APDe-MVS | | | 99.66 1 | 99.57 1 | 99.92 1 | 99.77 49 | 99.89 3 | 99.75 25 | 99.56 54 | 99.02 15 | 99.88 5 | 99.85 29 | 99.18 8 | 99.96 18 | 99.22 34 | 99.92 11 | 99.90 1 |
|
SED-MVS | | | 99.61 2 | 99.52 6 | 99.88 6 | 99.84 32 | 99.90 1 | 99.60 68 | 99.48 133 | 99.08 11 | 99.91 1 | 99.81 60 | 99.20 5 | 99.96 18 | 98.91 67 | 99.85 58 | 99.79 53 |
|
Regformer-4 | | | 99.59 3 | 99.54 4 | 99.73 56 | 99.76 52 | 99.41 90 | 99.58 80 | 99.49 122 | 99.02 15 | 99.88 5 | 99.80 74 | 99.00 22 | 99.94 49 | 99.45 15 | 99.92 11 | 99.84 18 |
|
TSAR-MVS + MP. | | | 99.58 4 | 99.50 8 | 99.81 36 | 99.91 1 | 99.66 50 | 99.63 57 | 99.39 203 | 98.91 36 | 99.78 31 | 99.85 29 | 99.36 2 | 99.94 49 | 98.84 81 | 99.88 36 | 99.82 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
EI-MVSNet-UG-set | | | 99.58 4 | 99.57 1 | 99.64 75 | 99.78 44 | 99.14 121 | 99.60 68 | 99.45 174 | 99.01 18 | 99.90 3 | 99.83 42 | 98.98 23 | 99.93 64 | 99.59 1 | 99.95 6 | 99.86 11 |
|
EI-MVSNet-Vis-set | | | 99.58 4 | 99.56 3 | 99.64 75 | 99.78 44 | 99.15 120 | 99.61 67 | 99.45 174 | 99.01 18 | 99.89 4 | 99.82 49 | 99.01 16 | 99.92 75 | 99.56 4 | 99.95 6 | 99.85 14 |
|
DVP-MVS | | | 99.57 7 | 99.47 9 | 99.88 6 | 99.85 25 | 99.89 3 | 99.57 85 | 99.37 217 | 99.10 8 | 99.81 22 | 99.80 74 | 98.94 31 | 99.96 18 | 98.93 64 | 99.86 51 | 99.81 41 |
|
Regformer-3 | | | 99.57 7 | 99.53 5 | 99.68 63 | 99.76 52 | 99.29 102 | 99.58 80 | 99.44 182 | 99.01 18 | 99.87 10 | 99.80 74 | 98.97 24 | 99.91 86 | 99.44 17 | 99.92 11 | 99.83 29 |
|
Regformer-2 | | | 99.54 9 | 99.47 9 | 99.75 49 | 99.71 83 | 99.52 78 | 99.49 129 | 99.49 122 | 98.94 33 | 99.83 17 | 99.76 102 | 99.01 16 | 99.94 49 | 99.15 43 | 99.87 40 | 99.80 49 |
|
SteuartSystems-ACMMP | | | 99.54 9 | 99.42 13 | 99.87 11 | 99.82 37 | 99.81 21 | 99.59 73 | 99.51 96 | 98.62 57 | 99.79 26 | 99.83 42 | 99.28 3 | 99.97 10 | 98.48 130 | 99.90 23 | 99.84 18 |
Skip Steuart: Steuart Systems R&D Blog. |
Regformer-1 | | | 99.53 11 | 99.47 9 | 99.72 59 | 99.71 83 | 99.44 87 | 99.49 129 | 99.46 162 | 98.95 32 | 99.83 17 | 99.76 102 | 99.01 16 | 99.93 64 | 99.17 40 | 99.87 40 | 99.80 49 |
|
XVS | | | 99.53 11 | 99.42 13 | 99.87 11 | 99.85 25 | 99.83 14 | 99.69 35 | 99.68 19 | 98.98 27 | 99.37 128 | 99.74 113 | 98.81 45 | 99.94 49 | 98.79 90 | 99.86 51 | 99.84 18 |
|
MTAPA | | | 99.52 13 | 99.39 17 | 99.89 4 | 99.90 3 | 99.86 10 | 99.66 46 | 99.47 152 | 98.79 47 | 99.68 50 | 99.81 60 | 98.43 77 | 99.97 10 | 98.88 70 | 99.90 23 | 99.83 29 |
|
HPM-MVS_fast | | | 99.51 14 | 99.40 16 | 99.85 25 | 99.91 1 | 99.79 27 | 99.76 24 | 99.56 54 | 97.72 149 | 99.76 37 | 99.75 107 | 99.13 10 | 99.92 75 | 99.07 50 | 99.92 11 | 99.85 14 |
|
zzz-MVS | | | 99.49 15 | 99.36 21 | 99.89 4 | 99.90 3 | 99.86 10 | 99.36 188 | 99.47 152 | 98.79 47 | 99.68 50 | 99.81 60 | 98.43 77 | 99.97 10 | 98.88 70 | 99.90 23 | 99.83 29 |
|
HFP-MVS | | | 99.49 15 | 99.37 19 | 99.86 18 | 99.87 15 | 99.80 23 | 99.66 46 | 99.67 22 | 98.15 98 | 99.68 50 | 99.69 136 | 99.06 13 | 99.96 18 | 98.69 103 | 99.87 40 | 99.84 18 |
|
ACMMPR | | | 99.49 15 | 99.36 21 | 99.86 18 | 99.87 15 | 99.79 27 | 99.66 46 | 99.67 22 | 98.15 98 | 99.67 56 | 99.69 136 | 98.95 28 | 99.96 18 | 98.69 103 | 99.87 40 | 99.84 18 |
|
DeepC-MVS_fast | | 98.69 1 | 99.49 15 | 99.39 17 | 99.77 45 | 99.63 115 | 99.59 63 | 99.36 188 | 99.46 162 | 99.07 13 | 99.79 26 | 99.82 49 | 98.85 41 | 99.92 75 | 98.68 105 | 99.87 40 | 99.82 36 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
region2R | | | 99.48 19 | 99.35 24 | 99.87 11 | 99.88 11 | 99.80 23 | 99.65 53 | 99.66 27 | 98.13 100 | 99.66 61 | 99.68 141 | 98.96 25 | 99.96 18 | 98.62 111 | 99.87 40 | 99.84 18 |
|
APD-MVS_3200maxsize | | | 99.48 19 | 99.35 24 | 99.85 25 | 99.76 52 | 99.83 14 | 99.63 57 | 99.54 68 | 98.36 76 | 99.79 26 | 99.82 49 | 98.86 40 | 99.95 41 | 98.62 111 | 99.81 80 | 99.78 60 |
|
DELS-MVS | | | 99.48 19 | 99.42 13 | 99.65 70 | 99.72 77 | 99.40 92 | 99.05 259 | 99.66 27 | 99.14 6 | 99.57 84 | 99.80 74 | 98.46 75 | 99.94 49 | 99.57 3 | 99.84 65 | 99.60 125 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ZNCC-MVS | | | 99.47 22 | 99.33 27 | 99.87 11 | 99.87 15 | 99.81 21 | 99.64 55 | 99.67 22 | 98.08 111 | 99.55 88 | 99.64 161 | 98.91 36 | 99.96 18 | 98.72 98 | 99.90 23 | 99.82 36 |
|
ACMMP_NAP | | | 99.47 22 | 99.34 26 | 99.88 6 | 99.87 15 | 99.86 10 | 99.47 140 | 99.48 133 | 98.05 117 | 99.76 37 | 99.86 23 | 98.82 44 | 99.93 64 | 98.82 88 | 99.91 16 | 99.84 18 |
|
DPE-MVS | | | 99.46 24 | 99.32 29 | 99.91 2 | 99.78 44 | 99.88 7 | 99.36 188 | 99.51 96 | 98.73 51 | 99.88 5 | 99.84 38 | 98.72 59 | 99.96 18 | 98.16 159 | 99.87 40 | 99.88 5 |
|
MSLP-MVS++ | | | 99.46 24 | 99.47 9 | 99.44 118 | 99.60 128 | 99.16 116 | 99.41 164 | 99.71 13 | 98.98 27 | 99.45 104 | 99.78 92 | 99.19 7 | 99.54 222 | 99.28 29 | 99.84 65 | 99.63 119 |
|
PGM-MVS | | | 99.45 26 | 99.31 36 | 99.86 18 | 99.87 15 | 99.78 33 | 99.58 80 | 99.65 32 | 97.84 134 | 99.71 43 | 99.80 74 | 99.12 11 | 99.97 10 | 98.33 146 | 99.87 40 | 99.83 29 |
|
CP-MVS | | | 99.45 26 | 99.32 29 | 99.85 25 | 99.83 36 | 99.75 34 | 99.69 35 | 99.52 86 | 98.07 112 | 99.53 91 | 99.63 166 | 98.93 35 | 99.97 10 | 98.74 94 | 99.91 16 | 99.83 29 |
|
ACMMP | | | 99.45 26 | 99.32 29 | 99.82 33 | 99.89 8 | 99.67 48 | 99.62 61 | 99.69 18 | 98.12 102 | 99.63 67 | 99.84 38 | 98.73 58 | 99.96 18 | 98.55 126 | 99.83 72 | 99.81 41 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SMA-MVS | | | 99.44 29 | 99.30 38 | 99.85 25 | 99.73 72 | 99.83 14 | 99.56 92 | 99.47 152 | 97.45 177 | 99.78 31 | 99.82 49 | 99.18 8 | 99.91 86 | 98.79 90 | 99.89 33 | 99.81 41 |
|
abl_6 | | | 99.44 29 | 99.31 36 | 99.83 31 | 99.85 25 | 99.75 34 | 99.66 46 | 99.59 42 | 98.13 100 | 99.82 20 | 99.81 60 | 98.60 68 | 99.96 18 | 98.46 134 | 99.88 36 | 99.79 53 |
|
mPP-MVS | | | 99.44 29 | 99.30 38 | 99.86 18 | 99.88 11 | 99.79 27 | 99.69 35 | 99.48 133 | 98.12 102 | 99.50 96 | 99.75 107 | 98.78 48 | 99.97 10 | 98.57 120 | 99.89 33 | 99.83 29 |
|
xxxxxxxxxxxxxcwj | | | 99.43 32 | 99.32 29 | 99.75 49 | 99.76 52 | 99.59 63 | 99.14 242 | 99.53 80 | 99.00 22 | 99.71 43 | 99.80 74 | 98.95 28 | 99.93 64 | 98.19 154 | 99.84 65 | 99.74 70 |
|
SR-MVS | | | 99.43 32 | 99.29 42 | 99.86 18 | 99.75 60 | 99.83 14 | 99.59 73 | 99.62 33 | 98.21 93 | 99.73 40 | 99.79 86 | 98.68 62 | 99.96 18 | 98.44 136 | 99.77 89 | 99.79 53 |
|
#test# | | | 99.43 32 | 99.29 42 | 99.86 18 | 99.87 15 | 99.80 23 | 99.55 100 | 99.67 22 | 97.83 135 | 99.68 50 | 99.69 136 | 99.06 13 | 99.96 18 | 98.39 138 | 99.87 40 | 99.84 18 |
|
MCST-MVS | | | 99.43 32 | 99.30 38 | 99.82 33 | 99.79 42 | 99.74 37 | 99.29 206 | 99.40 199 | 98.79 47 | 99.52 93 | 99.62 171 | 98.91 36 | 99.90 101 | 98.64 109 | 99.75 93 | 99.82 36 |
|
MSP-MVS | | | 99.42 36 | 99.27 47 | 99.88 6 | 99.89 8 | 99.80 23 | 99.67 42 | 99.50 114 | 98.70 53 | 99.77 33 | 99.49 215 | 98.21 92 | 99.95 41 | 98.46 134 | 99.77 89 | 99.88 5 |
|
UA-Net | | | 99.42 36 | 99.29 42 | 99.80 38 | 99.62 121 | 99.55 70 | 99.50 119 | 99.70 15 | 98.79 47 | 99.77 33 | 99.96 1 | 97.45 112 | 99.96 18 | 98.92 66 | 99.90 23 | 99.89 2 |
|
HPM-MVS | | | 99.42 36 | 99.28 45 | 99.83 31 | 99.90 3 | 99.72 38 | 99.81 12 | 99.54 68 | 97.59 160 | 99.68 50 | 99.63 166 | 98.91 36 | 99.94 49 | 98.58 118 | 99.91 16 | 99.84 18 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CNVR-MVS | | | 99.42 36 | 99.30 38 | 99.78 43 | 99.62 121 | 99.71 40 | 99.26 220 | 99.52 86 | 98.82 42 | 99.39 123 | 99.71 125 | 98.96 25 | 99.85 127 | 98.59 117 | 99.80 82 | 99.77 62 |
|
SD-MVS | | | 99.41 40 | 99.52 6 | 99.05 160 | 99.74 67 | 99.68 45 | 99.46 143 | 99.52 86 | 99.11 7 | 99.88 5 | 99.91 5 | 99.43 1 | 97.70 335 | 98.72 98 | 99.93 10 | 99.77 62 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MVS_111021_LR | | | 99.41 40 | 99.33 27 | 99.65 70 | 99.77 49 | 99.51 80 | 98.94 289 | 99.85 6 | 98.82 42 | 99.65 64 | 99.74 113 | 98.51 71 | 99.80 157 | 98.83 84 | 99.89 33 | 99.64 115 |
|
MVS_111021_HR | | | 99.41 40 | 99.32 29 | 99.66 66 | 99.72 77 | 99.47 84 | 98.95 287 | 99.85 6 | 98.82 42 | 99.54 89 | 99.73 120 | 98.51 71 | 99.74 172 | 98.91 67 | 99.88 36 | 99.77 62 |
|
GST-MVS | | | 99.40 43 | 99.24 52 | 99.85 25 | 99.86 21 | 99.79 27 | 99.60 68 | 99.67 22 | 97.97 123 | 99.63 67 | 99.68 141 | 98.52 70 | 99.95 41 | 98.38 140 | 99.86 51 | 99.81 41 |
|
HPM-MVS++ | | | 99.39 44 | 99.23 54 | 99.87 11 | 99.75 60 | 99.84 13 | 99.43 154 | 99.51 96 | 98.68 55 | 99.27 149 | 99.53 202 | 98.64 67 | 99.96 18 | 98.44 136 | 99.80 82 | 99.79 53 |
|
SF-MVS | | | 99.38 45 | 99.24 52 | 99.79 41 | 99.79 42 | 99.68 45 | 99.57 85 | 99.54 68 | 97.82 140 | 99.71 43 | 99.80 74 | 98.95 28 | 99.93 64 | 98.19 154 | 99.84 65 | 99.74 70 |
|
MP-MVS-pluss | | | 99.37 46 | 99.20 56 | 99.88 6 | 99.90 3 | 99.87 9 | 99.30 202 | 99.52 86 | 97.18 202 | 99.60 77 | 99.79 86 | 98.79 47 | 99.95 41 | 98.83 84 | 99.91 16 | 99.83 29 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TSAR-MVS + GP. | | | 99.36 47 | 99.36 21 | 99.36 124 | 99.67 96 | 98.61 182 | 99.07 254 | 99.33 234 | 99.00 22 | 99.82 20 | 99.81 60 | 99.06 13 | 99.84 132 | 99.09 48 | 99.42 130 | 99.65 109 |
|
