PGM-MVS | | | 98.86 31 | 99.35 25 | 98.29 35 | 99.77 1 | 99.63 25 | 99.67 5 | 95.63 46 | 98.66 112 | 95.27 49 | 99.11 25 | 99.82 42 | 99.67 4 | 99.33 23 | 99.19 20 | 99.73 51 | 99.74 67 |
|
SMA-MVS | | | 99.38 5 | 99.60 2 | 99.12 9 | 99.76 2 | 99.62 29 | 99.39 29 | 98.23 19 | 99.52 15 | 98.03 17 | 99.45 10 | 99.98 1 | 99.64 5 | 99.58 8 | 99.30 11 | 99.68 88 | 99.76 56 |
|
CSCG | | | 98.90 30 | 98.93 51 | 98.85 25 | 99.75 3 | 99.72 6 | 99.49 21 | 96.58 43 | 99.38 23 | 98.05 16 | 98.97 34 | 97.87 74 | 99.49 19 | 97.78 120 | 98.92 34 | 99.78 28 | 99.90 3 |
|
APDe-MVS | | | 99.49 1 | 99.64 1 | 99.32 2 | 99.74 4 | 99.74 5 | 99.75 1 | 98.34 4 | 99.56 10 | 98.72 7 | 99.57 6 | 99.97 7 | 99.53 16 | 99.65 2 | 99.25 14 | 99.84 5 | 99.77 51 |
|
ACMMP_NAP | | | 99.05 25 | 99.45 13 | 98.58 31 | 99.73 5 | 99.60 39 | 99.64 8 | 98.28 12 | 99.23 43 | 94.57 60 | 99.35 13 | 99.97 7 | 99.55 14 | 99.63 3 | 98.66 51 | 99.70 76 | 99.74 67 |
|
zzz-MVS | | | 99.31 8 | 99.44 16 | 99.16 6 | 99.73 5 | 99.65 17 | 99.63 11 | 98.26 13 | 99.27 37 | 98.01 18 | 99.27 16 | 99.97 7 | 99.60 7 | 99.59 7 | 98.58 56 | 99.71 67 | 99.73 71 |
|
DVP-MVS | | | 99.45 2 | 99.54 6 | 99.35 1 | 99.72 7 | 99.76 1 | 99.63 11 | 98.37 2 | 99.63 6 | 99.03 3 | 98.95 36 | 99.98 1 | 99.60 7 | 99.60 6 | 99.05 24 | 99.74 44 | 99.79 38 |
|
SED-MVS | | | 99.44 3 | 99.58 3 | 99.28 3 | 99.69 8 | 99.76 1 | 99.62 14 | 98.35 3 | 99.51 16 | 99.05 2 | 99.60 5 | 99.98 1 | 99.28 35 | 99.61 5 | 98.83 43 | 99.70 76 | 99.77 51 |
|
HFP-MVS | | | 99.32 7 | 99.53 8 | 99.07 13 | 99.69 8 | 99.59 41 | 99.63 11 | 98.31 8 | 99.56 10 | 97.37 26 | 99.27 16 | 99.97 7 | 99.70 3 | 99.35 21 | 99.24 16 | 99.71 67 | 99.76 56 |
|
HPM-MVS++ | | | 99.10 21 | 99.30 27 | 98.86 24 | 99.69 8 | 99.48 57 | 99.59 16 | 98.34 4 | 99.26 40 | 96.55 37 | 99.10 28 | 99.96 12 | 99.36 27 | 99.25 26 | 98.37 69 | 99.64 109 | 99.66 101 |
|
APD-MVS | | | 99.25 12 | 99.38 20 | 99.09 11 | 99.69 8 | 99.58 44 | 99.56 17 | 98.32 7 | 98.85 90 | 97.87 20 | 98.91 39 | 99.92 28 | 99.30 33 | 99.45 15 | 99.38 8 | 99.79 25 | 99.58 115 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MSP-MVS | | | 99.34 6 | 99.52 9 | 99.14 8 | 99.68 12 | 99.75 4 | 99.64 8 | 98.31 8 | 99.44 20 | 98.10 14 | 99.28 15 | 99.98 1 | 99.30 33 | 99.34 22 | 99.05 24 | 99.81 16 | 99.79 38 |
|
SR-MVS | | | | | | 99.67 13 | | | 98.25 14 | | | | 99.94 25 | | | | | |
|
X-MVS | | | 98.93 29 | 99.37 21 | 98.42 32 | 99.67 13 | 99.62 29 | 99.60 15 | 98.15 24 | 99.08 65 | 93.81 78 | 98.46 59 | 99.95 17 | 99.59 10 | 99.49 13 | 99.21 19 | 99.68 88 | 99.75 63 |
|
MCST-MVS | | | 99.11 20 | 99.27 29 | 98.93 22 | 99.67 13 | 99.33 82 | 99.51 20 | 98.31 8 | 99.28 35 | 96.57 36 | 99.10 28 | 99.90 32 | 99.71 2 | 99.19 30 | 98.35 70 | 99.82 10 | 99.71 85 |
|
ACMMPR | | | 99.30 9 | 99.54 6 | 99.03 16 | 99.66 16 | 99.64 22 | 99.68 4 | 98.25 14 | 99.56 10 | 97.12 30 | 99.19 19 | 99.95 17 | 99.72 1 | 99.43 16 | 99.25 14 | 99.72 57 | 99.77 51 |
|
SteuartSystems-ACMMP | | | 99.20 15 | 99.51 10 | 98.83 27 | 99.66 16 | 99.66 15 | 99.71 3 | 98.12 28 | 99.14 55 | 96.62 34 | 99.16 21 | 99.98 1 | 99.12 45 | 99.63 3 | 99.19 20 | 99.78 28 | 99.83 22 |
Skip Steuart: Steuart Systems R&D Blog. |
xxxxxxxxxxxxxcwj | | | 98.14 51 | 97.38 105 | 99.03 16 | 99.65 18 | 99.41 68 | 98.87 54 | 98.24 17 | 99.14 55 | 98.73 5 | 99.11 25 | 86.38 160 | 98.92 58 | 99.22 27 | 98.84 41 | 99.76 35 | 99.56 121 |
|
SF-MVS | | | 99.18 16 | 99.32 26 | 99.03 16 | 99.65 18 | 99.41 68 | 98.87 54 | 98.24 17 | 99.14 55 | 98.73 5 | 99.11 25 | 99.92 28 | 98.92 58 | 99.22 27 | 98.84 41 | 99.76 35 | 99.56 121 |
|
CNVR-MVS | | | 99.23 14 | 99.28 28 | 99.17 5 | 99.65 18 | 99.34 79 | 99.46 24 | 98.21 20 | 99.28 35 | 98.47 9 | 98.89 41 | 99.94 25 | 99.50 17 | 99.42 17 | 98.61 54 | 99.73 51 | 99.52 128 |
|
DPE-MVS | | | 99.39 4 | 99.55 5 | 99.20 4 | 99.63 21 | 99.71 9 | 99.66 6 | 98.33 6 | 99.29 34 | 98.40 12 | 99.64 4 | 99.98 1 | 99.31 31 | 99.56 9 | 98.96 31 | 99.85 3 | 99.70 87 |
|
MP-MVS | | | 99.07 23 | 99.36 22 | 98.74 28 | 99.63 21 | 99.57 46 | 99.66 6 | 98.25 14 | 99.00 76 | 95.62 43 | 98.97 34 | 99.94 25 | 99.54 15 | 99.51 12 | 98.79 47 | 99.71 67 | 99.73 71 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
NCCC | | | 99.05 25 | 99.08 39 | 99.02 19 | 99.62 23 | 99.38 71 | 99.43 28 | 98.21 20 | 99.36 27 | 97.66 23 | 97.79 77 | 99.90 32 | 99.45 22 | 99.17 31 | 98.43 64 | 99.77 33 | 99.51 132 |
|
CP-MVS | | | 99.27 10 | 99.44 16 | 99.08 12 | 99.62 23 | 99.58 44 | 99.53 18 | 98.16 22 | 99.21 46 | 97.79 21 | 99.15 22 | 99.96 12 | 99.59 10 | 99.54 11 | 98.86 39 | 99.78 28 | 99.74 67 |
|
AdaColmap | | | 99.06 24 | 98.98 49 | 99.15 7 | 99.60 25 | 99.30 85 | 99.38 30 | 98.16 22 | 99.02 74 | 98.55 8 | 98.71 50 | 99.57 55 | 99.58 13 | 99.09 35 | 97.84 98 | 99.64 109 | 99.36 146 |
|
CPTT-MVS | | | 99.14 19 | 99.20 33 | 99.06 14 | 99.58 26 | 99.53 50 | 99.45 25 | 97.80 37 | 99.19 49 | 98.32 13 | 98.58 53 | 99.95 17 | 99.60 7 | 99.28 25 | 98.20 81 | 99.64 109 | 99.69 91 |
|
QAPM | | | 98.62 40 | 99.04 45 | 98.13 39 | 99.57 27 | 99.48 57 | 99.17 38 | 94.78 56 | 99.57 9 | 96.16 38 | 96.73 101 | 99.80 43 | 99.33 29 | 98.79 56 | 99.29 13 | 99.75 39 | 99.64 108 |
|
3Dnovator | | 96.92 7 | 98.67 37 | 99.05 42 | 98.23 38 | 99.57 27 | 99.45 61 | 99.11 42 | 94.66 59 | 99.69 3 | 96.80 33 | 96.55 110 | 99.61 52 | 99.40 25 | 98.87 52 | 99.49 3 | 99.85 3 | 99.66 101 |
|
DeepC-MVS_fast | | 98.34 1 | 99.17 17 | 99.45 13 | 98.85 25 | 99.55 29 | 99.37 73 | 99.64 8 | 98.05 32 | 99.53 13 | 96.58 35 | 98.93 37 | 99.92 28 | 99.49 19 | 99.46 14 | 99.32 10 | 99.80 24 | 99.64 108 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
mPP-MVS | | | | | | 99.53 30 | | | | | | | 99.89 34 | | | | | |
|
3Dnovator+ | | 96.92 7 | 98.71 36 | 99.05 42 | 98.32 34 | 99.53 30 | 99.34 79 | 99.06 46 | 94.61 60 | 99.65 4 | 97.49 24 | 96.75 100 | 99.86 37 | 99.44 23 | 98.78 57 | 99.30 11 | 99.81 16 | 99.67 97 |
