This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7790.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
IU-MVS98.77 486.00 5496.84 6381.26 23797.26 695.50 799.13 399.03 4
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7093.58 4797.27 2785.22 5699.54 1692.21 4698.74 2998.56 19
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 6893.53 5097.26 2985.04 5999.54 1692.35 4398.78 2198.50 22
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 6893.65 4397.21 3286.10 4599.49 2392.35 4398.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 1987.51 10093.65 4397.21 3286.10 4599.49 2391.68 6598.77 2498.30 41
test_part298.55 1187.22 1696.40 11
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5997.16 3785.02 6099.49 2391.99 5398.56 4798.47 28
X-MVStestdata88.31 15986.13 20094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5923.41 35285.02 6099.49 2391.99 5398.56 4798.47 28
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8093.15 5597.04 4286.17 4499.62 192.40 4198.81 1898.52 20
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6691.83 8897.17 3683.96 7499.55 1291.44 7098.64 4398.43 34
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 5791.98 8297.19 3485.43 5499.56 792.06 5298.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10697.12 4087.13 10792.51 7396.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8497.78 187.45 10393.26 5197.33 2484.62 6599.51 2190.75 8398.57 4698.32 40
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3097.19 3588.24 8093.26 5196.83 5185.48 5399.59 491.43 7198.40 5398.30 41
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11592.62 7096.80 5584.85 6399.17 5092.43 3998.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7292.73 6697.23 3085.20 5799.32 3792.15 4998.83 1798.25 50
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7597.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
HPM-MVS_fast93.40 5593.22 5493.94 6198.36 2584.83 7697.15 896.80 6985.77 13692.47 7497.13 3882.38 8699.07 5890.51 8598.40 5397.92 75
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 12996.66 8582.69 20390.03 11395.82 9582.30 8999.03 6484.57 14896.48 10096.91 117
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8596.10 1396.96 4689.09 1598.94 8394.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10594.85 2497.04 4286.99 3799.52 2091.54 6798.33 5698.71 12
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22290.24 10996.44 7178.59 13198.61 10689.68 9097.85 7197.06 109
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8394.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 11897.17 3886.26 12792.83 6197.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS98.15 3586.62 3597.07 4483.63 18094.19 3096.91 4887.57 2999.26 4391.99 5398.44 51
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13397.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test117293.97 3994.07 3493.66 7198.11 3783.45 11496.26 4096.84 6388.33 7694.19 3097.43 1884.24 6999.01 7093.26 2797.98 6698.52 20
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8696.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
114514_t89.51 12588.50 13592.54 10898.11 3781.99 15395.16 9796.36 10370.19 33185.81 17795.25 10976.70 14898.63 10482.07 18496.86 9097.00 113
ACMMPcopyleft93.24 5992.88 6394.30 5498.09 4085.33 7296.86 2297.45 1188.33 7690.15 11197.03 4481.44 10099.51 2190.85 8295.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 13995.05 2397.18 3587.31 3199.07 5891.90 6198.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG93.23 6093.05 5893.76 6998.04 4284.07 9896.22 4297.37 1884.15 17090.05 11295.66 10087.77 2399.15 5389.91 8898.27 5898.07 63
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6897.34 1988.28 7995.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8392.25 4598.99 1098.84 8
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7387.46 10193.75 4097.43 1884.24 6999.01 7092.73 3497.80 7297.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7387.46 10193.75 4097.43 1882.94 8092.73 3497.80 7297.88 77
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11193.92 3797.47 1683.88 7598.96 8292.71 3797.87 7098.26 49
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9295.47 16989.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
save fliter97.85 4885.63 6895.21 9296.82 6789.44 44
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7096.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3398.40 5398.62 16
ETH3 D test640093.64 4993.22 5494.92 2097.79 5286.84 2295.31 8197.26 2982.67 20493.81 3996.29 7587.29 3299.27 4289.87 8998.67 3798.65 15
9.1494.47 1797.79 5296.08 5097.44 1286.13 13195.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
CDPH-MVS92.83 6492.30 7194.44 4897.79 5286.11 5294.06 17396.66 8580.09 24992.77 6396.63 6286.62 3999.04 6387.40 11698.66 4098.17 54
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12095.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
DP-MVS87.25 19685.36 22592.90 9197.65 5683.24 11994.81 11992.00 27474.99 29981.92 26795.00 11772.66 20299.05 6066.92 31492.33 16496.40 129
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16694.37 15396.24 11086.39 12587.41 14894.80 12682.06 9598.48 11282.80 17395.37 11497.61 87
TEST997.53 5886.49 3994.07 17196.78 7081.61 23092.77 6396.20 8087.71 2699.12 55
train_agg93.44 5393.08 5794.52 4597.53 5886.49 3994.07 17196.78 7081.86 22392.77 6396.20 8087.63 2799.12 5592.14 5098.69 3397.94 72
abl_693.18 6193.05 5893.57 7397.52 6084.27 9595.53 7696.67 8487.85 9193.20 5497.22 3180.35 10799.18 4991.91 5897.21 8397.26 100
test_897.49 6186.30 4894.02 17696.76 7381.86 22392.70 6796.20 8087.63 2799.02 68
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7296.89 5889.40 4792.81 6296.97 4585.37 5599.24 4490.87 8198.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary89.89 11889.07 12392.37 11797.41 6383.03 12594.42 14595.92 13382.81 20186.34 17094.65 13173.89 18599.02 6880.69 20995.51 10995.05 174
