 44 | 86.90 111 | 92.62 65 | 96.80 50 | 84.85 61 | 99.17 48 | 92.43 35 | 98.65 41 | 98.33 37 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 94.34 25 | 94.21 26 | 94.74 36 | 98.39 22 | 86.64 34 | 97.60 1 | 97.24 30 | 88.53 71 | 92.73 61 | 97.23 26 | 85.20 55 | 99.32 36 | 92.15 45 | 98.83 16 | 98.25 48 |
|
DPE-MVS | | | 95.57 2 | 95.67 2 | 95.25 7 | 98.36 24 | 87.28 15 | 95.56 70 | 97.51 4 | 89.13 54 | 97.14 6 | 97.91 8 | 91.64 4 | 99.62 1 | 94.61 10 | 99.17 2 | 98.86 7 |
|
HPM-MVS_fast | | | 93.40 52 | 93.22 50 | 93.94 60 | 98.36 24 | 84.83 74 | 97.15 8 | 96.80 68 | 85.77 132 | 92.47 69 | 97.13 34 | 82.38 81 | 99.07 56 | 90.51 80 | 98.40 51 | 97.92 73 |
|
DP-MVS Recon | | | 91.95 73 | 91.28 78 | 93.96 59 | 98.33 26 | 85.92 58 | 94.66 124 | 96.66 81 | 82.69 198 | 90.03 108 | 95.82 90 | 82.30 84 | 99.03 62 | 84.57 143 | 96.48 95 | 96.91 113 |
|
APDe-MVS | | | 95.46 3 | 95.64 3 | 94.91 22 | 98.26 27 | 86.29 48 | 97.46 2 | 97.40 17 | 89.03 57 | 96.20 11 | 98.10 2 | 89.39 12 | 99.34 32 | 95.88 1 | 99.03 8 | 99.10 3 |
|
TSAR-MVS + MP. | | | 94.85 11 | 94.94 9 | 94.58 42 | 98.25 28 | 86.33 44 | 96.11 44 | 96.62 84 | 88.14 83 | 96.10 12 | 96.96 42 | 89.09 14 | 98.94 79 | 94.48 11 | 98.68 34 | 98.48 22 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HPM-MVS++ | | | 95.14 8 | 94.91 10 | 95.83 2 | 98.25 28 | 89.65 2 | 95.92 54 | 96.96 51 | 91.75 7 | 94.02 32 | 96.83 46 | 88.12 20 | 99.55 11 | 93.41 23 | 98.94 11 | 98.28 43 |
|
testtj | | | 94.39 24 | 94.18 28 | 95.00 16 | 98.24 30 | 86.77 28 | 96.16 39 | 97.23 32 | 87.28 101 | 94.85 23 | 97.04 38 | 86.99 35 | 99.52 19 | 91.54 62 | 98.33 54 | 98.71 11 |
|
CPTT-MVS | | | 91.99 72 | 91.80 72 | 92.55 104 | 98.24 30 | 81.98 148 | 96.76 24 | 96.49 91 | 81.89 217 | 90.24 104 | 96.44 66 | 78.59 126 | 98.61 101 | 89.68 85 | 97.85 68 | 97.06 105 |
|
SR-MVS | | | 94.23 30 | 94.17 29 | 94.43 49 | 98.21 32 | 85.78 63 | 96.40 32 | 96.90 56 | 88.20 81 | 94.33 26 | 97.40 17 | 84.75 62 | 99.03 62 | 93.35 24 | 97.99 63 | 98.48 22 |
|
MP-MVS-pluss | | | 94.21 32 | 94.00 35 | 94.85 27 | 98.17 33 | 86.65 33 | 94.82 113 | 97.17 38 | 86.26 123 | 92.83 56 | 97.87 9 | 85.57 50 | 99.56 6 | 94.37 13 | 98.92 12 | 98.34 36 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
SMA-MVS | | | 95.20 6 | 95.07 8 | 95.59 3 | 98.14 34 | 88.48 6 | 96.26 36 | 97.28 28 | 85.90 129 | 97.67 2 | 98.10 2 | 88.41 16 | 99.56 6 | 94.66 9 | 99.19 1 | 98.71 11 |
|
CNVR-MVS | | | 95.40 5 | 95.37 5 | 95.50 5 | 98.11 35 | 88.51 5 | 95.29 81 | 96.96 51 | 92.09 3 | 95.32 18 | 97.08 36 | 89.49 11 | 99.33 35 | 95.10 7 | 98.85 14 | 98.66 13 |
|
114514_t | | | 89.51 122 | 88.50 131 | 92.54 105 | 98.11 35 | 81.99 147 | 95.16 92 | 96.36 99 | 70.19 325 | 85.81 172 | 95.25 104 | 76.70 143 | 98.63 99 | 82.07 178 | 96.86 85 | 97.00 109 |
|
ACMMP | | | 93.24 56 | 92.88 59 | 94.30 53 | 98.09 37 | 85.33 70 | 96.86 21 | 97.45 11 | 88.33 75 | 90.15 106 | 97.03 40 | 81.44 95 | 99.51 20 | 90.85 77 | 95.74 101 | 98.04 64 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
APD-MVS | | | 94.24 29 | 94.07 33 | 94.75 35 | 98.06 38 | 86.90 21 | 95.88 55 | 96.94 53 | 85.68 135 | 95.05 22 | 97.18 31 | 87.31 29 | 99.07 56 | 91.90 56 | 98.61 44 | 98.28 43 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CSCG | | | 93.23 57 | 93.05 54 | 93.76 67 | 98.04 39 | 84.07 94 | 96.22 37 | 97.37 18 | 84.15 166 | 90.05 107 | 95.66 95 | 87.77 22 | 99.15 51 | 89.91 83 | 98.27 56 | 98.07 61 |
|
ACMMP_NAP | | | 94.74 14 | 94.56 15 | 95.28 6 | 98.02 40 | 87.70 10 | 95.68 63 | 97.34 19 | 88.28 77 | 95.30 19 | 97.67 12 | 85.90 47 | 99.54 15 | 93.91 16 | 98.95 10 | 98.60 16 |
|
OPU-MVS | | | | | 96.21 1 | 98.00 41 | 90.85 1 | 97.13 9 | | | | 97.08 36 | 92.59 1 | 98.94 79 | 92.25 41 | 98.99 9 | 98.84 8 |
|
APD-MVS_3200maxsize | | | 93.78 42 | 93.77 41 | 93.80 66 | 97.92 42 | 84.19 92 | 96.30 34 | 96.87 60 | 86.96 107 | 93.92 34 | 97.47 15 | 83.88 71 | 98.96 78 | 92.71 33 | 97.87 67 | 98.26 47 |
|
xxxxxxxxxxxxxcwj | | | 94.76 13 | 94.85 12 | 94.48 46 | 97.85 43 | 85.63 66 | 95.21 87 | 96.82 65 | 89.44 43 | 95.71 14 | 97.70 10 | 88.28 18 | 99.35 30 | 93.89 17 | 98.78 20 | 98.48 22 |
|
save fliter | | | | | | 97.85 43 | 85.63 66 | 95.21 87 | 96.82 65 | 89.44 43 | | | | | | | |
|
SF-MVS | | | 94.97 9 | 94.90 11 | 95.20 8 | 97.84 45 | 87.76 8 | 96.65 27 | 97.48 7 | 87.76 92 | 95.71 14 | 97.70 10 | 88.28 18 | 99.35 30 | 93.89 17 | 98.78 20 | 98.48 22 |
|
NCCC | | | 94.81 12 | 94.69 14 | 95.17 10 | 97.83 46 | 87.46 14 | 95.66 65 | 96.93 54 | 92.34 2 | 93.94 33 | 96.58 60 | 87.74 23 | 99.44 26 | 92.83 31 | 98.40 51 | 98.62 15 |
|
ETH3 D test6400 | | | 93.64 46 | 93.22 50 | 94.92 20 | 97.79 47 | 86.84 22 | 95.31 76 | 97.26 29 | 82.67 199 | 93.81 36 | 96.29 70 | 87.29 30 | 99.27 41 | 89.87 84 | 98.67 36 | 98.65 14 |
|
9.14 | | | | 94.47 16 | | 97.79 47 | | 96.08 45 | 97.44 13 | 86.13 127 | 95.10 21 | 97.40 17 | 88.34 17 | 99.22 44 | 93.25 26 | 98.70 31 | |
|
CDPH-MVS | | | 92.83 61 | 92.30 67 | 94.44 47 | 97.79 47 | 86.11 51 | 94.06 168 | 96.66 81 | 80.09 244 | 92.77 58 | 96.63 57 | 86.62 37 | 99.04 61 | 87.40 111 | 98.66 39 | 98.17 52 |
|
ETH3D-3000-0.1 | | | 94.61 15 | 94.44 17 | 95.12 11 | 97.70 50 | 87.71 9 | 95.98 51 | 97.44 13 | 86.67 116 | 95.25 20 | 97.31 21 | 87.73 24 | 99.24 42 | 93.11 29 | 98.76 25 | 98.40 33 |
|
DP-MVS | | | 87.25 193 | 85.36 221 | 92.90 88 | 97.65 51 | 83.24 114 | 94.81 114 | 92.00 268 | 74.99 294 | 81.92 261 | 95.00 112 | 72.66 197 | 99.05 58 | 66.92 308 | 92.33 159 | 96.40 125 |
|
PAPM_NR | | | 91.22 87 | 90.78 89 | 92.52 106 | 97.60 52 | 81.46 160 | 94.37 148 | 96.24 106 | 86.39 121 | 87.41 143 | 94.80 121 | 82.06 90 | 98.48 107 | 82.80 167 | 95.37 109 | 97.61 83 |
|
TEST9 | | | | | | 97.53 53 | 86.49 38 | 94.07 166 | 96.78 69 | 81.61 225 | 92.77 58 | 96.20 75 | 87.71 25 | 99.12 53 | | | |
|
train_agg | | | 93.44 50 | 93.08 53 | 94.52 44 | 97.53 53 | 86.49 38 | 94.07 166 | 96.78 69 | 81.86 218 | 92.77 58 | 96.20 75 | 87.63 26 | 99.12 53 | 92.14 46 | 98.69 32 | 97.94 70 |
|
abl_6 | | | 93.18 58 | 93.05 54 | 93.57 70 | 97.52 55 | 84.27 91 | 95.53 71 | 96.67 80 | 87.85 89 | 93.20 49 | 97.22 27 | 80.35 102 | 99.18 47 | 91.91 53 | 97.21 78 | 97.26 96 |
|
test_8 | | | | | | 97.49 56 | 86.30 47 | 94.02 171 | 96.76 72 | 81.86 218 | 92.70 62 | 96.20 75 | 87.63 26 | 99.02 66 | | | |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 35 | 93.79 39 | 94.80 33 | 97.48 57 | 86.78 26 | 95.65 67 | 96.89 57 | 89.40 46 | 92.81 57 | 96.97 41 | 85.37 53 | 99.24 42 | 90.87 76 | 98.69 32 | 98.38 35 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap | | | 89.89 115 | 89.07 119 | 92.37 114 | 97.41 58 | 83.03 120 | 94.42 140 | 95.92 128 | 82.81 196 | 86.34 165 | 94.65 126 | 73.89 180 | 99.02 66 | 80.69 203 | 95.51 104 | 95.05 170 |
|
agg_prior1 | | | 93.29 54 | 92.97 57 | 94.26 54 | 97.38 59 | 85.92 58 | 93.92 176 | 96.72 75 | 81.96 212 | 92.16 73 | 96.23 73 | 87.85 21 | 98.97 75 | 91.95 52 | 98.55 48 | 97.90 74 |
|
agg_prior | | | | | | 97.38 59 | 85.92 58 | | 96.72 75 | | 92.16 73 | | | 98.97 75 | | | |
|
原ACMM1 | | | | | 92.01 124 | 97.34 61 | 81.05 170 | | 96.81 67 | 78.89 256 | 90.45 102 | 95.92 86 | 82.65 78 | 98.84 90 | 80.68 204 | 98.26 57 | 96.14 133 |
|
MSLP-MVS++ | | | 93.72 43 | 94.08 32 | 92.65 100 | 97.31 62 | 83.43 110 | 95.79 58 | 97.33 22 | 90.03 32 | 93.58 42 | 96.96 42 | 84.87 60 | 97.76 158 | 92.19 44 | 98.66 39 | 96.76 116 |
|
新几何1 | | | | | 93.10 78 | 97.30 63 | 84.35 90 | | 95.56 157 | 71.09 322 | 91.26 95 | 96.24 72 | 82.87 77 | 98.86 85 | 79.19 225 | 98.10 60 | 96.07 140 |
|
test_prior3 | | | 93.60 47 | 93.53 45 | 93.82 63 | 97.29 64 | 84.49 81 | 94.12 159 | 96.88 58 | 87.67 95 | 92.63 63 | 96.39 67 | 86.62 37 | 98.87 82 | 91.50 63 | 98.67 36 | 98.11 59 |
|
test_prior | | | | | 93.82 63 | 97.29 64 | 84.49 81 | | 96.88 58 | | | | | 98.87 82 | | | 98.11 59 |
|
1121 | | | 90.42 103 | 89.49 108 | 93.20 74 | 97.27 66 | 84.46 84 | 92.63 222 | 95.51 162 | 71.01 323 | 91.20 96 | 96.21 74 | 82.92 76 | 99.05 58 | 80.56 206 | 98.07 61 | 96.10 138 |
|
PLC | | 84.53 7 | 89.06 137 | 88.03 144 | 92.15 122 | 97.27 66 | 82.69 134 | 94.29 151 | 95.44 169 | 79.71 249 | 84.01 227 | 94.18 142 | 76.68 144 | 98.75 94 | 77.28 242 | 93.41 140 | 95.02 171 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
SD-MVS | | | 94.96 10 | 95.33 6 | 93.88 61 | 97.25 68 | 86.69 30 | 96.19 38 | 97.11 42 | 90.42 25 | 96.95 9 | 97.27 23 | 89.53 10 | 96.91 227 | 94.38 12 | 98.85 14 | 98.03 65 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test12 | | | | | 94.34 52 | 97.13 69 | 86.15 50 | | 96.29 101 | | 91.04 98 | | 85.08 56 | 99.01 68 | | 98.13 59 | 97.86 75 |
