This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9196.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15798.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8694.63 15098.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7899.03 5699.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9494.10 16597.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10799.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
IU-MVS99.71 2099.23 698.64 13695.28 11799.63 498.35 2499.81 1099.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 25992.30 27999.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35295.90 4099.89 3597.85 4499.74 4199.78 13
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21797.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 9999.12 4198.81 7692.34 24398.09 8499.08 7693.01 10699.92 2196.06 12999.77 2699.75 28
test_part299.63 2999.18 899.27 17
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
abl_698.30 5398.03 5199.13 5499.56 3497.76 7499.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12699.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17798.89 4692.62 23298.05 8698.94 9695.34 5999.65 12396.04 13099.42 9699.19 132
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8693.67 19499.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15499.23 2099.25 4395.54 4999.80 7996.52 11499.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7798.85 9098.90 4484.80 33297.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12898.63 13798.60 13995.18 12297.06 13998.06 18194.26 9399.57 13493.80 20398.87 12199.52 85
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10498.91 4599.17 5695.48 5099.93 1595.80 13999.53 8599.76 26
9.1498.06 4999.47 4898.71 12298.82 7094.36 15999.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 14999.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 22998.67 12892.57 23598.77 5198.85 10495.93 3899.72 10895.56 14999.69 5299.68 57
ZD-MVS99.46 5198.70 1998.79 9193.21 21198.67 5898.97 8795.70 4499.83 5596.07 12699.58 74
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19498.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
save fliter99.46 5198.38 3598.21 19498.71 11397.95 3
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12498.30 18598.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13298.28 18898.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19498.55 15198.62 13893.02 21896.17 17798.58 13294.01 9699.81 7093.95 19898.90 11799.14 140
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10098.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8698.40 17198.79 9197.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19798.81 7691.63 26598.44 7298.85 10493.98 9899.82 6394.11 19499.69 5299.64 70
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7398.37 17398.76 9897.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
新几何199.16 5099.34 6298.01 6298.69 11790.06 30098.13 8298.95 9594.60 8299.89 3591.97 25599.47 9099.59 80
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20198.68 12090.14 29998.01 9498.97 8794.80 7999.87 4493.36 21599.46 9399.61 75
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13898.70 12698.39 18489.45 30894.52 20499.35 2891.85 12899.85 4992.89 23198.88 11999.68 57
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31798.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26699.65 292.34 24397.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15498.28 18898.59 14195.52 10397.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
原ACMM198.65 8199.32 6896.62 11598.67 12893.27 21097.81 10798.97 8795.18 6899.83 5593.84 20199.46 9399.50 91
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
TEST999.31 7098.50 2997.92 22798.73 10792.63 23197.74 11198.68 12196.20 2399.80 79
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22798.73 10792.98 22097.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24198.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12397.91 22999.06 2293.72 18696.92 14698.06 18188.50 20099.65 12391.77 25999.00 11498.66 178
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24098.72 10993.16 21497.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21398.05 21799.71 193.57 19897.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
test_899.29 7898.44 3197.89 23398.72 10992.98 22097.70 11498.66 12496.20 2399.80 79
旧先验199.29 7897.48 8298.70 11699.09 7495.56 4799.47 9099.61 75
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13498.14 20898.76 9892.41 24196.39 17298.31 16294.92 7699.78 9594.06 19698.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20199.29 7893.24 25798.58 14398.11 23289.92 30293.57 24899.10 6986.37 24399.79 9190.78 27398.10 15397.09 223
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9897.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15598.63 13799.16 1794.48 15697.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10697.95 22699.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 10998.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
AllTest95.24 18694.65 19196.99 18499.25 8693.21 25898.59 14198.18 21891.36 27293.52 25098.77 11484.67 26899.72 10889.70 29197.87 15998.02 200
TestCases96.99 18499.25 8693.21 25898.18 21891.36 27293.52 25098.77 11484.67 26899.72 10889.70 29197.87 15998.02 200
PVSNet_BlendedMVS96.73 12296.60 11797.12 17899.25 8695.35 17698.26 19199.26 894.28 16097.94 10097.46 23192.74 10999.81 7096.88 9893.32 24696.20 309
