HPM-MVS++ |  | | 87.09 9 | 88.92 13 | 84.95 6 | 92.61 1 | 87.91 41 | 90.23 16 | 76.06 5 | 88.85 13 | 81.20 11 | 87.33 14 | 87.93 12 | 79.47 9 | 88.59 9 | 88.23 5 | 90.15 37 | 93.60 21 |
|
DVP-MVS++ | | | 89.14 1 | 91.86 1 | 85.97 1 | 92.55 2 | 92.38 1 | 91.69 4 | 76.31 3 | 93.31 1 | 83.11 3 | 92.44 4 | 91.18 1 | 81.17 2 | 89.55 2 | 87.93 8 | 91.01 8 | 96.21 1 |
|
SMA-MVS |  | | 87.56 7 | 90.17 7 | 84.52 10 | 91.71 3 | 90.57 10 | 90.77 9 | 75.19 14 | 90.67 7 | 80.50 15 | 86.59 18 | 88.86 8 | 78.09 17 | 89.92 1 | 89.41 1 | 90.84 11 | 95.19 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
NCCC | | | 85.34 21 | 86.59 25 | 83.88 17 | 91.48 4 | 88.88 26 | 89.79 18 | 75.54 12 | 86.67 22 | 77.94 24 | 76.55 36 | 84.99 26 | 78.07 18 | 88.04 12 | 87.68 12 | 90.46 27 | 93.31 22 |
|
CNVR-MVS | | | 86.36 14 | 88.19 17 | 84.23 13 | 91.33 5 | 89.84 15 | 90.34 12 | 75.56 11 | 87.36 19 | 78.97 19 | 81.19 29 | 86.76 18 | 78.74 12 | 89.30 5 | 88.58 2 | 90.45 28 | 94.33 10 |
|
xxxxxxxxxxxxxcwj | | | 85.35 20 | 85.76 31 | 84.86 8 | 91.26 6 | 91.10 8 | 90.90 6 | 75.65 8 | 89.21 9 | 81.25 8 | 91.12 8 | 61.35 120 | 78.82 10 | 87.42 20 | 86.23 31 | 91.28 3 | 93.90 13 |
|
SF-MVS | | | 87.47 8 | 89.70 8 | 84.86 8 | 91.26 6 | 91.10 8 | 90.90 6 | 75.65 8 | 89.21 9 | 81.25 8 | 91.12 8 | 88.93 7 | 78.82 10 | 87.42 20 | 86.23 31 | 91.28 3 | 93.90 13 |
|
APDe-MVS | | | 88.00 6 | 90.50 6 | 85.08 5 | 90.95 8 | 91.58 7 | 92.03 1 | 75.53 13 | 91.15 5 | 80.10 16 | 92.27 5 | 88.34 11 | 80.80 5 | 88.00 14 | 86.99 19 | 91.09 6 | 95.16 6 |
|
DPE-MVS |  | | 88.63 4 | 91.29 4 | 85.53 3 | 90.87 9 | 92.20 4 | 91.98 2 | 76.00 6 | 90.55 8 | 82.09 7 | 93.85 1 | 90.75 2 | 81.25 1 | 88.62 8 | 87.59 14 | 90.96 10 | 95.48 4 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HFP-MVS | | | 86.15 15 | 87.95 18 | 84.06 15 | 90.80 10 | 89.20 24 | 89.62 21 | 74.26 17 | 87.52 16 | 80.63 13 | 86.82 17 | 84.19 30 | 78.22 15 | 87.58 18 | 87.19 17 | 90.81 13 | 93.13 25 |
|
SteuartSystems-ACMMP | | | 85.99 16 | 88.31 16 | 83.27 22 | 90.73 11 | 89.84 15 | 90.27 15 | 74.31 16 | 84.56 31 | 75.88 31 | 87.32 15 | 85.04 25 | 77.31 25 | 89.01 7 | 88.46 3 | 91.14 5 | 93.96 12 |
Skip Steuart: Steuart Systems R&D Blog. |
APD-MVS |  | | 86.84 12 | 88.91 14 | 84.41 11 | 90.66 12 | 90.10 13 | 90.78 8 | 75.64 10 | 87.38 18 | 78.72 20 | 90.68 11 | 86.82 17 | 80.15 7 | 87.13 26 | 86.45 29 | 90.51 22 | 93.83 15 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MP-MVS |  | | 85.50 19 | 87.40 21 | 83.28 21 | 90.65 13 | 89.51 20 | 89.16 25 | 74.11 20 | 83.70 35 | 78.06 23 | 85.54 21 | 84.89 28 | 77.31 25 | 87.40 23 | 87.14 18 | 90.41 29 | 93.65 20 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
train_agg | | | 84.86 26 | 87.21 22 | 82.11 28 | 90.59 14 | 85.47 56 | 89.81 17 | 73.55 27 | 83.95 33 | 73.30 39 | 89.84 13 | 87.23 15 | 75.61 36 | 86.47 35 | 85.46 40 | 89.78 42 | 92.06 33 |
|
MCST-MVS | | | 85.13 24 | 86.62 24 | 83.39 19 | 90.55 15 | 89.82 17 | 89.29 23 | 73.89 24 | 84.38 32 | 76.03 30 | 79.01 32 | 85.90 22 | 78.47 13 | 87.81 16 | 86.11 35 | 92.11 1 | 93.29 23 |
|
SED-MVS | | | 88.85 2 | 91.59 3 | 85.67 2 | 90.54 16 | 92.29 3 | 91.71 3 | 76.40 2 | 92.41 3 | 83.24 2 | 92.50 3 | 90.64 4 | 81.10 3 | 89.53 3 | 88.02 7 | 91.00 9 | 95.73 3 |
|
zzz-MVS | | | 85.71 17 | 86.88 23 | 84.34 12 | 90.54 16 | 87.11 45 | 89.77 19 | 74.17 19 | 88.54 14 | 83.08 4 | 78.60 33 | 86.10 20 | 78.11 16 | 87.80 17 | 87.46 15 | 90.35 31 | 92.56 27 |
|
DVP-MVS |  | | 88.67 3 | 91.62 2 | 85.22 4 | 90.47 18 | 92.36 2 | 90.69 10 | 76.15 4 | 93.08 2 | 82.75 5 | 92.19 6 | 90.71 3 | 80.45 6 | 89.27 6 | 87.91 9 | 90.82 12 | 95.84 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DeepC-MVS_fast | | 78.24 3 | 84.27 30 | 85.50 32 | 82.85 24 | 90.46 19 | 89.24 22 | 87.83 34 | 74.24 18 | 84.88 27 | 76.23 29 | 75.26 39 | 81.05 44 | 77.62 22 | 88.02 13 | 87.62 13 | 90.69 17 | 92.41 29 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMMP_NAP | | | 86.52 13 | 89.01 11 | 83.62 18 | 90.28 20 | 90.09 14 | 90.32 14 | 74.05 21 | 88.32 15 | 79.74 17 | 87.04 16 | 85.59 24 | 76.97 30 | 89.35 4 | 88.44 4 | 90.35 31 | 94.27 11 |
|
SD-MVS | | | 86.96 10 | 89.45 9 | 84.05 16 | 90.13 21 | 89.23 23 | 89.77 19 | 74.59 15 | 89.17 11 | 80.70 12 | 89.93 12 | 89.67 5 | 78.47 13 | 87.57 19 | 86.79 23 | 90.67 18 | 93.76 17 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMMPR | | | 85.52 18 | 87.53 20 | 83.17 23 | 90.13 21 | 89.27 21 | 89.30 22 | 73.97 22 | 86.89 21 | 77.14 26 | 86.09 19 | 83.18 33 | 77.74 21 | 87.42 20 | 87.20 16 | 90.77 14 | 92.63 26 |
|
PGM-MVS | | | 84.42 29 | 86.29 28 | 82.23 27 | 90.04 23 | 88.82 28 | 89.23 24 | 71.74 37 | 82.82 38 | 74.61 34 | 84.41 24 | 82.09 36 | 77.03 29 | 87.13 26 | 86.73 25 | 90.73 16 | 92.06 33 |
|
MSP-MVS | | | 88.09 5 | 90.84 5 | 84.88 7 | 90.00 24 | 91.80 6 | 91.63 5 | 75.80 7 | 91.99 4 | 81.23 10 | 92.54 2 | 89.18 6 | 80.89 4 | 87.99 15 | 87.91 9 | 89.70 46 | 94.51 7 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CSCG | | | 85.28 23 | 87.68 19 | 82.49 26 | 89.95 25 | 91.99 5 | 88.82 26 | 71.20 39 | 86.41 23 | 79.63 18 | 79.26 30 | 88.36 10 | 73.94 43 | 86.64 33 | 86.67 26 | 91.40 2 | 94.41 8 |
|
mPP-MVS | | | | | | 89.90 26 | | | | | | | 81.29 43 | | | | | |
|
TSAR-MVS + MP. | | | 86.88 11 | 89.23 10 | 84.14 14 | 89.78 27 | 88.67 32 | 90.59 11 | 73.46 28 | 88.99 12 | 80.52 14 | 91.26 7 | 88.65 9 | 79.91 8 | 86.96 31 | 86.22 33 | 90.59 20 | 93.83 15 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
X-MVS | | | 83.23 34 | 85.20 34 | 80.92 35 | 89.71 28 | 88.68 29 | 88.21 33 | 73.60 25 | 82.57 39 | 71.81 47 | 77.07 34 | 81.92 38 | 71.72 61 | 86.98 30 | 86.86 21 | 90.47 24 | 92.36 30 |
|
DPM-MVS | | | 83.30 33 | 84.33 36 | 82.11 28 | 89.56 29 | 88.49 35 | 90.33 13 | 73.24 29 | 83.85 34 | 76.46 28 | 72.43 52 | 82.65 34 | 73.02 50 | 86.37 37 | 86.91 20 | 90.03 39 | 89.62 55 |
|
TSAR-MVS + ACMM | | | 85.10 25 | 88.81 15 | 80.77 36 | 89.55 30 | 88.53 34 | 88.59 29 | 72.55 32 | 87.39 17 | 71.90 44 | 90.95 10 | 87.55 13 | 74.57 38 | 87.08 28 | 86.54 27 | 87.47 92 | 93.67 18 |
|