|
MG-MVS | | | 91.77 76 | 91.70 74 | 92.00 126 | 97.08 70 | 80.03 198 | 93.60 188 | 95.18 183 | 87.85 89 | 90.89 99 | 96.47 65 | 82.06 90 | 98.36 117 | 85.07 135 | 97.04 82 | 97.62 82 |
|
SteuartSystems-ACMMP | | | 95.20 6 | 95.32 7 | 94.85 27 | 96.99 71 | 86.33 44 | 97.33 3 | 97.30 26 | 91.38 11 | 95.39 17 | 97.46 16 | 88.98 15 | 99.40 27 | 94.12 14 | 98.89 13 | 98.82 9 |
Skip Steuart: Steuart Systems R&D Blog. |
MVS_111021_HR | | | 93.45 49 | 93.31 48 | 93.84 62 | 96.99 71 | 84.84 73 | 93.24 205 | 97.24 30 | 88.76 63 | 91.60 88 | 95.85 89 | 86.07 45 | 98.66 96 | 91.91 53 | 98.16 58 | 98.03 65 |
|
CNLPA | | | 89.07 136 | 87.98 145 | 92.34 115 | 96.87 73 | 84.78 75 | 94.08 165 | 93.24 243 | 81.41 228 | 84.46 211 | 95.13 109 | 75.57 157 | 96.62 237 | 77.21 243 | 93.84 132 | 95.61 156 |
|
PHI-MVS | | | 93.89 41 | 93.65 43 | 94.62 41 | 96.84 74 | 86.43 40 | 96.69 26 | 97.49 5 | 85.15 150 | 93.56 44 | 96.28 71 | 85.60 49 | 99.31 37 | 92.45 34 | 98.79 18 | 98.12 57 |
|
旧先验1 | | | | | | 96.79 75 | 81.81 151 | | 95.67 148 | | | 96.81 48 | 86.69 36 | | | 97.66 71 | 96.97 110 |
|
ETH3D cwj APD-0.16 | | | 93.91 39 | 93.53 45 | 95.06 13 | 96.76 76 | 87.78 7 | 94.92 106 | 97.21 34 | 84.33 164 | 93.89 35 | 97.09 35 | 87.20 31 | 99.29 40 | 91.90 56 | 98.44 50 | 98.12 57 |
|
LFMVS | | | 90.08 108 | 89.13 118 | 92.95 86 | 96.71 77 | 82.32 143 | 96.08 45 | 89.91 316 | 86.79 112 | 92.15 75 | 96.81 48 | 62.60 285 | 98.34 120 | 87.18 115 | 93.90 130 | 98.19 51 |
|
Anonymous202405211 | | | 87.68 171 | 86.13 196 | 92.31 117 | 96.66 78 | 80.74 179 | 94.87 110 | 91.49 283 | 80.47 240 | 89.46 113 | 95.44 98 | 54.72 322 | 98.23 126 | 82.19 176 | 89.89 183 | 97.97 68 |
|
TAPA-MVS | | 84.62 6 | 88.16 160 | 87.01 167 | 91.62 144 | 96.64 79 | 80.65 180 | 94.39 143 | 96.21 111 | 76.38 280 | 86.19 168 | 95.44 98 | 79.75 110 | 98.08 140 | 62.75 323 | 95.29 111 | 96.13 134 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MAR-MVS | | | 90.30 104 | 89.37 112 | 93.07 81 | 96.61 80 | 84.48 83 | 95.68 63 | 95.67 148 | 82.36 203 | 87.85 135 | 92.85 186 | 76.63 145 | 98.80 92 | 80.01 214 | 96.68 88 | 95.91 145 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
VNet | | | 92.24 71 | 91.91 71 | 93.24 73 | 96.59 81 | 83.43 110 | 94.84 112 | 96.44 92 | 89.19 52 | 94.08 31 | 95.90 87 | 77.85 136 | 98.17 130 | 88.90 93 | 93.38 141 | 98.13 56 |
|
TSAR-MVS + GP. | | | 93.66 45 | 93.41 47 | 94.41 51 | 96.59 81 | 86.78 26 | 94.40 141 | 93.93 232 | 89.77 37 | 94.21 28 | 95.59 97 | 87.35 28 | 98.61 101 | 92.72 32 | 96.15 98 | 97.83 77 |
|
test222 | | | | | | 96.55 83 | 81.70 153 | 92.22 236 | 95.01 190 | 68.36 328 | 90.20 105 | 96.14 80 | 80.26 105 | | | 97.80 69 | 96.05 142 |
|
Anonymous20240529 | | | 88.09 162 | 86.59 182 | 92.58 103 | 96.53 84 | 81.92 150 | 95.99 49 | 95.84 136 | 74.11 302 | 89.06 119 | 95.21 106 | 61.44 293 | 98.81 91 | 83.67 155 | 87.47 220 | 97.01 108 |
|
Anonymous20231211 | | | 86.59 215 | 85.13 224 | 90.98 170 | 96.52 85 | 81.50 156 | 96.14 41 | 96.16 112 | 73.78 304 | 83.65 236 | 92.15 209 | 63.26 283 | 97.37 193 | 82.82 166 | 81.74 276 | 94.06 217 |
|
DeepPCF-MVS | | 89.96 1 | 94.20 34 | 94.77 13 | 92.49 107 | 96.52 85 | 80.00 200 | 94.00 173 | 97.08 43 | 90.05 31 | 95.65 16 | 97.29 22 | 89.66 9 | 98.97 75 | 93.95 15 | 98.71 29 | 98.50 20 |
|
testdata | | | | | 90.49 183 | 96.40 87 | 77.89 246 | | 95.37 175 | 72.51 315 | 93.63 40 | 96.69 53 | 82.08 89 | 97.65 164 | 83.08 159 | 97.39 76 | 95.94 144 |
|
PVSNet_Blended_VisFu | | | 91.38 83 | 90.91 86 | 92.80 91 | 96.39 88 | 83.17 116 | 94.87 110 | 96.66 81 | 83.29 185 | 89.27 115 | 94.46 132 | 80.29 104 | 99.17 48 | 87.57 109 | 95.37 109 | 96.05 142 |
|
API-MVS | | | 90.66 97 | 90.07 98 | 92.45 109 | 96.36 89 | 84.57 79 | 96.06 47 | 95.22 182 | 82.39 201 | 89.13 116 | 94.27 140 | 80.32 103 | 98.46 110 | 80.16 213 | 96.71 87 | 94.33 205 |
|
F-COLMAP | | | 87.95 165 | 86.80 172 | 91.40 150 | 96.35 90 | 80.88 175 | 94.73 119 | 95.45 167 | 79.65 250 | 82.04 259 | 94.61 127 | 71.13 210 | 98.50 106 | 76.24 253 | 91.05 170 | 94.80 184 |
|
VDD-MVS | | | 90.74 93 | 89.92 104 | 93.20 74 | 96.27 91 | 83.02 121 | 95.73 60 | 93.86 233 | 88.42 74 | 92.53 66 | 96.84 45 | 62.09 288 | 98.64 98 | 90.95 74 | 92.62 155 | 97.93 72 |
|
OMC-MVS | | | 91.23 86 | 90.62 90 | 93.08 79 | 96.27 91 | 84.07 94 | 93.52 190 | 95.93 127 | 86.95 108 | 89.51 111 | 96.13 81 | 78.50 128 | 98.35 119 | 85.84 129 | 92.90 151 | 96.83 115 |
|
DPM-MVS | | | 92.58 66 | 91.74 73 | 95.08 12 | 96.19 93 | 89.31 3 | 92.66 221 | 96.56 89 | 83.44 181 | 91.68 87 | 95.04 111 | 86.60 40 | 98.99 72 | 85.60 131 | 97.92 66 | 96.93 112 |
|
CHOSEN 1792x2688 | | | 88.84 143 | 87.69 150 | 92.30 118 | 96.14 94 | 81.42 162 | 90.01 278 | 95.86 135 | 74.52 299 | 87.41 143 | 93.94 151 | 75.46 158 | 98.36 117 | 80.36 209 | 95.53 103 | 97.12 104 |
|
thres100view900 | | | 87.63 176 | 86.71 175 | 90.38 189 | 96.12 95 | 78.55 228 | 95.03 100 | 91.58 279 | 87.15 102 | 88.06 131 | 92.29 205 | 68.91 243 | 98.10 133 | 70.13 290 | 91.10 166 | 94.48 201 |
|
PVSNet_BlendedMVS | | | 89.98 110 | 89.70 105 | 90.82 172 | 96.12 95 | 81.25 165 | 93.92 176 | 96.83 63 | 83.49 180 | 89.10 117 | 92.26 206 | 81.04 99 | 98.85 88 | 86.72 124 | 87.86 218 | 92.35 287 |
|
PVSNet_Blended | | | 90.73 94 | 90.32 93 | 91.98 127 | 96.12 95 | 81.25 165 | 92.55 226 | 96.83 63 | 82.04 210 | 89.10 117 | 92.56 196 | 81.04 99 | 98.85 88 | 86.72 124 | 95.91 99 | 95.84 149 |
|
UA-Net | | | 92.83 61 | 92.54 64 | 93.68 68 | 96.10 98 | 84.71 76 | 95.66 65 | 96.39 97 | 91.92 4 | 93.22 48 | 96.49 64 | 83.16 74 | 98.87 82 | 84.47 144 | 95.47 106 | 97.45 91 |
|
thres600view7 | | | 87.65 173 | 86.67 177 | 90.59 175 | 96.08 99 | 78.72 224 | 94.88 109 | 91.58 279 | 87.06 105 | 88.08 130 | 92.30 204 | 68.91 243 | 98.10 133 | 70.05 293 | 91.10 166 | 94.96 175 |
|
DeepC-MVS | | 88.79 3 | 93.31 53 | 92.99 56 | 94.26 54 | 96.07 100 | 85.83 62 | 94.89 108 | 96.99 46 | 89.02 58 | 89.56 110 | 97.37 19 | 82.51 80 | 99.38 28 | 92.20 43 | 98.30 55 | 97.57 86 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
LS3D | | | 87.89 166 | 86.32 191 | 92.59 102 | 96.07 100 | 82.92 125 | 95.23 85 | 94.92 198 | 75.66 287 | 82.89 249 | 95.98 84 | 72.48 200 | 99.21 45 | 68.43 300 | 95.23 114 | 95.64 155 |
|
HyFIR lowres test | | | 88.09 162 | 86.81 171 | 91.93 131 | 96.00 102 | 80.63 181 | 90.01 278 | 95.79 140 | 73.42 307 | 87.68 140 | 92.10 214 | 73.86 181 | 97.96 149 | 80.75 202 | 91.70 162 | 97.19 100 |
|
tfpn200view9 | | | 87.58 180 | 86.64 178 | 90.41 186 | 95.99 103 | 78.64 226 | 94.58 127 | 91.98 270 | 86.94 109 | 88.09 128 | 91.77 224 | 69.18 240 | 98.10 133 | 70.13 290 | 91.10 166 | 94.48 201 |
|
thres400 | | | 87.62 178 | 86.64 178 | 90.57 176 | 95.99 103 | 78.64 226 | 94.58 127 | 91.98 270 | 86.94 109 | 88.09 128 | 91.77 224 | 69.18 240 | 98.10 133 | 70.13 290 | 91.10 166 | 94.96 175 |
|
MVS_111021_LR | | | 92.47 68 | 92.29 68 | 92.98 84 | 95.99 103 | 84.43 88 | 93.08 210 | 96.09 116 | 88.20 81 | 91.12 97 | 95.72 94 | 81.33 97 | 97.76 158 | 91.74 58 | 97.37 77 | 96.75 117 |
|
PatchMatch-RL | | | 86.77 211 | 85.54 215 | 90.47 185 | 95.88 106 | 82.71 133 | 90.54 268 | 92.31 259 | 79.82 248 | 84.32 219 | 91.57 234 | 68.77 245 | 96.39 256 | 73.16 276 | 93.48 139 | 92.32 288 |
|
EPP-MVSNet | | | 91.70 79 | 91.56 75 | 92.13 123 | 95.88 106 | 80.50 186 | 97.33 3 | 95.25 179 | 86.15 125 | 89.76 109 | 95.60 96 | 83.42 73 | 98.32 123 | 87.37 113 | 93.25 144 | 97.56 87 |
|
IS-MVSNet | | | 91.43 82 | 91.09 83 | 92.46 108 | 95.87 108 | 81.38 163 | 96.95 13 | 93.69 238 | 89.72 39 | 89.50 112 | 95.98 84 | 78.57 127 | 97.77 157 | 83.02 161 | 96.50 94 | 98.22 50 |
|
PAPR | | | 90.02 109 | 89.27 116 | 92.29 119 | 95.78 109 | 80.95 173 | 92.68 220 | 96.22 108 | 81.91 215 | 86.66 158 | 93.75 164 | 82.23 85 | 98.44 114 | 79.40 224 | 94.79 116 | 97.48 89 |
|
Vis-MVSNet (Re-imp) | | | 89.59 120 | 89.44 110 | 90.03 204 | 95.74 110 | 75.85 277 | 95.61 68 | 90.80 301 | 87.66 97 | 87.83 136 | 95.40 101 | 76.79 141 | 96.46 253 | 78.37 230 | 96.73 86 | 97.80 78 |
|
test_yl | | | 90.69 95 | 90.02 102 | 92.71 96 | 95.72 111 | 82.41 140 | 94.11 161 | 95.12 185 | 85.63 136 | 91.49 89 | 94.70 122 | 74.75 165 | 98.42 115 | 86.13 127 | 92.53 156 | 97.31 94 |
|
DCV-MVSNet | | | 90.69 95 | 90.02 102 | 92.71 96 | 95.72 111 | 82.41 140 | 94.11 161 | 95.12 185 | 85.63 136 | 91.49 89 | 94.70 122 | 74.75 165 | 98.42 115 | 86.13 127 | 92.53 156 | 97.31 94 |
|
canonicalmvs | | | 93.27 55 | 92.75 60 | 94.85 27 | 95.70 113 | 87.66 11 | 96.33 33 | 96.41 95 | 90.00 33 | 94.09 30 | 94.60 128 | 82.33 83 | 98.62 100 | 92.40 37 | 92.86 152 | 98.27 45 |
|