PVSNet_Blended_VisFu | | | 99.36 47 | 99.28 45 | 99.61 80 | 99.86 21 | 99.07 129 | 99.47 140 | 99.93 2 | 97.66 156 | 99.71 43 | 99.86 23 | 97.73 107 | 99.96 18 | 99.47 13 | 99.82 78 | 99.79 53 |
|
NCCC | | | 99.34 49 | 99.19 57 | 99.79 41 | 99.61 125 | 99.65 53 | 99.30 202 | 99.48 133 | 98.86 38 | 99.21 165 | 99.63 166 | 98.72 59 | 99.90 101 | 98.25 150 | 99.63 118 | 99.80 49 |
|
MP-MVS | | | 99.33 50 | 99.15 60 | 99.87 11 | 99.88 11 | 99.82 20 | 99.66 46 | 99.46 162 | 98.09 107 | 99.48 100 | 99.74 113 | 98.29 88 | 99.96 18 | 97.93 177 | 99.87 40 | 99.82 36 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PS-MVSNAJ | | | 99.32 51 | 99.32 29 | 99.30 135 | 99.57 133 | 98.94 150 | 98.97 282 | 99.46 162 | 98.92 35 | 99.71 43 | 99.24 277 | 99.01 16 | 99.98 5 | 99.35 19 | 99.66 113 | 98.97 205 |
|
CSCG | | | 99.32 51 | 99.32 29 | 99.32 130 | 99.85 25 | 98.29 205 | 99.71 31 | 99.66 27 | 98.11 104 | 99.41 116 | 99.80 74 | 98.37 84 | 99.96 18 | 98.99 56 | 99.96 5 | 99.72 83 |
|
PHI-MVS | | | 99.30 53 | 99.17 59 | 99.70 62 | 99.56 137 | 99.52 78 | 99.58 80 | 99.80 8 | 97.12 208 | 99.62 71 | 99.73 120 | 98.58 69 | 99.90 101 | 98.61 114 | 99.91 16 | 99.68 99 |
|
DeepC-MVS | | 98.35 2 | 99.30 53 | 99.19 57 | 99.64 75 | 99.82 37 | 99.23 109 | 99.62 61 | 99.55 61 | 98.94 33 | 99.63 67 | 99.95 2 | 95.82 168 | 99.94 49 | 99.37 18 | 99.97 3 | 99.73 77 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
xiu_mvs_v1_base_debu | | | 99.29 55 | 99.27 47 | 99.34 125 | 99.63 115 | 98.97 141 | 99.12 244 | 99.51 96 | 98.86 38 | 99.84 13 | 99.47 224 | 98.18 93 | 99.99 1 | 99.50 8 | 99.31 137 | 99.08 192 |
|
xiu_mvs_v1_base | | | 99.29 55 | 99.27 47 | 99.34 125 | 99.63 115 | 98.97 141 | 99.12 244 | 99.51 96 | 98.86 38 | 99.84 13 | 99.47 224 | 98.18 93 | 99.99 1 | 99.50 8 | 99.31 137 | 99.08 192 |
|
xiu_mvs_v1_base_debi | | | 99.29 55 | 99.27 47 | 99.34 125 | 99.63 115 | 98.97 141 | 99.12 244 | 99.51 96 | 98.86 38 | 99.84 13 | 99.47 224 | 98.18 93 | 99.99 1 | 99.50 8 | 99.31 137 | 99.08 192 |
|
APD-MVS | | | 99.27 58 | 99.08 69 | 99.84 30 | 99.75 60 | 99.79 27 | 99.50 119 | 99.50 114 | 97.16 204 | 99.77 33 | 99.82 49 | 98.78 48 | 99.94 49 | 97.56 212 | 99.86 51 | 99.80 49 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
LS3D | | | 99.27 58 | 99.12 64 | 99.74 54 | 99.18 229 | 99.75 34 | 99.56 92 | 99.57 49 | 98.45 69 | 99.49 99 | 99.85 29 | 97.77 106 | 99.94 49 | 98.33 146 | 99.84 65 | 99.52 143 |
|
ETV-MVS | | | 99.26 60 | 99.21 55 | 99.40 120 | 99.46 161 | 99.30 101 | 99.56 92 | 99.52 86 | 98.52 63 | 99.44 108 | 99.27 274 | 98.41 81 | 99.86 121 | 99.10 47 | 99.59 122 | 99.04 197 |
|
xiu_mvs_v2_base | | | 99.26 60 | 99.25 51 | 99.29 138 | 99.53 141 | 98.91 154 | 99.02 268 | 99.45 174 | 98.80 46 | 99.71 43 | 99.26 275 | 98.94 31 | 99.98 5 | 99.34 23 | 99.23 142 | 98.98 204 |
|
CANet | | | 99.25 62 | 99.14 61 | 99.59 82 | 99.41 171 | 99.16 116 | 99.35 193 | 99.57 49 | 98.82 42 | 99.51 95 | 99.61 175 | 96.46 145 | 99.95 41 | 99.59 1 | 99.98 2 | 99.65 109 |
|
3Dnovator | | 97.25 9 | 99.24 63 | 99.05 71 | 99.81 36 | 99.12 242 | 99.66 50 | 99.84 6 | 99.74 10 | 99.09 10 | 98.92 218 | 99.90 7 | 95.94 162 | 99.98 5 | 98.95 61 | 99.92 11 | 99.79 53 |
|
ETH3D-3000-0.1 | | | 99.21 64 | 99.02 79 | 99.77 45 | 99.73 72 | 99.69 43 | 99.38 181 | 99.51 96 | 97.45 177 | 99.61 73 | 99.75 107 | 98.51 71 | 99.91 86 | 97.45 224 | 99.83 72 | 99.71 90 |
|
CS-MVS | | | 99.21 64 | 99.13 62 | 99.45 113 | 99.54 140 | 99.34 95 | 99.71 31 | 99.54 68 | 98.26 86 | 98.99 208 | 99.24 277 | 98.25 90 | 99.88 114 | 98.98 57 | 99.63 118 | 99.12 186 |
|
test_prior3 | | | 99.21 64 | 99.05 71 | 99.68 63 | 99.67 96 | 99.48 82 | 98.96 283 | 99.56 54 | 98.34 78 | 99.01 201 | 99.52 205 | 98.68 62 | 99.83 141 | 97.96 174 | 99.74 95 | 99.74 70 |
|
CHOSEN 1792x2688 | | | 99.19 67 | 99.10 66 | 99.45 113 | 99.89 8 | 98.52 191 | 99.39 176 | 99.94 1 | 98.73 51 | 99.11 183 | 99.89 10 | 95.50 177 | 99.94 49 | 99.50 8 | 99.97 3 | 99.89 2 |
|
F-COLMAP | | | 99.19 67 | 99.04 74 | 99.64 75 | 99.78 44 | 99.27 105 | 99.42 161 | 99.54 68 | 97.29 192 | 99.41 116 | 99.59 181 | 98.42 80 | 99.93 64 | 98.19 154 | 99.69 105 | 99.73 77 |
|
EIA-MVS | | | 99.18 69 | 99.09 68 | 99.45 113 | 99.49 154 | 99.18 113 | 99.67 42 | 99.53 80 | 97.66 156 | 99.40 121 | 99.44 230 | 98.10 97 | 99.81 152 | 98.94 62 | 99.62 120 | 99.35 172 |
|
3Dnovator+ | | 97.12 13 | 99.18 69 | 98.97 88 | 99.82 33 | 99.17 235 | 99.68 45 | 99.81 12 | 99.51 96 | 99.20 4 | 98.72 244 | 99.89 10 | 95.68 173 | 99.97 10 | 98.86 77 | 99.86 51 | 99.81 41 |
|
MVSFormer | | | 99.17 71 | 99.12 64 | 99.29 138 | 99.51 145 | 98.94 150 | 99.88 1 | 99.46 162 | 97.55 165 | 99.80 24 | 99.65 154 | 97.39 113 | 99.28 262 | 99.03 52 | 99.85 58 | 99.65 109 |
|
sss | | | 99.17 71 | 99.05 71 | 99.53 96 | 99.62 121 | 98.97 141 | 99.36 188 | 99.62 33 | 97.83 135 | 99.67 56 | 99.65 154 | 97.37 117 | 99.95 41 | 99.19 37 | 99.19 145 | 99.68 99 |
|
DP-MVS | | | 99.16 73 | 98.95 92 | 99.78 43 | 99.77 49 | 99.53 75 | 99.41 164 | 99.50 114 | 97.03 218 | 99.04 198 | 99.88 15 | 97.39 113 | 99.92 75 | 98.66 107 | 99.90 23 | 99.87 10 |
|
baseline | | | 99.15 74 | 99.02 79 | 99.53 96 | 99.66 105 | 99.14 121 | 99.72 29 | 99.48 133 | 98.35 77 | 99.42 112 | 99.84 38 | 96.07 156 | 99.79 160 | 99.51 7 | 99.14 149 | 99.67 102 |
|
diffmvs | | | 99.14 75 | 99.02 79 | 99.51 103 | 99.61 125 | 98.96 145 | 99.28 208 | 99.49 122 | 98.46 68 | 99.72 42 | 99.71 125 | 96.50 144 | 99.88 114 | 99.31 26 | 99.11 151 | 99.67 102 |
|
CNLPA | | | 99.14 75 | 98.99 84 | 99.59 82 | 99.58 131 | 99.41 90 | 99.16 236 | 99.44 182 | 98.45 69 | 99.19 171 | 99.49 215 | 98.08 98 | 99.89 109 | 97.73 195 | 99.75 93 | 99.48 154 |
|
CDPH-MVS | | | 99.13 77 | 98.91 96 | 99.80 38 | 99.75 60 | 99.71 40 | 99.15 240 | 99.41 193 | 96.60 248 | 99.60 77 | 99.55 194 | 98.83 43 | 99.90 101 | 97.48 219 | 99.83 72 | 99.78 60 |
|
casdiffmvs | | | 99.13 77 | 98.98 87 | 99.56 88 | 99.65 110 | 99.16 116 | 99.56 92 | 99.50 114 | 98.33 81 | 99.41 116 | 99.86 23 | 95.92 163 | 99.83 141 | 99.45 15 | 99.16 146 | 99.70 92 |
|
jason | | | 99.13 77 | 99.03 76 | 99.45 113 | 99.46 161 | 98.87 157 | 99.12 244 | 99.26 257 | 98.03 120 | 99.79 26 | 99.65 154 | 97.02 127 | 99.85 127 | 99.02 54 | 99.90 23 | 99.65 109 |
jason: jason. |
lupinMVS | | | 99.13 77 | 99.01 83 | 99.46 112 | 99.51 145 | 98.94 150 | 99.05 259 | 99.16 267 | 97.86 130 | 99.80 24 | 99.56 191 | 97.39 113 | 99.86 121 | 98.94 62 | 99.85 58 | 99.58 133 |
|
EPP-MVSNet | | | 99.13 77 | 98.99 84 | 99.53 96 | 99.65 110 | 99.06 130 | 99.81 12 | 99.33 234 | 97.43 180 | 99.60 77 | 99.88 15 | 97.14 122 | 99.84 132 | 99.13 44 | 98.94 165 | 99.69 95 |
|
MG-MVS | | | 99.13 77 | 99.02 79 | 99.45 113 | 99.57 133 | 98.63 179 | 99.07 254 | 99.34 227 | 98.99 25 | 99.61 73 | 99.82 49 | 97.98 101 | 99.87 118 | 97.00 249 | 99.80 82 | 99.85 14 |
|
testtj | | | 99.12 83 | 98.87 101 | 99.86 18 | 99.72 77 | 99.79 27 | 99.44 148 | 99.51 96 | 97.29 192 | 99.59 80 | 99.74 113 | 98.15 96 | 99.96 18 | 96.74 263 | 99.69 105 | 99.81 41 |
|
CHOSEN 280x420 | | | 99.12 83 | 99.13 62 | 99.08 156 | 99.66 105 | 97.89 225 | 98.43 328 | 99.71 13 | 98.88 37 | 99.62 71 | 99.76 102 | 96.63 140 | 99.70 195 | 99.46 14 | 99.99 1 | 99.66 105 |
|
DP-MVS Recon | | | 99.12 83 | 98.95 92 | 99.65 70 | 99.74 67 | 99.70 42 | 99.27 212 | 99.57 49 | 96.40 266 | 99.42 112 | 99.68 141 | 98.75 56 | 99.80 157 | 97.98 173 | 99.72 99 | 99.44 164 |
|
Vis-MVSNet | | | 99.12 83 | 98.97 88 | 99.56 88 | 99.78 44 | 99.10 126 | 99.68 40 | 99.66 27 | 98.49 65 | 99.86 11 | 99.87 20 | 94.77 203 | 99.84 132 | 99.19 37 | 99.41 131 | 99.74 70 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TAMVS | | | 99.12 83 | 99.08 69 | 99.24 145 | 99.46 161 | 98.55 185 | 99.51 113 | 99.46 162 | 98.09 107 | 99.45 104 | 99.82 49 | 98.34 85 | 99.51 223 | 98.70 100 | 98.93 166 | 99.67 102 |
|
VNet | | | 99.11 88 | 98.90 97 | 99.73 56 | 99.52 143 | 99.56 68 | 99.41 164 | 99.39 203 | 99.01 18 | 99.74 39 | 99.78 92 | 95.56 175 | 99.92 75 | 99.52 6 | 98.18 203 | 99.72 83 |
|
CPTT-MVS | | | 99.11 88 | 98.90 97 | 99.74 54 | 99.80 41 | 99.46 85 | 99.59 73 | 99.49 122 | 97.03 218 | 99.63 67 | 99.69 136 | 97.27 120 | 99.96 18 | 97.82 186 | 99.84 65 | 99.81 41 |
|
HyFIR lowres test | | | 99.11 88 | 98.92 94 | 99.65 70 | 99.90 3 | 99.37 93 | 99.02 268 | 99.91 3 | 97.67 155 | 99.59 80 | 99.75 107 | 95.90 165 | 99.73 179 | 99.53 5 | 99.02 161 | 99.86 11 |
|
MVS_Test | | | 99.10 91 | 98.97 88 | 99.48 107 | 99.49 154 | 99.14 121 | 99.67 42 | 99.34 227 | 97.31 190 | 99.58 82 | 99.76 102 | 97.65 109 | 99.82 148 | 98.87 74 | 99.07 157 | 99.46 161 |
|
1121 | | | 99.09 92 | 98.87 101 | 99.75 49 | 99.74 67 | 99.60 60 | 99.27 212 | 99.48 133 | 96.82 233 | 99.25 156 | 99.65 154 | 98.38 82 | 99.93 64 | 97.53 215 | 99.67 112 | 99.73 77 |
|
CDS-MVSNet | | | 99.09 92 | 99.03 76 | 99.25 143 | 99.42 168 | 98.73 171 | 99.45 144 | 99.46 162 | 98.11 104 | 99.46 103 | 99.77 98 | 98.01 100 | 99.37 244 | 98.70 100 | 98.92 168 | 99.66 105 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PVSNet_Blended | | | 99.08 94 | 98.97 88 | 99.42 119 | 99.76 52 | 98.79 168 | 98.78 304 | 99.91 3 | 96.74 235 | 99.67 56 | 99.49 215 | 97.53 110 | 99.88 114 | 98.98 57 | 99.85 58 | 99.60 125 |