|
MSLP-MVS++ | | | 99.15 18 | 99.24 31 | 99.04 15 | 99.52 32 | 99.49 56 | 99.09 44 | 98.07 30 | 99.37 25 | 98.47 9 | 97.79 77 | 99.89 34 | 99.50 17 | 98.93 45 | 99.45 4 | 99.61 116 | 99.76 56 |
|
OpenMVS | | 96.23 11 | 97.95 57 | 98.45 65 | 97.35 52 | 99.52 32 | 99.42 66 | 98.91 53 | 94.61 60 | 98.87 87 | 92.24 103 | 94.61 136 | 99.05 61 | 99.10 47 | 98.64 67 | 99.05 24 | 99.74 44 | 99.51 132 |
|
PLC | | 97.93 2 | 99.02 28 | 98.94 50 | 99.11 10 | 99.46 34 | 99.24 90 | 99.06 46 | 97.96 34 | 99.31 31 | 99.16 1 | 97.90 75 | 99.79 45 | 99.36 27 | 98.71 63 | 98.12 85 | 99.65 105 | 99.52 128 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_111021_HR | | | 98.59 41 | 99.36 22 | 97.68 48 | 99.42 35 | 99.61 34 | 98.14 84 | 94.81 55 | 99.31 31 | 95.00 54 | 99.51 8 | 99.79 45 | 99.00 54 | 98.94 44 | 98.83 43 | 99.69 79 | 99.57 120 |
|
OMC-MVS | | | 98.84 32 | 99.01 48 | 98.65 30 | 99.39 36 | 99.23 91 | 99.22 35 | 96.70 42 | 99.40 22 | 97.77 22 | 97.89 76 | 99.80 43 | 99.21 36 | 99.02 40 | 98.65 52 | 99.57 138 | 99.07 163 |
|
TSAR-MVS + ACMM | | | 98.77 33 | 99.45 13 | 97.98 44 | 99.37 37 | 99.46 59 | 99.44 27 | 98.13 27 | 99.65 4 | 92.30 101 | 98.91 39 | 99.95 17 | 99.05 50 | 99.42 17 | 98.95 32 | 99.58 134 | 99.82 23 |
|
MVS_111021_LR | | | 98.67 37 | 99.41 19 | 97.81 47 | 99.37 37 | 99.53 50 | 98.51 66 | 95.52 48 | 99.27 37 | 94.85 56 | 99.56 7 | 99.69 50 | 99.04 51 | 99.36 20 | 98.88 37 | 99.60 124 | 99.58 115 |
|
train_agg | | | 98.73 35 | 99.11 37 | 98.28 36 | 99.36 39 | 99.35 77 | 99.48 23 | 97.96 34 | 98.83 95 | 93.86 77 | 98.70 51 | 99.86 37 | 99.44 23 | 99.08 37 | 98.38 67 | 99.61 116 | 99.58 115 |
|
ACMMP | | | 98.74 34 | 99.03 46 | 98.40 33 | 99.36 39 | 99.64 22 | 99.20 36 | 97.75 38 | 98.82 97 | 95.24 50 | 98.85 42 | 99.87 36 | 99.17 42 | 98.74 62 | 97.50 111 | 99.71 67 | 99.76 56 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MAR-MVS | | | 97.71 63 | 98.04 82 | 97.32 53 | 99.35 41 | 98.91 107 | 97.65 100 | 91.68 105 | 98.00 141 | 97.01 31 | 97.72 81 | 94.83 109 | 98.85 65 | 98.44 83 | 98.86 39 | 99.41 163 | 99.52 128 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
abl_6 | | | | | 98.09 40 | 99.33 42 | 99.22 92 | 98.79 59 | 94.96 54 | 98.52 121 | 97.00 32 | 97.30 87 | 99.86 37 | 98.76 66 | | | 99.69 79 | 99.41 141 |
|
CDPH-MVS | | | 98.41 43 | 99.10 38 | 97.61 50 | 99.32 43 | 99.36 74 | 99.49 21 | 96.15 45 | 98.82 97 | 91.82 105 | 98.41 60 | 99.66 51 | 99.10 47 | 98.93 45 | 98.97 30 | 99.75 39 | 99.58 115 |
|
CNLPA | | | 99.03 27 | 99.05 42 | 99.01 20 | 99.27 44 | 99.22 92 | 99.03 48 | 97.98 33 | 99.34 29 | 99.00 4 | 98.25 66 | 99.71 49 | 99.31 31 | 98.80 55 | 98.82 45 | 99.48 153 | 99.17 156 |
|
MSDG | | | 98.27 48 | 98.29 69 | 98.24 37 | 99.20 45 | 99.22 92 | 99.20 36 | 97.82 36 | 99.37 25 | 94.43 65 | 95.90 121 | 97.31 80 | 99.12 45 | 98.76 59 | 98.35 70 | 99.67 96 | 99.14 160 |
|
PHI-MVS | | | 99.08 22 | 99.43 18 | 98.67 29 | 99.15 46 | 99.59 41 | 99.11 42 | 97.35 40 | 99.14 55 | 97.30 27 | 99.44 11 | 99.96 12 | 99.32 30 | 98.89 50 | 99.39 7 | 99.79 25 | 99.58 115 |
|
PatchMatch-RL | | | 97.77 61 | 98.25 70 | 97.21 58 | 99.11 47 | 99.25 88 | 97.06 122 | 94.09 68 | 98.72 110 | 95.14 52 | 98.47 58 | 96.29 91 | 98.43 80 | 98.65 66 | 97.44 117 | 99.45 157 | 98.94 166 |
|
TAPA-MVS | | 97.53 5 | 98.41 43 | 98.84 55 | 97.91 45 | 99.08 48 | 99.33 82 | 99.15 39 | 97.13 41 | 99.34 29 | 93.20 87 | 97.75 79 | 99.19 59 | 99.20 37 | 98.66 65 | 98.13 84 | 99.66 101 | 99.48 136 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
EPNet | | | 98.05 54 | 98.86 53 | 97.10 60 | 99.02 49 | 99.43 65 | 98.47 67 | 94.73 57 | 99.05 71 | 95.62 43 | 98.93 37 | 97.62 78 | 95.48 159 | 98.59 74 | 98.55 57 | 99.29 172 | 99.84 18 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPNet_dtu | | | 96.30 105 | 98.53 62 | 93.70 126 | 98.97 50 | 98.24 151 | 97.36 106 | 94.23 67 | 98.85 90 | 79.18 177 | 99.19 19 | 98.47 67 | 94.09 180 | 97.89 115 | 98.21 80 | 98.39 187 | 98.85 172 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
COLMAP_ROB | | 96.15 12 | 97.78 60 | 98.17 76 | 97.32 53 | 98.84 51 | 99.45 61 | 99.28 33 | 95.43 49 | 99.48 18 | 91.80 106 | 94.83 135 | 98.36 69 | 98.90 61 | 98.09 98 | 97.85 97 | 99.68 88 | 99.15 157 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DeepPCF-MVS | | 97.74 3 | 98.34 45 | 99.46 12 | 97.04 63 | 98.82 52 | 99.33 82 | 96.28 138 | 97.47 39 | 99.58 8 | 94.70 59 | 98.99 33 | 99.85 40 | 97.24 112 | 99.55 10 | 99.34 9 | 97.73 195 | 99.56 121 |
|
SD-MVS | | | 99.25 12 | 99.50 11 | 98.96 21 | 98.79 53 | 99.55 48 | 99.33 32 | 98.29 11 | 99.75 1 | 97.96 19 | 99.15 22 | 99.95 17 | 99.61 6 | 99.17 31 | 99.06 23 | 99.81 16 | 99.84 18 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 99.27 10 | 99.57 4 | 98.92 23 | 98.78 54 | 99.53 50 | 99.72 2 | 98.11 29 | 99.73 2 | 97.43 25 | 99.15 22 | 99.96 12 | 99.59 10 | 99.73 1 | 99.07 22 | 99.88 1 | 99.82 23 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPM-MVS | | | 98.31 47 | 98.53 62 | 98.05 41 | 98.76 55 | 98.77 114 | 99.13 40 | 98.07 30 | 99.10 62 | 94.27 71 | 96.70 102 | 99.84 41 | 98.70 68 | 97.90 114 | 98.11 86 | 99.40 165 | 99.28 149 |
|
PCF-MVS | | 97.50 6 | 98.18 50 | 98.35 68 | 97.99 43 | 98.65 56 | 99.36 74 | 98.94 51 | 98.14 26 | 98.59 114 | 93.62 82 | 96.61 106 | 99.76 48 | 99.03 52 | 97.77 121 | 97.45 116 | 99.57 138 | 98.89 171 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DeepC-MVS | | 97.63 4 | 98.33 46 | 98.57 60 | 98.04 42 | 98.62 57 | 99.65 17 | 99.45 25 | 98.15 24 | 99.51 16 | 92.80 94 | 95.74 125 | 96.44 89 | 99.46 21 | 99.37 19 | 99.50 2 | 99.78 28 | 99.81 28 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CANet | | | 98.46 42 | 99.16 34 | 97.64 49 | 98.48 58 | 99.64 22 | 99.35 31 | 94.71 58 | 99.53 13 | 95.17 51 | 97.63 83 | 99.59 53 | 98.38 81 | 98.88 51 | 98.99 29 | 99.74 44 | 99.86 15 |
