This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft94.60 894.91 1094.24 797.86 196.53 3296.14 892.51 893.87 1590.76 1293.45 1893.84 492.62 895.11 1194.08 1895.58 5097.48 13
SMA-MVScopyleft94.70 695.35 693.93 1297.57 297.57 795.98 1191.91 1394.50 690.35 1493.46 1792.72 1191.89 1895.89 395.22 195.88 2798.10 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS93.80 1793.45 2594.20 897.53 396.43 3695.88 1791.12 2094.09 1192.74 387.68 3390.77 2592.04 1394.74 1793.56 2895.91 2696.85 27
MP-MVScopyleft93.35 2093.59 2393.08 2397.39 496.82 2295.38 2590.71 2490.82 3688.07 2792.83 2190.29 2991.32 2794.03 2993.19 3895.61 4897.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NCCC93.69 1993.66 2293.72 1697.37 596.66 2995.93 1692.50 993.40 1988.35 2587.36 3592.33 1492.18 1294.89 1394.09 1796.00 2396.91 26
CNVR-MVS94.37 1194.65 1194.04 1197.29 697.11 1096.00 1092.43 1093.45 1689.85 1990.92 2593.04 892.59 995.77 494.82 596.11 2197.42 15
HFP-MVS94.02 1494.22 1793.78 1497.25 796.85 2095.81 2090.94 2394.12 1090.29 1694.09 1489.98 3192.52 1093.94 3293.49 3395.87 2997.10 23
APD-MVScopyleft94.37 1194.47 1594.26 697.18 896.99 1696.53 792.68 592.45 2489.96 1794.53 1191.63 2092.89 594.58 2093.82 2296.31 1797.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2297.13 996.51 3395.35 2691.19 1993.14 2188.14 2685.26 4189.49 3591.45 2395.17 995.07 295.85 3296.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS95.23 495.69 594.70 497.12 1097.81 597.19 292.83 395.06 590.98 1096.47 292.77 1093.38 295.34 894.21 1596.68 898.17 4
ACMMPR93.72 1893.94 1993.48 1897.07 1196.93 1795.78 2190.66 2693.88 1489.24 2193.53 1689.08 3892.24 1193.89 3493.50 3195.88 2796.73 31
mPP-MVS97.06 1288.08 45
ACMMP_NAP93.94 1594.49 1493.30 2097.03 1397.31 995.96 1291.30 1893.41 1888.55 2493.00 1990.33 2891.43 2695.53 694.41 1395.53 5297.47 14
PGM-MVS92.76 2693.03 2892.45 2897.03 1396.67 2895.73 2387.92 4290.15 4386.53 3692.97 2088.33 4491.69 2193.62 3793.03 3995.83 3396.41 37
SteuartSystems-ACMMP94.06 1394.65 1193.38 1996.97 1597.36 896.12 991.78 1492.05 2887.34 3094.42 1290.87 2491.87 1995.47 794.59 1096.21 1997.77 10
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS95.56 296.26 294.73 296.93 1698.19 196.62 692.81 496.15 191.73 595.01 795.31 293.41 195.95 294.77 796.90 498.46 1
X-MVS92.36 3092.75 3091.90 3396.89 1796.70 2595.25 2790.48 2991.50 3383.95 4888.20 3188.82 4089.11 3693.75 3593.43 3495.75 3996.83 29
train_agg92.87 2593.53 2492.09 3096.88 1895.38 4995.94 1490.59 2890.65 3883.65 5194.31 1391.87 1990.30 3193.38 3992.42 4695.17 6996.73 31
SED-MVS95.61 196.36 194.73 296.84 1998.15 297.08 392.92 295.64 291.84 495.98 495.33 192.83 696.00 194.94 396.90 498.45 2
CP-MVS93.25 2193.26 2693.24 2196.84 1996.51 3395.52 2490.61 2792.37 2588.88 2290.91 2689.52 3491.91 1793.64 3692.78 4495.69 4197.09 24
MSP-MVS95.12 595.83 494.30 596.82 2197.94 496.98 492.37 1195.40 390.59 1396.16 393.71 592.70 794.80 1594.77 796.37 1497.99 7
DPE-MVS95.53 396.13 394.82 196.81 2298.05 397.42 193.09 194.31 891.49 697.12 195.03 393.27 395.55 594.58 1196.86 698.25 3
MCST-MVS93.81 1694.06 1893.53 1796.79 2396.85 2095.95 1391.69 1692.20 2687.17 3290.83 2793.41 691.96 1494.49 2393.50 3197.61 197.12 22
xxxxxxxxxxxxxcwj92.95 2491.88 3394.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 571.01 12591.93 1594.40 2593.56 2897.04 297.27 16
SF-MVS94.61 794.96 994.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 592.54 1291.93 1594.40 2593.56 2897.04 297.27 16
SR-MVS96.58 2690.99 2292.40 13
EPNet89.60 4789.91 4589.24 5496.45 2793.61 7592.95 4788.03 4085.74 5983.36 5287.29 3683.05 6280.98 9392.22 5591.85 5093.69 13395.58 51
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CSCG92.76 2693.16 2792.29 2996.30 2897.74 694.67 3388.98 3692.46 2389.73 2086.67 3792.15 1788.69 4292.26 5492.92 4295.40 5797.89 9
CDPH-MVS91.14 3992.01 3290.11 4396.18 2996.18 3994.89 3188.80 3888.76 4877.88 8489.18 3087.71 4787.29 6093.13 4293.31 3695.62 4695.84 45
DeepC-MVS87.86 392.26 3191.86 3492.73 2596.18 2996.87 1995.19 2891.76 1592.17 2786.58 3581.79 5085.85 5090.88 2994.57 2194.61 995.80 3597.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary90.29 4388.38 5792.53 2696.10 3195.19 5392.98 4691.40 1789.08 4788.65 2378.35 7181.44 6991.30 2890.81 8290.21 7694.72 8893.59 87