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27799.26 893.13 21597.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10498.83 9498.75 10196.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9497.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
test22299.23 9397.17 9797.40 26498.66 13188.68 31498.05 8698.96 9394.14 9499.53 8599.61 75
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9498.11 21398.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8797.91 22999.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
testdata98.26 11199.20 9795.36 17498.68 12091.89 25798.60 6499.10 6994.44 9099.82 6394.27 18899.44 9599.58 82
PVSNet91.96 1896.35 13596.15 13296.96 18899.17 9892.05 27296.08 32198.68 12093.69 19097.75 11097.80 20688.86 19199.69 11994.26 18999.01 11399.15 138
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11498.01 22198.89 4694.44 15896.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20798.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
TAPA-MVS93.98 795.35 18094.56 19597.74 14399.13 10294.83 19998.33 17798.64 13686.62 32196.29 17498.61 12794.00 9799.29 16280.00 33699.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14797.75 24598.78 9496.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
Anonymous2023121194.10 25593.26 26496.61 21199.11 10494.28 22199.01 6098.88 4986.43 32392.81 27397.57 22581.66 29698.68 23194.83 16889.02 30096.88 242
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17798.68 12093.18 21298.68 5799.13 6494.62 8199.83 5596.45 11699.55 8399.52 85
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8598.07 21598.53 15695.32 11596.80 15398.53 13693.32 10399.72 10894.31 18799.31 10499.02 151
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28598.35 19094.85 14097.93 10298.58 13295.07 7299.71 11392.60 23599.34 10299.43 106
Anonymous2024052995.10 19494.22 21297.75 14299.01 10894.26 22398.87 8798.83 6885.79 32996.64 15798.97 8778.73 31399.85 4996.27 12194.89 21699.12 142
Anonymous20240521195.28 18494.49 19897.67 15099.00 10993.75 23798.70 12697.04 30190.66 28996.49 16898.80 11078.13 31699.83 5596.21 12495.36 21599.44 105
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7597.75 24598.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24199.00 10989.54 30997.43 26398.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
thres100view90095.38 17694.70 18997.41 16498.98 11294.92 19598.87 8796.90 31095.38 11096.61 15996.88 28184.29 27399.56 13688.11 30596.29 19997.76 205
thres600view795.49 16894.77 18597.67 15098.98 11295.02 18798.85 9096.90 31095.38 11096.63 15896.90 28084.29 27399.59 13288.65 30496.33 19798.40 189
tfpn200view995.32 18394.62 19297.43 16398.94 11494.98 19198.68 12996.93 30895.33 11396.55 16396.53 29784.23 27699.56 13688.11 30596.29 19997.76 205
thres40095.38 17694.62 19297.65 15398.94 11494.98 19198.68 12996.93 30895.33 11396.55 16396.53 29784.23 27699.56 13688.11 30596.29 19998.40 189
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 30998.37 18791.32 27694.43 21198.73 11890.27 16399.60 13190.05 28498.82 12498.52 185
RPSCF94.87 20895.40 15493.26 31498.89 11782.06 34498.33 17798.06 24590.30 29696.56 16199.26 4287.09 22999.49 14593.82 20296.32 19898.24 195
VNet97.79 6997.40 8198.96 6798.88 11897.55 8098.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13298.84 9396.02 32393.40 20498.62 6299.20 5274.99 33299.63 12897.72 5297.20 17699.46 102
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8398.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10898.31 18398.71 11395.26 11897.67 11698.56 13592.21 11999.78 9595.89 13496.85 18199.48 96
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13099.19 3197.97 25195.39 10997.23 13198.99 8691.11 14798.93 20594.60 17598.59 13399.47 98
VDD-MVS95.82 15695.23 16697.61 15598.84 12393.98 22998.68 12997.40 28795.02 13297.95 9899.34 3174.37 33699.78 9598.64 396.80 18299.08 147
CHOSEN 280x42097.18 10697.18 8997.20 17298.81 12493.27 25595.78 32899.15 1895.25 11996.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
thres20095.25 18594.57 19497.28 16998.81 12494.92 19598.20 19797.11 29795.24 12196.54 16596.22 30984.58 27099.53 14287.93 30996.50 19397.39 216
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18398.77 12693.76 23597.79 24398.50 16695.45 10696.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 207
XVG-OURS96.55 12996.41 12396.99 18498.75 12793.76 23597.50 26098.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13596.26 20397.69 210
test_yl97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
CANet98.05 5697.76 6198.90 7198.73 12897.27 9098.35 17598.78 9497.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12895.46 17199.20 2998.30 20294.96 13596.60 16098.87 10390.05 16598.59 24093.67 20798.60 13299.46 102
PAPR96.84 11996.24 13098.65 8198.72 13296.92 10597.36 27098.57 14793.33 20696.67 15697.57 22594.30 9299.56 13691.05 27098.59 13399.47 98
canonicalmvs97.67 7497.23 8798.98 6598.70 13398.38 3599.34 1198.39 18496.76 5497.67 11697.40 23792.26 11699.49 14598.28 2796.28 20299.08 147
API-MVS97.41 9497.25 8697.91 13298.70 13396.80 10998.82 9798.69 11794.53 15298.11 8398.28 16494.50 8899.57 13494.12 19399.49 8897.37 218
MAR-MVS96.91 11696.40 12498.45 9798.69 13596.90 10698.66 13598.68 12092.40 24297.07 13897.96 18891.54 13799.75 10493.68 20598.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ97.73 7197.77 6097.62 15498.68 13695.58 16497.34 27298.51 16197.29 2898.66 6097.88 19594.51 8599.90 3397.87 4299.17 10997.39 216
alignmvs97.56 8497.07 9499.01 6298.66 13798.37 4198.83 9498.06 24596.74 5598.00 9697.65 21790.80 15399.48 14998.37 2396.56 19099.19 132
