This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
IU-MVS98.77 586.00 5096.84 6581.26 27197.26 795.50 2399.13 399.03 8
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5697.27 3885.22 5499.54 2092.21 6798.74 3198.56 25
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5997.26 4085.04 5899.54 2092.35 6298.78 2598.50 27
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5497.21 4286.10 4599.49 2692.35 6298.77 2798.30 47
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
test_part298.55 1287.22 1996.40 17
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7597.16 4785.02 5999.49 2691.99 7798.56 5198.47 33
X-MVStestdata88.31 17886.13 22494.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7523.41 40885.02 5999.49 2691.99 7798.56 5198.47 33
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6597.04 5286.17 4499.62 292.40 5998.81 2298.52 26
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10897.17 4683.96 7199.55 1691.44 9298.64 4698.43 38
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 7099.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9997.19 4485.43 5299.56 1292.06 7698.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12497.12 4187.13 12392.51 8996.30 8389.24 1799.34 3493.46 3998.62 4798.73 17
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10497.78 187.45 11993.26 6297.33 3684.62 6599.51 2490.75 10598.57 5098.32 46
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17296.97 5091.07 1393.14 6697.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6296.83 6185.48 5199.59 891.43 9398.40 5698.30 47
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8696.80 6584.85 6399.17 4792.43 5798.65 4598.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 8397.23 4185.20 5599.32 3892.15 7098.83 2198.25 57
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 16292.47 9097.13 4882.38 9099.07 5390.51 10898.40 5697.92 80
DP-MVS Recon91.95 8691.28 9293.96 5798.33 2785.92 5794.66 14896.66 8582.69 23690.03 13595.82 10582.30 9499.03 5884.57 17596.48 10896.91 132
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6096.62 8888.14 9996.10 2096.96 5589.09 1898.94 7894.48 2898.68 3998.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4896.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
CPTT-MVS91.99 8591.80 8692.55 11698.24 3181.98 16496.76 3096.49 9681.89 25490.24 12996.44 8178.59 14398.61 10689.68 11397.85 7697.06 121
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4096.90 5988.20 9794.33 4097.40 3384.75 6499.03 5893.35 4397.99 7198.48 30
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13597.17 3986.26 15092.83 7797.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS98.15 3486.62 3397.07 4583.63 21094.19 4296.91 5787.57 3199.26 4291.99 7798.44 55
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15997.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10696.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
114514_t89.51 14188.50 15492.54 11798.11 3681.99 16395.16 11696.36 10770.19 37985.81 21195.25 12476.70 16298.63 10382.07 21696.86 9997.00 126
ACMMPcopyleft93.24 6392.88 6894.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13397.03 5381.44 11299.51 2490.85 10495.74 11698.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16595.05 3497.18 4587.31 3599.07 5391.90 8598.61 4998.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 4997.37 2184.15 19890.05 13495.66 11287.77 2699.15 5089.91 11298.27 6098.07 68
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6698.99 1498.84 14
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3184.24 6899.01 6392.73 5197.80 7897.88 81
RE-MVS-def93.68 5297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3182.94 8392.73 5197.80 7897.88 81
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4396.87 6286.96 12793.92 5097.47 2983.88 7298.96 7792.71 5497.87 7598.26 56
save fliter97.85 4685.63 6695.21 11296.82 6889.44 53
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11295.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4996.58 7687.74 2799.44 2992.83 5098.40 5698.62 21
9.1494.47 2097.79 4996.08 6197.44 1586.13 15795.10 3397.40 3388.34 2299.22 4493.25 4498.70 35
CDPH-MVS92.83 7292.30 8194.44 4597.79 4986.11 4994.06 19096.66 8580.09 28492.77 8096.63 7386.62 3899.04 5787.40 13998.66 4298.17 62
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
dcpmvs_293.49 5294.19 3691.38 17097.69 5476.78 29294.25 17596.29 11188.33 9094.46 3896.88 5888.07 2598.64 10193.62 3898.09 6798.73 17
DP-MVS87.25 21885.36 25292.90 9797.65 5583.24 12194.81 13692.00 30474.99 34481.92 30295.00 13672.66 21999.05 5566.92 35792.33 18796.40 151
PAPM_NR91.22 10090.78 10392.52 11897.60 5681.46 17794.37 17196.24 11986.39 14487.41 17594.80 14982.06 10298.48 11782.80 20195.37 12797.61 96
patch_mono-293.74 4794.32 2692.01 13597.54 5778.37 26093.40 22197.19 3588.02 10294.99 3597.21 4288.35 2198.44 12794.07 3298.09 6799.23 1
TEST997.53 5886.49 3794.07 18896.78 7281.61 26492.77 8096.20 8787.71 2899.12 51
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18896.78 7281.86 25592.77 8096.20 8787.63 2999.12 5192.14 7198.69 3797.94 77
test_897.49 6086.30 4594.02 19396.76 7581.86 25592.70 8496.20 8787.63 2999.02 61
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7896.97 5485.37 5399.24 4390.87 10398.69 3798.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary89.89 13289.07 13892.37 12597.41 6283.03 13394.42 16495.92 14582.81 23386.34 20294.65 15773.89 20299.02 6180.69 24295.51 12095.05 204
agg_prior97.38 6385.92 5796.72 8192.16 9598.97 75
原ACMM192.01 13597.34 6481.05 18896.81 7078.89 30090.45 12695.92 10082.65 8798.84 8880.68 24398.26 6196.14 161
MSLP-MVS++93.72 4894.08 3892.65 11197.31 6583.43 11695.79 8197.33 2590.03 3693.58 5696.96 5584.87 6297.76 18092.19 6998.66 4296.76 138
新几何193.10 8197.30 6684.35 9495.56 17471.09 37691.26 11996.24 8582.87 8598.86 8479.19 26498.10 6696.07 167
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
PLCcopyleft84.53 789.06 15888.03 16792.15 13397.27 6882.69 14894.29 17395.44 18679.71 28984.01 26994.18 17476.68 16398.75 9377.28 28193.41 16695.02 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25594.38 2998.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.34 5097.13 7086.15 4896.29 11191.04 12185.08 5799.01 6398.13 6597.86 83
MG-MVS91.77 8991.70 8892.00 13897.08 7180.03 22093.60 21495.18 20087.85 11090.89 12296.47 8082.06 10298.36 13285.07 16797.04 9297.62 95
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23397.24 3288.76 7791.60 11395.85 10386.07 4698.66 9991.91 8398.16 6398.03 72
CNLPA89.07 15787.98 16892.34 12696.87 7484.78 7894.08 18793.24 27181.41 26784.46 25495.13 13375.57 17896.62 26577.21 28293.84 15695.61 189
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17893.56 5896.28 8485.60 4999.31 3992.45 5698.79 2398.12 66
旧先验196.79 7681.81 16895.67 16696.81 6386.69 3797.66 8396.97 128
LFMVS90.08 12389.13 13792.95 9596.71 7782.32 15996.08 6189.91 35486.79 13392.15 9696.81 6362.60 31998.34 13587.18 14393.90 15498.19 60
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 7395.77 10885.02 5998.33 13793.03 4798.62 4798.13 64
Anonymous20240521187.68 19486.13 22492.31 12896.66 7980.74 19894.87 13291.49 32080.47 28089.46 14195.44 11754.72 36598.23 14382.19 21289.89 21797.97 74
TAPA-MVS84.62 688.16 18287.01 19291.62 16096.64 8080.65 19994.39 16796.21 12476.38 32986.19 20695.44 11779.75 12698.08 16262.75 37395.29 12996.13 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS90.30 11889.37 13193.07 8696.61 8184.48 8795.68 8695.67 16682.36 24187.85 16692.85 21976.63 16498.80 9080.01 25296.68 10395.91 173
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet92.24 8491.91 8593.24 7596.59 8283.43 11694.84 13496.44 9889.19 6394.08 4795.90 10177.85 15498.17 14788.90 12193.38 16798.13 64