|
LS3D | | | 97.79 59 | 98.25 70 | 97.26 57 | 98.40 59 | 99.63 25 | 99.53 18 | 98.63 1 | 99.25 42 | 88.13 122 | 96.93 97 | 94.14 119 | 99.19 38 | 99.14 33 | 99.23 17 | 99.69 79 | 99.42 140 |
|
CHOSEN 280x420 | | | 97.99 56 | 99.24 31 | 96.53 80 | 98.34 60 | 99.61 34 | 98.36 74 | 89.80 138 | 99.27 37 | 95.08 53 | 99.81 1 | 98.58 65 | 98.64 72 | 99.02 40 | 98.92 34 | 98.93 181 | 99.48 136 |
|
DELS-MVS | | | 98.19 49 | 98.77 57 | 97.52 51 | 98.29 61 | 99.71 9 | 99.12 41 | 94.58 63 | 98.80 100 | 95.38 48 | 96.24 115 | 98.24 71 | 97.92 94 | 99.06 38 | 99.52 1 | 99.82 10 | 99.79 38 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
RPSCF | | | 97.61 66 | 98.16 77 | 96.96 71 | 98.10 62 | 99.00 100 | 98.84 57 | 93.76 75 | 99.45 19 | 94.78 58 | 99.39 12 | 99.31 57 | 98.53 78 | 96.61 155 | 95.43 165 | 97.74 193 | 97.93 187 |
|
PVSNet_BlendedMVS | | | 97.51 70 | 97.71 92 | 97.28 55 | 98.06 63 | 99.61 34 | 97.31 108 | 95.02 52 | 99.08 65 | 95.51 45 | 98.05 70 | 90.11 139 | 98.07 89 | 98.91 48 | 98.40 65 | 99.72 57 | 99.78 44 |
|
PVSNet_Blended | | | 97.51 70 | 97.71 92 | 97.28 55 | 98.06 63 | 99.61 34 | 97.31 108 | 95.02 52 | 99.08 65 | 95.51 45 | 98.05 70 | 90.11 139 | 98.07 89 | 98.91 48 | 98.40 65 | 99.72 57 | 99.78 44 |
|
MVS_0304 | | | 98.14 51 | 99.03 46 | 97.10 60 | 98.05 65 | 99.63 25 | 99.27 34 | 94.33 65 | 99.63 6 | 93.06 90 | 97.32 86 | 99.05 61 | 98.09 88 | 98.82 54 | 98.87 38 | 99.81 16 | 99.89 6 |
|
CHOSEN 1792x2688 | | | 96.41 102 | 96.99 119 | 95.74 98 | 98.01 66 | 99.72 6 | 97.70 99 | 90.78 124 | 99.13 60 | 90.03 115 | 87.35 188 | 95.36 103 | 98.33 82 | 98.59 74 | 98.91 36 | 99.59 130 | 99.87 12 |
|
HyFIR lowres test | | | 95.99 112 | 96.56 127 | 95.32 103 | 97.99 67 | 99.65 17 | 96.54 131 | 88.86 147 | 98.44 124 | 89.77 118 | 84.14 197 | 97.05 84 | 99.03 52 | 98.55 76 | 98.19 82 | 99.73 51 | 99.86 15 |
|
OPM-MVS | | | 96.22 107 | 95.85 147 | 96.65 76 | 97.75 68 | 98.54 133 | 99.00 50 | 95.53 47 | 96.88 173 | 89.88 116 | 95.95 120 | 86.46 159 | 98.07 89 | 97.65 129 | 96.63 134 | 99.67 96 | 98.83 173 |
|
tmp_tt | | | | | 82.25 202 | 97.73 69 | 88.71 210 | 80.18 209 | 68.65 212 | 99.15 52 | 86.98 130 | 99.47 9 | 85.31 169 | 68.35 210 | 87.51 204 | 83.81 206 | 91.64 209 | |
|
TSAR-MVS + COLMAP | | | 96.79 89 | 96.55 128 | 97.06 62 | 97.70 70 | 98.46 138 | 99.07 45 | 96.23 44 | 99.38 23 | 91.32 109 | 98.80 43 | 85.61 166 | 98.69 70 | 97.64 130 | 96.92 127 | 99.37 167 | 99.06 164 |
|
PVSNet_Blended_VisFu | | | 97.41 73 | 98.49 64 | 96.15 88 | 97.49 71 | 99.76 1 | 96.02 142 | 93.75 77 | 99.26 40 | 93.38 86 | 93.73 144 | 99.35 56 | 96.47 134 | 98.96 42 | 98.46 61 | 99.77 33 | 99.90 3 |
|
MS-PatchMatch | | | 95.99 112 | 97.26 113 | 94.51 112 | 97.46 72 | 98.76 117 | 97.27 110 | 86.97 165 | 99.09 63 | 89.83 117 | 93.51 147 | 97.78 75 | 96.18 140 | 97.53 134 | 95.71 162 | 99.35 168 | 98.41 179 |
|
XVS | | | | | | 97.42 73 | 99.62 29 | 98.59 64 | | | 93.81 78 | | 99.95 17 | | | | 99.69 79 | |
|
X-MVStestdata | | | | | | 97.42 73 | 99.62 29 | 98.59 64 | | | 93.81 78 | | 99.95 17 | | | | 99.69 79 | |
|
LGP-MVS_train | | | 96.23 106 | 96.89 121 | 95.46 102 | 97.32 75 | 98.77 114 | 98.81 58 | 93.60 80 | 98.58 115 | 85.52 139 | 99.08 30 | 86.67 156 | 97.83 101 | 97.87 116 | 97.51 110 | 99.69 79 | 99.73 71 |
|
CMPMVS | | 70.31 18 | 90.74 189 | 91.06 196 | 90.36 182 | 97.32 75 | 97.43 186 | 92.97 186 | 87.82 161 | 93.50 203 | 75.34 193 | 83.27 199 | 84.90 172 | 92.19 195 | 92.64 198 | 91.21 202 | 96.50 205 | 94.46 204 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
HQP-MVS | | | 96.37 103 | 96.58 126 | 96.13 89 | 97.31 77 | 98.44 140 | 98.45 68 | 95.22 50 | 98.86 88 | 88.58 120 | 98.33 64 | 87.00 151 | 97.67 103 | 97.23 143 | 96.56 137 | 99.56 141 | 99.62 111 |
|
ACMM | | 96.26 9 | 96.67 97 | 96.69 125 | 96.66 75 | 97.29 78 | 98.46 138 | 96.48 134 | 95.09 51 | 99.21 46 | 93.19 88 | 98.78 45 | 86.73 155 | 98.17 83 | 97.84 118 | 96.32 143 | 99.74 44 | 99.49 135 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 97.13 80 | 99.14 35 | 94.78 108 | 97.21 79 | 99.38 71 | 97.56 101 | 92.04 98 | 98.48 122 | 88.03 123 | 98.39 62 | 99.91 31 | 94.03 181 | 99.33 23 | 99.23 17 | 99.81 16 | 99.25 152 |
|
UGNet | | | 97.66 65 | 99.07 41 | 96.01 93 | 97.19 80 | 99.65 17 | 97.09 120 | 93.39 83 | 99.35 28 | 94.40 67 | 98.79 44 | 99.59 53 | 94.24 178 | 98.04 106 | 98.29 77 | 99.73 51 | 99.80 30 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TSAR-MVS + GP. | | | 98.66 39 | 99.36 22 | 97.85 46 | 97.16 81 | 99.46 59 | 99.03 48 | 94.59 62 | 99.09 63 | 97.19 29 | 99.73 3 | 99.95 17 | 99.39 26 | 98.95 43 | 98.69 50 | 99.75 39 | 99.65 104 |
|
CANet_DTU | | | 96.64 98 | 99.08 39 | 93.81 122 | 97.10 82 | 99.42 66 | 98.85 56 | 90.01 132 | 99.31 31 | 79.98 173 | 99.78 2 | 99.10 60 | 97.42 109 | 98.35 85 | 98.05 89 | 99.47 155 | 99.53 125 |
|
IB-MVS | | 93.96 15 | 95.02 129 | 96.44 137 | 93.36 136 | 97.05 83 | 99.28 86 | 90.43 196 | 93.39 83 | 98.02 140 | 96.02 39 | 94.92 134 | 92.07 132 | 83.52 203 | 95.38 181 | 95.82 159 | 99.72 57 | 99.59 114 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ACMP | | 96.25 10 | 96.62 100 | 96.72 124 | 96.50 83 | 96.96 84 | 98.75 118 | 97.80 94 | 94.30 66 | 98.85 90 | 93.12 89 | 98.78 45 | 86.61 157 | 97.23 113 | 97.73 124 | 96.61 135 | 99.62 114 | 99.71 85 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMH | | 95.42 14 | 95.27 126 | 95.96 143 | 94.45 113 | 96.83 85 | 98.78 113 | 94.72 169 | 91.67 106 | 98.95 79 | 86.82 132 | 96.42 112 | 83.67 177 | 97.00 116 | 97.48 136 | 96.68 132 | 99.69 79 | 99.76 56 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CLD-MVS | | | 96.74 92 | 96.51 131 | 97.01 68 | 96.71 86 | 98.62 127 | 98.73 60 | 94.38 64 | 98.94 82 | 94.46 64 | 97.33 85 | 87.03 150 | 98.07 89 | 97.20 145 | 96.87 128 | 99.72 57 | 99.54 124 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TDRefinement | | | 93.04 165 | 93.57 181 | 92.41 145 | 96.58 87 | 98.77 114 | 97.78 96 | 91.96 101 | 98.12 137 | 80.84 166 | 89.13 175 | 79.87 199 | 87.78 199 | 96.44 160 | 94.50 186 | 99.54 147 | 98.15 183 |