|
OMC-MVS | | | 99.08 94 | 99.04 74 | 99.20 148 | 99.67 96 | 98.22 208 | 99.28 208 | 99.52 86 | 98.07 112 | 99.66 61 | 99.81 60 | 97.79 105 | 99.78 164 | 97.79 188 | 99.81 80 | 99.60 125 |
|
ETH3D cwj APD-0.16 | | | 99.06 96 | 98.84 107 | 99.72 59 | 99.51 145 | 99.60 60 | 99.23 225 | 99.44 182 | 97.04 216 | 99.39 123 | 99.67 147 | 98.30 87 | 99.92 75 | 97.27 231 | 99.69 105 | 99.64 115 |
|
WTY-MVS | | | 99.06 96 | 98.88 100 | 99.61 80 | 99.62 121 | 99.16 116 | 99.37 184 | 99.56 54 | 98.04 118 | 99.53 91 | 99.62 171 | 96.84 132 | 99.94 49 | 98.85 79 | 98.49 190 | 99.72 83 |
|
IS-MVSNet | | | 99.05 98 | 98.87 101 | 99.57 86 | 99.73 72 | 99.32 97 | 99.75 25 | 99.20 264 | 98.02 121 | 99.56 85 | 99.86 23 | 96.54 143 | 99.67 200 | 98.09 163 | 99.13 150 | 99.73 77 |
|
PAPM_NR | | | 99.04 99 | 98.84 107 | 99.66 66 | 99.74 67 | 99.44 87 | 99.39 176 | 99.38 209 | 97.70 151 | 99.28 146 | 99.28 271 | 98.34 85 | 99.85 127 | 96.96 253 | 99.45 128 | 99.69 95 |
|
API-MVS | | | 99.04 99 | 99.03 76 | 99.06 158 | 99.40 176 | 99.31 100 | 99.55 100 | 99.56 54 | 98.54 61 | 99.33 138 | 99.39 244 | 98.76 53 | 99.78 164 | 96.98 251 | 99.78 87 | 98.07 320 |
|
mvs_anonymous | | | 99.03 101 | 98.99 84 | 99.16 151 | 99.38 180 | 98.52 191 | 99.51 113 | 99.38 209 | 97.79 141 | 99.38 126 | 99.81 60 | 97.30 118 | 99.45 227 | 99.35 19 | 98.99 163 | 99.51 149 |
|
train_agg | | | 99.02 102 | 98.77 115 | 99.77 45 | 99.67 96 | 99.65 53 | 99.05 259 | 99.41 193 | 96.28 270 | 98.95 213 | 99.49 215 | 98.76 53 | 99.91 86 | 97.63 203 | 99.72 99 | 99.75 66 |
|
canonicalmvs | | | 99.02 102 | 98.86 105 | 99.51 103 | 99.42 168 | 99.32 97 | 99.80 16 | 99.48 133 | 98.63 56 | 99.31 140 | 98.81 311 | 97.09 124 | 99.75 171 | 99.27 31 | 97.90 213 | 99.47 159 |
|
PLC | | 97.94 4 | 99.02 102 | 98.85 106 | 99.53 96 | 99.66 105 | 99.01 135 | 99.24 224 | 99.52 86 | 96.85 230 | 99.27 149 | 99.48 221 | 98.25 90 | 99.91 86 | 97.76 191 | 99.62 120 | 99.65 109 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
agg_prior1 | | | 99.01 105 | 98.76 117 | 99.76 48 | 99.67 96 | 99.62 56 | 98.99 275 | 99.40 199 | 96.26 273 | 98.87 226 | 99.49 215 | 98.77 51 | 99.91 86 | 97.69 200 | 99.72 99 | 99.75 66 |
|
AdaColmap | | | 99.01 105 | 98.80 112 | 99.66 66 | 99.56 137 | 99.54 72 | 99.18 234 | 99.70 15 | 98.18 97 | 99.35 134 | 99.63 166 | 96.32 150 | 99.90 101 | 97.48 219 | 99.77 89 | 99.55 136 |
|
1112_ss | | | 98.98 107 | 98.77 115 | 99.59 82 | 99.68 95 | 99.02 133 | 99.25 222 | 99.48 133 | 97.23 199 | 99.13 179 | 99.58 184 | 96.93 131 | 99.90 101 | 98.87 74 | 98.78 177 | 99.84 18 |
|
MSDG | | | 98.98 107 | 98.80 112 | 99.53 96 | 99.76 52 | 99.19 111 | 98.75 307 | 99.55 61 | 97.25 196 | 99.47 101 | 99.77 98 | 97.82 104 | 99.87 118 | 96.93 256 | 99.90 23 | 99.54 138 |
|
CANet_DTU | | | 98.97 109 | 98.87 101 | 99.25 143 | 99.33 190 | 98.42 202 | 99.08 253 | 99.30 249 | 99.16 5 | 99.43 109 | 99.75 107 | 95.27 185 | 99.97 10 | 98.56 123 | 99.95 6 | 99.36 171 |
|
DPM-MVS | | | 98.95 110 | 98.71 121 | 99.66 66 | 99.63 115 | 99.55 70 | 98.64 317 | 99.10 273 | 97.93 126 | 99.42 112 | 99.55 194 | 98.67 65 | 99.80 157 | 95.80 285 | 99.68 110 | 99.61 123 |
|
114514_t | | | 98.93 111 | 98.67 125 | 99.72 59 | 99.85 25 | 99.53 75 | 99.62 61 | 99.59 42 | 92.65 324 | 99.71 43 | 99.78 92 | 98.06 99 | 99.90 101 | 98.84 81 | 99.91 16 | 99.74 70 |
|
PS-MVSNAJss | | | 98.92 112 | 98.92 94 | 98.90 185 | 98.78 291 | 98.53 187 | 99.78 19 | 99.54 68 | 98.07 112 | 99.00 206 | 99.76 102 | 99.01 16 | 99.37 244 | 99.13 44 | 97.23 245 | 98.81 215 |
|
Test_1112_low_res | | | 98.89 113 | 98.66 128 | 99.57 86 | 99.69 91 | 98.95 147 | 99.03 265 | 99.47 152 | 96.98 220 | 99.15 177 | 99.23 279 | 96.77 136 | 99.89 109 | 98.83 84 | 98.78 177 | 99.86 11 |
|
AllTest | | | 98.87 114 | 98.72 119 | 99.31 131 | 99.86 21 | 98.48 197 | 99.56 92 | 99.61 35 | 97.85 132 | 99.36 131 | 99.85 29 | 95.95 160 | 99.85 127 | 96.66 269 | 99.83 72 | 99.59 129 |
|
UGNet | | | 98.87 114 | 98.69 123 | 99.40 120 | 99.22 220 | 98.72 172 | 99.44 148 | 99.68 19 | 99.24 3 | 99.18 174 | 99.42 235 | 92.74 257 | 99.96 18 | 99.34 23 | 99.94 9 | 99.53 142 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Vis-MVSNet (Re-imp) | | | 98.87 114 | 98.72 119 | 99.31 131 | 99.71 83 | 98.88 156 | 99.80 16 | 99.44 182 | 97.91 128 | 99.36 131 | 99.78 92 | 95.49 178 | 99.43 236 | 97.91 178 | 99.11 151 | 99.62 121 |
|
test_yl | | | 98.86 117 | 98.63 130 | 99.54 90 | 99.49 154 | 99.18 113 | 99.50 119 | 99.07 279 | 98.22 91 | 99.61 73 | 99.51 209 | 95.37 181 | 99.84 132 | 98.60 115 | 98.33 193 | 99.59 129 |
|
DCV-MVSNet | | | 98.86 117 | 98.63 130 | 99.54 90 | 99.49 154 | 99.18 113 | 99.50 119 | 99.07 279 | 98.22 91 | 99.61 73 | 99.51 209 | 95.37 181 | 99.84 132 | 98.60 115 | 98.33 193 | 99.59 129 |
|
mvs-test1 | | | 98.86 117 | 98.84 107 | 98.89 188 | 99.33 190 | 97.77 231 | 99.44 148 | 99.30 249 | 98.47 66 | 99.10 186 | 99.43 232 | 96.78 134 | 99.95 41 | 98.73 96 | 99.02 161 | 98.96 207 |
|
EPNet | | | 98.86 117 | 98.71 121 | 99.30 135 | 97.20 335 | 98.18 209 | 99.62 61 | 98.91 296 | 99.28 2 | 98.63 262 | 99.81 60 | 95.96 159 | 99.99 1 | 99.24 33 | 99.72 99 | 99.73 77 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PVSNet_BlendedMVS | | | 98.86 117 | 98.80 112 | 99.03 163 | 99.76 52 | 98.79 168 | 99.28 208 | 99.91 3 | 97.42 182 | 99.67 56 | 99.37 248 | 97.53 110 | 99.88 114 | 98.98 57 | 97.29 244 | 98.42 305 |
|
ab-mvs | | | 98.86 117 | 98.63 130 | 99.54 90 | 99.64 112 | 99.19 111 | 99.44 148 | 99.54 68 | 97.77 143 | 99.30 141 | 99.81 60 | 94.20 225 | 99.93 64 | 99.17 40 | 98.82 174 | 99.49 153 |
|
MAR-MVS | | | 98.86 117 | 98.63 130 | 99.54 90 | 99.37 182 | 99.66 50 | 99.45 144 | 99.54 68 | 96.61 246 | 99.01 201 | 99.40 240 | 97.09 124 | 99.86 121 | 97.68 202 | 99.53 126 | 99.10 187 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
COLMAP_ROB | | 97.56 6 | 98.86 117 | 98.75 118 | 99.17 150 | 99.88 11 | 98.53 187 | 99.34 196 | 99.59 42 | 97.55 165 | 98.70 251 | 99.89 10 | 95.83 167 | 99.90 101 | 98.10 162 | 99.90 23 | 99.08 192 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
HY-MVS | | 97.30 7 | 98.85 125 | 98.64 129 | 99.47 110 | 99.42 168 | 99.08 128 | 99.62 61 | 99.36 218 | 97.39 185 | 99.28 146 | 99.68 141 | 96.44 147 | 99.92 75 | 98.37 142 | 98.22 199 | 99.40 169 |
|
PVSNet | | 96.02 17 | 98.85 125 | 98.84 107 | 98.89 188 | 99.73 72 | 97.28 244 | 98.32 331 | 99.60 39 | 97.86 130 | 99.50 96 | 99.57 188 | 96.75 137 | 99.86 121 | 98.56 123 | 99.70 104 | 99.54 138 |
|
PatchMatch-RL | | | 98.84 127 | 98.62 135 | 99.52 101 | 99.71 83 | 99.28 103 | 99.06 257 | 99.77 9 | 97.74 148 | 99.50 96 | 99.53 202 | 95.41 179 | 99.84 132 | 97.17 242 | 99.64 116 | 99.44 164 |
|
Effi-MVS+ | | | 98.81 128 | 98.59 140 | 99.48 107 | 99.46 161 | 99.12 125 | 98.08 337 | 99.50 114 | 97.50 173 | 99.38 126 | 99.41 238 | 96.37 149 | 99.81 152 | 99.11 46 | 98.54 187 | 99.51 149 |
|
alignmvs | | | 98.81 128 | 98.56 142 | 99.58 85 | 99.43 167 | 99.42 89 | 99.51 113 | 98.96 289 | 98.61 58 | 99.35 134 | 98.92 308 | 94.78 200 | 99.77 166 | 99.35 19 | 98.11 209 | 99.54 138 |
|
DeepPCF-MVS | | 98.18 3 | 98.81 128 | 99.37 19 | 97.12 305 | 99.60 128 | 91.75 336 | 98.61 318 | 99.44 182 | 99.35 1 | 99.83 17 | 99.85 29 | 98.70 61 | 99.81 152 | 99.02 54 | 99.91 16 | 99.81 41 |
|
PMMVS | | | 98.80 131 | 98.62 135 | 99.34 125 | 99.27 208 | 98.70 173 | 98.76 306 | 99.31 245 | 97.34 187 | 99.21 165 | 99.07 295 | 97.20 121 | 99.82 148 | 98.56 123 | 98.87 171 | 99.52 143 |
|
Effi-MVS+-dtu | | | 98.78 132 | 98.89 99 | 98.47 238 | 99.33 190 | 96.91 268 | 99.57 85 | 99.30 249 | 98.47 66 | 99.41 116 | 98.99 302 | 96.78 134 | 99.74 172 | 98.73 96 | 99.38 132 | 98.74 228 |
|
FIs | | | 98.78 132 | 98.63 130 | 99.23 147 | 99.18 229 | 99.54 72 | 99.83 9 | 99.59 42 | 98.28 84 | 98.79 238 | 99.81 60 | 96.75 137 | 99.37 244 | 99.08 49 | 96.38 262 | 98.78 218 |
|
Fast-Effi-MVS+-dtu | | | 98.77 134 | 98.83 111 | 98.60 221 | 99.41 171 | 96.99 262 | 99.52 109 | 99.49 122 | 98.11 104 | 99.24 157 | 99.34 257 | 96.96 130 | 99.79 160 | 97.95 176 | 99.45 128 | 99.02 200 |
|
FC-MVSNet-test | | | 98.75 135 | 98.62 135 | 99.15 153 | 99.08 251 | 99.45 86 | 99.86 5 | 99.60 39 | 98.23 90 | 98.70 251 | 99.82 49 | 96.80 133 | 99.22 273 | 99.07 50 | 96.38 262 | 98.79 217 |
|
XVG-OURS | | | 98.73 136 | 98.68 124 | 98.88 191 | 99.70 89 | 97.73 233 | 98.92 290 | 99.55 61 | 98.52 63 | 99.45 104 | 99.84 38 | 95.27 185 | 99.91 86 | 98.08 167 | 98.84 173 | 99.00 201 |
|
ETH3 D test6400 | | | 98.70 137 | 98.35 152 | 99.73 56 | 99.69 91 | 99.60 60 | 99.16 236 | 99.45 174 | 95.42 298 | 99.27 149 | 99.60 178 | 97.39 113 | 99.91 86 | 95.36 296 | 99.83 72 | 99.70 92 |
|
Fast-Effi-MVS+ | | | 98.70 137 | 98.43 147 | 99.51 103 | 99.51 145 | 99.28 103 | 99.52 109 | 99.47 152 | 96.11 287 | 99.01 201 | 99.34 257 | 96.20 154 | 99.84 132 | 97.88 180 | 98.82 174 | 99.39 170 |
|
XVG-OURS-SEG-HR | | | 98.69 139 | 98.62 135 | 98.89 188 | 99.71 83 | 97.74 232 | 99.12 244 | 99.54 68 | 98.44 72 | 99.42 112 | 99.71 125 | 94.20 225 | 99.92 75 | 98.54 127 | 98.90 170 | 99.00 201 |
|
