HPM-MVS++ | | | 79.88 6 | 80.14 6 | 79.10 16 | 88.17 1 | 64.80 1 | 86.59 9 | 83.70 59 | 65.37 15 | 78.78 20 | 90.64 16 | 58.63 19 | 87.24 46 | 79.00 7 | 90.37 9 | 85.26 111 |
|
CNVR-MVS | | | 79.84 7 | 79.97 7 | 79.45 7 | 87.90 2 | 62.17 20 | 84.37 33 | 85.03 32 | 66.96 5 | 77.58 26 | 90.06 34 | 59.47 16 | 89.13 17 | 78.67 9 | 89.73 15 | 87.03 48 |
|
test_0728_SECOND | | | | | 79.19 11 | 87.82 3 | 59.11 61 | 87.85 3 | 87.15 6 | | | | | 90.84 1 | 78.66 10 | 90.61 6 | 87.62 30 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 59 | | 85.53 24 | 53.93 204 | 84.64 2 | | | | 79.07 6 | 90.87 3 | 88.37 7 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 67 | | 86.78 11 | 64.20 31 | 85.97 1 | 91.34 9 | 66.87 2 | 90.78 3 | | | |
|
MSP-MVS | | | 80.84 2 | 81.64 1 | 78.42 32 | 87.75 6 | 59.07 62 | 87.85 3 | 85.03 32 | 64.26 29 | 83.82 5 | 92.00 3 | 64.82 5 | 90.75 4 | 78.66 10 | 90.61 6 | 85.45 102 |
|
test0726 | | | | | | 87.75 6 | 59.07 62 | 87.86 2 | 86.83 9 | 64.26 29 | 84.19 4 | 91.92 5 | 64.82 5 | | | | |
|
test_part2 | | | | | | 87.58 8 | 60.47 45 | | | | 83.42 8 | | | | | | |
|
OPU-MVS | | | | | 79.83 4 | 87.54 9 | 60.93 38 | 87.82 5 | | | | 89.89 40 | 67.01 1 | 90.33 7 | 73.16 43 | 91.15 2 | 88.23 10 |
|
NCCC | | | 78.58 14 | 78.31 18 | 79.39 8 | 87.51 10 | 62.61 16 | 85.20 28 | 84.42 41 | 66.73 9 | 74.67 46 | 89.38 48 | 55.30 41 | 89.18 16 | 74.19 34 | 87.34 43 | 86.38 61 |
|
DPE-MVS | | | 80.56 3 | 80.98 3 | 79.29 10 | 87.27 11 | 60.56 44 | 85.71 23 | 86.42 15 | 63.28 42 | 83.27 9 | 91.83 7 | 64.96 4 | 90.47 6 | 76.41 23 | 89.67 17 | 86.84 52 |
|
testtj | | | 78.47 17 | 78.43 17 | 78.61 28 | 86.82 12 | 60.67 42 | 86.07 15 | 85.38 26 | 62.12 65 | 78.65 21 | 90.29 30 | 55.76 37 | 89.31 14 | 73.55 41 | 87.22 44 | 85.84 83 |
|
region2R | | | 77.67 29 | 77.18 32 | 79.15 13 | 86.76 13 | 62.95 8 | 86.29 11 | 84.16 47 | 62.81 54 | 73.30 64 | 90.58 18 | 49.90 95 | 88.21 30 | 73.78 37 | 87.03 47 | 86.29 73 |
|
ACMMPR | | | 77.71 27 | 77.23 31 | 79.16 12 | 86.75 14 | 62.93 9 | 86.29 11 | 84.24 45 | 62.82 52 | 73.55 62 | 90.56 19 | 49.80 97 | 88.24 29 | 74.02 35 | 87.03 47 | 86.32 70 |
|
HFP-MVS | | | 78.01 25 | 77.65 26 | 79.10 16 | 86.71 15 | 62.81 10 | 86.29 11 | 84.32 43 | 62.82 52 | 73.96 53 | 90.50 21 | 53.20 65 | 88.35 26 | 74.02 35 | 87.05 45 | 86.13 75 |
|
#test# | | | 77.83 26 | 77.41 29 | 79.10 16 | 86.71 15 | 62.81 10 | 85.69 24 | 84.32 43 | 61.61 75 | 73.96 53 | 90.50 21 | 53.20 65 | 88.35 26 | 73.68 38 | 87.05 45 | 86.13 75 |
|
MCST-MVS | | | 77.48 31 | 77.45 28 | 77.54 46 | 86.67 17 | 58.36 75 | 83.22 52 | 86.93 7 | 56.91 148 | 74.91 42 | 88.19 61 | 59.15 17 | 87.68 41 | 73.67 39 | 87.45 42 | 86.57 59 |
|
APDe-MVS | | | 80.16 5 | 80.59 4 | 78.86 24 | 86.64 18 | 60.02 48 | 88.12 1 | 86.42 15 | 62.94 48 | 82.40 10 | 92.12 2 | 59.64 14 | 89.76 10 | 78.70 8 | 88.32 31 | 86.79 55 |
|
SMA-MVS | | | 80.28 4 | 80.39 5 | 79.95 3 | 86.60 19 | 61.95 22 | 86.33 10 | 85.75 22 | 62.49 59 | 82.20 11 | 92.28 1 | 56.53 30 | 89.70 11 | 79.85 3 | 91.48 1 | 88.19 11 |
|
DP-MVS Recon | | | 72.15 88 | 70.73 96 | 76.40 62 | 86.57 20 | 57.99 80 | 81.15 87 | 82.96 78 | 57.03 145 | 66.78 155 | 85.56 105 | 44.50 160 | 88.11 32 | 51.77 191 | 80.23 105 | 83.10 176 |
|
MP-MVS | | | 78.35 19 | 78.26 20 | 78.64 27 | 86.54 21 | 63.47 5 | 86.02 17 | 83.55 62 | 63.89 36 | 73.60 61 | 90.60 17 | 54.85 46 | 86.72 63 | 77.20 17 | 88.06 36 | 85.74 91 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
mPP-MVS | | | 76.54 40 | 75.93 43 | 78.34 35 | 86.47 22 | 63.50 4 | 85.74 22 | 82.28 87 | 62.90 49 | 71.77 82 | 90.26 31 | 46.61 141 | 86.55 71 | 71.71 50 | 85.66 59 | 84.97 119 |
|
APD-MVS | | | 78.02 23 | 78.04 24 | 77.98 40 | 86.44 23 | 60.81 40 | 85.52 25 | 84.36 42 | 60.61 87 | 79.05 18 | 90.30 29 | 55.54 40 | 88.32 28 | 73.48 42 | 87.03 47 | 84.83 122 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ZNCC-MVS | | | 78.82 11 | 78.67 15 | 79.30 9 | 86.43 24 | 62.05 21 | 86.62 8 | 86.01 18 | 63.32 41 | 75.08 37 | 90.47 24 | 53.96 55 | 88.68 22 | 76.48 22 | 89.63 19 | 87.16 45 |
|
ETH3 D test6400 | | | 79.14 9 | 79.32 8 | 78.61 28 | 86.34 25 | 58.11 78 | 84.65 31 | 87.66 4 | 58.56 128 | 78.87 19 | 89.54 45 | 63.67 9 | 89.57 12 | 74.60 32 | 89.98 12 | 88.14 12 |
|
XVS | | | 77.17 34 | 76.56 38 | 79.00 19 | 86.32 26 | 62.62 14 | 85.83 19 | 83.92 51 | 64.55 23 | 72.17 79 | 90.01 38 | 47.95 118 | 88.01 34 | 71.55 52 | 86.74 52 | 86.37 65 |
|
X-MVStestdata | | | 70.21 114 | 67.28 154 | 79.00 19 | 86.32 26 | 62.62 14 | 85.83 19 | 83.92 51 | 64.55 23 | 72.17 79 | 6.49 346 | 47.95 118 | 88.01 34 | 71.55 52 | 86.74 52 | 86.37 65 |
|
DVP-MVS | | | 81.06 1 | 81.40 2 | 80.02 1 | 86.21 28 | 62.73 12 | 86.09 14 | 86.83 9 | 65.51 14 | 83.81 7 | 90.51 20 | 63.71 8 | 89.23 15 | 81.51 1 | 88.44 27 | 88.09 14 |
|
114514_t | | | 70.83 101 | 69.56 110 | 74.64 94 | 86.21 28 | 54.63 131 | 82.34 68 | 81.81 96 | 48.22 258 | 63.01 211 | 85.83 101 | 40.92 198 | 87.10 52 | 57.91 146 | 79.79 107 | 82.18 190 |
|
xxxxxxxxxxxxxcwj | | | 78.35 19 | 78.22 21 | 78.76 25 | 86.17 30 | 61.30 31 | 83.98 43 | 79.66 139 | 59.00 119 | 79.16 15 | 90.75 14 | 57.96 21 | 87.09 53 | 77.08 19 | 90.18 10 | 87.87 20 |
|
save fliter | | | | | | 86.17 30 | 61.30 31 | 83.98 43 | 79.66 139 | 59.00 119 | | | | | | | |
|
DeepC-MVS_fast | | 68.24 3 | 77.25 33 | 76.63 37 | 79.12 15 | 86.15 32 | 60.86 39 | 84.71 30 | 84.85 37 | 61.98 71 | 73.06 68 | 88.88 56 | 53.72 59 | 89.06 18 | 68.27 66 | 88.04 37 | 87.42 38 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PGM-MVS | | | 76.77 39 | 76.06 41 | 78.88 23 | 86.14 33 | 62.73 12 | 82.55 65 | 83.74 58 | 61.71 73 | 72.45 78 | 90.34 28 | 48.48 114 | 88.13 31 | 72.32 46 | 86.85 50 | 85.78 85 |
|
zzz-MVS | | | 77.61 30 | 77.36 30 | 78.35 33 | 86.08 34 | 63.57 2 | 83.37 50 | 80.97 119 | 65.13 17 | 75.77 32 | 90.88 12 | 48.63 110 | 86.66 65 | 77.23 15 | 88.17 33 | 84.81 123 |
|
MTAPA | | | 76.90 37 | 76.42 39 | 78.35 33 | 86.08 34 | 63.57 2 | 74.92 194 | 80.97 119 | 65.13 17 | 75.77 32 | 90.88 12 | 48.63 110 | 86.66 65 | 77.23 15 | 88.17 33 | 84.81 123 |
|
GST-MVS | | | 78.14 22 | 77.85 25 | 78.99 21 | 86.05 36 | 61.82 25 | 85.84 18 | 85.21 28 | 63.56 40 | 74.29 50 | 90.03 36 | 52.56 68 | 88.53 24 | 74.79 30 | 88.34 29 | 86.63 58 |
|
CP-MVS | | | 77.12 35 | 76.68 36 | 78.43 31 | 86.05 36 | 63.18 7 | 87.55 7 | 83.45 65 | 62.44 61 | 72.68 72 | 90.50 21 | 48.18 116 | 87.34 45 | 73.59 40 | 85.71 58 | 84.76 127 |
|
SR-MVS | | | 76.13 44 | 75.70 45 | 77.40 50 | 85.87 38 | 61.20 33 | 85.52 25 | 82.19 88 | 59.99 103 | 75.10 36 | 90.35 26 | 47.66 122 | 86.52 72 | 71.64 51 | 82.99 73 | 84.47 134 |
|
新几何1 | | | | | 70.76 181 | 85.66 39 | 61.13 35 | | 66.43 277 | 44.68 287 | 70.29 93 | 86.64 81 | 41.29 194 | 75.23 260 | 49.72 204 | 81.75 88 | 75.93 268 |
|
MG-MVS | | | 73.96 66 | 73.89 61 | 74.16 104 | 85.65 40 | 49.69 197 | 81.59 81 | 81.29 109 | 61.45 76 | 71.05 88 | 88.11 62 | 51.77 79 | 87.73 40 | 61.05 128 | 83.09 71 | 85.05 116 |
|
1121 | | | 68.53 151 | 67.16 160 | 72.63 144 | 85.64 41 | 61.14 34 | 73.95 208 | 66.46 276 | 44.61 288 | 70.28 94 | 86.68 80 | 41.42 192 | 80.78 194 | 53.62 176 | 81.79 86 | 75.97 266 |
|
TEST9 | | | | | | 85.58 42 | 61.59 27 | 81.62 79 | 81.26 110 | 55.65 178 | 74.93 40 | 88.81 57 | 53.70 60 | 84.68 111 | | | |
|
train_agg | | | 76.27 43 | 76.15 40 | 76.64 60 | 85.58 42 | 61.59 27 | 81.62 79 | 81.26 110 | 55.86 171 | 74.93 40 | 88.81 57 | 53.70 60 | 84.68 111 | 75.24 28 | 88.33 30 | 83.65 160 |
|
ACMMP_NAP | | | 78.77 13 | 78.78 13 | 78.74 26 | 85.44 44 | 61.04 36 | 83.84 45 | 85.16 29 | 62.88 50 | 78.10 23 | 91.26 10 | 52.51 69 | 88.39 25 | 79.34 5 | 90.52 8 | 86.78 56 |
|
test_8 | | | | | | 85.40 45 | 60.96 37 | 81.54 82 | 81.18 113 | 55.86 171 | 74.81 43 | 88.80 59 | 53.70 60 | 84.45 116 | | | |
|
原ACMM1 | | | | | 74.69 90 | 85.39 46 | 59.40 54 | | 83.42 66 | 51.47 227 | 70.27 95 | 86.61 83 | 48.61 112 | 86.51 73 | 53.85 175 | 87.96 38 | 78.16 243 |
|
CDPH-MVS | | | 76.31 42 | 75.67 46 | 78.22 36 | 85.35 47 | 59.14 60 | 81.31 85 | 84.02 48 | 56.32 161 | 74.05 51 | 88.98 54 | 53.34 64 | 87.92 36 | 69.23 63 | 88.42 28 | 87.59 31 |
|
ACMMP | | | 76.02 45 | 75.33 48 | 78.07 37 | 85.20 48 | 61.91 23 | 85.49 27 | 84.44 40 | 63.04 46 | 69.80 106 | 89.74 44 | 45.43 152 | 87.16 50 | 72.01 49 | 82.87 78 | 85.14 112 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
agg_prior1 | | | 75.94 46 | 76.01 42 | 75.72 72 | 85.04 49 | 59.96 49 | 81.44 83 | 81.04 116 | 56.14 167 | 74.68 44 | 88.90 55 | 53.91 56 | 84.04 123 | 75.01 29 | 87.92 40 | 83.16 175 |
|
agg_prior | | | | | | 85.04 49 | 59.96 49 | | 81.04 116 | | 74.68 44 | | | 84.04 123 | | | |
|
HPM-MVS | | | 77.28 32 | 76.85 34 | 78.54 30 | 85.00 51 | 60.81 40 | 82.91 57 | 85.08 30 | 62.57 57 | 73.09 67 | 89.97 39 | 50.90 91 | 87.48 44 | 75.30 26 | 86.85 50 | 87.33 42 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MP-MVS-pluss | | | 78.35 19 | 78.46 16 | 78.03 39 | 84.96 52 | 59.52 53 | 82.93 56 | 85.39 25 | 62.15 64 | 76.41 30 | 91.51 8 | 52.47 71 | 86.78 62 | 80.66 2 | 89.64 18 | 87.80 23 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TSAR-MVS + MP. | | | 78.44 18 | 78.28 19 | 78.90 22 | 84.96 52 | 61.41 29 | 84.03 41 | 83.82 57 | 59.34 116 | 79.37 14 | 89.76 43 | 59.84 12 | 87.62 43 | 76.69 21 | 86.74 52 | 87.68 27 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