|
Anonymous202405211 | | | | 97.40 104 | | 96.45 88 | 99.54 49 | 98.08 89 | 93.79 74 | 98.24 133 | | 93.55 145 | 94.41 115 | 98.88 64 | 98.04 106 | 98.24 79 | 99.75 39 | 99.76 56 |
|
DCV-MVSNet | | | 97.56 68 | 98.36 67 | 96.62 79 | 96.44 89 | 98.36 147 | 98.37 72 | 91.73 104 | 99.11 61 | 94.80 57 | 98.36 63 | 96.28 92 | 98.60 75 | 98.12 95 | 98.44 62 | 99.76 35 | 99.87 12 |
|
ACMH+ | | 95.51 13 | 95.40 122 | 96.00 141 | 94.70 109 | 96.33 90 | 98.79 111 | 96.79 126 | 91.32 114 | 98.77 106 | 87.18 129 | 95.60 129 | 85.46 167 | 96.97 117 | 97.15 146 | 96.59 136 | 99.59 130 | 99.65 104 |
|
Anonymous20231211 | | | 97.10 81 | 97.06 117 | 97.14 59 | 96.32 91 | 99.52 53 | 98.16 83 | 93.76 75 | 98.84 94 | 95.98 40 | 90.92 161 | 94.58 114 | 98.90 61 | 97.72 125 | 98.10 87 | 99.71 67 | 99.75 63 |
|
thres100view900 | | | 96.72 93 | 96.47 134 | 97.00 69 | 96.31 92 | 99.52 53 | 98.28 78 | 94.01 69 | 97.35 160 | 94.52 61 | 95.90 121 | 86.93 152 | 99.09 49 | 98.07 101 | 97.87 96 | 99.81 16 | 99.63 110 |
|
tfpn200view9 | | | 96.75 91 | 96.51 131 | 97.03 64 | 96.31 92 | 99.67 12 | 98.41 69 | 93.99 71 | 97.35 160 | 94.52 61 | 95.90 121 | 86.93 152 | 99.14 44 | 98.26 88 | 97.80 100 | 99.82 10 | 99.70 87 |
|
thres200 | | | 96.76 90 | 96.53 129 | 97.03 64 | 96.31 92 | 99.67 12 | 98.37 72 | 93.99 71 | 97.68 157 | 94.49 63 | 95.83 124 | 86.77 154 | 99.18 40 | 98.26 88 | 97.82 99 | 99.82 10 | 99.66 101 |
|
thres600view7 | | | 96.69 95 | 96.43 138 | 97.00 69 | 96.28 95 | 99.67 12 | 98.41 69 | 93.99 71 | 97.85 151 | 94.29 69 | 95.96 119 | 85.91 164 | 99.19 38 | 98.26 88 | 97.63 105 | 99.82 10 | 99.73 71 |
|
thres400 | | | 96.71 94 | 96.45 136 | 97.02 66 | 96.28 95 | 99.63 25 | 98.41 69 | 94.00 70 | 97.82 152 | 94.42 66 | 95.74 125 | 86.26 161 | 99.18 40 | 98.20 92 | 97.79 101 | 99.81 16 | 99.70 87 |
|
baseline1 | | | 97.58 67 | 98.05 81 | 97.02 66 | 96.21 97 | 99.45 61 | 97.71 98 | 93.71 79 | 98.47 123 | 95.75 42 | 98.78 45 | 93.20 128 | 98.91 60 | 98.52 78 | 98.44 62 | 99.81 16 | 99.53 125 |
|
canonicalmvs | | | 97.31 75 | 97.81 91 | 96.72 73 | 96.20 98 | 99.45 61 | 98.21 81 | 91.60 107 | 99.22 44 | 95.39 47 | 98.48 57 | 90.95 136 | 99.16 43 | 97.66 127 | 99.05 24 | 99.76 35 | 99.90 3 |
|
IS_MVSNet | | | 97.86 58 | 98.86 53 | 96.68 74 | 96.02 99 | 99.72 6 | 98.35 75 | 93.37 85 | 98.75 109 | 94.01 72 | 96.88 99 | 98.40 68 | 98.48 79 | 99.09 35 | 99.42 5 | 99.83 8 | 99.80 30 |
|
USDC | | | 94.26 145 | 94.83 157 | 93.59 128 | 96.02 99 | 98.44 140 | 97.84 92 | 88.65 151 | 98.86 88 | 82.73 158 | 94.02 141 | 80.56 193 | 96.76 123 | 97.28 142 | 96.15 150 | 99.55 143 | 98.50 177 |
|
FC-MVSNet-train | | | 97.04 82 | 97.91 88 | 96.03 92 | 96.00 101 | 98.41 143 | 96.53 133 | 93.42 82 | 99.04 73 | 93.02 91 | 98.03 72 | 94.32 117 | 97.47 108 | 97.93 112 | 97.77 102 | 99.75 39 | 99.88 10 |
|
Vis-MVSNet (Re-imp) | | | 97.40 74 | 98.89 52 | 95.66 100 | 95.99 102 | 99.62 29 | 97.82 93 | 93.22 88 | 98.82 97 | 91.40 108 | 96.94 96 | 98.56 66 | 95.70 151 | 99.14 33 | 99.41 6 | 99.79 25 | 99.75 63 |
|
MVSTER | | | 97.16 79 | 97.71 92 | 96.52 81 | 95.97 103 | 98.48 136 | 98.63 63 | 92.10 97 | 98.68 111 | 95.96 41 | 99.23 18 | 91.79 133 | 96.87 120 | 98.76 59 | 97.37 120 | 99.57 138 | 99.68 96 |
|
baseline | | | 97.45 72 | 98.70 59 | 95.99 94 | 95.89 104 | 99.36 74 | 98.29 77 | 91.37 113 | 99.21 46 | 92.99 92 | 98.40 61 | 96.87 86 | 97.96 93 | 98.60 72 | 98.60 55 | 99.42 162 | 99.86 15 |
|
TinyColmap | | | 94.00 149 | 94.35 165 | 93.60 127 | 95.89 104 | 98.26 149 | 97.49 103 | 88.82 148 | 98.56 117 | 83.21 152 | 91.28 160 | 80.48 195 | 96.68 126 | 97.34 140 | 96.26 146 | 99.53 149 | 98.24 182 |
|
EPMVS | | | 95.05 128 | 96.86 123 | 92.94 142 | 95.84 106 | 98.96 105 | 96.68 127 | 79.87 193 | 99.05 71 | 90.15 113 | 97.12 93 | 95.99 98 | 97.49 107 | 95.17 185 | 94.75 183 | 97.59 197 | 96.96 197 |
|
CS-MVS | | | 98.06 53 | 99.12 36 | 96.82 72 | 95.83 107 | 99.66 15 | 98.93 52 | 93.12 91 | 98.95 79 | 94.29 69 | 98.55 54 | 99.05 61 | 98.94 56 | 99.05 39 | 98.78 48 | 99.83 8 | 99.80 30 |
|
PMMVS | | | 97.52 69 | 98.39 66 | 96.51 82 | 95.82 108 | 98.73 121 | 97.80 94 | 93.05 93 | 98.76 107 | 94.39 68 | 99.07 31 | 97.03 85 | 98.55 76 | 98.31 87 | 97.61 106 | 99.43 160 | 99.21 155 |
|
diffmvs | | | 96.83 88 | 97.33 108 | 96.25 86 | 95.76 109 | 99.34 79 | 98.06 90 | 93.22 88 | 99.43 21 | 92.30 101 | 96.90 98 | 89.83 143 | 98.55 76 | 98.00 109 | 98.14 83 | 99.64 109 | 99.70 87 |
|
MVS_Test | | | 97.30 76 | 98.54 61 | 95.87 95 | 95.74 110 | 99.28 86 | 98.19 82 | 91.40 112 | 99.18 50 | 91.59 107 | 98.17 68 | 96.18 94 | 98.63 73 | 98.61 70 | 98.55 57 | 99.66 101 | 99.78 44 |
|
EIA-MVS | | | 97.70 64 | 98.78 56 | 96.44 84 | 95.72 111 | 99.65 17 | 98.14 84 | 93.72 78 | 98.30 129 | 92.31 100 | 98.63 52 | 97.90 73 | 98.97 55 | 98.92 47 | 98.30 76 | 99.78 28 | 99.80 30 |
|
casdiffmvs | | | 96.93 86 | 97.43 103 | 96.34 85 | 95.70 112 | 99.50 55 | 97.75 97 | 93.22 88 | 98.98 78 | 92.64 95 | 94.97 132 | 91.71 134 | 98.93 57 | 98.62 69 | 98.52 60 | 99.82 10 | 99.72 82 |
|
tpmrst | | | 93.86 154 | 95.88 145 | 91.50 164 | 95.69 113 | 98.62 127 | 95.64 148 | 79.41 196 | 98.80 100 | 83.76 148 | 95.63 128 | 96.13 95 | 97.25 111 | 92.92 196 | 92.31 196 | 97.27 200 | 96.74 198 |
|
ADS-MVSNet | | | 94.65 137 | 97.04 118 | 91.88 160 | 95.68 114 | 98.99 102 | 95.89 143 | 79.03 200 | 99.15 52 | 85.81 137 | 96.96 95 | 98.21 72 | 97.10 114 | 94.48 192 | 94.24 187 | 97.74 193 | 97.21 193 |