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13796.23 13599.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13299.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet97.46 8797.28 8597.99 12898.64 13995.38 17399.33 1398.31 19693.61 19797.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
ab-mvs96.42 13395.71 14698.55 8798.63 14096.75 11297.88 23498.74 10293.84 17996.54 16598.18 17485.34 25999.75 10495.93 13396.35 19699.15 138
PCF-MVS93.45 1194.68 21693.43 25998.42 10198.62 14196.77 11195.48 33098.20 21484.63 33393.34 25898.32 16188.55 19899.81 7084.80 32798.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v2_base97.66 7597.70 6397.56 15898.61 14295.46 17197.44 26198.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 214
sss97.39 9596.98 9998.61 8398.60 14396.61 11798.22 19398.93 3793.97 17398.01 9498.48 14191.98 12699.85 4996.45 11698.15 15199.39 108
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14495.94 15097.71 24798.07 24192.10 25294.79 19997.29 24291.75 13099.56 13694.17 19196.50 19399.58 82
1112_ss96.63 12496.00 13798.50 9398.56 14496.37 12998.18 20598.10 23492.92 22394.84 19598.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
BH-untuned95.95 14995.72 14396.65 20698.55 14692.26 26898.23 19297.79 26093.73 18594.62 20198.01 18588.97 18999.00 19693.04 22598.51 13798.68 175
LS3D97.16 10796.66 11698.68 7998.53 14797.19 9698.93 7598.90 4492.83 22895.99 18199.37 2292.12 12299.87 4493.67 20799.57 7598.97 156
CS-MVS97.81 6797.61 6598.41 10298.52 14897.15 9899.09 4698.55 15196.18 7697.61 12297.20 24994.59 8399.39 15597.62 6199.10 11198.70 172
baseline195.84 15495.12 17198.01 12798.49 14995.98 14298.73 11797.03 30295.37 11296.22 17598.19 17389.96 16799.16 17394.60 17587.48 31498.90 162
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15097.00 10198.14 20898.21 21293.95 17496.72 15597.99 18791.58 13399.76 10294.51 18096.54 19198.95 159
ETV-MVS97.96 5897.81 5998.40 10398.42 15197.27 9098.73 11798.55 15196.84 5198.38 7597.44 23495.39 5599.35 15897.62 6198.89 11898.58 184
tttt051796.07 14395.51 15397.78 13998.41 15294.84 19799.28 1694.33 34194.26 16297.64 12098.64 12684.05 28099.47 15095.34 15497.60 17099.03 150
EIA-MVS97.75 7097.58 6798.27 10998.38 15396.44 12699.01 6098.60 13995.88 8797.26 13097.53 22894.97 7499.33 16097.38 7699.20 10799.05 149
thisisatest053096.01 14695.36 15997.97 12998.38 15395.52 16998.88 8594.19 34394.04 16797.64 12098.31 16283.82 28799.46 15195.29 15897.70 16798.93 160
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
xiu_mvs_v1_base97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
baseline97.64 7697.44 7998.25 11298.35 15596.20 13699.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
BH-w/o95.38 17695.08 17396.26 24398.34 15991.79 27697.70 24897.43 28592.87 22694.24 22197.22 24788.66 19498.84 21791.55 26397.70 16798.16 197
MVS_Test97.28 10097.00 9798.13 12098.33 16095.97 14798.74 11398.07 24194.27 16198.44 7298.07 18092.48 11199.26 16396.43 11898.19 15099.16 137
casdiffmvs97.63 7797.41 8098.28 10898.33 16096.14 13998.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
diffmvs97.58 8297.40 8198.13 12098.32 16295.81 15998.06 21698.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
BH-RMVSNet95.92 15195.32 16397.69 14898.32 16294.64 20598.19 20197.45 28394.56 15196.03 17998.61 12785.02 26299.12 17990.68 27599.06 11299.30 120
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16495.97 14798.58 14398.25 21091.74 26095.29 18897.23 24691.03 15099.15 17692.90 22997.96 15698.97 156
UGNet96.78 12196.30 12798.19 11798.24 16595.89 15798.88 8598.93 3797.39 2396.81 15297.84 20082.60 29199.90 3396.53 11399.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSTER96.06 14495.72 14397.08 18198.23 16695.93 15398.73 11798.27 20594.86 13995.07 18998.09 17988.21 20498.54 24496.59 11193.46 24196.79 252
ET-MVSNet_ETH3D94.13 25292.98 26797.58 15698.22 16796.20 13697.31 27595.37 33094.53 15279.56 34097.63 22186.51 23897.53 32096.91 9290.74 27699.02 151
GBi-Net94.49 23193.80 24096.56 21898.21 16895.00 18898.82 9798.18 21892.46 23694.09 22897.07 26081.16 29797.95 30392.08 24992.14 25796.72 261
test194.49 23193.80 24096.56 21898.21 16895.00 18898.82 9798.18 21892.46 23694.09 22897.07 26081.16 29797.95 30392.08 24992.14 25796.72 261
FMVSNet294.47 23393.61 25297.04 18298.21 16896.43 12798.79 10898.27 20592.46 23693.50 25397.09 25781.16 29798.00 30191.09 26691.93 26196.70 265
Effi-MVS+97.12 10996.69 11398.39 10498.19 17196.72 11397.37 26898.43 17893.71 18797.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
mvs_anonymous96.70 12396.53 12197.18 17498.19 17193.78 23498.31 18398.19 21594.01 17094.47 20698.27 16792.08 12498.46 25197.39 7597.91 15799.31 117
LCM-MVSNet-Re95.22 18795.32 16394.91 28798.18 17387.85 33098.75 11095.66 32995.11 12788.96 31996.85 28490.26 16497.65 31595.65 14798.44 14199.22 128
FMVSNet394.97 20394.26 21197.11 17998.18 17396.62 11598.56 14998.26 20993.67 19494.09 22897.10 25384.25 27598.01 29992.08 24992.14 25796.70 265
CANet_DTU96.96 11496.55 11998.21 11498.17 17596.07 14197.98 22498.21 21297.24 3597.13 13498.93 9786.88 23499.91 3095.00 16599.37 10198.66 178
thisisatest051595.61 16794.89 18297.76 14198.15 17695.15 18396.77 31094.41 33992.95 22297.18 13397.43 23584.78 26799.45 15294.63 17297.73 16698.68 175
IterMVS-LS95.46 16995.21 16796.22 24498.12 17793.72 24098.32 18298.13 22993.71 18794.26 21997.31 24192.24 11798.10 29194.63 17290.12 28296.84 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet294.68 21694.19 21496.13 24898.11 17893.60 24296.94 29698.31 19692.43 24093.32 25996.87 28386.51 23898.28 28194.10 19591.16 27196.51 293