CANet | | | 93.54 48 | 93.20 52 | 94.55 43 | 95.65 114 | 85.73 65 | 94.94 104 | 96.69 79 | 91.89 5 | 90.69 100 | 95.88 88 | 81.99 92 | 99.54 15 | 93.14 28 | 97.95 65 | 98.39 34 |
|
3Dnovator+ | | 87.14 4 | 92.42 69 | 91.37 76 | 95.55 4 | 95.63 115 | 88.73 4 | 97.07 12 | 96.77 71 | 90.84 16 | 84.02 226 | 96.62 58 | 75.95 151 | 99.34 32 | 87.77 106 | 97.68 70 | 98.59 17 |
|
alignmvs | | | 93.08 59 | 92.50 65 | 94.81 32 | 95.62 116 | 87.61 12 | 95.99 49 | 96.07 118 | 89.77 37 | 94.12 29 | 94.87 116 | 80.56 101 | 98.66 96 | 92.42 36 | 93.10 147 | 98.15 54 |
|
CS-MVS | | | 92.60 65 | 92.56 63 | 92.73 95 | 95.55 117 | 82.35 142 | 96.14 41 | 96.85 61 | 88.71 64 | 91.44 91 | 91.51 235 | 84.13 67 | 98.48 107 | 91.27 67 | 97.47 75 | 97.34 93 |
|
Regformer-1 | | | 94.22 31 | 94.13 31 | 94.51 45 | 95.54 118 | 86.36 43 | 94.57 129 | 96.44 92 | 91.69 9 | 94.32 27 | 96.56 62 | 87.05 34 | 99.03 62 | 93.35 24 | 97.65 72 | 98.15 54 |
|
Regformer-2 | | | 94.33 26 | 94.22 24 | 94.68 37 | 95.54 118 | 86.75 29 | 94.57 129 | 96.70 77 | 91.84 6 | 94.41 24 | 96.56 62 | 87.19 32 | 99.13 52 | 93.50 19 | 97.65 72 | 98.16 53 |
|
WTY-MVS | | | 89.60 119 | 88.92 123 | 91.67 143 | 95.47 120 | 81.15 169 | 92.38 230 | 94.78 208 | 83.11 188 | 89.06 119 | 94.32 135 | 78.67 125 | 96.61 240 | 81.57 190 | 90.89 172 | 97.24 97 |
|
DELS-MVS | | | 93.43 51 | 93.25 49 | 93.97 58 | 95.42 121 | 85.04 72 | 93.06 212 | 97.13 39 | 90.74 20 | 91.84 81 | 95.09 110 | 86.32 41 | 99.21 45 | 91.22 68 | 98.45 49 | 97.65 81 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Regformer-3 | | | 93.68 44 | 93.64 44 | 93.81 65 | 95.36 122 | 84.61 77 | 94.68 121 | 95.83 137 | 91.27 12 | 93.60 41 | 96.71 51 | 85.75 48 | 98.86 85 | 92.87 30 | 96.65 89 | 97.96 69 |
|
Regformer-4 | | | 93.91 39 | 93.81 38 | 94.19 56 | 95.36 122 | 85.47 68 | 94.68 121 | 96.41 95 | 91.60 10 | 93.75 37 | 96.71 51 | 85.95 46 | 99.10 55 | 93.21 27 | 96.65 89 | 98.01 67 |
|
thres200 | | | 87.21 197 | 86.24 194 | 90.12 199 | 95.36 122 | 78.53 229 | 93.26 202 | 92.10 264 | 86.42 120 | 88.00 133 | 91.11 248 | 69.24 239 | 98.00 146 | 69.58 294 | 91.04 171 | 93.83 231 |
|
Vis-MVSNet | | | 91.75 77 | 91.23 79 | 93.29 71 | 95.32 125 | 83.78 101 | 96.14 41 | 95.98 123 | 89.89 34 | 90.45 102 | 96.58 60 | 75.09 161 | 98.31 124 | 84.75 141 | 96.90 83 | 97.78 80 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
BH-RMVSNet | | | 88.37 154 | 87.48 155 | 91.02 165 | 95.28 126 | 79.45 210 | 92.89 217 | 93.07 246 | 85.45 142 | 86.91 153 | 94.84 120 | 70.35 223 | 97.76 158 | 73.97 271 | 94.59 121 | 95.85 148 |
|
COLMAP_ROB | | 80.39 16 | 83.96 256 | 82.04 262 | 89.74 216 | 95.28 126 | 79.75 205 | 94.25 153 | 92.28 260 | 75.17 292 | 78.02 298 | 93.77 162 | 58.60 311 | 97.84 155 | 65.06 316 | 85.92 232 | 91.63 298 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PS-MVSNAJ | | | 91.18 88 | 90.92 85 | 91.96 129 | 95.26 128 | 82.60 137 | 92.09 241 | 95.70 146 | 86.27 122 | 91.84 81 | 92.46 198 | 79.70 112 | 98.99 72 | 89.08 91 | 95.86 100 | 94.29 206 |
|
BH-untuned | | | 88.60 150 | 88.13 143 | 90.01 206 | 95.24 129 | 78.50 231 | 93.29 200 | 94.15 226 | 84.75 158 | 84.46 211 | 93.40 166 | 75.76 152 | 97.40 189 | 77.59 239 | 94.52 123 | 94.12 212 |
|
ETV-MVS | | | 92.74 63 | 92.66 61 | 92.97 85 | 95.20 130 | 84.04 96 | 95.07 96 | 96.51 90 | 90.73 21 | 92.96 53 | 91.19 242 | 84.06 68 | 98.34 120 | 91.72 59 | 96.54 92 | 96.54 124 |
|
EIA-MVS | | | 91.95 73 | 91.94 70 | 91.98 127 | 95.16 131 | 80.01 199 | 95.36 73 | 96.73 73 | 88.44 72 | 89.34 114 | 92.16 208 | 83.82 72 | 98.45 113 | 89.35 88 | 97.06 81 | 97.48 89 |
|
ab-mvs | | | 89.41 128 | 88.35 135 | 92.60 101 | 95.15 132 | 82.65 135 | 92.20 237 | 95.60 155 | 83.97 170 | 88.55 123 | 93.70 165 | 74.16 176 | 98.21 129 | 82.46 172 | 89.37 191 | 96.94 111 |
|
VDDNet | | | 89.56 121 | 88.49 133 | 92.76 93 | 95.07 133 | 82.09 145 | 96.30 34 | 93.19 244 | 81.05 236 | 91.88 79 | 96.86 44 | 61.16 298 | 98.33 122 | 88.43 99 | 92.49 158 | 97.84 76 |
|
AllTest | | | 83.42 261 | 81.39 266 | 89.52 224 | 95.01 134 | 77.79 250 | 93.12 207 | 90.89 299 | 77.41 272 | 76.12 307 | 93.34 167 | 54.08 325 | 97.51 173 | 68.31 301 | 84.27 245 | 93.26 254 |
|
TestCases | | | | | 89.52 224 | 95.01 134 | 77.79 250 | | 90.89 299 | 77.41 272 | 76.12 307 | 93.34 167 | 54.08 325 | 97.51 173 | 68.31 301 | 84.27 245 | 93.26 254 |
|
EI-MVSNet-Vis-set | | | 93.01 60 | 92.92 58 | 93.29 71 | 95.01 134 | 83.51 109 | 94.48 133 | 95.77 141 | 90.87 15 | 92.52 67 | 96.67 55 | 84.50 64 | 99.00 71 | 91.99 49 | 94.44 126 | 97.36 92 |
|
xiu_mvs_v2_base | | | 91.13 89 | 90.89 87 | 91.86 134 | 94.97 137 | 82.42 138 | 92.24 235 | 95.64 153 | 86.11 128 | 91.74 86 | 93.14 178 | 79.67 115 | 98.89 81 | 89.06 92 | 95.46 107 | 94.28 207 |
|
tttt0517 | | | 88.61 149 | 87.78 149 | 91.11 160 | 94.96 138 | 77.81 249 | 95.35 74 | 89.69 320 | 85.09 152 | 88.05 132 | 94.59 129 | 66.93 257 | 98.48 107 | 83.27 158 | 92.13 161 | 97.03 107 |
|
baseline1 | | | 88.10 161 | 87.28 161 | 90.57 176 | 94.96 138 | 80.07 194 | 94.27 152 | 91.29 288 | 86.74 113 | 87.41 143 | 94.00 148 | 76.77 142 | 96.20 264 | 80.77 201 | 79.31 308 | 95.44 160 |
|
Test_1112_low_res | | | 87.65 173 | 86.51 184 | 91.08 161 | 94.94 140 | 79.28 218 | 91.77 246 | 94.30 220 | 76.04 285 | 83.51 240 | 92.37 201 | 77.86 135 | 97.73 162 | 78.69 229 | 89.13 197 | 96.22 131 |
|
1112_ss | | | 88.42 152 | 87.33 159 | 91.72 141 | 94.92 141 | 80.98 171 | 92.97 215 | 94.54 212 | 78.16 269 | 83.82 231 | 93.88 156 | 78.78 123 | 97.91 153 | 79.45 220 | 89.41 190 | 96.26 130 |
|
QAPM | | | 89.51 122 | 88.15 142 | 93.59 69 | 94.92 141 | 84.58 78 | 96.82 23 | 96.70 77 | 78.43 264 | 83.41 242 | 96.19 78 | 73.18 192 | 99.30 38 | 77.11 245 | 96.54 92 | 96.89 114 |
|
BH-w/o | | | 87.57 181 | 87.05 166 | 89.12 233 | 94.90 143 | 77.90 245 | 92.41 228 | 93.51 240 | 82.89 195 | 83.70 234 | 91.34 236 | 75.75 153 | 97.07 217 | 75.49 258 | 93.49 137 | 92.39 285 |
|
thisisatest0530 | | | 88.67 147 | 87.61 153 | 91.86 134 | 94.87 144 | 80.07 194 | 94.63 125 | 89.90 317 | 84.00 169 | 88.46 125 | 93.78 161 | 66.88 259 | 98.46 110 | 83.30 157 | 92.65 154 | 97.06 105 |
|
EI-MVSNet-UG-set | | | 92.74 63 | 92.62 62 | 93.12 77 | 94.86 145 | 83.20 115 | 94.40 141 | 95.74 144 | 90.71 22 | 92.05 76 | 96.60 59 | 84.00 69 | 98.99 72 | 91.55 61 | 93.63 134 | 97.17 101 |
|
HY-MVS | | 83.01 12 | 89.03 138 | 87.94 147 | 92.29 119 | 94.86 145 | 82.77 127 | 92.08 242 | 94.49 213 | 81.52 227 | 86.93 152 | 92.79 192 | 78.32 131 | 98.23 126 | 79.93 215 | 90.55 173 | 95.88 147 |
|
Fast-Effi-MVS+ | | | 89.41 128 | 88.64 128 | 91.71 142 | 94.74 147 | 80.81 177 | 93.54 189 | 95.10 187 | 83.11 188 | 86.82 156 | 90.67 259 | 79.74 111 | 97.75 161 | 80.51 208 | 93.55 135 | 96.57 122 |
|
ACMP | | 84.23 8 | 89.01 140 | 88.35 135 | 90.99 168 | 94.73 148 | 81.27 164 | 95.07 96 | 95.89 133 | 86.48 118 | 83.67 235 | 94.30 136 | 69.33 235 | 97.99 147 | 87.10 120 | 88.55 202 | 93.72 240 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PVSNet | | 78.82 18 | 85.55 233 | 84.65 235 | 88.23 258 | 94.72 149 | 71.93 306 | 87.12 312 | 92.75 252 | 78.80 259 | 84.95 202 | 90.53 261 | 64.43 279 | 96.71 234 | 74.74 266 | 93.86 131 | 96.06 141 |
|
LCM-MVSNet-Re | | | 88.30 157 | 88.32 138 | 88.27 255 | 94.71 150 | 72.41 305 | 93.15 206 | 90.98 295 | 87.77 91 | 79.25 292 | 91.96 220 | 78.35 130 | 95.75 284 | 83.04 160 | 95.62 102 | 96.65 120 |
|
HQP_MVS | | | 90.60 101 | 90.19 95 | 91.82 137 | 94.70 151 | 82.73 131 | 95.85 56 | 96.22 108 | 90.81 17 | 86.91 153 | 94.86 117 | 74.23 172 | 98.12 131 | 88.15 101 | 89.99 179 | 94.63 187 |
|
plane_prior7 | | | | | | 94.70 151 | 82.74 130 | | | | | | | | | | |
|
ACMH+ | | 81.04 14 | 85.05 244 | 83.46 251 | 89.82 212 | 94.66 153 | 79.37 212 | 94.44 138 | 94.12 229 | 82.19 206 | 78.04 297 | 92.82 189 | 58.23 312 | 97.54 171 | 73.77 273 | 82.90 262 | 92.54 279 |
|
ACMM | | 84.12 9 | 89.14 134 | 88.48 134 | 91.12 157 | 94.65 154 | 81.22 167 | 95.31 76 | 96.12 115 | 85.31 146 | 85.92 171 | 94.34 133 | 70.19 226 | 98.06 142 | 85.65 130 | 88.86 200 | 94.08 216 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
plane_prior1 | | | | | | 94.59 155 | | | | | | | | | | | |
|
3Dnovator | | 86.66 5 | 91.73 78 | 90.82 88 | 94.44 47 | 94.59 155 | 86.37 42 | 97.18 7 | 97.02 45 | 89.20 51 | 84.31 221 | 96.66 56 | 73.74 184 | 99.17 48 | 86.74 121 | 97.96 64 | 97.79 79 |
|
plane_prior6 | | | | | | 94.52 157 | 82.75 128 | | | | | | 74.23 172 | | | | |
|