CP-MVS | | | 84.74 28 | 86.43 27 | 82.77 25 | 89.48 31 | 88.13 40 | 88.64 27 | 73.93 23 | 84.92 26 | 76.77 27 | 81.94 27 | 83.50 31 | 77.29 27 | 86.92 32 | 86.49 28 | 90.49 23 | 93.14 24 |
|
CDPH-MVS | | | 82.64 35 | 85.03 35 | 79.86 40 | 89.41 32 | 88.31 37 | 88.32 31 | 71.84 36 | 80.11 46 | 67.47 64 | 82.09 26 | 81.44 42 | 71.85 59 | 85.89 43 | 86.15 34 | 90.24 34 | 91.25 39 |
|
DeepC-MVS | | 78.47 2 | 84.81 27 | 86.03 29 | 83.37 20 | 89.29 33 | 90.38 12 | 88.61 28 | 76.50 1 | 86.25 24 | 77.22 25 | 75.12 40 | 80.28 46 | 77.59 23 | 88.39 10 | 88.17 6 | 91.02 7 | 93.66 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap |  | | 79.74 48 | 78.62 63 | 81.05 34 | 89.23 34 | 86.06 53 | 84.95 50 | 71.96 35 | 79.39 49 | 75.51 32 | 63.16 92 | 68.84 96 | 76.51 31 | 83.55 63 | 82.85 61 | 88.13 76 | 86.46 78 |
|
SR-MVS | | | | | | 88.99 35 | | | 73.57 26 | | | | 87.54 14 | | | | | |
|
EPNet | | | 79.08 56 | 80.62 52 | 77.28 54 | 88.90 36 | 83.17 79 | 83.65 56 | 72.41 33 | 74.41 59 | 67.15 66 | 76.78 35 | 74.37 64 | 64.43 99 | 83.70 62 | 83.69 53 | 87.15 96 | 88.19 63 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepPCF-MVS | | 79.04 1 | 85.30 22 | 88.93 12 | 81.06 33 | 88.77 37 | 90.48 11 | 85.46 47 | 73.08 30 | 90.97 6 | 73.77 38 | 84.81 23 | 85.95 21 | 77.43 24 | 88.22 11 | 87.73 11 | 87.85 85 | 94.34 9 |
|
ACMMP |  | | 83.42 32 | 85.27 33 | 81.26 32 | 88.47 38 | 88.49 35 | 88.31 32 | 72.09 34 | 83.42 36 | 72.77 42 | 82.65 25 | 78.22 51 | 75.18 37 | 86.24 39 | 85.76 37 | 90.74 15 | 92.13 32 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
3Dnovator+ | | 75.73 4 | 82.40 36 | 82.76 41 | 81.97 30 | 88.02 39 | 89.67 18 | 86.60 38 | 71.48 38 | 81.28 44 | 78.18 22 | 64.78 86 | 77.96 53 | 77.13 28 | 87.32 24 | 86.83 22 | 90.41 29 | 91.48 37 |
|
OPM-MVS | | | 79.68 49 | 79.28 61 | 80.15 39 | 87.99 40 | 86.77 48 | 88.52 30 | 72.72 31 | 64.55 99 | 67.65 63 | 67.87 75 | 74.33 65 | 74.31 41 | 86.37 37 | 85.25 42 | 89.73 45 | 89.81 53 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MAR-MVS | | | 79.21 53 | 80.32 56 | 77.92 52 | 87.46 41 | 88.15 39 | 83.95 54 | 67.48 66 | 74.28 60 | 68.25 60 | 64.70 87 | 77.04 55 | 72.17 55 | 85.42 45 | 85.00 44 | 88.22 72 | 87.62 68 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
HQP-MVS | | | 81.19 42 | 83.27 39 | 78.76 47 | 87.40 42 | 85.45 57 | 86.95 36 | 70.47 42 | 81.31 43 | 66.91 67 | 79.24 31 | 76.63 56 | 71.67 62 | 84.43 56 | 83.78 52 | 89.19 56 | 92.05 35 |
|
abl_6 | | | | | 79.05 44 | 87.27 43 | 88.85 27 | 83.62 57 | 68.25 56 | 81.68 42 | 72.94 41 | 73.79 46 | 84.45 29 | 72.55 53 | | | 89.66 48 | 90.64 45 |
|
CANet | | | 81.62 41 | 83.41 38 | 79.53 42 | 87.06 44 | 88.59 33 | 85.47 46 | 67.96 60 | 76.59 54 | 74.05 35 | 74.69 41 | 81.98 37 | 72.98 51 | 86.14 40 | 85.47 39 | 89.68 47 | 90.42 48 |
|
MSLP-MVS++ | | | 82.09 38 | 82.66 42 | 81.42 31 | 87.03 45 | 87.22 44 | 85.82 43 | 70.04 44 | 80.30 45 | 78.66 21 | 68.67 71 | 81.04 45 | 77.81 20 | 85.19 48 | 84.88 45 | 89.19 56 | 91.31 38 |
|
ACMM | | 72.26 8 | 78.86 57 | 78.13 65 | 79.71 41 | 86.89 46 | 83.40 74 | 86.02 41 | 70.50 41 | 75.28 56 | 71.49 51 | 63.01 93 | 69.26 90 | 73.57 45 | 84.11 58 | 83.98 49 | 89.76 44 | 87.84 66 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | | | | 86.63 47 | 88.68 29 | 85.00 48 | | | 71.81 47 | | 81.92 38 | | | | 90.47 24 | |
|
X-MVStestdata | | | | | | 86.63 47 | 88.68 29 | 85.00 48 | | | 71.81 47 | | 81.92 38 | | | | 90.47 24 | |
|
PHI-MVS | | | 82.36 37 | 85.89 30 | 78.24 50 | 86.40 49 | 89.52 19 | 85.52 45 | 69.52 50 | 82.38 41 | 65.67 70 | 81.35 28 | 82.36 35 | 73.07 49 | 87.31 25 | 86.76 24 | 89.24 53 | 91.56 36 |
|
LGP-MVS_train | | | 79.83 45 | 81.22 49 | 78.22 51 | 86.28 50 | 85.36 59 | 86.76 37 | 69.59 48 | 77.34 51 | 65.14 72 | 75.68 38 | 70.79 79 | 71.37 65 | 84.60 53 | 84.01 48 | 90.18 36 | 90.74 44 |
|
MVS_0304 | | | 81.73 40 | 83.86 37 | 79.26 43 | 86.22 51 | 89.18 25 | 86.41 39 | 67.15 67 | 75.28 56 | 70.75 54 | 74.59 42 | 83.49 32 | 74.42 40 | 87.05 29 | 86.34 30 | 90.58 21 | 91.08 41 |
|
CPTT-MVS | | | 81.77 39 | 83.10 40 | 80.21 38 | 85.93 52 | 86.45 51 | 87.72 35 | 70.98 40 | 82.54 40 | 71.53 50 | 74.23 45 | 81.49 41 | 76.31 32 | 82.85 70 | 81.87 67 | 88.79 64 | 92.26 31 |
|
MVS_111021_HR | | | 80.13 44 | 81.46 46 | 78.58 48 | 85.77 53 | 85.17 60 | 83.45 58 | 69.28 51 | 74.08 62 | 70.31 55 | 74.31 44 | 75.26 62 | 73.13 48 | 86.46 36 | 85.15 43 | 89.53 49 | 89.81 53 |
|
ACMP | | 73.23 7 | 79.79 46 | 80.53 53 | 78.94 45 | 85.61 54 | 85.68 54 | 85.61 44 | 69.59 48 | 77.33 52 | 71.00 53 | 74.45 43 | 69.16 91 | 71.88 57 | 83.15 67 | 83.37 57 | 89.92 40 | 90.57 47 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
UA-Net | | | 74.47 77 | 77.80 67 | 70.59 93 | 85.33 55 | 85.40 58 | 73.54 143 | 65.98 76 | 60.65 131 | 56.00 110 | 72.11 53 | 79.15 47 | 54.63 168 | 83.13 68 | 82.25 64 | 88.04 79 | 81.92 126 |
|
TSAR-MVS + GP. | | | 83.69 31 | 86.58 26 | 80.32 37 | 85.14 56 | 86.96 46 | 84.91 51 | 70.25 43 | 84.71 30 | 73.91 37 | 85.16 22 | 85.63 23 | 77.92 19 | 85.44 44 | 85.71 38 | 89.77 43 | 92.45 28 |
|
LS3D | | | 74.08 80 | 73.39 94 | 74.88 69 | 85.05 57 | 82.62 83 | 79.71 76 | 68.66 54 | 72.82 65 | 58.80 93 | 57.61 123 | 61.31 121 | 71.07 67 | 80.32 102 | 78.87 115 | 86.00 134 | 80.18 143 |
|
QAPM | | | 78.47 58 | 80.22 57 | 76.43 59 | 85.03 58 | 86.75 49 | 80.62 68 | 66.00 75 | 73.77 63 | 65.35 71 | 65.54 82 | 78.02 52 | 72.69 52 | 83.71 61 | 83.36 58 | 88.87 62 | 90.41 49 |
|
OpenMVS |  | 70.44 10 | 76.15 70 | 76.82 78 | 75.37 65 | 85.01 59 | 84.79 62 | 78.99 84 | 62.07 121 | 71.27 69 | 67.88 62 | 57.91 122 | 72.36 72 | 70.15 69 | 82.23 75 | 81.41 72 | 88.12 77 | 87.78 67 |
|
CLD-MVS | | | 79.35 52 | 81.23 48 | 77.16 56 | 85.01 59 | 86.92 47 | 85.87 42 | 60.89 132 | 80.07 48 | 75.35 33 | 72.96 49 | 73.21 69 | 68.43 79 | 85.41 46 | 84.63 46 | 87.41 93 | 85.44 89 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
3Dnovator | | 73.76 5 | 79.75 47 | 80.52 54 | 78.84 46 | 84.94 61 | 87.35 42 | 84.43 53 | 65.54 78 | 78.29 50 | 73.97 36 | 63.00 94 | 75.62 61 | 74.07 42 | 85.00 50 | 85.34 41 | 90.11 38 | 89.04 57 |