VDDNet95.36 17994.53 19697.86 13498.10 17995.13 18498.85 9097.75 26290.46 29298.36 7699.39 1473.27 33899.64 12597.98 3696.58 18998.81 166
MVSFormer97.57 8397.49 7597.84 13598.07 18095.76 16099.47 298.40 18294.98 13398.79 4998.83 10792.34 11398.41 26496.91 9299.59 7199.34 111
lupinMVS97.44 9197.22 8898.12 12298.07 18095.76 16097.68 25097.76 26194.50 15598.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
TAMVS97.02 11296.79 10697.70 14798.06 18295.31 17898.52 15398.31 19693.95 17497.05 14098.61 12793.49 10198.52 24695.33 15597.81 16199.29 122
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18395.98 14298.20 19798.33 19393.67 19496.95 14298.49 14093.54 10098.42 25795.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ADS-MVSNet294.58 22594.40 20795.11 28298.00 18488.74 32096.04 32297.30 29090.15 29796.47 16996.64 29487.89 21497.56 31990.08 28297.06 17799.02 151
ADS-MVSNet95.00 19994.45 20396.63 20998.00 18491.91 27496.04 32297.74 26390.15 29796.47 16996.64 29487.89 21498.96 20090.08 28297.06 17799.02 151
IterMVS94.09 25693.85 23894.80 29397.99 18690.35 30197.18 28398.12 23093.68 19292.46 28797.34 23884.05 28097.41 32292.51 24291.33 26796.62 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet_088.72 1991.28 29390.03 29895.00 28597.99 18687.29 33394.84 33598.50 16692.06 25389.86 31395.19 32479.81 30799.39 15592.27 24669.79 34698.33 193
IterMVS-SCA-FT94.11 25493.87 23694.85 29097.98 18890.56 29997.18 28398.11 23293.75 18292.58 28197.48 23083.97 28297.41 32292.48 24491.30 26896.58 278
EI-MVSNet95.96 14895.83 14196.36 23697.93 18993.70 24198.12 21198.27 20593.70 18995.07 18999.02 8092.23 11898.54 24494.68 17193.46 24196.84 248
CVMVSNet95.43 17296.04 13593.57 31097.93 18983.62 33998.12 21198.59 14195.68 9596.56 16199.02 8087.51 22297.51 32193.56 21197.44 17299.60 78
PMMVS96.60 12596.33 12697.41 16497.90 19193.93 23097.35 27198.41 18092.84 22797.76 10997.45 23391.10 14899.20 17096.26 12297.91 15799.11 143
Effi-MVS+-dtu96.29 13796.56 11895.51 26997.89 19290.22 30298.80 10498.10 23496.57 6296.45 17196.66 29190.81 15198.91 20795.72 14297.99 15597.40 215
mvs-test196.60 12596.68 11596.37 23597.89 19291.81 27598.56 14998.10 23496.57 6296.52 16797.94 19090.81 15199.45 15295.72 14298.01 15497.86 204
QAPM96.29 13795.40 15498.96 6797.85 19497.60 7999.23 2198.93 3789.76 30393.11 26799.02 8089.11 18299.93 1591.99 25499.62 6699.34 111
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19598.52 2799.37 798.71 11397.09 4592.99 27099.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
ACMH+92.99 1494.30 24193.77 24395.88 25997.81 19692.04 27398.71 12298.37 18793.99 17290.60 31098.47 14280.86 30299.05 18992.75 23392.40 25696.55 284
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19797.64 7699.35 1099.06 2297.02 4793.75 24499.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
miper_lstm_enhance94.33 23994.07 22295.11 28297.75 19890.97 29197.22 28098.03 24891.67 26492.76 27596.97 27390.03 16697.78 31392.51 24289.64 28896.56 282
cl_fuxian94.79 21194.43 20595.89 25897.75 19893.12 26197.16 28698.03 24892.23 24893.46 25597.05 26591.39 13998.01 29993.58 21089.21 29696.53 287
TR-MVS94.94 20694.20 21397.17 17597.75 19894.14 22697.59 25697.02 30492.28 24795.75 18397.64 21983.88 28498.96 20089.77 28896.15 20798.40 189
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25697.74 20191.74 27998.69 12898.15 22695.56 10194.92 19397.68 21688.98 18898.79 22393.19 22097.78 16397.20 222
MIMVSNet93.26 27392.21 28096.41 23397.73 20293.13 26095.65 32997.03 30291.27 28094.04 23196.06 31275.33 33097.19 32586.56 31596.23 20598.92 161
miper_ehance_all_eth95.01 19894.69 19095.97 25397.70 20393.31 25497.02 29298.07 24192.23 24893.51 25296.96 27591.85 12898.15 28793.68 20591.16 27196.44 300
SCA95.46 16995.13 17096.46 23097.67 20491.29 28797.33 27397.60 26894.68 14696.92 14697.10 25383.97 28298.89 21192.59 23798.32 14899.20 129
ACMP93.49 1095.34 18194.98 17896.43 23297.67 20493.48 24798.73 11798.44 17594.94 13892.53 28398.53 13684.50 27299.14 17795.48 15294.00 23096.66 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth94.68 21694.41 20695.47 27197.64 20691.71 28096.73 31398.07 24192.71 23093.64 24597.21 24890.54 15898.17 28693.38 21389.76 28696.54 285
ACMH92.88 1694.55 22793.95 23196.34 23897.63 20793.26 25698.81 10398.49 17093.43 20389.74 31498.53 13681.91 29499.08 18793.69 20493.30 24796.70 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMM93.85 995.69 16295.38 15896.61 21197.61 20893.84 23398.91 7798.44 17595.25 11994.28 21898.47 14286.04 25099.12 17995.50 15193.95 23296.87 244
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-test94.42 23593.68 25096.63 20997.60 20991.76 27794.83 33697.49 28089.45 30894.14 22697.10 25388.99 18598.83 21985.37 32598.13 15299.29 122
RRT_test8_iter0594.56 22694.19 21495.67 26697.60 20991.34 28398.93 7598.42 17994.75 14293.39 25697.87 19679.00 31298.61 23596.78 10790.99 27497.07 224
cl-mvsnet_94.51 23094.01 22696.02 25097.58 21193.40 25197.05 29097.96 25391.73 26292.76 27597.08 25989.06 18498.13 28992.61 23490.29 28196.52 290
tpm cat193.36 26892.80 27095.07 28497.58 21187.97 32896.76 31197.86 25882.17 33893.53 24996.04 31386.13 24699.13 17889.24 29995.87 21198.10 198
MVS-HIRNet89.46 30688.40 30792.64 31697.58 21182.15 34394.16 34193.05 34875.73 34490.90 30582.52 34579.42 30998.33 27283.53 32998.68 12797.43 213
PatchmatchNetpermissive95.71 16095.52 15296.29 24297.58 21190.72 29696.84 30897.52 27694.06 16697.08 13696.96 27589.24 17898.90 21092.03 25398.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl-mvsnet194.52 22994.03 22395.99 25197.57 21593.38 25297.05 29097.94 25491.74 26092.81 27397.10 25389.12 18198.07 29592.60 23590.30 28096.53 287