AdaColmap | | | 69.99 118 | 68.66 126 | 73.97 107 | 84.94 54 | 57.83 82 | 82.63 63 | 78.71 156 | 56.28 163 | 64.34 198 | 84.14 126 | 41.57 187 | 87.06 55 | 46.45 227 | 78.88 123 | 77.02 258 |
|
DP-MVS | | | 65.68 198 | 63.66 206 | 71.75 157 | 84.93 55 | 56.87 100 | 80.74 91 | 73.16 236 | 53.06 209 | 59.09 251 | 82.35 160 | 36.79 236 | 85.94 86 | 32.82 307 | 69.96 223 | 72.45 302 |
|
DeepPCF-MVS | | 69.58 1 | 79.03 10 | 79.00 11 | 79.13 14 | 84.92 56 | 60.32 46 | 83.03 54 | 85.33 27 | 62.86 51 | 80.17 12 | 90.03 36 | 61.76 10 | 88.95 19 | 74.21 33 | 88.67 26 | 88.12 13 |
|
CPTT-MVS | | | 72.78 76 | 72.08 79 | 74.87 88 | 84.88 57 | 61.41 29 | 84.15 38 | 77.86 176 | 55.27 183 | 67.51 147 | 88.08 64 | 41.93 181 | 81.85 170 | 69.04 65 | 80.01 106 | 81.35 204 |
|
test12 | | | | | 77.76 42 | 84.52 58 | 58.41 74 | | 83.36 69 | | 72.93 70 | | 54.61 48 | 88.05 33 | | 88.12 35 | 86.81 54 |
|
SD-MVS | | | 77.70 28 | 77.62 27 | 77.93 41 | 84.47 59 | 61.88 24 | 84.55 32 | 83.87 55 | 60.37 92 | 79.89 13 | 89.38 48 | 54.97 43 | 85.58 91 | 76.12 25 | 84.94 61 | 86.33 68 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HPM-MVS_fast | | | 74.30 62 | 73.46 68 | 76.80 56 | 84.45 60 | 59.04 64 | 83.65 47 | 81.05 115 | 60.15 100 | 70.43 91 | 89.84 42 | 41.09 197 | 85.59 90 | 67.61 73 | 82.90 77 | 85.77 88 |
|
test_prior3 | | | 76.89 38 | 76.96 33 | 76.69 57 | 84.20 61 | 57.27 90 | 81.75 76 | 84.88 35 | 60.37 92 | 75.01 38 | 89.06 51 | 56.22 34 | 86.43 75 | 72.19 47 | 88.96 23 | 86.38 61 |
|
test_prior | | | | | 76.69 57 | 84.20 61 | 57.27 90 | | 84.88 35 | | | | | 86.43 75 | | | 86.38 61 |
|
CSCG | | | 76.92 36 | 76.75 35 | 77.41 48 | 83.96 63 | 59.60 52 | 82.95 55 | 86.50 14 | 60.78 85 | 75.27 35 | 84.83 113 | 60.76 11 | 86.56 70 | 67.86 70 | 87.87 41 | 86.06 78 |
|
DeepC-MVS | | 69.38 2 | 78.56 16 | 78.14 22 | 79.83 4 | 83.60 64 | 61.62 26 | 84.17 37 | 86.85 8 | 63.23 43 | 73.84 58 | 90.25 32 | 57.68 25 | 89.96 9 | 74.62 31 | 89.03 21 | 87.89 18 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
UA-Net | | | 73.13 73 | 72.93 72 | 73.76 112 | 83.58 65 | 51.66 168 | 78.75 117 | 77.66 180 | 67.75 4 | 72.61 74 | 89.42 46 | 49.82 96 | 83.29 139 | 53.61 178 | 83.14 70 | 86.32 70 |
|
LFMVS | | | 71.78 91 | 71.59 82 | 72.32 151 | 83.40 66 | 46.38 232 | 79.75 107 | 71.08 245 | 64.18 32 | 72.80 71 | 88.64 60 | 42.58 174 | 83.72 131 | 57.41 149 | 84.49 65 | 86.86 51 |
|
test222 | | | | | | 83.14 67 | 58.68 70 | 72.57 229 | 63.45 293 | 41.78 308 | 67.56 146 | 86.12 93 | 37.13 232 | | | 78.73 128 | 74.98 279 |
|
9.14 | | | | 78.75 14 | | 83.10 68 | | 84.15 38 | 88.26 2 | 59.90 104 | 78.57 22 | 90.36 25 | 57.51 27 | 86.86 59 | 77.39 14 | 89.52 20 | |
|
ETH3D-3000-0.1 | | | 78.58 14 | 78.91 12 | 77.61 44 | 83.06 69 | 57.86 81 | 84.14 40 | 88.31 1 | 60.37 92 | 79.14 17 | 90.35 26 | 57.76 24 | 87.00 56 | 77.16 18 | 89.90 13 | 87.97 17 |
|
旧先验1 | | | | | | 83.04 70 | 53.15 147 | | 67.52 268 | | | 87.85 66 | 44.08 163 | | | 80.76 93 | 78.03 248 |
|
MSLP-MVS++ | | | 73.77 69 | 73.47 67 | 74.66 92 | 83.02 71 | 59.29 57 | 82.30 72 | 81.88 93 | 59.34 116 | 71.59 85 | 86.83 74 | 45.94 145 | 83.65 133 | 65.09 94 | 85.22 60 | 81.06 211 |
|
SteuartSystems-ACMMP | | | 79.48 8 | 79.31 9 | 79.98 2 | 83.01 72 | 62.18 19 | 87.60 6 | 85.83 20 | 66.69 10 | 78.03 25 | 90.98 11 | 54.26 51 | 90.06 8 | 78.42 13 | 89.02 22 | 87.69 26 |
Skip Steuart: Steuart Systems R&D Blog. |
MVS_111021_HR | | | 74.02 65 | 73.46 68 | 75.69 74 | 83.01 72 | 60.63 43 | 77.29 147 | 78.40 171 | 61.18 80 | 70.58 90 | 85.97 98 | 54.18 53 | 84.00 127 | 67.52 74 | 82.98 75 | 82.45 187 |
|
SF-MVS | | | 78.82 11 | 79.22 10 | 77.60 45 | 82.88 74 | 57.83 82 | 84.99 29 | 88.13 3 | 61.86 72 | 79.16 15 | 90.75 14 | 57.96 21 | 87.09 53 | 77.08 19 | 90.18 10 | 87.87 20 |
|
VDDNet | | | 71.81 90 | 71.33 88 | 73.26 132 | 82.80 75 | 47.60 223 | 78.74 118 | 75.27 212 | 59.59 113 | 72.94 69 | 89.40 47 | 41.51 191 | 83.91 128 | 58.75 144 | 82.99 73 | 88.26 8 |
|
abl_6 | | | 74.34 60 | 73.50 65 | 76.86 55 | 82.43 76 | 60.16 47 | 83.48 49 | 81.86 94 | 58.81 123 | 73.95 55 | 89.86 41 | 41.87 182 | 86.62 67 | 67.98 69 | 81.23 91 | 83.80 154 |
|
3Dnovator+ | | 66.72 4 | 75.84 48 | 74.57 55 | 79.66 6 | 82.40 77 | 59.92 51 | 85.83 19 | 86.32 17 | 66.92 8 | 67.80 143 | 89.24 50 | 42.03 179 | 89.38 13 | 64.07 101 | 86.50 55 | 89.69 1 |
|
APD-MVS_3200maxsize | | | 74.96 52 | 74.39 57 | 76.67 59 | 82.20 78 | 58.24 77 | 83.67 46 | 83.29 72 | 58.41 130 | 73.71 59 | 90.14 33 | 45.62 147 | 85.99 83 | 69.64 59 | 82.85 79 | 85.78 85 |
|
ETH3D cwj APD-0.16 | | | 78.02 23 | 78.13 23 | 77.71 43 | 82.10 79 | 58.65 71 | 82.72 61 | 87.55 5 | 58.33 133 | 78.05 24 | 90.06 34 | 58.35 20 | 87.65 42 | 76.15 24 | 89.86 14 | 86.82 53 |
|
PVSNet_Blended_VisFu | | | 71.45 97 | 70.39 101 | 74.65 93 | 82.01 80 | 58.82 68 | 79.93 103 | 80.35 131 | 55.09 188 | 65.82 175 | 82.16 167 | 49.17 104 | 82.64 158 | 60.34 133 | 78.62 130 | 82.50 186 |
|
TSAR-MVS + GP. | | | 74.90 53 | 74.15 59 | 77.17 52 | 82.00 81 | 58.77 69 | 81.80 75 | 78.57 160 | 58.58 126 | 74.32 49 | 84.51 122 | 55.94 36 | 87.22 47 | 67.11 77 | 84.48 66 | 85.52 98 |
|
API-MVS | | | 72.17 86 | 71.41 85 | 74.45 99 | 81.95 82 | 57.22 92 | 84.03 41 | 80.38 129 | 59.89 107 | 68.40 126 | 82.33 161 | 49.64 98 | 87.83 39 | 51.87 189 | 84.16 68 | 78.30 241 |
|
MAR-MVS | | | 71.51 95 | 70.15 105 | 75.60 77 | 81.84 83 | 59.39 55 | 81.38 84 | 82.90 81 | 54.90 194 | 68.08 135 | 78.70 233 | 47.73 120 | 85.51 94 | 51.68 193 | 84.17 67 | 81.88 196 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PAPM_NR | | | 72.63 78 | 71.80 80 | 75.13 84 | 81.72 84 | 53.42 144 | 79.91 104 | 83.28 73 | 59.14 118 | 66.31 165 | 85.90 99 | 51.86 78 | 86.06 80 | 57.45 148 | 80.62 94 | 85.91 81 |
|
VDD-MVS | | | 72.50 79 | 72.09 78 | 73.75 114 | 81.58 85 | 49.69 197 | 77.76 135 | 77.63 181 | 63.21 44 | 73.21 65 | 89.02 53 | 42.14 178 | 83.32 138 | 61.72 123 | 82.50 82 | 88.25 9 |
|
PS-MVSNAJ | | | 70.51 107 | 69.70 109 | 72.93 136 | 81.52 86 | 55.79 115 | 74.92 194 | 79.00 150 | 55.04 192 | 69.88 104 | 78.66 234 | 47.05 134 | 82.19 165 | 61.61 124 | 79.58 111 | 80.83 214 |
|
testdata | | | | | 64.66 258 | 81.52 86 | 52.93 150 | | 65.29 283 | 46.09 277 | 73.88 57 | 87.46 69 | 38.08 222 | 66.26 297 | 53.31 181 | 78.48 131 | 74.78 283 |
|
CHOSEN 1792x2688 | | | 65.08 208 | 62.84 215 | 71.82 156 | 81.49 88 | 56.26 106 | 66.32 279 | 74.20 227 | 40.53 316 | 63.16 210 | 78.65 235 | 41.30 193 | 77.80 239 | 45.80 233 | 74.09 165 | 81.40 201 |
|
HQP_MVS | | | 74.31 61 | 73.73 63 | 76.06 65 | 81.41 89 | 56.31 103 | 84.22 35 | 84.01 49 | 64.52 25 | 69.27 114 | 86.10 94 | 45.26 156 | 87.21 48 | 68.16 67 | 80.58 96 | 84.65 128 |
|
plane_prior7 | | | | | | 81.41 89 | 55.96 112 | | | | | | | | | | |
|
DPM-MVS | | | 75.47 50 | 75.00 49 | 76.88 54 | 81.38 91 | 59.16 58 | 79.94 102 | 85.71 23 | 56.59 156 | 72.46 76 | 86.76 75 | 56.89 28 | 87.86 38 | 66.36 82 | 88.91 25 | 83.64 161 |
|
CANet | | | 76.46 41 | 75.93 43 | 78.06 38 | 81.29 92 | 57.53 87 | 82.35 67 | 83.31 71 | 67.78 3 | 70.09 96 | 86.34 90 | 54.92 44 | 88.90 20 | 72.68 45 | 84.55 64 | 87.76 25 |
|
Vis-MVSNet | | | 72.18 85 | 71.37 87 | 74.61 95 | 81.29 92 | 55.41 124 | 80.90 88 | 78.28 173 | 60.73 86 | 69.23 117 | 88.09 63 | 44.36 162 | 82.65 157 | 57.68 147 | 81.75 88 | 85.77 88 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
plane_prior1 | | | | | | 81.27 94 | | | | | | | | | | | |
|
xiu_mvs_v2_base | | | 70.52 106 | 69.75 107 | 72.84 138 | 81.21 95 | 55.63 119 | 75.11 188 | 78.92 151 | 54.92 193 | 69.96 103 | 79.68 219 | 47.00 138 | 82.09 167 | 61.60 125 | 79.37 114 | 80.81 215 |
|
plane_prior6 | | | | | | 81.20 96 | 56.24 107 | | | | | | 45.26 156 | | | | |
|
PAPR | | | 71.72 93 | 70.82 95 | 74.41 100 | 81.20 96 | 51.17 170 | 79.55 111 | 83.33 70 | 55.81 174 | 66.93 154 | 84.61 118 | 50.95 89 | 86.06 80 | 55.79 158 | 79.20 119 | 86.00 79 |
|
PLC | | 56.13 14 | 65.09 207 | 63.21 211 | 70.72 183 | 81.04 98 | 54.87 130 | 78.57 122 | 77.47 183 | 48.51 254 | 55.71 274 | 81.89 171 | 33.71 257 | 79.71 207 | 41.66 269 | 70.37 215 | 77.58 250 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
NP-MVS | | | | | | 80.98 99 | 56.05 111 | | | | | 85.54 107 | | | | | |
|
OPM-MVS | | | 74.73 56 | 74.25 58 | 76.19 64 | 80.81 100 | 59.01 65 | 82.60 64 | 83.64 60 | 63.74 38 | 72.52 75 | 87.49 68 | 47.18 132 | 85.88 87 | 69.47 61 | 80.78 92 | 83.66 159 |
|
HQP-NCC | | | | | | 80.66 101 | | 82.31 69 | | 62.10 66 | 67.85 138 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 101 | | 82.31 69 | | 62.10 66 | 67.85 138 | | | | | | |
|
HQP-MVS | | | 73.45 70 | 72.80 73 | 75.40 79 | 80.66 101 | 54.94 127 | 82.31 69 | 83.90 53 | 62.10 66 | 67.85 138 | 85.54 107 | 45.46 150 | 86.93 57 | 67.04 78 | 80.35 102 | 84.32 136 |
|
PHI-MVS | | | 75.87 47 | 75.36 47 | 77.41 48 | 80.62 104 | 55.91 114 | 84.28 34 | 85.78 21 | 56.08 169 | 73.41 63 | 86.58 85 | 50.94 90 | 88.54 23 | 70.79 56 | 89.71 16 | 87.79 24 |
|