agg_prior193.29 5792.97 6194.26 5597.38 6485.92 6093.92 18196.72 7981.96 21792.16 7896.23 7887.85 2298.97 7991.95 5798.55 4997.90 76
agg_prior97.38 6485.92 6096.72 7992.16 7898.97 79
原ACMM192.01 12797.34 6681.05 17696.81 6878.89 26190.45 10795.92 9182.65 8398.84 9580.68 21098.26 5996.14 137
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11595.79 6397.33 2290.03 3393.58 4796.96 4684.87 6297.76 16392.19 4898.66 4096.76 120
新几何193.10 8197.30 6884.35 9495.56 16271.09 32891.26 10096.24 7782.87 8298.86 9079.19 23198.10 6296.07 144
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16496.88 5987.67 9792.63 6896.39 7286.62 3998.87 8791.50 6898.67 3798.11 61
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8798.11 61
112190.42 10689.49 11293.20 7797.27 7184.46 8892.63 22795.51 16771.01 32991.20 10196.21 7982.92 8199.05 6080.56 21298.07 6396.10 142
PLCcopyleft84.53 789.06 14088.03 14892.15 12597.27 7182.69 14094.29 15695.44 17579.71 25484.01 23294.18 14776.68 14998.75 9977.28 24893.41 14595.02 175
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23394.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.34 5397.13 7486.15 5196.29 10591.04 10385.08 5899.01 7098.13 6197.86 79
MG-MVS91.77 7991.70 7892.00 12997.08 7580.03 20493.60 19395.18 18987.85 9190.89 10496.47 7082.06 9598.36 12285.07 14097.04 8797.62 86
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21097.24 3088.76 6491.60 9395.85 9486.07 4798.66 10191.91 5898.16 6098.03 67
CNLPA89.07 13987.98 14992.34 11896.87 7884.78 7794.08 17093.24 24981.41 23384.46 21695.13 11475.57 16296.62 24377.21 24993.84 13795.61 160
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15493.56 4996.28 7685.60 5199.31 3892.45 3898.79 1998.12 59
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7696.97 114
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11197.21 3484.33 16893.89 3897.09 3987.20 3399.29 4191.90 6198.44 5198.12 59
LFMVS90.08 11189.13 12292.95 8996.71 8282.32 14996.08 5089.91 32186.79 11692.15 8096.81 5362.60 29198.34 12587.18 12093.90 13598.19 53
Anonymous20240521187.68 17486.13 20092.31 12096.66 8380.74 18594.87 11591.49 28980.47 24589.46 11895.44 10354.72 32898.23 13182.19 18289.89 18897.97 70
TAPA-MVS84.62 688.16 16387.01 17191.62 14796.64 8480.65 18694.39 14896.21 11576.38 28586.19 17395.44 10379.75 11598.08 14562.75 32995.29 11696.13 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS90.30 10789.37 11693.07 8496.61 8584.48 8795.68 6895.67 15382.36 20887.85 14092.85 19176.63 15098.80 9780.01 22096.68 9395.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet92.24 7491.91 7593.24 7696.59 8683.43 11594.84 11796.44 9689.19 5394.08 3495.90 9277.85 14198.17 13588.90 9893.38 14698.13 58
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14693.93 23889.77 3894.21 2995.59 10287.35 3098.61 10692.72 3696.15 10397.83 81
test22296.55 8881.70 15992.22 24195.01 19668.36 33490.20 11096.14 8580.26 11097.80 7296.05 146
Anonymous2024052988.09 16586.59 18692.58 10696.53 8981.92 15695.99 5495.84 14174.11 30789.06 12495.21 11161.44 29998.81 9683.67 16187.47 22597.01 112
Anonymous2023121186.59 21885.13 22890.98 17596.52 9081.50 16296.14 4696.16 11673.78 30983.65 24192.15 21463.26 28997.37 19982.82 17281.74 28194.06 222
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 20694.00 17897.08 4390.05 3295.65 1797.29 2689.66 1098.97 7993.95 1698.71 3098.50 22
testdata90.49 18896.40 9277.89 25295.37 18172.51 32193.63 4596.69 5882.08 9497.65 16983.08 16597.39 8195.94 148
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12194.87 11596.66 8583.29 19089.27 12094.46 13780.29 10999.17 5087.57 11495.37 11496.05 146
API-MVS90.66 10090.07 10292.45 11296.36 9484.57 8196.06 5295.22 18882.39 20689.13 12194.27 14580.32 10898.46 11580.16 21996.71 9294.33 209
F-COLMAP87.95 16886.80 17691.40 15496.35 9580.88 18194.73 12495.45 17379.65 25582.04 26594.61 13271.13 21598.50 11176.24 25991.05 17594.80 188
VDD-MVS90.74 9689.92 10893.20 7796.27 9683.02 12695.73 6593.86 23988.42 7592.53 7196.84 5062.09 29498.64 10390.95 7992.62 16097.93 74
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19595.93 13286.95 11289.51 11696.13 8678.50 13398.35 12485.84 13492.90 15696.83 119
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 22696.56 9383.44 18691.68 9295.04 11686.60 4298.99 7685.60 13697.92 6996.93 116
CHOSEN 1792x268888.84 14687.69 15492.30 12196.14 9981.42 16890.01 28395.86 14074.52 30487.41 14893.94 15675.46 16398.36 12280.36 21595.53 10897.12 108
thres100view90087.63 17986.71 17990.38 19496.12 10078.55 23495.03 10591.58 28587.15 10688.06 13692.29 21068.91 24898.10 13870.13 29691.10 17194.48 205
PVSNet_BlendedMVS89.98 11389.70 10990.82 17796.12 10081.25 17193.92 18196.83 6583.49 18589.10 12292.26 21181.04 10498.85 9386.72 12987.86 22392.35 292
PVSNet_Blended90.73 9790.32 9791.98 13096.12 10081.25 17192.55 23196.83 6582.04 21589.10 12292.56 20181.04 10498.85 9386.72 12995.91 10495.84 153
UA-Net92.83 6492.54 6893.68 7096.10 10384.71 7895.66 7096.39 10191.92 493.22 5396.49 6983.16 7898.87 8784.47 15095.47 11197.45 95
thres600view787.65 17686.67 18190.59 18096.08 10478.72 23094.88 11491.58 28587.06 10988.08 13592.30 20968.91 24898.10 13870.05 29991.10 17194.96 179
DeepC-MVS88.79 393.31 5692.99 6094.26 5596.07 10585.83 6494.89 11396.99 4789.02 5989.56 11597.37 2382.51 8599.38 2992.20 4798.30 5797.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D87.89 16986.32 19592.59 10596.07 10582.92 13095.23 9094.92 20475.66 29282.89 25495.98 8972.48 20599.21 4768.43 30695.23 11995.64 159
HyFIR lowres test88.09 16586.81 17591.93 13496.00 10780.63 18790.01 28395.79 14573.42 31387.68 14592.10 21973.86 18697.96 15480.75 20891.70 16797.19 104
tfpn200view987.58 18386.64 18290.41 19195.99 10878.64 23294.58 13291.98 27686.94 11388.09 13391.77 22969.18 24598.10 13870.13 29691.10 17194.48 205
thres40087.62 18186.64 18290.57 18195.99 10878.64 23294.58 13291.98 27686.94 11388.09 13391.77 22969.18 24598.10 13870.13 29691.10 17194.96 179