UGNet | | | 89.95 112 | 88.95 122 | 92.95 86 | 94.51 158 | 83.31 113 | 95.70 62 | 95.23 180 | 89.37 47 | 87.58 141 | 93.94 151 | 64.00 280 | 98.78 93 | 83.92 150 | 96.31 97 | 96.74 118 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LPG-MVS_test | | | 89.45 125 | 88.90 124 | 91.12 157 | 94.47 159 | 81.49 158 | 95.30 79 | 96.14 113 | 86.73 114 | 85.45 186 | 95.16 107 | 69.89 228 | 98.10 133 | 87.70 107 | 89.23 195 | 93.77 236 |
|
LGP-MVS_train | | | | | 91.12 157 | 94.47 159 | 81.49 158 | | 96.14 113 | 86.73 114 | 85.45 186 | 95.16 107 | 69.89 228 | 98.10 133 | 87.70 107 | 89.23 195 | 93.77 236 |
|
baseline | | | 92.39 70 | 92.29 68 | 92.69 99 | 94.46 161 | 81.77 152 | 94.14 158 | 96.27 102 | 89.22 50 | 91.88 79 | 96.00 83 | 82.35 82 | 97.99 147 | 91.05 70 | 95.27 113 | 98.30 39 |
|
ACMH | | 80.38 17 | 85.36 236 | 83.68 247 | 90.39 187 | 94.45 162 | 80.63 181 | 94.73 119 | 94.85 202 | 82.09 207 | 77.24 302 | 92.65 194 | 60.01 305 | 97.58 168 | 72.25 279 | 84.87 241 | 92.96 268 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LTVRE_ROB | | 82.13 13 | 86.26 223 | 84.90 230 | 90.34 192 | 94.44 163 | 81.50 156 | 92.31 234 | 94.89 199 | 83.03 190 | 79.63 289 | 92.67 193 | 69.69 231 | 97.79 156 | 71.20 282 | 86.26 231 | 91.72 296 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
casdiffmvs | | | 92.51 67 | 92.43 66 | 92.74 94 | 94.41 164 | 81.98 148 | 94.54 131 | 96.23 107 | 89.57 41 | 91.96 78 | 96.17 79 | 82.58 79 | 98.01 145 | 90.95 74 | 95.45 108 | 98.23 49 |
|
MVS_Test | | | 91.31 85 | 91.11 81 | 91.93 131 | 94.37 165 | 80.14 191 | 93.46 193 | 95.80 139 | 86.46 119 | 91.35 94 | 93.77 162 | 82.21 86 | 98.09 139 | 87.57 109 | 94.95 115 | 97.55 88 |
|
NP-MVS | | | | | | 94.37 165 | 82.42 138 | | | | | 93.98 149 | | | | | |
|
TR-MVS | | | 86.78 208 | 85.76 213 | 89.82 212 | 94.37 165 | 78.41 233 | 92.47 227 | 92.83 249 | 81.11 235 | 86.36 164 | 92.40 200 | 68.73 246 | 97.48 175 | 73.75 274 | 89.85 185 | 93.57 244 |
|
Effi-MVS+ | | | 91.59 81 | 91.11 81 | 93.01 83 | 94.35 168 | 83.39 112 | 94.60 126 | 95.10 187 | 87.10 104 | 90.57 101 | 93.10 180 | 81.43 96 | 98.07 141 | 89.29 89 | 94.48 124 | 97.59 85 |
|
CLD-MVS | | | 89.47 124 | 88.90 124 | 91.18 156 | 94.22 169 | 82.07 146 | 92.13 239 | 96.09 116 | 87.90 87 | 85.37 195 | 92.45 199 | 74.38 170 | 97.56 170 | 87.15 116 | 90.43 174 | 93.93 222 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HQP-NCC | | | | | | 94.17 170 | | 94.39 143 | | 88.81 60 | 85.43 189 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 170 | | 94.39 143 | | 88.81 60 | 85.43 189 | | | | | | |
|
HQP-MVS | | | 89.80 116 | 89.28 115 | 91.34 152 | 94.17 170 | 81.56 154 | 94.39 143 | 96.04 121 | 88.81 60 | 85.43 189 | 93.97 150 | 73.83 182 | 97.96 149 | 87.11 118 | 89.77 186 | 94.50 198 |
|
XVG-OURS | | | 89.40 130 | 88.70 127 | 91.52 146 | 94.06 173 | 81.46 160 | 91.27 258 | 96.07 118 | 86.14 126 | 88.89 121 | 95.77 92 | 68.73 246 | 97.26 201 | 87.39 112 | 89.96 181 | 95.83 150 |
|
sss | | | 88.93 141 | 88.26 141 | 90.94 171 | 94.05 174 | 80.78 178 | 91.71 249 | 95.38 173 | 81.55 226 | 88.63 122 | 93.91 155 | 75.04 162 | 95.47 296 | 82.47 171 | 91.61 163 | 96.57 122 |
|
PCF-MVS | | 84.11 10 | 87.74 170 | 86.08 200 | 92.70 98 | 94.02 175 | 84.43 88 | 89.27 288 | 95.87 134 | 73.62 306 | 84.43 213 | 94.33 134 | 78.48 129 | 98.86 85 | 70.27 286 | 94.45 125 | 94.81 183 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
GBi-Net | | | 87.26 191 | 85.98 203 | 91.08 161 | 94.01 176 | 83.10 117 | 95.14 93 | 94.94 193 | 83.57 176 | 84.37 214 | 91.64 227 | 66.59 264 | 96.34 260 | 78.23 233 | 85.36 237 | 93.79 232 |
|
test1 | | | 87.26 191 | 85.98 203 | 91.08 161 | 94.01 176 | 83.10 117 | 95.14 93 | 94.94 193 | 83.57 176 | 84.37 214 | 91.64 227 | 66.59 264 | 96.34 260 | 78.23 233 | 85.36 237 | 93.79 232 |
|
FMVSNet2 | | | 87.19 198 | 85.82 209 | 91.30 153 | 94.01 176 | 83.67 104 | 94.79 115 | 94.94 193 | 83.57 176 | 83.88 229 | 92.05 218 | 66.59 264 | 96.51 248 | 77.56 240 | 85.01 240 | 93.73 239 |
|
XVG-OURS-SEG-HR | | | 89.95 112 | 89.45 109 | 91.47 148 | 94.00 179 | 81.21 168 | 91.87 244 | 96.06 120 | 85.78 131 | 88.55 123 | 95.73 93 | 74.67 168 | 97.27 199 | 88.71 96 | 89.64 188 | 95.91 145 |
|
FIs | | | 90.51 102 | 90.35 92 | 90.99 168 | 93.99 180 | 80.98 171 | 95.73 60 | 97.54 3 | 89.15 53 | 86.72 157 | 94.68 124 | 81.83 94 | 97.24 203 | 85.18 134 | 88.31 210 | 94.76 185 |
|
xiu_mvs_v1_base_debu | | | 90.64 98 | 90.05 99 | 92.40 110 | 93.97 181 | 84.46 84 | 93.32 195 | 95.46 164 | 85.17 147 | 92.25 70 | 94.03 143 | 70.59 218 | 98.57 103 | 90.97 71 | 94.67 117 | 94.18 208 |
|
xiu_mvs_v1_base | | | 90.64 98 | 90.05 99 | 92.40 110 | 93.97 181 | 84.46 84 | 93.32 195 | 95.46 164 | 85.17 147 | 92.25 70 | 94.03 143 | 70.59 218 | 98.57 103 | 90.97 71 | 94.67 117 | 94.18 208 |
|
xiu_mvs_v1_base_debi | | | 90.64 98 | 90.05 99 | 92.40 110 | 93.97 181 | 84.46 84 | 93.32 195 | 95.46 164 | 85.17 147 | 92.25 70 | 94.03 143 | 70.59 218 | 98.57 103 | 90.97 71 | 94.67 117 | 94.18 208 |
|
VPA-MVSNet | | | 89.62 118 | 88.96 121 | 91.60 145 | 93.86 184 | 82.89 126 | 95.46 72 | 97.33 22 | 87.91 86 | 88.43 126 | 93.31 170 | 74.17 175 | 97.40 189 | 87.32 114 | 82.86 263 | 94.52 196 |
|
MVSFormer | | | 91.68 80 | 91.30 77 | 92.80 91 | 93.86 184 | 83.88 99 | 95.96 52 | 95.90 131 | 84.66 160 | 91.76 84 | 94.91 114 | 77.92 133 | 97.30 195 | 89.64 86 | 97.11 79 | 97.24 97 |
|
lupinMVS | | | 90.92 91 | 90.21 94 | 93.03 82 | 93.86 184 | 83.88 99 | 92.81 218 | 93.86 233 | 79.84 247 | 91.76 84 | 94.29 137 | 77.92 133 | 98.04 143 | 90.48 81 | 97.11 79 | 97.17 101 |
|
IterMVS-LS | | | 88.36 155 | 87.91 148 | 89.70 219 | 93.80 187 | 78.29 237 | 93.73 182 | 95.08 189 | 85.73 133 | 84.75 204 | 91.90 222 | 79.88 108 | 96.92 226 | 83.83 151 | 82.51 264 | 93.89 224 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 84.86 248 | 83.09 254 | 90.14 198 | 93.80 187 | 80.05 196 | 89.18 291 | 93.09 245 | 78.89 256 | 78.19 295 | 91.91 221 | 65.86 273 | 97.27 199 | 68.47 299 | 88.45 206 | 93.11 263 |
|
FMVSNet3 | | | 87.40 188 | 86.11 198 | 91.30 153 | 93.79 189 | 83.64 105 | 94.20 156 | 94.81 206 | 83.89 171 | 84.37 214 | 91.87 223 | 68.45 249 | 96.56 245 | 78.23 233 | 85.36 237 | 93.70 241 |
|
FC-MVSNet-test | | | 90.27 105 | 90.18 96 | 90.53 179 | 93.71 190 | 79.85 204 | 95.77 59 | 97.59 2 | 89.31 48 | 86.27 166 | 94.67 125 | 81.93 93 | 97.01 221 | 84.26 146 | 88.09 214 | 94.71 186 |
|
TAMVS | | | 89.21 133 | 88.29 139 | 91.96 129 | 93.71 190 | 82.62 136 | 93.30 199 | 94.19 224 | 82.22 205 | 87.78 138 | 93.94 151 | 78.83 121 | 96.95 224 | 77.70 238 | 92.98 150 | 96.32 127 |
|
ET-MVSNet_ETH3D | | | 87.51 183 | 85.91 207 | 92.32 116 | 93.70 192 | 83.93 97 | 92.33 232 | 90.94 297 | 84.16 165 | 72.09 324 | 92.52 197 | 69.90 227 | 95.85 279 | 89.20 90 | 88.36 209 | 97.17 101 |
|
CDS-MVSNet | | | 89.45 125 | 88.51 130 | 92.29 119 | 93.62 193 | 83.61 107 | 93.01 213 | 94.68 211 | 81.95 213 | 87.82 137 | 93.24 174 | 78.69 124 | 96.99 222 | 80.34 210 | 93.23 145 | 96.28 129 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
UniMVSNet (Re) | | | 89.80 116 | 89.07 119 | 92.01 124 | 93.60 194 | 84.52 80 | 94.78 116 | 97.47 8 | 89.26 49 | 86.44 163 | 92.32 203 | 82.10 88 | 97.39 192 | 84.81 140 | 80.84 290 | 94.12 212 |
|
VPNet | | | 88.20 159 | 87.47 156 | 90.39 187 | 93.56 195 | 79.46 209 | 94.04 169 | 95.54 160 | 88.67 66 | 86.96 151 | 94.58 130 | 69.33 235 | 97.15 209 | 84.05 149 | 80.53 295 | 94.56 194 |
|
thisisatest0515 | | | 87.33 189 | 85.99 202 | 91.37 151 | 93.49 196 | 79.55 207 | 90.63 267 | 89.56 323 | 80.17 242 | 87.56 142 | 90.86 253 | 67.07 256 | 98.28 125 | 81.50 191 | 93.02 149 | 96.29 128 |
|
mvs_anonymous | | | 89.37 131 | 89.32 113 | 89.51 226 | 93.47 197 | 74.22 286 | 91.65 252 | 94.83 204 | 82.91 194 | 85.45 186 | 93.79 160 | 81.23 98 | 96.36 259 | 86.47 126 | 94.09 128 | 97.94 70 |
|
CANet_DTU | | | 90.26 106 | 89.41 111 | 92.81 90 | 93.46 198 | 83.01 122 | 93.48 191 | 94.47 214 | 89.43 45 | 87.76 139 | 94.23 141 | 70.54 222 | 99.03 62 | 84.97 136 | 96.39 96 | 96.38 126 |
|
UniMVSNet_NR-MVSNet | | | 89.92 114 | 89.29 114 | 91.81 139 | 93.39 199 | 83.72 102 | 94.43 139 | 97.12 40 | 89.80 36 | 86.46 160 | 93.32 169 | 83.16 74 | 97.23 205 | 84.92 137 | 81.02 286 | 94.49 200 |
|
Effi-MVS+-dtu | | | 88.65 148 | 88.35 135 | 89.54 223 | 93.33 200 | 76.39 272 | 94.47 136 | 94.36 217 | 87.70 93 | 85.43 189 | 89.56 281 | 73.45 187 | 97.26 201 | 85.57 132 | 91.28 165 | 94.97 172 |
|
mvs-test1 | | | 89.45 125 | 89.14 117 | 90.38 189 | 93.33 200 | 77.63 255 | 94.95 103 | 94.36 217 | 87.70 93 | 87.10 150 | 92.81 190 | 73.45 187 | 98.03 144 | 85.57 132 | 93.04 148 | 95.48 158 |
|
WR-MVS | | | 88.38 153 | 87.67 152 | 90.52 181 | 93.30 202 | 80.18 189 | 93.26 202 | 95.96 125 | 88.57 70 | 85.47 185 | 92.81 190 | 76.12 147 | 96.91 227 | 81.24 193 | 82.29 266 | 94.47 203 |