1314 | | | 98.68 140 | 98.54 143 | 99.11 155 | 98.89 275 | 98.65 177 | 99.27 212 | 99.49 122 | 96.89 228 | 97.99 297 | 99.56 191 | 97.72 108 | 99.83 141 | 97.74 194 | 99.27 140 | 98.84 214 |
|
EI-MVSNet | | | 98.67 141 | 98.67 125 | 98.68 218 | 99.35 185 | 97.97 219 | 99.50 119 | 99.38 209 | 96.93 227 | 99.20 168 | 99.83 42 | 97.87 102 | 99.36 248 | 98.38 140 | 97.56 225 | 98.71 232 |
|
test_djsdf | | | 98.67 141 | 98.57 141 | 98.98 169 | 98.70 302 | 98.91 154 | 99.88 1 | 99.46 162 | 97.55 165 | 99.22 162 | 99.88 15 | 95.73 171 | 99.28 262 | 99.03 52 | 97.62 220 | 98.75 225 |
|
QAPM | | | 98.67 141 | 98.30 157 | 99.80 38 | 99.20 224 | 99.67 48 | 99.77 21 | 99.72 11 | 94.74 306 | 98.73 243 | 99.90 7 | 95.78 169 | 99.98 5 | 96.96 253 | 99.88 36 | 99.76 65 |
|
nrg030 | | | 98.64 144 | 98.42 148 | 99.28 140 | 99.05 257 | 99.69 43 | 99.81 12 | 99.46 162 | 98.04 118 | 99.01 201 | 99.82 49 | 96.69 139 | 99.38 241 | 99.34 23 | 94.59 301 | 98.78 218 |
|
PAPR | | | 98.63 145 | 98.34 153 | 99.51 103 | 99.40 176 | 99.03 132 | 98.80 302 | 99.36 218 | 96.33 267 | 99.00 206 | 99.12 293 | 98.46 75 | 99.84 132 | 95.23 298 | 99.37 136 | 99.66 105 |
|
RRT_MVS | | | 98.60 146 | 98.44 146 | 99.05 160 | 98.88 276 | 99.14 121 | 99.49 129 | 99.38 209 | 97.76 144 | 99.29 144 | 99.86 23 | 95.38 180 | 99.36 248 | 98.81 89 | 97.16 249 | 98.64 265 |
|
CVMVSNet | | | 98.57 147 | 98.67 125 | 98.30 256 | 99.35 185 | 95.59 299 | 99.50 119 | 99.55 61 | 98.60 59 | 99.39 123 | 99.83 42 | 94.48 217 | 99.45 227 | 98.75 93 | 98.56 186 | 99.85 14 |
|
MVSTER | | | 98.49 148 | 98.32 155 | 99.00 167 | 99.35 185 | 99.02 133 | 99.54 103 | 99.38 209 | 97.41 183 | 99.20 168 | 99.73 120 | 93.86 237 | 99.36 248 | 98.87 74 | 97.56 225 | 98.62 275 |
|
OpenMVS | | 96.50 16 | 98.47 149 | 98.12 166 | 99.52 101 | 99.04 258 | 99.53 75 | 99.82 10 | 99.72 11 | 94.56 309 | 98.08 292 | 99.88 15 | 94.73 206 | 99.98 5 | 97.47 221 | 99.76 92 | 99.06 196 |
|
IterMVS-LS | | | 98.46 150 | 98.42 148 | 98.58 223 | 99.59 130 | 98.00 217 | 99.37 184 | 99.43 189 | 96.94 226 | 99.07 192 | 99.59 181 | 97.87 102 | 99.03 299 | 98.32 148 | 95.62 282 | 98.71 232 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
anonymousdsp | | | 98.44 151 | 98.28 158 | 98.94 175 | 98.50 317 | 98.96 145 | 99.77 21 | 99.50 114 | 97.07 213 | 98.87 226 | 99.77 98 | 94.76 204 | 99.28 262 | 98.66 107 | 97.60 221 | 98.57 290 |
|
jajsoiax | | | 98.43 152 | 98.28 158 | 98.88 191 | 98.60 312 | 98.43 200 | 99.82 10 | 99.53 80 | 98.19 94 | 98.63 262 | 99.80 74 | 93.22 247 | 99.44 232 | 99.22 34 | 97.50 231 | 98.77 221 |
|
tttt0517 | | | 98.42 153 | 98.14 164 | 99.28 140 | 99.66 105 | 98.38 203 | 99.74 28 | 96.85 340 | 97.68 153 | 99.79 26 | 99.74 113 | 91.39 290 | 99.89 109 | 98.83 84 | 99.56 123 | 99.57 134 |
|
BH-untuned | | | 98.42 153 | 98.36 150 | 98.59 222 | 99.49 154 | 96.70 274 | 99.27 212 | 99.13 271 | 97.24 198 | 98.80 236 | 99.38 245 | 95.75 170 | 99.74 172 | 97.07 247 | 99.16 146 | 99.33 175 |
|
D2MVS | | | 98.41 155 | 98.50 144 | 98.15 267 | 99.26 210 | 96.62 278 | 99.40 172 | 99.61 35 | 97.71 150 | 98.98 209 | 99.36 251 | 96.04 157 | 99.67 200 | 98.70 100 | 97.41 240 | 98.15 318 |
|
BH-RMVSNet | | | 98.41 155 | 98.08 171 | 99.40 120 | 99.41 171 | 98.83 164 | 99.30 202 | 98.77 306 | 97.70 151 | 98.94 215 | 99.65 154 | 92.91 253 | 99.74 172 | 96.52 271 | 99.55 125 | 99.64 115 |
|
mvs_tets | | | 98.40 157 | 98.23 160 | 98.91 183 | 98.67 305 | 98.51 193 | 99.66 46 | 99.53 80 | 98.19 94 | 98.65 260 | 99.81 60 | 92.75 255 | 99.44 232 | 99.31 26 | 97.48 235 | 98.77 221 |
|
XXY-MVS | | | 98.38 158 | 98.09 170 | 99.24 145 | 99.26 210 | 99.32 97 | 99.56 92 | 99.55 61 | 97.45 177 | 98.71 245 | 99.83 42 | 93.23 245 | 99.63 213 | 98.88 70 | 96.32 264 | 98.76 223 |
|
ACMM | | 97.58 5 | 98.37 159 | 98.34 153 | 98.48 234 | 99.41 171 | 97.10 251 | 99.56 92 | 99.45 174 | 98.53 62 | 99.04 198 | 99.85 29 | 93.00 249 | 99.71 189 | 98.74 94 | 97.45 236 | 98.64 265 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
thisisatest0530 | | | 98.35 160 | 98.03 176 | 99.31 131 | 99.63 115 | 98.56 184 | 99.54 103 | 96.75 342 | 97.53 170 | 99.73 40 | 99.65 154 | 91.25 293 | 99.89 109 | 98.62 111 | 99.56 123 | 99.48 154 |
|
tpmrst | | | 98.33 161 | 98.48 145 | 97.90 283 | 99.16 237 | 94.78 317 | 99.31 200 | 99.11 272 | 97.27 194 | 99.45 104 | 99.59 181 | 95.33 183 | 99.84 132 | 98.48 130 | 98.61 180 | 99.09 191 |
|
baseline1 | | | 98.31 162 | 97.95 185 | 99.38 123 | 99.50 152 | 98.74 170 | 99.59 73 | 98.93 291 | 98.41 73 | 99.14 178 | 99.60 178 | 94.59 212 | 99.79 160 | 98.48 130 | 93.29 317 | 99.61 123 |
|
PatchmatchNet | | | 98.31 162 | 98.36 150 | 98.19 264 | 99.16 237 | 95.32 307 | 99.27 212 | 98.92 293 | 97.37 186 | 99.37 128 | 99.58 184 | 94.90 194 | 99.70 195 | 97.43 226 | 99.21 143 | 99.54 138 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Anonymous202405211 | | | 98.30 164 | 97.98 181 | 99.26 142 | 99.57 133 | 98.16 210 | 99.41 164 | 98.55 322 | 96.03 292 | 99.19 171 | 99.74 113 | 91.87 278 | 99.92 75 | 99.16 42 | 98.29 198 | 99.70 92 |
|
VPA-MVSNet | | | 98.29 165 | 97.95 185 | 99.30 135 | 99.16 237 | 99.54 72 | 99.50 119 | 99.58 48 | 98.27 85 | 99.35 134 | 99.37 248 | 92.53 266 | 99.65 206 | 99.35 19 | 94.46 302 | 98.72 230 |
|
UniMVSNet (Re) | | | 98.29 165 | 98.00 179 | 99.13 154 | 99.00 263 | 99.36 94 | 99.49 129 | 99.51 96 | 97.95 124 | 98.97 211 | 99.13 290 | 96.30 151 | 99.38 241 | 98.36 144 | 93.34 316 | 98.66 261 |
|
HQP_MVS | | | 98.27 167 | 98.22 161 | 98.44 243 | 99.29 203 | 96.97 264 | 99.39 176 | 99.47 152 | 98.97 30 | 99.11 183 | 99.61 175 | 92.71 260 | 99.69 198 | 97.78 189 | 97.63 218 | 98.67 253 |
|
UniMVSNet_NR-MVSNet | | | 98.22 168 | 97.97 182 | 98.96 172 | 98.92 273 | 98.98 138 | 99.48 135 | 99.53 80 | 97.76 144 | 98.71 245 | 99.46 228 | 96.43 148 | 99.22 273 | 98.57 120 | 92.87 323 | 98.69 240 |
|
LPG-MVS_test | | | 98.22 168 | 98.13 165 | 98.49 232 | 99.33 190 | 97.05 257 | 99.58 80 | 99.55 61 | 97.46 174 | 99.24 157 | 99.83 42 | 92.58 264 | 99.72 183 | 98.09 163 | 97.51 229 | 98.68 245 |
|
RPSCF | | | 98.22 168 | 98.62 135 | 96.99 306 | 99.82 37 | 91.58 337 | 99.72 29 | 99.44 182 | 96.61 246 | 99.66 61 | 99.89 10 | 95.92 163 | 99.82 148 | 97.46 222 | 99.10 154 | 99.57 134 |
|
ADS-MVSNet | | | 98.20 171 | 98.08 171 | 98.56 226 | 99.33 190 | 96.48 282 | 99.23 225 | 99.15 268 | 96.24 275 | 99.10 186 | 99.67 147 | 94.11 229 | 99.71 189 | 96.81 260 | 99.05 158 | 99.48 154 |
|
OPM-MVS | | | 98.19 172 | 98.10 167 | 98.45 240 | 98.88 276 | 97.07 255 | 99.28 208 | 99.38 209 | 98.57 60 | 99.22 162 | 99.81 60 | 92.12 275 | 99.66 203 | 98.08 167 | 97.54 227 | 98.61 284 |
|
SCA | | | 98.19 172 | 98.16 162 | 98.27 261 | 99.30 199 | 95.55 300 | 99.07 254 | 98.97 287 | 97.57 163 | 99.43 109 | 99.57 188 | 92.72 258 | 99.74 172 | 97.58 207 | 99.20 144 | 99.52 143 |
|
miper_ehance_all_eth | | | 98.18 174 | 98.10 167 | 98.41 245 | 99.23 216 | 97.72 234 | 98.72 310 | 99.31 245 | 96.60 248 | 98.88 224 | 99.29 269 | 97.29 119 | 99.13 286 | 97.60 205 | 95.99 271 | 98.38 310 |
|
CR-MVSNet | | | 98.17 175 | 97.93 188 | 98.87 195 | 99.18 229 | 98.49 195 | 99.22 230 | 99.33 234 | 96.96 222 | 99.56 85 | 99.38 245 | 94.33 221 | 99.00 304 | 94.83 304 | 98.58 183 | 99.14 183 |
|
miper_enhance_ethall | | | 98.16 176 | 98.08 171 | 98.41 245 | 98.96 270 | 97.72 234 | 98.45 327 | 99.32 242 | 96.95 224 | 98.97 211 | 99.17 285 | 97.06 126 | 99.22 273 | 97.86 182 | 95.99 271 | 98.29 313 |
|
CLD-MVS | | | 98.16 176 | 98.10 167 | 98.33 252 | 99.29 203 | 96.82 271 | 98.75 307 | 99.44 182 | 97.83 135 | 99.13 179 | 99.55 194 | 92.92 251 | 99.67 200 | 98.32 148 | 97.69 217 | 98.48 296 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
thisisatest0515 | | | 98.14 178 | 97.79 199 | 99.19 149 | 99.50 152 | 98.50 194 | 98.61 318 | 96.82 341 | 96.95 224 | 99.54 89 | 99.43 232 | 91.66 286 | 99.86 121 | 98.08 167 | 99.51 127 | 99.22 180 |
|
pmmvs4 | | | 98.13 179 | 97.90 190 | 98.81 207 | 98.61 311 | 98.87 157 | 98.99 275 | 99.21 263 | 96.44 262 | 99.06 196 | 99.58 184 | 95.90 165 | 99.11 291 | 97.18 241 | 96.11 267 | 98.46 302 |
|
WR-MVS_H | | | 98.13 179 | 97.87 195 | 98.90 185 | 99.02 261 | 98.84 161 | 99.70 33 | 99.59 42 | 97.27 194 | 98.40 277 | 99.19 284 | 95.53 176 | 99.23 270 | 98.34 145 | 93.78 313 | 98.61 284 |
|
cl_fuxian | | | 98.12 181 | 98.04 175 | 98.38 249 | 99.30 199 | 97.69 237 | 98.81 301 | 99.33 234 | 96.67 240 | 98.83 232 | 99.34 257 | 97.11 123 | 98.99 306 | 97.58 207 | 95.34 288 | 98.48 296 |
|
ACMH | | 97.28 8 | 98.10 182 | 97.99 180 | 98.44 243 | 99.41 171 | 96.96 266 | 99.60 68 | 99.56 54 | 98.09 107 | 98.15 290 | 99.91 5 | 90.87 297 | 99.70 195 | 98.88 70 | 97.45 236 | 98.67 253 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20240529 | | | 98.09 183 | 97.68 214 | 99.34 125 | 99.66 105 | 98.44 199 | 99.40 172 | 99.43 189 | 93.67 316 | 99.22 162 | 99.89 10 | 90.23 303 | 99.93 64 | 99.26 32 | 98.33 193 | 99.66 105 |
|
CP-MVSNet | | | 98.09 183 | 97.78 202 | 99.01 165 | 98.97 269 | 99.24 108 | 99.67 42 | 99.46 162 | 97.25 196 | 98.48 273 | 99.64 161 | 93.79 238 | 99.06 295 | 98.63 110 | 94.10 309 | 98.74 228 |
|