ACMM | | 61.98 7 | 70.80 103 | 69.73 108 | 74.02 105 | 80.59 105 | 58.59 72 | 82.68 62 | 82.02 92 | 55.46 181 | 67.18 151 | 84.39 124 | 38.51 215 | 83.17 142 | 60.65 130 | 76.10 153 | 80.30 220 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Regformer-1 | | | 75.47 50 | 74.93 52 | 77.09 53 | 80.43 106 | 57.70 85 | 79.50 112 | 82.13 89 | 67.84 1 | 75.73 34 | 80.75 197 | 56.50 31 | 86.07 79 | 71.07 55 | 80.38 100 | 87.50 34 |
|
Regformer-2 | | | 75.63 49 | 74.99 50 | 77.54 46 | 80.43 106 | 58.32 76 | 79.50 112 | 82.92 79 | 67.84 1 | 75.94 31 | 80.75 197 | 55.73 38 | 86.80 60 | 71.44 54 | 80.38 100 | 87.50 34 |
|
Anonymous20231211 | | | 69.28 133 | 68.47 129 | 71.73 158 | 80.28 108 | 47.18 227 | 79.98 101 | 82.37 86 | 54.61 196 | 67.24 150 | 84.01 130 | 39.43 206 | 82.41 163 | 55.45 162 | 72.83 186 | 85.62 96 |
|
ACMP | | 63.53 6 | 72.30 83 | 71.20 91 | 75.59 78 | 80.28 108 | 57.54 86 | 82.74 60 | 82.84 83 | 60.58 88 | 65.24 186 | 86.18 92 | 39.25 208 | 86.03 82 | 66.95 80 | 76.79 149 | 83.22 170 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LPG-MVS_test | | | 72.74 77 | 71.74 81 | 75.76 70 | 80.22 110 | 57.51 88 | 82.55 65 | 83.40 67 | 61.32 77 | 66.67 157 | 87.33 71 | 39.15 210 | 86.59 68 | 67.70 71 | 77.30 142 | 83.19 172 |
|
LGP-MVS_train | | | | | 75.76 70 | 80.22 110 | 57.51 88 | | 83.40 67 | 61.32 77 | 66.67 157 | 87.33 71 | 39.15 210 | 86.59 68 | 67.70 71 | 77.30 142 | 83.19 172 |
|
WR-MVS | | | 68.47 152 | 68.47 129 | 68.44 218 | 80.20 112 | 39.84 286 | 73.75 214 | 76.07 201 | 64.68 22 | 68.11 134 | 83.63 138 | 50.39 94 | 79.14 221 | 49.78 201 | 69.66 231 | 86.34 67 |
|
Anonymous20240529 | | | 69.91 120 | 69.02 120 | 72.56 145 | 80.19 113 | 47.65 221 | 77.56 139 | 80.99 118 | 55.45 182 | 69.88 104 | 86.76 75 | 39.24 209 | 82.18 166 | 54.04 172 | 77.10 144 | 87.85 22 |
|
Anonymous202405211 | | | 66.84 183 | 65.99 181 | 69.40 206 | 80.19 113 | 42.21 272 | 71.11 250 | 71.31 244 | 58.80 124 | 67.90 136 | 86.39 89 | 29.83 292 | 79.65 208 | 49.60 207 | 78.78 126 | 86.33 68 |
|
BH-RMVSNet | | | 68.81 140 | 67.42 148 | 72.97 135 | 80.11 115 | 52.53 156 | 74.26 203 | 76.29 198 | 58.48 129 | 68.38 127 | 84.20 125 | 42.59 173 | 83.83 129 | 46.53 226 | 75.91 154 | 82.56 183 |
|
test_0402 | | | 63.25 224 | 61.01 236 | 69.96 194 | 80.00 116 | 54.37 133 | 76.86 157 | 72.02 242 | 54.58 198 | 58.71 254 | 80.79 196 | 35.00 245 | 84.36 117 | 26.41 333 | 64.71 273 | 71.15 314 |
|
HyFIR lowres test | | | 65.67 199 | 63.01 213 | 73.67 117 | 79.97 117 | 55.65 118 | 69.07 269 | 75.52 209 | 42.68 306 | 63.53 206 | 77.95 242 | 40.43 199 | 81.64 173 | 46.01 231 | 71.91 199 | 83.73 155 |
|
EIA-MVS | | | 71.78 91 | 70.60 97 | 75.30 82 | 79.85 118 | 53.54 141 | 77.27 148 | 83.26 74 | 57.92 136 | 66.49 160 | 79.39 225 | 52.07 76 | 86.69 64 | 60.05 135 | 79.14 121 | 85.66 93 |
|
Regformer-3 | | | 73.89 67 | 73.28 70 | 75.71 73 | 79.75 119 | 55.48 123 | 78.54 124 | 79.93 135 | 66.58 11 | 73.62 60 | 80.30 205 | 54.87 45 | 84.54 114 | 69.09 64 | 76.84 147 | 87.10 47 |
|
Regformer-4 | | | 74.25 63 | 73.48 66 | 76.57 61 | 79.75 119 | 56.54 102 | 78.54 124 | 81.49 103 | 66.93 7 | 73.90 56 | 80.30 205 | 53.84 58 | 85.98 84 | 69.76 58 | 76.84 147 | 87.17 44 |
|
BH-untuned | | | 68.27 154 | 67.29 153 | 71.21 173 | 79.74 121 | 53.22 146 | 76.06 172 | 77.46 185 | 57.19 143 | 66.10 167 | 81.61 176 | 45.37 154 | 83.50 136 | 45.42 241 | 76.68 151 | 76.91 262 |
|
VNet | | | 69.68 125 | 70.19 104 | 68.16 220 | 79.73 122 | 41.63 279 | 70.53 256 | 77.38 186 | 60.37 92 | 70.69 89 | 86.63 82 | 51.08 87 | 77.09 248 | 53.61 178 | 81.69 90 | 85.75 90 |
|
LS3D | | | 64.71 210 | 62.50 219 | 71.34 171 | 79.72 123 | 55.71 116 | 79.82 105 | 74.72 221 | 48.50 255 | 56.62 269 | 84.62 117 | 33.59 260 | 82.34 164 | 29.65 325 | 75.23 159 | 75.97 266 |
|
BH-w/o | | | 66.85 182 | 65.83 183 | 69.90 198 | 79.29 124 | 52.46 159 | 74.66 199 | 76.65 196 | 54.51 200 | 64.85 193 | 78.12 240 | 45.59 149 | 82.95 148 | 43.26 256 | 75.54 157 | 74.27 288 |
|
1112_ss | | | 64.00 216 | 63.36 210 | 65.93 246 | 79.28 125 | 42.58 269 | 71.35 243 | 72.36 241 | 46.41 274 | 60.55 237 | 77.89 246 | 46.27 144 | 73.28 267 | 46.18 229 | 69.97 222 | 81.92 195 |
|
ETV-MVS | | | 74.46 59 | 73.84 62 | 76.33 63 | 79.27 126 | 55.24 126 | 79.22 115 | 85.00 34 | 64.97 21 | 72.65 73 | 79.46 224 | 53.65 63 | 87.87 37 | 67.45 75 | 82.91 76 | 85.89 82 |
|
UniMVSNet_NR-MVSNet | | | 71.11 99 | 71.00 93 | 71.44 165 | 79.20 127 | 44.13 256 | 76.02 175 | 82.60 84 | 66.48 13 | 68.20 129 | 84.60 119 | 56.82 29 | 82.82 154 | 54.62 168 | 70.43 213 | 87.36 41 |
|
VPNet | | | 67.52 168 | 68.11 136 | 65.74 249 | 79.18 128 | 36.80 308 | 72.17 235 | 72.83 238 | 62.04 69 | 67.79 144 | 85.83 101 | 48.88 109 | 76.60 253 | 51.30 194 | 72.97 185 | 83.81 150 |
|
TR-MVS | | | 66.59 190 | 65.07 194 | 71.17 175 | 79.18 128 | 49.63 199 | 73.48 216 | 75.20 214 | 52.95 210 | 67.90 136 | 80.33 204 | 39.81 203 | 83.68 132 | 43.20 257 | 73.56 174 | 80.20 221 |
|
TAMVS | | | 66.78 185 | 65.27 192 | 71.33 172 | 79.16 130 | 53.67 137 | 73.84 213 | 69.59 256 | 52.32 218 | 65.28 181 | 81.72 174 | 44.49 161 | 77.40 245 | 42.32 263 | 78.66 129 | 82.92 178 |
|
Test_1112_low_res | | | 62.32 232 | 61.77 226 | 64.00 262 | 79.08 131 | 39.53 290 | 68.17 271 | 70.17 250 | 43.25 301 | 59.03 252 | 79.90 212 | 44.08 163 | 71.24 275 | 43.79 252 | 68.42 247 | 81.25 205 |
|
CS-MVS | | | 74.18 64 | 73.60 64 | 75.92 67 | 78.99 132 | 52.53 156 | 80.61 93 | 85.93 19 | 61.17 81 | 71.15 87 | 79.34 228 | 54.52 49 | 88.86 21 | 66.07 83 | 84.67 63 | 86.38 61 |
|
CDS-MVSNet | | | 66.80 184 | 65.37 189 | 71.10 177 | 78.98 133 | 53.13 149 | 73.27 219 | 71.07 246 | 52.15 219 | 64.72 194 | 80.23 208 | 43.56 168 | 77.10 247 | 45.48 239 | 78.88 123 | 83.05 177 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
canonicalmvs | | | 74.67 57 | 74.98 51 | 73.71 116 | 78.94 134 | 50.56 182 | 80.23 97 | 83.87 55 | 60.30 98 | 77.15 27 | 86.56 86 | 59.65 13 | 82.00 168 | 66.01 86 | 82.12 84 | 88.58 6 |
|
IS-MVSNet | | | 71.57 94 | 71.00 93 | 73.27 131 | 78.86 135 | 45.63 245 | 80.22 98 | 78.69 157 | 64.14 34 | 66.46 161 | 87.36 70 | 49.30 101 | 85.60 89 | 50.26 200 | 83.71 69 | 88.59 5 |
|
CLD-MVS | | | 73.33 71 | 72.68 74 | 75.29 83 | 78.82 136 | 53.33 145 | 78.23 128 | 84.79 38 | 61.30 79 | 70.41 92 | 81.04 187 | 52.41 72 | 87.12 51 | 64.61 99 | 82.49 83 | 85.41 106 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVSFormer | | | 71.50 96 | 70.38 102 | 74.88 87 | 78.76 137 | 57.15 97 | 82.79 58 | 78.48 164 | 51.26 231 | 69.49 109 | 83.22 144 | 43.99 165 | 83.24 140 | 66.06 84 | 79.37 114 | 84.23 139 |
|
lupinMVS | | | 69.57 128 | 68.28 133 | 73.44 126 | 78.76 137 | 57.15 97 | 76.57 160 | 73.29 235 | 46.19 276 | 69.49 109 | 82.18 164 | 43.99 165 | 79.23 215 | 64.66 97 | 79.37 114 | 83.93 145 |
|
CNLPA | | | 65.43 202 | 64.02 199 | 69.68 200 | 78.73 139 | 58.07 79 | 77.82 134 | 70.71 248 | 51.49 226 | 61.57 232 | 83.58 140 | 38.23 220 | 70.82 276 | 43.90 250 | 70.10 221 | 80.16 222 |
|
EPP-MVSNet | | | 72.16 87 | 71.31 89 | 74.71 89 | 78.68 140 | 49.70 195 | 82.10 73 | 81.65 99 | 60.40 91 | 65.94 170 | 85.84 100 | 51.74 80 | 86.37 77 | 55.93 155 | 79.55 113 | 88.07 16 |
|
TranMVSNet+NR-MVSNet | | | 70.36 111 | 70.10 106 | 71.17 175 | 78.64 141 | 42.97 267 | 76.53 161 | 81.16 114 | 66.95 6 | 68.53 125 | 85.42 109 | 51.61 81 | 83.07 144 | 52.32 186 | 69.70 230 | 87.46 36 |
|
UniMVSNet (Re) | | | 70.63 105 | 70.20 103 | 71.89 154 | 78.55 142 | 45.29 247 | 75.94 176 | 82.92 79 | 63.68 39 | 68.16 132 | 83.59 139 | 53.89 57 | 83.49 137 | 53.97 173 | 71.12 207 | 86.89 50 |
|
Fast-Effi-MVS+ | | | 70.28 113 | 69.12 119 | 73.73 115 | 78.50 143 | 51.50 169 | 75.01 191 | 79.46 145 | 56.16 166 | 68.59 122 | 79.55 222 | 53.97 54 | 84.05 122 | 53.34 180 | 77.53 138 | 85.65 94 |
|
PS-MVSNAJss | | | 72.24 84 | 71.21 90 | 75.31 81 | 78.50 143 | 55.93 113 | 81.63 78 | 82.12 90 | 56.24 164 | 70.02 100 | 85.68 104 | 47.05 134 | 84.34 118 | 65.27 93 | 74.41 163 | 85.67 92 |
|
EI-MVSNet-Vis-set | | | 72.42 82 | 71.59 82 | 74.91 86 | 78.47 145 | 54.02 134 | 77.05 152 | 79.33 147 | 65.03 20 | 71.68 84 | 79.35 227 | 52.75 67 | 84.89 107 | 66.46 81 | 74.23 164 | 85.83 84 |
|
MVS_111021_LR | | | 69.50 130 | 68.78 124 | 71.65 161 | 78.38 146 | 59.33 56 | 74.82 196 | 70.11 251 | 58.08 135 | 67.83 142 | 84.68 115 | 41.96 180 | 76.34 256 | 65.62 91 | 77.54 137 | 79.30 235 |
|
test_yl | | | 69.69 123 | 69.13 117 | 71.36 169 | 78.37 147 | 45.74 241 | 74.71 197 | 80.20 132 | 57.91 137 | 70.01 101 | 83.83 133 | 42.44 175 | 82.87 150 | 54.97 164 | 79.72 108 | 85.48 100 |
|
DCV-MVSNet | | | 69.69 123 | 69.13 117 | 71.36 169 | 78.37 147 | 45.74 241 | 74.71 197 | 80.20 132 | 57.91 137 | 70.01 101 | 83.83 133 | 42.44 175 | 82.87 150 | 54.97 164 | 79.72 108 | 85.48 100 |
|
FIs | | | 70.82 102 | 71.43 84 | 68.98 211 | 78.33 149 | 38.14 300 | 76.96 154 | 83.59 61 | 61.02 82 | 67.33 149 | 86.73 77 | 55.07 42 | 81.64 173 | 54.61 170 | 79.22 118 | 87.14 46 |
|
UGNet | | | 68.81 140 | 67.39 149 | 73.06 134 | 78.33 149 | 54.47 132 | 79.77 106 | 75.40 211 | 60.45 90 | 63.22 208 | 84.40 123 | 32.71 272 | 80.91 191 | 51.71 192 | 80.56 98 | 83.81 150 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