|
WR-MVS_H | | | 87.80 169 | 87.37 158 | 89.10 234 | 93.23 203 | 78.12 240 | 95.61 68 | 97.30 26 | 87.90 87 | 83.72 233 | 92.01 219 | 79.65 116 | 96.01 272 | 76.36 250 | 80.54 294 | 93.16 261 |
|
test_0402 | | | 81.30 284 | 79.17 289 | 87.67 268 | 93.19 204 | 78.17 239 | 92.98 214 | 91.71 275 | 75.25 291 | 76.02 309 | 90.31 265 | 59.23 309 | 96.37 257 | 50.22 337 | 83.63 252 | 88.47 329 |
|
OPM-MVS | | | 90.12 107 | 89.56 107 | 91.82 137 | 93.14 205 | 83.90 98 | 94.16 157 | 95.74 144 | 88.96 59 | 87.86 134 | 95.43 100 | 72.48 200 | 97.91 153 | 88.10 104 | 90.18 178 | 93.65 242 |
|
CP-MVSNet | | | 87.63 176 | 87.26 163 | 88.74 244 | 93.12 206 | 76.59 269 | 95.29 81 | 96.58 87 | 88.43 73 | 83.49 241 | 92.98 183 | 75.28 159 | 95.83 280 | 78.97 226 | 81.15 282 | 93.79 232 |
|
diffmvs | | | 91.37 84 | 91.23 79 | 91.77 140 | 93.09 207 | 80.27 188 | 92.36 231 | 95.52 161 | 87.03 106 | 91.40 93 | 94.93 113 | 80.08 106 | 97.44 180 | 92.13 47 | 94.56 122 | 97.61 83 |
|
nrg030 | | | 91.08 90 | 90.39 91 | 93.17 76 | 93.07 208 | 86.91 20 | 96.41 31 | 96.26 103 | 88.30 76 | 88.37 127 | 94.85 119 | 82.19 87 | 97.64 166 | 91.09 69 | 82.95 258 | 94.96 175 |
|
PAPM | | | 86.68 212 | 85.39 219 | 90.53 179 | 93.05 209 | 79.33 217 | 89.79 281 | 94.77 209 | 78.82 258 | 81.95 260 | 93.24 174 | 76.81 140 | 97.30 195 | 66.94 306 | 93.16 146 | 94.95 178 |
|
DU-MVS | | | 89.34 132 | 88.50 131 | 91.85 136 | 93.04 210 | 83.72 102 | 94.47 136 | 96.59 86 | 89.50 42 | 86.46 160 | 93.29 172 | 77.25 137 | 97.23 205 | 84.92 137 | 81.02 286 | 94.59 191 |
|
NR-MVSNet | | | 88.58 151 | 87.47 156 | 91.93 131 | 93.04 210 | 84.16 93 | 94.77 117 | 96.25 105 | 89.05 55 | 80.04 285 | 93.29 172 | 79.02 120 | 97.05 219 | 81.71 189 | 80.05 300 | 94.59 191 |
|
jason | | | 90.80 92 | 90.10 97 | 92.90 88 | 93.04 210 | 83.53 108 | 93.08 210 | 94.15 226 | 80.22 241 | 91.41 92 | 94.91 114 | 76.87 139 | 97.93 152 | 90.28 82 | 96.90 83 | 97.24 97 |
jason: jason. |
RRT_test8_iter05 | | | 86.90 204 | 86.36 188 | 88.52 249 | 93.00 213 | 73.27 294 | 94.32 150 | 95.96 125 | 85.50 141 | 84.26 222 | 92.86 185 | 60.76 300 | 97.70 163 | 88.32 100 | 82.29 266 | 94.60 190 |
|
PS-CasMVS | | | 87.32 190 | 86.88 168 | 88.63 247 | 92.99 214 | 76.33 274 | 95.33 75 | 96.61 85 | 88.22 80 | 83.30 246 | 93.07 181 | 73.03 194 | 95.79 283 | 78.36 231 | 81.00 288 | 93.75 238 |
|
MVSTER | | | 88.84 143 | 88.29 139 | 90.51 182 | 92.95 215 | 80.44 187 | 93.73 182 | 95.01 190 | 84.66 160 | 87.15 147 | 93.12 179 | 72.79 196 | 97.21 207 | 87.86 105 | 87.36 223 | 93.87 227 |
|
RPSCF | | | 85.07 243 | 84.27 239 | 87.48 274 | 92.91 216 | 70.62 318 | 91.69 251 | 92.46 257 | 76.20 284 | 82.67 252 | 95.22 105 | 63.94 281 | 97.29 198 | 77.51 241 | 85.80 234 | 94.53 195 |
|
FMVSNet1 | | | 85.85 229 | 84.11 241 | 91.08 161 | 92.81 217 | 83.10 117 | 95.14 93 | 94.94 193 | 81.64 223 | 82.68 251 | 91.64 227 | 59.01 310 | 96.34 260 | 75.37 260 | 83.78 248 | 93.79 232 |
|
tfpnnormal | | | 84.72 250 | 83.23 253 | 89.20 231 | 92.79 218 | 80.05 196 | 94.48 133 | 95.81 138 | 82.38 202 | 81.08 269 | 91.21 241 | 69.01 242 | 96.95 224 | 61.69 325 | 80.59 293 | 90.58 316 |
|
OpenMVS | | 83.78 11 | 88.74 146 | 87.29 160 | 93.08 79 | 92.70 219 | 85.39 69 | 96.57 28 | 96.43 94 | 78.74 261 | 80.85 271 | 96.07 82 | 69.64 232 | 99.01 68 | 78.01 236 | 96.65 89 | 94.83 182 |
|
TranMVSNet+NR-MVSNet | | | 88.84 143 | 87.95 146 | 91.49 147 | 92.68 220 | 83.01 122 | 94.92 106 | 96.31 100 | 89.88 35 | 85.53 180 | 93.85 158 | 76.63 145 | 96.96 223 | 81.91 182 | 79.87 303 | 94.50 198 |
|
MVS | | | 87.44 186 | 86.10 199 | 91.44 149 | 92.61 221 | 83.62 106 | 92.63 222 | 95.66 150 | 67.26 329 | 81.47 263 | 92.15 209 | 77.95 132 | 98.22 128 | 79.71 217 | 95.48 105 | 92.47 282 |
|
CHOSEN 280x420 | | | 85.15 242 | 83.99 243 | 88.65 246 | 92.47 222 | 78.40 234 | 79.68 337 | 92.76 251 | 74.90 296 | 81.41 265 | 89.59 279 | 69.85 230 | 95.51 292 | 79.92 216 | 95.29 111 | 92.03 292 |
|
UniMVSNet_ETH3D | | | 87.53 182 | 86.37 187 | 91.00 167 | 92.44 223 | 78.96 223 | 94.74 118 | 95.61 154 | 84.07 168 | 85.36 196 | 94.52 131 | 59.78 307 | 97.34 194 | 82.93 162 | 87.88 217 | 96.71 119 |
|
1314 | | | 87.51 183 | 86.57 183 | 90.34 192 | 92.42 224 | 79.74 206 | 92.63 222 | 95.35 177 | 78.35 265 | 80.14 282 | 91.62 231 | 74.05 177 | 97.15 209 | 81.05 194 | 93.53 136 | 94.12 212 |
|
cl-mvsnet2 | | | 86.78 208 | 85.98 203 | 89.18 232 | 92.34 225 | 77.62 256 | 90.84 264 | 94.13 228 | 81.33 230 | 83.97 228 | 90.15 268 | 73.96 179 | 96.60 242 | 84.19 147 | 82.94 259 | 93.33 252 |
|
PEN-MVS | | | 86.80 207 | 86.27 193 | 88.40 251 | 92.32 226 | 75.71 279 | 95.18 90 | 96.38 98 | 87.97 84 | 82.82 250 | 93.15 177 | 73.39 190 | 95.92 275 | 76.15 254 | 79.03 310 | 93.59 243 |
|
cl_fuxian | | | 87.14 200 | 86.50 185 | 89.04 236 | 92.20 227 | 77.26 261 | 91.22 260 | 94.70 210 | 82.01 211 | 84.34 218 | 90.43 263 | 78.81 122 | 96.61 240 | 83.70 154 | 81.09 283 | 93.25 256 |
|
SCA | | | 86.32 222 | 85.18 223 | 89.73 218 | 92.15 228 | 76.60 268 | 91.12 261 | 91.69 277 | 83.53 179 | 85.50 183 | 88.81 288 | 66.79 260 | 96.48 250 | 76.65 248 | 90.35 176 | 96.12 135 |
|
XXY-MVS | | | 87.65 173 | 86.85 170 | 90.03 204 | 92.14 229 | 80.60 183 | 93.76 181 | 95.23 180 | 82.94 192 | 84.60 206 | 94.02 146 | 74.27 171 | 95.49 295 | 81.04 195 | 83.68 251 | 94.01 220 |
|
miper_ehance_all_eth | | | 87.22 196 | 86.62 181 | 89.02 237 | 92.13 230 | 77.40 260 | 90.91 263 | 94.81 206 | 81.28 231 | 84.32 219 | 90.08 270 | 79.26 118 | 96.62 237 | 83.81 152 | 82.94 259 | 93.04 266 |
|
IB-MVS | | 80.51 15 | 85.24 241 | 83.26 252 | 91.19 155 | 92.13 230 | 79.86 203 | 91.75 247 | 91.29 288 | 83.28 186 | 80.66 274 | 88.49 294 | 61.28 294 | 98.46 110 | 80.99 198 | 79.46 306 | 95.25 166 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
cascas | | | 86.43 221 | 84.98 227 | 90.80 173 | 92.10 232 | 80.92 174 | 90.24 272 | 95.91 130 | 73.10 310 | 83.57 239 | 88.39 295 | 65.15 275 | 97.46 177 | 84.90 139 | 91.43 164 | 94.03 219 |
|
Fast-Effi-MVS+-dtu | | | 87.44 186 | 86.72 174 | 89.63 221 | 92.04 233 | 77.68 254 | 94.03 170 | 93.94 231 | 85.81 130 | 82.42 253 | 91.32 239 | 70.33 224 | 97.06 218 | 80.33 211 | 90.23 177 | 94.14 211 |
|
cl-mvsnet_ | | | 86.52 217 | 85.78 210 | 88.75 242 | 92.03 234 | 76.46 270 | 90.74 265 | 94.30 220 | 81.83 220 | 83.34 244 | 90.78 257 | 75.74 155 | 96.57 243 | 81.74 187 | 81.54 278 | 93.22 258 |
|
cl-mvsnet1 | | | 86.53 216 | 85.78 210 | 88.75 242 | 92.02 235 | 76.45 271 | 90.74 265 | 94.30 220 | 81.83 220 | 83.34 244 | 90.82 255 | 75.75 153 | 96.57 243 | 81.73 188 | 81.52 279 | 93.24 257 |
|
RRT_MVS | | | 88.86 142 | 87.68 151 | 92.39 113 | 92.02 235 | 86.09 52 | 94.38 147 | 94.94 193 | 85.45 142 | 87.14 149 | 93.84 159 | 65.88 272 | 97.11 213 | 88.73 95 | 86.77 230 | 93.98 221 |
|
eth_miper_zixun_eth | | | 86.50 218 | 85.77 212 | 88.68 245 | 91.94 237 | 75.81 278 | 90.47 269 | 94.89 199 | 82.05 208 | 84.05 225 | 90.46 262 | 75.96 150 | 96.77 231 | 82.76 168 | 79.36 307 | 93.46 250 |
|
PS-MVSNAJss | | | 89.97 111 | 89.62 106 | 91.02 165 | 91.90 238 | 80.85 176 | 95.26 84 | 95.98 123 | 86.26 123 | 86.21 167 | 94.29 137 | 79.70 112 | 97.65 164 | 88.87 94 | 88.10 212 | 94.57 193 |
|
ITE_SJBPF | | | | | 88.24 257 | 91.88 239 | 77.05 264 | | 92.92 247 | 85.54 139 | 80.13 283 | 93.30 171 | 57.29 314 | 96.20 264 | 72.46 278 | 84.71 242 | 91.49 300 |
|
EI-MVSNet | | | 89.10 135 | 88.86 126 | 89.80 215 | 91.84 240 | 78.30 236 | 93.70 185 | 95.01 190 | 85.73 133 | 87.15 147 | 95.28 102 | 79.87 109 | 97.21 207 | 83.81 152 | 87.36 223 | 93.88 226 |
|
CVMVSNet | | | 84.69 251 | 84.79 233 | 84.37 308 | 91.84 240 | 64.92 335 | 93.70 185 | 91.47 284 | 66.19 331 | 86.16 169 | 95.28 102 | 67.18 255 | 93.33 319 | 80.89 200 | 90.42 175 | 94.88 180 |
|
MVS-HIRNet | | | 73.70 305 | 72.20 307 | 78.18 320 | 91.81 242 | 56.42 342 | 82.94 332 | 82.58 338 | 55.24 337 | 68.88 329 | 66.48 338 | 55.32 320 | 95.13 300 | 58.12 332 | 88.42 207 | 83.01 334 |
|
PatchmatchNet | | | 85.85 229 | 84.70 234 | 89.29 229 | 91.76 243 | 75.54 280 | 88.49 299 | 91.30 287 | 81.63 224 | 85.05 200 | 88.70 292 | 71.71 204 | 96.24 263 | 74.61 268 | 89.05 198 | 96.08 139 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TransMVSNet (Re) | | | 84.43 253 | 83.06 255 | 88.54 248 | 91.72 244 | 78.44 232 | 95.18 90 | 92.82 250 | 82.73 197 | 79.67 288 | 92.12 211 | 73.49 186 | 95.96 274 | 71.10 285 | 68.73 331 | 91.21 307 |
|
IterMVS-SCA-FT | | | 85.45 234 | 84.53 238 | 88.18 259 | 91.71 245 | 76.87 266 | 90.19 275 | 92.65 255 | 85.40 144 | 81.44 264 | 90.54 260 | 66.79 260 | 95.00 304 | 81.04 195 | 81.05 284 | 92.66 277 |