DU-MVS | | | 98.08 185 | 97.79 199 | 98.96 172 | 98.87 280 | 98.98 138 | 99.41 164 | 99.45 174 | 97.87 129 | 98.71 245 | 99.50 212 | 94.82 197 | 99.22 273 | 98.57 120 | 92.87 323 | 98.68 245 |
|
v2v482 | | | 98.06 186 | 97.77 204 | 98.92 179 | 98.90 274 | 98.82 165 | 99.57 85 | 99.36 218 | 96.65 242 | 99.19 171 | 99.35 254 | 94.20 225 | 99.25 268 | 97.72 197 | 94.97 296 | 98.69 240 |
|
V42 | | | 98.06 186 | 97.79 199 | 98.86 199 | 98.98 267 | 98.84 161 | 99.69 35 | 99.34 227 | 96.53 253 | 99.30 141 | 99.37 248 | 94.67 209 | 99.32 257 | 97.57 211 | 94.66 299 | 98.42 305 |
|
test-LLR | | | 98.06 186 | 97.90 190 | 98.55 228 | 98.79 288 | 97.10 251 | 98.67 313 | 97.75 333 | 97.34 187 | 98.61 265 | 98.85 309 | 94.45 218 | 99.45 227 | 97.25 233 | 99.38 132 | 99.10 187 |
|
WR-MVS | | | 98.06 186 | 97.73 210 | 99.06 158 | 98.86 283 | 99.25 107 | 99.19 233 | 99.35 223 | 97.30 191 | 98.66 254 | 99.43 232 | 93.94 234 | 99.21 278 | 98.58 118 | 94.28 306 | 98.71 232 |
|
ACMP | | 97.20 11 | 98.06 186 | 97.94 187 | 98.45 240 | 99.37 182 | 97.01 260 | 99.44 148 | 99.49 122 | 97.54 168 | 98.45 274 | 99.79 86 | 91.95 277 | 99.72 183 | 97.91 178 | 97.49 234 | 98.62 275 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
eth_miper_zixun_eth | | | 98.05 191 | 97.96 183 | 98.33 252 | 99.26 210 | 97.38 242 | 98.56 323 | 99.31 245 | 96.65 242 | 98.88 224 | 99.52 205 | 96.58 141 | 99.12 290 | 97.39 228 | 95.53 285 | 98.47 298 |
|
EPNet_dtu | | | 98.03 192 | 97.96 183 | 98.23 262 | 98.27 321 | 95.54 302 | 99.23 225 | 98.75 307 | 99.02 15 | 97.82 302 | 99.71 125 | 96.11 155 | 99.48 224 | 93.04 322 | 99.65 115 | 99.69 95 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
FMVSNet3 | | | 98.03 192 | 97.76 207 | 98.84 203 | 99.39 179 | 98.98 138 | 99.40 172 | 99.38 209 | 96.67 240 | 99.07 192 | 99.28 271 | 92.93 250 | 98.98 307 | 97.10 244 | 96.65 254 | 98.56 291 |
|
ADS-MVSNet2 | | | 98.02 194 | 98.07 174 | 97.87 284 | 99.33 190 | 95.19 310 | 99.23 225 | 99.08 276 | 96.24 275 | 99.10 186 | 99.67 147 | 94.11 229 | 98.93 316 | 96.81 260 | 99.05 158 | 99.48 154 |
|
HQP-MVS | | | 98.02 194 | 97.90 190 | 98.37 250 | 99.19 226 | 96.83 269 | 98.98 279 | 99.39 203 | 98.24 87 | 98.66 254 | 99.40 240 | 92.47 268 | 99.64 208 | 97.19 239 | 97.58 223 | 98.64 265 |
|
LTVRE_ROB | | 97.16 12 | 98.02 194 | 97.90 190 | 98.40 247 | 99.23 216 | 96.80 272 | 99.70 33 | 99.60 39 | 97.12 208 | 98.18 289 | 99.70 129 | 91.73 282 | 99.72 183 | 98.39 138 | 97.45 236 | 98.68 245 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
cl-mvsnet_ | | | 98.01 197 | 97.84 197 | 98.55 228 | 99.25 214 | 97.97 219 | 98.71 311 | 99.34 227 | 96.47 261 | 98.59 268 | 99.54 199 | 95.65 174 | 99.21 278 | 97.21 235 | 95.77 277 | 98.46 302 |
|
cl-mvsnet1 | | | 98.01 197 | 97.85 196 | 98.48 234 | 99.24 215 | 97.95 223 | 98.71 311 | 99.35 223 | 96.50 254 | 98.60 267 | 99.54 199 | 95.72 172 | 99.03 299 | 97.21 235 | 95.77 277 | 98.46 302 |
|
miper_lstm_enhance | | | 98.00 199 | 97.91 189 | 98.28 260 | 99.34 189 | 97.43 241 | 98.88 294 | 99.36 218 | 96.48 259 | 98.80 236 | 99.55 194 | 95.98 158 | 98.91 317 | 97.27 231 | 95.50 286 | 98.51 294 |
|
BH-w/o | | | 98.00 199 | 97.89 194 | 98.32 254 | 99.35 185 | 96.20 291 | 99.01 273 | 98.90 298 | 96.42 264 | 98.38 278 | 99.00 301 | 95.26 187 | 99.72 183 | 96.06 279 | 98.61 180 | 99.03 198 |
|
v1144 | | | 97.98 201 | 97.69 213 | 98.85 202 | 98.87 280 | 98.66 176 | 99.54 103 | 99.35 223 | 96.27 272 | 99.23 161 | 99.35 254 | 94.67 209 | 99.23 270 | 96.73 264 | 95.16 292 | 98.68 245 |
|
EU-MVSNet | | | 97.98 201 | 98.03 176 | 97.81 289 | 98.72 299 | 96.65 277 | 99.66 46 | 99.66 27 | 98.09 107 | 98.35 281 | 99.82 49 | 95.25 188 | 98.01 328 | 97.41 227 | 95.30 289 | 98.78 218 |
|
tpmvs | | | 97.98 201 | 98.02 178 | 97.84 286 | 99.04 258 | 94.73 318 | 99.31 200 | 99.20 264 | 96.10 291 | 98.76 241 | 99.42 235 | 94.94 192 | 99.81 152 | 96.97 252 | 98.45 191 | 98.97 205 |
|
NR-MVSNet | | | 97.97 204 | 97.61 221 | 99.02 164 | 98.87 280 | 99.26 106 | 99.47 140 | 99.42 191 | 97.63 158 | 97.08 313 | 99.50 212 | 95.07 191 | 99.13 286 | 97.86 182 | 93.59 314 | 98.68 245 |
|
v8 | | | 97.95 205 | 97.63 220 | 98.93 177 | 98.95 271 | 98.81 167 | 99.80 16 | 99.41 193 | 96.03 292 | 99.10 186 | 99.42 235 | 94.92 193 | 99.30 260 | 96.94 255 | 94.08 310 | 98.66 261 |
|
Patchmatch-test | | | 97.93 206 | 97.65 217 | 98.77 212 | 99.18 229 | 97.07 255 | 99.03 265 | 99.14 270 | 96.16 282 | 98.74 242 | 99.57 188 | 94.56 214 | 99.72 183 | 93.36 318 | 99.11 151 | 99.52 143 |
|
PS-CasMVS | | | 97.93 206 | 97.59 224 | 98.95 174 | 98.99 264 | 99.06 130 | 99.68 40 | 99.52 86 | 97.13 206 | 98.31 283 | 99.68 141 | 92.44 272 | 99.05 296 | 98.51 128 | 94.08 310 | 98.75 225 |
|
TranMVSNet+NR-MVSNet | | | 97.93 206 | 97.66 216 | 98.76 213 | 98.78 291 | 98.62 180 | 99.65 53 | 99.49 122 | 97.76 144 | 98.49 272 | 99.60 178 | 94.23 224 | 98.97 314 | 98.00 172 | 92.90 321 | 98.70 236 |
|
v144192 | | | 97.92 209 | 97.60 222 | 98.87 195 | 98.83 286 | 98.65 177 | 99.55 100 | 99.34 227 | 96.20 278 | 99.32 139 | 99.40 240 | 94.36 220 | 99.26 267 | 96.37 276 | 95.03 295 | 98.70 236 |
|
ACMH+ | | 97.24 10 | 97.92 209 | 97.78 202 | 98.32 254 | 99.46 161 | 96.68 276 | 99.56 92 | 99.54 68 | 98.41 73 | 97.79 304 | 99.87 20 | 90.18 304 | 99.66 203 | 98.05 171 | 97.18 248 | 98.62 275 |
|
LFMVS | | | 97.90 211 | 97.35 255 | 99.54 90 | 99.52 143 | 99.01 135 | 99.39 176 | 98.24 326 | 97.10 212 | 99.65 64 | 99.79 86 | 84.79 334 | 99.91 86 | 99.28 29 | 98.38 192 | 99.69 95 |
|
Anonymous20231211 | | | 97.88 212 | 97.54 228 | 98.90 185 | 99.71 83 | 98.53 187 | 99.48 135 | 99.57 49 | 94.16 312 | 98.81 234 | 99.68 141 | 93.23 245 | 99.42 237 | 98.84 81 | 94.42 304 | 98.76 223 |
|
OurMVSNet-221017-0 | | | 97.88 212 | 97.77 204 | 98.19 264 | 98.71 301 | 96.53 280 | 99.88 1 | 99.00 284 | 97.79 141 | 98.78 239 | 99.94 3 | 91.68 283 | 99.35 252 | 97.21 235 | 96.99 252 | 98.69 240 |
|
v7n | | | 97.87 214 | 97.52 229 | 98.92 179 | 98.76 295 | 98.58 183 | 99.84 6 | 99.46 162 | 96.20 278 | 98.91 219 | 99.70 129 | 94.89 195 | 99.44 232 | 96.03 280 | 93.89 312 | 98.75 225 |
|
baseline2 | | | 97.87 214 | 97.55 225 | 98.82 205 | 99.18 229 | 98.02 216 | 99.41 164 | 96.58 344 | 96.97 221 | 96.51 318 | 99.17 285 | 93.43 242 | 99.57 218 | 97.71 198 | 99.03 160 | 98.86 212 |
|
thres600view7 | | | 97.86 216 | 97.51 231 | 98.92 179 | 99.72 77 | 97.95 223 | 99.59 73 | 98.74 310 | 97.94 125 | 99.27 149 | 98.62 318 | 91.75 280 | 99.86 121 | 93.73 315 | 98.19 202 | 98.96 207 |
|
cl-mvsnet2 | | | 97.85 217 | 97.64 219 | 98.48 234 | 99.09 249 | 97.87 226 | 98.60 320 | 99.33 234 | 97.11 211 | 98.87 226 | 99.22 280 | 92.38 273 | 99.17 282 | 98.21 153 | 95.99 271 | 98.42 305 |
|
v10 | | | 97.85 217 | 97.52 229 | 98.86 199 | 98.99 264 | 98.67 175 | 99.75 25 | 99.41 193 | 95.70 295 | 98.98 209 | 99.41 238 | 94.75 205 | 99.23 270 | 96.01 281 | 94.63 300 | 98.67 253 |
|
GA-MVS | | | 97.85 217 | 97.47 235 | 99.00 167 | 99.38 180 | 97.99 218 | 98.57 321 | 99.15 268 | 97.04 216 | 98.90 221 | 99.30 267 | 89.83 306 | 99.38 241 | 96.70 266 | 98.33 193 | 99.62 121 |
|
tfpnnormal | | | 97.84 220 | 97.47 235 | 98.98 169 | 99.20 224 | 99.22 110 | 99.64 55 | 99.61 35 | 96.32 268 | 98.27 286 | 99.70 129 | 93.35 244 | 99.44 232 | 95.69 287 | 95.40 287 | 98.27 314 |
|
VPNet | | | 97.84 220 | 97.44 243 | 99.01 165 | 99.21 222 | 98.94 150 | 99.48 135 | 99.57 49 | 98.38 75 | 99.28 146 | 99.73 120 | 88.89 314 | 99.39 239 | 99.19 37 | 93.27 318 | 98.71 232 |
|
LCM-MVSNet-Re | | | 97.83 222 | 98.15 163 | 96.87 310 | 99.30 199 | 92.25 335 | 99.59 73 | 98.26 325 | 97.43 180 | 96.20 321 | 99.13 290 | 96.27 152 | 98.73 322 | 98.17 158 | 98.99 163 | 99.64 115 |
|
XVG-ACMP-BASELINE | | | 97.83 222 | 97.71 212 | 98.20 263 | 99.11 244 | 96.33 287 | 99.41 164 | 99.52 86 | 98.06 116 | 99.05 197 | 99.50 212 | 89.64 308 | 99.73 179 | 97.73 195 | 97.38 242 | 98.53 292 |
|
IterMVS | | | 97.83 222 | 97.77 204 | 98.02 274 | 99.58 131 | 96.27 289 | 99.02 268 | 99.48 133 | 97.22 200 | 98.71 245 | 99.70 129 | 92.75 255 | 99.13 286 | 97.46 222 | 96.00 270 | 98.67 253 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 97.82 225 | 97.75 208 | 98.06 271 | 99.57 133 | 96.36 286 | 99.02 268 | 99.49 122 | 97.18 202 | 98.71 245 | 99.72 124 | 92.72 258 | 99.14 283 | 97.44 225 | 95.86 276 | 98.67 253 |
|
EPMVS | | | 97.82 225 | 97.65 217 | 98.35 251 | 98.88 276 | 95.98 294 | 99.49 129 | 94.71 348 | 97.57 163 | 99.26 154 | 99.48 221 | 92.46 271 | 99.71 189 | 97.87 181 | 99.08 156 | 99.35 172 |
|
MVP-Stereo | | | 97.81 227 | 97.75 208 | 97.99 277 | 97.53 328 | 96.60 279 | 98.96 283 | 98.85 302 | 97.22 200 | 97.23 310 | 99.36 251 | 95.28 184 | 99.46 226 | 95.51 291 | 99.78 87 | 97.92 328 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
v1192 | | | 97.81 227 | 97.44 243 | 98.91 183 | 98.88 276 | 98.68 174 | 99.51 113 | 99.34 227 | 96.18 280 | 99.20 168 | 99.34 257 | 94.03 232 | 99.36 248 | 95.32 297 | 95.18 291 | 98.69 240 |
|
v1921920 | | | 97.80 229 | 97.45 238 | 98.84 203 | 98.80 287 | 98.53 187 | 99.52 109 | 99.34 227 | 96.15 284 | 99.24 157 | 99.47 224 | 93.98 233 | 99.29 261 | 95.40 294 | 95.13 293 | 98.69 240 |
|