|
EPP-MVSNet | | | 97.75 62 | 98.71 58 | 96.63 78 | 95.68 114 | 99.56 47 | 97.51 102 | 93.10 92 | 99.22 44 | 94.99 55 | 97.18 92 | 97.30 81 | 98.65 71 | 98.83 53 | 98.93 33 | 99.84 5 | 99.92 1 |
|
ETV-MVS | | | 98.05 54 | 99.25 30 | 96.65 76 | 95.61 116 | 99.61 34 | 98.26 80 | 93.52 81 | 98.90 86 | 93.74 81 | 99.32 14 | 99.20 58 | 98.90 61 | 99.21 29 | 98.72 49 | 99.87 2 | 99.79 38 |
|
DI_MVS_plusplus_trai | | | 96.90 87 | 97.49 98 | 96.21 87 | 95.61 116 | 99.40 70 | 98.72 61 | 92.11 96 | 99.14 55 | 92.98 93 | 93.08 155 | 95.14 105 | 98.13 87 | 98.05 105 | 97.91 94 | 99.74 44 | 99.73 71 |
|
thisisatest0530 | | | 97.23 77 | 98.25 70 | 96.05 90 | 95.60 118 | 99.59 41 | 96.96 124 | 93.23 86 | 99.17 51 | 92.60 97 | 98.75 48 | 96.19 93 | 98.17 83 | 98.19 93 | 96.10 151 | 99.72 57 | 99.77 51 |
|
tttt0517 | | | 97.23 77 | 98.24 73 | 96.04 91 | 95.60 118 | 99.60 39 | 96.94 125 | 93.23 86 | 99.15 52 | 92.56 98 | 98.74 49 | 96.12 96 | 98.17 83 | 98.21 91 | 96.10 151 | 99.73 51 | 99.78 44 |
|
SCA | | | 94.95 130 | 97.44 102 | 92.04 152 | 95.55 120 | 99.16 95 | 96.26 139 | 79.30 197 | 99.02 74 | 85.73 138 | 98.18 67 | 97.13 83 | 97.69 102 | 96.03 174 | 94.91 178 | 97.69 196 | 97.65 189 |
|
dps | | | 94.63 138 | 95.31 153 | 93.84 121 | 95.53 121 | 98.71 122 | 96.54 131 | 80.12 192 | 97.81 154 | 97.21 28 | 96.98 94 | 92.37 129 | 96.34 137 | 92.46 199 | 91.77 199 | 97.26 201 | 97.08 195 |
|
PatchmatchNet | | | 94.70 135 | 97.08 116 | 91.92 157 | 95.53 121 | 98.85 109 | 95.77 145 | 79.54 195 | 98.95 79 | 85.98 135 | 98.52 55 | 96.45 87 | 97.39 110 | 95.32 182 | 94.09 188 | 97.32 199 | 97.38 192 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test-LLR | | | 95.50 120 | 97.32 109 | 93.37 135 | 95.49 123 | 98.74 119 | 96.44 136 | 90.82 122 | 98.18 134 | 82.75 156 | 96.60 107 | 94.67 112 | 95.54 157 | 98.09 98 | 96.00 153 | 99.20 175 | 98.93 167 |
|
test0.0.03 1 | | | 96.69 95 | 98.12 79 | 95.01 106 | 95.49 123 | 98.99 102 | 95.86 144 | 90.82 122 | 98.38 126 | 92.54 99 | 96.66 104 | 97.33 79 | 95.75 149 | 97.75 123 | 98.34 72 | 99.60 124 | 99.40 144 |
|
CostFormer | | | 94.25 146 | 94.88 156 | 93.51 132 | 95.43 125 | 98.34 148 | 96.21 140 | 80.64 190 | 97.94 146 | 94.01 72 | 98.30 65 | 86.20 163 | 97.52 105 | 92.71 197 | 92.69 194 | 97.23 202 | 98.02 186 |
|
MDTV_nov1_ep13 | | | 95.57 118 | 97.48 99 | 93.35 137 | 95.43 125 | 98.97 104 | 97.19 115 | 83.72 186 | 98.92 85 | 87.91 125 | 97.75 79 | 96.12 96 | 97.88 98 | 96.84 154 | 95.64 163 | 97.96 191 | 98.10 184 |
|
tpm cat1 | | | 94.06 147 | 94.90 155 | 93.06 140 | 95.42 127 | 98.52 135 | 96.64 129 | 80.67 189 | 97.82 152 | 92.63 96 | 93.39 149 | 95.00 107 | 96.06 144 | 91.36 202 | 91.58 201 | 96.98 203 | 96.66 200 |
|
Vis-MVSNet | | | 96.16 109 | 98.22 74 | 93.75 123 | 95.33 128 | 99.70 11 | 97.27 110 | 90.85 121 | 98.30 129 | 85.51 140 | 95.72 127 | 96.45 87 | 93.69 187 | 98.70 64 | 99.00 28 | 99.84 5 | 99.69 91 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CVMVSNet | | | 95.33 125 | 97.09 115 | 93.27 138 | 95.23 129 | 98.39 145 | 95.49 151 | 92.58 95 | 97.71 156 | 83.00 155 | 94.44 139 | 93.28 126 | 93.92 184 | 97.79 119 | 98.54 59 | 99.41 163 | 99.45 138 |
|
IterMVS-LS | | | 96.12 110 | 97.48 99 | 94.53 111 | 95.19 130 | 97.56 180 | 97.15 116 | 89.19 145 | 99.08 65 | 88.23 121 | 94.97 132 | 94.73 111 | 97.84 100 | 97.86 117 | 98.26 78 | 99.60 124 | 99.88 10 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+ | | | 95.81 114 | 97.31 112 | 94.06 118 | 95.09 131 | 99.35 77 | 97.24 112 | 88.22 156 | 98.54 118 | 85.38 141 | 98.52 55 | 88.68 144 | 98.70 68 | 98.32 86 | 97.93 92 | 99.74 44 | 99.84 18 |
|
testgi | | | 95.67 117 | 97.48 99 | 93.56 129 | 95.07 132 | 99.00 100 | 95.33 155 | 88.47 153 | 98.80 100 | 86.90 131 | 97.30 87 | 92.33 130 | 95.97 146 | 97.66 127 | 97.91 94 | 99.60 124 | 99.38 145 |
|
RPMNet | | | 94.66 136 | 97.16 114 | 91.75 161 | 94.98 133 | 98.59 130 | 97.00 123 | 78.37 204 | 97.98 142 | 83.78 146 | 96.27 114 | 94.09 122 | 96.91 119 | 97.36 139 | 96.73 130 | 99.48 153 | 99.09 162 |
|
CR-MVSNet | | | 94.57 142 | 97.34 107 | 91.33 168 | 94.90 134 | 98.59 130 | 97.15 116 | 79.14 198 | 97.98 142 | 80.42 169 | 96.59 109 | 93.50 125 | 96.85 121 | 98.10 96 | 97.49 112 | 99.50 152 | 99.15 157 |
|
gg-mvs-nofinetune | | | 90.85 188 | 94.14 167 | 87.02 194 | 94.89 135 | 99.25 88 | 98.64 62 | 76.29 208 | 88.24 208 | 57.50 211 | 79.93 203 | 95.45 102 | 95.18 168 | 98.77 58 | 98.07 88 | 99.62 114 | 99.24 153 |
|
IterMVS-SCA-FT | | | 94.89 132 | 97.87 89 | 91.42 165 | 94.86 136 | 97.70 167 | 97.24 112 | 84.88 180 | 98.93 83 | 75.74 189 | 94.26 140 | 98.25 70 | 96.69 125 | 98.52 78 | 97.68 104 | 99.10 179 | 99.73 71 |
|
IterMVS | | | 94.81 134 | 97.71 92 | 91.42 165 | 94.83 137 | 97.63 173 | 97.38 105 | 85.08 177 | 98.93 83 | 75.67 190 | 94.02 141 | 97.64 76 | 96.66 128 | 98.45 81 | 97.60 107 | 98.90 182 | 99.72 82 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchT | | | 93.96 151 | 97.36 106 | 90.00 184 | 94.76 138 | 98.65 125 | 90.11 199 | 78.57 203 | 97.96 145 | 80.42 169 | 96.07 117 | 94.10 121 | 96.85 121 | 98.10 96 | 97.49 112 | 99.26 173 | 99.15 157 |
|
baseline2 | | | 96.36 104 | 97.82 90 | 94.65 110 | 94.60 139 | 99.09 98 | 96.45 135 | 89.63 140 | 98.36 127 | 91.29 110 | 97.60 84 | 94.13 120 | 96.37 135 | 98.45 81 | 97.70 103 | 99.54 147 | 99.41 141 |
|
CDS-MVSNet | | | 96.59 101 | 98.02 84 | 94.92 107 | 94.45 140 | 98.96 105 | 97.46 104 | 91.75 103 | 97.86 150 | 90.07 114 | 96.02 118 | 97.25 82 | 96.21 138 | 98.04 106 | 98.38 67 | 99.60 124 | 99.65 104 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tpm | | | 92.38 180 | 94.79 158 | 89.56 187 | 94.30 141 | 97.50 183 | 94.24 181 | 78.97 201 | 97.72 155 | 74.93 194 | 97.97 74 | 82.91 182 | 96.60 130 | 93.65 195 | 94.81 182 | 98.33 188 | 98.98 165 |