MSLP-MVS++92.02 3491.40 3792.75 2496.01 3295.88 4493.73 4089.00 3489.89 4490.31 1581.28 5688.85 3991.45 2392.88 4794.24 1496.00 2396.76 30
3Dnovator+86.06 491.60 3690.86 4292.47 2796.00 3396.50 3594.70 3287.83 4390.49 3989.92 1874.68 9089.35 3690.66 3094.02 3094.14 1695.67 4396.85 27
TSAR-MVS + ACMM92.97 2394.51 1391.16 3795.88 3496.59 3095.09 2990.45 3093.42 1783.01 5394.68 1090.74 2688.74 4094.75 1693.78 2393.82 12897.63 11
ACMMPcopyleft92.03 3392.16 3191.87 3495.88 3496.55 3194.47 3589.49 3391.71 3185.26 4291.52 2484.48 5590.21 3292.82 4891.63 5295.92 2596.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS94.53 995.22 793.73 1595.69 3697.03 1495.77 2291.95 1294.41 791.35 794.97 893.34 791.80 2094.72 1893.99 1995.82 3498.07 6
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPM-MVS91.72 3591.48 3592.00 3195.53 3795.75 4595.94 1491.07 2191.20 3485.58 4181.63 5490.74 2688.40 4593.40 3893.75 2495.45 5693.85 81
TSAR-MVS + MP.94.48 1094.97 893.90 1395.53 3797.01 1596.69 590.71 2494.24 990.92 1194.97 892.19 1593.03 494.83 1493.60 2696.51 1397.97 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CPTT-MVS91.39 3790.95 4091.91 3295.06 3995.24 5195.02 3088.98 3691.02 3586.71 3484.89 4388.58 4391.60 2290.82 8189.67 9294.08 11596.45 35
CANet91.33 3891.46 3691.18 3695.01 4096.71 2493.77 3887.39 4687.72 5187.26 3181.77 5189.73 3287.32 5994.43 2493.86 2196.31 1796.02 43
PHI-MVS92.05 3293.74 2190.08 4494.96 4197.06 1393.11 4587.71 4490.71 3780.78 6892.40 2291.03 2287.68 5394.32 2794.48 1296.21 1996.16 40
MAR-MVS88.39 5988.44 5688.33 6594.90 4295.06 5590.51 6583.59 7585.27 6179.07 7677.13 7682.89 6387.70 5192.19 5792.32 4794.23 11294.20 77
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator85.17 590.48 4289.90 4691.16 3794.88 4395.74 4693.82 3785.36 5789.28 4587.81 2874.34 9287.40 4888.56 4393.07 4393.74 2596.53 1295.71 47
DeepPCF-MVS88.51 292.64 2994.42 1690.56 4194.84 4496.92 1891.31 6189.61 3295.16 484.55 4689.91 2991.45 2190.15 3395.12 1094.81 692.90 14797.58 12
QAPM89.49 4889.58 4989.38 5294.73 4595.94 4292.35 4985.00 6085.69 6080.03 7276.97 7887.81 4687.87 5092.18 5892.10 4896.33 1596.40 38
MVS_111021_HR90.56 4191.29 3989.70 4994.71 4695.63 4791.81 5786.38 5187.53 5281.29 6287.96 3285.43 5287.69 5293.90 3392.93 4196.33 1595.69 48
abl_690.66 4094.65 4796.27 3792.21 5086.94 4890.23 4186.38 3785.50 4092.96 988.37 4695.40 5795.46 53
OpenMVScopyleft82.53 1187.71 6586.84 7288.73 5794.42 4895.06 5591.02 6383.49 7882.50 7582.24 5967.62 12885.48 5185.56 7091.19 6991.30 5595.67 4394.75 65
PLCcopyleft83.76 988.61 5686.83 7390.70 3994.22 4992.63 9191.50 5987.19 4789.16 4686.87 3375.51 8580.87 7189.98 3490.01 9289.20 10294.41 10790.45 141
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D85.96 7784.37 9287.81 6794.13 5093.27 8090.26 6989.00 3484.91 6572.84 10571.74 10472.47 11987.45 5789.53 10089.09 10493.20 14389.60 144
EPNet_dtu81.98 11083.82 9479.83 14394.10 5185.97 16887.29 11084.08 6880.61 9559.96 17581.62 5577.19 9562.91 19087.21 12286.38 14190.66 17387.77 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030490.88 4091.35 3890.34 4293.91 5296.79 2394.49 3486.54 5086.57 5582.85 5581.68 5389.70 3387.57 5594.64 1993.93 2096.67 1096.15 41
OPM-MVS87.56 6785.80 8389.62 5093.90 5394.09 6994.12 3688.18 3975.40 12677.30 8776.41 7977.93 9188.79 3992.20 5690.82 6395.40 5793.72 85
DELS-MVS89.71 4689.68 4889.74 4793.75 5496.22 3893.76 3985.84 5382.53 7385.05 4478.96 6884.24 5684.25 7594.91 1294.91 495.78 3896.02 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNLPA88.40 5787.00 7190.03 4593.73 5594.28 6589.56 7985.81 5491.87 2987.55 2969.53 11881.49 6889.23 3589.45 10188.59 11294.31 11193.82 82
HQP-MVS89.13 5189.58 4988.60 6093.53 5693.67 7393.29 4387.58 4588.53 4975.50 8887.60 3480.32 7487.07 6190.66 8789.95 8494.62 9496.35 39
OMC-MVS90.23 4490.40 4390.03 4593.45 5795.29 5091.89 5686.34 5293.25 2084.94 4581.72 5286.65 4988.90 3791.69 6290.27 7594.65 9293.95 79
ACMM83.27 1087.68 6686.09 7989.54 5193.26 5892.19 9791.43 6086.74 4986.02 5782.85 5575.63 8475.14 10188.41 4490.68 8689.99 8194.59 9592.97 94