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16593.93 25689.77 4794.21 4195.59 11587.35 3498.61 10692.72 5396.15 11397.83 86
CS-MVS94.12 3794.44 2293.17 7896.55 8483.08 13197.63 396.95 5491.71 1193.50 6096.21 8685.61 4898.24 14293.64 3798.17 6298.19 60
test22296.55 8481.70 17092.22 26795.01 20768.36 38290.20 13096.14 9280.26 12197.80 7896.05 170
Anonymous2024052988.09 18486.59 20792.58 11596.53 8681.92 16695.99 7195.84 15374.11 35389.06 14795.21 12761.44 32798.81 8983.67 18987.47 26097.01 125
Anonymous2023121186.59 24485.13 25790.98 19296.52 8781.50 17396.14 5796.16 12573.78 35683.65 27792.15 24363.26 31697.37 22382.82 20081.74 31794.06 254
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11996.52 8780.00 22294.00 19697.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3398.50 27
testdata90.49 20796.40 8977.89 27295.37 19272.51 36893.63 5596.69 6682.08 10197.65 18883.08 19397.39 8695.94 172
PVSNet_Blended_VisFu91.38 9690.91 10092.80 10296.39 9083.17 12494.87 13296.66 8583.29 22189.27 14394.46 16480.29 12099.17 4787.57 13795.37 12796.05 170
API-MVS90.66 11190.07 11492.45 12196.36 9184.57 8296.06 6595.22 19982.39 23989.13 14494.27 17280.32 11998.46 12180.16 25196.71 10294.33 242
F-COLMAP87.95 18786.80 19791.40 16996.35 9280.88 19494.73 14195.45 18479.65 29082.04 30094.61 15871.13 23398.50 11576.24 29391.05 20194.80 218
VDD-MVS90.74 10789.92 12093.20 7796.27 9383.02 13495.73 8393.86 26088.42 8992.53 8796.84 6062.09 32198.64 10190.95 10192.62 18297.93 79
OMC-MVS91.23 9990.62 10493.08 8496.27 9384.07 9893.52 21695.93 14486.95 12889.51 13996.13 9378.50 14598.35 13485.84 16192.90 17696.83 137
DPM-MVS92.58 7891.74 8795.08 1596.19 9589.31 592.66 25196.56 9383.44 21691.68 11295.04 13586.60 4098.99 7085.60 16397.92 7496.93 130
CHOSEN 1792x268888.84 16387.69 17492.30 12996.14 9681.42 17990.01 32095.86 15274.52 34987.41 17593.94 18375.46 17998.36 13280.36 24795.53 11997.12 119
thres100view90087.63 19986.71 20090.38 21596.12 9778.55 25395.03 12391.58 31687.15 12288.06 16292.29 23968.91 26998.10 15270.13 33591.10 19694.48 236
PVSNet_BlendedMVS89.98 12689.70 12290.82 19596.12 9781.25 18293.92 20196.83 6683.49 21589.10 14592.26 24081.04 11698.85 8686.72 15187.86 25592.35 324
PVSNet_Blended90.73 10890.32 10891.98 13996.12 9781.25 18292.55 25596.83 6682.04 24889.10 14592.56 23081.04 11698.85 8686.72 15195.91 11495.84 177
UA-Net92.83 7292.54 7793.68 6896.10 10084.71 7995.66 8996.39 10491.92 793.22 6496.49 7983.16 7998.87 8284.47 17795.47 12397.45 104
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 24095.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
thres600view787.65 19686.67 20290.59 20096.08 10278.72 24994.88 13191.58 31687.06 12588.08 16192.30 23868.91 26998.10 15270.05 33891.10 19694.96 209
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10385.83 6194.89 13096.99 4889.02 7189.56 13897.37 3582.51 8999.38 3192.20 6898.30 5997.57 99
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D87.89 18886.32 21792.59 11496.07 10382.92 13895.23 11094.92 21675.66 33682.89 29095.98 9872.48 22299.21 4568.43 34595.23 13295.64 186
h-mvs3390.80 10590.15 11292.75 10596.01 10582.66 14995.43 9895.53 17889.80 4393.08 6895.64 11375.77 17199.00 6892.07 7378.05 35496.60 144
SDMVSNet90.19 12189.61 12491.93 14396.00 10683.09 13092.89 24595.98 14088.73 7886.85 18995.20 12872.09 22697.08 24388.90 12189.85 21995.63 187
sd_testset88.59 17287.85 17290.83 19496.00 10680.42 20692.35 26194.71 23088.73 7886.85 18995.20 12867.31 27996.43 28379.64 25789.85 21995.63 187
HyFIR lowres test88.09 18486.81 19691.93 14396.00 10680.63 20090.01 32095.79 15673.42 36087.68 17192.10 24873.86 20397.96 17180.75 24191.70 19097.19 112
tfpn200view987.58 20386.64 20390.41 21295.99 10978.64 25194.58 15291.98 30686.94 12988.09 15991.77 25869.18 26598.10 15270.13 33591.10 19694.48 236
thres40087.62 20186.64 20390.57 20195.99 10978.64 25194.58 15291.98 30686.94 12988.09 15991.77 25869.18 26598.10 15270.13 33591.10 19694.96 209
MVS_111021_LR92.47 8092.29 8292.98 9295.99 10984.43 9193.08 23896.09 13288.20 9791.12 12095.72 11181.33 11497.76 18091.74 8697.37 8796.75 139
iter_conf05_1192.98 7092.96 6693.03 8795.91 11282.49 15396.06 6596.37 10686.94 12994.09 4495.16 13081.94 10798.67 9891.65 8998.56 5197.95 76
PatchMatch-RL86.77 23985.54 24690.47 21195.88 11382.71 14790.54 30692.31 29479.82 28884.32 26291.57 26968.77 27196.39 28573.16 31693.48 16592.32 325
EPP-MVSNet91.70 9291.56 8992.13 13495.88 11380.50 20497.33 795.25 19686.15 15489.76 13795.60 11483.42 7798.32 13987.37 14193.25 17097.56 100
IS-MVSNet91.43 9591.09 9792.46 12095.87 11581.38 18096.95 1993.69 26689.72 4989.50 14095.98 9878.57 14497.77 17983.02 19596.50 10798.22 59
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11684.62 8096.15 5597.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6997.17 113
PAPR90.02 12589.27 13692.29 13095.78 11780.95 19292.68 25096.22 12181.91 25286.66 19393.75 19582.23 9698.44 12779.40 26394.79 13697.48 102
Vis-MVSNet (Re-imp)89.59 13989.44 12890.03 22895.74 11875.85 30695.61 9390.80 33887.66 11687.83 16795.40 12076.79 16096.46 28178.37 26896.73 10197.80 87
test_yl90.69 10990.02 11892.71 10795.72 11982.41 15794.11 18395.12 20285.63 16691.49 11494.70 15274.75 18698.42 13086.13 15692.53 18497.31 106
DCV-MVSNet90.69 10990.02 11892.71 10795.72 11982.41 15794.11 18395.12 20285.63 16691.49 11494.70 15274.75 18698.42 13086.13 15692.53 18497.31 106
sasdasda93.27 6192.75 7094.85 2595.70 12187.66 1296.33 4196.41 10190.00 3794.09 4494.60 15982.33 9298.62 10492.40 5992.86 17798.27 52
canonicalmvs93.27 6192.75 7094.85 2595.70 12187.66 1296.33 4196.41 10190.00 3794.09 4494.60 15982.33 9298.62 10492.40 5992.86 17798.27 52
CANet93.54 5193.20 6194.55 4395.65 12385.73 6594.94 12796.69 8491.89 890.69 12495.88 10281.99 10599.54 2093.14 4697.95 7398.39 39
3Dnovator+87.14 492.42 8191.37 9095.55 795.63 12488.73 697.07 1896.77 7490.84 1684.02 26896.62 7475.95 17099.34 3487.77 13497.68 8298.59 24
MGCFI-Net93.03 6892.63 7494.23 5395.62 12585.92 5796.08 6196.33 10989.86 4193.89 5194.66 15682.11 9998.50 11592.33 6592.82 18098.27 52
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9995.62 12583.17 12496.14 5796.12 12988.13 10095.82 2698.04 1683.43 7598.48 11796.97 996.23 11196.92 131
test250687.21 22286.28 21990.02 23095.62 12573.64 32896.25 4871.38 40687.89 10890.45 12696.65 7055.29 36398.09 16086.03 15896.94 9498.33 43
ECVR-MVScopyleft89.09 15688.53 15290.77 19795.62 12575.89 30596.16 5384.22 38487.89 10890.20 13096.65 7063.19 31798.10 15285.90 15996.94 9498.33 43
alignmvs93.08 6792.50 7894.81 3295.62 12587.61 1495.99 7196.07 13489.77 4794.12 4394.87 14380.56 11898.66 9992.42 5893.10 17398.15 63
test111189.10 15488.64 14990.48 20895.53 13074.97 31496.08 6184.89 38288.13 10090.16 13296.65 7063.29 31598.10 15286.14 15496.90 9698.39 39
bld_raw_dy_0_6492.29 8392.45 7991.80 15595.49 13179.68 23193.44 22096.40 10386.21 15293.01 7194.88 14181.93 10898.57 10991.99 7798.73 3297.16 117
WTY-MVS89.60 13888.92 14291.67 15995.47 13281.15 18692.38 25994.78 22783.11 22589.06 14794.32 16778.67 14296.61 26881.57 22890.89 20397.24 109
DELS-MVS93.43 5893.25 5993.97 5695.42 13385.04 7293.06 24097.13 4090.74 2191.84 10695.09 13486.32 4299.21 4591.22 9498.45 5497.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030494.60 1894.38 2595.23 1195.41 13487.49 1696.53 3892.75 28393.82 293.07 7097.84 2283.66 7499.59 897.61 298.76 2898.61 22
thres20087.21 22286.24 22190.12 22495.36 13578.53 25493.26 23192.10 30086.42 14388.00 16491.11 28269.24 26498.00 16869.58 33991.04 20293.83 266
Vis-MVSNetpermissive91.75 9091.23 9393.29 7395.32 13683.78 10596.14 5795.98 14089.89 3990.45 12696.58 7675.09 18298.31 14084.75 17396.90 9697.78 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13784.98 7395.61 9396.28 11486.31 14696.75 1697.86 2187.40 3398.74 9597.07 897.02 9397.07 120