jason | | | 69.65 126 | 68.39 132 | 73.43 127 | 78.27 151 | 56.88 99 | 77.12 150 | 73.71 232 | 46.53 273 | 69.34 113 | 83.22 144 | 43.37 169 | 79.18 216 | 64.77 96 | 79.20 119 | 84.23 139 |
jason: jason. |
alignmvs | | | 73.86 68 | 73.99 60 | 73.45 125 | 78.20 152 | 50.50 183 | 78.57 122 | 82.43 85 | 59.40 114 | 76.57 28 | 86.71 79 | 56.42 33 | 81.23 183 | 65.84 88 | 81.79 86 | 88.62 4 |
|
xiu_mvs_v1_base_debu | | | 68.58 147 | 67.28 154 | 72.48 147 | 78.19 153 | 57.19 94 | 75.28 183 | 75.09 216 | 51.61 222 | 70.04 97 | 81.41 180 | 32.79 268 | 79.02 223 | 63.81 105 | 77.31 139 | 81.22 206 |
|
xiu_mvs_v1_base | | | 68.58 147 | 67.28 154 | 72.48 147 | 78.19 153 | 57.19 94 | 75.28 183 | 75.09 216 | 51.61 222 | 70.04 97 | 81.41 180 | 32.79 268 | 79.02 223 | 63.81 105 | 77.31 139 | 81.22 206 |
|
xiu_mvs_v1_base_debi | | | 68.58 147 | 67.28 154 | 72.48 147 | 78.19 153 | 57.19 94 | 75.28 183 | 75.09 216 | 51.61 222 | 70.04 97 | 81.41 180 | 32.79 268 | 79.02 223 | 63.81 105 | 77.31 139 | 81.22 206 |
|
PAPM | | | 67.92 163 | 66.69 165 | 71.63 162 | 78.09 156 | 49.02 205 | 77.09 151 | 81.24 112 | 51.04 233 | 60.91 235 | 83.98 131 | 47.71 121 | 84.99 102 | 40.81 272 | 79.32 117 | 80.90 213 |
|
ACMH | | 55.70 15 | 65.20 206 | 63.57 207 | 70.07 193 | 78.07 157 | 52.01 167 | 79.48 114 | 79.69 137 | 55.75 176 | 56.59 270 | 80.98 189 | 27.12 309 | 80.94 189 | 42.90 261 | 71.58 203 | 77.25 256 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DU-MVS | | | 70.01 117 | 69.53 111 | 71.44 165 | 78.05 158 | 44.13 256 | 75.01 191 | 81.51 102 | 64.37 28 | 68.20 129 | 84.52 120 | 49.12 107 | 82.82 154 | 54.62 168 | 70.43 213 | 87.37 39 |
|
NR-MVSNet | | | 69.54 129 | 68.85 122 | 71.59 163 | 78.05 158 | 43.81 260 | 74.20 204 | 80.86 122 | 65.18 16 | 62.76 213 | 84.52 120 | 52.35 73 | 83.59 135 | 50.96 196 | 70.78 209 | 87.37 39 |
|
EI-MVSNet-UG-set | | | 71.92 89 | 71.06 92 | 74.52 98 | 77.98 160 | 53.56 140 | 76.62 159 | 79.16 148 | 64.40 27 | 71.18 86 | 78.95 232 | 52.19 74 | 84.66 113 | 65.47 92 | 73.57 173 | 85.32 108 |
|
WR-MVS_H | | | 67.02 179 | 66.92 162 | 67.33 228 | 77.95 161 | 37.75 303 | 77.57 138 | 82.11 91 | 62.03 70 | 62.65 216 | 82.48 158 | 50.57 92 | 79.46 211 | 42.91 260 | 64.01 277 | 84.79 125 |
|
Effi-MVS+ | | | 73.31 72 | 72.54 75 | 75.62 76 | 77.87 162 | 53.64 138 | 79.62 110 | 79.61 141 | 61.63 74 | 72.02 81 | 82.61 154 | 56.44 32 | 85.97 85 | 63.99 104 | 79.07 122 | 87.25 43 |
|
DELS-MVS | | | 74.76 55 | 74.46 56 | 75.65 75 | 77.84 163 | 52.25 162 | 75.59 179 | 84.17 46 | 63.76 37 | 73.15 66 | 82.79 149 | 59.58 15 | 86.80 60 | 67.24 76 | 86.04 57 | 87.89 18 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ACMH+ | | 57.40 11 | 66.12 194 | 64.06 198 | 72.30 152 | 77.79 164 | 52.83 151 | 80.39 96 | 78.03 174 | 57.30 141 | 57.47 265 | 82.55 156 | 27.68 305 | 84.17 120 | 45.54 237 | 69.78 227 | 79.90 226 |
|
3Dnovator | | 64.47 5 | 72.49 80 | 71.39 86 | 75.79 69 | 77.70 165 | 58.99 66 | 80.66 92 | 83.15 76 | 62.24 63 | 65.46 179 | 86.59 84 | 42.38 177 | 85.52 93 | 59.59 140 | 84.72 62 | 82.85 181 |
|
EG-PatchMatch MVS | | | 64.71 210 | 62.87 214 | 70.22 189 | 77.68 166 | 53.48 142 | 77.99 131 | 78.82 152 | 53.37 208 | 56.03 273 | 77.41 253 | 24.75 323 | 84.04 123 | 46.37 228 | 73.42 177 | 73.14 295 |
|
CP-MVSNet | | | 66.49 191 | 66.41 172 | 66.72 231 | 77.67 167 | 36.33 313 | 76.83 158 | 79.52 143 | 62.45 60 | 62.54 219 | 83.47 143 | 46.32 142 | 78.37 230 | 45.47 240 | 63.43 282 | 85.45 102 |
|
GBi-Net | | | 67.21 172 | 66.55 166 | 69.19 207 | 77.63 168 | 43.33 263 | 77.31 144 | 77.83 177 | 56.62 153 | 65.04 189 | 82.70 150 | 41.85 183 | 80.33 202 | 47.18 221 | 72.76 188 | 83.92 146 |
|
test1 | | | 67.21 172 | 66.55 166 | 69.19 207 | 77.63 168 | 43.33 263 | 77.31 144 | 77.83 177 | 56.62 153 | 65.04 189 | 82.70 150 | 41.85 183 | 80.33 202 | 47.18 221 | 72.76 188 | 83.92 146 |
|
FMVSNet2 | | | 66.93 181 | 66.31 176 | 68.79 214 | 77.63 168 | 42.98 266 | 76.11 170 | 77.47 183 | 56.62 153 | 65.22 188 | 82.17 166 | 41.85 183 | 80.18 205 | 47.05 224 | 72.72 191 | 83.20 171 |
|
PCF-MVS | | 61.88 8 | 70.95 100 | 69.49 112 | 75.35 80 | 77.63 168 | 55.71 116 | 76.04 174 | 81.81 96 | 50.30 239 | 69.66 107 | 85.40 110 | 52.51 69 | 84.89 107 | 51.82 190 | 80.24 104 | 85.45 102 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MVP-Stereo | | | 65.41 203 | 63.80 203 | 70.22 189 | 77.62 172 | 55.53 121 | 76.30 166 | 78.53 162 | 50.59 238 | 56.47 271 | 78.65 235 | 39.84 202 | 82.68 156 | 44.10 249 | 72.12 198 | 72.44 303 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
FC-MVSNet-test | | | 69.80 121 | 70.58 99 | 67.46 225 | 77.61 173 | 34.73 320 | 76.05 173 | 83.19 75 | 60.84 83 | 65.88 173 | 86.46 87 | 54.52 49 | 80.76 196 | 52.52 185 | 78.12 133 | 86.91 49 |
|
PS-CasMVS | | | 66.42 192 | 66.32 175 | 66.70 233 | 77.60 174 | 36.30 315 | 76.94 155 | 79.61 141 | 62.36 62 | 62.43 223 | 83.66 137 | 45.69 146 | 78.37 230 | 45.35 242 | 63.26 283 | 85.42 105 |
|
FMVSNet1 | | | 66.70 186 | 65.87 182 | 69.19 207 | 77.49 175 | 43.33 263 | 77.31 144 | 77.83 177 | 56.45 158 | 64.60 197 | 82.70 150 | 38.08 222 | 80.33 202 | 46.08 230 | 72.31 196 | 83.92 146 |
|
VPA-MVSNet | | | 69.02 137 | 69.47 113 | 67.69 224 | 77.42 176 | 41.00 283 | 74.04 206 | 79.68 138 | 60.06 101 | 69.26 116 | 84.81 114 | 51.06 88 | 77.58 242 | 54.44 171 | 74.43 162 | 84.48 133 |
|
UniMVSNet_ETH3D | | | 67.60 167 | 67.07 161 | 69.18 210 | 77.39 177 | 42.29 271 | 74.18 205 | 75.59 208 | 60.37 92 | 66.77 156 | 86.06 96 | 37.64 224 | 78.93 228 | 52.16 188 | 73.49 175 | 86.32 70 |
|
thres100view900 | | | 63.28 223 | 62.41 220 | 65.89 247 | 77.31 178 | 38.66 296 | 72.65 226 | 69.11 262 | 57.07 144 | 62.45 222 | 81.03 188 | 37.01 234 | 79.17 217 | 31.84 311 | 73.25 180 | 79.83 227 |
|
cascas | | | 65.98 196 | 63.42 209 | 73.64 120 | 77.26 179 | 52.58 155 | 72.26 234 | 77.21 189 | 48.56 253 | 61.21 234 | 74.60 284 | 32.57 276 | 85.82 88 | 50.38 199 | 76.75 150 | 82.52 185 |
|
thres600view7 | | | 63.30 222 | 62.27 221 | 66.41 235 | 77.18 180 | 38.87 294 | 72.35 232 | 69.11 262 | 56.98 146 | 62.37 224 | 80.96 190 | 37.01 234 | 79.00 226 | 31.43 318 | 73.05 184 | 81.36 202 |
|
PEN-MVS | | | 66.60 188 | 66.45 168 | 67.04 229 | 77.11 181 | 36.56 310 | 77.03 153 | 80.42 128 | 62.95 47 | 62.51 221 | 84.03 129 | 46.69 140 | 79.07 222 | 44.22 245 | 63.08 285 | 85.51 99 |
|
PatchMatch-RL | | | 56.25 273 | 54.55 277 | 61.32 280 | 77.06 182 | 56.07 110 | 65.57 284 | 54.10 329 | 44.13 295 | 53.49 300 | 71.27 302 | 25.20 320 | 66.78 294 | 36.52 295 | 63.66 279 | 61.12 328 |
|
PVSNet_BlendedMVS | | | 68.56 150 | 67.72 139 | 71.07 178 | 77.03 183 | 50.57 180 | 74.50 201 | 81.52 100 | 53.66 207 | 64.22 203 | 79.72 218 | 49.13 105 | 82.87 150 | 55.82 156 | 73.92 168 | 79.77 230 |
|
PVSNet_Blended | | | 68.59 146 | 67.72 139 | 71.19 174 | 77.03 183 | 50.57 180 | 72.51 230 | 81.52 100 | 51.91 220 | 64.22 203 | 77.77 250 | 49.13 105 | 82.87 150 | 55.82 156 | 79.58 111 | 80.14 223 |
|
F-COLMAP | | | 63.05 227 | 60.87 238 | 69.58 204 | 76.99 185 | 53.63 139 | 78.12 130 | 76.16 199 | 47.97 262 | 52.41 303 | 81.61 176 | 27.87 303 | 78.11 234 | 40.07 274 | 66.66 259 | 77.00 259 |
|
tfpn200view9 | | | 63.18 225 | 62.18 223 | 66.21 239 | 76.85 186 | 39.62 288 | 71.96 238 | 69.44 258 | 56.63 151 | 62.61 217 | 79.83 214 | 37.18 229 | 79.17 217 | 31.84 311 | 73.25 180 | 79.83 227 |
|
thres400 | | | 63.31 221 | 62.18 223 | 66.72 231 | 76.85 186 | 39.62 288 | 71.96 238 | 69.44 258 | 56.63 151 | 62.61 217 | 79.83 214 | 37.18 229 | 79.17 217 | 31.84 311 | 73.25 180 | 81.36 202 |
|
tttt0517 | | | 67.83 165 | 65.66 186 | 74.33 102 | 76.69 188 | 50.82 176 | 77.86 132 | 73.99 229 | 54.54 199 | 64.64 196 | 82.53 157 | 35.06 244 | 85.50 95 | 55.71 159 | 69.91 224 | 86.67 57 |
|
ET-MVSNet_ETH3D | | | 67.96 162 | 65.72 185 | 74.68 91 | 76.67 189 | 55.62 120 | 75.11 188 | 74.74 220 | 52.91 211 | 60.03 240 | 80.12 209 | 33.68 258 | 82.64 158 | 61.86 122 | 76.34 152 | 85.78 85 |
|
TAPA-MVS | | 59.36 10 | 66.60 188 | 65.20 193 | 70.81 180 | 76.63 190 | 48.75 209 | 76.52 162 | 80.04 134 | 50.64 237 | 65.24 186 | 84.93 112 | 39.15 210 | 78.54 229 | 36.77 289 | 76.88 146 | 85.14 112 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
OMC-MVS | | | 71.40 98 | 70.60 97 | 73.78 110 | 76.60 191 | 53.15 147 | 79.74 108 | 79.78 136 | 58.37 131 | 68.75 121 | 86.45 88 | 45.43 152 | 80.60 197 | 62.58 115 | 77.73 136 | 87.58 32 |
|
LTVRE_ROB | | 55.42 16 | 63.15 226 | 61.23 234 | 68.92 212 | 76.57 192 | 47.80 218 | 59.92 310 | 76.39 197 | 54.35 202 | 58.67 255 | 82.46 159 | 29.44 295 | 81.49 177 | 42.12 265 | 71.14 206 | 77.46 251 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
QAPM | | | 70.05 116 | 68.81 123 | 73.78 110 | 76.54 193 | 53.43 143 | 83.23 51 | 83.48 63 | 52.89 212 | 65.90 172 | 86.29 91 | 41.55 190 | 86.49 74 | 51.01 195 | 78.40 132 | 81.42 200 |
|
FMVSNet3 | | | 66.32 193 | 65.61 187 | 68.46 217 | 76.48 194 | 42.34 270 | 74.98 193 | 77.15 190 | 55.83 173 | 65.04 189 | 81.16 184 | 39.91 201 | 80.14 206 | 47.18 221 | 72.76 188 | 82.90 180 |
|
thisisatest0530 | | | 67.92 163 | 65.78 184 | 74.33 102 | 76.29 195 | 51.03 171 | 76.89 156 | 74.25 226 | 53.67 206 | 65.59 177 | 81.76 173 | 35.15 243 | 85.50 95 | 55.94 154 | 72.47 192 | 86.47 60 |