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_LR90.14 4590.89 4189.26 5393.23 5994.05 7090.43 6684.65 6290.16 4284.52 4790.14 2883.80 5987.99 4992.50 5290.92 6194.74 8694.70 67
XVS93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
X-MVStestdata93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
PCF-MVS84.60 688.66 5487.75 6789.73 4893.06 6296.02 4093.22 4490.00 3182.44 7680.02 7377.96 7485.16 5387.36 5888.54 10988.54 11394.72 8895.61 50
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS84.37 788.91 5388.93 5388.89 5593.00 6394.85 5992.00 5384.84 6191.68 3280.05 7179.77 6384.56 5488.17 4890.11 9189.00 10895.30 6492.57 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_Blended_VisFu87.40 6987.80 6486.92 7392.86 6495.40 4888.56 9783.45 8279.55 10382.26 5874.49 9184.03 5779.24 12392.97 4691.53 5495.15 7196.65 33
UA-Net86.07 7587.78 6584.06 9792.85 6595.11 5487.73 10384.38 6373.22 14673.18 10179.99 6289.22 3771.47 16793.22 4193.03 3994.76 8590.69 136
LGP-MVS_train88.25 6188.55 5487.89 6692.84 6693.66 7493.35 4285.22 5985.77 5874.03 9786.60 3876.29 9886.62 6591.20 6890.58 7195.29 6595.75 46
TSAR-MVS + COLMAP88.40 5789.09 5287.60 7092.72 6793.92 7292.21 5085.57 5691.73 3073.72 9891.75 2373.22 11787.64 5491.49 6489.71 9193.73 13191.82 122
PVSNet_BlendedMVS88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8193.05 4491.10 5695.86 3094.86 63
PVSNet_Blended88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8193.05 4491.10 5695.86 3094.86 63
ACMP83.90 888.32 6088.06 6088.62 5992.18 7093.98 7191.28 6285.24 5886.69 5481.23 6385.62 3975.13 10287.01 6389.83 9489.77 8994.79 8295.43 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSDG83.87 9381.02 11587.19 7292.17 7189.80 12789.15 8485.72 5580.61 9579.24 7566.66 13168.75 13582.69 8087.95 11687.44 12294.19 11385.92 173
TSAR-MVS + GP.92.71 2893.91 2091.30 3591.96 7296.00 4193.43 4187.94 4192.53 2286.27 4093.57 1591.94 1891.44 2593.29 4092.89 4396.78 797.15 21
ETV-MVS89.22 5089.76 4788.60 6091.60 7394.61 6389.48 8183.46 8185.20 6281.58 6082.75 4682.59 6488.80 3894.57 2193.28 3796.68 895.31 55
EIA-MVS87.94 6488.05 6187.81 6791.46 7495.00 5788.67 9382.81 8682.53 7380.81 6780.04 6180.20 7587.48 5692.58 5191.61 5395.63 4594.36 71
CS-MVS88.97 5289.44 5188.41 6491.45 7595.24 5190.03 7082.43 9684.08 6881.16 6481.02 5883.83 5888.74 4094.25 2892.73 4596.67 1094.95 60
canonicalmvs89.36 4989.92 4488.70 5891.38 7695.92 4391.81 5782.61 9490.37 4082.73 5782.09 4879.28 8488.30 4791.17 7093.59 2795.36 6097.04 25
CLD-MVS88.66 5488.52 5588.82 5691.37 7794.22 6692.82 4882.08 9888.27 5085.14 4381.86 4978.53 8885.93 6991.17 7090.61 6995.55 5195.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 1792x268882.16 10880.91 11883.61 10291.14 7892.01 9889.55 8079.15 13179.87 9970.29 11152.51 19272.56 11881.39 8988.87 10788.17 11690.15 17792.37 116
IB-MVS79.09 1282.60 10582.19 10383.07 10891.08 7993.55 7680.90 17381.35 10376.56 11880.87 6664.81 14569.97 12968.87 17485.64 14890.06 8095.36 6094.74 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IS_MVSNet86.18 7488.18 5983.85 10091.02 8094.72 6287.48 10682.46 9581.05 9070.28 11276.98 7782.20 6776.65 13993.97 3193.38 3595.18 6894.97 59
HyFIR lowres test81.62 11879.45 13884.14 9691.00 8193.38 7988.27 9878.19 13976.28 12070.18 11348.78 19673.69 11283.52 7787.05 12587.83 12093.68 13489.15 147
COLMAP_ROBcopyleft76.78 1580.50 12478.49 14382.85 10990.96 8289.65 13386.20 12783.40 8377.15 11666.54 13062.27 15365.62 14477.89 13185.23 15584.70 16292.11 15584.83 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CANet_DTU85.43 8087.72 6882.76 11190.95 8393.01 8589.99 7175.46 16282.67 7264.91 14283.14 4580.09 7680.68 9792.03 6091.03 5894.57 9792.08 117
FC-MVSNet-train85.18 8285.31 8685.03 8390.67 8491.62 10187.66 10483.61 7379.75 10174.37 9578.69 6971.21 12378.91 12491.23 6689.96 8394.96 7794.69 68
baseline184.54 8784.43 9184.67 8590.62 8591.16 10488.63 9583.75 7279.78 10071.16 10875.14 8774.10 10777.84 13291.56 6390.67 6896.04 2288.58 150
thres600view782.53 10781.02 11584.28 9290.61 8693.05 8388.57 9682.67 9074.12 13768.56 12365.09 14262.13 16280.40 10391.15 7289.02 10794.88 7992.59 107