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 13885.43 6895.68 8696.43 9986.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 10097.16 117
BH-RMVSNet88.37 17687.48 17991.02 18795.28 13879.45 23592.89 24593.07 27585.45 17186.91 18594.84 14870.35 24797.76 18073.97 31194.59 14295.85 176
COLMAP_ROBcopyleft80.39 1683.96 29182.04 30089.74 24295.28 13879.75 22894.25 17592.28 29575.17 34278.02 34493.77 19358.60 34997.84 17765.06 36585.92 27391.63 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJ91.18 10190.92 9991.96 14195.26 14182.60 15292.09 27295.70 16486.27 14991.84 10692.46 23279.70 12898.99 7089.08 11995.86 11594.29 243
BH-untuned88.60 17188.13 16690.01 23195.24 14278.50 25693.29 22994.15 24984.75 18984.46 25493.40 20075.76 17397.40 21977.59 27894.52 14594.12 249
EC-MVSNet93.44 5593.71 5192.63 11295.21 14382.43 15497.27 996.71 8290.57 2692.88 7495.80 10683.16 7998.16 14893.68 3698.14 6497.31 106
ETV-MVS92.74 7592.66 7292.97 9395.20 14484.04 10095.07 12096.51 9490.73 2292.96 7291.19 27684.06 6998.34 13591.72 8796.54 10596.54 149
GeoE90.05 12489.43 12991.90 14895.16 14580.37 20795.80 8094.65 23383.90 20387.55 17494.75 15178.18 14997.62 19381.28 23193.63 15897.71 91
EIA-MVS91.95 8691.94 8491.98 13995.16 14580.01 22195.36 9996.73 7988.44 8789.34 14292.16 24283.82 7398.45 12589.35 11697.06 9197.48 102
mamv492.71 7792.58 7693.09 8395.16 14583.05 13294.67 14696.50 9586.30 14793.09 6794.88 14182.03 10498.57 10991.94 8298.66 4297.63 94
ab-mvs89.41 14688.35 15892.60 11395.15 14882.65 15092.20 26895.60 17383.97 20288.55 15393.70 19674.16 19898.21 14682.46 20689.37 22896.94 129
MVSMamba_pp92.75 7492.66 7293.02 8995.09 14982.85 14094.72 14396.46 9786.35 14593.33 6194.96 13781.98 10698.55 11492.35 6298.70 3597.67 92
VDDNet89.56 14088.49 15692.76 10495.07 15082.09 16196.30 4393.19 27381.05 27691.88 10496.86 5961.16 33498.33 13788.43 12792.49 18697.84 85
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 9195.02 15183.67 10896.19 5096.10 13187.27 12195.98 2498.05 1383.07 8298.45 12596.68 1195.51 12096.88 134
AllTest83.42 29881.39 30489.52 25295.01 15277.79 27793.12 23590.89 33677.41 32076.12 35693.34 20154.08 36897.51 20168.31 34684.27 28693.26 290
TestCases89.52 25295.01 15277.79 27790.89 33677.41 32076.12 35693.34 20154.08 36897.51 20168.31 34684.27 28693.26 290
EI-MVSNet-Vis-set93.01 6992.92 6793.29 7395.01 15283.51 11594.48 15795.77 15790.87 1592.52 8896.67 6884.50 6699.00 6891.99 7794.44 14897.36 105
xiu_mvs_v2_base91.13 10290.89 10191.86 14994.97 15582.42 15592.24 26695.64 17186.11 15891.74 11193.14 21279.67 13198.89 8189.06 12095.46 12494.28 244
tttt051788.61 17087.78 17391.11 18294.96 15677.81 27595.35 10089.69 35885.09 18088.05 16394.59 16166.93 28598.48 11783.27 19292.13 18997.03 124
baseline188.10 18387.28 18590.57 20194.96 15680.07 21594.27 17491.29 32586.74 13587.41 17594.00 18076.77 16196.20 29480.77 24079.31 35095.44 191
Test_1112_low_res87.65 19686.51 21091.08 18394.94 15879.28 24391.77 27894.30 24376.04 33483.51 28192.37 23577.86 15397.73 18478.69 26789.13 23496.22 158
1112_ss88.42 17487.33 18391.72 15794.92 15980.98 19092.97 24394.54 23478.16 31683.82 27293.88 18878.78 14097.91 17579.45 25989.41 22796.26 157
QAPM89.51 14188.15 16593.59 7094.92 15984.58 8196.82 2996.70 8378.43 31083.41 28396.19 9073.18 21399.30 4077.11 28496.54 10596.89 133
BH-w/o87.57 20487.05 19089.12 26294.90 16177.90 27192.41 25793.51 26882.89 23283.70 27591.34 27075.75 17497.07 24575.49 29793.49 16392.39 322
thisisatest053088.67 16887.61 17691.86 14994.87 16280.07 21594.63 14989.90 35584.00 20188.46 15693.78 19266.88 28798.46 12183.30 19192.65 18197.06 121
EI-MVSNet-UG-set92.74 7592.62 7593.12 8094.86 16383.20 12394.40 16595.74 16090.71 2392.05 9796.60 7584.00 7098.99 7091.55 9093.63 15897.17 113
HY-MVS83.01 1289.03 15987.94 17092.29 13094.86 16382.77 14192.08 27394.49 23581.52 26686.93 18392.79 22578.32 14898.23 14379.93 25390.55 20695.88 175
hse-mvs289.88 13389.34 13291.51 16494.83 16581.12 18793.94 19993.91 25989.80 4393.08 6893.60 19775.77 17197.66 18792.07 7377.07 36195.74 182
AUN-MVS87.78 19286.54 20991.48 16694.82 16681.05 18893.91 20393.93 25683.00 22886.93 18393.53 19869.50 25897.67 18586.14 15477.12 36095.73 184
Fast-Effi-MVS+89.41 14688.64 14991.71 15894.74 16780.81 19693.54 21595.10 20483.11 22586.82 19190.67 29579.74 12797.75 18380.51 24693.55 16096.57 147
ACMP84.23 889.01 16188.35 15890.99 19094.73 16881.27 18195.07 12095.89 15086.48 14083.67 27694.30 16869.33 26097.99 16987.10 14888.55 24093.72 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet78.82 1885.55 26484.65 26888.23 28794.72 16971.93 34687.12 36192.75 28378.80 30384.95 24390.53 29764.43 30896.71 26274.74 30693.86 15596.06 169
LCM-MVSNet-Re88.30 17988.32 16188.27 28494.71 17072.41 34593.15 23490.98 33287.77 11179.25 33591.96 25478.35 14795.75 31583.04 19495.62 11896.65 143
HQP_MVS90.60 11590.19 11091.82 15294.70 17182.73 14595.85 7796.22 12190.81 1786.91 18594.86 14474.23 19498.12 15088.15 12889.99 21394.63 221
plane_prior794.70 17182.74 144
ACMH+81.04 1485.05 27683.46 28489.82 23894.66 17379.37 23794.44 16294.12 25282.19 24478.04 34392.82 22258.23 35097.54 19873.77 31382.90 30392.54 315
ACMM84.12 989.14 15388.48 15791.12 17994.65 17481.22 18495.31 10296.12 12985.31 17485.92 21094.34 16570.19 25098.06 16485.65 16288.86 23794.08 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17584.96 7496.15 5597.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7797.96 75
plane_prior194.59 176
casdiffmvs_mvgpermissive92.96 7192.83 6993.35 7294.59 17683.40 11895.00 12496.34 10890.30 3092.05 9796.05 9583.43 7598.15 14992.07 7395.67 11798.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator86.66 591.73 9190.82 10294.44 4594.59 17686.37 4197.18 1297.02 4789.20 6284.31 26496.66 6973.74 20699.17 4786.74 14997.96 7297.79 88
FA-MVS(test-final)89.66 13688.91 14391.93 14394.57 17980.27 20891.36 28894.74 22984.87 18489.82 13692.61 22974.72 18998.47 12083.97 18393.53 16197.04 123
FE-MVS87.40 21186.02 23091.57 16294.56 18079.69 23090.27 30993.72 26580.57 27988.80 15091.62 26565.32 30298.59 10874.97 30594.33 15096.44 150
plane_prior694.52 18182.75 14274.23 194
UGNet89.95 12988.95 14192.95 9594.51 18283.31 12095.70 8595.23 19789.37 5687.58 17293.94 18364.00 31098.78 9183.92 18496.31 11096.74 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test89.45 14488.90 14491.12 17994.47 18381.49 17595.30 10496.14 12686.73 13685.45 22695.16 13069.89 25298.10 15287.70 13589.23 23293.77 272
LGP-MVS_train91.12 17994.47 18381.49 17596.14 12686.73 13685.45 22695.16 13069.89 25298.10 15287.70 13589.23 23293.77 272
baseline92.39 8292.29 8292.69 11094.46 18581.77 16994.14 18196.27 11589.22 6191.88 10496.00 9682.35 9197.99 16991.05 9695.27 13198.30 47
ACMH80.38 1785.36 26883.68 28190.39 21394.45 18680.63 20094.73 14194.85 22182.09 24577.24 34892.65 22760.01 34097.58 19572.25 32084.87 28192.96 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB82.13 1386.26 25484.90 26390.34 21794.44 18781.50 17392.31 26594.89 21783.03 22779.63 33292.67 22669.69 25597.79 17871.20 32486.26 27291.72 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testing9187.11 22786.18 22289.92 23494.43 18875.38 31391.53 28592.27 29686.48 14086.50 19490.24 30261.19 33297.53 19982.10 21490.88 20496.84 136
casdiffmvspermissive92.51 7992.43 8092.74 10694.41 18981.98 16494.54 15596.23 12089.57 5191.96 10196.17 9182.58 8898.01 16790.95 10195.45 12598.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETVMVS84.43 28582.92 29488.97 26894.37 19074.67 31791.23 29488.35 36683.37 21986.06 20989.04 32755.38 36195.67 31867.12 35391.34 19496.58 146
MVS_Test91.31 9891.11 9591.93 14394.37 19080.14 21293.46 21995.80 15586.46 14291.35 11893.77 19382.21 9798.09 16087.57 13794.95 13497.55 101