v148 | | | 97.79 230 | 97.55 225 | 98.50 231 | 98.74 296 | 97.72 234 | 99.54 103 | 99.33 234 | 96.26 273 | 98.90 221 | 99.51 209 | 94.68 208 | 99.14 283 | 97.83 185 | 93.15 320 | 98.63 273 |
|
thres400 | | | 97.77 231 | 97.38 251 | 98.92 179 | 99.69 91 | 97.96 221 | 99.50 119 | 98.73 315 | 97.83 135 | 99.17 175 | 98.45 323 | 91.67 284 | 99.83 141 | 93.22 319 | 98.18 203 | 98.96 207 |
|
thres100view900 | | | 97.76 232 | 97.45 238 | 98.69 217 | 99.72 77 | 97.86 228 | 99.59 73 | 98.74 310 | 97.93 126 | 99.26 154 | 98.62 318 | 91.75 280 | 99.83 141 | 93.22 319 | 98.18 203 | 98.37 311 |
|
PEN-MVS | | | 97.76 232 | 97.44 243 | 98.72 215 | 98.77 294 | 98.54 186 | 99.78 19 | 99.51 96 | 97.06 215 | 98.29 285 | 99.64 161 | 92.63 263 | 98.89 319 | 98.09 163 | 93.16 319 | 98.72 230 |
|
Baseline_NR-MVSNet | | | 97.76 232 | 97.45 238 | 98.68 218 | 99.09 249 | 98.29 205 | 99.41 164 | 98.85 302 | 95.65 296 | 98.63 262 | 99.67 147 | 94.82 197 | 99.10 293 | 98.07 170 | 92.89 322 | 98.64 265 |
|
TR-MVS | | | 97.76 232 | 97.41 248 | 98.82 205 | 99.06 254 | 97.87 226 | 98.87 296 | 98.56 321 | 96.63 245 | 98.68 253 | 99.22 280 | 92.49 267 | 99.65 206 | 95.40 294 | 97.79 215 | 98.95 210 |
|
Patchmtry | | | 97.75 236 | 97.40 249 | 98.81 207 | 99.10 247 | 98.87 157 | 99.11 250 | 99.33 234 | 94.83 304 | 98.81 234 | 99.38 245 | 94.33 221 | 99.02 301 | 96.10 278 | 95.57 283 | 98.53 292 |
|
dp | | | 97.75 236 | 97.80 198 | 97.59 296 | 99.10 247 | 93.71 327 | 99.32 198 | 98.88 300 | 96.48 259 | 99.08 191 | 99.55 194 | 92.67 262 | 99.82 148 | 96.52 271 | 98.58 183 | 99.24 179 |
|
TAPA-MVS | | 97.07 15 | 97.74 238 | 97.34 258 | 98.94 175 | 99.70 89 | 97.53 238 | 99.25 222 | 99.51 96 | 91.90 326 | 99.30 141 | 99.63 166 | 98.78 48 | 99.64 208 | 88.09 336 | 99.87 40 | 99.65 109 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
VDD-MVS | | | 97.73 239 | 97.35 255 | 98.88 191 | 99.47 160 | 97.12 250 | 99.34 196 | 98.85 302 | 98.19 94 | 99.67 56 | 99.85 29 | 82.98 336 | 99.92 75 | 99.49 12 | 98.32 197 | 99.60 125 |
|
MIMVSNet | | | 97.73 239 | 97.45 238 | 98.57 224 | 99.45 166 | 97.50 239 | 99.02 268 | 98.98 286 | 96.11 287 | 99.41 116 | 99.14 289 | 90.28 299 | 98.74 321 | 95.74 286 | 98.93 166 | 99.47 159 |
|
tfpn200view9 | | | 97.72 241 | 97.38 251 | 98.72 215 | 99.69 91 | 97.96 221 | 99.50 119 | 98.73 315 | 97.83 135 | 99.17 175 | 98.45 323 | 91.67 284 | 99.83 141 | 93.22 319 | 98.18 203 | 98.37 311 |
|
RRT_test8_iter05 | | | 97.72 241 | 97.60 222 | 98.08 269 | 99.23 216 | 96.08 293 | 99.63 57 | 99.49 122 | 97.54 168 | 98.94 215 | 99.81 60 | 87.99 325 | 99.35 252 | 99.21 36 | 96.51 259 | 98.81 215 |
|
CostFormer | | | 97.72 241 | 97.73 210 | 97.71 293 | 99.15 240 | 94.02 324 | 99.54 103 | 99.02 283 | 94.67 307 | 99.04 198 | 99.35 254 | 92.35 274 | 99.77 166 | 98.50 129 | 97.94 212 | 99.34 174 |
|
FMVSNet2 | | | 97.72 241 | 97.36 253 | 98.80 209 | 99.51 145 | 98.84 161 | 99.45 144 | 99.42 191 | 96.49 255 | 98.86 231 | 99.29 269 | 90.26 300 | 98.98 307 | 96.44 273 | 96.56 257 | 98.58 289 |
|
test0.0.03 1 | | | 97.71 245 | 97.42 247 | 98.56 226 | 98.41 320 | 97.82 229 | 98.78 304 | 98.63 319 | 97.34 187 | 98.05 296 | 98.98 305 | 94.45 218 | 98.98 307 | 95.04 301 | 97.15 250 | 98.89 211 |
|
v1240 | | | 97.69 246 | 97.32 261 | 98.79 210 | 98.85 284 | 98.43 200 | 99.48 135 | 99.36 218 | 96.11 287 | 99.27 149 | 99.36 251 | 93.76 240 | 99.24 269 | 94.46 307 | 95.23 290 | 98.70 236 |
|
cascas | | | 97.69 246 | 97.43 246 | 98.48 234 | 98.60 312 | 97.30 243 | 98.18 336 | 99.39 203 | 92.96 323 | 98.41 276 | 98.78 314 | 93.77 239 | 99.27 265 | 98.16 159 | 98.61 180 | 98.86 212 |
|
pm-mvs1 | | | 97.68 248 | 97.28 264 | 98.88 191 | 99.06 254 | 98.62 180 | 99.50 119 | 99.45 174 | 96.32 268 | 97.87 300 | 99.79 86 | 92.47 268 | 99.35 252 | 97.54 214 | 93.54 315 | 98.67 253 |
|
GBi-Net | | | 97.68 248 | 97.48 233 | 98.29 257 | 99.51 145 | 97.26 246 | 99.43 154 | 99.48 133 | 96.49 255 | 99.07 192 | 99.32 264 | 90.26 300 | 98.98 307 | 97.10 244 | 96.65 254 | 98.62 275 |
|
test1 | | | 97.68 248 | 97.48 233 | 98.29 257 | 99.51 145 | 97.26 246 | 99.43 154 | 99.48 133 | 96.49 255 | 99.07 192 | 99.32 264 | 90.26 300 | 98.98 307 | 97.10 244 | 96.65 254 | 98.62 275 |
|
tpm | | | 97.67 251 | 97.55 225 | 98.03 272 | 99.02 261 | 95.01 313 | 99.43 154 | 98.54 323 | 96.44 262 | 99.12 181 | 99.34 257 | 91.83 279 | 99.60 216 | 97.75 193 | 96.46 260 | 99.48 154 |
|
PCF-MVS | | 97.08 14 | 97.66 252 | 97.06 271 | 99.47 110 | 99.61 125 | 99.09 127 | 98.04 338 | 99.25 259 | 91.24 329 | 98.51 271 | 99.70 129 | 94.55 215 | 99.91 86 | 92.76 324 | 99.85 58 | 99.42 166 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
our_test_3 | | | 97.65 253 | 97.68 214 | 97.55 298 | 98.62 309 | 94.97 314 | 98.84 298 | 99.30 249 | 96.83 232 | 98.19 288 | 99.34 257 | 97.01 128 | 99.02 301 | 95.00 302 | 96.01 269 | 98.64 265 |
|
testgi | | | 97.65 253 | 97.50 232 | 98.13 268 | 99.36 184 | 96.45 283 | 99.42 161 | 99.48 133 | 97.76 144 | 97.87 300 | 99.45 229 | 91.09 294 | 98.81 320 | 94.53 306 | 98.52 188 | 99.13 185 |
|
thres200 | | | 97.61 255 | 97.28 264 | 98.62 220 | 99.64 112 | 98.03 215 | 99.26 220 | 98.74 310 | 97.68 153 | 99.09 190 | 98.32 325 | 91.66 286 | 99.81 152 | 92.88 323 | 98.22 199 | 98.03 322 |
|
PAPM | | | 97.59 256 | 97.09 270 | 99.07 157 | 99.06 254 | 98.26 207 | 98.30 332 | 99.10 273 | 94.88 303 | 98.08 292 | 99.34 257 | 96.27 152 | 99.64 208 | 89.87 331 | 98.92 168 | 99.31 176 |
|
VDDNet | | | 97.55 257 | 97.02 272 | 99.16 151 | 99.49 154 | 98.12 214 | 99.38 181 | 99.30 249 | 95.35 299 | 99.68 50 | 99.90 7 | 82.62 338 | 99.93 64 | 99.31 26 | 98.13 208 | 99.42 166 |
|
TESTMET0.1,1 | | | 97.55 257 | 97.27 266 | 98.40 247 | 98.93 272 | 96.53 280 | 98.67 313 | 97.61 336 | 96.96 222 | 98.64 261 | 99.28 271 | 88.63 318 | 99.45 227 | 97.30 230 | 99.38 132 | 99.21 181 |
|
DWT-MVSNet_test | | | 97.53 259 | 97.40 249 | 97.93 280 | 99.03 260 | 94.86 316 | 99.57 85 | 98.63 319 | 96.59 251 | 98.36 280 | 98.79 312 | 89.32 310 | 99.74 172 | 98.14 161 | 98.16 207 | 99.20 182 |
|
pmmvs5 | | | 97.52 260 | 97.30 263 | 98.16 266 | 98.57 314 | 96.73 273 | 99.27 212 | 98.90 298 | 96.14 285 | 98.37 279 | 99.53 202 | 91.54 289 | 99.14 283 | 97.51 217 | 95.87 275 | 98.63 273 |
|
LF4IMVS | | | 97.52 260 | 97.46 237 | 97.70 294 | 98.98 267 | 95.55 300 | 99.29 206 | 98.82 305 | 98.07 112 | 98.66 254 | 99.64 161 | 89.97 305 | 99.61 215 | 97.01 248 | 96.68 253 | 97.94 326 |
|
DTE-MVSNet | | | 97.51 262 | 97.19 268 | 98.46 239 | 98.63 308 | 98.13 213 | 99.84 6 | 99.48 133 | 96.68 239 | 97.97 298 | 99.67 147 | 92.92 251 | 98.56 323 | 96.88 259 | 92.60 326 | 98.70 236 |
|
SixPastTwentyTwo | | | 97.50 263 | 97.33 260 | 98.03 272 | 98.65 306 | 96.23 290 | 99.77 21 | 98.68 318 | 97.14 205 | 97.90 299 | 99.93 4 | 90.45 298 | 99.18 281 | 97.00 249 | 96.43 261 | 98.67 253 |
|
JIA-IIPM | | | 97.50 263 | 97.02 272 | 98.93 177 | 98.73 297 | 97.80 230 | 99.30 202 | 98.97 287 | 91.73 327 | 98.91 219 | 94.86 339 | 95.10 190 | 99.71 189 | 97.58 207 | 97.98 211 | 99.28 178 |
|
ppachtmachnet_test | | | 97.49 265 | 97.45 238 | 97.61 295 | 98.62 309 | 95.24 308 | 98.80 302 | 99.46 162 | 96.11 287 | 98.22 287 | 99.62 171 | 96.45 146 | 98.97 314 | 93.77 314 | 95.97 274 | 98.61 284 |
|
test-mter | | | 97.49 265 | 97.13 269 | 98.55 228 | 98.79 288 | 97.10 251 | 98.67 313 | 97.75 333 | 96.65 242 | 98.61 265 | 98.85 309 | 88.23 322 | 99.45 227 | 97.25 233 | 99.38 132 | 99.10 187 |
|
tpm2 | | | 97.44 267 | 97.34 258 | 97.74 292 | 99.15 240 | 94.36 321 | 99.45 144 | 98.94 290 | 93.45 321 | 98.90 221 | 99.44 230 | 91.35 291 | 99.59 217 | 97.31 229 | 98.07 210 | 99.29 177 |
|
tpm cat1 | | | 97.39 268 | 97.36 253 | 97.50 300 | 99.17 235 | 93.73 326 | 99.43 154 | 99.31 245 | 91.27 328 | 98.71 245 | 99.08 294 | 94.31 223 | 99.77 166 | 96.41 275 | 98.50 189 | 99.00 201 |
|
USDC | | | 97.34 269 | 97.20 267 | 97.75 291 | 99.07 252 | 95.20 309 | 98.51 325 | 99.04 282 | 97.99 122 | 98.31 283 | 99.86 23 | 89.02 312 | 99.55 221 | 95.67 289 | 97.36 243 | 98.49 295 |
|
UniMVSNet_ETH3D | | | 97.32 270 | 96.81 275 | 98.87 195 | 99.40 176 | 97.46 240 | 99.51 113 | 99.53 80 | 95.86 294 | 98.54 270 | 99.77 98 | 82.44 339 | 99.66 203 | 98.68 105 | 97.52 228 | 99.50 152 |
|
MVS | | | 97.28 271 | 96.55 278 | 99.48 107 | 98.78 291 | 98.95 147 | 99.27 212 | 99.39 203 | 83.53 339 | 98.08 292 | 99.54 199 | 96.97 129 | 99.87 118 | 94.23 310 | 99.16 146 | 99.63 119 |
|
DSMNet-mixed | | | 97.25 272 | 97.35 255 | 96.95 308 | 97.84 326 | 93.61 329 | 99.57 85 | 96.63 343 | 96.13 286 | 98.87 226 | 98.61 320 | 94.59 212 | 97.70 335 | 95.08 300 | 98.86 172 | 99.55 136 |
|
MS-PatchMatch | | | 97.24 273 | 97.32 261 | 96.99 306 | 98.45 319 | 93.51 330 | 98.82 300 | 99.32 242 | 97.41 183 | 98.13 291 | 99.30 267 | 88.99 313 | 99.56 219 | 95.68 288 | 99.80 82 | 97.90 329 |
|
TransMVSNet (Re) | | | 97.15 274 | 96.58 277 | 98.86 199 | 99.12 242 | 98.85 160 | 99.49 129 | 98.91 296 | 95.48 297 | 97.16 312 | 99.80 74 | 93.38 243 | 99.11 291 | 94.16 312 | 91.73 328 | 98.62 275 |
|
TinyColmap | | | 97.12 275 | 96.89 274 | 97.83 287 | 99.07 252 | 95.52 303 | 98.57 321 | 98.74 310 | 97.58 162 | 97.81 303 | 99.79 86 | 88.16 323 | 99.56 219 | 95.10 299 | 97.21 246 | 98.39 309 |