thres40082.68 10481.15 11384.47 8890.52 8792.89 8788.95 9182.71 8874.33 13469.22 12065.31 13962.61 15780.63 9990.96 7989.50 9694.79 8292.45 115
EPP-MVSNet86.55 7187.76 6685.15 8290.52 8794.41 6487.24 11282.32 9781.79 8273.60 9978.57 7082.41 6582.07 8791.23 6690.39 7395.14 7295.48 52
ACMH78.52 1481.86 11280.45 12383.51 10690.51 8991.22 10385.62 13484.23 6570.29 16262.21 15869.04 12264.05 14984.48 7487.57 12088.45 11594.01 11992.54 111
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)83.65 9686.81 7479.96 14190.46 9092.71 8884.84 14282.00 9980.93 9262.44 15776.29 8082.32 6665.54 18792.29 5391.66 5194.49 10291.47 131
thres20082.77 10381.25 11284.54 8690.38 9193.05 8389.13 8582.67 9074.40 13369.53 11765.69 13763.03 15480.63 9991.15 7289.42 9794.88 7992.04 119
MS-PatchMatch81.79 11481.44 10982.19 11890.35 9289.29 13988.08 10175.36 16377.60 11469.00 12164.37 14878.87 8777.14 13888.03 11585.70 15293.19 14486.24 170
PatchMatch-RL83.34 9881.36 11085.65 7990.33 9389.52 13584.36 14681.82 10080.87 9479.29 7474.04 9362.85 15686.05 6888.40 11287.04 12992.04 15686.77 166
thres100view90082.55 10681.01 11784.34 8990.30 9492.27 9589.04 8982.77 8775.14 12769.56 11565.72 13563.13 15179.62 11889.97 9389.26 10094.73 8791.61 129
tfpn200view982.86 10181.46 10884.48 8790.30 9493.09 8289.05 8882.71 8875.14 12769.56 11565.72 13563.13 15180.38 10491.15 7289.51 9594.91 7892.50 113
casdiffmvs87.45 6887.15 7087.79 6990.15 9694.22 6689.96 7283.93 6985.08 6380.91 6575.81 8377.88 9286.08 6791.86 6190.86 6295.74 4094.37 70
MVS_Test86.93 7087.24 6986.56 7490.10 9793.47 7790.31 6780.12 11783.55 7078.12 8079.58 6479.80 7985.45 7190.17 9090.59 7095.29 6593.53 88
ACMH+79.08 1381.84 11380.06 12883.91 9989.92 9890.62 10886.21 12683.48 8073.88 13965.75 13566.38 13265.30 14584.63 7385.90 14587.25 12593.45 13991.13 134
Effi-MVS+85.33 8185.08 8785.63 8089.69 9993.42 7889.90 7380.31 11579.32 10472.48 10773.52 9874.03 10886.55 6690.99 7789.98 8294.83 8194.27 76
Anonymous20240521182.75 10189.58 10092.97 8689.04 8984.13 6778.72 10857.18 17976.64 9783.13 7989.55 9989.92 8593.38 14194.28 75
tttt051785.11 8485.81 8284.30 9189.24 10192.68 9087.12 11780.11 11881.98 8074.31 9678.08 7373.57 11379.90 11191.01 7689.58 9395.11 7593.77 83
DI_MVS_plusplus_trai86.41 7385.54 8587.42 7189.24 10193.13 8192.16 5282.65 9282.30 7780.75 6968.30 12580.41 7385.01 7290.56 8890.07 7994.70 9094.01 78
thisisatest053085.15 8385.86 8184.33 9089.19 10392.57 9487.22 11380.11 11882.15 7974.41 9478.15 7273.80 11179.90 11190.99 7789.58 9395.13 7393.75 84
DCV-MVSNet85.88 7986.17 7785.54 8189.10 10489.85 12589.34 8280.70 10883.04 7178.08 8276.19 8179.00 8582.42 8489.67 9790.30 7493.63 13695.12 56
UGNet85.90 7888.23 5883.18 10788.96 10594.10 6887.52 10583.60 7481.66 8377.90 8380.76 5983.19 6166.70 18491.13 7590.71 6794.39 10896.06 42
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121184.42 9183.02 9786.05 7788.85 10692.70 8988.92 9283.40 8379.99 9878.31 7955.83 18378.92 8683.33 7889.06 10489.76 9093.50 13894.90 61
MVSTER86.03 7686.12 7885.93 7888.62 10789.93 12389.33 8379.91 12281.87 8181.35 6181.07 5774.91 10380.66 9892.13 5990.10 7895.68 4292.80 99
test_part183.23 10080.55 12286.35 7588.60 10890.61 10990.78 6481.13 10670.89 15683.01 5355.72 18474.60 10482.19 8587.79 11789.26 10092.39 15295.01 57
TDRefinement79.05 14277.05 16181.39 12588.45 10989.00 14686.92 11882.65 9274.21 13664.41 14359.17 17159.16 17874.52 15385.23 15585.09 15791.37 16587.51 162
IterMVS-LS83.28 9982.95 9983.65 10188.39 11088.63 15086.80 12178.64 13676.56 11873.43 10072.52 10375.35 10080.81 9586.43 14088.51 11493.84 12792.66 104
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvs86.52 7286.76 7586.23 7688.31 11192.63 9189.58 7881.61 10286.14 5680.26 7079.00 6777.27 9483.58 7688.94 10589.06 10594.05 11794.29 72
Fast-Effi-MVS+83.77 9582.98 9884.69 8487.98 11291.87 9988.10 10077.70 14578.10 11273.04 10369.13 12068.51 13686.66 6490.49 8989.85 8794.67 9192.88 96
gg-mvs-nofinetune75.64 17977.26 15873.76 18487.92 11392.20 9687.32 10964.67 20151.92 20635.35 21046.44 19977.05 9671.97 16492.64 5091.02 5995.34 6289.53 145
RPSCF83.46 9783.36 9683.59 10387.75 11487.35 15984.82 14379.46 12783.84 6978.12 8082.69 4779.87 7782.60 8382.47 17981.13 18288.78 18486.13 171