test_part192.87 28091.72 28696.32 24097.55 21693.50 24699.04 5398.74 10283.31 33590.81 30797.70 21276.61 32598.60 23994.43 18287.30 31896.85 247
tpmrst95.63 16495.69 14895.44 27397.54 21788.54 32396.97 29497.56 27093.50 20097.52 12796.93 27989.49 17099.16 17395.25 16096.42 19598.64 180
FMVSNet193.19 27692.07 28196.56 21897.54 21795.00 18898.82 9798.18 21890.38 29592.27 29097.07 26073.68 33797.95 30389.36 29891.30 26896.72 261
miper_enhance_ethall95.10 19494.75 18796.12 24997.53 21993.73 23996.61 31698.08 23992.20 25193.89 23696.65 29392.44 11298.30 27794.21 19091.16 27196.34 303
CLD-MVS95.62 16595.34 16096.46 23097.52 22093.75 23797.27 27898.46 17195.53 10294.42 21298.00 18686.21 24598.97 19796.25 12394.37 21796.66 271
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MDTV_nov1_ep1395.40 15497.48 22188.34 32596.85 30797.29 29193.74 18497.48 12897.26 24389.18 17999.05 18991.92 25697.43 173
IB-MVS91.98 1793.27 27291.97 28397.19 17397.47 22293.41 25097.09 28995.99 32493.32 20792.47 28695.73 31778.06 31799.53 14294.59 17782.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_030492.81 28192.01 28295.23 27797.46 22391.33 28598.17 20698.81 7691.13 28593.80 24295.68 32266.08 34598.06 29690.79 27296.13 20896.32 306
tpmvs94.60 22294.36 20895.33 27697.46 22388.60 32296.88 30597.68 26491.29 27893.80 24296.42 30288.58 19599.24 16691.06 26896.04 21098.17 196
LPG-MVS_test95.62 16595.34 16096.47 22797.46 22393.54 24498.99 6498.54 15494.67 14794.36 21498.77 11485.39 25699.11 18295.71 14494.15 22596.76 256
LGP-MVS_train96.47 22797.46 22393.54 24498.54 15494.67 14794.36 21498.77 11485.39 25699.11 18295.71 14494.15 22596.76 256
jason97.32 9997.08 9398.06 12597.45 22795.59 16397.87 23597.91 25694.79 14198.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
HQP_MVS96.14 14295.90 13996.85 19597.42 22894.60 21198.80 10498.56 14997.28 2995.34 18598.28 16487.09 22999.03 19396.07 12694.27 21996.92 233
plane_prior797.42 22894.63 206
ITE_SJBPF95.44 27397.42 22891.32 28697.50 27895.09 13093.59 24698.35 15581.70 29598.88 21389.71 29093.39 24596.12 311
LTVRE_ROB92.95 1594.60 22293.90 23496.68 20597.41 23194.42 21698.52 15398.59 14191.69 26391.21 30298.35 15584.87 26599.04 19291.06 26893.44 24496.60 276
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
plane_prior197.37 232
plane_prior697.35 23394.61 20987.09 229
DWT-MVSNet_test94.82 20994.36 20896.20 24597.35 23390.79 29498.34 17696.57 32292.91 22495.33 18796.44 30182.00 29399.12 17994.52 17995.78 21398.70 172
dp94.15 25193.90 23494.90 28897.31 23586.82 33596.97 29497.19 29691.22 28296.02 18096.61 29685.51 25599.02 19590.00 28694.30 21898.85 163
NP-MVS97.28 23694.51 21497.73 209
CostFormer94.95 20494.73 18895.60 26897.28 23689.06 31697.53 25996.89 31289.66 30596.82 15196.72 28986.05 24898.95 20495.53 15096.13 20898.79 167
VPA-MVSNet95.75 15895.11 17297.69 14897.24 23897.27 9098.94 7499.23 1295.13 12595.51 18497.32 24085.73 25298.91 20797.33 7889.55 29196.89 241
tpm294.19 24893.76 24595.46 27297.23 23989.04 31797.31 27596.85 31587.08 32096.21 17696.79 28783.75 28898.74 22692.43 24596.23 20598.59 182
EPMVS94.99 20094.48 19996.52 22397.22 24091.75 27897.23 27991.66 34994.11 16497.28 12996.81 28685.70 25398.84 21793.04 22597.28 17598.97 156
FMVSNet591.81 28890.92 29194.49 29997.21 24192.09 27098.00 22397.55 27489.31 31090.86 30695.61 32374.48 33495.32 34085.57 32289.70 28796.07 313
HQP-NCC97.20 24298.05 21796.43 6794.45 207
ACMP_Plane97.20 24298.05 21796.43 6794.45 207
HQP-MVS95.72 15995.40 15496.69 20497.20 24294.25 22498.05 21798.46 17196.43 6794.45 20797.73 20986.75 23598.96 20095.30 15694.18 22396.86 246
UniMVSNet_ETH3D94.24 24593.33 26196.97 18797.19 24593.38 25298.74 11398.57 14791.21 28393.81 24198.58 13272.85 33998.77 22595.05 16493.93 23398.77 169
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24697.32 8799.21 2898.97 3089.96 30191.14 30399.05 7986.64 23799.92 2193.38 21399.47 9097.73 208
VPNet94.99 20094.19 21497.40 16697.16 24796.57 12098.71 12298.97 3095.67 9694.84 19598.24 17080.36 30598.67 23296.46 11587.32 31796.96 230
GA-MVS94.81 21094.03 22397.14 17697.15 24893.86 23296.76 31197.58 26994.00 17194.76 20097.04 26680.91 30098.48 24891.79 25896.25 20499.09 144
FIs96.51 13096.12 13397.67 15097.13 24997.54 8199.36 899.22 1495.89 8694.03 23298.35 15591.98 12698.44 25496.40 11992.76 25397.01 227
131496.25 14195.73 14297.79 13897.13 24995.55 16898.19 20198.59 14193.47 20192.03 29597.82 20491.33 14299.49 14594.62 17498.44 14198.32 194
D2MVS95.18 19095.08 17395.48 27097.10 25192.07 27198.30 18599.13 1994.02 16992.90 27196.73 28889.48 17198.73 22794.48 18193.60 24095.65 321
DeepMVS_CXcopyleft86.78 32597.09 25272.30 34995.17 33475.92 34384.34 33695.19 32470.58 34095.35 33979.98 33789.04 29992.68 341
RRT_MVS96.04 14595.53 15197.56 15897.07 25397.32 8798.57 14898.09 23795.15 12495.02 19198.44 14488.20 20598.58 24296.17 12593.09 25096.79 252
PAPM94.95 20494.00 22797.78 13997.04 25495.65 16296.03 32498.25 21091.23 28194.19 22497.80 20691.27 14498.86 21682.61 33197.61 16998.84 165
CR-MVSNet94.76 21394.15 21896.59 21497.00 25593.43 24894.96 33297.56 27092.46 23696.93 14496.24 30588.15 20797.88 31187.38 31196.65 18798.46 187
RPMNet92.81 28191.34 28997.24 17097.00 25593.43 24894.96 33298.80 8682.27 33796.93 14492.12 33986.98 23299.82 6376.32 34496.65 18798.46 187
UniMVSNet (Re)95.78 15795.19 16897.58 15696.99 25797.47 8398.79 10899.18 1695.60 9993.92 23597.04 26691.68 13198.48 24895.80 13987.66 31396.79 252