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10884.43 9293.08 21596.09 12088.20 8391.12 10295.72 9981.33 10297.76 16391.74 6397.37 8296.75 121
PatchMatch-RL86.77 21485.54 21990.47 19095.88 11182.71 13990.54 27392.31 26579.82 25384.32 22491.57 23968.77 25096.39 26273.16 28293.48 14492.32 293
EPP-MVSNet91.70 8291.56 7992.13 12695.88 11180.50 19297.33 395.25 18586.15 12989.76 11495.60 10183.42 7798.32 12887.37 11893.25 14997.56 91
IS-MVSNet91.43 8591.09 8792.46 11195.87 11381.38 16996.95 1493.69 24489.72 4089.50 11795.98 8978.57 13297.77 16283.02 16796.50 9998.22 52
PAPR90.02 11289.27 12092.29 12295.78 11480.95 17992.68 22596.22 11281.91 22086.66 16393.75 16982.23 9098.44 11979.40 23094.79 12197.48 93
Vis-MVSNet (Re-imp)89.59 12389.44 11490.03 20895.74 11575.85 28395.61 7390.80 30787.66 9987.83 14195.40 10676.79 14696.46 25978.37 23696.73 9197.80 82
test_yl90.69 9890.02 10692.71 9995.72 11682.41 14694.11 16695.12 19185.63 14091.49 9494.70 12774.75 17098.42 12086.13 13292.53 16197.31 98
DCV-MVSNet90.69 9890.02 10692.71 9995.72 11682.41 14694.11 16695.12 19185.63 14091.49 9494.70 12774.75 17098.42 12086.13 13292.53 16197.31 98
canonicalmvs93.27 5892.75 6494.85 2795.70 11887.66 1196.33 3596.41 9990.00 3494.09 3394.60 13382.33 8898.62 10592.40 4192.86 15798.27 47
CANet93.54 5193.20 5694.55 4495.65 11985.73 6794.94 10996.69 8391.89 590.69 10595.88 9381.99 9799.54 1693.14 3097.95 6898.39 36
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12088.73 497.07 1396.77 7290.84 1684.02 23196.62 6375.95 15699.34 3387.77 11197.68 7598.59 18
alignmvs93.08 6292.50 6994.81 3295.62 12187.61 1295.99 5496.07 12289.77 3894.12 3294.87 12180.56 10698.66 10192.42 4093.10 15298.15 56
CS-MVS92.60 6892.56 6792.73 9895.55 12282.35 14896.14 4696.85 6288.71 6591.44 9691.51 24084.13 7198.48 11291.27 7297.47 8097.34 97
Regformer-194.22 3294.13 3294.51 4695.54 12386.36 4494.57 13496.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7798.15 56
Regformer-294.33 2794.22 2594.68 3895.54 12386.75 2994.57 13496.70 8191.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7798.16 55
WTY-MVS89.60 12288.92 12791.67 14695.47 12581.15 17592.38 23594.78 21483.11 19389.06 12494.32 14078.67 13096.61 24681.57 19690.89 17797.24 101
DELS-MVS93.43 5493.25 5393.97 5995.42 12685.04 7493.06 21797.13 3990.74 2091.84 8695.09 11586.32 4399.21 4791.22 7398.45 5097.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-393.68 4793.64 4893.81 6795.36 12784.61 7994.68 12695.83 14291.27 1293.60 4696.71 5685.75 5098.86 9092.87 3296.65 9497.96 71
Regformer-493.91 4193.81 4194.19 5795.36 12785.47 7094.68 12696.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
thres20087.21 20086.24 19890.12 20495.36 12778.53 23593.26 20792.10 27086.42 12488.00 13891.11 25469.24 24498.00 15169.58 30091.04 17693.83 236
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13083.78 10596.14 4695.98 12889.89 3590.45 10796.58 6575.09 16698.31 12984.75 14696.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
BH-RMVSNet88.37 15787.48 15991.02 17095.28 13179.45 21692.89 22293.07 25285.45 14686.91 15894.84 12570.35 22897.76 16373.97 27794.59 12695.85 152
COLMAP_ROBcopyleft80.39 1683.96 26082.04 26789.74 22095.28 13179.75 21194.25 15892.28 26675.17 29778.02 30493.77 16758.60 31797.84 16065.06 32285.92 23791.63 303
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJ91.18 9190.92 8991.96 13295.26 13382.60 14392.09 24695.70 15186.27 12691.84 8692.46 20379.70 11798.99 7689.08 9695.86 10594.29 210
BH-untuned88.60 15388.13 14790.01 21095.24 13478.50 23793.29 20594.15 23284.75 16284.46 21693.40 17175.76 15797.40 19577.59 24594.52 12894.12 217
ETV-MVS92.74 6692.66 6592.97 8895.20 13584.04 10095.07 10196.51 9490.73 2192.96 5891.19 24884.06 7298.34 12591.72 6496.54 9796.54 128
EIA-MVS91.95 7691.94 7491.98 13095.16 13680.01 20595.36 7896.73 7788.44 7389.34 11992.16 21383.82 7698.45 11889.35 9397.06 8697.48 93
ab-mvs89.41 13188.35 13992.60 10495.15 13782.65 14192.20 24295.60 16083.97 17488.55 12893.70 17074.16 18198.21 13482.46 17889.37 19696.94 115
VDDNet89.56 12488.49 13792.76 9695.07 13882.09 15196.30 3693.19 25081.05 24191.88 8496.86 4961.16 30498.33 12788.43 10492.49 16397.84 80
AllTest83.42 26681.39 27289.52 22895.01 13977.79 25693.12 21290.89 30577.41 27776.12 31393.34 17254.08 33197.51 17868.31 30784.27 25093.26 259
TestCases89.52 22895.01 13977.79 25690.89 30577.41 27776.12 31393.34 17254.08 33197.51 17868.31 30784.27 25093.26 259
EI-MVSNet-Vis-set93.01 6392.92 6293.29 7495.01 13983.51 11394.48 13895.77 14690.87 1592.52 7296.67 6084.50 6699.00 7591.99 5394.44 13197.36 96
xiu_mvs_v2_base91.13 9290.89 9191.86 13794.97 14282.42 14492.24 24095.64 15886.11 13291.74 9193.14 18379.67 12098.89 8689.06 9795.46 11294.28 211
tttt051788.61 15287.78 15391.11 16594.96 14377.81 25595.35 7989.69 32585.09 15688.05 13794.59 13466.93 26298.48 11283.27 16492.13 16697.03 111
baseline188.10 16487.28 16590.57 18194.96 14380.07 20094.27 15791.29 29486.74 11787.41 14894.00 15376.77 14796.20 27080.77 20779.31 31395.44 164
Test_1112_low_res87.65 17686.51 18891.08 16694.94 14579.28 22491.77 25194.30 22676.04 29083.51 24592.37 20677.86 14097.73 16778.69 23589.13 20296.22 135
1112_ss88.42 15587.33 16391.72 14494.92 14680.98 17792.97 22094.54 21878.16 27483.82 23693.88 16178.78 12897.91 15879.45 22689.41 19596.26 134
QAPM89.51 12588.15 14693.59 7294.92 14684.58 8096.82 2496.70 8178.43 26983.41 24796.19 8373.18 19799.30 3977.11 25196.54 9796.89 118
BH-w/o87.57 18487.05 17089.12 23794.90 14877.90 25192.41 23393.51 24682.89 20083.70 23991.34 24275.75 15897.07 22375.49 26493.49 14292.39 290
thisisatest053088.67 15087.61 15791.86 13794.87 14980.07 20094.63 13089.90 32284.00 17388.46 13093.78 16666.88 26498.46 11583.30 16392.65 15997.06 109
EI-MVSNet-UG-set92.74 6692.62 6693.12 8094.86 15083.20 12094.40 14695.74 14990.71 2292.05 8196.60 6484.00 7398.99 7691.55 6693.63 13997.17 105