|
TinyColmap | | | 79.76 294 | 77.69 295 | 85.97 297 | 91.71 245 | 73.12 295 | 89.55 282 | 90.36 307 | 75.03 293 | 72.03 325 | 90.19 266 | 46.22 338 | 96.19 266 | 63.11 321 | 81.03 285 | 88.59 328 |
|
MDTV_nov1_ep13 | | | | 83.56 250 | | 91.69 247 | 69.93 322 | 87.75 307 | 91.54 281 | 78.60 262 | 84.86 203 | 88.90 287 | 69.54 233 | 96.03 270 | 70.25 287 | 88.93 199 | |
|
miper_enhance_ethall | | | 86.90 204 | 86.18 195 | 89.06 235 | 91.66 248 | 77.58 257 | 90.22 274 | 94.82 205 | 79.16 253 | 84.48 210 | 89.10 284 | 79.19 119 | 96.66 235 | 84.06 148 | 82.94 259 | 92.94 269 |
|
DTE-MVSNet | | | 86.11 224 | 85.48 217 | 87.98 263 | 91.65 249 | 74.92 282 | 94.93 105 | 95.75 143 | 87.36 100 | 82.26 255 | 93.04 182 | 72.85 195 | 95.82 281 | 74.04 270 | 77.46 315 | 93.20 259 |
|
MIMVSNet | | | 82.59 269 | 80.53 273 | 88.76 241 | 91.51 250 | 78.32 235 | 86.57 315 | 90.13 310 | 79.32 251 | 80.70 273 | 88.69 293 | 52.98 327 | 93.07 323 | 66.03 311 | 88.86 200 | 94.90 179 |
|
pm-mvs1 | | | 86.61 213 | 85.54 215 | 89.82 212 | 91.44 251 | 80.18 189 | 95.28 83 | 94.85 202 | 83.84 172 | 81.66 262 | 92.62 195 | 72.45 202 | 96.48 250 | 79.67 218 | 78.06 311 | 92.82 274 |
|
Baseline_NR-MVSNet | | | 87.07 201 | 86.63 180 | 88.40 251 | 91.44 251 | 77.87 247 | 94.23 155 | 92.57 256 | 84.12 167 | 85.74 174 | 92.08 215 | 77.25 137 | 96.04 269 | 82.29 175 | 79.94 301 | 91.30 304 |
|
IterMVS | | | 84.88 247 | 83.98 244 | 87.60 269 | 91.44 251 | 76.03 276 | 90.18 276 | 92.41 258 | 83.24 187 | 81.06 270 | 90.42 264 | 66.60 263 | 94.28 310 | 79.46 219 | 80.98 289 | 92.48 281 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DWT-MVSNet_test | | | 84.95 246 | 83.68 247 | 88.77 240 | 91.43 254 | 73.75 290 | 91.74 248 | 90.98 295 | 80.66 239 | 83.84 230 | 87.36 309 | 62.44 286 | 97.11 213 | 78.84 228 | 85.81 233 | 95.46 159 |
|
MS-PatchMatch | | | 85.05 244 | 84.16 240 | 87.73 267 | 91.42 255 | 78.51 230 | 91.25 259 | 93.53 239 | 77.50 271 | 80.15 281 | 91.58 232 | 61.99 289 | 95.51 292 | 75.69 257 | 94.35 127 | 89.16 323 |
|
tpm2 | | | 84.08 255 | 82.94 256 | 87.48 274 | 91.39 256 | 71.27 310 | 89.23 290 | 90.37 306 | 71.95 318 | 84.64 205 | 89.33 282 | 67.30 252 | 96.55 247 | 75.17 262 | 87.09 227 | 94.63 187 |
|
v8 | | | 87.50 185 | 86.71 175 | 89.89 209 | 91.37 257 | 79.40 211 | 94.50 132 | 95.38 173 | 84.81 157 | 83.60 238 | 91.33 237 | 76.05 148 | 97.42 182 | 82.84 165 | 80.51 297 | 92.84 273 |
|
ADS-MVSNet2 | | | 81.66 277 | 79.71 284 | 87.50 272 | 91.35 258 | 74.19 287 | 83.33 329 | 88.48 326 | 72.90 312 | 82.24 256 | 85.77 317 | 64.98 276 | 93.20 321 | 64.57 317 | 83.74 249 | 95.12 168 |
|
ADS-MVSNet | | | 81.56 279 | 79.78 282 | 86.90 288 | 91.35 258 | 71.82 307 | 83.33 329 | 89.16 324 | 72.90 312 | 82.24 256 | 85.77 317 | 64.98 276 | 93.76 314 | 64.57 317 | 83.74 249 | 95.12 168 |
|
GA-MVS | | | 86.61 213 | 85.27 222 | 90.66 174 | 91.33 260 | 78.71 225 | 90.40 270 | 93.81 236 | 85.34 145 | 85.12 199 | 89.57 280 | 61.25 295 | 97.11 213 | 80.99 198 | 89.59 189 | 96.15 132 |
|
miper_lstm_enhance | | | 85.27 240 | 84.59 237 | 87.31 276 | 91.28 261 | 74.63 283 | 87.69 308 | 94.09 230 | 81.20 234 | 81.36 266 | 89.85 276 | 74.97 164 | 94.30 309 | 81.03 197 | 79.84 304 | 93.01 267 |
|
XVG-ACMP-BASELINE | | | 86.00 225 | 84.84 232 | 89.45 227 | 91.20 262 | 78.00 242 | 91.70 250 | 95.55 158 | 85.05 153 | 82.97 248 | 92.25 207 | 54.49 323 | 97.48 175 | 82.93 162 | 87.45 222 | 92.89 271 |
|
v10 | | | 87.25 193 | 86.38 186 | 89.85 210 | 91.19 263 | 79.50 208 | 94.48 133 | 95.45 167 | 83.79 173 | 83.62 237 | 91.19 242 | 75.13 160 | 97.42 182 | 81.94 181 | 80.60 292 | 92.63 278 |
|
FMVSNet5 | | | 81.52 280 | 79.60 285 | 87.27 277 | 91.17 264 | 77.95 243 | 91.49 254 | 92.26 261 | 76.87 277 | 76.16 306 | 87.91 304 | 51.67 328 | 92.34 325 | 67.74 305 | 81.16 280 | 91.52 299 |
|
USDC | | | 82.76 266 | 81.26 268 | 87.26 278 | 91.17 264 | 74.55 284 | 89.27 288 | 93.39 242 | 78.26 267 | 75.30 311 | 92.08 215 | 54.43 324 | 96.63 236 | 71.64 280 | 85.79 235 | 90.61 313 |
|
CostFormer | | | 85.77 231 | 84.94 229 | 88.26 256 | 91.16 266 | 72.58 304 | 89.47 286 | 91.04 294 | 76.26 283 | 86.45 162 | 89.97 273 | 70.74 216 | 96.86 230 | 82.35 173 | 87.07 228 | 95.34 165 |
|
baseline2 | | | 86.50 218 | 85.39 219 | 89.84 211 | 91.12 267 | 76.70 267 | 91.88 243 | 88.58 325 | 82.35 204 | 79.95 286 | 90.95 252 | 73.42 189 | 97.63 167 | 80.27 212 | 89.95 182 | 95.19 167 |
|
tpm cat1 | | | 81.96 272 | 80.27 276 | 87.01 285 | 91.09 268 | 71.02 314 | 87.38 311 | 91.53 282 | 66.25 330 | 80.17 280 | 86.35 315 | 68.22 251 | 96.15 267 | 69.16 295 | 82.29 266 | 93.86 229 |
|
tpmvs | | | 83.35 264 | 82.07 261 | 87.20 283 | 91.07 269 | 71.00 315 | 88.31 302 | 91.70 276 | 78.91 255 | 80.49 277 | 87.18 312 | 69.30 238 | 97.08 216 | 68.12 304 | 83.56 253 | 93.51 248 |
|
v1144 | | | 87.61 179 | 86.79 173 | 90.06 203 | 91.01 270 | 79.34 214 | 93.95 175 | 95.42 172 | 83.36 184 | 85.66 176 | 91.31 240 | 74.98 163 | 97.42 182 | 83.37 156 | 82.06 269 | 93.42 251 |
|
v2v482 | | | 87.84 167 | 87.06 165 | 90.17 195 | 90.99 271 | 79.23 221 | 94.00 173 | 95.13 184 | 84.87 155 | 85.53 180 | 92.07 217 | 74.45 169 | 97.45 178 | 84.71 142 | 81.75 275 | 93.85 230 |
|
SixPastTwentyTwo | | | 83.91 257 | 82.90 257 | 86.92 287 | 90.99 271 | 70.67 317 | 93.48 191 | 91.99 269 | 85.54 139 | 77.62 301 | 92.11 213 | 60.59 301 | 96.87 229 | 76.05 255 | 77.75 312 | 93.20 259 |
|
test-LLR | | | 85.87 228 | 85.41 218 | 87.25 279 | 90.95 273 | 71.67 308 | 89.55 282 | 89.88 318 | 83.41 182 | 84.54 208 | 87.95 302 | 67.25 253 | 95.11 301 | 81.82 184 | 93.37 142 | 94.97 172 |
|
test-mter | | | 84.54 252 | 83.64 249 | 87.25 279 | 90.95 273 | 71.67 308 | 89.55 282 | 89.88 318 | 79.17 252 | 84.54 208 | 87.95 302 | 55.56 318 | 95.11 301 | 81.82 184 | 93.37 142 | 94.97 172 |
|
v148 | | | 87.04 202 | 86.32 191 | 89.21 230 | 90.94 275 | 77.26 261 | 93.71 184 | 94.43 215 | 84.84 156 | 84.36 217 | 90.80 256 | 76.04 149 | 97.05 219 | 82.12 177 | 79.60 305 | 93.31 253 |
|
mvs_tets | | | 88.06 164 | 87.28 161 | 90.38 189 | 90.94 275 | 79.88 202 | 95.22 86 | 95.66 150 | 85.10 151 | 84.21 224 | 93.94 151 | 63.53 282 | 97.40 189 | 88.50 98 | 88.40 208 | 93.87 227 |
|
MVP-Stereo | | | 85.97 226 | 84.86 231 | 89.32 228 | 90.92 277 | 82.19 144 | 92.11 240 | 94.19 224 | 78.76 260 | 78.77 294 | 91.63 230 | 68.38 250 | 96.56 245 | 75.01 265 | 93.95 129 | 89.20 322 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Patchmatch-test | | | 81.37 282 | 79.30 287 | 87.58 270 | 90.92 277 | 74.16 288 | 80.99 335 | 87.68 330 | 70.52 324 | 76.63 305 | 88.81 288 | 71.21 209 | 92.76 324 | 60.01 331 | 86.93 229 | 95.83 150 |
|
jajsoiax | | | 88.24 158 | 87.50 154 | 90.48 184 | 90.89 279 | 80.14 191 | 95.31 76 | 95.65 152 | 84.97 154 | 84.24 223 | 94.02 146 | 65.31 274 | 97.42 182 | 88.56 97 | 88.52 204 | 93.89 224 |
|
tpmrst | | | 85.35 237 | 84.99 226 | 86.43 293 | 90.88 280 | 67.88 328 | 88.71 296 | 91.43 285 | 80.13 243 | 86.08 170 | 88.80 290 | 73.05 193 | 96.02 271 | 82.48 170 | 83.40 257 | 95.40 162 |
|
gg-mvs-nofinetune | | | 81.77 275 | 79.37 286 | 88.99 238 | 90.85 281 | 77.73 253 | 86.29 316 | 79.63 343 | 74.88 297 | 83.19 247 | 69.05 337 | 60.34 302 | 96.11 268 | 75.46 259 | 94.64 120 | 93.11 263 |
|
D2MVS | | | 85.90 227 | 85.09 225 | 88.35 253 | 90.79 282 | 77.42 259 | 91.83 245 | 95.70 146 | 80.77 238 | 80.08 284 | 90.02 271 | 66.74 262 | 96.37 257 | 81.88 183 | 87.97 216 | 91.26 305 |
|
OurMVSNet-221017-0 | | | 85.35 237 | 84.64 236 | 87.49 273 | 90.77 283 | 72.59 303 | 94.01 172 | 94.40 216 | 84.72 159 | 79.62 290 | 93.17 176 | 61.91 290 | 96.72 232 | 81.99 180 | 81.16 280 | 93.16 261 |
|
v1192 | | | 87.25 193 | 86.33 190 | 90.00 207 | 90.76 284 | 79.04 222 | 93.80 179 | 95.48 163 | 82.57 200 | 85.48 184 | 91.18 244 | 73.38 191 | 97.42 182 | 82.30 174 | 82.06 269 | 93.53 245 |
|
test_djsdf | | | 89.03 138 | 88.64 128 | 90.21 194 | 90.74 285 | 79.28 218 | 95.96 52 | 95.90 131 | 84.66 160 | 85.33 197 | 92.94 184 | 74.02 178 | 97.30 195 | 89.64 86 | 88.53 203 | 94.05 218 |
|
v7n | | | 86.81 206 | 85.76 213 | 89.95 208 | 90.72 286 | 79.25 220 | 95.07 96 | 95.92 128 | 84.45 163 | 82.29 254 | 90.86 253 | 72.60 199 | 97.53 172 | 79.42 223 | 80.52 296 | 93.08 265 |
|
PVSNet_0 | | 73.20 20 | 77.22 301 | 74.83 305 | 84.37 308 | 90.70 287 | 71.10 313 | 83.09 331 | 89.67 321 | 72.81 314 | 73.93 318 | 83.13 326 | 60.79 299 | 93.70 315 | 68.54 298 | 50.84 340 | 88.30 330 |
|