|
baseline1 | | | 63.81 217 | 63.87 202 | 63.62 263 | 76.29 195 | 36.36 311 | 71.78 240 | 67.29 271 | 56.05 170 | 64.23 202 | 82.95 148 | 47.11 133 | 74.41 264 | 47.30 220 | 61.85 292 | 80.10 224 |
|
ab-mvs | | | 66.65 187 | 66.42 171 | 67.37 226 | 76.17 197 | 41.73 277 | 70.41 259 | 76.14 200 | 53.99 203 | 65.98 169 | 83.51 141 | 49.48 99 | 76.24 257 | 48.60 213 | 73.46 176 | 84.14 142 |
|
Effi-MVS+-dtu | | | 69.64 127 | 67.53 145 | 75.95 66 | 76.10 198 | 62.29 18 | 80.20 99 | 76.06 202 | 59.83 108 | 65.26 185 | 77.09 254 | 41.56 188 | 84.02 126 | 60.60 131 | 71.09 208 | 81.53 199 |
|
mvs-test1 | | | 70.44 109 | 68.19 134 | 77.18 51 | 76.10 198 | 63.22 6 | 80.59 94 | 76.06 202 | 59.83 108 | 66.32 164 | 79.87 213 | 41.56 188 | 85.53 92 | 60.60 131 | 72.77 187 | 82.80 182 |
|
DTE-MVSNet | | | 65.58 200 | 65.34 190 | 66.31 236 | 76.06 200 | 34.79 318 | 76.43 163 | 79.38 146 | 62.55 58 | 61.66 230 | 83.83 133 | 45.60 148 | 79.15 220 | 41.64 271 | 60.88 298 | 85.00 117 |
|
EPNet | | | 73.09 74 | 72.16 77 | 75.90 68 | 75.95 201 | 56.28 105 | 83.05 53 | 72.39 240 | 66.53 12 | 65.27 182 | 87.00 73 | 50.40 93 | 85.47 97 | 62.48 117 | 86.32 56 | 85.94 80 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RRT_MVS | | | 68.77 143 | 66.71 164 | 74.95 85 | 75.93 202 | 58.55 73 | 80.50 95 | 75.84 204 | 56.09 168 | 68.17 131 | 83.74 136 | 28.50 300 | 82.98 146 | 65.67 90 | 65.91 264 | 83.33 166 |
|
RRT_test8_iter05 | | | 68.17 159 | 66.86 163 | 72.07 153 | 75.81 203 | 46.33 233 | 76.41 164 | 81.81 96 | 56.43 159 | 66.52 159 | 81.30 183 | 31.90 280 | 84.25 119 | 63.77 108 | 67.83 252 | 85.64 95 |
|
SixPastTwentyTwo | | | 61.65 241 | 58.80 247 | 70.20 191 | 75.80 204 | 47.22 226 | 75.59 179 | 69.68 254 | 54.61 196 | 54.11 292 | 79.26 229 | 27.07 310 | 82.96 147 | 43.27 255 | 49.79 327 | 80.41 219 |
|
baseline | | | 74.61 58 | 74.70 54 | 74.34 101 | 75.70 205 | 49.99 192 | 77.54 140 | 84.63 39 | 62.73 56 | 73.98 52 | 87.79 67 | 57.67 26 | 83.82 130 | 69.49 60 | 82.74 81 | 89.20 3 |
|
Baseline_NR-MVSNet | | | 67.05 178 | 67.56 142 | 65.50 251 | 75.65 206 | 37.70 304 | 75.42 181 | 74.65 222 | 59.90 104 | 68.14 133 | 83.15 147 | 49.12 107 | 77.20 246 | 52.23 187 | 69.78 227 | 81.60 198 |
|
jajsoiax | | | 68.25 155 | 66.45 168 | 73.66 118 | 75.62 207 | 55.49 122 | 80.82 89 | 78.51 163 | 52.33 217 | 64.33 199 | 84.11 127 | 28.28 301 | 81.81 172 | 63.48 110 | 70.62 211 | 83.67 157 |
|
mvs_tets | | | 68.18 157 | 66.36 173 | 73.63 121 | 75.61 208 | 55.35 125 | 80.77 90 | 78.56 161 | 52.48 216 | 64.27 201 | 84.10 128 | 27.45 307 | 81.84 171 | 63.45 111 | 70.56 212 | 83.69 156 |
|
casdiffmvs | | | 74.80 54 | 74.89 53 | 74.53 97 | 75.59 209 | 50.37 185 | 78.17 129 | 85.06 31 | 62.80 55 | 74.40 48 | 87.86 65 | 57.88 23 | 83.61 134 | 69.46 62 | 82.79 80 | 89.59 2 |
|
PVSNet | | 50.76 19 | 58.40 258 | 57.39 256 | 61.42 278 | 75.53 210 | 44.04 258 | 61.43 303 | 63.45 293 | 47.04 271 | 56.91 267 | 73.61 291 | 27.00 311 | 64.76 301 | 39.12 278 | 72.40 193 | 75.47 273 |
|
MVS | | | 67.37 170 | 66.33 174 | 70.51 187 | 75.46 211 | 50.94 172 | 73.95 208 | 81.85 95 | 41.57 312 | 62.54 219 | 78.57 238 | 47.98 117 | 85.47 97 | 52.97 183 | 82.05 85 | 75.14 275 |
|
nrg030 | | | 72.96 75 | 73.01 71 | 72.84 138 | 75.41 212 | 50.24 186 | 80.02 100 | 82.89 82 | 58.36 132 | 74.44 47 | 86.73 77 | 58.90 18 | 80.83 192 | 65.84 88 | 74.46 161 | 87.44 37 |
|
thres200 | | | 62.20 234 | 61.16 235 | 65.34 254 | 75.38 213 | 39.99 285 | 69.60 264 | 69.29 260 | 55.64 179 | 61.87 228 | 76.99 255 | 37.07 233 | 78.96 227 | 31.28 319 | 73.28 179 | 77.06 257 |
|
TransMVSNet (Re) | | | 64.72 209 | 64.33 197 | 65.87 248 | 75.22 214 | 38.56 297 | 74.66 199 | 75.08 219 | 58.90 122 | 61.79 229 | 82.63 153 | 51.18 85 | 78.07 235 | 43.63 253 | 55.87 313 | 80.99 212 |
|
MS-PatchMatch | | | 62.42 231 | 61.46 230 | 65.31 255 | 75.21 215 | 52.10 163 | 72.05 236 | 74.05 228 | 46.41 274 | 57.42 266 | 74.36 285 | 34.35 252 | 77.57 243 | 45.62 236 | 73.67 170 | 66.26 325 |
|
IB-MVS | | 56.42 12 | 65.40 204 | 62.73 217 | 73.40 128 | 74.89 216 | 52.78 152 | 73.09 221 | 75.13 215 | 55.69 177 | 58.48 259 | 73.73 290 | 32.86 267 | 86.32 78 | 50.63 197 | 70.11 220 | 81.10 210 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MVS_Test | | | 72.45 81 | 72.46 76 | 72.42 150 | 74.88 217 | 48.50 211 | 76.28 167 | 83.14 77 | 59.40 114 | 72.46 76 | 84.68 115 | 55.66 39 | 81.12 184 | 65.98 87 | 79.66 110 | 87.63 29 |
|
CANet_DTU | | | 68.18 157 | 67.71 141 | 69.59 202 | 74.83 218 | 46.24 235 | 78.66 120 | 76.85 193 | 59.60 110 | 63.45 207 | 82.09 170 | 35.25 242 | 77.41 244 | 59.88 137 | 78.76 127 | 85.14 112 |
|
tfpnnormal | | | 62.47 230 | 61.63 228 | 64.99 257 | 74.81 219 | 39.01 293 | 71.22 246 | 73.72 231 | 55.22 185 | 60.21 238 | 80.09 211 | 41.26 196 | 76.98 250 | 30.02 323 | 68.09 249 | 78.97 238 |
|
Vis-MVSNet (Re-imp) | | | 63.69 218 | 63.88 201 | 63.14 267 | 74.75 220 | 31.04 333 | 71.16 248 | 63.64 292 | 56.32 161 | 59.80 244 | 84.99 111 | 44.51 159 | 75.46 259 | 39.12 278 | 80.62 94 | 82.92 178 |
|
HY-MVS | | 56.14 13 | 64.55 213 | 63.89 200 | 66.55 234 | 74.73 221 | 41.02 281 | 69.96 262 | 74.43 223 | 49.29 247 | 61.66 230 | 80.92 191 | 47.43 128 | 76.68 252 | 44.91 244 | 71.69 201 | 81.94 194 |
|
COLMAP_ROB | | 52.97 17 | 61.27 244 | 58.81 246 | 68.64 215 | 74.63 222 | 52.51 158 | 78.42 127 | 73.30 234 | 49.92 244 | 50.96 308 | 81.51 179 | 23.06 325 | 79.40 212 | 31.63 315 | 65.85 265 | 74.01 291 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
LCM-MVSNet-Re | | | 61.88 239 | 61.35 231 | 63.46 264 | 74.58 223 | 31.48 332 | 61.42 304 | 58.14 314 | 58.71 125 | 53.02 302 | 79.55 222 | 43.07 171 | 76.80 251 | 45.69 234 | 77.96 134 | 82.11 193 |
|
test_djsdf | | | 69.45 132 | 67.74 138 | 74.58 96 | 74.57 224 | 54.92 129 | 82.79 58 | 78.48 164 | 51.26 231 | 65.41 180 | 83.49 142 | 38.37 217 | 83.24 140 | 66.06 84 | 69.25 237 | 85.56 97 |
|
EI-MVSNet | | | 69.27 134 | 68.44 131 | 71.73 158 | 74.47 225 | 49.39 202 | 75.20 186 | 78.45 167 | 59.60 110 | 69.16 118 | 76.51 264 | 51.29 83 | 82.50 160 | 59.86 139 | 71.45 205 | 83.30 167 |
|
CVMVSNet | | | 59.63 252 | 59.14 245 | 61.08 281 | 74.47 225 | 38.84 295 | 75.20 186 | 68.74 264 | 31.15 331 | 58.24 260 | 76.51 264 | 32.39 277 | 68.58 286 | 49.77 202 | 65.84 266 | 75.81 269 |
|
IterMVS-LS | | | 69.22 136 | 68.48 128 | 71.43 167 | 74.44 227 | 49.40 201 | 76.23 168 | 77.55 182 | 59.60 110 | 65.85 174 | 81.59 178 | 51.28 84 | 81.58 176 | 59.87 138 | 69.90 225 | 83.30 167 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
XVG-OURS-SEG-HR | | | 68.81 140 | 67.47 147 | 72.82 140 | 74.40 228 | 56.87 100 | 70.59 255 | 79.04 149 | 54.77 195 | 66.99 153 | 86.01 97 | 39.57 205 | 78.21 233 | 62.54 116 | 73.33 178 | 83.37 165 |
|
XVG-OURS | | | 68.76 144 | 67.37 150 | 72.90 137 | 74.32 229 | 57.22 92 | 70.09 261 | 78.81 153 | 55.24 184 | 67.79 144 | 85.81 103 | 36.54 237 | 78.28 232 | 62.04 120 | 75.74 155 | 83.19 172 |
|
OpenMVS | | 61.03 9 | 68.85 139 | 67.56 142 | 72.70 143 | 74.26 230 | 53.99 135 | 81.21 86 | 81.34 107 | 52.70 213 | 62.75 214 | 85.55 106 | 38.86 213 | 84.14 121 | 48.41 215 | 83.01 72 | 79.97 225 |
|
MIMVSNet | | | 57.35 265 | 57.07 259 | 58.22 289 | 74.21 231 | 37.18 305 | 62.46 299 | 60.88 307 | 48.88 251 | 55.29 280 | 75.99 271 | 31.68 281 | 62.04 309 | 31.87 310 | 72.35 194 | 75.43 274 |
|
SCA | | | 60.49 246 | 58.38 250 | 66.80 230 | 74.14 232 | 48.06 216 | 63.35 296 | 63.23 295 | 49.13 249 | 59.33 250 | 72.10 296 | 37.45 226 | 74.27 265 | 44.17 246 | 62.57 288 | 78.05 245 |
|
thisisatest0515 | | | 65.83 197 | 63.50 208 | 72.82 140 | 73.75 233 | 49.50 200 | 71.32 244 | 73.12 237 | 49.39 246 | 63.82 205 | 76.50 266 | 34.95 246 | 84.84 110 | 53.20 182 | 75.49 158 | 84.13 143 |
|
K. test v3 | | | 60.47 247 | 57.11 258 | 70.56 185 | 73.74 234 | 48.22 214 | 75.10 190 | 62.55 299 | 58.27 134 | 53.62 297 | 76.31 267 | 27.81 304 | 81.59 175 | 47.42 218 | 39.18 336 | 81.88 196 |
|
v10 | | | 70.21 114 | 69.02 120 | 73.81 109 | 73.51 235 | 50.92 174 | 78.74 118 | 81.39 105 | 60.05 102 | 66.39 163 | 81.83 172 | 47.58 124 | 85.41 99 | 62.80 114 | 68.86 243 | 85.09 115 |
|
v1144 | | | 70.42 110 | 69.31 115 | 73.76 112 | 73.22 236 | 50.64 179 | 77.83 133 | 81.43 104 | 58.58 126 | 69.40 112 | 81.16 184 | 47.53 125 | 85.29 101 | 64.01 103 | 70.64 210 | 85.34 107 |
|
v1192 | | | 69.97 119 | 68.68 125 | 73.85 108 | 73.19 237 | 50.94 172 | 77.68 136 | 81.36 106 | 57.51 140 | 68.95 120 | 80.85 194 | 45.28 155 | 85.33 100 | 62.97 113 | 70.37 215 | 85.27 110 |
|
v8 | | | 70.33 112 | 69.28 116 | 73.49 123 | 73.15 238 | 50.22 187 | 78.62 121 | 80.78 123 | 60.79 84 | 66.45 162 | 82.11 169 | 49.35 100 | 84.98 104 | 63.58 109 | 68.71 244 | 85.28 109 |
|
v144192 | | | 69.71 122 | 68.51 127 | 73.33 130 | 73.10 239 | 50.13 189 | 77.54 140 | 80.64 124 | 56.65 150 | 68.57 124 | 80.55 199 | 46.87 139 | 84.96 106 | 62.98 112 | 69.66 231 | 84.89 121 |
|
v1921920 | | | 69.47 131 | 68.17 135 | 73.36 129 | 73.06 240 | 50.10 190 | 77.39 143 | 80.56 125 | 56.58 157 | 68.59 122 | 80.37 201 | 44.72 158 | 84.98 104 | 62.47 118 | 69.82 226 | 85.00 117 |
|