|
PCF-MVS | | 73.28 6 | 79.42 51 | 80.41 55 | 78.26 49 | 84.88 62 | 88.17 38 | 86.08 40 | 69.85 45 | 75.23 58 | 68.43 59 | 68.03 74 | 78.38 49 | 71.76 60 | 81.26 88 | 80.65 89 | 88.56 67 | 91.18 40 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DELS-MVS | | | 79.15 55 | 81.07 50 | 76.91 57 | 83.54 63 | 87.31 43 | 84.45 52 | 64.92 83 | 69.98 70 | 69.34 56 | 71.62 56 | 76.26 57 | 69.84 70 | 86.57 34 | 85.90 36 | 89.39 51 | 89.88 52 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OMC-MVS | | | 80.26 43 | 82.59 43 | 77.54 53 | 83.04 64 | 85.54 55 | 83.25 59 | 65.05 82 | 87.32 20 | 72.42 43 | 72.04 54 | 78.97 48 | 73.30 47 | 83.86 59 | 81.60 71 | 88.15 75 | 88.83 59 |
|
DROMVSNet | | | 79.44 50 | 81.35 47 | 77.22 55 | 82.95 65 | 84.67 63 | 81.31 62 | 63.65 92 | 72.47 68 | 68.75 57 | 73.15 48 | 78.33 50 | 75.99 33 | 86.06 41 | 83.96 50 | 90.67 18 | 90.79 43 |
|
PLC |  | 68.99 11 | 75.68 71 | 75.31 83 | 76.12 62 | 82.94 66 | 81.26 96 | 79.94 72 | 66.10 73 | 77.15 53 | 66.86 68 | 59.13 112 | 68.53 98 | 73.73 44 | 80.38 101 | 79.04 111 | 87.13 100 | 81.68 128 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CNLPA | | | 77.20 65 | 77.54 69 | 76.80 58 | 82.63 67 | 84.31 65 | 79.77 74 | 64.64 84 | 85.17 25 | 73.18 40 | 56.37 129 | 69.81 86 | 74.53 39 | 81.12 92 | 78.69 116 | 86.04 132 | 87.29 71 |
|
ACMH+ | | 66.54 13 | 71.36 100 | 70.09 118 | 72.85 81 | 82.59 68 | 81.13 98 | 78.56 87 | 68.04 58 | 61.55 123 | 52.52 132 | 51.50 170 | 54.14 156 | 68.56 78 | 78.85 123 | 79.50 106 | 86.82 108 | 83.94 108 |
|
ACMH | | 65.37 14 | 70.71 104 | 70.00 119 | 71.54 85 | 82.51 69 | 82.47 84 | 77.78 95 | 68.13 57 | 56.19 158 | 46.06 168 | 54.30 141 | 51.20 183 | 68.68 77 | 80.66 97 | 80.72 82 | 86.07 128 | 84.45 105 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EIA-MVS | | | 75.64 72 | 76.60 79 | 74.53 74 | 82.43 70 | 83.84 68 | 78.32 91 | 62.28 120 | 65.96 89 | 63.28 82 | 68.95 67 | 67.54 101 | 71.61 63 | 82.55 72 | 81.63 70 | 89.24 53 | 85.72 83 |
|
canonicalmvs | | | 79.16 54 | 82.37 44 | 75.41 64 | 82.33 71 | 86.38 52 | 80.80 66 | 63.18 98 | 82.90 37 | 67.34 65 | 72.79 50 | 76.07 59 | 69.62 71 | 83.46 66 | 84.41 47 | 89.20 55 | 90.60 46 |
|
ETV-MVS | | | 77.32 64 | 78.81 62 | 75.58 63 | 82.24 72 | 83.64 72 | 79.98 70 | 64.02 90 | 69.64 74 | 63.90 78 | 70.89 60 | 69.94 85 | 73.41 46 | 85.39 47 | 83.91 51 | 89.92 40 | 88.31 62 |
|
MSDG | | | 71.52 97 | 69.87 120 | 73.44 79 | 82.21 73 | 79.35 115 | 79.52 77 | 64.59 85 | 66.15 87 | 61.87 84 | 53.21 155 | 56.09 146 | 65.85 96 | 78.94 122 | 78.50 118 | 86.60 117 | 76.85 165 |
|
test_part1 | | | 74.24 78 | 73.44 92 | 75.18 66 | 82.02 74 | 82.34 85 | 83.88 55 | 62.40 118 | 60.93 129 | 68.68 58 | 49.25 181 | 69.71 87 | 65.73 97 | 81.26 88 | 81.98 66 | 88.35 68 | 88.60 61 |
|
test2506 | | | 71.72 94 | 72.95 98 | 70.29 96 | 81.49 75 | 83.27 75 | 75.74 109 | 67.59 64 | 68.19 78 | 49.81 145 | 61.15 97 | 49.73 191 | 58.82 135 | 84.76 51 | 82.94 59 | 88.27 70 | 80.63 137 |
|
ECVR-MVS |  | | 72.20 90 | 73.91 89 | 70.20 98 | 81.49 75 | 83.27 75 | 75.74 109 | 67.59 64 | 68.19 78 | 49.31 149 | 55.77 131 | 62.00 118 | 58.82 135 | 84.76 51 | 82.94 59 | 88.27 70 | 80.41 141 |
|
IS_MVSNet | | | 73.33 83 | 77.34 74 | 68.65 116 | 81.29 77 | 83.47 73 | 74.45 125 | 63.58 95 | 65.75 91 | 48.49 151 | 67.11 79 | 70.61 80 | 54.63 168 | 84.51 55 | 83.58 54 | 89.48 50 | 86.34 79 |
|
test1111 | | | 71.56 96 | 73.44 92 | 69.38 109 | 81.16 78 | 82.95 80 | 74.99 120 | 67.68 62 | 66.89 83 | 46.33 165 | 55.19 137 | 60.91 122 | 57.99 143 | 84.59 54 | 82.70 62 | 88.12 77 | 80.85 134 |
|
Effi-MVS+ | | | 75.28 74 | 76.20 80 | 74.20 76 | 81.15 79 | 83.24 77 | 81.11 64 | 63.13 100 | 66.37 85 | 60.27 89 | 64.30 90 | 68.88 95 | 70.93 68 | 81.56 79 | 81.69 69 | 88.61 65 | 87.35 69 |
|
MVS_111021_LR | | | 78.13 60 | 79.85 59 | 76.13 60 | 81.12 80 | 81.50 92 | 80.28 69 | 65.25 80 | 76.09 55 | 71.32 52 | 76.49 37 | 72.87 71 | 72.21 54 | 82.79 71 | 81.29 73 | 86.59 118 | 87.91 65 |
|
FC-MVSNet-train | | | 72.60 88 | 75.07 84 | 69.71 104 | 81.10 81 | 78.79 122 | 73.74 142 | 65.23 81 | 66.10 88 | 53.34 125 | 70.36 62 | 63.40 114 | 56.92 153 | 81.44 81 | 80.96 78 | 87.93 81 | 84.46 104 |
|
MS-PatchMatch | | | 70.17 111 | 70.49 115 | 69.79 103 | 80.98 82 | 77.97 134 | 77.51 97 | 58.95 156 | 62.33 117 | 55.22 114 | 53.14 156 | 65.90 106 | 62.03 115 | 79.08 120 | 77.11 140 | 84.08 157 | 77.91 157 |
|
Anonymous202405211 | | | | 72.16 106 | | 80.85 83 | 81.85 88 | 76.88 105 | 65.40 79 | 62.89 114 | | 46.35 188 | 67.99 100 | 62.05 114 | 81.15 91 | 80.38 93 | 85.97 135 | 84.50 103 |
|
TAPA-MVS | | 71.42 9 | 77.69 63 | 80.05 58 | 74.94 68 | 80.68 84 | 84.52 64 | 81.36 61 | 63.14 99 | 84.77 28 | 64.82 75 | 68.72 69 | 75.91 60 | 71.86 58 | 81.62 77 | 79.55 105 | 87.80 87 | 85.24 92 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CS-MVS-test | | | 78.10 61 | 79.79 60 | 76.13 60 | 80.59 85 | 81.68 89 | 81.31 62 | 63.65 92 | 68.34 76 | 64.91 74 | 72.52 51 | 76.25 58 | 75.99 33 | 86.06 41 | 83.55 56 | 90.31 33 | 90.16 50 |
|
PVSNet_Blended_VisFu | | | 76.57 67 | 77.90 66 | 75.02 67 | 80.56 86 | 86.58 50 | 79.24 80 | 66.18 72 | 64.81 96 | 68.18 61 | 65.61 80 | 71.45 74 | 67.05 82 | 84.16 57 | 81.80 68 | 88.90 60 | 90.92 42 |
|
EPP-MVSNet | | | 74.00 81 | 77.41 72 | 70.02 101 | 80.53 87 | 83.91 67 | 74.99 120 | 62.68 112 | 65.06 94 | 49.77 146 | 68.68 70 | 72.09 73 | 63.06 107 | 82.49 74 | 80.73 81 | 89.12 58 | 88.91 58 |
|
COLMAP_ROB |  | 62.73 15 | 67.66 140 | 66.76 156 | 68.70 115 | 80.49 88 | 77.98 132 | 75.29 113 | 62.95 102 | 63.62 108 | 49.96 143 | 47.32 187 | 50.72 186 | 58.57 137 | 76.87 144 | 75.50 156 | 84.94 152 | 75.33 176 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
GeoE | | | 74.23 79 | 74.84 85 | 73.52 78 | 80.42 89 | 81.46 93 | 79.77 74 | 61.06 130 | 67.23 82 | 63.67 79 | 59.56 109 | 68.74 97 | 67.90 80 | 80.25 106 | 79.37 109 | 88.31 69 | 87.26 72 |
|
casdiffmvs | | | 76.76 66 | 78.46 64 | 74.77 70 | 80.32 90 | 83.73 71 | 80.65 67 | 63.24 97 | 73.58 64 | 66.11 69 | 69.39 66 | 74.09 66 | 69.49 73 | 82.52 73 | 79.35 110 | 88.84 63 | 86.52 77 |