Effi-MVS+-dtu82.05 10981.76 10582.38 11587.72 11590.56 11086.90 12078.05 14173.85 14066.85 12971.29 10671.90 12182.00 8886.64 13585.48 15492.76 14992.58 108
CostFormer80.94 12180.21 12581.79 12087.69 11688.58 15187.47 10770.66 17780.02 9777.88 8473.03 9971.40 12278.24 12879.96 18879.63 18488.82 18388.84 148
baseline282.80 10282.86 10082.73 11287.68 11790.50 11184.92 14178.93 13278.07 11373.06 10275.08 8869.77 13077.31 13588.90 10686.94 13094.50 10090.74 135
Vis-MVSNetpermissive84.38 9286.68 7681.70 12187.65 11894.89 5888.14 9980.90 10774.48 13268.23 12477.53 7580.72 7269.98 17192.68 4991.90 4995.33 6394.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-LLR79.47 13779.84 13279.03 14787.47 11982.40 19381.24 17078.05 14173.72 14162.69 15473.76 9574.42 10573.49 15884.61 16482.99 17491.25 16787.01 164
test0.0.03 176.03 17378.51 14273.12 18887.47 11985.13 17976.32 19178.05 14173.19 14850.98 19670.64 10869.28 13355.53 19485.33 15384.38 16690.39 17581.63 189
tpmrst76.55 16675.99 17377.20 16187.32 12183.05 18682.86 15665.62 19678.61 11067.22 12869.19 11965.71 14375.87 14376.75 19775.33 19784.31 20183.28 183
baseline84.89 8586.06 8083.52 10587.25 12289.67 13287.76 10275.68 16184.92 6478.40 7880.10 6080.98 7080.20 10786.69 13487.05 12891.86 15992.99 93
CDS-MVSNet81.63 11782.09 10481.09 13087.21 12390.28 11487.46 10880.33 11469.06 16670.66 10971.30 10573.87 10967.99 17789.58 9889.87 8692.87 14890.69 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm cat177.78 15575.28 18180.70 13387.14 12485.84 17085.81 13070.40 17877.44 11578.80 7763.72 14964.01 15076.55 14075.60 19975.21 19885.51 19985.12 175
tpm76.30 17276.05 17276.59 16786.97 12583.01 18783.83 15067.06 19271.83 15163.87 14869.56 11762.88 15573.41 16079.79 18978.59 18884.41 20086.68 167
EPMVS77.53 15778.07 15076.90 16586.89 12684.91 18082.18 16566.64 19481.00 9164.11 14672.75 10269.68 13174.42 15579.36 19178.13 19087.14 19280.68 193
PatchmatchNetpermissive78.67 14778.85 14178.46 15586.85 12786.03 16783.77 15168.11 18980.88 9366.19 13272.90 10173.40 11578.06 12979.25 19277.71 19287.75 18981.75 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA79.51 13680.15 12778.75 15086.58 12887.70 15683.07 15568.53 18681.31 8566.40 13173.83 9475.38 9979.30 12280.49 18679.39 18788.63 18682.96 185
USDC80.69 12279.89 13181.62 12386.48 12989.11 14486.53 12378.86 13381.15 8963.48 15072.98 10059.12 18081.16 9187.10 12385.01 15893.23 14284.77 178
Fast-Effi-MVS+-dtu79.95 12880.69 11979.08 14686.36 13089.14 14385.85 12972.28 17172.85 14959.32 17870.43 11268.42 13777.57 13386.14 14286.44 14093.11 14591.39 132
tfpnnormal77.46 15874.86 18380.49 13786.34 13188.92 14784.33 14781.26 10461.39 19461.70 16551.99 19353.66 19874.84 15088.63 10887.38 12494.50 10092.08 117
dps78.02 15275.94 17480.44 13886.06 13286.62 16582.58 15769.98 18175.14 12777.76 8669.08 12159.93 17178.47 12679.47 19077.96 19187.78 18883.40 182
IterMVS-SCA-FT79.41 13880.20 12678.49 15485.88 13386.26 16683.95 14971.94 17273.55 14461.94 16170.48 11170.50 12675.23 14585.81 14784.61 16491.99 15890.18 142
LTVRE_ROB74.41 1675.78 17874.72 18477.02 16485.88 13389.22 14082.44 16077.17 14850.57 20745.45 20265.44 13852.29 20081.25 9085.50 15187.42 12389.94 17992.62 105
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EG-PatchMatch MVS76.40 17075.47 17977.48 16085.86 13590.22 11682.45 15973.96 16859.64 19859.60 17752.75 19162.20 16168.44 17688.23 11387.50 12194.55 9887.78 160
CR-MVSNet78.71 14678.86 14078.55 15385.85 13685.15 17782.30 16268.23 18774.71 13065.37 13864.39 14769.59 13277.18 13685.10 16084.87 15992.34 15488.21 154
GA-MVS79.52 13579.71 13579.30 14585.68 13790.36 11384.55 14478.44 13770.47 16157.87 18368.52 12461.38 16376.21 14189.40 10287.89 11793.04 14689.96 143
UniMVSNet_ETH3D79.24 14076.47 16682.48 11485.66 13890.97 10586.08 12881.63 10164.48 18668.94 12254.47 18657.65 18378.83 12585.20 15888.91 10993.72 13293.60 86
TransMVSNet (Re)76.57 16575.16 18278.22 15785.60 13987.24 16082.46 15881.23 10559.80 19759.05 18157.07 18059.14 17966.60 18588.09 11486.82 13194.37 10987.95 159
RPMNet77.07 16077.63 15676.42 16885.56 14085.15 17781.37 16765.27 19874.71 13060.29 17463.71 15066.59 14173.64 15782.71 17782.12 17992.38 15388.39 152