HY-MVS83.01 1289.03 14187.94 15192.29 12294.86 15082.77 13392.08 24794.49 21981.52 23286.93 15792.79 19778.32 13698.23 13179.93 22190.55 17895.88 151
Fast-Effi-MVS+89.41 13188.64 13291.71 14594.74 15280.81 18393.54 19495.10 19383.11 19386.82 16190.67 26579.74 11697.75 16680.51 21493.55 14096.57 126
ACMP84.23 889.01 14388.35 13990.99 17394.73 15381.27 17095.07 10195.89 13886.48 12283.67 24094.30 14169.33 24097.99 15287.10 12588.55 20793.72 245
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet78.82 1885.55 23784.65 23988.23 26294.72 15471.93 31287.12 31792.75 25878.80 26484.95 20790.53 26764.43 28496.71 24074.74 27293.86 13696.06 145
LCM-MVSNet-Re88.30 16088.32 14288.27 25994.71 15572.41 31193.15 21190.98 30187.77 9379.25 29891.96 22578.35 13595.75 29083.04 16695.62 10796.65 124
HQP_MVS90.60 10490.19 9991.82 14094.70 15682.73 13795.85 6196.22 11290.81 1786.91 15894.86 12274.23 17798.12 13688.15 10689.99 18494.63 191
plane_prior794.70 15682.74 136
ACMH+81.04 1485.05 24883.46 25689.82 21694.66 15879.37 21894.44 14394.12 23582.19 21178.04 30392.82 19458.23 31897.54 17673.77 27982.90 26792.54 284
ACMM84.12 989.14 13788.48 13891.12 16294.65 15981.22 17395.31 8196.12 11985.31 15085.92 17694.34 13870.19 23198.06 14785.65 13588.86 20594.08 221
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
plane_prior194.59 160
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16086.37 4397.18 797.02 4689.20 5284.31 22696.66 6173.74 18999.17 5086.74 12697.96 6797.79 83
plane_prior694.52 16282.75 13474.23 177
UGNet89.95 11588.95 12692.95 8994.51 16383.31 11895.70 6795.23 18689.37 4887.58 14693.94 15664.00 28598.78 9883.92 15696.31 10296.74 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test89.45 12888.90 12891.12 16294.47 16481.49 16495.30 8496.14 11786.73 11885.45 19195.16 11269.89 23398.10 13887.70 11289.23 20093.77 241
LGP-MVS_train91.12 16294.47 16481.49 16496.14 11786.73 11885.45 19195.16 11269.89 23398.10 13887.70 11289.23 20093.77 241
baseline92.39 7392.29 7292.69 10294.46 16681.77 15894.14 16396.27 10689.22 5191.88 8496.00 8882.35 8797.99 15291.05 7595.27 11898.30 41
ACMH80.38 1785.36 24083.68 25290.39 19294.45 16780.63 18794.73 12494.85 20882.09 21277.24 30892.65 19960.01 31197.58 17372.25 28584.87 24692.96 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB82.13 1386.26 22684.90 23490.34 19794.44 16881.50 16292.31 23994.89 20583.03 19579.63 29592.67 19869.69 23697.79 16171.20 28886.26 23691.72 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
casdiffmvs92.51 7092.43 7092.74 9794.41 16981.98 15494.54 13696.23 11189.57 4291.96 8396.17 8482.58 8498.01 15090.95 7995.45 11398.23 51
MVS_Test91.31 8891.11 8591.93 13494.37 17080.14 19793.46 19895.80 14486.46 12391.35 9993.77 16782.21 9198.09 14487.57 11494.95 12097.55 92
NP-MVS94.37 17082.42 14493.98 154
TR-MVS86.78 21185.76 21789.82 21694.37 17078.41 23992.47 23292.83 25581.11 24086.36 16992.40 20568.73 25197.48 18073.75 28089.85 19093.57 249
Effi-MVS+91.59 8491.11 8593.01 8694.35 17383.39 11794.60 13195.10 19387.10 10890.57 10693.10 18581.43 10198.07 14689.29 9494.48 12997.59 89
CLD-MVS89.47 12788.90 12891.18 16194.22 17482.07 15292.13 24496.09 12087.90 8985.37 20092.45 20474.38 17597.56 17587.15 12190.43 17993.93 227
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC94.17 17594.39 14888.81 6185.43 194
ACMP_Plane94.17 17594.39 14888.81 6185.43 194
HQP-MVS89.80 11989.28 11991.34 15694.17 17581.56 16094.39 14896.04 12688.81 6185.43 19493.97 15573.83 18797.96 15487.11 12389.77 19194.50 202
XVG-OURS89.40 13388.70 13191.52 14994.06 17881.46 16691.27 26396.07 12286.14 13088.89 12695.77 9768.73 25197.26 20787.39 11789.96 18695.83 154
sss88.93 14488.26 14590.94 17694.05 17980.78 18491.71 25495.38 17981.55 23188.63 12793.91 16075.04 16795.47 30182.47 17791.61 16896.57 126
PCF-MVS84.11 1087.74 17386.08 20492.70 10194.02 18084.43 9289.27 29395.87 13973.62 31184.43 21894.33 13978.48 13498.86 9070.27 29294.45 13094.81 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 19485.98 20791.08 16694.01 18183.10 12295.14 9894.94 19983.57 18184.37 21991.64 23266.59 26996.34 26678.23 23985.36 24293.79 237
test187.26 19485.98 20791.08 16694.01 18183.10 12295.14 9894.94 19983.57 18184.37 21991.64 23266.59 26996.34 26678.23 23985.36 24293.79 237
FMVSNet287.19 20185.82 21391.30 15794.01 18183.67 10894.79 12094.94 19983.57 18183.88 23492.05 22366.59 26996.51 25477.56 24685.01 24593.73 244
XVG-OURS-SEG-HR89.95 11589.45 11391.47 15194.00 18481.21 17491.87 24996.06 12485.78 13588.55 12895.73 9874.67 17397.27 20588.71 10189.64 19395.91 149
FIs90.51 10590.35 9690.99 17393.99 18580.98 17795.73 6597.54 389.15 5486.72 16294.68 12981.83 9997.24 20985.18 13988.31 21594.76 189
xiu_mvs_v1_base_debu90.64 10190.05 10392.40 11393.97 18684.46 8893.32 20095.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 212
xiu_mvs_v1_base90.64 10190.05 10392.40 11393.97 18684.46 8893.32 20095.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 212
xiu_mvs_v1_base_debi90.64 10190.05 10392.40 11393.97 18684.46 8893.32 20095.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 212
VPA-MVSNet89.62 12188.96 12591.60 14893.86 18982.89 13195.46 7797.33 2287.91 8888.43 13193.31 17574.17 18097.40 19587.32 11982.86 26894.52 200
MVSFormer91.68 8391.30 8192.80 9493.86 18983.88 10395.96 5795.90 13684.66 16491.76 8994.91 11977.92 13897.30 20189.64 9197.11 8497.24 101
lupinMVS90.92 9490.21 9893.03 8593.86 18983.88 10392.81 22393.86 23979.84 25291.76 8994.29 14277.92 13898.04 14890.48 8697.11 8497.17 105
IterMVS-LS88.36 15887.91 15289.70 22393.80 19278.29 24393.73 18795.08 19585.73 13784.75 20991.90 22779.88 11396.92 23283.83 15782.51 26993.89 229
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 25283.09 25990.14 20393.80 19280.05 20289.18 29693.09 25178.89 26178.19 30191.91 22665.86 27897.27 20568.47 30588.45 21193.11 268
FMVSNet387.40 19186.11 20291.30 15793.79 19483.64 10994.20 16194.81 21283.89 17584.37 21991.87 22868.45 25496.56 25178.23 23985.36 24293.70 246