|
DCV-MVSNet | | | 73.65 82 | 75.78 82 | 71.16 87 | 80.19 91 | 79.27 116 | 77.45 100 | 61.68 127 | 66.73 84 | 58.72 94 | 65.31 83 | 69.96 84 | 62.19 112 | 81.29 87 | 80.97 77 | 86.74 111 | 86.91 73 |
|
Anonymous20231211 | | | 71.90 92 | 72.48 103 | 71.21 86 | 80.14 92 | 81.53 91 | 76.92 103 | 62.89 103 | 64.46 101 | 58.94 91 | 43.80 192 | 70.98 78 | 62.22 111 | 80.70 96 | 80.19 96 | 86.18 125 | 85.73 82 |
|
TSAR-MVS + COLMAP | | | 78.34 59 | 81.64 45 | 74.48 75 | 80.13 93 | 85.01 61 | 81.73 60 | 65.93 77 | 84.75 29 | 61.68 85 | 85.79 20 | 66.27 105 | 71.39 64 | 82.91 69 | 80.78 80 | 86.01 133 | 85.98 80 |
|
CS-MVS | | | 77.88 62 | 80.66 51 | 74.64 73 | 79.87 94 | 82.07 86 | 78.63 86 | 59.93 146 | 72.57 67 | 63.22 83 | 73.66 47 | 77.72 54 | 75.97 35 | 85.12 49 | 83.58 54 | 90.23 35 | 89.93 51 |
|
baseline1 | | | 70.10 112 | 72.17 105 | 67.69 125 | 79.74 95 | 76.80 144 | 73.91 136 | 64.38 87 | 62.74 115 | 48.30 153 | 64.94 84 | 64.08 111 | 54.17 170 | 81.46 80 | 78.92 113 | 85.66 140 | 76.22 167 |
|
EPNet_dtu | | | 68.08 132 | 71.00 111 | 64.67 154 | 79.64 96 | 68.62 185 | 75.05 119 | 63.30 96 | 66.36 86 | 45.27 172 | 67.40 77 | 66.84 104 | 43.64 190 | 75.37 153 | 74.98 159 | 81.15 169 | 77.44 160 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PVSNet_BlendedMVS | | | 76.21 68 | 77.52 70 | 74.69 71 | 79.46 97 | 83.79 69 | 77.50 98 | 64.34 88 | 69.88 71 | 71.88 45 | 68.54 72 | 70.42 81 | 67.05 82 | 83.48 64 | 79.63 101 | 87.89 83 | 86.87 74 |
|
PVSNet_Blended | | | 76.21 68 | 77.52 70 | 74.69 71 | 79.46 97 | 83.79 69 | 77.50 98 | 64.34 88 | 69.88 71 | 71.88 45 | 68.54 72 | 70.42 81 | 67.05 82 | 83.48 64 | 79.63 101 | 87.89 83 | 86.87 74 |
|
IB-MVS | | 66.94 12 | 71.21 101 | 71.66 109 | 70.68 90 | 79.18 99 | 82.83 82 | 72.61 149 | 61.77 125 | 59.66 136 | 63.44 81 | 53.26 153 | 59.65 129 | 59.16 134 | 76.78 146 | 82.11 65 | 87.90 82 | 87.33 70 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MVS_Test | | | 75.37 73 | 77.13 76 | 73.31 80 | 79.07 100 | 81.32 95 | 79.98 70 | 60.12 143 | 69.72 73 | 64.11 77 | 70.53 61 | 73.22 68 | 68.90 75 | 80.14 108 | 79.48 107 | 87.67 89 | 85.50 87 |
|
Effi-MVS+-dtu | | | 71.82 93 | 71.86 108 | 71.78 84 | 78.77 101 | 80.47 105 | 78.55 88 | 61.67 128 | 60.68 130 | 55.49 111 | 58.48 116 | 65.48 107 | 68.85 76 | 76.92 143 | 75.55 155 | 87.35 94 | 85.46 88 |
|
EG-PatchMatch MVS | | | 67.24 147 | 66.94 154 | 67.60 127 | 78.73 102 | 81.35 94 | 73.28 147 | 59.49 149 | 46.89 200 | 51.42 137 | 43.65 193 | 53.49 164 | 55.50 165 | 81.38 83 | 80.66 88 | 87.15 96 | 81.17 132 |
|
gg-mvs-nofinetune | | | 62.55 170 | 65.05 168 | 59.62 179 | 78.72 103 | 77.61 138 | 70.83 157 | 53.63 172 | 39.71 212 | 22.04 213 | 36.36 205 | 64.32 110 | 47.53 183 | 81.16 90 | 79.03 112 | 85.00 151 | 77.17 162 |
|
Vis-MVSNet (Re-imp) | | | 67.83 137 | 73.52 91 | 61.19 170 | 78.37 104 | 76.72 146 | 66.80 175 | 62.96 101 | 65.50 92 | 34.17 196 | 67.19 78 | 69.68 88 | 39.20 199 | 79.39 117 | 79.44 108 | 85.68 139 | 76.73 166 |
|
DI_MVS_plusplus_trai | | | 75.13 75 | 76.12 81 | 73.96 77 | 78.18 105 | 81.55 90 | 80.97 65 | 62.54 114 | 68.59 75 | 65.13 73 | 61.43 96 | 74.81 63 | 69.32 74 | 81.01 94 | 79.59 103 | 87.64 90 | 85.89 81 |
|
thres600view7 | | | 67.68 139 | 68.43 141 | 66.80 142 | 77.90 106 | 78.86 120 | 73.84 138 | 62.75 105 | 56.07 159 | 44.70 175 | 52.85 161 | 52.81 173 | 55.58 163 | 80.41 98 | 77.77 127 | 86.05 130 | 80.28 142 |
|
thres400 | | | 67.95 134 | 68.62 139 | 67.17 135 | 77.90 106 | 78.59 125 | 74.27 131 | 62.72 107 | 56.34 157 | 45.77 170 | 53.00 158 | 53.35 169 | 56.46 155 | 80.21 107 | 78.43 119 | 85.91 137 | 80.43 140 |
|
thres200 | | | 67.98 133 | 68.55 140 | 67.30 133 | 77.89 108 | 78.86 120 | 74.18 134 | 62.75 105 | 56.35 156 | 46.48 164 | 52.98 159 | 53.54 162 | 56.46 155 | 80.41 98 | 77.97 125 | 86.05 130 | 79.78 147 |
|
thres100view900 | | | 67.60 143 | 68.02 144 | 67.12 137 | 77.83 109 | 77.75 136 | 73.90 137 | 62.52 115 | 56.64 153 | 46.82 161 | 52.65 163 | 53.47 166 | 55.92 159 | 78.77 124 | 77.62 130 | 85.72 138 | 79.23 150 |
|
tfpn200view9 | | | 68.11 131 | 68.72 137 | 67.40 130 | 77.83 109 | 78.93 118 | 74.28 130 | 62.81 104 | 56.64 153 | 46.82 161 | 52.65 163 | 53.47 166 | 56.59 154 | 80.41 98 | 78.43 119 | 86.11 126 | 80.52 139 |
|
Fast-Effi-MVS+ | | | 73.11 85 | 73.66 90 | 72.48 82 | 77.72 111 | 80.88 102 | 78.55 88 | 58.83 159 | 65.19 93 | 60.36 88 | 59.98 106 | 62.42 117 | 71.22 66 | 81.66 76 | 80.61 91 | 88.20 73 | 84.88 99 |
|
UniMVSNet_NR-MVSNet | | | 70.59 105 | 72.19 104 | 68.72 114 | 77.72 111 | 80.72 103 | 73.81 140 | 69.65 47 | 61.99 119 | 43.23 177 | 60.54 102 | 57.50 138 | 58.57 137 | 79.56 114 | 81.07 76 | 89.34 52 | 83.97 106 |
|
IterMVS-LS | | | 71.69 95 | 72.82 101 | 70.37 95 | 77.54 113 | 76.34 149 | 75.13 118 | 60.46 138 | 61.53 124 | 57.57 101 | 64.89 85 | 67.33 102 | 66.04 95 | 77.09 142 | 77.37 136 | 85.48 143 | 85.18 93 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
NR-MVSNet | | | 68.79 126 | 70.56 114 | 66.71 145 | 77.48 114 | 79.54 112 | 73.52 144 | 69.20 52 | 61.20 127 | 39.76 184 | 58.52 114 | 50.11 189 | 51.37 177 | 80.26 105 | 80.71 86 | 88.97 59 | 83.59 112 |
|
TransMVSNet (Re) | | | 64.74 159 | 65.66 162 | 63.66 161 | 77.40 115 | 75.33 158 | 69.86 158 | 62.67 113 | 47.63 198 | 41.21 183 | 50.01 176 | 52.33 176 | 45.31 187 | 79.57 113 | 77.69 129 | 85.49 142 | 77.07 164 |
|
TranMVSNet+NR-MVSNet | | | 69.25 121 | 70.81 113 | 67.43 129 | 77.23 116 | 79.46 114 | 73.48 145 | 69.66 46 | 60.43 133 | 39.56 185 | 58.82 113 | 53.48 165 | 55.74 162 | 79.59 112 | 81.21 74 | 88.89 61 | 82.70 116 |
|
CANet_DTU | | | 73.29 84 | 76.96 77 | 69.00 113 | 77.04 117 | 82.06 87 | 79.49 78 | 56.30 169 | 67.85 80 | 53.29 126 | 71.12 59 | 70.37 83 | 61.81 121 | 81.59 78 | 80.96 78 | 86.09 127 | 84.73 100 |
|
CHOSEN 1792x2688 | | | 69.20 122 | 69.26 129 | 69.13 110 | 76.86 118 | 78.93 118 | 77.27 101 | 60.12 143 | 61.86 121 | 54.42 115 | 42.54 196 | 61.61 119 | 66.91 87 | 78.55 127 | 78.14 123 | 79.23 177 | 83.23 115 |
|