PatchmatchNet | | | 59.84 250 | 58.24 251 | 64.65 259 | 73.05 241 | 46.70 230 | 69.42 266 | 62.18 301 | 47.55 266 | 58.88 253 | 71.96 298 | 34.49 250 | 69.16 283 | 42.99 259 | 63.60 280 | 78.07 244 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v1240 | | | 69.24 135 | 67.91 137 | 73.25 133 | 73.02 242 | 49.82 193 | 77.21 149 | 80.54 126 | 56.43 159 | 68.34 128 | 80.51 200 | 43.33 170 | 84.99 102 | 62.03 121 | 69.77 229 | 84.95 120 |
|
Fast-Effi-MVS+-dtu | | | 67.37 170 | 65.33 191 | 73.48 124 | 72.94 243 | 57.78 84 | 77.47 142 | 76.88 192 | 57.60 139 | 61.97 226 | 76.85 258 | 39.31 207 | 80.49 200 | 54.72 167 | 70.28 218 | 82.17 192 |
|
EPNet_dtu | | | 61.90 237 | 61.97 225 | 61.68 276 | 72.89 244 | 39.78 287 | 75.85 177 | 65.62 280 | 55.09 188 | 54.56 287 | 79.36 226 | 37.59 225 | 67.02 293 | 39.80 277 | 76.95 145 | 78.25 242 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tpm2 | | | 62.07 235 | 60.10 241 | 67.99 221 | 72.79 245 | 43.86 259 | 71.05 251 | 66.85 274 | 43.14 303 | 62.77 212 | 75.39 278 | 38.32 218 | 80.80 193 | 41.69 268 | 68.88 242 | 79.32 234 |
|
MDTV_nov1_ep13 | | | | 57.00 260 | | 72.73 246 | 38.26 299 | 65.02 291 | 64.73 287 | 44.74 286 | 55.46 276 | 72.48 294 | 32.61 275 | 70.47 279 | 37.47 285 | 67.75 254 | |
|
MSDG | | | 61.81 240 | 59.23 244 | 69.55 205 | 72.64 247 | 52.63 154 | 70.45 258 | 75.81 205 | 51.38 228 | 53.70 295 | 76.11 268 | 29.52 293 | 81.08 187 | 37.70 284 | 65.79 267 | 74.93 280 |
|
gg-mvs-nofinetune | | | 57.86 263 | 56.43 265 | 62.18 273 | 72.62 248 | 35.35 317 | 66.57 276 | 56.33 321 | 50.65 236 | 57.64 264 | 57.10 332 | 30.65 284 | 76.36 255 | 37.38 286 | 78.88 123 | 74.82 282 |
|
v2v482 | | | 70.50 108 | 69.45 114 | 73.66 118 | 72.62 248 | 50.03 191 | 77.58 137 | 80.51 127 | 59.90 104 | 69.52 108 | 82.14 168 | 47.53 125 | 84.88 109 | 65.07 95 | 70.17 219 | 86.09 77 |
|
baseline2 | | | 63.42 220 | 61.26 233 | 69.89 199 | 72.55 250 | 47.62 222 | 71.54 241 | 68.38 266 | 50.11 240 | 54.82 283 | 75.55 276 | 43.06 172 | 80.96 188 | 48.13 216 | 67.16 258 | 81.11 209 |
|
v7n | | | 69.01 138 | 67.36 151 | 73.98 106 | 72.51 251 | 52.65 153 | 78.54 124 | 81.30 108 | 60.26 99 | 62.67 215 | 81.62 175 | 43.61 167 | 84.49 115 | 57.01 150 | 68.70 245 | 84.79 125 |
|
pm-mvs1 | | | 65.24 205 | 64.97 195 | 66.04 243 | 72.38 252 | 39.40 291 | 72.62 228 | 75.63 207 | 55.53 180 | 62.35 225 | 83.18 146 | 47.45 127 | 76.47 254 | 49.06 210 | 66.54 260 | 82.24 189 |
|
XVG-ACMP-BASELINE | | | 64.36 214 | 62.23 222 | 70.74 182 | 72.35 253 | 52.45 160 | 70.80 254 | 78.45 167 | 53.84 205 | 59.87 242 | 81.10 186 | 16.24 334 | 79.32 214 | 55.64 161 | 71.76 200 | 80.47 217 |
|
WTY-MVS | | | 59.75 251 | 60.39 239 | 57.85 292 | 72.32 254 | 37.83 302 | 61.05 308 | 64.18 290 | 45.95 281 | 61.91 227 | 79.11 231 | 47.01 137 | 60.88 312 | 42.50 262 | 69.49 233 | 74.83 281 |
|
tpm cat1 | | | 59.25 253 | 56.95 261 | 66.15 240 | 72.19 255 | 46.96 228 | 68.09 272 | 65.76 279 | 40.03 319 | 57.81 263 | 70.56 306 | 38.32 218 | 74.51 263 | 38.26 282 | 61.50 295 | 77.00 259 |
|
mvs_anonymous | | | 68.03 160 | 67.51 146 | 69.59 202 | 72.08 256 | 44.57 254 | 71.99 237 | 75.23 213 | 51.67 221 | 67.06 152 | 82.57 155 | 54.68 47 | 77.94 236 | 56.56 151 | 75.71 156 | 86.26 74 |
|
OurMVSNet-221017-0 | | | 61.37 243 | 58.63 249 | 69.61 201 | 72.05 257 | 48.06 216 | 73.93 211 | 72.51 239 | 47.23 269 | 54.74 284 | 80.92 191 | 21.49 330 | 81.24 182 | 48.57 214 | 56.22 312 | 79.53 232 |
|
IterMVS-SCA-FT | | | 62.49 229 | 61.52 229 | 65.40 253 | 71.99 258 | 50.80 177 | 71.15 249 | 69.63 255 | 45.71 282 | 60.61 236 | 77.93 243 | 37.45 226 | 65.99 298 | 55.67 160 | 63.50 281 | 79.42 233 |
|
DWT-MVSNet_test | | | 61.90 237 | 59.93 242 | 67.83 222 | 71.98 259 | 46.09 238 | 71.03 252 | 69.71 252 | 50.09 241 | 58.51 258 | 70.62 305 | 30.21 289 | 77.63 241 | 49.28 208 | 67.91 250 | 79.78 229 |
|
CostFormer | | | 64.04 215 | 62.51 218 | 68.61 216 | 71.88 260 | 45.77 240 | 71.30 245 | 70.60 249 | 47.55 266 | 64.31 200 | 76.61 262 | 41.63 186 | 79.62 210 | 49.74 203 | 69.00 241 | 80.42 218 |
|
1314 | | | 64.61 212 | 63.21 211 | 68.80 213 | 71.87 261 | 47.46 224 | 73.95 208 | 78.39 172 | 42.88 305 | 59.97 241 | 76.60 263 | 38.11 221 | 79.39 213 | 54.84 166 | 72.32 195 | 79.55 231 |
|
tpm | | | 57.34 266 | 58.16 252 | 54.86 302 | 71.80 262 | 34.77 319 | 67.47 275 | 56.04 324 | 48.20 259 | 60.10 239 | 76.92 256 | 37.17 231 | 53.41 335 | 40.76 273 | 65.01 271 | 76.40 265 |
|
eth_miper_zixun_eth | | | 67.63 166 | 66.28 177 | 71.67 160 | 71.60 263 | 48.33 213 | 73.68 215 | 77.88 175 | 55.80 175 | 65.91 171 | 78.62 237 | 47.35 131 | 82.88 149 | 59.45 141 | 66.25 262 | 83.81 150 |
|
pmmvs4 | | | 61.48 242 | 59.39 243 | 67.76 223 | 71.57 264 | 53.86 136 | 71.42 242 | 65.34 282 | 44.20 293 | 59.46 246 | 77.92 244 | 35.90 238 | 74.71 262 | 43.87 251 | 64.87 272 | 74.71 284 |
|
AllTest | | | 57.08 268 | 54.65 276 | 64.39 260 | 71.44 265 | 49.03 203 | 69.92 263 | 67.30 269 | 45.97 279 | 47.16 319 | 79.77 216 | 17.47 332 | 67.56 290 | 33.65 304 | 59.16 304 | 76.57 263 |
|
TestCases | | | | | 64.39 260 | 71.44 265 | 49.03 203 | | 67.30 269 | 45.97 279 | 47.16 319 | 79.77 216 | 17.47 332 | 67.56 290 | 33.65 304 | 59.16 304 | 76.57 263 |
|
lessismore_v0 | | | | | 69.91 197 | 71.42 267 | 47.80 218 | | 50.90 332 | | 50.39 313 | 75.56 275 | 27.43 308 | 81.33 179 | 45.91 232 | 34.10 338 | 80.59 216 |
|
gm-plane-assit | | | | | | 71.40 268 | 41.72 278 | | | 48.85 252 | | 73.31 292 | | 82.48 162 | 48.90 211 | | |
|
GG-mvs-BLEND | | | | | 62.34 272 | 71.36 269 | 37.04 307 | 69.20 268 | 57.33 318 | | 54.73 285 | 65.48 324 | 30.37 286 | 77.82 238 | 34.82 300 | 74.93 160 | 72.17 308 |
|
FMVSNet5 | | | 55.86 275 | 54.93 274 | 58.66 288 | 71.05 270 | 36.35 312 | 64.18 295 | 62.48 300 | 46.76 272 | 50.66 312 | 74.73 283 | 25.80 317 | 64.04 303 | 33.11 306 | 65.57 268 | 75.59 272 |
|
cl_fuxian | | | 68.33 153 | 67.56 142 | 70.62 184 | 70.87 271 | 46.21 236 | 74.47 202 | 78.80 154 | 56.22 165 | 66.19 166 | 78.53 239 | 51.88 77 | 81.40 178 | 62.08 119 | 69.04 240 | 84.25 138 |
|
GA-MVS | | | 65.53 201 | 63.70 205 | 71.02 179 | 70.87 271 | 48.10 215 | 70.48 257 | 74.40 224 | 56.69 149 | 64.70 195 | 76.77 259 | 33.66 259 | 81.10 185 | 55.42 163 | 70.32 217 | 83.87 149 |
|
pmmvs6 | | | 63.69 218 | 62.82 216 | 66.27 238 | 70.63 273 | 39.27 292 | 73.13 220 | 75.47 210 | 52.69 214 | 59.75 245 | 82.30 162 | 39.71 204 | 77.03 249 | 47.40 219 | 64.35 276 | 82.53 184 |
|
miper_ehance_all_eth | | | 68.03 160 | 67.24 158 | 70.40 188 | 70.54 274 | 46.21 236 | 73.98 207 | 78.68 158 | 55.07 190 | 66.05 168 | 77.80 248 | 52.16 75 | 81.31 180 | 61.53 127 | 69.32 234 | 83.67 157 |
|
OpenMVS_ROB | | 52.78 18 | 60.03 248 | 58.14 253 | 65.69 250 | 70.47 275 | 44.82 249 | 75.33 182 | 70.86 247 | 45.04 284 | 56.06 272 | 76.00 269 | 26.89 312 | 79.65 208 | 35.36 299 | 67.29 256 | 72.60 299 |
|
v148 | | | 68.24 156 | 67.19 159 | 71.40 168 | 70.43 276 | 47.77 220 | 75.76 178 | 77.03 191 | 58.91 121 | 67.36 148 | 80.10 210 | 48.60 113 | 81.89 169 | 60.01 136 | 66.52 261 | 84.53 131 |
|
XXY-MVS | | | 60.68 245 | 61.67 227 | 57.70 294 | 70.43 276 | 38.45 298 | 64.19 294 | 66.47 275 | 48.05 261 | 63.22 208 | 80.86 193 | 49.28 102 | 60.47 313 | 45.25 243 | 67.28 257 | 74.19 289 |
|
MVSTER | | | 67.16 176 | 65.58 188 | 71.88 155 | 70.37 278 | 49.70 195 | 70.25 260 | 78.45 167 | 51.52 225 | 69.16 118 | 80.37 201 | 38.45 216 | 82.50 160 | 60.19 134 | 71.46 204 | 83.44 164 |
|
cl-mvsnet_ | | | 67.18 174 | 66.26 178 | 69.94 195 | 70.20 279 | 45.74 241 | 73.30 217 | 76.83 194 | 55.10 186 | 65.27 182 | 79.57 221 | 47.39 129 | 80.53 198 | 59.41 143 | 69.22 238 | 83.53 163 |
|
cl-mvsnet1 | | | 67.18 174 | 66.26 178 | 69.94 195 | 70.20 279 | 45.74 241 | 73.29 218 | 76.83 194 | 55.10 186 | 65.27 182 | 79.58 220 | 47.38 130 | 80.53 198 | 59.43 142 | 69.22 238 | 83.54 162 |
|
tpmvs | | | 58.47 257 | 56.95 261 | 63.03 269 | 70.20 279 | 41.21 280 | 67.90 274 | 67.23 272 | 49.62 245 | 54.73 285 | 70.84 303 | 34.14 253 | 76.24 257 | 36.64 293 | 61.29 296 | 71.64 310 |
|
anonymousdsp | | | 67.00 180 | 64.82 196 | 73.57 122 | 70.09 282 | 56.13 108 | 76.35 165 | 77.35 187 | 48.43 256 | 64.99 192 | 80.84 195 | 33.01 265 | 80.34 201 | 64.66 97 | 67.64 255 | 84.23 139 |
|
MVS_0304 | | | 58.51 256 | 57.36 257 | 61.96 275 | 70.04 283 | 41.83 275 | 69.40 267 | 65.46 281 | 50.73 234 | 53.30 301 | 74.06 288 | 22.65 326 | 70.18 281 | 42.16 264 | 68.44 246 | 73.86 293 |
|
MIMVSNet1 | | | 55.17 279 | 54.31 280 | 57.77 293 | 70.03 284 | 32.01 330 | 65.68 283 | 64.81 285 | 49.19 248 | 46.75 322 | 76.00 269 | 25.53 319 | 64.04 303 | 28.65 327 | 62.13 291 | 77.26 255 |
|
CR-MVSNet | | | 59.91 249 | 57.90 255 | 65.96 244 | 69.96 285 | 52.07 164 | 65.31 288 | 63.15 296 | 42.48 307 | 59.36 247 | 74.84 281 | 35.83 239 | 70.75 277 | 45.50 238 | 64.65 274 | 75.06 276 |
|
RPMNet | | | 58.70 255 | 56.29 267 | 65.96 244 | 69.96 285 | 52.07 164 | 65.31 288 | 62.15 302 | 43.20 302 | 59.36 247 | 70.15 309 | 35.37 241 | 70.75 277 | 36.42 296 | 64.65 274 | 75.06 276 |
|
cl-mvsnet2 | | | 67.47 169 | 66.45 168 | 70.54 186 | 69.85 287 | 46.49 231 | 73.85 212 | 77.35 187 | 55.07 190 | 65.51 178 | 77.92 244 | 47.64 123 | 81.10 185 | 61.58 126 | 69.32 234 | 84.01 144 |