NP-MVS94.37 19082.42 15593.98 181
TR-MVS86.78 23685.76 24289.82 23894.37 19078.41 25892.47 25692.83 28081.11 27586.36 20092.40 23468.73 27297.48 20373.75 31489.85 21993.57 280
Effi-MVS+91.59 9491.11 9593.01 9094.35 19483.39 11994.60 15195.10 20487.10 12490.57 12593.10 21481.43 11398.07 16389.29 11794.48 14697.59 98
testing1186.44 25185.35 25389.69 24694.29 19575.40 31291.30 29090.53 34184.76 18885.06 24090.13 30858.95 34897.45 20782.08 21591.09 20096.21 159
testing9986.72 24085.73 24589.69 24694.23 19674.91 31691.35 28990.97 33386.14 15586.36 20090.22 30359.41 34497.48 20382.24 21190.66 20596.69 142
CLD-MVS89.47 14388.90 14491.18 17894.22 19782.07 16292.13 27096.09 13287.90 10685.37 23592.45 23374.38 19297.56 19787.15 14490.43 20893.93 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC94.17 19894.39 16788.81 7485.43 229
ACMP_Plane94.17 19894.39 16788.81 7485.43 229
HQP-MVS89.80 13489.28 13591.34 17294.17 19881.56 17194.39 16796.04 13788.81 7485.43 22993.97 18273.83 20497.96 17187.11 14689.77 22294.50 233
testing22284.84 28083.32 28589.43 25694.15 20175.94 30491.09 29789.41 36284.90 18385.78 21289.44 32252.70 37396.28 29270.80 33091.57 19296.07 167
XVG-OURS89.40 14888.70 14891.52 16394.06 20281.46 17791.27 29296.07 13486.14 15588.89 14995.77 10868.73 27297.26 23187.39 14089.96 21595.83 178
sss88.93 16288.26 16490.94 19394.05 20380.78 19791.71 28095.38 19081.55 26588.63 15293.91 18775.04 18395.47 32782.47 20591.61 19196.57 147
PCF-MVS84.11 1087.74 19386.08 22892.70 10994.02 20484.43 9189.27 33295.87 15173.62 35884.43 25694.33 16678.48 14698.86 8470.27 33194.45 14794.81 217
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 21685.98 23291.08 18394.01 20583.10 12795.14 11794.94 21183.57 21184.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
test187.26 21685.98 23291.08 18394.01 20583.10 12795.14 11794.94 21183.57 21184.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
FMVSNet287.19 22485.82 23891.30 17494.01 20583.67 10894.79 13794.94 21183.57 21183.88 27192.05 25266.59 29296.51 27677.56 27985.01 28093.73 275
XVG-OURS-SEG-HR89.95 12989.45 12791.47 16794.00 20881.21 18591.87 27696.06 13685.78 16188.55 15395.73 11074.67 19097.27 22988.71 12489.64 22495.91 173
FIs90.51 11690.35 10790.99 19093.99 20980.98 19095.73 8397.54 489.15 6486.72 19294.68 15481.83 11197.24 23385.18 16688.31 24894.76 219
xiu_mvs_v1_base_debu90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22495.46 18185.17 17592.25 9294.03 17570.59 24298.57 10990.97 9894.67 13894.18 245
xiu_mvs_v1_base90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22495.46 18185.17 17592.25 9294.03 17570.59 24298.57 10990.97 9894.67 13894.18 245
xiu_mvs_v1_base_debi90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22495.46 18185.17 17592.25 9294.03 17570.59 24298.57 10990.97 9894.67 13894.18 245
VPA-MVSNet89.62 13788.96 14091.60 16193.86 21382.89 13995.46 9797.33 2587.91 10588.43 15793.31 20474.17 19797.40 21987.32 14282.86 30494.52 229
MVSFormer91.68 9391.30 9192.80 10293.86 21383.88 10395.96 7395.90 14884.66 19291.76 10994.91 13977.92 15197.30 22589.64 11497.11 8997.24 109
lupinMVS90.92 10490.21 10993.03 8793.86 21383.88 10392.81 24893.86 26079.84 28791.76 10994.29 16977.92 15198.04 16590.48 10997.11 8997.17 113
IterMVS-LS88.36 17787.91 17189.70 24593.80 21678.29 26393.73 20895.08 20685.73 16384.75 24691.90 25679.88 12496.92 25483.83 18582.51 30593.89 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 27983.09 29090.14 22393.80 21680.05 21889.18 33593.09 27478.89 30078.19 34191.91 25565.86 30197.27 22968.47 34488.45 24493.11 299
FMVSNet387.40 21186.11 22691.30 17493.79 21883.64 11094.20 17994.81 22583.89 20484.37 25791.87 25768.45 27596.56 27378.23 27285.36 27793.70 277
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 10093.75 21983.13 12696.02 6995.74 16087.68 11495.89 2598.17 282.78 8698.46 12196.71 1096.17 11296.98 127
FC-MVSNet-test90.27 11990.18 11190.53 20393.71 22079.85 22795.77 8297.59 389.31 5886.27 20394.67 15581.93 10897.01 24984.26 17988.09 25194.71 220
TAMVS89.21 15288.29 16291.96 14193.71 22082.62 15193.30 22894.19 24782.22 24387.78 16993.94 18378.83 13896.95 25277.70 27792.98 17596.32 153
ET-MVSNet_ETH3D87.51 20685.91 23692.32 12793.70 22283.93 10192.33 26390.94 33484.16 19772.09 37592.52 23169.90 25195.85 30989.20 11888.36 24797.17 113
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22384.26 9595.83 7996.14 12689.00 7292.43 9197.50 2883.37 7898.72 9696.61 1297.44 8596.32 153
CDS-MVSNet89.45 14488.51 15392.29 13093.62 22483.61 11393.01 24194.68 23281.95 25087.82 16893.24 20878.69 14196.99 25080.34 24893.23 17196.28 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet (Re)89.80 13489.07 13892.01 13593.60 22584.52 8594.78 13897.47 1189.26 6086.44 19992.32 23782.10 10097.39 22284.81 17280.84 33294.12 249
VPNet88.20 18187.47 18090.39 21393.56 22679.46 23494.04 19195.54 17788.67 8186.96 18294.58 16269.33 26097.15 23884.05 18280.53 33794.56 227
thisisatest051587.33 21485.99 23191.37 17193.49 22779.55 23290.63 30589.56 36180.17 28287.56 17390.86 28767.07 28498.28 14181.50 22993.02 17496.29 155
mvs_anonymous89.37 15089.32 13389.51 25493.47 22874.22 32391.65 28394.83 22382.91 23185.45 22693.79 19181.23 11596.36 28886.47 15394.09 15197.94 77
CANet_DTU90.26 12089.41 13092.81 10193.46 22983.01 13593.48 21794.47 23689.43 5487.76 17094.23 17370.54 24699.03 5884.97 16896.39 10996.38 152
testing380.46 32679.59 32483.06 35593.44 23064.64 38493.33 22385.47 37984.34 19679.93 32890.84 28944.35 38992.39 36657.06 38787.56 25992.16 329
UniMVSNet_NR-MVSNet89.92 13189.29 13491.81 15493.39 23183.72 10694.43 16397.12 4189.80 4386.46 19693.32 20383.16 7997.23 23484.92 16981.02 32894.49 235
Effi-MVS+-dtu88.65 16988.35 15889.54 25193.33 23276.39 29994.47 16094.36 24187.70 11385.43 22989.56 32173.45 20997.26 23185.57 16491.28 19594.97 206
WR-MVS88.38 17587.67 17590.52 20593.30 23380.18 21093.26 23195.96 14388.57 8585.47 22592.81 22376.12 16696.91 25581.24 23282.29 30894.47 238
WR-MVS_H87.80 19187.37 18289.10 26393.23 23478.12 26695.61 9397.30 2987.90 10683.72 27492.01 25379.65 13296.01 30276.36 29080.54 33693.16 297
test_040281.30 32079.17 33087.67 29793.19 23578.17 26592.98 24291.71 31175.25 34176.02 35890.31 30159.23 34596.37 28650.22 39283.63 29388.47 377
OPM-MVS90.12 12289.56 12591.82 15293.14 23683.90 10294.16 18095.74 16088.96 7387.86 16595.43 11972.48 22297.91 17588.10 13290.18 21293.65 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CP-MVSNet87.63 19987.26 18788.74 27493.12 23776.59 29695.29 10696.58 9188.43 8883.49 28292.98 21775.28 18095.83 31078.97 26581.15 32493.79 267
iter_conf0590.51 11690.46 10590.67 19893.09 23880.06 21794.62 15094.98 21086.30 14788.54 15594.80 14981.89 11097.59 19490.45 11089.49 22694.36 241
diffmvspermissive91.37 9791.23 9391.77 15693.09 23880.27 20892.36 26095.52 17987.03 12691.40 11794.93 13880.08 12297.44 21092.13 7294.56 14397.61 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
nrg03091.08 10390.39 10693.17 7893.07 24086.91 2296.41 3996.26 11688.30 9288.37 15894.85 14682.19 9897.64 19191.09 9582.95 29994.96 209
UWE-MVS83.69 29783.09 29085.48 33693.06 24165.27 38290.92 30086.14 37579.90 28686.26 20490.72 29457.17 35495.81 31271.03 32992.62 18295.35 196
PAPM86.68 24185.39 25090.53 20393.05 24279.33 24289.79 32394.77 22878.82 30281.95 30193.24 20876.81 15997.30 22566.94 35593.16 17294.95 212
DU-MVS89.34 15188.50 15491.85 15193.04 24383.72 10694.47 16096.59 9089.50 5286.46 19693.29 20677.25 15697.23 23484.92 16981.02 32894.59 224
NR-MVSNet88.58 17387.47 18091.93 14393.04 24384.16 9794.77 13996.25 11889.05 6780.04 32693.29 20679.02 13797.05 24781.71 22780.05 34294.59 224
jason90.80 10590.10 11392.90 9793.04 24383.53 11493.08 23894.15 24980.22 28191.41 11694.91 13976.87 15897.93 17490.28 11196.90 9697.24 109
jason: jason.