FC-MVSNet-test90.27 10890.18 10090.53 18493.71 19579.85 21095.77 6497.59 289.31 4986.27 17194.67 13081.93 9897.01 22784.26 15288.09 21994.71 190
TAMVS89.21 13688.29 14391.96 13293.71 19582.62 14293.30 20494.19 23082.22 21087.78 14393.94 15678.83 12696.95 23077.70 24492.98 15596.32 131
ET-MVSNet_ETH3D87.51 18685.91 21192.32 11993.70 19783.93 10192.33 23790.94 30384.16 16972.09 33092.52 20269.90 23295.85 28589.20 9588.36 21497.17 105
CDS-MVSNet89.45 12888.51 13492.29 12293.62 19883.61 11193.01 21894.68 21781.95 21887.82 14293.24 17978.69 12996.99 22880.34 21693.23 15096.28 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet (Re)89.80 11989.07 12392.01 12793.60 19984.52 8494.78 12197.47 889.26 5086.44 16892.32 20882.10 9397.39 19884.81 14580.84 29594.12 217
VPNet88.20 16287.47 16090.39 19293.56 20079.46 21594.04 17495.54 16588.67 6786.96 15694.58 13569.33 24097.15 21584.05 15580.53 30094.56 198
thisisatest051587.33 19285.99 20691.37 15593.49 20179.55 21390.63 27289.56 32880.17 24787.56 14790.86 25967.07 26198.28 13081.50 19793.02 15496.29 132
mvs_anonymous89.37 13489.32 11789.51 23093.47 20274.22 29291.65 25794.83 21082.91 19985.45 19193.79 16581.23 10396.36 26586.47 13194.09 13397.94 72
CANet_DTU90.26 10989.41 11592.81 9393.46 20383.01 12793.48 19694.47 22089.43 4687.76 14494.23 14670.54 22799.03 6484.97 14196.39 10196.38 130
UniMVSNet_NR-MVSNet89.92 11789.29 11891.81 14293.39 20483.72 10694.43 14497.12 4089.80 3786.46 16593.32 17483.16 7897.23 21184.92 14281.02 29194.49 204
Effi-MVS+-dtu88.65 15188.35 13989.54 22793.33 20576.39 27894.47 14194.36 22387.70 9585.43 19489.56 28773.45 19297.26 20785.57 13791.28 17094.97 176
mvs-test189.45 12889.14 12190.38 19493.33 20577.63 26194.95 10894.36 22387.70 9587.10 15592.81 19573.45 19298.03 14985.57 13793.04 15395.48 162
WR-MVS88.38 15687.67 15690.52 18693.30 20780.18 19593.26 20795.96 13088.57 7185.47 19092.81 19576.12 15296.91 23381.24 19982.29 27194.47 207
WR-MVS_H87.80 17287.37 16289.10 23893.23 20878.12 24695.61 7397.30 2687.90 8983.72 23892.01 22479.65 12196.01 27876.36 25680.54 29993.16 266
test_040281.30 28879.17 29487.67 27293.19 20978.17 24592.98 21991.71 28175.25 29676.02 31590.31 27159.23 31596.37 26350.22 34383.63 25788.47 334
OPM-MVS90.12 11089.56 11191.82 14093.14 21083.90 10294.16 16295.74 14988.96 6087.86 13995.43 10572.48 20597.91 15888.10 10990.18 18393.65 247
CP-MVSNet87.63 17987.26 16788.74 24893.12 21176.59 27595.29 8696.58 9188.43 7483.49 24692.98 18875.28 16495.83 28678.97 23281.15 28793.79 237
diffmvs91.37 8791.23 8391.77 14393.09 21280.27 19492.36 23695.52 16687.03 11091.40 9894.93 11880.08 11197.44 18592.13 5194.56 12797.61 87
nrg03091.08 9390.39 9593.17 7993.07 21386.91 2096.41 3396.26 10788.30 7888.37 13294.85 12482.19 9297.64 17191.09 7482.95 26394.96 179
PAPM86.68 21585.39 22390.53 18493.05 21479.33 22389.79 28694.77 21578.82 26381.95 26693.24 17976.81 14597.30 20166.94 31293.16 15194.95 182
DU-MVS89.34 13588.50 13591.85 13993.04 21583.72 10694.47 14196.59 9089.50 4386.46 16593.29 17777.25 14297.23 21184.92 14281.02 29194.59 195
NR-MVSNet88.58 15487.47 16091.93 13493.04 21584.16 9794.77 12296.25 10989.05 5680.04 29193.29 17779.02 12597.05 22581.71 19580.05 30594.59 195
jason90.80 9590.10 10192.90 9193.04 21583.53 11293.08 21594.15 23280.22 24691.41 9794.91 11976.87 14497.93 15790.28 8796.90 8897.24 101
jason: jason.
RRT_test8_iter0586.90 20786.36 19288.52 25393.00 21873.27 30094.32 15595.96 13085.50 14584.26 22792.86 19060.76 30697.70 16888.32 10582.29 27194.60 194
PS-CasMVS87.32 19386.88 17288.63 25192.99 21976.33 28095.33 8096.61 8988.22 8283.30 25193.07 18673.03 19995.79 28978.36 23781.00 29393.75 243
MVSTER88.84 14688.29 14390.51 18792.95 22080.44 19393.73 18795.01 19684.66 16487.15 15293.12 18472.79 20197.21 21387.86 11087.36 22893.87 232
RPSCF85.07 24784.27 24487.48 27892.91 22170.62 32491.69 25692.46 26376.20 28982.67 25795.22 11063.94 28697.29 20477.51 24785.80 23994.53 199
FMVSNet185.85 23384.11 24691.08 16692.81 22283.10 12295.14 9894.94 19981.64 22882.68 25691.64 23259.01 31696.34 26675.37 26683.78 25393.79 237
tfpnnormal84.72 25483.23 25889.20 23592.79 22380.05 20294.48 13895.81 14382.38 20781.08 27591.21 24769.01 24796.95 23061.69 33180.59 29890.58 321
OpenMVScopyleft83.78 1188.74 14987.29 16493.08 8292.70 22485.39 7196.57 2996.43 9878.74 26680.85 27796.07 8769.64 23799.01 7078.01 24296.65 9494.83 186
TranMVSNet+NR-MVSNet88.84 14687.95 15091.49 15092.68 22583.01 12794.92 11196.31 10489.88 3685.53 18593.85 16376.63 15096.96 22981.91 18879.87 30894.50 202
test_part186.16 22784.40 24391.46 15292.63 22682.80 13296.42 3296.05 12573.47 31282.06 26391.43 24163.89 28797.43 18684.51 14979.11 31494.14 215
MVS87.44 18986.10 20391.44 15392.61 22783.62 11092.63 22795.66 15567.26 33581.47 26992.15 21477.95 13798.22 13379.71 22395.48 11092.47 287
CHOSEN 280x42085.15 24683.99 24888.65 25092.47 22878.40 24079.68 34292.76 25774.90 30181.41 27189.59 28569.85 23595.51 29779.92 22295.29 11692.03 297
UniMVSNet_ETH3D87.53 18586.37 19191.00 17292.44 22978.96 22994.74 12395.61 15984.07 17285.36 20194.52 13659.78 31397.34 20082.93 16887.88 22296.71 123
131487.51 18686.57 18790.34 19792.42 23079.74 21292.63 22795.35 18378.35 27080.14 28891.62 23674.05 18297.15 21581.05 20093.53 14194.12 217
cl-mvsnet286.78 21185.98 20789.18 23692.34 23177.62 26290.84 26994.13 23481.33 23583.97 23390.15 27473.96 18496.60 24884.19 15382.94 26493.33 257
PEN-MVS86.80 21086.27 19788.40 25592.32 23275.71 28595.18 9596.38 10287.97 8682.82 25593.15 18273.39 19595.92 28176.15 26079.03 31693.59 248
cl_fuxian87.14 20386.50 18989.04 24092.20 23377.26 26791.22 26594.70 21682.01 21684.34 22390.43 26978.81 12796.61 24683.70 16081.09 28893.25 261
SCA86.32 22585.18 22789.73 22292.15 23476.60 27491.12 26691.69 28383.53 18485.50 18888.81 29466.79 26596.48 25676.65 25490.35 18196.12 139