|
Anonymous20231206 | | | 55.10 280 | 55.30 273 | 54.48 304 | 69.81 288 | 33.94 324 | 62.91 298 | 62.13 303 | 41.08 313 | 55.18 281 | 75.65 274 | 32.75 271 | 56.59 327 | 30.32 322 | 67.86 251 | 72.91 296 |
|
our_test_3 | | | 56.49 269 | 54.42 278 | 62.68 271 | 69.51 289 | 45.48 246 | 66.08 280 | 61.49 305 | 44.11 296 | 50.73 311 | 69.60 312 | 33.05 264 | 68.15 287 | 38.38 281 | 56.86 309 | 74.40 286 |
|
ppachtmachnet_test | | | 58.06 262 | 55.38 272 | 66.10 242 | 69.51 289 | 48.99 206 | 68.01 273 | 66.13 278 | 44.50 290 | 54.05 293 | 70.74 304 | 32.09 279 | 72.34 271 | 36.68 292 | 56.71 311 | 76.99 261 |
|
diffmvs | | | 70.69 104 | 70.43 100 | 71.46 164 | 69.45 291 | 48.95 207 | 72.93 222 | 78.46 166 | 57.27 142 | 71.69 83 | 83.97 132 | 51.48 82 | 77.92 237 | 70.70 57 | 77.95 135 | 87.53 33 |
|
IterMVS | | | 62.79 228 | 61.27 232 | 67.35 227 | 69.37 292 | 52.04 166 | 71.17 247 | 68.24 267 | 52.63 215 | 59.82 243 | 76.91 257 | 37.32 228 | 72.36 270 | 52.80 184 | 63.19 284 | 77.66 249 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
miper_enhance_ethall | | | 67.11 177 | 66.09 180 | 70.17 192 | 69.21 293 | 45.98 239 | 72.85 225 | 78.41 170 | 51.38 228 | 65.65 176 | 75.98 272 | 51.17 86 | 81.25 181 | 60.82 129 | 69.32 234 | 83.29 169 |
|
Patchmtry | | | 57.16 267 | 56.47 264 | 59.23 283 | 69.17 294 | 34.58 321 | 62.98 297 | 63.15 296 | 44.53 289 | 56.83 268 | 74.84 281 | 35.83 239 | 68.71 285 | 40.03 275 | 60.91 297 | 74.39 287 |
|
V42 | | | 68.65 145 | 67.35 152 | 72.56 145 | 68.93 295 | 50.18 188 | 72.90 224 | 79.47 144 | 56.92 147 | 69.45 111 | 80.26 207 | 46.29 143 | 82.99 145 | 64.07 101 | 67.82 253 | 84.53 131 |
|
test-LLR | | | 58.15 261 | 58.13 254 | 58.22 289 | 68.57 296 | 44.80 250 | 65.46 285 | 57.92 315 | 50.08 242 | 55.44 277 | 69.82 310 | 32.62 273 | 57.44 322 | 49.66 205 | 73.62 171 | 72.41 304 |
|
test-mter | | | 56.42 271 | 55.82 269 | 58.22 289 | 68.57 296 | 44.80 250 | 65.46 285 | 57.92 315 | 39.94 320 | 55.44 277 | 69.82 310 | 21.92 329 | 57.44 322 | 49.66 205 | 73.62 171 | 72.41 304 |
|
MVS-HIRNet | | | 45.52 303 | 44.48 305 | 48.65 318 | 68.49 298 | 34.05 323 | 59.41 313 | 44.50 341 | 27.03 335 | 37.96 336 | 50.47 338 | 26.16 316 | 64.10 302 | 26.74 332 | 59.52 302 | 47.82 336 |
|
dp | | | 51.89 292 | 51.60 291 | 52.77 311 | 68.44 299 | 32.45 329 | 62.36 300 | 54.57 326 | 44.16 294 | 49.31 315 | 67.91 315 | 28.87 299 | 56.61 326 | 33.89 303 | 54.89 315 | 69.24 322 |
|
PatchT | | | 53.17 288 | 53.44 286 | 52.33 313 | 68.29 300 | 25.34 342 | 58.21 315 | 54.41 327 | 44.46 291 | 54.56 287 | 69.05 313 | 33.32 262 | 60.94 311 | 36.93 288 | 61.76 294 | 70.73 316 |
|
Patchmatch-RL test | | | 58.16 260 | 55.49 271 | 66.15 240 | 67.92 301 | 48.89 208 | 60.66 309 | 51.07 331 | 47.86 263 | 59.36 247 | 62.71 329 | 34.02 255 | 72.27 272 | 56.41 152 | 59.40 303 | 77.30 253 |
|
pmmvs-eth3d | | | 58.81 254 | 56.31 266 | 66.30 237 | 67.61 302 | 52.42 161 | 72.30 233 | 64.76 286 | 43.55 299 | 54.94 282 | 74.19 287 | 28.95 297 | 72.60 269 | 43.31 254 | 57.21 308 | 73.88 292 |
|
PVSNet_0 | | 43.31 20 | 47.46 302 | 45.64 304 | 52.92 310 | 67.60 303 | 44.65 252 | 54.06 324 | 54.64 325 | 41.59 311 | 46.15 323 | 58.75 331 | 30.99 282 | 58.66 318 | 32.18 308 | 24.81 339 | 55.46 334 |
|
CHOSEN 280x420 | | | 47.83 300 | 46.36 303 | 52.24 314 | 67.37 304 | 49.78 194 | 38.91 341 | 43.11 342 | 35.00 327 | 43.27 330 | 63.30 328 | 28.95 297 | 49.19 338 | 36.53 294 | 60.80 299 | 57.76 332 |
|
tpmrst | | | 58.24 259 | 58.70 248 | 56.84 295 | 66.97 305 | 34.32 322 | 69.57 265 | 61.14 306 | 47.17 270 | 58.58 257 | 71.60 299 | 41.28 195 | 60.41 314 | 49.20 209 | 62.84 286 | 75.78 270 |
|
sss | | | 56.17 274 | 56.57 263 | 54.96 301 | 66.93 306 | 36.32 314 | 57.94 316 | 61.69 304 | 41.67 310 | 58.64 256 | 75.32 279 | 38.72 214 | 56.25 328 | 42.04 266 | 66.19 263 | 72.31 307 |
|
TinyColmap | | | 54.14 281 | 51.72 290 | 61.40 279 | 66.84 307 | 41.97 273 | 66.52 277 | 68.51 265 | 44.81 285 | 42.69 331 | 75.77 273 | 11.66 339 | 72.94 268 | 31.96 309 | 56.77 310 | 69.27 321 |
|
miper_lstm_enhance | | | 62.03 236 | 60.88 237 | 65.49 252 | 66.71 308 | 46.25 234 | 56.29 321 | 75.70 206 | 50.68 235 | 61.27 233 | 75.48 277 | 40.21 200 | 68.03 288 | 56.31 153 | 65.25 270 | 82.18 190 |
|
TESTMET0.1,1 | | | 55.28 278 | 54.90 275 | 56.42 296 | 66.56 309 | 43.67 261 | 65.46 285 | 56.27 322 | 39.18 322 | 53.83 294 | 67.44 318 | 24.21 324 | 55.46 332 | 48.04 217 | 73.11 183 | 70.13 317 |
|
D2MVS | | | 62.30 233 | 60.29 240 | 68.34 219 | 66.46 310 | 48.42 212 | 65.70 282 | 73.42 233 | 47.71 264 | 58.16 261 | 75.02 280 | 30.51 285 | 77.71 240 | 53.96 174 | 71.68 202 | 78.90 239 |
|
MDA-MVSNet-bldmvs | | | 53.87 284 | 50.81 292 | 63.05 268 | 66.25 311 | 48.58 210 | 56.93 319 | 63.82 291 | 48.09 260 | 41.22 332 | 70.48 307 | 30.34 287 | 68.00 289 | 34.24 302 | 45.92 332 | 72.57 300 |
|
ITE_SJBPF | | | | | 62.09 274 | 66.16 312 | 44.55 255 | | 64.32 289 | 47.36 268 | 55.31 279 | 80.34 203 | 19.27 331 | 62.68 307 | 36.29 297 | 62.39 290 | 79.04 236 |
|
EPMVS | | | 53.96 282 | 53.69 284 | 54.79 303 | 66.12 313 | 31.96 331 | 62.34 301 | 49.05 334 | 44.42 292 | 55.54 275 | 71.33 301 | 30.22 288 | 56.70 325 | 41.65 270 | 62.54 289 | 75.71 271 |
|
testing_2 | | | 66.02 195 | 63.77 204 | 72.76 142 | 66.03 314 | 50.48 184 | 72.93 222 | 80.36 130 | 54.41 201 | 54.25 291 | 76.76 260 | 30.89 283 | 83.16 143 | 64.19 100 | 74.08 166 | 84.65 128 |
|
ADS-MVSNet2 | | | 51.33 294 | 48.76 298 | 59.07 285 | 66.02 315 | 44.60 253 | 50.90 328 | 59.76 309 | 36.90 323 | 50.74 309 | 66.18 322 | 26.38 313 | 63.11 305 | 27.17 329 | 54.76 316 | 69.50 319 |
|
ADS-MVSNet | | | 48.48 299 | 47.77 300 | 50.63 316 | 66.02 315 | 29.92 335 | 50.90 328 | 50.87 333 | 36.90 323 | 50.74 309 | 66.18 322 | 26.38 313 | 52.47 336 | 27.17 329 | 54.76 316 | 69.50 319 |
|
EU-MVSNet | | | 55.61 277 | 54.41 279 | 59.19 284 | 65.41 317 | 33.42 326 | 72.44 231 | 71.91 243 | 28.81 333 | 51.27 306 | 73.87 289 | 24.76 322 | 69.08 284 | 43.04 258 | 58.20 307 | 75.06 276 |
|
RPSCF | | | 55.80 276 | 54.22 282 | 60.53 282 | 65.13 318 | 42.91 268 | 64.30 293 | 57.62 317 | 36.84 325 | 58.05 262 | 82.28 163 | 28.01 302 | 56.24 329 | 37.14 287 | 58.61 306 | 82.44 188 |
|
USDC | | | 56.35 272 | 54.24 281 | 62.69 270 | 64.74 319 | 40.31 284 | 65.05 290 | 73.83 230 | 43.93 297 | 47.58 317 | 77.71 251 | 15.36 336 | 75.05 261 | 38.19 283 | 61.81 293 | 72.70 298 |
|
JIA-IIPM | | | 51.56 293 | 47.68 302 | 63.21 266 | 64.61 320 | 50.73 178 | 47.71 333 | 58.77 312 | 42.90 304 | 48.46 316 | 51.72 335 | 24.97 321 | 70.24 280 | 36.06 298 | 53.89 319 | 68.64 323 |
|
Patchmatch-test | | | 49.08 298 | 48.28 299 | 51.50 315 | 64.40 321 | 30.85 334 | 45.68 335 | 48.46 337 | 35.60 326 | 46.10 324 | 72.10 296 | 34.47 251 | 46.37 339 | 27.08 331 | 60.65 300 | 77.27 254 |
|
TDRefinement | | | 53.44 286 | 50.72 293 | 61.60 277 | 64.31 322 | 46.96 228 | 70.89 253 | 65.27 284 | 41.78 308 | 44.61 327 | 77.98 241 | 11.52 340 | 66.36 296 | 28.57 328 | 51.59 323 | 71.49 311 |
|
N_pmnet | | | 39.35 309 | 40.28 309 | 36.54 325 | 63.76 323 | 1.62 353 | 49.37 331 | 0.76 354 | 34.62 328 | 43.61 329 | 66.38 321 | 26.25 315 | 42.57 342 | 26.02 334 | 51.77 322 | 65.44 326 |
|
ambc | | | | | 65.13 256 | 63.72 324 | 37.07 306 | 47.66 334 | 78.78 155 | | 54.37 290 | 71.42 300 | 11.24 341 | 80.94 189 | 45.64 235 | 53.85 320 | 77.38 252 |
|
test0.0.03 1 | | | 53.32 287 | 53.59 285 | 52.50 312 | 62.81 325 | 29.45 336 | 59.51 311 | 54.11 328 | 50.08 242 | 54.40 289 | 74.31 286 | 32.62 273 | 55.92 330 | 30.50 321 | 63.95 278 | 72.15 309 |
|
PMMVS | | | 53.96 282 | 53.26 287 | 56.04 297 | 62.60 326 | 50.92 174 | 61.17 307 | 56.09 323 | 32.81 329 | 53.51 299 | 66.84 320 | 34.04 254 | 59.93 316 | 44.14 248 | 68.18 248 | 57.27 333 |
|
PM-MVS | | | 52.33 290 | 50.19 294 | 58.75 287 | 62.10 327 | 45.14 248 | 65.75 281 | 40.38 343 | 43.60 298 | 53.52 298 | 72.65 293 | 9.16 345 | 65.87 299 | 50.41 198 | 54.18 318 | 65.24 327 |
|
Gipuma | | | 34.77 312 | 31.91 315 | 43.33 323 | 62.05 328 | 37.87 301 | 20.39 344 | 67.03 273 | 23.23 339 | 18.41 343 | 25.84 342 | 4.24 348 | 62.73 306 | 14.71 339 | 51.32 324 | 29.38 341 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test20.03 | | | 53.87 284 | 54.02 283 | 53.41 308 | 61.47 329 | 28.11 338 | 61.30 305 | 59.21 310 | 51.34 230 | 52.09 304 | 77.43 252 | 33.29 263 | 58.55 319 | 29.76 324 | 60.27 301 | 73.58 294 |
|
pmmvs5 | | | 56.47 270 | 55.68 270 | 58.86 286 | 61.41 330 | 36.71 309 | 66.37 278 | 62.75 298 | 40.38 317 | 53.70 295 | 76.62 261 | 34.56 248 | 67.05 292 | 40.02 276 | 65.27 269 | 72.83 297 |
|
MDA-MVSNet_test_wron | | | 50.71 296 | 48.95 296 | 56.00 299 | 61.17 331 | 41.84 274 | 51.90 327 | 56.45 319 | 40.96 314 | 44.79 326 | 67.84 316 | 30.04 291 | 55.07 334 | 36.71 291 | 50.69 326 | 71.11 315 |
|
YYNet1 | | | 50.73 295 | 48.96 295 | 56.03 298 | 61.10 332 | 41.78 276 | 51.94 326 | 56.44 320 | 40.94 315 | 44.84 325 | 67.80 317 | 30.08 290 | 55.08 333 | 36.77 289 | 50.71 325 | 71.22 312 |
|