v144192 | | | 87.19 198 | 86.35 189 | 89.74 216 | 90.64 288 | 78.24 238 | 93.92 176 | 95.43 170 | 81.93 214 | 85.51 182 | 91.05 250 | 74.21 174 | 97.45 178 | 82.86 164 | 81.56 277 | 93.53 245 |
|
MVS_0304 | | | 83.46 260 | 81.92 263 | 88.10 261 | 90.63 289 | 77.49 258 | 93.26 202 | 93.75 237 | 80.04 245 | 80.44 278 | 87.24 311 | 47.94 335 | 95.55 289 | 75.79 256 | 88.16 211 | 91.26 305 |
|
V42 | | | 87.68 171 | 86.86 169 | 90.15 197 | 90.58 290 | 80.14 191 | 94.24 154 | 95.28 178 | 83.66 175 | 85.67 175 | 91.33 237 | 74.73 167 | 97.41 187 | 84.43 145 | 81.83 273 | 92.89 271 |
|
CR-MVSNet | | | 85.35 237 | 83.76 246 | 90.12 199 | 90.58 290 | 79.34 214 | 85.24 322 | 91.96 272 | 78.27 266 | 85.55 178 | 87.87 305 | 71.03 212 | 95.61 286 | 73.96 272 | 89.36 192 | 95.40 162 |
|
RPMNet | | | 83.18 265 | 80.87 272 | 90.12 199 | 90.58 290 | 79.34 214 | 85.24 322 | 90.78 302 | 71.44 320 | 85.55 178 | 82.97 327 | 70.87 214 | 95.61 286 | 61.01 327 | 89.36 192 | 95.40 162 |
|
v1921920 | | | 86.97 203 | 86.06 201 | 89.69 220 | 90.53 293 | 78.11 241 | 93.80 179 | 95.43 170 | 81.90 216 | 85.33 197 | 91.05 250 | 72.66 197 | 97.41 187 | 82.05 179 | 81.80 274 | 93.53 245 |
|
v1240 | | | 86.78 208 | 85.85 208 | 89.56 222 | 90.45 294 | 77.79 250 | 93.61 187 | 95.37 175 | 81.65 222 | 85.43 189 | 91.15 246 | 71.50 207 | 97.43 181 | 81.47 192 | 82.05 271 | 93.47 249 |
|
tpm | | | 84.73 249 | 84.02 242 | 86.87 290 | 90.33 295 | 68.90 325 | 89.06 292 | 89.94 315 | 80.85 237 | 85.75 173 | 89.86 275 | 68.54 248 | 95.97 273 | 77.76 237 | 84.05 247 | 95.75 153 |
|
EG-PatchMatch MVS | | | 82.37 271 | 80.34 275 | 88.46 250 | 90.27 296 | 79.35 213 | 92.80 219 | 94.33 219 | 77.14 276 | 73.26 321 | 90.18 267 | 47.47 337 | 96.72 232 | 70.25 287 | 87.32 225 | 89.30 320 |
|
EPNet_dtu | | | 86.49 220 | 85.94 206 | 88.14 260 | 90.24 297 | 72.82 298 | 94.11 161 | 92.20 262 | 86.66 117 | 79.42 291 | 92.36 202 | 73.52 185 | 95.81 282 | 71.26 281 | 93.66 133 | 95.80 152 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPMVS | | | 83.90 258 | 82.70 260 | 87.51 271 | 90.23 298 | 72.67 300 | 88.62 298 | 81.96 340 | 81.37 229 | 85.01 201 | 88.34 296 | 66.31 267 | 94.45 306 | 75.30 261 | 87.12 226 | 95.43 161 |
|
EPNet | | | 91.79 75 | 91.02 84 | 94.10 57 | 90.10 299 | 85.25 71 | 96.03 48 | 92.05 266 | 92.83 1 | 87.39 146 | 95.78 91 | 79.39 117 | 99.01 68 | 88.13 103 | 97.48 74 | 98.05 63 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PatchT | | | 82.68 268 | 81.27 267 | 86.89 289 | 90.09 300 | 70.94 316 | 84.06 326 | 90.15 309 | 74.91 295 | 85.63 177 | 83.57 324 | 69.37 234 | 94.87 305 | 65.19 313 | 88.50 205 | 94.84 181 |
|
Patchmtry | | | 82.71 267 | 80.93 271 | 88.06 262 | 90.05 301 | 76.37 273 | 84.74 324 | 91.96 272 | 72.28 317 | 81.32 267 | 87.87 305 | 71.03 212 | 95.50 294 | 68.97 296 | 80.15 299 | 92.32 288 |
|
pmmvs4 | | | 85.43 235 | 83.86 245 | 90.16 196 | 90.02 302 | 82.97 124 | 90.27 271 | 92.67 254 | 75.93 286 | 80.73 272 | 91.74 226 | 71.05 211 | 95.73 285 | 78.85 227 | 83.46 255 | 91.78 295 |
|
TESTMET0.1,1 | | | 83.74 259 | 82.85 258 | 86.42 294 | 89.96 303 | 71.21 312 | 89.55 282 | 87.88 327 | 77.41 272 | 83.37 243 | 87.31 310 | 56.71 315 | 93.65 316 | 80.62 205 | 92.85 153 | 94.40 204 |
|
dp | | | 81.47 281 | 80.23 277 | 85.17 303 | 89.92 304 | 65.49 334 | 86.74 313 | 90.10 311 | 76.30 282 | 81.10 268 | 87.12 313 | 62.81 284 | 95.92 275 | 68.13 303 | 79.88 302 | 94.09 215 |
|
K. test v3 | | | 81.59 278 | 80.15 279 | 85.91 298 | 89.89 305 | 69.42 324 | 92.57 225 | 87.71 329 | 85.56 138 | 73.44 320 | 89.71 278 | 55.58 317 | 95.52 291 | 77.17 244 | 69.76 327 | 92.78 275 |
|
MDA-MVSNet-bldmvs | | | 78.85 299 | 76.31 301 | 86.46 292 | 89.76 306 | 73.88 289 | 88.79 295 | 90.42 305 | 79.16 253 | 59.18 337 | 88.33 297 | 60.20 303 | 94.04 312 | 62.00 324 | 68.96 329 | 91.48 301 |
|
GG-mvs-BLEND | | | | | 87.94 265 | 89.73 307 | 77.91 244 | 87.80 305 | 78.23 345 | | 80.58 275 | 83.86 322 | 59.88 306 | 95.33 298 | 71.20 282 | 92.22 160 | 90.60 315 |
|
gm-plane-assit | | | | | | 89.60 308 | 68.00 327 | | | 77.28 275 | | 88.99 285 | | 97.57 169 | 79.44 221 | | |
|
anonymousdsp | | | 87.84 167 | 87.09 164 | 90.12 199 | 89.13 309 | 80.54 184 | 94.67 123 | 95.55 158 | 82.05 208 | 83.82 231 | 92.12 211 | 71.47 208 | 97.15 209 | 87.15 116 | 87.80 219 | 92.67 276 |
|
N_pmnet | | | 68.89 308 | 68.44 310 | 70.23 324 | 89.07 310 | 28.79 352 | 88.06 303 | 19.50 353 | 69.47 326 | 71.86 326 | 84.93 320 | 61.24 296 | 91.75 330 | 54.70 335 | 77.15 316 | 90.15 317 |
|
pmmvs5 | | | 84.21 254 | 82.84 259 | 88.34 254 | 88.95 311 | 76.94 265 | 92.41 228 | 91.91 274 | 75.63 288 | 80.28 279 | 91.18 244 | 64.59 278 | 95.57 288 | 77.09 246 | 83.47 254 | 92.53 280 |
|
PMMVS | | | 85.71 232 | 84.96 228 | 87.95 264 | 88.90 312 | 77.09 263 | 88.68 297 | 90.06 312 | 72.32 316 | 86.47 159 | 90.76 258 | 72.15 203 | 94.40 307 | 81.78 186 | 93.49 137 | 92.36 286 |
|
JIA-IIPM | | | 81.04 285 | 78.98 292 | 87.25 279 | 88.64 313 | 73.48 292 | 81.75 334 | 89.61 322 | 73.19 309 | 82.05 258 | 73.71 334 | 66.07 271 | 95.87 278 | 71.18 284 | 84.60 243 | 92.41 284 |
|
Gipuma | | | 57.99 313 | 54.91 314 | 67.24 326 | 88.51 314 | 65.59 333 | 52.21 345 | 90.33 308 | 43.58 342 | 42.84 342 | 51.18 343 | 20.29 348 | 85.07 340 | 34.77 342 | 70.45 326 | 51.05 342 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
EU-MVSNet | | | 81.32 283 | 80.95 270 | 82.42 315 | 88.50 315 | 63.67 336 | 93.32 195 | 91.33 286 | 64.02 333 | 80.57 276 | 92.83 188 | 61.21 297 | 92.27 326 | 76.34 251 | 80.38 298 | 91.32 303 |
|
our_test_3 | | | 81.93 273 | 80.46 274 | 86.33 295 | 88.46 316 | 73.48 292 | 88.46 300 | 91.11 290 | 76.46 278 | 76.69 304 | 88.25 298 | 66.89 258 | 94.36 308 | 68.75 297 | 79.08 309 | 91.14 309 |
|
ppachtmachnet_test | | | 81.84 274 | 80.07 280 | 87.15 284 | 88.46 316 | 74.43 285 | 89.04 293 | 92.16 263 | 75.33 290 | 77.75 299 | 88.99 285 | 66.20 268 | 95.37 297 | 65.12 315 | 77.60 313 | 91.65 297 |
|
lessismore_v0 | | | | | 86.04 296 | 88.46 316 | 68.78 326 | | 80.59 341 | | 73.01 322 | 90.11 269 | 55.39 319 | 96.43 255 | 75.06 264 | 65.06 333 | 92.90 270 |
|
test0.0.03 1 | | | 82.41 270 | 81.69 264 | 84.59 306 | 88.23 319 | 72.89 297 | 90.24 272 | 87.83 328 | 83.41 182 | 79.86 287 | 89.78 277 | 67.25 253 | 88.99 336 | 65.18 314 | 83.42 256 | 91.90 294 |
|
MDA-MVSNet_test_wron | | | 79.21 298 | 77.19 299 | 85.29 301 | 88.22 320 | 72.77 299 | 85.87 318 | 90.06 312 | 74.34 300 | 62.62 336 | 87.56 308 | 66.14 269 | 91.99 328 | 66.90 309 | 73.01 321 | 91.10 311 |
|
YYNet1 | | | 79.22 297 | 77.20 298 | 85.28 302 | 88.20 321 | 72.66 301 | 85.87 318 | 90.05 314 | 74.33 301 | 62.70 335 | 87.61 307 | 66.09 270 | 92.03 327 | 66.94 306 | 72.97 322 | 91.15 308 |
|
pmmvs6 | | | 83.42 261 | 81.60 265 | 88.87 239 | 88.01 322 | 77.87 247 | 94.96 102 | 94.24 223 | 74.67 298 | 78.80 293 | 91.09 249 | 60.17 304 | 96.49 249 | 77.06 247 | 75.40 319 | 92.23 290 |
|
testgi | | | 80.94 288 | 80.20 278 | 83.18 312 | 87.96 323 | 66.29 331 | 91.28 257 | 90.70 304 | 83.70 174 | 78.12 296 | 92.84 187 | 51.37 329 | 90.82 333 | 63.34 320 | 82.46 265 | 92.43 283 |
|
Anonymous20231206 | | | 81.03 286 | 79.77 283 | 84.82 305 | 87.85 324 | 70.26 320 | 91.42 255 | 92.08 265 | 73.67 305 | 77.75 299 | 89.25 283 | 62.43 287 | 93.08 322 | 61.50 326 | 82.00 272 | 91.12 310 |
|
OpenMVS_ROB | | 74.94 19 | 79.51 295 | 77.03 300 | 86.93 286 | 87.00 325 | 76.23 275 | 92.33 232 | 90.74 303 | 68.93 327 | 74.52 315 | 88.23 299 | 49.58 331 | 96.62 237 | 57.64 333 | 84.29 244 | 87.94 331 |
|
LF4IMVS | | | 80.37 290 | 79.07 291 | 84.27 310 | 86.64 326 | 69.87 323 | 89.39 287 | 91.05 293 | 76.38 280 | 74.97 313 | 90.00 272 | 47.85 336 | 94.25 311 | 74.55 269 | 80.82 291 | 88.69 327 |
|
MIMVSNet1 | | | 79.38 296 | 77.28 297 | 85.69 299 | 86.35 327 | 73.67 291 | 91.61 253 | 92.75 252 | 78.11 270 | 72.64 323 | 88.12 300 | 48.16 334 | 91.97 329 | 60.32 328 | 77.49 314 | 91.43 302 |
|
test20.03 | | | 79.95 292 | 79.08 290 | 82.55 314 | 85.79 328 | 67.74 329 | 91.09 262 | 91.08 291 | 81.23 233 | 74.48 316 | 89.96 274 | 61.63 291 | 90.15 334 | 60.08 329 | 76.38 317 | 89.76 318 |
|
Patchmatch-RL test | | | 81.67 276 | 79.96 281 | 86.81 291 | 85.42 329 | 71.23 311 | 82.17 333 | 87.50 331 | 78.47 263 | 77.19 303 | 82.50 328 | 70.81 215 | 93.48 317 | 82.66 169 | 72.89 323 | 95.71 154 |
|
UnsupCasMVSNet_eth | | | 80.07 291 | 78.27 294 | 85.46 300 | 85.24 330 | 72.63 302 | 88.45 301 | 94.87 201 | 82.99 191 | 71.64 327 | 88.07 301 | 56.34 316 | 91.75 330 | 73.48 275 | 63.36 336 | 92.01 293 |
|
testing_2 | | | 83.40 263 | 81.02 269 | 90.56 178 | 85.06 331 | 80.51 185 | 91.37 256 | 95.57 156 | 82.92 193 | 67.06 332 | 85.54 319 | 49.47 332 | 97.24 203 | 86.74 121 | 85.44 236 | 93.93 222 |