|
Fast-Effi-MVS+ | | | 95.38 123 | 96.52 130 | 94.05 119 | 94.15 142 | 99.14 97 | 97.24 112 | 86.79 166 | 98.53 119 | 87.62 127 | 94.51 137 | 87.06 149 | 98.76 66 | 98.60 72 | 98.04 90 | 99.72 57 | 99.77 51 |
|
Effi-MVS+-dtu | | | 95.74 116 | 98.04 82 | 93.06 140 | 93.92 143 | 99.16 95 | 97.90 91 | 88.16 158 | 99.07 70 | 82.02 161 | 98.02 73 | 94.32 117 | 96.74 124 | 98.53 77 | 97.56 108 | 99.61 116 | 99.62 111 |
|
UniMVSNet_ETH3D | | | 93.15 162 | 92.33 194 | 94.11 117 | 93.91 144 | 98.61 129 | 94.81 166 | 90.98 119 | 97.06 169 | 87.51 128 | 82.27 201 | 76.33 207 | 97.87 99 | 94.79 191 | 97.47 115 | 99.56 141 | 99.81 28 |
|
Fast-Effi-MVS+-dtu | | | 95.38 123 | 98.20 75 | 92.09 151 | 93.91 144 | 98.87 108 | 97.35 107 | 85.01 179 | 99.08 65 | 81.09 165 | 98.10 69 | 96.36 90 | 95.62 154 | 98.43 84 | 97.03 124 | 99.55 143 | 99.50 134 |
|
TAMVS | | | 95.53 119 | 96.50 133 | 94.39 114 | 93.86 146 | 99.03 99 | 96.67 128 | 89.55 142 | 97.33 162 | 90.64 112 | 93.02 156 | 91.58 135 | 96.21 138 | 97.72 125 | 97.43 118 | 99.43 160 | 99.36 146 |
|
GBi-Net | | | 96.98 84 | 98.00 85 | 95.78 96 | 93.81 147 | 97.98 156 | 98.09 86 | 91.32 114 | 98.80 100 | 93.92 74 | 97.21 89 | 95.94 99 | 97.89 95 | 98.07 101 | 98.34 72 | 99.68 88 | 99.67 97 |
|
test1 | | | 96.98 84 | 98.00 85 | 95.78 96 | 93.81 147 | 97.98 156 | 98.09 86 | 91.32 114 | 98.80 100 | 93.92 74 | 97.21 89 | 95.94 99 | 97.89 95 | 98.07 101 | 98.34 72 | 99.68 88 | 99.67 97 |
|
FMVSNet2 | | | 96.64 98 | 97.50 97 | 95.63 101 | 93.81 147 | 97.98 156 | 98.09 86 | 90.87 120 | 98.99 77 | 93.48 84 | 93.17 152 | 95.25 104 | 97.89 95 | 98.63 68 | 98.80 46 | 99.68 88 | 99.67 97 |
|
MVS-HIRNet | | | 92.51 175 | 95.97 142 | 88.48 191 | 93.73 150 | 98.37 146 | 90.33 197 | 75.36 210 | 98.32 128 | 77.78 183 | 89.15 174 | 94.87 108 | 95.14 169 | 97.62 131 | 96.39 141 | 98.51 184 | 97.11 194 |
|
GA-MVS | | | 93.93 152 | 96.31 140 | 91.16 172 | 93.61 151 | 98.79 111 | 95.39 154 | 90.69 127 | 98.25 132 | 73.28 198 | 96.15 116 | 88.42 145 | 94.39 176 | 97.76 122 | 95.35 167 | 99.58 134 | 99.45 138 |
|
FC-MVSNet-test | | | 96.07 111 | 97.94 87 | 93.89 120 | 93.60 152 | 98.67 124 | 96.62 130 | 90.30 131 | 98.76 107 | 88.62 119 | 95.57 130 | 97.63 77 | 94.48 174 | 97.97 110 | 97.48 114 | 99.71 67 | 99.52 128 |
|
FMVSNet3 | | | 97.02 83 | 98.12 79 | 95.73 99 | 93.59 153 | 97.98 156 | 98.34 76 | 91.32 114 | 98.80 100 | 93.92 74 | 97.21 89 | 95.94 99 | 97.63 104 | 98.61 70 | 98.62 53 | 99.61 116 | 99.65 104 |
|
FMVSNet1 | | | 95.77 115 | 96.41 139 | 95.03 105 | 93.42 154 | 97.86 163 | 97.11 119 | 89.89 135 | 98.53 119 | 92.00 104 | 89.17 173 | 93.23 127 | 98.15 86 | 98.07 101 | 98.34 72 | 99.61 116 | 99.69 91 |
|
tfpnnormal | | | 93.85 155 | 94.12 169 | 93.54 131 | 93.22 155 | 98.24 151 | 95.45 152 | 91.96 101 | 94.61 199 | 83.91 144 | 90.74 163 | 81.75 190 | 97.04 115 | 97.49 135 | 96.16 149 | 99.68 88 | 99.84 18 |
|
TransMVSNet (Re) | | | 93.45 158 | 94.08 170 | 92.72 144 | 92.83 156 | 97.62 176 | 94.94 160 | 91.54 110 | 95.65 196 | 83.06 154 | 88.93 176 | 83.53 178 | 94.25 177 | 97.41 137 | 97.03 124 | 99.67 96 | 98.40 181 |
|
LTVRE_ROB | | 93.20 16 | 92.84 167 | 94.92 154 | 90.43 181 | 92.83 156 | 98.63 126 | 97.08 121 | 87.87 160 | 97.91 147 | 68.42 204 | 93.54 146 | 79.46 201 | 96.62 129 | 97.55 133 | 97.40 119 | 99.74 44 | 99.92 1 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TESTMET0.1,1 | | | 94.95 130 | 97.32 109 | 92.20 149 | 92.62 158 | 98.74 119 | 96.44 136 | 86.67 168 | 98.18 134 | 82.75 156 | 96.60 107 | 94.67 112 | 95.54 157 | 98.09 98 | 96.00 153 | 99.20 175 | 98.93 167 |
|
pm-mvs1 | | | 94.27 144 | 95.57 149 | 92.75 143 | 92.58 159 | 98.13 154 | 94.87 164 | 90.71 126 | 96.70 179 | 83.78 146 | 89.94 169 | 89.85 142 | 94.96 172 | 97.58 132 | 97.07 123 | 99.61 116 | 99.72 82 |
|
NR-MVSNet | | | 94.01 148 | 94.51 162 | 93.44 133 | 92.56 160 | 97.77 164 | 95.67 146 | 91.57 108 | 97.17 166 | 85.84 136 | 93.13 153 | 80.53 194 | 95.29 165 | 97.01 150 | 96.17 148 | 99.69 79 | 99.75 63 |
|
EG-PatchMatch MVS | | | 92.45 176 | 93.92 176 | 90.72 178 | 92.56 160 | 98.43 142 | 94.88 163 | 84.54 182 | 97.18 165 | 79.55 175 | 86.12 195 | 83.23 181 | 93.15 191 | 97.22 144 | 96.00 153 | 99.67 96 | 99.27 151 |
|
test-mter | | | 94.86 133 | 97.32 109 | 92.00 154 | 92.41 162 | 98.82 110 | 96.18 141 | 86.35 172 | 98.05 139 | 82.28 159 | 96.48 111 | 94.39 116 | 95.46 161 | 98.17 94 | 96.20 147 | 99.32 170 | 99.13 161 |
|
our_test_3 | | | | | | 92.30 163 | 97.58 178 | 90.09 200 | | | | | | | | | | |
|
pmmvs4 | | | 95.09 127 | 95.90 144 | 94.14 116 | 92.29 164 | 97.70 167 | 95.45 152 | 90.31 129 | 98.60 113 | 90.70 111 | 93.25 150 | 89.90 141 | 96.67 127 | 97.13 147 | 95.42 166 | 99.44 159 | 99.28 149 |
|
FMVSNet5 | | | 95.42 121 | 96.47 134 | 94.20 115 | 92.26 165 | 95.99 201 | 95.66 147 | 87.15 164 | 97.87 149 | 93.46 85 | 96.68 103 | 93.79 123 | 97.52 105 | 97.10 149 | 97.21 122 | 99.11 178 | 96.62 201 |
|
UniMVSNet (Re) | | | 94.58 141 | 95.34 151 | 93.71 125 | 92.25 166 | 98.08 155 | 94.97 159 | 91.29 118 | 97.03 171 | 87.94 124 | 93.97 143 | 86.25 162 | 96.07 143 | 96.27 168 | 95.97 156 | 99.72 57 | 99.79 38 |
|
SixPastTwentyTwo | | | 93.44 159 | 95.32 152 | 91.24 170 | 92.11 167 | 98.40 144 | 92.77 187 | 88.64 152 | 98.09 138 | 77.83 182 | 93.51 147 | 85.74 165 | 96.52 133 | 96.91 152 | 94.89 181 | 99.59 130 | 99.73 71 |
|
v8 | | | 92.87 166 | 93.87 178 | 91.72 163 | 92.05 168 | 97.50 183 | 94.79 167 | 88.20 157 | 96.85 175 | 80.11 172 | 90.01 168 | 82.86 184 | 95.48 159 | 95.15 186 | 94.90 179 | 99.66 101 | 99.80 30 |
|
thisisatest0515 | | | 94.61 139 | 96.89 121 | 91.95 156 | 92.00 169 | 98.47 137 | 92.01 191 | 90.73 125 | 98.18 134 | 83.96 143 | 94.51 137 | 95.13 106 | 93.38 188 | 97.38 138 | 94.74 184 | 99.61 116 | 99.79 38 |