FC-MVSNet-test96.42 13396.05 13497.53 16096.95 25897.27 9099.36 899.23 1295.83 8993.93 23498.37 15392.00 12598.32 27396.02 13192.72 25497.00 228
tfpnnormal93.66 26492.70 27396.55 22196.94 25995.94 15098.97 6899.19 1591.04 28691.38 30197.34 23884.94 26498.61 23585.45 32489.02 30095.11 325
TESTMET0.1,194.18 25093.69 24995.63 26796.92 26089.12 31596.91 29994.78 33693.17 21394.88 19496.45 30078.52 31498.92 20693.09 22298.50 13898.85 163
TinyColmap92.31 28691.53 28794.65 29796.92 26089.75 30596.92 29796.68 31990.45 29389.62 31597.85 19976.06 32898.81 22186.74 31492.51 25595.41 322
cascas94.63 22193.86 23796.93 19196.91 26294.27 22296.00 32598.51 16185.55 33094.54 20396.23 30784.20 27898.87 21495.80 13996.98 18097.66 211
nrg03096.28 13995.72 14397.96 13196.90 26398.15 5699.39 598.31 19695.47 10594.42 21298.35 15592.09 12398.69 22897.50 7289.05 29897.04 226
MVS94.67 21993.54 25598.08 12396.88 26496.56 12198.19 20198.50 16678.05 34292.69 27898.02 18391.07 14999.63 12890.09 28198.36 14698.04 199
WR-MVS_H95.05 19794.46 20196.81 19796.86 26595.82 15899.24 2099.24 1093.87 17892.53 28396.84 28590.37 16098.24 28393.24 21887.93 31096.38 302
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16696.84 26696.97 10298.74 11399.24 1095.16 12393.88 23797.72 21191.68 13198.31 27595.81 13787.25 31996.92 233
USDC93.33 27192.71 27295.21 27896.83 26790.83 29396.91 29997.50 27893.84 17990.72 30898.14 17677.69 31998.82 22089.51 29593.21 24995.97 315
test-LLR95.10 19494.87 18395.80 26196.77 26889.70 30696.91 29995.21 33195.11 12794.83 19795.72 31987.71 21898.97 19793.06 22398.50 13898.72 170
test-mter94.08 25793.51 25695.80 26196.77 26889.70 30696.91 29995.21 33192.89 22594.83 19795.72 31977.69 31998.97 19793.06 22398.50 13898.72 170
Patchmtry93.22 27492.35 27895.84 26096.77 26893.09 26294.66 33797.56 27087.37 31992.90 27196.24 30588.15 20797.90 30787.37 31290.10 28396.53 287
gg-mvs-nofinetune92.21 28790.58 29497.13 17796.75 27195.09 18595.85 32689.40 35285.43 33194.50 20581.98 34680.80 30398.40 27092.16 24798.33 14797.88 202
XXY-MVS95.20 18994.45 20397.46 16196.75 27196.56 12198.86 8998.65 13593.30 20993.27 26098.27 16784.85 26698.87 21494.82 16991.26 27096.96 230
CP-MVSNet94.94 20694.30 21096.83 19696.72 27395.56 16699.11 4298.95 3493.89 17692.42 28897.90 19387.19 22898.12 29094.32 18688.21 30796.82 251
PatchT93.06 27891.97 28396.35 23796.69 27492.67 26594.48 33897.08 29886.62 32197.08 13692.23 33887.94 21397.90 30778.89 34096.69 18598.49 186
PS-CasMVS94.67 21993.99 22996.71 20196.68 27595.26 17999.13 3999.03 2593.68 19292.33 28997.95 18985.35 25898.10 29193.59 20988.16 30996.79 252
WR-MVS95.15 19194.46 20197.22 17196.67 27696.45 12598.21 19498.81 7694.15 16393.16 26397.69 21387.51 22298.30 27795.29 15888.62 30496.90 240
baseline295.11 19394.52 19796.87 19496.65 27793.56 24398.27 19094.10 34593.45 20292.02 29697.43 23587.45 22699.19 17193.88 20097.41 17497.87 203
test_040291.32 29290.27 29694.48 30096.60 27891.12 28998.50 15897.22 29586.10 32688.30 32296.98 27277.65 32197.99 30278.13 34292.94 25294.34 331
TransMVSNet (Re)92.67 28391.51 28896.15 24696.58 27994.65 20498.90 7896.73 31690.86 28889.46 31797.86 19785.62 25498.09 29386.45 31681.12 33895.71 319
XVG-ACMP-BASELINE94.54 22894.14 21995.75 26496.55 28091.65 28198.11 21398.44 17594.96 13594.22 22297.90 19379.18 31199.11 18294.05 19793.85 23496.48 297
DU-MVS95.42 17394.76 18697.40 16696.53 28196.97 10298.66 13598.99 2995.43 10793.88 23797.69 21388.57 19698.31 27595.81 13787.25 31996.92 233
NR-MVSNet94.98 20294.16 21797.44 16296.53 28197.22 9598.74 11398.95 3494.96 13589.25 31897.69 21389.32 17598.18 28594.59 17787.40 31696.92 233
tpm94.13 25293.80 24095.12 28196.50 28387.91 32997.44 26195.89 32892.62 23296.37 17396.30 30484.13 27998.30 27793.24 21891.66 26599.14 140
pm-mvs193.94 26293.06 26696.59 21496.49 28495.16 18198.95 7298.03 24892.32 24591.08 30497.84 20084.54 27198.41 26492.16 24786.13 33096.19 310
JIA-IIPM93.35 26992.49 27695.92 25596.48 28590.65 29795.01 33196.96 30685.93 32796.08 17887.33 34387.70 22098.78 22491.35 26595.58 21498.34 192
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 17996.45 28696.36 13099.03 5699.03 2595.04 13193.58 24797.93 19188.27 20398.03 29894.13 19286.90 32496.95 232
testgi93.06 27892.45 27794.88 28996.43 28789.90 30398.75 11097.54 27595.60 9991.63 30097.91 19274.46 33597.02 32786.10 31893.67 23697.72 209
v1094.29 24293.55 25496.51 22496.39 28894.80 20198.99 6498.19 21591.35 27493.02 26996.99 27188.09 20998.41 26490.50 27788.41 30696.33 305
v894.47 23393.77 24396.57 21796.36 28994.83 19999.05 5298.19 21591.92 25693.16 26396.97 27388.82 19398.48 24891.69 26187.79 31196.39 301
GG-mvs-BLEND96.59 21496.34 29094.98 19196.51 31988.58 35393.10 26894.34 33080.34 30698.05 29789.53 29496.99 17996.74 258
V4294.78 21294.14 21996.70 20396.33 29195.22 18098.97 6898.09 23792.32 24594.31 21797.06 26388.39 20198.55 24392.90 22988.87 30296.34 303
PEN-MVS94.42 23593.73 24796.49 22596.28 29294.84 19799.17 3399.00 2793.51 19992.23 29197.83 20386.10 24797.90 30792.55 24086.92 32396.74 258
v114494.59 22493.92 23296.60 21396.21 29394.78 20398.59 14198.14 22891.86 25994.21 22397.02 26887.97 21298.41 26491.72 26089.57 28996.61 275
Baseline_NR-MVSNet94.35 23893.81 23995.96 25496.20 29494.05 22898.61 14096.67 32091.44 27093.85 23997.60 22288.57 19698.14 28894.39 18386.93 32295.68 320
MS-PatchMatch93.84 26393.63 25194.46 30296.18 29589.45 31097.76 24498.27 20592.23 24892.13 29397.49 22979.50 30898.69 22889.75 28999.38 10095.25 323
v2v48294.69 21494.03 22396.65 20696.17 29694.79 20298.67 13298.08 23992.72 22994.00 23397.16 25187.69 22198.45 25292.91 22888.87 30296.72 261