HyFIR lowres test | | | 69.47 119 | 68.94 133 | 70.09 100 | 76.77 119 | 82.93 81 | 76.63 107 | 60.17 141 | 59.00 139 | 54.03 119 | 40.54 201 | 65.23 108 | 67.89 81 | 76.54 149 | 78.30 121 | 85.03 150 | 80.07 144 |
|
UniMVSNet (Re) | | | 69.53 117 | 71.90 107 | 66.76 143 | 76.42 120 | 80.93 99 | 72.59 150 | 68.03 59 | 61.75 122 | 41.68 182 | 58.34 120 | 57.23 140 | 53.27 173 | 79.53 115 | 80.62 90 | 88.57 66 | 84.90 98 |
|
gm-plane-assit | | | 57.00 194 | 57.62 201 | 56.28 191 | 76.10 121 | 62.43 207 | 47.62 215 | 46.57 206 | 33.84 216 | 23.24 209 | 37.52 202 | 40.19 212 | 59.61 133 | 79.81 110 | 77.55 132 | 84.55 155 | 72.03 186 |
|
DU-MVS | | | 69.63 116 | 70.91 112 | 68.13 120 | 75.99 122 | 79.54 112 | 73.81 140 | 69.20 52 | 61.20 127 | 43.23 177 | 58.52 114 | 53.50 163 | 58.57 137 | 79.22 118 | 80.45 92 | 87.97 80 | 83.97 106 |
|
Baseline_NR-MVSNet | | | 67.53 144 | 68.77 136 | 66.09 147 | 75.99 122 | 74.75 163 | 72.43 151 | 68.41 55 | 61.33 126 | 38.33 189 | 51.31 171 | 54.13 158 | 56.03 158 | 79.22 118 | 78.19 122 | 85.37 145 | 82.45 118 |
|
CostFormer | | | 68.92 124 | 69.58 125 | 68.15 119 | 75.98 124 | 76.17 151 | 78.22 93 | 51.86 185 | 65.80 90 | 61.56 86 | 63.57 91 | 62.83 115 | 61.85 119 | 70.40 189 | 68.67 186 | 79.42 175 | 79.62 148 |
|
tfpnnormal | | | 64.27 162 | 63.64 178 | 65.02 151 | 75.84 125 | 75.61 155 | 71.24 156 | 62.52 115 | 47.79 197 | 42.97 179 | 42.65 195 | 44.49 205 | 52.66 175 | 78.77 124 | 76.86 142 | 84.88 153 | 79.29 149 |
|
baseline2 | | | 69.69 115 | 70.27 117 | 69.01 112 | 75.72 126 | 77.13 142 | 73.82 139 | 58.94 157 | 61.35 125 | 57.09 104 | 61.68 95 | 57.17 141 | 61.99 116 | 78.10 131 | 76.58 147 | 86.48 121 | 79.85 145 |
|
diffmvs | | | 74.86 76 | 77.37 73 | 71.93 83 | 75.62 127 | 80.35 107 | 79.42 79 | 60.15 142 | 72.81 66 | 64.63 76 | 71.51 57 | 73.11 70 | 66.53 92 | 79.02 121 | 77.98 124 | 85.25 147 | 86.83 76 |
|
tpm cat1 | | | 65.41 154 | 63.81 177 | 67.28 134 | 75.61 128 | 72.88 169 | 75.32 112 | 52.85 179 | 62.97 112 | 63.66 80 | 53.24 154 | 53.29 171 | 61.83 120 | 65.54 200 | 64.14 202 | 74.43 197 | 74.60 178 |
|
CDS-MVSNet | | | 67.65 141 | 69.83 122 | 65.09 150 | 75.39 129 | 76.55 147 | 74.42 128 | 63.75 91 | 53.55 176 | 49.37 148 | 59.41 110 | 62.45 116 | 44.44 188 | 79.71 111 | 79.82 99 | 83.17 163 | 77.36 161 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Fast-Effi-MVS+-dtu | | | 68.34 129 | 69.47 126 | 67.01 139 | 75.15 130 | 77.97 134 | 77.12 102 | 55.40 171 | 57.87 142 | 46.68 163 | 56.17 130 | 60.39 123 | 62.36 110 | 76.32 150 | 76.25 151 | 85.35 146 | 81.34 130 |
|
WR-MVS | | | 63.03 166 | 67.40 151 | 57.92 185 | 75.14 131 | 77.60 139 | 60.56 198 | 66.10 73 | 54.11 175 | 23.88 207 | 53.94 147 | 53.58 161 | 34.50 203 | 73.93 162 | 77.71 128 | 87.35 94 | 80.94 133 |
|
test-LLR | | | 64.42 160 | 64.36 173 | 64.49 155 | 75.02 132 | 63.93 198 | 66.61 177 | 61.96 122 | 54.41 171 | 47.77 156 | 57.46 124 | 60.25 124 | 55.20 166 | 70.80 183 | 69.33 181 | 80.40 173 | 74.38 180 |
|
test0.0.03 1 | | | 58.80 190 | 61.58 191 | 55.56 193 | 75.02 132 | 68.45 186 | 59.58 202 | 61.96 122 | 52.74 179 | 29.57 200 | 49.75 179 | 54.56 154 | 31.46 206 | 71.19 178 | 69.77 179 | 75.75 190 | 64.57 201 |
|
v1144 | | | 69.93 114 | 69.36 128 | 70.61 92 | 74.89 134 | 80.93 99 | 79.11 82 | 60.64 134 | 55.97 160 | 55.31 113 | 53.85 148 | 54.14 156 | 66.54 91 | 78.10 131 | 77.44 134 | 87.14 99 | 85.09 94 |
|
v10 | | | 70.22 110 | 69.76 123 | 70.74 88 | 74.79 135 | 80.30 109 | 79.22 81 | 59.81 147 | 57.71 147 | 56.58 108 | 54.22 146 | 55.31 149 | 66.95 85 | 78.28 129 | 77.47 133 | 87.12 102 | 85.07 95 |
|
v8 | | | 70.23 109 | 69.86 121 | 70.67 91 | 74.69 136 | 79.82 111 | 78.79 85 | 59.18 152 | 58.80 140 | 58.20 99 | 55.00 138 | 57.33 139 | 66.31 94 | 77.51 136 | 76.71 145 | 86.82 108 | 83.88 109 |
|
v2v482 | | | 70.05 113 | 69.46 127 | 70.74 88 | 74.62 137 | 80.32 108 | 79.00 83 | 60.62 135 | 57.41 149 | 56.89 105 | 55.43 136 | 55.14 151 | 66.39 93 | 77.25 139 | 77.14 139 | 86.90 105 | 83.57 113 |
|
v1192 | | | 69.50 118 | 68.83 134 | 70.29 96 | 74.49 138 | 80.92 101 | 78.55 88 | 60.54 136 | 55.04 166 | 54.21 116 | 52.79 162 | 52.33 176 | 66.92 86 | 77.88 133 | 77.35 137 | 87.04 103 | 85.51 86 |
|
UniMVSNet_ETH3D | | | 67.18 148 | 67.03 153 | 67.36 131 | 74.44 139 | 78.12 127 | 74.07 135 | 66.38 70 | 52.22 183 | 46.87 160 | 48.64 182 | 51.84 180 | 56.96 151 | 77.29 138 | 78.53 117 | 85.42 144 | 82.59 117 |
|
DTE-MVSNet | | | 61.85 179 | 64.96 170 | 58.22 184 | 74.32 140 | 74.39 165 | 61.01 197 | 67.85 61 | 51.76 188 | 21.91 214 | 53.28 152 | 48.17 194 | 37.74 200 | 72.22 171 | 76.44 148 | 86.52 120 | 78.49 154 |
|
Vis-MVSNet |  | | 72.77 87 | 77.20 75 | 67.59 128 | 74.19 141 | 84.01 66 | 76.61 108 | 61.69 126 | 60.62 132 | 50.61 141 | 70.25 63 | 71.31 77 | 55.57 164 | 83.85 60 | 82.28 63 | 86.90 105 | 88.08 64 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
v144192 | | | 69.34 120 | 68.68 138 | 70.12 99 | 74.06 142 | 80.54 104 | 78.08 94 | 60.54 136 | 54.99 168 | 54.13 118 | 52.92 160 | 52.80 174 | 66.73 89 | 77.13 141 | 76.72 144 | 87.15 96 | 85.63 84 |
|
v1921920 | | | 69.03 123 | 68.32 142 | 69.86 102 | 74.03 143 | 80.37 106 | 77.55 96 | 60.25 140 | 54.62 170 | 53.59 124 | 52.36 166 | 51.50 182 | 66.75 88 | 77.17 140 | 76.69 146 | 86.96 104 | 85.56 85 |
|
PEN-MVS | | | 62.96 167 | 65.77 161 | 59.70 178 | 73.98 144 | 75.45 156 | 63.39 191 | 67.61 63 | 52.49 181 | 25.49 206 | 53.39 150 | 49.12 193 | 40.85 196 | 71.94 174 | 77.26 138 | 86.86 107 | 80.72 136 |
|
v1240 | | | 68.64 128 | 67.89 147 | 69.51 107 | 73.89 145 | 80.26 110 | 76.73 106 | 59.97 145 | 53.43 178 | 53.08 127 | 51.82 169 | 50.84 185 | 66.62 90 | 76.79 145 | 76.77 143 | 86.78 110 | 85.34 90 |
|
thisisatest0530 | | | 71.48 98 | 73.01 97 | 69.70 105 | 73.83 146 | 78.62 124 | 74.53 124 | 59.12 153 | 64.13 102 | 58.63 95 | 64.60 88 | 58.63 133 | 64.27 100 | 80.28 104 | 80.17 97 | 87.82 86 | 84.64 102 |
|
GA-MVS | | | 68.14 130 | 69.17 131 | 66.93 141 | 73.77 147 | 78.50 126 | 74.45 125 | 58.28 161 | 55.11 165 | 48.44 152 | 60.08 104 | 53.99 159 | 61.50 123 | 78.43 128 | 77.57 131 | 85.13 148 | 80.54 138 |