|
K. test v3 | | | 97.10 276 | 96.79 276 | 98.01 275 | 98.72 299 | 96.33 287 | 99.87 4 | 97.05 339 | 97.59 160 | 96.16 322 | 99.80 74 | 88.71 315 | 99.04 297 | 96.69 267 | 96.55 258 | 98.65 263 |
|
PatchT | | | 97.03 277 | 96.44 280 | 98.79 210 | 98.99 264 | 98.34 204 | 99.16 236 | 99.07 279 | 92.13 325 | 99.52 93 | 97.31 333 | 94.54 216 | 98.98 307 | 88.54 334 | 98.73 179 | 99.03 198 |
|
FMVSNet1 | | | 96.84 278 | 96.36 281 | 98.29 257 | 99.32 197 | 97.26 246 | 99.43 154 | 99.48 133 | 95.11 301 | 98.55 269 | 99.32 264 | 83.95 335 | 98.98 307 | 95.81 284 | 96.26 265 | 98.62 275 |
|
MVS_0304 | | | 96.79 279 | 96.52 279 | 97.59 296 | 99.22 220 | 94.92 315 | 99.04 264 | 99.59 42 | 96.49 255 | 98.43 275 | 98.99 302 | 80.48 341 | 99.39 239 | 97.15 243 | 99.27 140 | 98.47 298 |
|
test_0402 | | | 96.64 280 | 96.24 282 | 97.85 285 | 98.85 284 | 96.43 284 | 99.44 148 | 99.26 257 | 93.52 318 | 96.98 315 | 99.52 205 | 88.52 319 | 99.20 280 | 92.58 326 | 97.50 231 | 97.93 327 |
|
RPMNet | | | 96.61 281 | 95.85 289 | 98.87 195 | 99.18 229 | 98.49 195 | 99.22 230 | 99.08 276 | 88.72 335 | 99.56 85 | 97.38 331 | 94.08 231 | 99.00 304 | 86.87 340 | 98.58 183 | 99.14 183 |
|
X-MVStestdata | | | 96.55 282 | 95.45 295 | 99.87 11 | 99.85 25 | 99.83 14 | 99.69 35 | 99.68 19 | 98.98 27 | 99.37 128 | 64.01 351 | 98.81 45 | 99.94 49 | 98.79 90 | 99.86 51 | 99.84 18 |
|
pmmvs6 | | | 96.53 283 | 96.09 285 | 97.82 288 | 98.69 303 | 95.47 304 | 99.37 184 | 99.47 152 | 93.46 320 | 97.41 307 | 99.78 92 | 87.06 328 | 99.33 256 | 96.92 257 | 92.70 325 | 98.65 263 |
|
ET-MVSNet_ETH3D | | | 96.49 284 | 95.64 293 | 99.05 160 | 99.53 141 | 98.82 165 | 98.84 298 | 97.51 337 | 97.63 158 | 84.77 339 | 99.21 283 | 92.09 276 | 98.91 317 | 98.98 57 | 92.21 327 | 99.41 168 |
|
UnsupCasMVSNet_eth | | | 96.44 285 | 96.12 284 | 97.40 302 | 98.65 306 | 95.65 297 | 99.36 188 | 99.51 96 | 97.13 206 | 96.04 324 | 98.99 302 | 88.40 320 | 98.17 326 | 96.71 265 | 90.27 331 | 98.40 308 |
|
FMVSNet5 | | | 96.43 286 | 96.19 283 | 97.15 303 | 99.11 244 | 95.89 296 | 99.32 198 | 99.52 86 | 94.47 311 | 98.34 282 | 99.07 295 | 87.54 327 | 97.07 338 | 92.61 325 | 95.72 280 | 98.47 298 |
|
new_pmnet | | | 96.38 287 | 96.03 286 | 97.41 301 | 98.13 324 | 95.16 312 | 99.05 259 | 99.20 264 | 93.94 313 | 97.39 308 | 98.79 312 | 91.61 288 | 99.04 297 | 90.43 330 | 95.77 277 | 98.05 321 |
|
Anonymous20231206 | | | 96.22 288 | 96.03 286 | 96.79 312 | 97.31 333 | 94.14 323 | 99.63 57 | 99.08 276 | 96.17 281 | 97.04 314 | 99.06 297 | 93.94 234 | 97.76 334 | 86.96 339 | 95.06 294 | 98.47 298 |
|
IB-MVS | | 95.67 18 | 96.22 288 | 95.44 296 | 98.57 224 | 99.21 222 | 96.70 274 | 98.65 316 | 97.74 335 | 96.71 237 | 97.27 309 | 98.54 321 | 86.03 330 | 99.92 75 | 98.47 133 | 86.30 338 | 99.10 187 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
gg-mvs-nofinetune | | | 96.17 290 | 95.32 297 | 98.73 214 | 98.79 288 | 98.14 212 | 99.38 181 | 94.09 349 | 91.07 331 | 98.07 295 | 91.04 344 | 89.62 309 | 99.35 252 | 96.75 262 | 99.09 155 | 98.68 245 |
|
test20.03 | | | 96.12 291 | 95.96 288 | 96.63 313 | 97.44 329 | 95.45 305 | 99.51 113 | 99.38 209 | 96.55 252 | 96.16 322 | 99.25 276 | 93.76 240 | 96.17 342 | 87.35 338 | 94.22 307 | 98.27 314 |
|
PVSNet_0 | | 94.43 19 | 96.09 292 | 95.47 294 | 97.94 279 | 99.31 198 | 94.34 322 | 97.81 339 | 99.70 15 | 97.12 208 | 97.46 306 | 98.75 315 | 89.71 307 | 99.79 160 | 97.69 200 | 81.69 341 | 99.68 99 |
|
EG-PatchMatch MVS | | | 95.97 293 | 95.69 292 | 96.81 311 | 97.78 327 | 92.79 333 | 99.16 236 | 98.93 291 | 96.16 282 | 94.08 330 | 99.22 280 | 82.72 337 | 99.47 225 | 95.67 289 | 97.50 231 | 98.17 317 |
|
Patchmatch-RL test | | | 95.84 294 | 95.81 291 | 95.95 317 | 95.61 336 | 90.57 338 | 98.24 333 | 98.39 324 | 95.10 302 | 95.20 326 | 98.67 317 | 94.78 200 | 97.77 333 | 96.28 277 | 90.02 332 | 99.51 149 |
|
MVS-HIRNet | | | 95.75 295 | 95.16 298 | 97.51 299 | 99.30 199 | 93.69 328 | 98.88 294 | 95.78 345 | 85.09 338 | 98.78 239 | 92.65 341 | 91.29 292 | 99.37 244 | 94.85 303 | 99.85 58 | 99.46 161 |
|
MIMVSNet1 | | | 95.51 296 | 95.04 299 | 96.92 309 | 97.38 330 | 95.60 298 | 99.52 109 | 99.50 114 | 93.65 317 | 96.97 316 | 99.17 285 | 85.28 333 | 96.56 341 | 88.36 335 | 95.55 284 | 98.60 287 |
|
MDA-MVSNet_test_wron | | | 95.45 297 | 94.60 302 | 98.01 275 | 98.16 323 | 97.21 249 | 99.11 250 | 99.24 260 | 93.49 319 | 80.73 344 | 98.98 305 | 93.02 248 | 98.18 325 | 94.22 311 | 94.45 303 | 98.64 265 |
|
TDRefinement | | | 95.42 298 | 94.57 303 | 97.97 278 | 89.83 346 | 96.11 292 | 99.48 135 | 98.75 307 | 96.74 235 | 96.68 317 | 99.88 15 | 88.65 317 | 99.71 189 | 98.37 142 | 82.74 340 | 98.09 319 |
|
YYNet1 | | | 95.36 299 | 94.51 304 | 97.92 281 | 97.89 325 | 97.10 251 | 99.10 252 | 99.23 261 | 93.26 322 | 80.77 343 | 99.04 299 | 92.81 254 | 98.02 327 | 94.30 308 | 94.18 308 | 98.64 265 |
|
pmmvs-eth3d | | | 95.34 300 | 94.73 301 | 97.15 303 | 95.53 338 | 95.94 295 | 99.35 193 | 99.10 273 | 95.13 300 | 93.55 331 | 97.54 329 | 88.15 324 | 97.91 330 | 94.58 305 | 89.69 334 | 97.61 331 |
|
MDA-MVSNet-bldmvs | | | 94.96 301 | 93.98 306 | 97.92 281 | 98.24 322 | 97.27 245 | 99.15 240 | 99.33 234 | 93.80 315 | 80.09 345 | 99.03 300 | 88.31 321 | 97.86 332 | 93.49 317 | 94.36 305 | 98.62 275 |
|
N_pmnet | | | 94.95 302 | 95.83 290 | 92.31 323 | 98.47 318 | 79.33 346 | 99.12 244 | 92.81 353 | 93.87 314 | 97.68 305 | 99.13 290 | 93.87 236 | 99.01 303 | 91.38 328 | 96.19 266 | 98.59 288 |
|
new-patchmatchnet | | | 94.48 303 | 94.08 305 | 95.67 318 | 95.08 339 | 92.41 334 | 99.18 234 | 99.28 255 | 94.55 310 | 93.49 332 | 97.37 332 | 87.86 326 | 97.01 339 | 91.57 327 | 88.36 335 | 97.61 331 |
|
testing_2 | | | 94.44 304 | 92.93 309 | 98.98 169 | 94.16 341 | 99.00 137 | 99.42 161 | 99.28 255 | 96.60 248 | 84.86 338 | 96.84 334 | 70.91 343 | 99.27 265 | 98.23 152 | 96.08 268 | 98.68 245 |
|
OpenMVS_ROB | | 92.34 20 | 94.38 305 | 93.70 307 | 96.41 316 | 97.38 330 | 93.17 331 | 99.06 257 | 98.75 307 | 86.58 336 | 94.84 329 | 98.26 326 | 81.53 340 | 99.32 257 | 89.01 333 | 97.87 214 | 96.76 335 |
|
CMPMVS | | 69.68 23 | 94.13 306 | 94.90 300 | 91.84 324 | 97.24 334 | 80.01 345 | 98.52 324 | 99.48 133 | 89.01 333 | 91.99 335 | 99.67 147 | 85.67 332 | 99.13 286 | 95.44 292 | 97.03 251 | 96.39 337 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs3 | | | 94.09 307 | 93.25 308 | 96.60 314 | 94.76 340 | 94.49 319 | 98.92 290 | 98.18 329 | 89.66 332 | 96.48 319 | 98.06 327 | 86.28 329 | 97.33 337 | 89.68 332 | 87.20 337 | 97.97 325 |
|
UnsupCasMVSNet_bld | | | 93.53 308 | 92.51 310 | 96.58 315 | 97.38 330 | 93.82 325 | 98.24 333 | 99.48 133 | 91.10 330 | 93.10 333 | 96.66 335 | 74.89 342 | 98.37 324 | 94.03 313 | 87.71 336 | 97.56 333 |
|
PM-MVS | | | 92.96 309 | 92.23 311 | 95.14 319 | 95.61 336 | 89.98 340 | 99.37 184 | 98.21 327 | 94.80 305 | 95.04 328 | 97.69 328 | 65.06 345 | 97.90 331 | 94.30 308 | 89.98 333 | 97.54 334 |
|
Gipuma | | | 90.99 310 | 90.15 312 | 93.51 320 | 98.73 297 | 90.12 339 | 93.98 344 | 99.45 174 | 79.32 341 | 92.28 334 | 94.91 338 | 69.61 344 | 97.98 329 | 87.42 337 | 95.67 281 | 92.45 341 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 86.87 311 | 85.37 314 | 91.35 326 | 90.21 345 | 83.80 341 | 98.89 293 | 97.45 338 | 83.13 340 | 91.67 336 | 95.03 337 | 48.49 350 | 94.70 344 | 85.86 341 | 77.62 342 | 95.54 338 |
|
LCM-MVSNet | | | 86.80 312 | 85.22 315 | 91.53 325 | 87.81 347 | 80.96 344 | 98.23 335 | 98.99 285 | 71.05 343 | 90.13 337 | 96.51 336 | 48.45 351 | 96.88 340 | 90.51 329 | 85.30 339 | 96.76 335 |
|
FPMVS | | | 84.93 313 | 85.65 313 | 82.75 331 | 86.77 348 | 63.39 352 | 98.35 330 | 98.92 293 | 74.11 342 | 83.39 341 | 98.98 305 | 50.85 349 | 92.40 346 | 84.54 342 | 94.97 296 | 92.46 340 |
|
tmp_tt | | | 82.80 314 | 81.52 316 | 86.66 327 | 66.61 353 | 68.44 351 | 92.79 346 | 97.92 331 | 68.96 344 | 80.04 346 | 99.85 29 | 85.77 331 | 96.15 343 | 97.86 182 | 43.89 347 | 95.39 339 |
|
E-PMN | | | 80.61 315 | 79.88 317 | 82.81 330 | 90.75 344 | 76.38 349 | 97.69 340 | 95.76 346 | 66.44 346 | 83.52 340 | 92.25 342 | 62.54 347 | 87.16 348 | 68.53 346 | 61.40 344 | 84.89 346 |
|
EMVS | | | 80.02 316 | 79.22 318 | 82.43 332 | 91.19 343 | 76.40 348 | 97.55 342 | 92.49 354 | 66.36 347 | 83.01 342 | 91.27 343 | 64.63 346 | 85.79 349 | 65.82 347 | 60.65 345 | 85.08 345 |
|
ANet_high | | | 77.30 317 | 74.86 320 | 84.62 329 | 75.88 351 | 77.61 347 | 97.63 341 | 93.15 352 | 88.81 334 | 64.27 348 | 89.29 345 | 36.51 352 | 83.93 350 | 75.89 344 | 52.31 346 | 92.33 342 |
|
MVE | | 76.82 21 | 76.91 318 | 74.31 321 | 84.70 328 | 85.38 350 | 76.05 350 | 96.88 343 | 93.17 351 | 67.39 345 | 71.28 347 | 89.01 346 | 21.66 357 | 87.69 347 | 71.74 345 | 72.29 343 | 90.35 343 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS | | 70.75 22 | 75.98 319 | 74.97 319 | 79.01 333 | 70.98 352 | 55.18 353 | 93.37 345 | 98.21 327 | 65.08 348 | 61.78 349 | 93.83 340 | 21.74 356 | 92.53 345 | 78.59 343 | 91.12 330 | 89.34 344 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuyk23d | | | 40.18 320 | 41.29 324 | 36.84 334 | 86.18 349 | 49.12 354 | 79.73 347 | 22.81 356 | 27.64 349 | 25.46 352 | 28.45 352 | 21.98 355 | 48.89 351 | 55.80 348 | 23.56 350 | 12.51 349 |