EPNet_dtu95.21 18894.95 18095.99 25196.17 29690.45 30098.16 20797.27 29396.77 5393.14 26698.33 16090.34 16198.42 25785.57 32298.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS95.69 16295.33 16296.76 19996.16 29894.63 20698.43 16798.39 18496.64 5995.02 19198.78 11285.15 26199.05 18995.21 16294.20 22296.60 276
v119294.32 24093.58 25396.53 22296.10 29994.45 21598.50 15898.17 22391.54 26794.19 22497.06 26386.95 23398.43 25690.14 28089.57 28996.70 265
v14894.29 24293.76 24595.91 25696.10 29992.93 26398.58 14397.97 25192.59 23493.47 25496.95 27788.53 19998.32 27392.56 23987.06 32196.49 296
v14419294.39 23793.70 24896.48 22696.06 30194.35 22098.58 14398.16 22591.45 26994.33 21697.02 26887.50 22498.45 25291.08 26789.11 29796.63 273
DTE-MVSNet93.98 26193.26 26496.14 24796.06 30194.39 21899.20 2998.86 6193.06 21691.78 29797.81 20585.87 25197.58 31890.53 27686.17 32896.46 299
v124094.06 25993.29 26396.34 23896.03 30393.90 23198.44 16598.17 22391.18 28494.13 22797.01 27086.05 24898.42 25789.13 30189.50 29296.70 265
v192192094.20 24793.47 25896.40 23495.98 30494.08 22798.52 15398.15 22691.33 27594.25 22097.20 24986.41 24298.42 25790.04 28589.39 29496.69 270
EU-MVSNet93.66 26494.14 21992.25 31995.96 30583.38 34098.52 15398.12 23094.69 14592.61 28098.13 17787.36 22796.39 33791.82 25790.00 28496.98 229
v7n94.19 24893.43 25996.47 22795.90 30694.38 21999.26 1898.34 19291.99 25492.76 27597.13 25288.31 20298.52 24689.48 29687.70 31296.52 290
gm-plane-assit95.88 30787.47 33189.74 30496.94 27899.19 17193.32 217
LF4IMVS93.14 27792.79 27194.20 30595.88 30788.67 32197.66 25297.07 29993.81 18191.71 29897.65 21777.96 31898.81 22191.47 26491.92 26295.12 324
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 30995.08 18699.16 3498.50 16695.87 8893.84 24098.34 15994.51 8598.61 23596.88 9893.45 24397.06 225
pmmvs494.69 21493.99 22996.81 19795.74 31095.94 15097.40 26497.67 26590.42 29493.37 25797.59 22389.08 18398.20 28492.97 22791.67 26496.30 307
test_djsdf96.00 14795.69 14896.93 19195.72 31195.49 17099.47 298.40 18294.98 13394.58 20297.86 19789.16 18098.41 26496.91 9294.12 22796.88 242
SixPastTwentyTwo93.34 27092.86 26994.75 29495.67 31289.41 31298.75 11096.67 32093.89 17690.15 31298.25 16980.87 30198.27 28290.90 27190.64 27796.57 280
K. test v392.55 28491.91 28594.48 30095.64 31389.24 31399.07 5094.88 33594.04 16786.78 32797.59 22377.64 32297.64 31692.08 24989.43 29396.57 280
OurMVSNet-221017-094.21 24694.00 22794.85 29095.60 31489.22 31498.89 8297.43 28595.29 11692.18 29298.52 13982.86 29098.59 24093.46 21291.76 26396.74 258
mvs_tets95.41 17595.00 17696.65 20695.58 31594.42 21699.00 6298.55 15195.73 9393.21 26298.38 15283.45 28998.63 23497.09 8494.00 23096.91 238
Gipumacopyleft78.40 31476.75 31783.38 32995.54 31680.43 34579.42 35097.40 28764.67 34773.46 34480.82 34745.65 35193.14 34566.32 34787.43 31576.56 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 194.08 25793.51 25695.80 26195.53 31792.89 26497.38 26695.97 32595.11 12792.51 28596.66 29187.71 21896.94 32887.03 31393.67 23697.57 212
pmmvs593.65 26692.97 26895.68 26595.49 31892.37 26798.20 19797.28 29289.66 30592.58 28197.26 24382.14 29298.09 29393.18 22190.95 27596.58 278
N_pmnet87.12 31187.77 31085.17 32895.46 31961.92 35397.37 26870.66 35885.83 32888.73 32196.04 31385.33 26097.76 31480.02 33590.48 27895.84 317
our_test_393.65 26693.30 26294.69 29595.45 32089.68 30896.91 29997.65 26691.97 25591.66 29996.88 28189.67 16997.93 30688.02 30891.49 26696.48 297
ppachtmachnet_test93.22 27492.63 27494.97 28695.45 32090.84 29296.88 30597.88 25790.60 29092.08 29497.26 24388.08 21097.86 31285.12 32690.33 27996.22 308
jajsoiax95.45 17195.03 17596.73 20095.42 32294.63 20699.14 3698.52 15895.74 9293.22 26198.36 15483.87 28598.65 23396.95 9194.04 22896.91 238
MDA-MVSNet-bldmvs89.97 30388.35 30894.83 29295.21 32391.34 28397.64 25397.51 27788.36 31571.17 34796.13 31179.22 31096.63 33483.65 32886.27 32796.52 290
anonymousdsp95.42 17394.91 18196.94 19095.10 32495.90 15699.14 3698.41 18093.75 18293.16 26397.46 23187.50 22498.41 26495.63 14894.03 22996.50 295
EPNet97.28 10096.87 10398.51 9294.98 32596.14 13998.90 7897.02 30498.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo94.28 24493.92 23295.35 27594.95 32692.60 26697.97 22597.65 26691.61 26690.68 30997.09 25786.32 24498.42 25789.70 29199.34 10295.02 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lessismore_v094.45 30394.93 32788.44 32491.03 35086.77 32897.64 21976.23 32798.42 25790.31 27985.64 33196.51 293
MDA-MVSNet_test_wron90.71 29889.38 30394.68 29694.83 32890.78 29597.19 28297.46 28187.60 31772.41 34695.72 31986.51 23896.71 33285.92 32086.80 32596.56 282
YYNet190.70 29989.39 30294.62 29894.79 32990.65 29797.20 28197.46 28187.54 31872.54 34595.74 31686.51 23896.66 33386.00 31986.76 32696.54 285
EG-PatchMatch MVS91.13 29490.12 29794.17 30794.73 33089.00 31898.13 21097.81 25989.22 31185.32 33496.46 29967.71 34298.42 25787.89 31093.82 23595.08 326
pmmvs691.77 28990.63 29395.17 28094.69 33191.24 28898.67 13297.92 25586.14 32589.62 31597.56 22775.79 32998.34 27190.75 27484.56 33295.94 316
new_pmnet90.06 30289.00 30593.22 31594.18 33288.32 32696.42 32096.89 31286.19 32485.67 33393.62 33177.18 32497.10 32681.61 33389.29 29594.23 332
DSMNet-mixed92.52 28592.58 27592.33 31894.15 33382.65 34298.30 18594.26 34289.08 31292.65 27995.73 31785.01 26395.76 33886.24 31797.76 16498.59 182
UnsupCasMVSNet_eth90.99 29689.92 29994.19 30694.08 33489.83 30497.13 28898.67 12893.69 19085.83 33296.19 31075.15 33196.74 32989.14 30079.41 34096.00 314