MDTV_nov1_ep1379.14 14179.49 13778.74 15185.40 14186.89 16384.32 14870.29 17978.85 10769.42 11875.37 8673.29 11675.64 14480.61 18579.48 18687.36 19081.91 187
UniMVSNet (Re)81.22 11981.08 11481.39 12585.35 14291.76 10084.93 14082.88 8576.13 12165.02 14164.94 14363.09 15375.17 14787.71 11989.04 10694.97 7694.88 62
UniMVSNet_NR-MVSNet81.87 11181.33 11182.50 11385.31 14391.30 10285.70 13184.25 6475.89 12264.21 14466.95 13064.65 14780.22 10587.07 12489.18 10395.27 6794.29 72
IterMVS78.79 14579.71 13577.71 15885.26 14485.91 16984.54 14569.84 18373.38 14561.25 16970.53 11070.35 12774.43 15485.21 15783.80 16990.95 17188.77 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NR-MVSNet80.25 12679.98 13080.56 13685.20 14590.94 10685.65 13383.58 7675.74 12361.36 16865.30 14056.75 18772.38 16388.46 11188.80 11095.16 7093.87 80
CMPMVSbinary56.49 1773.84 18771.73 19276.31 17185.20 14585.67 17275.80 19273.23 16962.26 19165.40 13753.40 19059.70 17371.77 16680.25 18779.56 18586.45 19581.28 190
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap76.73 16273.95 18679.96 14185.16 14785.64 17382.34 16178.19 13970.63 15962.06 16060.69 16349.61 20380.81 9585.12 15983.69 17091.22 16982.27 186
gm-plane-assit70.29 19170.65 19369.88 19285.03 14878.50 20258.41 20965.47 19750.39 20840.88 20749.60 19550.11 20275.14 14891.43 6589.78 8894.32 11084.73 179
FC-MVSNet-test76.53 16781.62 10770.58 19184.99 14985.73 17174.81 19478.85 13477.00 11739.13 20975.90 8273.50 11454.08 19886.54 13785.99 14991.65 16186.68 167
DU-MVS81.20 12080.30 12482.25 11684.98 15090.94 10685.70 13183.58 7675.74 12364.21 14465.30 14059.60 17580.22 10586.89 12789.31 9894.77 8494.29 72
Baseline_NR-MVSNet79.84 13078.37 14781.55 12484.98 15086.66 16485.06 13883.49 7875.57 12563.31 15158.22 17860.97 16578.00 13086.89 12787.13 12694.47 10393.15 91
TranMVSNet+NR-MVSNet80.52 12379.84 13281.33 12784.92 15290.39 11285.53 13684.22 6674.27 13560.68 17364.93 14459.96 17077.48 13486.75 13289.28 9995.12 7493.29 89
pm-mvs178.51 15077.75 15579.40 14484.83 15389.30 13883.55 15379.38 12862.64 19063.68 14958.73 17664.68 14670.78 17089.79 9587.84 11894.17 11491.28 133
testgi71.92 18974.20 18569.27 19384.58 15483.06 18573.40 19674.39 16564.04 18846.17 20168.90 12357.15 18548.89 20284.07 16983.08 17388.18 18779.09 197
thisisatest051579.76 13280.59 12178.80 14984.40 15588.91 14879.48 17976.94 15172.29 15067.33 12767.82 12765.99 14270.80 16988.50 11087.84 11893.86 12692.75 102
FMVSNet384.44 9084.64 9084.21 9384.32 15690.13 11889.85 7480.37 11181.17 8675.50 8869.63 11479.69 8179.62 11889.72 9690.52 7295.59 4991.58 130
GBi-Net84.51 8884.80 8884.17 9484.20 15789.95 12089.70 7580.37 11181.17 8675.50 8869.63 11479.69 8179.75 11590.73 8390.72 6495.52 5391.71 124
test184.51 8884.80 8884.17 9484.20 15789.95 12089.70 7580.37 11181.17 8675.50 8869.63 11479.69 8179.75 11590.73 8390.72 6495.52 5391.71 124
FMVSNet283.87 9383.73 9584.05 9884.20 15789.95 12089.70 7580.21 11679.17 10674.89 9265.91 13377.49 9379.75 11590.87 8091.00 6095.52 5391.71 124
WR-MVS76.63 16478.02 15275.02 17884.14 16089.76 12978.34 18680.64 10969.56 16352.32 19161.26 15661.24 16460.66 19184.45 16687.07 12793.99 12092.77 100
v879.90 12978.39 14681.66 12283.97 16189.81 12687.16 11577.40 14771.49 15267.71 12561.24 15762.49 15879.83 11485.48 15286.17 14493.89 12492.02 121
v2v48279.84 13078.07 15081.90 11983.75 16290.21 11787.17 11479.85 12370.65 15865.93 13461.93 15460.07 16980.82 9485.25 15486.71 13393.88 12591.70 127
v1079.62 13378.19 14881.28 12883.73 16389.69 13187.27 11176.86 15270.50 16065.46 13660.58 16460.47 16780.44 10286.91 12686.63 13693.93 12192.55 110
v114479.38 13977.83 15381.18 12983.62 16490.23 11587.15 11678.35 13869.13 16564.02 14760.20 16659.41 17680.14 10986.78 13086.57 13793.81 12992.53 112
v14878.59 14876.84 16480.62 13583.61 16589.16 14283.65 15279.24 13069.38 16469.34 11959.88 16860.41 16875.19 14683.81 17084.63 16392.70 15090.63 138
SixPastTwentyTwo76.02 17475.72 17676.36 16983.38 16687.54 15775.50 19376.22 15665.50 18357.05 18470.64 10853.97 19774.54 15280.96 18482.12 17991.44 16389.35 146