|
tttt0517 | | | 71.41 99 | 72.95 98 | 69.60 106 | 73.70 148 | 78.70 123 | 74.42 128 | 59.12 153 | 63.89 106 | 58.35 98 | 64.56 89 | 58.39 135 | 64.27 100 | 80.29 103 | 80.17 97 | 87.74 88 | 84.69 101 |
|
pm-mvs1 | | | 65.62 153 | 67.42 150 | 63.53 162 | 73.66 149 | 76.39 148 | 69.66 159 | 60.87 133 | 49.73 193 | 43.97 176 | 51.24 172 | 57.00 143 | 48.16 182 | 79.89 109 | 77.84 126 | 84.85 154 | 79.82 146 |
|
dps | | | 64.00 164 | 62.99 180 | 65.18 149 | 73.29 150 | 72.07 172 | 68.98 164 | 53.07 178 | 57.74 146 | 58.41 97 | 55.55 134 | 47.74 197 | 60.89 129 | 69.53 192 | 67.14 195 | 76.44 189 | 71.19 188 |
|
v148 | | | 67.85 136 | 67.53 148 | 68.23 118 | 73.25 151 | 77.57 140 | 74.26 132 | 57.36 166 | 55.70 161 | 57.45 103 | 53.53 149 | 55.42 148 | 61.96 117 | 75.23 154 | 73.92 163 | 85.08 149 | 81.32 131 |
|
PatchMatch-RL | | | 67.78 138 | 66.65 157 | 69.10 111 | 73.01 152 | 72.69 170 | 68.49 165 | 61.85 124 | 62.93 113 | 60.20 90 | 56.83 128 | 50.42 187 | 69.52 72 | 75.62 152 | 74.46 162 | 81.51 167 | 73.62 184 |
|
GBi-Net | | | 70.78 102 | 73.37 95 | 67.76 121 | 72.95 153 | 78.00 129 | 75.15 115 | 62.72 107 | 64.13 102 | 51.44 134 | 58.37 117 | 69.02 92 | 57.59 145 | 81.33 84 | 80.72 82 | 86.70 112 | 82.02 120 |
|
test1 | | | 70.78 102 | 73.37 95 | 67.76 121 | 72.95 153 | 78.00 129 | 75.15 115 | 62.72 107 | 64.13 102 | 51.44 134 | 58.37 117 | 69.02 92 | 57.59 145 | 81.33 84 | 80.72 82 | 86.70 112 | 82.02 120 |
|
FMVSNet2 | | | 70.39 108 | 72.67 102 | 67.72 124 | 72.95 153 | 78.00 129 | 75.15 115 | 62.69 111 | 63.29 110 | 51.25 138 | 55.64 132 | 68.49 99 | 57.59 145 | 80.91 95 | 80.35 94 | 86.70 112 | 82.02 120 |
|
FMVSNet3 | | | 70.49 106 | 72.90 100 | 67.67 126 | 72.88 156 | 77.98 132 | 74.96 122 | 62.72 107 | 64.13 102 | 51.44 134 | 58.37 117 | 69.02 92 | 57.43 148 | 79.43 116 | 79.57 104 | 86.59 118 | 81.81 127 |
|
LTVRE_ROB | | 59.44 16 | 61.82 182 | 62.64 184 | 60.87 172 | 72.83 157 | 77.19 141 | 64.37 187 | 58.97 155 | 33.56 217 | 28.00 203 | 52.59 165 | 42.21 208 | 63.93 103 | 74.52 158 | 76.28 149 | 77.15 184 | 82.13 119 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v7n | | | 67.05 149 | 66.94 154 | 67.17 135 | 72.35 158 | 78.97 117 | 73.26 148 | 58.88 158 | 51.16 189 | 50.90 139 | 48.21 184 | 50.11 189 | 60.96 126 | 77.70 134 | 77.38 135 | 86.68 115 | 85.05 96 |
|
tpm | | | 62.41 173 | 63.15 179 | 61.55 169 | 72.24 159 | 63.79 200 | 71.31 155 | 46.12 208 | 57.82 143 | 55.33 112 | 59.90 107 | 54.74 153 | 53.63 171 | 67.24 199 | 64.29 201 | 70.65 207 | 74.25 182 |
|
test20.03 | | | 53.93 202 | 56.28 203 | 51.19 202 | 72.19 160 | 65.83 193 | 53.20 209 | 61.08 129 | 42.74 206 | 22.08 212 | 37.07 204 | 45.76 203 | 24.29 214 | 70.44 187 | 69.04 183 | 74.31 198 | 63.05 205 |
|
CP-MVSNet | | | 62.68 169 | 65.49 164 | 59.40 181 | 71.84 161 | 75.34 157 | 62.87 193 | 67.04 68 | 52.64 180 | 27.19 204 | 53.38 151 | 48.15 195 | 41.40 194 | 71.26 177 | 75.68 153 | 86.07 128 | 82.00 123 |
|
PS-CasMVS | | | 62.38 175 | 65.06 167 | 59.25 182 | 71.73 162 | 75.21 161 | 62.77 194 | 66.99 69 | 51.94 187 | 26.96 205 | 52.00 168 | 47.52 198 | 41.06 195 | 71.16 180 | 75.60 154 | 85.97 135 | 81.97 125 |
|
WR-MVS_H | | | 61.83 181 | 65.87 160 | 57.12 188 | 71.72 163 | 76.87 143 | 61.45 196 | 66.19 71 | 51.97 186 | 22.92 211 | 53.13 157 | 52.30 178 | 33.80 204 | 71.03 181 | 75.00 158 | 86.65 116 | 80.78 135 |
|
USDC | | | 67.36 146 | 67.90 146 | 66.74 144 | 71.72 163 | 75.23 160 | 71.58 153 | 60.28 139 | 67.45 81 | 50.54 142 | 60.93 98 | 45.20 204 | 62.08 113 | 76.56 148 | 74.50 161 | 84.25 156 | 75.38 175 |
|
UGNet | | | 72.78 86 | 77.67 68 | 67.07 138 | 71.65 165 | 83.24 77 | 75.20 114 | 63.62 94 | 64.93 95 | 56.72 106 | 71.82 55 | 73.30 67 | 49.02 181 | 81.02 93 | 80.70 87 | 86.22 124 | 88.67 60 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tpmrst | | | 62.00 177 | 62.35 188 | 61.58 168 | 71.62 166 | 64.14 197 | 69.07 163 | 48.22 204 | 62.21 118 | 53.93 120 | 58.26 121 | 55.30 150 | 55.81 161 | 63.22 205 | 62.62 204 | 70.85 206 | 70.70 189 |
|
pmmvs4 | | | 67.89 135 | 67.39 152 | 68.48 117 | 71.60 167 | 73.57 167 | 74.45 125 | 60.98 131 | 64.65 97 | 57.97 100 | 54.95 139 | 51.73 181 | 61.88 118 | 73.78 163 | 75.11 157 | 83.99 159 | 77.91 157 |
|
testgi | | | 54.39 201 | 57.86 199 | 50.35 203 | 71.59 168 | 67.24 189 | 54.95 207 | 53.25 176 | 43.36 205 | 23.78 208 | 44.64 191 | 47.87 196 | 24.96 211 | 70.45 186 | 68.66 187 | 73.60 200 | 62.78 206 |
|
pmmvs6 | | | 62.41 173 | 62.88 181 | 61.87 167 | 71.38 169 | 75.18 162 | 67.76 168 | 59.45 151 | 41.64 208 | 42.52 181 | 37.33 203 | 52.91 172 | 46.87 184 | 77.67 135 | 76.26 150 | 83.23 162 | 79.18 151 |
|
FMVSNet1 | | | 68.84 125 | 70.47 116 | 66.94 140 | 71.35 170 | 77.68 137 | 74.71 123 | 62.35 119 | 56.93 151 | 49.94 144 | 50.01 176 | 64.59 109 | 57.07 150 | 81.33 84 | 80.72 82 | 86.25 123 | 82.00 123 |
|
IterMVS-SCA-FT | | | 66.89 150 | 69.22 130 | 64.17 156 | 71.30 171 | 75.64 154 | 71.33 154 | 53.17 177 | 57.63 148 | 49.08 150 | 60.72 100 | 60.05 127 | 63.09 106 | 74.99 156 | 73.92 163 | 77.07 185 | 81.57 129 |
|
PatchmatchNet |  | | 64.21 163 | 64.65 171 | 63.69 160 | 71.29 172 | 68.66 184 | 69.63 160 | 51.70 187 | 63.04 111 | 53.77 122 | 59.83 108 | 58.34 136 | 60.23 132 | 68.54 196 | 66.06 198 | 75.56 192 | 68.08 196 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
baseline | | | 70.45 107 | 74.09 88 | 66.20 146 | 70.95 173 | 75.67 153 | 74.26 132 | 53.57 173 | 68.33 77 | 58.42 96 | 69.87 64 | 71.45 74 | 61.55 122 | 74.84 157 | 74.76 160 | 78.42 179 | 83.72 111 |
|
SCA | | | 65.40 155 | 66.58 158 | 64.02 158 | 70.65 174 | 73.37 168 | 67.35 169 | 53.46 175 | 63.66 107 | 54.14 117 | 60.84 99 | 60.20 126 | 61.50 123 | 69.96 190 | 68.14 191 | 77.01 186 | 69.91 190 |
|
CR-MVSNet | | | 64.83 158 | 65.54 163 | 64.01 159 | 70.64 175 | 69.41 180 | 65.97 180 | 52.74 180 | 57.81 144 | 52.65 129 | 54.27 142 | 56.31 145 | 60.92 127 | 72.20 172 | 73.09 168 | 81.12 170 | 75.69 172 |
|
MVSTER | | | 72.06 91 | 74.24 86 | 69.51 107 | 70.39 176 | 75.97 152 | 76.91 104 | 57.36 166 | 64.64 98 | 61.39 87 | 68.86 68 | 63.76 112 | 63.46 104 | 81.44 81 | 79.70 100 | 87.56 91 | 85.31 91 |