XXY-MVS87.65 17686.85 17490.03 20892.14 23580.60 18993.76 18695.23 18682.94 19784.60 21194.02 15174.27 17695.49 30081.04 20183.68 25694.01 225
miper_ehance_all_eth87.22 19986.62 18589.02 24192.13 23677.40 26690.91 26894.81 21281.28 23684.32 22490.08 27679.26 12396.62 24383.81 15882.94 26493.04 271
IB-MVS80.51 1585.24 24583.26 25791.19 16092.13 23679.86 20991.75 25291.29 29483.28 19180.66 28088.49 30061.28 30098.46 11580.99 20479.46 31195.25 170
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 22484.98 23190.80 17892.10 23880.92 18090.24 27795.91 13573.10 31683.57 24488.39 30165.15 28097.46 18284.90 14491.43 16994.03 224
Fast-Effi-MVS+-dtu87.44 18986.72 17889.63 22592.04 23977.68 26094.03 17593.94 23785.81 13482.42 25891.32 24570.33 22997.06 22480.33 21790.23 18294.14 215
cl-mvsnet_86.52 22085.78 21488.75 24692.03 24076.46 27690.74 27094.30 22681.83 22583.34 24990.78 26375.74 16096.57 24981.74 19381.54 28393.22 263
cl-mvsnet186.53 21985.78 21488.75 24692.02 24176.45 27790.74 27094.30 22681.83 22583.34 24990.82 26175.75 15896.57 24981.73 19481.52 28493.24 262
RRT_MVS88.86 14587.68 15592.39 11692.02 24186.09 5394.38 15294.94 19985.45 14687.14 15493.84 16465.88 27797.11 21988.73 10086.77 23593.98 226
eth_miper_zixun_eth86.50 22185.77 21688.68 24991.94 24375.81 28490.47 27494.89 20582.05 21384.05 23090.46 26875.96 15596.77 23782.76 17479.36 31293.46 255
PS-MVSNAJss89.97 11489.62 11091.02 17091.90 24480.85 18295.26 8995.98 12886.26 12786.21 17294.29 14279.70 11797.65 16988.87 9988.10 21794.57 197
ITE_SJBPF88.24 26191.88 24577.05 27092.92 25385.54 14380.13 28993.30 17657.29 32096.20 27072.46 28484.71 24791.49 305
EI-MVSNet89.10 13888.86 13089.80 21991.84 24678.30 24293.70 19095.01 19685.73 13787.15 15295.28 10779.87 11497.21 21383.81 15887.36 22893.88 231
CVMVSNet84.69 25584.79 23784.37 31291.84 24664.92 34193.70 19091.47 29066.19 33786.16 17495.28 10767.18 26093.33 32480.89 20690.42 18094.88 184
MVS-HIRNet73.70 30972.20 31278.18 32491.81 24856.42 34882.94 33782.58 34355.24 34368.88 33566.48 34455.32 32695.13 30558.12 33888.42 21283.01 339
PatchmatchNetpermissive85.85 23384.70 23889.29 23391.76 24975.54 28688.49 30491.30 29381.63 22985.05 20588.70 29871.71 20996.24 26974.61 27489.05 20396.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TransMVSNet (Re)84.43 25783.06 26088.54 25291.72 25078.44 23895.18 9592.82 25682.73 20279.67 29492.12 21673.49 19195.96 28071.10 29168.73 33791.21 312
IterMVS-SCA-FT85.45 23884.53 24288.18 26391.71 25176.87 27290.19 28092.65 26185.40 14881.44 27090.54 26666.79 26595.00 30981.04 20181.05 28992.66 282
TinyColmap79.76 29877.69 30085.97 30191.71 25173.12 30189.55 28790.36 31275.03 29872.03 33190.19 27246.22 34496.19 27263.11 32781.03 29088.59 333
MDTV_nov1_ep1383.56 25591.69 25369.93 32887.75 31291.54 28778.60 26784.86 20888.90 29369.54 23896.03 27670.25 29388.93 204
miper_enhance_ethall86.90 20786.18 19989.06 23991.66 25477.58 26390.22 27994.82 21179.16 25884.48 21589.10 29079.19 12496.66 24184.06 15482.94 26492.94 274
DTE-MVSNet86.11 22885.48 22187.98 26791.65 25574.92 28894.93 11095.75 14887.36 10482.26 26093.04 18772.85 20095.82 28774.04 27677.46 32193.20 264
MIMVSNet82.59 27380.53 27888.76 24591.51 25678.32 24186.57 32090.13 31579.32 25680.70 27988.69 29952.98 33393.07 32866.03 31788.86 20594.90 183
pm-mvs186.61 21685.54 21989.82 21691.44 25780.18 19595.28 8894.85 20883.84 17681.66 26892.62 20072.45 20796.48 25679.67 22478.06 31792.82 279
Baseline_NR-MVSNet87.07 20486.63 18488.40 25591.44 25777.87 25394.23 16092.57 26284.12 17185.74 17992.08 22077.25 14296.04 27582.29 18179.94 30691.30 309
IterMVS84.88 25183.98 24987.60 27391.44 25776.03 28290.18 28192.41 26483.24 19281.06 27690.42 27066.60 26894.28 31579.46 22580.98 29492.48 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DWT-MVSNet_test84.95 25083.68 25288.77 24491.43 26073.75 29691.74 25390.98 30180.66 24483.84 23587.36 31562.44 29297.11 21978.84 23485.81 23895.46 163
MS-PatchMatch85.05 24884.16 24587.73 27191.42 26178.51 23691.25 26493.53 24577.50 27680.15 28791.58 23761.99 29595.51 29775.69 26394.35 13289.16 328
tpm284.08 25982.94 26187.48 27891.39 26271.27 31689.23 29590.37 31171.95 32484.64 21089.33 28867.30 25796.55 25375.17 26887.09 23294.63 191
v887.50 18886.71 17989.89 21391.37 26379.40 21794.50 13795.38 17984.81 16183.60 24391.33 24376.05 15397.42 18882.84 17180.51 30292.84 278
ADS-MVSNet281.66 28179.71 28987.50 27691.35 26474.19 29383.33 33488.48 33172.90 31882.24 26185.77 32364.98 28193.20 32664.57 32383.74 25495.12 172
ADS-MVSNet81.56 28379.78 28786.90 29291.35 26471.82 31383.33 33489.16 32972.90 31882.24 26185.77 32364.98 28193.76 31964.57 32383.74 25495.12 172
GA-MVS86.61 21685.27 22690.66 17991.33 26678.71 23190.40 27593.81 24285.34 14985.12 20489.57 28661.25 30197.11 21980.99 20489.59 19496.15 136
miper_lstm_enhance85.27 24484.59 24187.31 28091.28 26774.63 28987.69 31394.09 23681.20 23981.36 27289.85 28274.97 16994.30 31481.03 20379.84 30993.01 272
XVG-ACMP-BASELINE86.00 22984.84 23689.45 23191.20 26878.00 24891.70 25595.55 16385.05 15782.97 25392.25 21254.49 32997.48 18082.93 16887.45 22792.89 276
v1087.25 19686.38 19089.85 21491.19 26979.50 21494.48 13895.45 17383.79 17783.62 24291.19 24875.13 16597.42 18881.94 18780.60 29792.63 283
FMVSNet581.52 28479.60 29087.27 28191.17 27077.95 24991.49 25992.26 26776.87 28276.16 31287.91 31051.67 33492.34 33067.74 31181.16 28591.52 304
USDC82.76 27081.26 27487.26 28291.17 27074.55 29089.27 29393.39 24878.26 27275.30 31792.08 22054.43 33096.63 24271.64 28685.79 24090.61 318
CostFormer85.77 23584.94 23388.26 26091.16 27272.58 31089.47 29191.04 30076.26 28886.45 16789.97 27970.74 22196.86 23682.35 17987.07 23395.34 169
baseline286.50 22185.39 22389.84 21591.12 27376.70 27391.88 24888.58 33082.35 20979.95 29290.95 25873.42 19497.63 17280.27 21889.95 18795.19 171
tpm cat181.96 27680.27 28187.01 28991.09 27471.02 32087.38 31691.53 28866.25 33680.17 28686.35 32168.22 25696.15 27369.16 30182.29 27193.86 234