PS-CasMVS87.32 21586.88 19388.63 27792.99 24676.33 30195.33 10196.61 8988.22 9683.30 28793.07 21573.03 21695.79 31478.36 26981.00 33093.75 274
test_vis1_n_192089.39 14989.84 12188.04 29192.97 24772.64 34094.71 14496.03 13986.18 15391.94 10396.56 7861.63 32495.74 31693.42 4195.11 13395.74 182
MVSTER88.84 16388.29 16290.51 20692.95 24880.44 20593.73 20895.01 20784.66 19287.15 17993.12 21372.79 21897.21 23687.86 13387.36 26393.87 262
RPSCF85.07 27584.27 27287.48 30392.91 24970.62 36291.69 28292.46 28976.20 33382.67 29395.22 12563.94 31197.29 22877.51 28085.80 27494.53 228
mvsmamba89.96 12889.50 12691.33 17392.90 25081.82 16796.68 3392.37 29189.03 6987.00 18194.85 14673.05 21497.65 18891.03 9788.63 23994.51 231
FMVSNet185.85 26084.11 27491.08 18392.81 25183.10 12795.14 11794.94 21181.64 26282.68 29291.64 26159.01 34796.34 28975.37 29983.78 28993.79 267
tfpnnormal84.72 28283.23 28889.20 26092.79 25280.05 21894.48 15795.81 15482.38 24081.08 31191.21 27569.01 26896.95 25261.69 37580.59 33590.58 360
OpenMVScopyleft83.78 1188.74 16787.29 18493.08 8492.70 25385.39 6996.57 3696.43 9978.74 30580.85 31396.07 9469.64 25699.01 6378.01 27596.65 10494.83 216
TranMVSNet+NR-MVSNet88.84 16387.95 16991.49 16592.68 25483.01 13594.92 12996.31 11089.88 4085.53 22093.85 19076.63 16496.96 25181.91 22079.87 34594.50 233
MVS87.44 20986.10 22791.44 16892.61 25583.62 11192.63 25295.66 16867.26 38481.47 30592.15 24377.95 15098.22 14579.71 25595.48 12292.47 318
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9392.49 25683.62 11196.02 6995.72 16386.78 13496.04 2298.19 182.30 9498.43 12996.38 1395.42 12696.86 135
CHOSEN 280x42085.15 27483.99 27788.65 27692.47 25778.40 25979.68 39692.76 28274.90 34681.41 30789.59 31969.85 25495.51 32379.92 25495.29 12992.03 330
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25884.80 7796.18 5296.82 6889.29 5995.68 2898.11 585.10 5698.99 7097.38 497.75 8197.86 83
UniMVSNet_ETH3D87.53 20586.37 21491.00 18992.44 25978.96 24894.74 14095.61 17284.07 20085.36 23694.52 16359.78 34297.34 22482.93 19687.88 25496.71 141
131487.51 20686.57 20890.34 21792.42 26079.74 22992.63 25295.35 19478.35 31180.14 32391.62 26574.05 19997.15 23881.05 23393.53 16194.12 249
cl2286.78 23685.98 23289.18 26192.34 26177.62 28290.84 30294.13 25181.33 26983.97 27090.15 30773.96 20196.60 27084.19 18082.94 30093.33 288
PEN-MVS86.80 23586.27 22088.40 28092.32 26275.71 30895.18 11496.38 10587.97 10382.82 29193.15 21173.39 21195.92 30576.15 29479.03 35293.59 279
tt080586.92 23285.74 24490.48 20892.22 26379.98 22395.63 9294.88 21983.83 20684.74 24792.80 22457.61 35297.67 18585.48 16584.42 28493.79 267
c3_l87.14 22686.50 21189.04 26592.20 26477.26 28691.22 29594.70 23182.01 24984.34 26190.43 29978.81 13996.61 26883.70 18881.09 32593.25 292
SCA86.32 25385.18 25689.73 24492.15 26576.60 29591.12 29691.69 31383.53 21485.50 22388.81 33166.79 28896.48 27876.65 28790.35 21096.12 163
XXY-MVS87.65 19686.85 19590.03 22892.14 26680.60 20293.76 20795.23 19782.94 23084.60 24994.02 17874.27 19395.49 32681.04 23483.68 29294.01 257
miper_ehance_all_eth87.22 22186.62 20689.02 26692.13 26777.40 28590.91 30194.81 22581.28 27084.32 26290.08 31079.26 13496.62 26583.81 18682.94 30093.04 302
IB-MVS80.51 1585.24 27383.26 28791.19 17792.13 26779.86 22691.75 27991.29 32583.28 22280.66 31688.49 33761.28 32898.46 12180.99 23779.46 34895.25 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 25284.98 26090.80 19692.10 26980.92 19390.24 31395.91 14773.10 36383.57 28088.39 33865.15 30497.46 20684.90 17191.43 19394.03 256
Fast-Effi-MVS+-dtu87.44 20986.72 19989.63 24992.04 27077.68 28194.03 19293.94 25585.81 16082.42 29491.32 27370.33 24897.06 24680.33 24990.23 21194.14 248
cl____86.52 24785.78 23988.75 27292.03 27176.46 29790.74 30394.30 24381.83 25783.34 28590.78 29275.74 17696.57 27181.74 22581.54 31993.22 294
DIV-MVS_self_test86.53 24685.78 23988.75 27292.02 27276.45 29890.74 30394.30 24381.83 25783.34 28590.82 29075.75 17496.57 27181.73 22681.52 32093.24 293
eth_miper_zixun_eth86.50 24885.77 24188.68 27591.94 27375.81 30790.47 30794.89 21782.05 24684.05 26790.46 29875.96 16996.77 25982.76 20279.36 34993.46 286
Syy-MVS80.07 33079.78 31980.94 36291.92 27459.93 39389.75 32487.40 37381.72 25978.82 33787.20 35566.29 29691.29 37647.06 39487.84 25691.60 338
myMVS_eth3d79.67 33578.79 33482.32 36091.92 27464.08 38589.75 32487.40 37381.72 25978.82 33787.20 35545.33 38791.29 37659.09 38387.84 25691.60 338
PS-MVSNAJss89.97 12789.62 12391.02 18791.90 27680.85 19595.26 10995.98 14086.26 15086.21 20594.29 16979.70 12897.65 18888.87 12388.10 24994.57 226
ITE_SJBPF88.24 28691.88 27777.05 28992.92 27785.54 16980.13 32493.30 20557.29 35396.20 29472.46 31984.71 28291.49 341
EI-MVSNet89.10 15488.86 14689.80 24191.84 27878.30 26293.70 21195.01 20785.73 16387.15 17995.28 12279.87 12597.21 23683.81 18687.36 26393.88 261
CVMVSNet84.69 28384.79 26684.37 34791.84 27864.92 38393.70 21191.47 32166.19 38686.16 20795.28 12267.18 28393.33 35780.89 23990.42 20994.88 214
dmvs_re84.20 28883.22 28987.14 31491.83 28077.81 27590.04 31990.19 34684.70 19181.49 30489.17 32564.37 30991.13 37871.58 32285.65 27692.46 319
MVS-HIRNet73.70 35272.20 35578.18 36991.81 28156.42 40182.94 38782.58 38855.24 39568.88 38366.48 39855.32 36295.13 33158.12 38488.42 24583.01 386
PatchmatchNetpermissive85.85 26084.70 26789.29 25891.76 28275.54 30988.49 34491.30 32481.63 26385.05 24188.70 33571.71 22796.24 29374.61 30889.05 23596.08 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TransMVSNet (Re)84.43 28583.06 29288.54 27891.72 28378.44 25795.18 11492.82 28182.73 23579.67 33192.12 24573.49 20895.96 30471.10 32868.73 38391.21 347
IterMVS-SCA-FT85.45 26584.53 27188.18 28891.71 28476.87 29190.19 31692.65 28785.40 17281.44 30690.54 29666.79 28895.00 33581.04 23481.05 32692.66 313
TinyColmap79.76 33477.69 33785.97 33091.71 28473.12 33289.55 32690.36 34475.03 34372.03 37690.19 30546.22 38696.19 29663.11 37181.03 32788.59 376
MDTV_nov1_ep1383.56 28391.69 28669.93 36687.75 35491.54 31878.60 30784.86 24488.90 33069.54 25796.03 30070.25 33288.93 236
miper_enhance_ethall86.90 23386.18 22289.06 26491.66 28777.58 28390.22 31594.82 22479.16 29684.48 25389.10 32679.19 13696.66 26384.06 18182.94 30092.94 305
DTE-MVSNet86.11 25585.48 24887.98 29291.65 28874.92 31594.93 12895.75 15987.36 12082.26 29693.04 21672.85 21795.82 31174.04 31077.46 35893.20 295
MIMVSNet82.59 30480.53 30988.76 27191.51 28978.32 26186.57 36590.13 34879.32 29280.70 31588.69 33652.98 37293.07 36266.03 36088.86 23794.90 213
WB-MVSnew83.77 29583.28 28685.26 34191.48 29071.03 35791.89 27487.98 36778.91 29884.78 24590.22 30369.11 26794.02 34664.70 36690.44 20790.71 355
pm-mvs186.61 24285.54 24689.82 23891.44 29180.18 21095.28 10894.85 22183.84 20581.66 30392.62 22872.45 22496.48 27879.67 25678.06 35392.82 310