|
pmmvs-eth3d | | | 80.97 287 | 78.72 293 | 87.74 266 | 84.99 332 | 79.97 201 | 90.11 277 | 91.65 278 | 75.36 289 | 73.51 319 | 86.03 316 | 59.45 308 | 93.96 313 | 75.17 262 | 72.21 324 | 89.29 321 |
|
CMPMVS | | 59.16 21 | 80.52 289 | 79.20 288 | 84.48 307 | 83.98 333 | 67.63 330 | 89.95 280 | 93.84 235 | 64.79 332 | 66.81 333 | 91.14 247 | 57.93 313 | 95.17 299 | 76.25 252 | 88.10 212 | 90.65 312 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
UnsupCasMVSNet_bld | | | 76.23 304 | 73.27 306 | 85.09 304 | 83.79 334 | 72.92 296 | 85.65 321 | 93.47 241 | 71.52 319 | 68.84 330 | 79.08 332 | 49.77 330 | 93.21 320 | 66.81 310 | 60.52 338 | 89.13 325 |
|
PM-MVS | | | 78.11 300 | 76.12 303 | 84.09 311 | 83.54 335 | 70.08 321 | 88.97 294 | 85.27 335 | 79.93 246 | 74.73 314 | 86.43 314 | 34.70 342 | 93.48 317 | 79.43 222 | 72.06 325 | 88.72 326 |
|
DSMNet-mixed | | | 76.94 302 | 76.29 302 | 78.89 318 | 83.10 336 | 56.11 343 | 87.78 306 | 79.77 342 | 60.65 335 | 75.64 310 | 88.71 291 | 61.56 292 | 88.34 337 | 60.07 330 | 89.29 194 | 92.21 291 |
|
new_pmnet | | | 72.15 306 | 70.13 308 | 78.20 319 | 82.95 337 | 65.68 332 | 83.91 327 | 82.40 339 | 62.94 334 | 64.47 334 | 79.82 331 | 42.85 340 | 86.26 339 | 57.41 334 | 74.44 320 | 82.65 335 |
|
new-patchmatchnet | | | 76.41 303 | 75.17 304 | 80.13 317 | 82.65 338 | 59.61 338 | 87.66 309 | 91.08 291 | 78.23 268 | 69.85 328 | 83.22 325 | 54.76 321 | 91.63 332 | 64.14 319 | 64.89 334 | 89.16 323 |
|
ambc | | | | | 83.06 313 | 79.99 339 | 63.51 337 | 77.47 338 | 92.86 248 | | 74.34 317 | 84.45 321 | 28.74 343 | 95.06 303 | 73.06 277 | 68.89 330 | 90.61 313 |
|
TDRefinement | | | 79.81 293 | 77.34 296 | 87.22 282 | 79.24 340 | 75.48 281 | 93.12 207 | 92.03 267 | 76.45 279 | 75.01 312 | 91.58 232 | 49.19 333 | 96.44 254 | 70.22 289 | 69.18 328 | 89.75 319 |
|
pmmvs3 | | | 71.81 307 | 68.71 309 | 81.11 316 | 75.86 341 | 70.42 319 | 86.74 313 | 83.66 337 | 58.95 336 | 68.64 331 | 80.89 330 | 36.93 341 | 89.52 335 | 63.10 322 | 63.59 335 | 83.39 333 |
|
DeepMVS_CX | | | | | 56.31 329 | 74.23 342 | 51.81 345 | | 56.67 351 | 44.85 341 | 48.54 341 | 75.16 333 | 27.87 344 | 58.74 348 | 40.92 340 | 52.22 339 | 58.39 341 |
|
FPMVS | | | 64.63 310 | 62.55 311 | 70.88 323 | 70.80 343 | 56.71 340 | 84.42 325 | 84.42 336 | 51.78 339 | 49.57 339 | 81.61 329 | 23.49 345 | 81.48 342 | 40.61 341 | 76.25 318 | 74.46 338 |
|
PMMVS2 | | | 59.60 311 | 56.40 313 | 69.21 325 | 68.83 344 | 46.58 347 | 73.02 342 | 77.48 346 | 55.07 338 | 49.21 340 | 72.95 336 | 17.43 350 | 80.04 343 | 49.32 338 | 44.33 341 | 80.99 337 |
|
wuyk23d | | | 21.27 320 | 20.48 322 | 23.63 333 | 68.59 345 | 36.41 350 | 49.57 346 | 6.85 354 | 9.37 347 | 7.89 349 | 4.46 351 | 4.03 354 | 31.37 349 | 17.47 347 | 16.07 347 | 3.12 346 |
|
E-PMN | | | 43.23 316 | 42.29 317 | 46.03 330 | 65.58 346 | 37.41 349 | 73.51 340 | 64.62 347 | 33.99 344 | 28.47 347 | 47.87 344 | 19.90 349 | 67.91 345 | 22.23 345 | 24.45 343 | 32.77 343 |
|
LCM-MVSNet | | | 66.00 309 | 62.16 312 | 77.51 321 | 64.51 347 | 58.29 339 | 83.87 328 | 90.90 298 | 48.17 340 | 54.69 338 | 73.31 335 | 16.83 351 | 86.75 338 | 65.47 312 | 61.67 337 | 87.48 332 |
|
EMVS | | | 42.07 317 | 41.12 318 | 44.92 331 | 63.45 348 | 35.56 351 | 73.65 339 | 63.48 348 | 33.05 345 | 26.88 348 | 45.45 345 | 21.27 347 | 67.14 346 | 19.80 346 | 23.02 345 | 32.06 344 |
|
MVE | | 39.65 23 | 43.39 315 | 38.59 320 | 57.77 328 | 56.52 349 | 48.77 346 | 55.38 344 | 58.64 350 | 29.33 346 | 28.96 346 | 52.65 342 | 4.68 353 | 64.62 347 | 28.11 344 | 33.07 342 | 59.93 340 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 58.88 312 | 54.22 315 | 72.86 322 | 56.50 350 | 56.67 341 | 80.75 336 | 86.00 332 | 73.09 311 | 37.39 343 | 64.63 340 | 22.17 346 | 79.49 344 | 43.51 339 | 23.96 344 | 82.43 336 |
|
PMVS | | 47.18 22 | 52.22 314 | 48.46 316 | 63.48 327 | 45.72 351 | 46.20 348 | 73.41 341 | 78.31 344 | 41.03 343 | 30.06 345 | 65.68 339 | 6.05 352 | 83.43 341 | 30.04 343 | 65.86 332 | 60.80 339 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 35.64 318 | 39.24 319 | 24.84 332 | 14.87 352 | 23.90 353 | 62.71 343 | 51.51 352 | 6.58 348 | 36.66 344 | 62.08 341 | 44.37 339 | 30.34 350 | 52.40 336 | 22.00 346 | 20.27 345 |
|
testmvs | | | 8.92 321 | 11.52 323 | 1.12 335 | 1.06 353 | 0.46 355 | 86.02 317 | 0.65 355 | 0.62 349 | 2.74 350 | 9.52 349 | 0.31 356 | 0.45 352 | 2.38 348 | 0.39 348 | 2.46 348 |
|
test123 | | | 8.76 322 | 11.22 324 | 1.39 334 | 0.85 354 | 0.97 354 | 85.76 320 | 0.35 356 | 0.54 350 | 2.45 351 | 8.14 350 | 0.60 355 | 0.48 351 | 2.16 349 | 0.17 349 | 2.71 347 |
|
uanet_test | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
cdsmvs_eth3d_5k | | | 22.14 319 | 29.52 321 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 95.76 142 | 0.00 351 | 0.00 352 | 94.29 137 | 75.66 156 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
pcd_1.5k_mvsjas | | | 6.64 324 | 8.86 326 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 79.70 112 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
sosnet-low-res | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
sosnet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
uncertanet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
Regformer | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
ab-mvs-re | | | 7.82 323 | 10.43 325 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 93.88 156 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
uanet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
test_241102_TWO | | | | | | | | | 97.44 13 | 90.31 26 | 97.62 4 | 98.07 4 | 91.46 7 | 99.58 5 | 95.66 2 | 99.12 5 | 98.98 6 |
|
test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 7 | 98.05 5 | 92.09 3 | 99.55 11 | 95.64 3 | 99.13 3 | 99.13 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 135 |
|
test_part1 | | | | | 0.00 336 | | 0.00 356 | 0.00 347 | 97.45 11 | | | | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
sam_mvs1 | | | | | | | | | | | | | 71.70 205 | | | | 96.12 135 |
|
sam_mvs | | | | | | | | | | | | | 70.60 217 | | | | |
|
MTGPA | | | | | | | | | 96.97 48 | | | | | | | | |
|
test_post1 | | | | | | | | 88.00 304 | | | | 9.81 348 | 69.31 237 | 95.53 290 | 76.65 248 | | |
|
test_post | | | | | | | | | | | | 10.29 347 | 70.57 221 | 95.91 277 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 323 | 71.53 206 | 96.48 250 | | | |
|
MTMP | | | | | | | | 96.16 39 | 60.64 349 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.91 53 | 98.71 29 | 98.07 61 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.54 79 | 98.68 34 | 98.27 45 |
|
test_prior4 | | | | | | | 85.96 55 | 94.11 161 | | | | | | | | | |
|
test_prior2 | | | | | | | | 94.12 159 | | 87.67 95 | 92.63 63 | 96.39 67 | 86.62 37 | | 91.50 63 | 98.67 36 | |
|
旧先验2 | | | | | | | | 93.36 194 | | 71.25 321 | 94.37 25 | | | 97.13 212 | 86.74 121 | | |
|
新几何2 | | | | | | | | 93.11 209 | | | | | | | | | |
|
无先验 | | | | | | | | 93.28 201 | 96.26 103 | 73.95 303 | | | | 99.05 58 | 80.56 206 | | 96.59 121 |
|
原ACMM2 | | | | | | | | 92.94 216 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.75 94 | 78.30 232 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 33 | | | | |
|
testdata1 | | | | | | | | 92.15 238 | | 87.94 85 | | | | | | | |
|
plane_prior5 | | | | | | | | | 96.22 108 | | | | | 98.12 131 | 88.15 101 | 89.99 179 | 94.63 187 |
|
plane_prior4 | | | | | | | | | | | | 94.86 117 | | | | | |
|
plane_prior3 | | | | | | | 82.75 128 | | | 90.26 29 | 86.91 153 | | | | | | |
|
plane_prior2 | | | | | | | | 95.85 56 | | 90.81 17 | | | | | | | |
|
plane_prior | | | | | | | 82.73 131 | 95.21 87 | | 89.66 40 | | | | | | 89.88 184 | |
|
n2 | | | | | | | | | 0.00 357 | | | | | | | | |
|
nn | | | | | | | | | 0.00 357 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 333 | | | | | | | | |
|
test11 | | | | | | | | | 96.57 88 | | | | | | | | |
|
door | | | | | | | | | 85.33 334 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 154 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 118 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 189 | | | 97.96 149 | | | 94.51 197 |
|
HQP3-MVS | | | | | | | | | 96.04 121 | | | | | | | 89.77 186 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 182 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 344 | 87.62 310 | | 73.32 308 | 84.59 207 | | 70.33 224 | | 74.65 267 | | 95.50 157 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 220 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 215 | |
|
Test By Simon | | | | | | | | | | | | | 80.02 107 | | | | |
|