|
WR-MVS_H | | | 93.54 157 | 94.67 160 | 92.22 147 | 91.95 170 | 97.91 161 | 94.58 175 | 88.75 149 | 96.64 180 | 83.88 145 | 90.66 165 | 85.13 170 | 94.40 175 | 96.54 159 | 95.91 158 | 99.73 51 | 99.89 6 |
|
V42 | | | 93.05 164 | 93.90 177 | 92.04 152 | 91.91 171 | 97.66 171 | 94.91 161 | 89.91 134 | 96.85 175 | 80.58 168 | 89.66 170 | 83.43 180 | 95.37 163 | 95.03 189 | 94.90 179 | 99.59 130 | 99.78 44 |
|
EU-MVSNet | | | 92.80 169 | 94.76 159 | 90.51 179 | 91.88 172 | 96.74 198 | 92.48 189 | 88.69 150 | 96.21 185 | 79.00 178 | 91.51 157 | 87.82 146 | 91.83 196 | 95.87 178 | 96.27 144 | 99.21 174 | 98.92 170 |
|
N_pmnet | | | 92.21 184 | 94.60 161 | 89.42 188 | 91.88 172 | 97.38 189 | 89.15 202 | 89.74 139 | 97.89 148 | 73.75 196 | 87.94 185 | 92.23 131 | 93.85 185 | 96.10 172 | 93.20 193 | 98.15 190 | 97.43 191 |
|
UniMVSNet_NR-MVSNet | | | 94.59 140 | 95.47 150 | 93.55 130 | 91.85 174 | 97.89 162 | 95.03 157 | 92.00 99 | 97.33 162 | 86.12 133 | 93.19 151 | 87.29 148 | 96.60 130 | 96.12 171 | 96.70 131 | 99.72 57 | 99.80 30 |
|
pmmvs6 | | | 91.90 186 | 92.53 193 | 91.17 171 | 91.81 175 | 97.63 173 | 93.23 184 | 88.37 155 | 93.43 204 | 80.61 167 | 77.32 205 | 87.47 147 | 94.12 179 | 96.58 157 | 95.72 161 | 98.88 183 | 99.53 125 |
|
v10 | | | 92.79 170 | 94.06 171 | 91.31 169 | 91.78 176 | 97.29 192 | 94.87 164 | 86.10 173 | 96.97 172 | 79.82 174 | 88.16 182 | 84.56 174 | 95.63 153 | 96.33 166 | 95.31 168 | 99.65 105 | 99.80 30 |
|
MIMVSNet | | | 94.49 143 | 97.59 96 | 90.87 177 | 91.74 177 | 98.70 123 | 94.68 171 | 78.73 202 | 97.98 142 | 83.71 149 | 97.71 82 | 94.81 110 | 96.96 118 | 97.97 110 | 97.92 93 | 99.40 165 | 98.04 185 |
|
v1144 | | | 92.81 168 | 94.03 172 | 91.40 167 | 91.68 178 | 97.60 177 | 94.73 168 | 88.40 154 | 96.71 178 | 78.48 180 | 88.14 183 | 84.46 175 | 95.45 162 | 96.31 167 | 95.22 170 | 99.65 105 | 99.76 56 |
|
DU-MVS | | | 93.98 150 | 94.44 164 | 93.44 133 | 91.66 179 | 97.77 164 | 95.03 157 | 91.57 108 | 97.17 166 | 86.12 133 | 93.13 153 | 81.13 192 | 96.60 130 | 95.10 187 | 97.01 126 | 99.67 96 | 99.80 30 |
|
Baseline_NR-MVSNet | | | 93.87 153 | 93.98 174 | 93.75 123 | 91.66 179 | 97.02 193 | 95.53 150 | 91.52 111 | 97.16 168 | 87.77 126 | 87.93 186 | 83.69 176 | 96.35 136 | 95.10 187 | 97.23 121 | 99.68 88 | 99.73 71 |
|
CP-MVSNet | | | 93.25 161 | 94.00 173 | 92.38 146 | 91.65 181 | 97.56 180 | 94.38 178 | 89.20 144 | 96.05 190 | 83.16 153 | 89.51 171 | 81.97 188 | 96.16 142 | 96.43 161 | 96.56 137 | 99.71 67 | 99.89 6 |
|
v148 | | | 92.36 182 | 92.88 189 | 91.75 161 | 91.63 182 | 97.66 171 | 92.64 188 | 90.55 128 | 96.09 188 | 83.34 151 | 88.19 181 | 80.00 197 | 92.74 192 | 93.98 194 | 94.58 185 | 99.58 134 | 99.69 91 |
|
PS-CasMVS | | | 92.72 172 | 93.36 185 | 91.98 155 | 91.62 183 | 97.52 182 | 94.13 182 | 88.98 146 | 95.94 193 | 81.51 164 | 87.35 188 | 79.95 198 | 95.91 147 | 96.37 163 | 96.49 139 | 99.70 76 | 99.89 6 |
|
v2v482 | | | 92.77 171 | 93.52 184 | 91.90 159 | 91.59 184 | 97.63 173 | 94.57 176 | 90.31 129 | 96.80 177 | 79.22 176 | 88.74 178 | 81.55 191 | 96.04 145 | 95.26 183 | 94.97 177 | 99.66 101 | 99.69 91 |
|
v1192 | | | 92.43 178 | 93.61 180 | 91.05 173 | 91.53 185 | 97.43 186 | 94.61 174 | 87.99 159 | 96.60 181 | 76.72 185 | 87.11 190 | 82.74 185 | 95.85 148 | 96.35 165 | 95.30 169 | 99.60 124 | 99.74 67 |
|
WR-MVS | | | 93.43 160 | 94.48 163 | 92.21 148 | 91.52 186 | 97.69 169 | 94.66 173 | 89.98 133 | 96.86 174 | 83.43 150 | 90.12 167 | 85.03 171 | 93.94 183 | 96.02 175 | 95.82 159 | 99.71 67 | 99.82 23 |
|
v144192 | | | 92.38 180 | 93.55 183 | 91.00 174 | 91.44 187 | 97.47 185 | 94.27 179 | 87.41 163 | 96.52 183 | 78.03 181 | 87.50 187 | 82.65 186 | 95.32 164 | 95.82 179 | 95.15 172 | 99.55 143 | 99.78 44 |
|
pmmvs5 | | | 92.71 174 | 94.27 166 | 90.90 176 | 91.42 188 | 97.74 166 | 93.23 184 | 86.66 169 | 95.99 192 | 78.96 179 | 91.45 158 | 83.44 179 | 95.55 156 | 97.30 141 | 95.05 175 | 99.58 134 | 98.93 167 |
|
v1921920 | | | 92.36 182 | 93.57 181 | 90.94 175 | 91.39 189 | 97.39 188 | 94.70 170 | 87.63 162 | 96.60 181 | 76.63 186 | 86.98 191 | 82.89 183 | 95.75 149 | 96.26 169 | 95.14 173 | 99.55 143 | 99.73 71 |
|
gm-plane-assit | | | 89.44 195 | 92.82 192 | 85.49 198 | 91.37 190 | 95.34 204 | 79.55 211 | 82.12 187 | 91.68 207 | 64.79 208 | 87.98 184 | 80.26 196 | 95.66 152 | 98.51 80 | 97.56 108 | 99.45 157 | 98.41 179 |
|
v1240 | | | 91.99 185 | 93.33 186 | 90.44 180 | 91.29 191 | 97.30 191 | 94.25 180 | 86.79 166 | 96.43 184 | 75.49 192 | 86.34 194 | 81.85 189 | 95.29 165 | 96.42 162 | 95.22 170 | 99.52 150 | 99.73 71 |
|
PEN-MVS | | | 92.72 172 | 93.20 187 | 92.15 150 | 91.29 191 | 97.31 190 | 94.67 172 | 89.81 136 | 96.19 186 | 81.83 162 | 88.58 179 | 79.06 202 | 95.61 155 | 95.21 184 | 96.27 144 | 99.72 57 | 99.82 23 |
|
TranMVSNet+NR-MVSNet | | | 93.67 156 | 94.14 167 | 93.13 139 | 91.28 193 | 97.58 178 | 95.60 149 | 91.97 100 | 97.06 169 | 84.05 142 | 90.64 166 | 82.22 187 | 96.17 141 | 94.94 190 | 96.78 129 | 99.69 79 | 99.78 44 |
|
anonymousdsp | | | 93.12 163 | 95.86 146 | 89.93 186 | 91.09 194 | 98.25 150 | 95.12 156 | 85.08 177 | 97.44 159 | 73.30 197 | 90.89 162 | 90.78 137 | 95.25 167 | 97.91 113 | 95.96 157 | 99.71 67 | 99.82 23 |
|
MDTV_nov1_ep13_2view | | | 92.44 177 | 95.66 148 | 88.68 189 | 91.05 195 | 97.92 160 | 92.17 190 | 79.64 194 | 98.83 95 | 76.20 187 | 91.45 158 | 93.51 124 | 95.04 170 | 95.68 180 | 93.70 191 | 97.96 191 | 98.53 176 |
|
DTE-MVSNet | | | 92.42 179 | 92.85 190 | 91.91 158 | 90.87 196 | 96.97 194 | 94.53 177 | 89.81 136 | 95.86 195 | 81.59 163 | 88.83 177 | 77.88 205 | 95.01 171 | 94.34 193 | 96.35 142 | 99.64 109 | 99.73 71 |
|
v7n | | | 91.61 187 | 92.95 188 | 90.04 183 | 90.56 197 | 97.69 169 | 93.74 183 | 85.59 175 | 95.89 194 | 76.95 184 | 86.60 193 | 78.60 204 | 93.76 186 | 97.01 150 | 94.99 176 | 99.65 105 | 99.87 12 |