|
Anonymous20231206 | | | 56.36 196 | 57.80 200 | 54.67 196 | 70.08 177 | 66.39 192 | 60.46 199 | 57.54 163 | 49.50 195 | 29.30 201 | 33.86 208 | 46.64 199 | 35.18 202 | 70.44 187 | 68.88 185 | 75.47 193 | 68.88 195 |
|
thisisatest0515 | | | 67.40 145 | 68.78 135 | 65.80 148 | 70.02 178 | 75.24 159 | 69.36 162 | 57.37 165 | 54.94 169 | 53.67 123 | 55.53 135 | 54.85 152 | 58.00 142 | 78.19 130 | 78.91 114 | 86.39 122 | 83.78 110 |
|
CMPMVS |  | 47.78 17 | 62.49 172 | 62.52 185 | 62.46 165 | 70.01 179 | 70.66 178 | 62.97 192 | 51.84 186 | 51.98 185 | 56.71 107 | 42.87 194 | 53.62 160 | 57.80 144 | 72.23 170 | 70.37 178 | 75.45 194 | 75.91 169 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
TDRefinement | | | 66.09 152 | 65.03 169 | 67.31 132 | 69.73 180 | 76.75 145 | 75.33 111 | 64.55 86 | 60.28 134 | 49.72 147 | 45.63 190 | 42.83 207 | 60.46 131 | 75.75 151 | 75.95 152 | 84.08 157 | 78.04 156 |
|
TinyColmap | | | 62.84 168 | 61.03 193 | 64.96 152 | 69.61 181 | 71.69 173 | 68.48 166 | 59.76 148 | 55.41 162 | 47.69 158 | 47.33 186 | 34.20 216 | 62.76 109 | 74.52 158 | 72.59 171 | 81.44 168 | 71.47 187 |
|
RPMNet | | | 61.71 183 | 62.88 181 | 60.34 174 | 69.51 182 | 69.41 180 | 63.48 190 | 49.23 196 | 57.81 144 | 45.64 171 | 50.51 174 | 50.12 188 | 53.13 174 | 68.17 198 | 68.49 189 | 81.07 171 | 75.62 174 |
|
IterMVS | | | 66.36 151 | 68.30 143 | 64.10 157 | 69.48 183 | 74.61 164 | 73.41 146 | 50.79 191 | 57.30 150 | 48.28 154 | 60.64 101 | 59.92 128 | 60.85 130 | 74.14 161 | 72.66 170 | 81.80 166 | 78.82 153 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
SixPastTwentyTwo | | | 61.84 180 | 62.45 186 | 61.12 171 | 69.20 184 | 72.20 171 | 62.03 195 | 57.40 164 | 46.54 201 | 38.03 191 | 57.14 127 | 41.72 209 | 58.12 141 | 69.67 191 | 71.58 174 | 81.94 165 | 78.30 155 |
|
MDTV_nov1_ep13 | | | 64.37 161 | 65.24 165 | 63.37 164 | 68.94 185 | 70.81 176 | 72.40 152 | 50.29 194 | 60.10 135 | 53.91 121 | 60.07 105 | 59.15 131 | 57.21 149 | 69.43 193 | 67.30 193 | 77.47 182 | 69.78 192 |
|
EPMVS | | | 60.00 188 | 61.97 189 | 57.71 186 | 68.46 186 | 63.17 204 | 64.54 186 | 48.23 203 | 63.30 109 | 44.72 174 | 60.19 103 | 56.05 147 | 50.85 178 | 65.27 203 | 62.02 205 | 69.44 209 | 63.81 203 |
|
our_test_3 | | | | | | 67.93 187 | 70.99 175 | 66.89 173 | | | | | | | | | | |
|
FC-MVSNet-test | | | 56.90 195 | 65.20 166 | 47.21 206 | 66.98 188 | 63.20 203 | 49.11 214 | 58.60 160 | 59.38 138 | 11.50 221 | 65.60 81 | 56.68 144 | 24.66 213 | 71.17 179 | 71.36 176 | 72.38 203 | 69.02 194 |
|
CVMVSNet | | | 62.55 170 | 65.89 159 | 58.64 183 | 66.95 189 | 69.15 182 | 66.49 179 | 56.29 170 | 52.46 182 | 32.70 197 | 59.27 111 | 58.21 137 | 50.09 179 | 71.77 175 | 71.39 175 | 79.31 176 | 78.99 152 |
|
FPMVS | | | 51.87 204 | 50.00 209 | 54.07 197 | 66.83 190 | 57.25 211 | 60.25 200 | 50.91 189 | 50.25 191 | 34.36 195 | 36.04 206 | 32.02 218 | 41.49 193 | 58.98 211 | 56.07 210 | 70.56 208 | 59.36 211 |
|
pmmvs-eth3d | | | 63.52 165 | 62.44 187 | 64.77 153 | 66.82 191 | 70.12 179 | 69.41 161 | 59.48 150 | 54.34 174 | 52.71 128 | 46.24 189 | 44.35 206 | 56.93 152 | 72.37 167 | 73.77 165 | 83.30 161 | 75.91 169 |
|
TAMVS | | | 59.58 189 | 62.81 183 | 55.81 192 | 66.03 192 | 65.64 195 | 63.86 189 | 48.74 199 | 49.95 192 | 37.07 193 | 54.77 140 | 58.54 134 | 44.44 188 | 72.29 169 | 71.79 172 | 74.70 196 | 66.66 198 |
|
MDTV_nov1_ep13_2view | | | 60.16 187 | 60.51 195 | 59.75 177 | 65.39 193 | 69.05 183 | 68.00 167 | 48.29 202 | 51.99 184 | 45.95 169 | 48.01 185 | 49.64 192 | 53.39 172 | 68.83 195 | 66.52 197 | 77.47 182 | 69.55 193 |
|
pmmvs5 | | | 62.37 176 | 64.04 175 | 60.42 173 | 65.03 194 | 71.67 174 | 67.17 171 | 52.70 182 | 50.30 190 | 44.80 173 | 54.23 145 | 51.19 184 | 49.37 180 | 72.88 166 | 73.48 167 | 83.45 160 | 74.55 179 |
|
ambc | | | | 53.42 204 | | 64.99 195 | 63.36 202 | 49.96 212 | | 47.07 199 | 37.12 192 | 28.97 212 | 16.36 224 | 41.82 192 | 75.10 155 | 67.34 192 | 71.55 205 | 75.72 171 |
|
V42 | | | 68.76 127 | 69.63 124 | 67.74 123 | 64.93 196 | 78.01 128 | 78.30 92 | 56.48 168 | 58.65 141 | 56.30 109 | 54.26 144 | 57.03 142 | 64.85 98 | 77.47 137 | 77.01 141 | 85.60 141 | 84.96 97 |
|
pmnet_mix02 | | | 55.30 198 | 57.01 202 | 53.30 201 | 64.14 197 | 59.09 209 | 58.39 204 | 50.24 195 | 53.47 177 | 38.68 188 | 49.75 179 | 45.86 202 | 40.14 198 | 65.38 202 | 60.22 207 | 68.19 211 | 65.33 200 |
|
PMVS |  | 39.38 18 | 46.06 210 | 43.30 212 | 49.28 205 | 62.93 198 | 38.75 218 | 41.88 217 | 53.50 174 | 33.33 218 | 35.46 194 | 28.90 213 | 31.01 219 | 33.04 205 | 58.61 212 | 54.63 213 | 68.86 210 | 57.88 212 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new-patchmatchnet | | | 46.97 208 | 49.47 210 | 44.05 210 | 62.82 199 | 56.55 212 | 45.35 216 | 52.01 184 | 42.47 207 | 17.04 219 | 35.73 207 | 35.21 215 | 21.84 217 | 61.27 208 | 54.83 212 | 65.26 213 | 60.26 208 |
|
ET-MVSNet_ETH3D | | | 72.46 89 | 74.19 87 | 70.44 94 | 62.50 200 | 81.17 97 | 79.90 73 | 62.46 117 | 64.52 100 | 57.52 102 | 71.49 58 | 59.15 131 | 72.08 56 | 78.61 126 | 81.11 75 | 88.16 74 | 83.29 114 |
|
ADS-MVSNet | | | 55.94 197 | 58.01 198 | 53.54 200 | 62.48 201 | 58.48 210 | 59.12 203 | 46.20 207 | 59.65 137 | 42.88 180 | 52.34 167 | 53.31 170 | 46.31 185 | 62.00 207 | 60.02 208 | 64.23 214 | 60.24 210 |
|
RPSCF | | | 67.64 142 | 71.25 110 | 63.43 163 | 61.86 202 | 70.73 177 | 67.26 170 | 50.86 190 | 74.20 61 | 58.91 92 | 67.49 76 | 69.33 89 | 64.10 102 | 71.41 176 | 68.45 190 | 77.61 181 | 77.17 162 |
|
MIMVSNet | | | 58.52 192 | 61.34 192 | 55.22 194 | 60.76 203 | 67.01 190 | 66.81 174 | 49.02 198 | 56.43 155 | 38.90 187 | 40.59 200 | 54.54 155 | 40.57 197 | 73.16 165 | 71.65 173 | 75.30 195 | 66.00 199 |
|
PatchT | | | 61.97 178 | 64.04 175 | 59.55 180 | 60.49 204 | 67.40 188 | 56.54 205 | 48.65 200 | 56.69 152 | 52.65 129 | 51.10 173 | 52.14 179 | 60.92 127 | 72.20 172 | 73.09 168 | 78.03 180 | 75.69 172 |
|