|
testmvs | | | 39.17 321 | 43.78 322 | 25.37 336 | 36.04 355 | 16.84 356 | 98.36 329 | 26.56 355 | 20.06 350 | 38.51 351 | 67.32 347 | 29.64 354 | 15.30 353 | 37.59 349 | 39.90 348 | 43.98 348 |
|
test123 | | | 39.01 322 | 42.50 323 | 28.53 335 | 39.17 354 | 20.91 355 | 98.75 307 | 19.17 357 | 19.83 351 | 38.57 350 | 66.67 348 | 33.16 353 | 15.42 352 | 37.50 350 | 29.66 349 | 49.26 347 |
|
cdsmvs_eth3d_5k | | | 24.64 323 | 32.85 325 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 99.51 96 | 0.00 352 | 0.00 353 | 99.56 191 | 96.58 141 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
ab-mvs-re | | | 8.30 324 | 11.06 326 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 99.58 184 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
pcd_1.5k_mvsjas | | | 8.27 325 | 11.03 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.27 353 | 99.01 16 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet_test | | | 0.02 326 | 0.03 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.27 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 0.02 326 | 0.03 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.27 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 0.02 326 | 0.03 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.27 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.02 326 | 0.03 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.27 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 0.02 326 | 0.03 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.27 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 0.02 326 | 0.03 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.27 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
IU-MVS | | | | | | 99.84 32 | 99.88 7 | | 99.32 242 | 98.30 83 | 99.84 13 | | | | 98.86 77 | 99.85 58 | 99.89 2 |
|
OPU-MVS | | | | | 99.64 75 | 99.56 137 | 99.72 38 | 99.60 68 | | | | 99.70 129 | 99.27 4 | 99.42 237 | 98.24 151 | 99.80 82 | 99.79 53 |
|
test_241102_TWO | | | | | | | | | 99.48 133 | 99.08 11 | 99.88 5 | 99.81 60 | 98.94 31 | 99.96 18 | 98.91 67 | 99.84 65 | 99.88 5 |
|
test_241102_ONE | | | | | | 99.84 32 | 99.90 1 | | 99.48 133 | 99.07 13 | 99.91 1 | 99.74 113 | 99.20 5 | 99.76 169 | | | |
|
9.14 | | | | 99.10 66 | | 99.72 77 | | 99.40 172 | 99.51 96 | 97.53 170 | 99.64 66 | 99.78 92 | 98.84 42 | 99.91 86 | 97.63 203 | 99.82 78 | |
|
save fliter | | | | | | 99.76 52 | 99.59 63 | 99.14 242 | 99.40 199 | 99.00 22 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 98.99 25 | 99.81 22 | 99.80 74 | 99.09 12 | 99.96 18 | 98.85 79 | 99.90 23 | 99.88 5 |
|
test_0728_SECOND | | | | | 99.91 2 | 99.84 32 | 99.89 3 | 99.57 85 | 99.51 96 | | | | | 99.96 18 | 98.93 64 | 99.86 51 | 99.88 5 |
|
test0726 | | | | | | 99.85 25 | 99.89 3 | 99.62 61 | 99.50 114 | 99.10 8 | 99.86 11 | 99.82 49 | 98.94 31 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.52 143 |
|
test_part2 | | | | | | 99.81 40 | 99.83 14 | | | | 99.77 33 | | | | | | |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 99.48 133 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sam_mvs1 | | | | | | | | | | | | | 94.86 196 | | | | 99.52 143 |
|
sam_mvs | | | | | | | | | | | | | 94.72 207 | | | | |
|
ambc | | | | | 93.06 322 | 92.68 342 | 82.36 342 | 98.47 326 | 98.73 315 | | 95.09 327 | 97.41 330 | 55.55 348 | 99.10 293 | 96.42 274 | 91.32 329 | 97.71 330 |
|
MTGPA | | | | | | | | | 99.47 152 | | | | | | | | |
|
test_post1 | | | | | | | | 99.23 225 | | | | 65.14 350 | 94.18 228 | 99.71 189 | 97.58 207 | | |
|
test_post | | | | | | | | | | | | 65.99 349 | 94.65 211 | 99.73 179 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 98.70 316 | 94.79 199 | 99.74 172 | | | |
|
GG-mvs-BLEND | | | | | 98.45 240 | 98.55 315 | 98.16 210 | 99.43 154 | 93.68 350 | | 97.23 310 | 98.46 322 | 89.30 311 | 99.22 273 | 95.43 293 | 98.22 199 | 97.98 324 |
|
MTMP | | | | | | | | 99.54 103 | 98.88 300 | | | | | | | | |
|
gm-plane-assit | | | | | | 98.54 316 | 92.96 332 | | | 94.65 308 | | 99.15 288 | | 99.64 208 | 97.56 212 | | |
|
test9_res | | | | | | | | | | | | | | | 97.49 218 | 99.72 99 | 99.75 66 |
|
TEST9 | | | | | | 99.67 96 | 99.65 53 | 99.05 259 | 99.41 193 | 96.22 277 | 98.95 213 | 99.49 215 | 98.77 51 | 99.91 86 | | | |
|
test_8 | | | | | | 99.67 96 | 99.61 58 | 99.03 265 | 99.41 193 | 96.28 270 | 98.93 217 | 99.48 221 | 98.76 53 | 99.91 86 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 97.21 235 | 99.73 98 | 99.75 66 |
|
agg_prior | | | | | | 99.67 96 | 99.62 56 | | 99.40 199 | | 98.87 226 | | | 99.91 86 | | | |
|
TestCases | | | | | 99.31 131 | 99.86 21 | 98.48 197 | | 99.61 35 | 97.85 132 | 99.36 131 | 99.85 29 | 95.95 160 | 99.85 127 | 96.66 269 | 99.83 72 | 99.59 129 |
|
test_prior4 | | | | | | | 99.56 68 | 98.99 275 | | | | | | | | | |
|
test_prior2 | | | | | | | | 98.96 283 | | 98.34 78 | 99.01 201 | 99.52 205 | 98.68 62 | | 97.96 174 | 99.74 95 | |
|
test_prior | | | | | 99.68 63 | 99.67 96 | 99.48 82 | | 99.56 54 | | | | | 99.83 141 | | | 99.74 70 |
|
旧先验2 | | | | | | | | 98.96 283 | | 96.70 238 | 99.47 101 | | | 99.94 49 | 98.19 154 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 99.01 273 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 99.75 49 | 99.75 60 | 99.59 63 | | 99.54 68 | 96.76 234 | 99.29 144 | 99.64 161 | 98.43 77 | 99.94 49 | 96.92 257 | 99.66 113 | 99.72 83 |
|
旧先验1 | | | | | | 99.74 67 | 99.59 63 | | 99.54 68 | | | 99.69 136 | 98.47 74 | | | 99.68 110 | 99.73 77 |
|
æ— å…ˆéªŒ | | | | | | | | 98.99 275 | 99.51 96 | 96.89 228 | | | | 99.93 64 | 97.53 215 | | 99.72 83 |
|
原ACMM2 | | | | | | | | 98.95 287 | | | | | | | | | |
|
原ACMM1 | | | | | 99.65 70 | 99.73 72 | 99.33 96 | | 99.47 152 | 97.46 174 | 99.12 181 | 99.66 153 | 98.67 65 | 99.91 86 | 97.70 199 | 99.69 105 | 99.71 90 |
|
test222 | | | | | | 99.75 60 | 99.49 81 | 98.91 292 | 99.49 122 | 96.42 264 | 99.34 137 | 99.65 154 | 98.28 89 | | | 99.69 105 | 99.72 83 |
|
testdata2 | | | | | | | | | | | | | | 99.95 41 | 96.67 268 | | |
|
segment_acmp | | | | | | | | | | | | | 98.96 25 | | | | |
|
testdata | | | | | 99.54 90 | 99.75 60 | 98.95 147 | | 99.51 96 | 97.07 213 | 99.43 109 | 99.70 129 | 98.87 39 | 99.94 49 | 97.76 191 | 99.64 116 | 99.72 83 |
|
testdata1 | | | | | | | | 98.85 297 | | 98.32 82 | | | | | | | |
|
test12 | | | | | 99.75 49 | 99.64 112 | 99.61 58 | | 99.29 254 | | 99.21 165 | | 98.38 82 | 99.89 109 | | 99.74 95 | 99.74 70 |
|
plane_prior7 | | | | | | 99.29 203 | 97.03 259 | | | | | | | | | | |
|
plane_prior6 | | | | | | 99.27 208 | 96.98 263 | | | | | | 92.71 260 | | | | |
|
plane_prior5 | | | | | | | | | 99.47 152 | | | | | 99.69 198 | 97.78 189 | 97.63 218 | 98.67 253 |
|
plane_prior4 | | | | | | | | | | | | 99.61 175 | | | | | |
|
plane_prior3 | | | | | | | 97.00 261 | | | 98.69 54 | 99.11 183 | | | | | | |
|
plane_prior2 | | | | | | | | 99.39 176 | | 98.97 30 | | | | | | | |
|
plane_prior1 | | | | | | 99.26 210 | | | | | | | | | | | |
|
plane_prior | | | | | | | 96.97 264 | 99.21 232 | | 98.45 69 | | | | | | 97.60 221 | |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
door-mid | | | | | | | | | 98.05 330 | | | | | | | | |
|
lessismore_v0 | | | | | 97.79 290 | 98.69 303 | 95.44 306 | | 94.75 347 | | 95.71 325 | 99.87 20 | 88.69 316 | 99.32 257 | 95.89 282 | 94.93 298 | 98.62 275 |
|
LGP-MVS_train | | | | | 98.49 232 | 99.33 190 | 97.05 257 | | 99.55 61 | 97.46 174 | 99.24 157 | 99.83 42 | 92.58 264 | 99.72 183 | 98.09 163 | 97.51 229 | 98.68 245 |
|
test11 | | | | | | | | | 99.35 223 | | | | | | | | |
|
door | | | | | | | | | 97.92 331 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.83 269 | | | | | | | | | | |
|
HQP-NCC | | | | | | 99.19 226 | | 98.98 279 | | 98.24 87 | 98.66 254 | | | | | | |
|
ACMP_Plane | | | | | | 99.19 226 | | 98.98 279 | | 98.24 87 | 98.66 254 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.19 239 | | |
|
HQP4-MVS | | | | | | | | | | | 98.66 254 | | | 99.64 208 | | | 98.64 265 |
|
HQP3-MVS | | | | | | | | | 99.39 203 | | | | | | | 97.58 223 | |
|
HQP2-MVS | | | | | | | | | | | | | 92.47 268 | | | | |
|
NP-MVS | | | | | | 99.23 216 | 96.92 267 | | | | | 99.40 240 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 95.18 311 | 99.35 193 | | 96.84 231 | 99.58 82 | | 95.19 189 | | 97.82 186 | | 99.46 161 |
|
MDTV_nov1_ep13 | | | | 98.32 155 | | 99.11 244 | 94.44 320 | 99.27 212 | 98.74 310 | 97.51 172 | 99.40 121 | 99.62 171 | 94.78 200 | 99.76 169 | 97.59 206 | 98.81 176 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 97.19 247 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.43 239 | |
|
Test By Simon | | | | | | | | | | | | | 98.75 56 | | | | |
|
ITE_SJBPF | | | | | 98.08 269 | 99.29 203 | 96.37 285 | | 98.92 293 | 98.34 78 | 98.83 232 | 99.75 107 | 91.09 294 | 99.62 214 | 95.82 283 | 97.40 241 | 98.25 316 |
|
DeepMVS_CX | | | | | 93.34 321 | 99.29 203 | 82.27 343 | | 99.22 262 | 85.15 337 | 96.33 320 | 99.05 298 | 90.97 296 | 99.73 179 | 93.57 316 | 97.77 216 | 98.01 323 |
|