CVMVSNet76.70 16378.46 14474.64 18283.34 16784.48 18181.83 16674.58 16468.88 16751.23 19569.77 11370.05 12867.49 18084.27 16783.81 16889.38 18187.96 158
v119278.94 14377.33 15780.82 13283.25 16889.90 12486.91 11977.72 14468.63 16962.61 15659.17 17157.53 18480.62 10186.89 12786.47 13993.79 13092.75 102
DTE-MVSNet75.14 18175.44 18074.80 18083.18 16987.19 16178.25 18880.11 11866.05 17848.31 19860.88 16154.67 19464.54 18882.57 17886.17 14494.43 10690.53 140
PEN-MVS76.02 17476.07 17075.95 17383.17 17087.97 15479.65 17780.07 12166.57 17651.45 19360.94 16055.47 19266.81 18382.72 17686.80 13294.59 9592.03 120
TAMVS76.42 16877.16 16075.56 17483.05 17185.55 17480.58 17571.43 17465.40 18561.04 17267.27 12969.22 13467.99 17784.88 16284.78 16189.28 18283.01 184
pmmvs479.99 12778.08 14982.22 11783.04 17287.16 16284.95 13978.80 13578.64 10974.53 9364.61 14659.41 17679.45 12084.13 16884.54 16592.53 15188.08 156
v14419278.81 14477.22 15980.67 13482.95 17389.79 12886.40 12477.42 14668.26 17163.13 15259.50 16958.13 18180.08 11085.93 14486.08 14694.06 11692.83 98
v192192078.57 14976.99 16280.41 13982.93 17489.63 13486.38 12577.14 14968.31 17061.80 16458.89 17556.79 18680.19 10886.50 13986.05 14894.02 11892.76 101
CHOSEN 280x42080.28 12581.66 10678.67 15282.92 17579.24 20185.36 13766.79 19378.11 11170.32 11075.03 8979.87 7781.09 9289.07 10383.16 17285.54 19887.17 163
WR-MVS_H75.84 17776.93 16374.57 18382.86 17689.50 13678.34 18679.36 12966.90 17452.51 19060.20 16659.71 17259.73 19283.61 17185.77 15194.65 9292.84 97
v124078.15 15176.53 16580.04 14082.85 17789.48 13785.61 13576.77 15367.05 17361.18 17158.37 17756.16 19079.89 11386.11 14386.08 14693.92 12292.47 114
V4279.59 13478.43 14580.94 13182.79 17889.71 13086.66 12276.73 15471.38 15367.42 12661.01 15962.30 16078.39 12785.56 15086.48 13893.65 13592.60 106
CP-MVSNet76.36 17176.41 16776.32 17082.73 17988.64 14979.39 18079.62 12467.21 17253.70 18760.72 16255.22 19367.91 17983.52 17286.34 14294.55 9893.19 90
PS-CasMVS75.90 17675.86 17575.96 17282.59 18088.46 15279.23 18379.56 12666.00 17952.77 18959.48 17054.35 19667.14 18283.37 17386.23 14394.47 10393.10 92
test20.0368.31 19470.05 19566.28 19882.41 18180.84 19767.35 20376.11 15858.44 20040.80 20853.77 18954.54 19542.28 20583.07 17481.96 18188.73 18577.76 199
FMVSNet181.64 11680.61 12082.84 11082.36 18289.20 14188.67 9379.58 12570.79 15772.63 10658.95 17472.26 12079.34 12190.73 8390.72 6494.47 10391.62 128
pmmvs674.83 18272.89 18977.09 16282.11 18387.50 15880.88 17476.97 15052.79 20561.91 16346.66 19860.49 16669.28 17386.74 13385.46 15591.39 16490.56 139
pmmvs576.93 16176.33 16877.62 15981.97 18488.40 15381.32 16974.35 16665.42 18461.42 16763.07 15157.95 18273.23 16185.60 14985.35 15693.41 14088.55 151
v7n77.22 15976.23 16978.38 15681.89 18589.10 14582.24 16476.36 15565.96 18061.21 17056.56 18155.79 19175.07 14986.55 13686.68 13493.52 13792.95 95
our_test_381.81 18683.96 18476.61 190
Anonymous2023120670.80 19070.59 19471.04 19081.60 18782.49 19274.64 19575.87 16064.17 18749.27 19744.85 20253.59 19954.68 19783.07 17482.34 17890.17 17683.65 181
ADS-MVSNet74.53 18475.69 17773.17 18781.57 18880.71 19879.27 18263.03 20379.27 10559.94 17667.86 12668.32 13971.08 16877.33 19676.83 19484.12 20379.53 194
test-mter77.79 15480.02 12975.18 17781.18 18982.85 18880.52 17662.03 20573.62 14362.16 15973.55 9773.83 11073.81 15684.67 16383.34 17191.37 16588.31 153
TESTMET0.1,177.78 15579.84 13275.38 17680.86 19082.40 19381.24 17062.72 20473.72 14162.69 15473.76 9574.42 10573.49 15884.61 16482.99 17491.25 16787.01 164
MDTV_nov1_ep13_2view73.21 18872.91 18873.56 18680.01 19184.28 18378.62 18466.43 19568.64 16859.12 17960.39 16559.69 17469.81 17278.82 19477.43 19387.36 19081.11 192
FPMVS63.63 19960.08 20467.78 19580.01 19171.50 20772.88 19869.41 18561.82 19353.11 18845.12 20142.11 21050.86 20066.69 20463.84 20580.41 20569.46 205
anonymousdsp77.94 15379.00 13976.71 16679.03 19387.83 15579.58 17872.87 17065.80 18158.86 18265.82 13462.48 15975.99 14286.77 13188.66 11193.92 12295.68 49
N_pmnet66.85 19566.63 19667.11 19778.73 19474.66 20570.53 20071.07 17566.46 17746.54 20051.68 19451.91 20155.48 19574.68 20072.38 20180.29 20674.65 202