N_pmnet | | | 47.35 207 | 50.13 208 | 44.11 209 | 59.98 205 | 51.64 215 | 51.86 210 | 44.80 209 | 49.58 194 | 20.76 215 | 40.65 199 | 40.05 213 | 29.64 207 | 59.84 209 | 55.15 211 | 57.63 215 | 54.00 213 |
|
MVS-HIRNet | | | 54.41 200 | 52.10 207 | 57.11 189 | 58.99 206 | 56.10 213 | 49.68 213 | 49.10 197 | 46.18 202 | 52.15 133 | 33.18 209 | 46.11 201 | 56.10 157 | 63.19 206 | 59.70 209 | 76.64 188 | 60.25 209 |
|
PM-MVS | | | 60.48 186 | 60.94 194 | 59.94 176 | 58.85 207 | 66.83 191 | 64.27 188 | 51.39 188 | 55.03 167 | 48.03 155 | 50.00 178 | 40.79 211 | 58.26 140 | 69.20 194 | 67.13 196 | 78.84 178 | 77.60 159 |
|
anonymousdsp | | | 65.28 156 | 67.98 145 | 62.13 166 | 58.73 208 | 73.98 166 | 67.10 172 | 50.69 192 | 48.41 196 | 47.66 159 | 54.27 142 | 52.75 175 | 61.45 125 | 76.71 147 | 80.20 95 | 87.13 100 | 89.53 56 |
|
TESTMET0.1,1 | | | 61.10 184 | 64.36 173 | 57.29 187 | 57.53 209 | 63.93 198 | 66.61 177 | 36.22 214 | 54.41 171 | 47.77 156 | 57.46 124 | 60.25 124 | 55.20 166 | 70.80 183 | 69.33 181 | 80.40 173 | 74.38 180 |
|
EU-MVSNet | | | 54.63 199 | 58.69 197 | 49.90 204 | 56.99 210 | 62.70 206 | 56.41 206 | 50.64 193 | 45.95 203 | 23.14 210 | 50.42 175 | 46.51 200 | 36.63 201 | 65.51 201 | 64.85 200 | 75.57 191 | 74.91 177 |
|
FMVSNet5 | | | 57.24 193 | 60.02 196 | 53.99 198 | 56.45 211 | 62.74 205 | 65.27 183 | 47.03 205 | 55.14 164 | 39.55 186 | 40.88 198 | 53.42 168 | 41.83 191 | 72.35 168 | 71.10 177 | 73.79 199 | 64.50 202 |
|
test-mter | | | 60.84 185 | 64.62 172 | 56.42 190 | 55.99 212 | 64.18 196 | 65.39 182 | 34.23 215 | 54.39 173 | 46.21 167 | 57.40 126 | 59.49 130 | 55.86 160 | 71.02 182 | 69.65 180 | 80.87 172 | 76.20 168 |
|
CHOSEN 280x420 | | | 58.70 191 | 61.88 190 | 54.98 195 | 55.45 213 | 50.55 216 | 64.92 184 | 40.36 211 | 55.21 163 | 38.13 190 | 48.31 183 | 63.76 112 | 63.03 108 | 73.73 164 | 68.58 188 | 68.00 212 | 73.04 185 |
|
PMMVS | | | 65.06 157 | 69.17 131 | 60.26 175 | 55.25 214 | 63.43 201 | 66.71 176 | 43.01 210 | 62.41 116 | 50.64 140 | 69.44 65 | 67.04 103 | 63.29 105 | 74.36 160 | 73.54 166 | 82.68 164 | 73.99 183 |
|
Gipuma |  | | 36.38 212 | 35.80 214 | 37.07 211 | 45.76 215 | 33.90 219 | 29.81 219 | 48.47 201 | 39.91 211 | 18.02 218 | 8.00 222 | 8.14 226 | 25.14 210 | 59.29 210 | 61.02 206 | 55.19 217 | 40.31 215 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
pmmvs3 | | | 47.65 206 | 49.08 211 | 45.99 207 | 44.61 216 | 54.79 214 | 50.04 211 | 31.95 218 | 33.91 215 | 29.90 199 | 30.37 210 | 33.53 217 | 46.31 185 | 63.50 204 | 63.67 203 | 73.14 202 | 63.77 204 |
|
MIMVSNet1 | | | 49.27 205 | 53.25 205 | 44.62 208 | 44.61 216 | 61.52 208 | 53.61 208 | 52.18 183 | 41.62 209 | 18.68 217 | 28.14 214 | 41.58 210 | 25.50 209 | 68.46 197 | 69.04 183 | 73.15 201 | 62.37 207 |
|
MDA-MVSNet-bldmvs | | | 53.37 203 | 53.01 206 | 53.79 199 | 43.67 218 | 67.95 187 | 59.69 201 | 57.92 162 | 43.69 204 | 32.41 198 | 41.47 197 | 27.89 221 | 52.38 176 | 56.97 213 | 65.99 199 | 76.68 187 | 67.13 197 |
|
E-PMN | | | 21.77 215 | 18.24 218 | 25.89 213 | 40.22 219 | 19.58 222 | 12.46 224 | 39.87 212 | 18.68 222 | 6.71 223 | 9.57 219 | 4.31 229 | 22.36 216 | 19.89 220 | 27.28 218 | 33.73 220 | 28.34 219 |
|
EMVS | | | 20.98 216 | 17.15 219 | 25.44 214 | 39.51 220 | 19.37 223 | 12.66 223 | 39.59 213 | 19.10 221 | 6.62 224 | 9.27 220 | 4.40 228 | 22.43 215 | 17.99 221 | 24.40 219 | 31.81 221 | 25.53 220 |
|
new_pmnet | | | 38.40 211 | 42.64 213 | 33.44 212 | 37.54 221 | 45.00 217 | 36.60 218 | 32.72 217 | 40.27 210 | 12.72 220 | 29.89 211 | 28.90 220 | 24.78 212 | 53.17 214 | 52.90 214 | 56.31 216 | 48.34 214 |
|
PMMVS2 | | | 25.60 213 | 29.75 215 | 20.76 216 | 28.00 222 | 30.93 220 | 23.10 221 | 29.18 219 | 23.14 220 | 1.46 226 | 18.23 218 | 16.54 223 | 5.08 220 | 40.22 215 | 41.40 216 | 37.76 218 | 37.79 217 |
|
tmp_tt | | | | | 14.50 219 | 14.68 223 | 7.17 225 | 10.46 226 | 2.21 222 | 37.73 213 | 28.71 202 | 25.26 215 | 16.98 222 | 4.37 221 | 31.49 217 | 29.77 217 | 26.56 222 | |
|
MVE |  | 19.12 19 | 20.47 217 | 23.27 217 | 17.20 218 | 12.66 224 | 25.41 221 | 10.52 225 | 34.14 216 | 14.79 223 | 6.53 225 | 8.79 221 | 4.68 227 | 16.64 219 | 29.49 218 | 41.63 215 | 22.73 223 | 38.11 216 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 22.26 214 | 25.94 216 | 17.95 217 | 3.24 225 | 7.17 225 | 23.83 220 | 7.27 221 | 37.35 214 | 20.44 216 | 21.87 217 | 39.16 214 | 18.67 218 | 34.56 216 | 20.84 220 | 34.28 219 | 20.64 221 |
|
GG-mvs-BLEND | | | 46.86 209 | 67.51 149 | 22.75 215 | 0.05 226 | 76.21 150 | 64.69 185 | 0.04 223 | 61.90 120 | 0.09 227 | 55.57 133 | 71.32 76 | 0.08 222 | 70.54 185 | 67.19 194 | 71.58 204 | 69.86 191 |
|
testmvs | | | 0.09 218 | 0.15 220 | 0.02 220 | 0.01 227 | 0.02 227 | 0.05 228 | 0.01 224 | 0.11 224 | 0.01 228 | 0.26 224 | 0.01 230 | 0.06 224 | 0.10 222 | 0.10 221 | 0.01 225 | 0.43 223 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 228 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 229 | 0.00 225 | 0.00 231 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 228 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 229 | 0.00 225 | 0.00 231 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 228 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 229 | 0.00 225 | 0.00 231 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
test123 | | | 0.09 218 | 0.14 221 | 0.02 220 | 0.00 228 | 0.02 227 | 0.02 229 | 0.01 224 | 0.09 225 | 0.00 229 | 0.30 223 | 0.00 231 | 0.08 222 | 0.03 223 | 0.09 222 | 0.01 225 | 0.45 222 |
|
RE-MVS-def | | | | | | | | | | | 46.24 166 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 86.88 16 | | | | | |
|
MTAPA | | | | | | | | | | | 83.48 1 | | 86.45 19 | | | | | |
|
MTMP | | | | | | | | | | | 82.66 6 | | 84.91 27 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.85 227 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 80.10 47 | | | | | | | | |
|
Patchmtry | | | | | | | 65.80 194 | 65.97 180 | 52.74 180 | | 52.65 129 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 18.74 224 | 18.55 222 | 8.02 220 | 26.96 219 | 7.33 222 | 23.81 216 | 13.05 225 | 25.99 208 | 25.17 219 | | 22.45 224 | 36.25 218 |
|