CMPMVS | | 42.80 21 | 57.81 264 | 55.97 268 | 63.32 265 | 60.98 333 | 47.38 225 | 64.66 292 | 69.50 257 | 32.06 330 | 46.83 321 | 77.80 248 | 29.50 294 | 71.36 274 | 48.68 212 | 73.75 169 | 71.21 313 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
UnsupCasMVSNet_bld | | | 50.07 297 | 48.87 297 | 53.66 306 | 60.97 334 | 33.67 325 | 57.62 317 | 64.56 288 | 39.47 321 | 47.38 318 | 64.02 327 | 27.47 306 | 59.32 317 | 34.69 301 | 43.68 334 | 67.98 324 |
|
testgi | | | 51.90 291 | 52.37 289 | 50.51 317 | 60.39 335 | 23.55 344 | 58.42 314 | 58.15 313 | 49.03 250 | 51.83 305 | 79.21 230 | 22.39 327 | 55.59 331 | 29.24 326 | 62.64 287 | 72.40 306 |
|
UnsupCasMVSNet_eth | | | 53.16 289 | 52.47 288 | 55.23 300 | 59.45 336 | 33.39 327 | 59.43 312 | 69.13 261 | 45.98 278 | 50.35 314 | 72.32 295 | 29.30 296 | 58.26 320 | 42.02 267 | 44.30 333 | 74.05 290 |
|
new-patchmatchnet | | | 47.56 301 | 47.73 301 | 47.06 319 | 58.81 337 | 9.37 350 | 48.78 332 | 59.21 310 | 43.28 300 | 44.22 328 | 68.66 314 | 25.67 318 | 57.20 324 | 31.57 317 | 49.35 328 | 74.62 285 |
|
FPMVS | | | 42.18 306 | 41.11 308 | 45.39 320 | 58.03 338 | 41.01 282 | 49.50 330 | 53.81 330 | 30.07 332 | 33.71 337 | 64.03 325 | 11.69 338 | 52.08 337 | 14.01 340 | 55.11 314 | 43.09 338 |
|
new_pmnet | | | 34.13 313 | 34.29 313 | 33.64 326 | 52.63 339 | 18.23 348 | 44.43 338 | 33.90 346 | 22.81 340 | 30.89 338 | 53.18 333 | 10.48 343 | 35.72 346 | 20.77 337 | 39.51 335 | 46.98 337 |
|
pmmvs3 | | | 44.92 304 | 41.95 307 | 53.86 305 | 52.58 340 | 43.55 262 | 62.11 302 | 46.90 340 | 26.05 337 | 40.63 333 | 60.19 330 | 11.08 342 | 57.91 321 | 31.83 314 | 46.15 331 | 60.11 329 |
|
DSMNet-mixed | | | 39.30 310 | 38.72 310 | 41.03 324 | 51.22 341 | 19.66 346 | 45.53 336 | 31.35 347 | 15.83 344 | 39.80 335 | 67.42 319 | 22.19 328 | 45.13 340 | 22.43 335 | 52.69 321 | 58.31 331 |
|
LF4IMVS | | | 42.95 305 | 42.26 306 | 45.04 321 | 48.30 342 | 32.50 328 | 54.80 322 | 48.49 336 | 28.03 334 | 40.51 334 | 70.16 308 | 9.24 344 | 43.89 341 | 31.63 315 | 49.18 329 | 58.72 330 |
|
wuyk23d | | | 13.32 319 | 12.52 321 | 15.71 331 | 47.54 343 | 26.27 339 | 31.06 343 | 1.98 353 | 4.93 347 | 5.18 349 | 1.94 349 | 0.45 354 | 18.54 348 | 6.81 347 | 12.83 344 | 2.33 346 |
|
LCM-MVSNet | | | 40.30 308 | 35.88 312 | 53.57 307 | 42.24 344 | 29.15 337 | 45.21 337 | 60.53 308 | 22.23 341 | 28.02 339 | 50.98 337 | 3.72 350 | 61.78 310 | 31.22 320 | 38.76 337 | 69.78 318 |
|
E-PMN | | | 23.77 315 | 22.73 318 | 26.90 329 | 42.02 345 | 20.67 345 | 42.66 339 | 35.70 344 | 17.43 342 | 10.28 347 | 25.05 343 | 6.42 347 | 42.39 343 | 10.28 343 | 14.71 342 | 17.63 342 |
|
EMVS | | | 22.97 316 | 21.84 319 | 26.36 330 | 40.20 346 | 19.53 347 | 41.95 340 | 34.64 345 | 17.09 343 | 9.73 348 | 22.83 344 | 7.29 346 | 42.22 344 | 9.18 345 | 13.66 343 | 17.32 343 |
|
ANet_high | | | 41.38 307 | 37.47 311 | 53.11 309 | 39.73 347 | 24.45 343 | 56.94 318 | 69.69 253 | 47.65 265 | 26.04 340 | 52.32 334 | 12.44 337 | 62.38 308 | 21.80 336 | 10.61 345 | 72.49 301 |
|
PMMVS2 | | | 27.40 314 | 25.91 316 | 31.87 328 | 39.46 348 | 6.57 351 | 31.17 342 | 28.52 348 | 23.96 338 | 20.45 342 | 48.94 339 | 4.20 349 | 37.94 345 | 16.51 338 | 19.97 340 | 51.09 335 |
|
PMVS | | 28.69 22 | 36.22 311 | 33.29 314 | 45.02 322 | 36.82 349 | 35.98 316 | 54.68 323 | 48.74 335 | 26.31 336 | 21.02 341 | 51.61 336 | 2.88 352 | 60.10 315 | 9.99 344 | 47.58 330 | 38.99 340 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE | | 17.77 23 | 21.41 317 | 17.77 320 | 32.34 327 | 34.34 350 | 25.44 341 | 16.11 345 | 24.11 349 | 11.19 345 | 13.22 345 | 31.92 340 | 1.58 353 | 30.95 347 | 10.47 342 | 17.03 341 | 40.62 339 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX | | | | | 12.03 332 | 17.97 351 | 10.91 349 | | 10.60 352 | 7.46 346 | 11.07 346 | 28.36 341 | 3.28 351 | 11.29 349 | 8.01 346 | 9.74 347 | 13.89 344 |
|
tmp_tt | | | 9.43 320 | 11.14 322 | 4.30 333 | 2.38 352 | 4.40 352 | 13.62 346 | 16.08 351 | 0.39 348 | 15.89 344 | 13.06 345 | 15.80 335 | 5.54 350 | 12.63 341 | 10.46 346 | 2.95 345 |
|
testmvs | | | 4.52 323 | 6.03 325 | 0.01 335 | 0.01 353 | 0.00 355 | 53.86 325 | 0.00 355 | 0.01 349 | 0.04 350 | 0.27 350 | 0.00 356 | 0.00 351 | 0.04 348 | 0.00 348 | 0.03 348 |
|
test123 | | | 4.73 322 | 6.30 324 | 0.02 334 | 0.01 353 | 0.01 354 | 56.36 320 | 0.00 355 | 0.01 349 | 0.04 350 | 0.21 351 | 0.01 355 | 0.00 351 | 0.03 349 | 0.00 348 | 0.04 347 |
|
uanet_test | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 355 | 0.00 347 | 0.00 355 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 356 | 0.00 351 | 0.00 350 | 0.00 348 | 0.00 349 |
|
cdsmvs_eth3d_5k | | | 17.50 318 | 23.34 317 | 0.00 336 | 0.00 355 | 0.00 355 | 0.00 347 | 78.63 159 | 0.00 351 | 0.00 352 | 82.18 164 | 49.25 103 | 0.00 351 | 0.00 350 | 0.00 348 | 0.00 349 |
|
pcd_1.5k_mvsjas | | | 3.92 324 | 5.23 326 | 0.00 336 | 0.00 355 | 0.00 355 | 0.00 347 | 0.00 355 | 0.00 351 | 0.00 352 | 0.00 352 | 47.05 134 | 0.00 351 | 0.00 350 | 0.00 348 | 0.00 349 |
|
sosnet-low-res | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 355 | 0.00 347 | 0.00 355 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 356 | 0.00 351 | 0.00 350 | 0.00 348 | 0.00 349 |
|
sosnet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 355 | 0.00 347 | 0.00 355 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 356 | 0.00 351 | 0.00 350 | 0.00 348 | 0.00 349 |
|
uncertanet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 355 | 0.00 347 | 0.00 355 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 356 | 0.00 351 | 0.00 350 | 0.00 348 | 0.00 349 |
|
Regformer | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 355 | 0.00 347 | 0.00 355 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 356 | 0.00 351 | 0.00 350 | 0.00 348 | 0.00 349 |
|
ab-mvs-re | | | 6.49 321 | 8.65 323 | 0.00 336 | 0.00 355 | 0.00 355 | 0.00 347 | 0.00 355 | 0.00 351 | 0.00 352 | 77.89 246 | 0.00 356 | 0.00 351 | 0.00 350 | 0.00 348 | 0.00 349 |
|
uanet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 355 | 0.00 347 | 0.00 355 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 356 | 0.00 351 | 0.00 350 | 0.00 348 | 0.00 349 |
|
test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 32 | 84.26 3 | 91.84 6 | 65.19 3 | 90.83 2 | 78.63 12 | 90.70 4 | 87.65 28 |
|
test_0728_THIRD | | | | | | | | | | 65.04 19 | 83.82 5 | 92.00 3 | 64.69 7 | 90.75 4 | 79.48 4 | 90.63 5 | 88.09 14 |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 245 |
|
test_part1 | | | | | 0.00 336 | | 0.00 355 | 0.00 347 | 86.64 13 | | | | 0.00 356 | 0.00 351 | 0.00 350 | 0.00 348 | 0.00 349 |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 247 | | | | 78.05 245 |
|
sam_mvs | | | | | | | | | | | | | 33.43 261 | | | | |
|
MTGPA | | | | | | | | | 80.97 119 | | | | | | | | |
|
test_post1 | | | | | | | | 68.67 270 | | | | 3.64 347 | 32.39 277 | 69.49 282 | 44.17 246 | | |
|
test_post | | | | | | | | | | | | 3.55 348 | 33.90 256 | 66.52 295 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 325 | 34.50 249 | 74.27 265 | | | |
|
MTMP | | | | | | | | 86.03 16 | 17.08 350 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 27 | 88.31 32 | 83.81 150 |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 44 | 87.93 39 | 84.33 135 |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 74 | | | | | | | | | |
|
test_prior2 | | | | | | | | 81.75 76 | | 60.37 92 | 75.01 38 | 89.06 51 | 56.22 34 | | 72.19 47 | 88.96 23 | |
|
旧先验2 | | | | | | | | 76.08 171 | | 45.32 283 | 76.55 29 | | | 65.56 300 | 58.75 144 | | |
|
新几何2 | | | | | | | | 76.12 169 | | | | | | | | | |
|
无先验 | | | | | | | | 79.66 109 | 74.30 225 | 48.40 257 | | | | 80.78 194 | 53.62 176 | | 79.03 237 |
|
原ACMM2 | | | | | | | | 79.02 116 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 72.18 273 | 46.95 225 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 52 | | | | |
|
testdata1 | | | | | | | | 72.65 226 | | 60.50 89 | | | | | | | |
|
plane_prior5 | | | | | | | | | 84.01 49 | | | | | 87.21 48 | 68.16 67 | 80.58 96 | 84.65 128 |
|
plane_prior4 | | | | | | | | | | | | 86.10 94 | | | | | |
|
plane_prior3 | | | | | | | 56.09 109 | | | 63.92 35 | 69.27 114 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 35 | | 64.52 25 | | | | | | | |
|
plane_prior | | | | | | | 56.31 103 | 83.58 48 | | 63.19 45 | | | | | | 80.48 99 | |
|
n2 | | | | | | | | | 0.00 355 | | | | | | | | |
|
nn | | | | | | | | | 0.00 355 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 339 | | | | | | | | |
|
test11 | | | | | | | | | 83.47 64 | | | | | | | | |
|
door | | | | | | | | | 47.60 338 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 127 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 78 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 138 | | | 86.93 57 | | | 84.32 136 |
|
HQP3-MVS | | | | | | | | | 83.90 53 | | | | | | | 80.35 102 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 150 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 340 | 61.22 306 | | 40.10 318 | 51.10 307 | | 32.97 266 | | 38.49 280 | | 78.61 240 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 167 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 197 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 115 | | | | |
|