Baseline_NR-MVSNet87.07 22886.63 20588.40 28091.44 29177.87 27394.23 17892.57 28884.12 19985.74 21492.08 24977.25 15696.04 29982.29 21079.94 34391.30 345
IterMVS84.88 27883.98 27887.60 29891.44 29176.03 30390.18 31792.41 29083.24 22381.06 31290.42 30066.60 29194.28 34379.46 25880.98 33192.48 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch85.05 27684.16 27387.73 29691.42 29478.51 25591.25 29393.53 26777.50 31980.15 32291.58 26761.99 32295.51 32375.69 29694.35 14989.16 371
tpm284.08 28982.94 29387.48 30391.39 29571.27 35389.23 33490.37 34371.95 37284.64 24889.33 32367.30 28096.55 27575.17 30187.09 26794.63 221
v887.50 20886.71 20089.89 23591.37 29679.40 23694.50 15695.38 19084.81 18783.60 27991.33 27176.05 16797.42 21282.84 19980.51 33992.84 309
ADS-MVSNet281.66 31379.71 32287.50 30191.35 29774.19 32483.33 38488.48 36572.90 36582.24 29785.77 36764.98 30593.20 36064.57 36783.74 29095.12 202
ADS-MVSNet81.56 31579.78 31986.90 31991.35 29771.82 34883.33 38489.16 36372.90 36582.24 29785.77 36764.98 30593.76 35164.57 36783.74 29095.12 202
GA-MVS86.61 24285.27 25590.66 19991.33 29978.71 25090.40 30893.81 26385.34 17385.12 23989.57 32061.25 32997.11 24280.99 23789.59 22596.15 160
miper_lstm_enhance85.27 27284.59 27087.31 30591.28 30074.63 31887.69 35594.09 25381.20 27481.36 30889.85 31674.97 18594.30 34281.03 23679.84 34693.01 303
XVG-ACMP-BASELINE86.00 25684.84 26589.45 25591.20 30178.00 26891.70 28195.55 17585.05 18182.97 28992.25 24154.49 36697.48 20382.93 19687.45 26292.89 307
v1087.25 21886.38 21389.85 23691.19 30279.50 23394.48 15795.45 18483.79 20783.62 27891.19 27675.13 18197.42 21281.94 21980.60 33492.63 314
FMVSNet581.52 31679.60 32387.27 30691.17 30377.95 26991.49 28692.26 29776.87 32576.16 35587.91 34751.67 37492.34 36767.74 35081.16 32291.52 340
USDC82.76 30181.26 30687.26 30791.17 30374.55 31989.27 33293.39 27078.26 31475.30 36192.08 24954.43 36796.63 26471.64 32185.79 27590.61 357
CostFormer85.77 26284.94 26288.26 28591.16 30572.58 34389.47 33091.04 33176.26 33286.45 19889.97 31370.74 24096.86 25882.35 20887.07 26895.34 197
test_cas_vis1_n_192088.83 16688.85 14788.78 27091.15 30676.72 29393.85 20494.93 21583.23 22492.81 7896.00 9661.17 33394.45 33791.67 8894.84 13595.17 201
baseline286.50 24885.39 25089.84 23791.12 30776.70 29491.88 27588.58 36482.35 24279.95 32790.95 28673.42 21097.63 19280.27 25089.95 21695.19 200
tpm cat181.96 30780.27 31387.01 31591.09 30871.02 35887.38 35991.53 31966.25 38580.17 32186.35 36368.22 27796.15 29769.16 34082.29 30893.86 264
tpmvs83.35 30082.07 29987.20 31291.07 30971.00 35988.31 34791.70 31278.91 29880.49 31987.18 35769.30 26397.08 24368.12 34983.56 29493.51 284
v114487.61 20286.79 19890.06 22791.01 31079.34 23993.95 19895.42 18983.36 22085.66 21691.31 27474.98 18497.42 21283.37 19082.06 31093.42 287
v2v48287.84 18987.06 18990.17 22090.99 31179.23 24694.00 19695.13 20184.87 18485.53 22092.07 25174.45 19197.45 20784.71 17481.75 31693.85 265
SixPastTwentyTwo83.91 29382.90 29586.92 31890.99 31170.67 36193.48 21791.99 30585.54 16977.62 34792.11 24760.59 33696.87 25776.05 29577.75 35593.20 295
test-LLR85.87 25985.41 24987.25 30890.95 31371.67 35189.55 32689.88 35683.41 21784.54 25187.95 34567.25 28195.11 33281.82 22293.37 16894.97 206
test-mter84.54 28483.64 28287.25 30890.95 31371.67 35189.55 32689.88 35679.17 29584.54 25187.95 34555.56 35995.11 33281.82 22293.37 16894.97 206
v14887.04 22986.32 21789.21 25990.94 31577.26 28693.71 21094.43 23784.84 18684.36 26090.80 29176.04 16897.05 24782.12 21379.60 34793.31 289
mvs_tets88.06 18687.28 18590.38 21590.94 31579.88 22595.22 11195.66 16885.10 17984.21 26693.94 18363.53 31397.40 21988.50 12688.40 24693.87 262
MVP-Stereo85.97 25784.86 26489.32 25790.92 31782.19 16092.11 27194.19 24778.76 30478.77 34091.63 26468.38 27696.56 27375.01 30493.95 15389.20 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test81.37 31879.30 32687.58 29990.92 31774.16 32580.99 39187.68 37170.52 37876.63 35388.81 33171.21 23292.76 36460.01 38186.93 26995.83 178
jajsoiax88.24 18087.50 17890.48 20890.89 31980.14 21295.31 10295.65 17084.97 18284.24 26594.02 17865.31 30397.42 21288.56 12588.52 24293.89 259
tpmrst85.35 26984.99 25986.43 32690.88 32067.88 37388.71 34191.43 32280.13 28386.08 20888.80 33373.05 21496.02 30182.48 20483.40 29895.40 193
gg-mvs-nofinetune81.77 31079.37 32588.99 26790.85 32177.73 28086.29 36679.63 39574.88 34783.19 28869.05 39760.34 33796.11 29875.46 29894.64 14193.11 299
D2MVS85.90 25885.09 25888.35 28290.79 32277.42 28491.83 27795.70 16480.77 27880.08 32590.02 31166.74 29096.37 28681.88 22187.97 25391.26 346
OurMVSNet-221017-085.35 26984.64 26987.49 30290.77 32372.59 34294.01 19494.40 23984.72 19079.62 33393.17 21061.91 32396.72 26081.99 21881.16 32293.16 297
v119287.25 21886.33 21690.00 23290.76 32479.04 24793.80 20595.48 18082.57 23785.48 22491.18 27873.38 21297.42 21282.30 20982.06 31093.53 281
test_djsdf89.03 15988.64 14990.21 21990.74 32579.28 24395.96 7395.90 14884.66 19285.33 23792.94 21874.02 20097.30 22589.64 11488.53 24194.05 255
v7n86.81 23485.76 24289.95 23390.72 32679.25 24595.07 12095.92 14584.45 19582.29 29590.86 28772.60 22197.53 19979.42 26280.52 33893.08 301
PVSNet_073.20 2077.22 34674.83 35284.37 34790.70 32771.10 35683.09 38689.67 35972.81 36773.93 36983.13 37860.79 33593.70 35368.54 34350.84 39988.30 378
v14419287.19 22486.35 21589.74 24290.64 32878.24 26493.92 20195.43 18781.93 25185.51 22291.05 28474.21 19697.45 20782.86 19881.56 31893.53 281
test_fmvs187.34 21387.56 17786.68 32490.59 32971.80 34994.01 19494.04 25478.30 31291.97 10095.22 12556.28 35793.71 35292.89 4994.71 13794.52 229
V4287.68 19486.86 19490.15 22290.58 33080.14 21294.24 17795.28 19583.66 20985.67 21591.33 27174.73 18897.41 21784.43 17881.83 31492.89 307
CR-MVSNet85.35 26983.76 28090.12 22490.58 33079.34 23985.24 37491.96 30878.27 31385.55 21887.87 34871.03 23595.61 31973.96 31289.36 22995.40 193
RPMNet83.95 29281.53 30391.21 17690.58 33079.34 23985.24 37496.76 7571.44 37485.55 21882.97 38170.87 23898.91 8061.01 37789.36 22995.40 193
v192192086.97 23186.06 22989.69 24690.53 33378.11 26793.80 20595.43 18781.90 25385.33 23791.05 28472.66 21997.41 21782.05 21781.80 31593.53 281
v124086.78 23685.85 23789.56 25090.45 33477.79 27793.61 21395.37 19281.65 26185.43 22991.15 28071.50 23097.43 21181.47 23082.05 31293.47 285
tpm84.73 28184.02 27686.87 32190.33 33568.90 36989.06 33789.94 35380.85 27785.75 21389.86 31568.54 27495.97 30377.76 27684.05 28895.75 181
EG-PatchMatch MVS82.37 30680.34 31288.46 27990.27 33679.35 23892.80 24994.33 24277.14 32473.26 37290.18 30647.47 38496.72 26070.25 33287.32 26589.30 368