tpmvs83.35 26982.07 26687.20 28791.07 27571.00 32188.31 30791.70 28278.91 26080.49 28387.18 31869.30 24397.08 22268.12 31083.56 25893.51 253
v114487.61 18286.79 17790.06 20791.01 27679.34 22093.95 18095.42 17883.36 18985.66 18191.31 24674.98 16897.42 18883.37 16282.06 27493.42 256
v2v48287.84 17087.06 16990.17 20090.99 27779.23 22794.00 17895.13 19084.87 15985.53 18592.07 22274.45 17497.45 18384.71 14781.75 28093.85 235
SixPastTwentyTwo83.91 26282.90 26286.92 29190.99 27770.67 32393.48 19691.99 27585.54 14377.62 30792.11 21860.59 30796.87 23576.05 26177.75 31893.20 264
test-LLR85.87 23285.41 22287.25 28390.95 27971.67 31489.55 28789.88 32383.41 18784.54 21387.95 30867.25 25895.11 30681.82 19093.37 14794.97 176
test-mter84.54 25683.64 25487.25 28390.95 27971.67 31489.55 28789.88 32379.17 25784.54 21387.95 30855.56 32495.11 30681.82 19093.37 14794.97 176
v14887.04 20586.32 19589.21 23490.94 28177.26 26793.71 18994.43 22184.84 16084.36 22290.80 26276.04 15497.05 22582.12 18379.60 31093.31 258
mvs_tets88.06 16787.28 16590.38 19490.94 28179.88 20895.22 9195.66 15585.10 15584.21 22993.94 15663.53 28897.40 19588.50 10388.40 21393.87 232
MVP-Stereo85.97 23084.86 23589.32 23290.92 28382.19 15092.11 24594.19 23078.76 26578.77 30091.63 23568.38 25596.56 25175.01 27193.95 13489.20 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test81.37 28679.30 29287.58 27490.92 28374.16 29480.99 34087.68 33570.52 33076.63 31188.81 29471.21 21492.76 32960.01 33786.93 23495.83 154
jajsoiax88.24 16187.50 15890.48 18990.89 28580.14 19795.31 8195.65 15784.97 15884.24 22894.02 15165.31 27997.42 18888.56 10288.52 20993.89 229
tpmrst85.35 24184.99 23086.43 29790.88 28667.88 33488.71 30191.43 29180.13 24886.08 17588.80 29673.05 19896.02 27782.48 17683.40 26295.40 166
gg-mvs-nofinetune81.77 27979.37 29188.99 24290.85 28777.73 25986.29 32179.63 34874.88 30283.19 25269.05 34360.34 30896.11 27475.46 26594.64 12593.11 268
D2MVS85.90 23185.09 22988.35 25790.79 28877.42 26591.83 25095.70 15180.77 24380.08 29090.02 27766.74 26796.37 26381.88 18987.97 22191.26 310
OurMVSNet-221017-085.35 24184.64 24087.49 27790.77 28972.59 30994.01 17794.40 22284.72 16379.62 29693.17 18161.91 29696.72 23881.99 18681.16 28593.16 266
v119287.25 19686.33 19490.00 21190.76 29079.04 22893.80 18495.48 16882.57 20585.48 18991.18 25073.38 19697.42 18882.30 18082.06 27493.53 250
test_djsdf89.03 14188.64 13290.21 19990.74 29179.28 22495.96 5795.90 13684.66 16485.33 20292.94 18974.02 18397.30 20189.64 9188.53 20894.05 223
v7n86.81 20985.76 21789.95 21290.72 29279.25 22695.07 10195.92 13384.45 16782.29 25990.86 25972.60 20497.53 17779.42 22980.52 30193.08 270
PVSNet_073.20 2077.22 30574.83 31084.37 31290.70 29371.10 31983.09 33689.67 32672.81 32073.93 32483.13 33260.79 30593.70 32068.54 30450.84 34688.30 335
v14419287.19 20186.35 19389.74 22090.64 29478.24 24493.92 18195.43 17681.93 21985.51 18791.05 25674.21 17997.45 18382.86 17081.56 28293.53 250
MVS_030483.46 26581.92 26888.10 26590.63 29577.49 26493.26 20793.75 24380.04 25080.44 28487.24 31747.94 34195.55 29475.79 26288.16 21691.26 310
V4287.68 17486.86 17390.15 20290.58 29680.14 19794.24 15995.28 18483.66 17985.67 18091.33 24374.73 17297.41 19384.43 15181.83 27892.89 276
CR-MVSNet85.35 24183.76 25190.12 20490.58 29679.34 22085.24 32791.96 27878.27 27185.55 18387.87 31171.03 21795.61 29273.96 27889.36 19795.40 166
RPMNet83.95 26181.53 27191.21 15990.58 29679.34 22085.24 32796.76 7371.44 32685.55 18382.97 33370.87 21998.91 8561.01 33389.36 19795.40 166
v192192086.97 20686.06 20589.69 22490.53 29978.11 24793.80 18495.43 17681.90 22185.33 20291.05 25672.66 20297.41 19382.05 18581.80 27993.53 250
v124086.78 21185.85 21289.56 22690.45 30077.79 25693.61 19295.37 18181.65 22785.43 19491.15 25271.50 21297.43 18681.47 19882.05 27693.47 254
tpm84.73 25384.02 24786.87 29490.33 30168.90 33189.06 29789.94 32080.85 24285.75 17889.86 28168.54 25395.97 27977.76 24384.05 25295.75 157
EG-PatchMatch MVS82.37 27580.34 28088.46 25490.27 30279.35 21992.80 22494.33 22577.14 28173.26 32790.18 27347.47 34396.72 23870.25 29387.32 23089.30 325
EPNet_dtu86.49 22385.94 21088.14 26490.24 30372.82 30494.11 16692.20 26886.66 12179.42 29792.36 20773.52 19095.81 28871.26 28793.66 13895.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS83.90 26382.70 26587.51 27590.23 30472.67 30688.62 30381.96 34581.37 23485.01 20688.34 30266.31 27294.45 31175.30 26787.12 23195.43 165
EPNet91.79 7891.02 8894.10 5890.10 30585.25 7396.03 5392.05 27292.83 187.39 15195.78 9679.39 12299.01 7088.13 10897.48 7998.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT82.68 27281.27 27386.89 29390.09 30670.94 32284.06 33190.15 31474.91 30085.63 18283.57 33069.37 23994.87 31065.19 31988.50 21094.84 185
Patchmtry82.71 27180.93 27788.06 26690.05 30776.37 27984.74 32991.96 27872.28 32381.32 27387.87 31171.03 21795.50 29968.97 30280.15 30492.32 293
pmmvs485.43 23983.86 25090.16 20190.02 30882.97 12990.27 27692.67 26075.93 29180.73 27891.74 23171.05 21695.73 29178.85 23383.46 26091.78 300
TESTMET0.1,183.74 26482.85 26386.42 29889.96 30971.21 31889.55 28787.88 33277.41 27783.37 24887.31 31656.71 32193.65 32180.62 21192.85 15894.40 208
dp81.47 28580.23 28285.17 30789.92 31065.49 34086.74 31890.10 31676.30 28781.10 27487.12 31962.81 29095.92 28168.13 30979.88 30794.09 220
K. test v381.59 28280.15 28485.91 30289.89 31169.42 33092.57 23087.71 33485.56 14273.44 32689.71 28455.58 32395.52 29677.17 25069.76 33392.78 280
MDA-MVSNet-bldmvs78.85 30376.31 30686.46 29689.76 31273.88 29588.79 30090.42 31079.16 25859.18 34388.33 30360.20 30994.04 31762.00 33068.96 33591.48 306
GG-mvs-BLEND87.94 26989.73 31377.91 25087.80 31078.23 35080.58 28183.86 32859.88 31295.33 30371.20 28892.22 16590.60 320
gm-plane-assit89.60 31468.00 33377.28 28088.99 29197.57 17479.44 227
anonymousdsp87.84 17087.09 16890.12 20489.13 31580.54 19094.67 12895.55 16382.05 21383.82 23692.12 21671.47 21397.15 21587.15 12187.80 22492.67 281