|
test20.03 | | | 90.65 191 | 93.71 179 | 87.09 193 | 90.44 198 | 96.24 199 | 89.74 201 | 85.46 176 | 95.59 197 | 72.99 199 | 90.68 164 | 85.33 168 | 84.41 202 | 95.94 177 | 95.10 174 | 99.52 150 | 97.06 196 |
|
FPMVS | | | 83.82 200 | 84.61 202 | 82.90 201 | 90.39 199 | 90.71 209 | 90.85 195 | 84.10 185 | 95.47 198 | 65.15 206 | 83.44 198 | 74.46 208 | 75.48 205 | 81.63 206 | 79.42 208 | 91.42 210 | 87.14 209 |
|
Anonymous20231206 | | | 90.70 190 | 93.93 175 | 86.92 195 | 90.21 200 | 96.79 196 | 90.30 198 | 86.61 170 | 96.05 190 | 69.25 203 | 88.46 180 | 84.86 173 | 85.86 201 | 97.11 148 | 96.47 140 | 99.30 171 | 97.80 188 |
|
new_pmnet | | | 90.45 192 | 92.84 191 | 87.66 192 | 88.96 201 | 96.16 200 | 88.71 203 | 84.66 181 | 97.56 158 | 71.91 202 | 85.60 196 | 86.58 158 | 93.28 189 | 96.07 173 | 93.54 192 | 98.46 185 | 94.39 205 |
|
ET-MVSNet_ETH3D | | | 96.17 108 | 96.99 119 | 95.21 104 | 88.53 202 | 98.54 133 | 98.28 78 | 92.61 94 | 98.85 90 | 93.60 83 | 99.06 32 | 90.39 138 | 98.63 73 | 95.98 176 | 96.68 132 | 99.61 116 | 99.41 141 |
|
PM-MVS | | | 89.55 194 | 90.30 198 | 88.67 190 | 87.06 203 | 95.60 202 | 90.88 194 | 84.51 183 | 96.14 187 | 75.75 188 | 86.89 192 | 63.47 213 | 94.64 173 | 96.85 153 | 93.89 189 | 99.17 177 | 99.29 148 |
|
pmmvs-eth3d | | | 89.81 193 | 89.65 199 | 90.00 184 | 86.94 204 | 95.38 203 | 91.08 192 | 86.39 171 | 94.57 200 | 82.27 160 | 83.03 200 | 64.94 210 | 93.96 182 | 96.57 158 | 93.82 190 | 99.35 168 | 99.24 153 |
|
new-patchmatchnet | | | 86.12 199 | 87.30 201 | 84.74 199 | 86.92 205 | 95.19 206 | 83.57 208 | 84.42 184 | 92.67 205 | 65.66 205 | 80.32 202 | 64.72 211 | 89.41 198 | 92.33 201 | 89.21 203 | 98.43 186 | 96.69 199 |
|
pmmvs3 | | | 88.19 197 | 91.27 195 | 84.60 200 | 85.60 206 | 93.66 207 | 85.68 206 | 81.13 188 | 92.36 206 | 63.66 210 | 89.51 171 | 77.10 206 | 93.22 190 | 96.37 163 | 92.40 195 | 98.30 189 | 97.46 190 |
|
Gipuma | | | 81.40 201 | 81.78 203 | 80.96 203 | 83.21 207 | 85.61 212 | 79.73 210 | 76.25 209 | 97.33 162 | 64.21 209 | 55.32 209 | 55.55 214 | 86.04 200 | 92.43 200 | 92.20 198 | 96.32 206 | 93.99 206 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet-bldmvs | | | 87.84 198 | 89.22 200 | 86.23 196 | 81.74 208 | 96.77 197 | 83.74 207 | 89.57 141 | 94.50 201 | 72.83 200 | 96.64 105 | 64.47 212 | 92.71 193 | 81.43 207 | 92.28 197 | 96.81 204 | 98.47 178 |
|
MIMVSNet1 | | | 88.61 196 | 90.68 197 | 86.19 197 | 81.56 209 | 95.30 205 | 87.78 204 | 85.98 174 | 94.19 202 | 72.30 201 | 78.84 204 | 78.90 203 | 90.06 197 | 96.59 156 | 95.47 164 | 99.46 156 | 95.49 203 |
|
PMVS | | 72.60 17 | 76.39 203 | 77.66 206 | 74.92 204 | 81.04 210 | 69.37 216 | 68.47 213 | 80.54 191 | 85.39 209 | 65.07 207 | 73.52 206 | 72.91 209 | 65.67 211 | 80.35 208 | 76.81 209 | 88.71 211 | 85.25 212 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ambc | | | | 80.99 204 | | 80.04 211 | 90.84 208 | 90.91 193 | | 96.09 188 | 74.18 195 | 62.81 208 | 30.59 219 | 82.44 204 | 96.25 170 | 91.77 199 | 95.91 207 | 98.56 175 |
|
PMMVS2 | | | 77.26 202 | 79.47 205 | 74.70 205 | 76.00 212 | 88.37 211 | 74.22 212 | 76.34 207 | 78.31 210 | 54.13 212 | 69.96 207 | 52.50 215 | 70.14 209 | 84.83 205 | 88.71 204 | 97.35 198 | 93.58 207 |
|
EMVS | | | 68.12 206 | 68.11 208 | 68.14 207 | 75.51 213 | 71.76 214 | 55.38 216 | 77.20 206 | 77.78 211 | 37.79 215 | 53.59 210 | 43.61 216 | 74.72 206 | 67.05 211 | 76.70 210 | 88.27 213 | 86.24 210 |
|
E-PMN | | | 68.30 205 | 68.43 207 | 68.15 206 | 74.70 214 | 71.56 215 | 55.64 215 | 77.24 205 | 77.48 212 | 39.46 214 | 51.95 212 | 41.68 217 | 73.28 207 | 70.65 210 | 79.51 207 | 88.61 212 | 86.20 211 |
|
MVE | | 67.97 19 | 65.53 207 | 67.43 209 | 63.31 208 | 59.33 215 | 74.20 213 | 53.09 217 | 70.43 211 | 66.27 213 | 43.13 213 | 45.98 213 | 30.62 218 | 70.65 208 | 79.34 209 | 86.30 205 | 83.25 214 | 89.33 208 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 31.24 208 | 40.15 210 | 20.86 210 | 12.61 216 | 17.99 217 | 25.16 218 | 13.30 213 | 48.42 214 | 24.82 216 | 53.07 211 | 30.13 220 | 28.47 212 | 42.73 212 | 37.65 211 | 20.79 215 | 51.04 213 |
|
test123 | | | 26.75 209 | 34.25 211 | 18.01 211 | 7.93 217 | 17.18 218 | 24.85 219 | 12.36 214 | 44.83 215 | 16.52 217 | 41.80 214 | 18.10 221 | 28.29 213 | 33.08 213 | 34.79 212 | 18.10 216 | 49.95 214 |
|
GG-mvs-BLEND | | | 69.11 204 | 98.13 78 | 35.26 209 | 3.49 218 | 98.20 153 | 94.89 162 | 2.38 215 | 98.42 125 | 5.82 218 | 96.37 113 | 98.60 64 | 5.97 214 | 98.75 61 | 97.98 91 | 99.01 180 | 98.61 174 |
|
uanet_test | | | 0.00 210 | 0.00 212 | 0.00 212 | 0.00 219 | 0.00 219 | 0.00 220 | 0.00 216 | 0.00 216 | 0.00 219 | 0.00 215 | 0.00 222 | 0.00 215 | 0.00 214 | 0.00 213 | 0.00 217 | 0.00 215 |
|
sosnet-low-res | | | 0.00 210 | 0.00 212 | 0.00 212 | 0.00 219 | 0.00 219 | 0.00 220 | 0.00 216 | 0.00 216 | 0.00 219 | 0.00 215 | 0.00 222 | 0.00 215 | 0.00 214 | 0.00 213 | 0.00 217 | 0.00 215 |
|
sosnet | | | 0.00 210 | 0.00 212 | 0.00 212 | 0.00 219 | 0.00 219 | 0.00 220 | 0.00 216 | 0.00 216 | 0.00 219 | 0.00 215 | 0.00 222 | 0.00 215 | 0.00 214 | 0.00 213 | 0.00 217 | 0.00 215 |
|
9.14 | | | | | | | | | | | | | 99.79 45 | | | | | |
|
test_part1 | | | | | | | | | | | | | | | | | | 99.62 111 |
|
MTAPA | | | | | | | | | | | 98.09 15 | | 99.97 7 | | | | | |
|
MTMP | | | | | | | | | | | 98.46 11 | | 99.96 12 | | | | | |
|
Patchmatch-RL test | | | | | | | | 66.86 214 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 98.57 116 | | | | | | | | |
|
Patchmtry | | | | | | | 98.59 130 | 97.15 116 | 79.14 198 | | 80.42 169 | | | | | | | |
|
DeepMVS_CX | | | | | | | 96.85 195 | 87.43 205 | 89.27 143 | 98.30 129 | 75.55 191 | 95.05 131 | 79.47 200 | 92.62 194 | 89.48 203 | | 95.18 208 | 95.96 202 |
|