EPNet_dtu86.49 25085.94 23588.14 28990.24 33772.82 33594.11 18392.20 29886.66 13879.42 33492.36 23673.52 20795.81 31271.26 32393.66 15795.80 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS83.90 29482.70 29887.51 30090.23 33872.67 33888.62 34381.96 39081.37 26885.01 24288.34 33966.31 29594.45 33775.30 30087.12 26695.43 192
EPNet91.79 8891.02 9894.10 5490.10 33985.25 7196.03 6892.05 30292.83 387.39 17895.78 10779.39 13399.01 6388.13 13097.48 8498.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT82.68 30381.27 30586.89 32090.09 34070.94 36084.06 38190.15 34774.91 34585.63 21783.57 37669.37 25994.87 33665.19 36288.50 24394.84 215
Patchmtry82.71 30280.93 30888.06 29090.05 34176.37 30084.74 37991.96 30872.28 37181.32 30987.87 34871.03 23595.50 32568.97 34180.15 34192.32 325
pmmvs485.43 26683.86 27990.16 22190.02 34282.97 13790.27 30992.67 28675.93 33580.73 31491.74 26071.05 23495.73 31778.85 26683.46 29691.78 334
TESTMET0.1,183.74 29682.85 29686.42 32789.96 34371.21 35589.55 32687.88 36877.41 32083.37 28487.31 35356.71 35593.65 35480.62 24492.85 17994.40 239
dp81.47 31780.23 31485.17 34289.92 34465.49 38086.74 36390.10 34976.30 33181.10 31087.12 35862.81 31895.92 30568.13 34879.88 34494.09 252
K. test v381.59 31480.15 31685.91 33389.89 34569.42 36892.57 25487.71 37085.56 16873.44 37189.71 31855.58 35895.52 32277.17 28369.76 37792.78 311
MDA-MVSNet-bldmvs78.85 34076.31 34586.46 32589.76 34673.88 32688.79 34090.42 34279.16 29659.18 39388.33 34060.20 33894.04 34562.00 37468.96 38191.48 342
test_fmvs1_n87.03 23087.04 19186.97 31689.74 34771.86 34794.55 15494.43 23778.47 30891.95 10295.50 11651.16 37693.81 35093.02 4894.56 14395.26 198
GG-mvs-BLEND87.94 29489.73 34877.91 27087.80 35178.23 39980.58 31783.86 37459.88 34195.33 32971.20 32492.22 18890.60 359
EGC-MVSNET61.97 36356.37 36878.77 36789.63 34973.50 32989.12 33682.79 3870.21 4131.24 41484.80 37139.48 39290.04 38344.13 39675.94 36672.79 395
gm-plane-assit89.60 35068.00 37177.28 32388.99 32897.57 19679.44 260
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35184.42 9396.06 6596.29 11189.06 6694.68 3698.13 379.22 13598.98 7497.22 597.24 8897.74 90
anonymousdsp87.84 18987.09 18890.12 22489.13 35280.54 20394.67 14695.55 17582.05 24683.82 27292.12 24571.47 23197.15 23887.15 14487.80 25892.67 312
N_pmnet68.89 35768.44 35970.23 37789.07 35328.79 41688.06 34819.50 41669.47 38071.86 37784.93 37061.24 33091.75 37354.70 38977.15 35990.15 361
pmmvs584.21 28782.84 29788.34 28388.95 35476.94 29092.41 25791.91 31075.63 33780.28 32091.18 27864.59 30795.57 32077.09 28583.47 29592.53 316
PMMVS85.71 26384.96 26187.95 29388.90 35577.09 28888.68 34290.06 35072.32 37086.47 19590.76 29372.15 22594.40 33981.78 22493.49 16392.36 323
JIA-IIPM81.04 32178.98 33387.25 30888.64 35673.48 33081.75 39089.61 36073.19 36282.05 29973.71 39366.07 30095.87 30871.18 32684.60 28392.41 321
test_vis1_n86.56 24586.49 21286.78 32388.51 35772.69 33794.68 14593.78 26479.55 29190.70 12395.31 12148.75 38193.28 35893.15 4593.99 15294.38 240
Gipumacopyleft57.99 36954.91 37167.24 38388.51 35765.59 37952.21 40490.33 34543.58 40142.84 40451.18 40520.29 40785.07 39534.77 40270.45 37551.05 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet81.32 31980.95 30782.42 35988.50 35963.67 38793.32 22491.33 32364.02 38980.57 31892.83 22161.21 33192.27 36876.34 29180.38 34091.32 344
our_test_381.93 30880.46 31186.33 32888.46 36073.48 33088.46 34591.11 32776.46 32776.69 35288.25 34166.89 28694.36 34068.75 34279.08 35191.14 349
ppachtmachnet_test81.84 30980.07 31787.15 31388.46 36074.43 32289.04 33892.16 29975.33 34077.75 34588.99 32866.20 29795.37 32865.12 36477.60 35691.65 336
lessismore_v086.04 32988.46 36068.78 37080.59 39373.01 37390.11 30955.39 36096.43 28375.06 30365.06 38792.90 306
test0.0.03 182.41 30581.69 30184.59 34588.23 36372.89 33490.24 31387.83 36983.41 21779.86 32989.78 31767.25 28188.99 38865.18 36383.42 29791.90 333
MDA-MVSNet_test_wron79.21 33977.19 34185.29 33988.22 36472.77 33685.87 36890.06 35074.34 35062.62 39087.56 35166.14 29891.99 37166.90 35873.01 36991.10 352
YYNet179.22 33877.20 34085.28 34088.20 36572.66 33985.87 36890.05 35274.33 35162.70 38887.61 35066.09 29992.03 36966.94 35572.97 37091.15 348
pmmvs683.42 29881.60 30288.87 26988.01 36677.87 27394.96 12694.24 24674.67 34878.80 33991.09 28360.17 33996.49 27777.06 28675.40 36792.23 327
testgi80.94 32480.20 31583.18 35387.96 36766.29 37791.28 29190.70 34083.70 20878.12 34292.84 22051.37 37590.82 38063.34 37082.46 30692.43 320
mvsany_test185.42 26785.30 25485.77 33487.95 36875.41 31187.61 35880.97 39276.82 32688.68 15195.83 10477.44 15590.82 38085.90 15986.51 27091.08 353
Anonymous2023120681.03 32279.77 32184.82 34487.85 36970.26 36491.42 28792.08 30173.67 35777.75 34589.25 32462.43 32093.08 36161.50 37682.00 31391.12 350
dmvs_testset74.57 35175.81 35070.86 37687.72 37040.47 41187.05 36277.90 40182.75 23471.15 38085.47 36967.98 27884.12 39845.26 39576.98 36288.00 379
test_fmvs283.98 29084.03 27583.83 35287.16 37167.53 37693.93 20092.89 27877.62 31886.89 18893.53 19847.18 38592.02 37090.54 10686.51 27091.93 332
OpenMVS_ROBcopyleft74.94 1979.51 33677.03 34386.93 31787.00 37276.23 30292.33 26390.74 33968.93 38174.52 36688.23 34249.58 37996.62 26557.64 38584.29 28587.94 380
LF4IMVS80.37 32879.07 33284.27 34986.64 37369.87 36789.39 33191.05 33076.38 32974.97 36390.00 31247.85 38394.25 34474.55 30980.82 33388.69 375
MIMVSNet179.38 33777.28 33985.69 33586.35 37473.67 32791.61 28492.75 28378.11 31772.64 37488.12 34348.16 38291.97 37260.32 37877.49 35791.43 343
KD-MVS_2432*160078.50 34176.02 34885.93 33186.22 37574.47 32084.80 37792.33 29279.29 29376.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
miper_refine_blended78.50 34176.02 34885.93 33186.22 37574.47 32084.80 37792.33 29279.29 29376.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
CL-MVSNet_self_test81.74 31180.53 30985.36 33885.96 37772.45 34490.25 31193.07 27581.24 27279.85 33087.29 35470.93 23792.52 36566.95 35469.23 37991.11 351
test_vis1_rt77.96 34476.46 34482.48 35885.89 37871.74 35090.25 31178.89 39671.03 37771.30 37981.35 38542.49 39191.05 37984.55 17682.37 30784.65 383
test20.0379.95 33279.08 33182.55 35785.79 37967.74 37491.09 29791.08 32881.23 27374.48 36789.96 31461.63 32490.15 38260.08 37976.38 36389.76 363
Anonymous2024052180.44 32779.21 32884.11 35085.75 38067.89 37292.86 24793.23 27275.61 33875.59 36087.47 35250.03 37794.33 34171.14 32781.21 32190.12 362
KD-MVS_self_test80.20 32979.24 32783.07 35485.64 38165.29 38191.01 29993.93 25678.71 30676.32 35486.40 36259.20 34692.93 36372.59 31869.35 37891.00 354
Patchmatch-RL test81.67 31279.96 31886.81 32285.42 38271.23 35482.17 38987.50 37278.47 30877.19 34982.50 38370.81 23993.48 35582.66 20372.89 37195.71 185
UnsupCasMVSNet_eth80.07 33078.27 33685.46 33785.24 38372.63 34188.45 34694.87 22082.99 22971.64 37888.07 34456.34 35691.75 37373.48 31563.36 39092.01 331