PMMVS81.65 11584.05 9378.86 14878.56 19582.63 19083.10 15467.22 19181.39 8470.11 11484.91 4279.74 8082.12 8687.31 12185.70 15292.03 15786.67 169
PatchT76.42 16877.81 15474.80 18078.46 19684.30 18271.82 19965.03 20073.89 13865.37 13861.58 15566.70 14077.18 13685.10 16084.87 15990.94 17288.21 154
MVS-HIRNet68.83 19366.39 19771.68 18977.58 19775.52 20466.45 20465.05 19962.16 19262.84 15344.76 20356.60 18971.96 16578.04 19575.06 19986.18 19772.56 203
pmmvs-eth3d74.32 18571.96 19177.08 16377.33 19882.71 18978.41 18576.02 15966.65 17565.98 13354.23 18849.02 20573.14 16282.37 18082.69 17691.61 16286.05 172
new-patchmatchnet63.80 19863.31 20064.37 19976.49 19975.99 20363.73 20670.99 17657.27 20143.08 20445.86 20043.80 20745.13 20473.20 20170.68 20486.80 19476.34 201
FMVSNet575.50 18076.07 17074.83 17976.16 20081.19 19681.34 16870.21 18073.20 14761.59 16658.97 17368.33 13868.50 17585.87 14685.85 15091.18 17079.11 196
PM-MVS74.17 18673.10 18775.41 17576.07 20182.53 19177.56 18971.69 17371.04 15461.92 16261.23 15847.30 20674.82 15181.78 18279.80 18390.42 17488.05 157
MIMVSNet74.69 18375.60 17873.62 18576.02 20285.31 17681.21 17267.43 19071.02 15559.07 18054.48 18564.07 14866.14 18686.52 13886.64 13591.83 16081.17 191
EU-MVSNet69.98 19272.30 19067.28 19675.67 20379.39 20073.12 19769.94 18263.59 18942.80 20562.93 15256.71 18855.07 19679.13 19378.55 18987.06 19385.82 174
ET-MVSNet_ETH3D84.65 8685.58 8483.56 10474.99 20492.62 9390.29 6880.38 11082.16 7873.01 10483.41 4471.10 12487.05 6287.77 11890.17 7795.62 4691.82 122
PMVScopyleft50.48 1855.81 20351.93 20560.33 20272.90 20549.34 21148.78 21069.51 18443.49 21054.25 18636.26 20841.04 21239.71 20765.07 20560.70 20676.85 20867.58 206
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ambc61.92 20170.98 20673.54 20663.64 20760.06 19652.23 19238.44 20619.17 21657.12 19382.33 18175.03 20083.21 20484.89 176
pmmvs361.89 20061.74 20262.06 20164.30 20770.83 20864.22 20552.14 20948.78 20944.47 20341.67 20541.70 21163.03 18976.06 19876.02 19584.18 20277.14 200
MDA-MVSNet-bldmvs66.22 19664.49 19968.24 19461.67 20882.11 19570.07 20176.16 15759.14 19947.94 19954.35 18735.82 21367.33 18164.94 20675.68 19686.30 19679.36 195
new_pmnet59.28 20161.47 20356.73 20361.66 20968.29 20959.57 20854.91 20660.83 19534.38 21144.66 20443.65 20849.90 20171.66 20271.56 20379.94 20769.67 204
Gipumacopyleft49.17 20447.05 20651.65 20459.67 21048.39 21241.98 21263.47 20255.64 20433.33 21214.90 21013.78 21741.34 20669.31 20372.30 20270.11 20955.00 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MIMVSNet165.00 19766.24 19863.55 20058.41 21180.01 19969.00 20274.03 16755.81 20341.88 20636.81 20749.48 20447.89 20381.32 18382.40 17790.08 17877.88 198
EMVS30.49 20825.44 21036.39 20751.47 21229.89 21620.17 21654.00 20826.49 21212.02 21613.94 2138.84 21834.37 20825.04 21234.37 21146.29 21439.53 212
E-PMN31.40 20626.80 20936.78 20651.39 21329.96 21520.20 21554.17 20725.93 21312.75 21514.73 2118.58 21934.10 20927.36 21137.83 21048.07 21343.18 211
PMMVS241.68 20544.74 20738.10 20546.97 21452.32 21040.63 21348.08 21035.51 2117.36 21726.86 20924.64 21516.72 21155.24 20859.03 20768.85 21059.59 208
tmp_tt32.73 20843.96 21521.15 21726.71 2148.99 21365.67 18251.39 19456.01 18242.64 20911.76 21256.60 20750.81 20953.55 212
MVEpermissive30.17 1930.88 20733.52 20827.80 21023.78 21639.16 21418.69 21746.90 21121.88 21415.39 21414.37 2127.31 22024.41 21041.63 21056.22 20837.64 21554.07 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND57.56 20282.61 10228.34 2090.22 21790.10 11979.37 1810.14 21579.56 1020.40 21871.25 10783.40 600.30 21586.27 14183.87 16789.59 18083.83 180
testmvs1.03 2091.63 2110.34 2110.09 2180.35 2180.61 2190.16 2141.49 2150.10 2193.15 2140.15 2210.86 2141.32 2131.18 2120.20 2163.76 214
test1230.87 2101.40 2120.25 2120.03 2190.25 2190.35 2200.08 2161.21 2160.05 2202.84 2150.03 2220.89 2130.43 2141.16 2130.13 2173.87 213
uanet_test0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def56.08 185
9.1492.16 16
MTAPA92.97 291.03 22
MTMP93.14 190.21 30
Patchmatch-RL test8.55 218
NP-MVS87.47 53
Patchmtry85.54 17582.30 16268.23 18765.37 138
DeepMVS_CXcopyleft48.31 21348.03 21126.08 21256.42 20225.77 21347.51 19731.31 21451.30 19948.49 20953.61 21161.52 207