Anonymous2023120691.66 29091.10 29093.33 31294.02 33587.35 33298.58 14397.26 29490.48 29190.16 31196.31 30383.83 28696.53 33579.36 33889.90 28596.12 311
test20.0390.89 29790.38 29592.43 31793.48 33688.14 32798.33 17797.56 27093.40 20487.96 32396.71 29080.69 30494.13 34479.15 33986.17 32895.01 329
CMPMVSbinary66.06 2189.70 30489.67 30189.78 32393.19 33776.56 34697.00 29398.35 19080.97 33981.57 33997.75 20874.75 33398.61 23589.85 28793.63 23894.17 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft86.42 2089.00 30787.43 31293.69 30993.08 33889.42 31197.91 22996.89 31278.58 34185.86 33194.69 32869.48 34198.29 28077.13 34393.29 24893.36 340
MIMVSNet189.67 30588.28 30993.82 30892.81 33991.08 29098.01 22197.45 28387.95 31687.90 32495.87 31567.63 34394.56 34378.73 34188.18 30895.83 318
UnsupCasMVSNet_bld87.17 31085.12 31493.31 31391.94 34088.77 31994.92 33498.30 20284.30 33482.30 33890.04 34063.96 34797.25 32485.85 32174.47 34593.93 338
Patchmatch-RL test91.49 29190.85 29293.41 31191.37 34184.40 33792.81 34295.93 32791.87 25887.25 32594.87 32788.99 18596.53 33592.54 24182.00 33599.30 120
pmmvs-eth3d90.36 30189.05 30494.32 30491.10 34292.12 26997.63 25596.95 30788.86 31384.91 33593.13 33378.32 31596.74 32988.70 30381.81 33794.09 335
PM-MVS87.77 30986.55 31391.40 32291.03 34383.36 34196.92 29795.18 33391.28 27986.48 33093.42 33253.27 34996.74 32989.43 29781.97 33694.11 334
new-patchmatchnet88.50 30887.45 31191.67 32190.31 34485.89 33697.16 28697.33 28989.47 30783.63 33792.77 33476.38 32695.06 34282.70 33077.29 34294.06 336
testing_290.61 30088.50 30696.95 18990.08 34595.57 16597.69 24998.06 24593.02 21876.55 34192.48 33761.18 34898.44 25495.45 15391.98 26096.84 248
pmmvs386.67 31284.86 31592.11 32088.16 34687.19 33496.63 31594.75 33779.88 34087.22 32692.75 33566.56 34495.20 34181.24 33476.56 34393.96 337
ambc89.49 32486.66 34775.78 34792.66 34396.72 31786.55 32992.50 33646.01 35097.90 30790.32 27882.09 33494.80 330
TDRefinement91.06 29589.68 30095.21 27885.35 34891.49 28298.51 15797.07 29991.47 26888.83 32097.84 20077.31 32399.09 18692.79 23277.98 34195.04 327
PMMVS277.95 31575.44 31985.46 32782.54 34974.95 34894.23 34093.08 34772.80 34574.68 34387.38 34236.36 35591.56 34773.95 34563.94 34789.87 342
E-PMN64.94 32064.25 32267.02 33582.28 35059.36 35691.83 34585.63 35452.69 35060.22 35077.28 34941.06 35380.12 35246.15 35141.14 34961.57 350
EMVS64.07 32163.26 32466.53 33681.73 35158.81 35791.85 34484.75 35551.93 35259.09 35175.13 35043.32 35279.09 35342.03 35239.47 35061.69 349
FPMVS77.62 31677.14 31679.05 33179.25 35260.97 35495.79 32795.94 32665.96 34667.93 34894.40 32937.73 35488.88 34968.83 34688.46 30587.29 343
wuyk23d30.17 32330.18 32730.16 33778.61 35343.29 35966.79 35114.21 35917.31 35414.82 35711.93 35711.55 36041.43 35537.08 35319.30 3535.76 353
LCM-MVSNet78.70 31376.24 31886.08 32677.26 35471.99 35094.34 33996.72 31761.62 34876.53 34289.33 34133.91 35692.78 34681.85 33274.60 34493.46 339
MVEpermissive62.14 2263.28 32259.38 32574.99 33274.33 35565.47 35285.55 34880.50 35752.02 35151.10 35275.00 35110.91 36180.50 35151.60 35053.40 34878.99 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 31765.37 32180.22 33065.99 35671.96 35190.91 34690.09 35182.62 33649.93 35378.39 34829.36 35781.75 35062.49 34838.52 35186.95 345
PMVScopyleft61.03 2365.95 31963.57 32373.09 33457.90 35751.22 35885.05 34993.93 34654.45 34944.32 35483.57 34413.22 35889.15 34858.68 34981.00 33978.91 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt68.90 31866.97 32074.68 33350.78 35859.95 35587.13 34783.47 35638.80 35362.21 34996.23 30764.70 34676.91 35488.91 30230.49 35287.19 344
testmvs21.48 32524.95 32811.09 33914.89 3596.47 36196.56 3179.87 3607.55 35517.93 35539.02 3539.43 3625.90 35716.56 35512.72 35420.91 352
test12320.95 32623.72 32912.64 33813.54 3608.19 36096.55 3186.13 3617.48 35616.74 35637.98 35412.97 3596.05 35616.69 3545.43 35523.68 351
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k23.98 32431.98 3260.00 3400.00 3610.00 3620.00 35298.59 1410.00 3570.00 35898.61 12790.60 1570.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas7.88 32810.50 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35894.51 850.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.20 32710.94 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35898.43 1450.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
GSMVS99.20 129
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
MTGPAbinary98.74 102
test_post196.68 31430.43 35687.85 21798.69 22892.59 237
test_post31.83 35588.83 19298.91 207
patchmatchnet-post95.10 32689.42 17398.89 211
MTMP98.89 8294.14 344
test9_res96.39 12099.57 7599.69 51
agg_prior295.87 13699.57 7599.68 57
test_prior498.01 6297.86 236
test_prior297.80 24196.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
旧先验297.57 25891.30 27798.67 5899.80 7995.70 146
新几何297.64 253
无先验97.58 25798.72 10991.38 27199.87 4493.36 21599.60 78
原ACMM297.67 251
testdata299.89 3591.65 262
segment_acmp96.85 11
testdata197.32 27496.34 71
plane_prior598.56 14999.03 19396.07 12694.27 21996.92 233
plane_prior498.28 164
plane_prior394.61 20997.02 4795.34 185
plane_prior298.80 10497.28 29
plane_prior94.60 21198.44 16596.74 5594.22 221
n20.00 362
nn0.00 362
door-mid94.37 340
test1198.66 131
door94.64 338
HQP5-MVS94.25 224
BP-MVS95.30 156
HQP4-MVS94.45 20798.96 20096.87 244
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 235
MDTV_nov1_ep13_2view84.26 33896.89 30490.97 28797.90 10489.89 16893.91 19999.18 136
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80