pmmvs-eth3d80.97 32378.72 33587.74 29584.99 38479.97 22490.11 31891.65 31475.36 33973.51 37086.03 36459.45 34393.96 34975.17 30172.21 37289.29 369
CMPMVSbinary59.16 2180.52 32579.20 32984.48 34683.98 38567.63 37589.95 32293.84 26264.79 38866.81 38691.14 28157.93 35195.17 33076.25 29288.10 24990.65 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld76.23 34973.27 35385.09 34383.79 38672.92 33385.65 37193.47 26971.52 37368.84 38479.08 38849.77 37893.21 35966.81 35960.52 39289.13 373
PM-MVS78.11 34376.12 34784.09 35183.54 38770.08 36588.97 33985.27 38179.93 28574.73 36586.43 36134.70 39793.48 35579.43 26172.06 37388.72 374
dongtai58.82 36858.24 36660.56 38583.13 38845.09 40982.32 38848.22 41567.61 38361.70 39269.15 39638.75 39376.05 40432.01 40341.31 40360.55 400
DSMNet-mixed76.94 34776.29 34678.89 36683.10 38956.11 40287.78 35279.77 39460.65 39275.64 35988.71 33461.56 32688.34 38960.07 38089.29 23192.21 328
new_pmnet72.15 35370.13 35778.20 36882.95 39065.68 37883.91 38282.40 38962.94 39164.47 38779.82 38742.85 39086.26 39457.41 38674.44 36882.65 388
new-patchmatchnet76.41 34875.17 35180.13 36382.65 39159.61 39487.66 35691.08 32878.23 31569.85 38283.22 37754.76 36491.63 37564.14 36964.89 38889.16 371
WB-MVS67.92 35867.49 36069.21 38081.09 39241.17 41088.03 34978.00 40073.50 35962.63 38983.11 38063.94 31186.52 39225.66 40651.45 39879.94 391
SSC-MVS67.06 35966.56 36168.56 38280.54 39340.06 41287.77 35377.37 40372.38 36961.75 39182.66 38263.37 31486.45 39324.48 40748.69 40179.16 393
APD_test169.04 35666.26 36277.36 37180.51 39462.79 39085.46 37383.51 38654.11 39759.14 39484.79 37223.40 40489.61 38455.22 38870.24 37679.68 392
ambc83.06 35579.99 39563.51 38877.47 39792.86 27974.34 36884.45 37328.74 39895.06 33473.06 31768.89 38290.61 357
test_fmvs377.67 34577.16 34279.22 36579.52 39661.14 39192.34 26291.64 31573.98 35478.86 33686.59 35927.38 40187.03 39088.12 13175.97 36589.50 365
TDRefinement79.81 33377.34 33887.22 31179.24 39775.48 31093.12 23592.03 30376.45 32875.01 36291.58 26749.19 38096.44 28270.22 33469.18 38089.75 364
kuosan53.51 37053.30 37354.13 38976.06 39845.36 40880.11 39548.36 41459.63 39354.84 39563.43 40237.41 39462.07 40920.73 40939.10 40454.96 403
pmmvs371.81 35568.71 35881.11 36175.86 39970.42 36386.74 36383.66 38558.95 39468.64 38580.89 38636.93 39589.52 38563.10 37263.59 38983.39 384
mvsany_test374.95 35073.26 35480.02 36474.61 40063.16 38985.53 37278.42 39774.16 35274.89 36486.46 36036.02 39689.09 38782.39 20766.91 38487.82 381
DeepMVS_CXcopyleft56.31 38874.23 40151.81 40456.67 41244.85 40048.54 40075.16 39127.87 40058.74 41040.92 40052.22 39758.39 402
test_f71.95 35470.87 35675.21 37274.21 40259.37 39585.07 37685.82 37765.25 38770.42 38183.13 37823.62 40282.93 40078.32 27071.94 37483.33 385
test_vis3_rt65.12 36162.60 36372.69 37471.44 40360.71 39287.17 36065.55 40763.80 39053.22 39765.65 40014.54 41189.44 38676.65 28765.38 38667.91 398
FPMVS64.63 36262.55 36470.88 37570.80 40456.71 39784.42 38084.42 38351.78 39849.57 39881.61 38423.49 40381.48 40140.61 40176.25 36474.46 394
testf159.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
APD_test259.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
PMMVS259.60 36456.40 36769.21 38068.83 40746.58 40673.02 40177.48 40255.07 39649.21 39972.95 39517.43 40980.04 40249.32 39344.33 40280.99 390
wuyk23d21.27 37820.48 38123.63 39368.59 40836.41 41449.57 4056.85 4179.37 4097.89 4114.46 4134.03 41631.37 41117.47 41116.07 4103.12 408
E-PMN43.23 37442.29 37646.03 39065.58 40937.41 41373.51 39964.62 40833.99 40528.47 40947.87 40619.90 40867.91 40622.23 40824.45 40632.77 405
LCM-MVSNet66.00 36062.16 36577.51 37064.51 41058.29 39683.87 38390.90 33548.17 39954.69 39673.31 39416.83 41086.75 39165.47 36161.67 39187.48 382
EMVS42.07 37541.12 37744.92 39163.45 41135.56 41573.65 39863.48 40933.05 40626.88 41045.45 40721.27 40667.14 40719.80 41023.02 40832.06 406
MVEpermissive39.65 2343.39 37338.59 37957.77 38656.52 41248.77 40555.38 40358.64 41129.33 40728.96 40852.65 4044.68 41564.62 40828.11 40533.07 40559.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high58.88 36754.22 37272.86 37356.50 41356.67 39880.75 39286.00 37673.09 36437.39 40564.63 40122.17 40579.49 40343.51 39723.96 40782.43 389
test_method50.52 37248.47 37456.66 38752.26 41418.98 41841.51 40681.40 39110.10 40844.59 40375.01 39228.51 39968.16 40553.54 39049.31 40082.83 387
PMVScopyleft47.18 2252.22 37148.46 37563.48 38445.72 41546.20 40773.41 40078.31 39841.03 40430.06 40765.68 3996.05 41483.43 39930.04 40465.86 38560.80 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt35.64 37639.24 37824.84 39214.87 41623.90 41762.71 40251.51 4136.58 41036.66 40662.08 40344.37 38830.34 41252.40 39122.00 40920.27 407
testmvs8.92 37911.52 3821.12 3951.06 4170.46 42086.02 3670.65 4180.62 4112.74 4129.52 4110.31 4180.45 4142.38 4120.39 4112.46 410
test1238.76 38011.22 3831.39 3940.85 4180.97 41985.76 3700.35 4190.54 4122.45 4138.14 4120.60 4170.48 4132.16 4130.17 4122.71 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k22.14 37729.52 3800.00 3960.00 4190.00 4210.00 40795.76 1580.00 4140.00 41594.29 16975.66 1770.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.64 3828.86 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41479.70 1280.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.82 38110.43 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41593.88 1880.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS64.08 38559.14 382
PC_three_145282.47 23897.09 1097.07 5192.72 198.04 16592.70 5599.02 1298.86 11
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
GSMVS96.12 163
sam_mvs171.70 22896.12 163
sam_mvs70.60 241
MTGPAbinary96.97 50
test_post188.00 3509.81 41069.31 26295.53 32176.65 287
test_post10.29 40970.57 24595.91 307
patchmatchnet-post83.76 37571.53 22996.48 278
MTMP96.16 5360.64 410
test9_res91.91 8398.71 3398.07 68
agg_prior290.54 10698.68 3998.27 52
test_prior485.96 5494.11 183
test_prior294.12 18287.67 11592.63 8596.39 8286.62 3891.50 9198.67 41
旧先验293.36 22271.25 37594.37 3997.13 24186.74 149
新几何293.11 237
无先验93.28 23096.26 11673.95 35599.05 5580.56 24596.59 145
原ACMM292.94 244
testdata298.75 9378.30 271
segment_acmp87.16 36
testdata192.15 26987.94 104
plane_prior596.22 12198.12 15088.15 12889.99 21394.63 221
plane_prior494.86 144
plane_prior382.75 14290.26 3386.91 185
plane_prior295.85 7790.81 17
plane_prior82.73 14595.21 11289.66 5089.88 218
n20.00 420
nn0.00 420
door-mid85.49 378
test1196.57 92
door85.33 380
HQP5-MVS81.56 171
BP-MVS87.11 146
HQP4-MVS85.43 22997.96 17194.51 231
HQP3-MVS96.04 13789.77 222
HQP2-MVS73.83 204
MDTV_nov1_ep13_2view55.91 40387.62 35773.32 36184.59 25070.33 24874.65 30795.50 190
ACMMP++_ref87.47 260
ACMMP++88.01 252
Test By Simon80.02 123