N_pmnet68.89 31268.44 31570.23 32889.07 31628.79 35888.06 30819.50 35869.47 33271.86 33284.93 32661.24 30291.75 33554.70 34177.15 32290.15 322
pmmvs584.21 25882.84 26488.34 25888.95 31776.94 27192.41 23391.91 28075.63 29380.28 28591.18 25064.59 28395.57 29377.09 25283.47 25992.53 285
PMMVS85.71 23684.96 23287.95 26888.90 31877.09 26988.68 30290.06 31772.32 32286.47 16490.76 26472.15 20894.40 31281.78 19293.49 14292.36 291
JIA-IIPM81.04 28978.98 29787.25 28388.64 31973.48 29881.75 33989.61 32773.19 31582.05 26473.71 34066.07 27695.87 28471.18 29084.60 24892.41 289
Gipumacopyleft57.99 31754.91 31967.24 33088.51 32065.59 33952.21 35090.33 31343.58 34842.84 34851.18 34920.29 35485.07 34534.77 34870.45 33251.05 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet81.32 28780.95 27682.42 31988.50 32163.67 34293.32 20091.33 29264.02 33980.57 28292.83 19361.21 30392.27 33176.34 25780.38 30391.32 308
our_test_381.93 27780.46 27986.33 29988.46 32273.48 29888.46 30591.11 29676.46 28376.69 31088.25 30466.89 26394.36 31368.75 30379.08 31591.14 314
ppachtmachnet_test81.84 27880.07 28587.15 28888.46 32274.43 29189.04 29892.16 26975.33 29577.75 30588.99 29166.20 27395.37 30265.12 32177.60 31991.65 302
lessismore_v086.04 30088.46 32268.78 33280.59 34673.01 32890.11 27555.39 32596.43 26175.06 27065.06 33992.90 275
test0.0.03 182.41 27481.69 26984.59 31088.23 32572.89 30390.24 27787.83 33383.41 18779.86 29389.78 28367.25 25888.99 34165.18 32083.42 26191.90 299
MDA-MVSNet_test_wron79.21 30277.19 30485.29 30588.22 32672.77 30585.87 32390.06 31774.34 30562.62 34287.56 31466.14 27491.99 33366.90 31573.01 32791.10 316
YYNet179.22 30177.20 30385.28 30688.20 32772.66 30785.87 32390.05 31974.33 30662.70 34187.61 31366.09 27592.03 33266.94 31272.97 32891.15 313
pmmvs683.42 26681.60 27088.87 24388.01 32877.87 25394.96 10794.24 22974.67 30378.80 29991.09 25560.17 31096.49 25577.06 25375.40 32592.23 295
testgi80.94 29280.20 28383.18 31687.96 32966.29 33791.28 26290.70 30983.70 17878.12 30292.84 19251.37 33590.82 33863.34 32682.46 27092.43 288
Anonymous2023120681.03 29079.77 28884.82 30987.85 33070.26 32691.42 26092.08 27173.67 31077.75 30589.25 28962.43 29393.08 32761.50 33282.00 27791.12 315
OpenMVS_ROBcopyleft74.94 1979.51 29977.03 30586.93 29087.00 33176.23 28192.33 23790.74 30868.93 33374.52 32188.23 30549.58 33796.62 24357.64 33984.29 24987.94 336
LF4IMVS80.37 29479.07 29684.27 31486.64 33269.87 32989.39 29291.05 29976.38 28574.97 31990.00 27847.85 34294.25 31674.55 27580.82 29688.69 332
MIMVSNet179.38 30077.28 30285.69 30386.35 33373.67 29791.61 25892.75 25878.11 27572.64 32988.12 30648.16 34091.97 33460.32 33477.49 32091.43 307
test20.0379.95 29679.08 29582.55 31885.79 33467.74 33591.09 26791.08 29781.23 23874.48 32289.96 28061.63 29790.15 33960.08 33576.38 32389.76 323
Patchmatch-RL test81.67 28079.96 28686.81 29585.42 33571.23 31782.17 33887.50 33678.47 26877.19 30982.50 33470.81 22093.48 32282.66 17572.89 32995.71 158
UnsupCasMVSNet_eth80.07 29578.27 29985.46 30485.24 33672.63 30888.45 30694.87 20782.99 19671.64 33388.07 30756.34 32291.75 33573.48 28163.36 34292.01 298
testing_283.40 26881.02 27590.56 18385.06 33780.51 19191.37 26195.57 16182.92 19867.06 33885.54 32549.47 33897.24 20986.74 12685.44 24193.93 227
pmmvs-eth3d80.97 29178.72 29887.74 27084.99 33879.97 20790.11 28291.65 28475.36 29473.51 32586.03 32259.45 31493.96 31875.17 26872.21 33089.29 326
CMPMVSbinary59.16 2180.52 29379.20 29384.48 31183.98 33967.63 33689.95 28593.84 24164.79 33866.81 33991.14 25357.93 31995.17 30476.25 25888.10 21790.65 317
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld76.23 30873.27 31185.09 30883.79 34072.92 30285.65 32693.47 24771.52 32568.84 33679.08 33849.77 33693.21 32566.81 31660.52 34489.13 330
PM-MVS78.11 30476.12 30884.09 31583.54 34170.08 32788.97 29985.27 34079.93 25174.73 32086.43 32034.70 34893.48 32279.43 22872.06 33188.72 331
DSMNet-mixed76.94 30676.29 30778.89 32283.10 34256.11 34987.78 31179.77 34760.65 34175.64 31688.71 29761.56 29888.34 34260.07 33689.29 19992.21 296
new_pmnet72.15 31070.13 31378.20 32382.95 34365.68 33883.91 33282.40 34462.94 34064.47 34079.82 33742.85 34686.26 34457.41 34074.44 32682.65 340
new-patchmatchnet76.41 30775.17 30980.13 32182.65 34459.61 34487.66 31491.08 29778.23 27369.85 33483.22 33154.76 32791.63 33764.14 32564.89 34089.16 328
ambc83.06 31779.99 34563.51 34377.47 34392.86 25474.34 32384.45 32728.74 34995.06 30873.06 28368.89 33690.61 318
TDRefinement79.81 29777.34 30187.22 28679.24 34675.48 28793.12 21292.03 27376.45 28475.01 31891.58 23749.19 33996.44 26070.22 29569.18 33489.75 324
pmmvs371.81 31168.71 31481.11 32075.86 34770.42 32586.74 31883.66 34258.95 34268.64 33780.89 33636.93 34789.52 34063.10 32863.59 34183.39 338
DeepMVS_CXcopyleft56.31 33374.23 34851.81 35156.67 35644.85 34748.54 34775.16 33927.87 35058.74 35340.92 34652.22 34558.39 346
FPMVS64.63 31462.55 31670.88 32770.80 34956.71 34684.42 33084.42 34151.78 34549.57 34581.61 33523.49 35181.48 34740.61 34776.25 32474.46 343
PMMVS259.60 31556.40 31869.21 32968.83 35046.58 35373.02 34777.48 35155.07 34449.21 34672.95 34217.43 35680.04 34849.32 34444.33 34780.99 342
wuyk23d21.27 32420.48 32723.63 33768.59 35136.41 35649.57 3516.85 3599.37 3537.89 3554.46 3574.03 36031.37 35417.47 35316.07 3533.12 351
E-PMN43.23 32042.29 32246.03 33465.58 35237.41 35573.51 34564.62 35233.99 35028.47 35347.87 35019.90 35567.91 35022.23 35124.45 34932.77 348
LCM-MVSNet66.00 31362.16 31777.51 32564.51 35358.29 34583.87 33390.90 30448.17 34654.69 34473.31 34116.83 35786.75 34365.47 31861.67 34387.48 337
EMVS42.07 32141.12 32344.92 33563.45 35435.56 35773.65 34463.48 35333.05 35126.88 35445.45 35121.27 35367.14 35119.80 35223.02 35132.06 349
MVEpermissive39.65 2343.39 31938.59 32557.77 33256.52 35548.77 35255.38 34958.64 35529.33 35228.96 35252.65 3484.68 35964.62 35228.11 35033.07 34859.93 345
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high58.88 31654.22 32072.86 32656.50 35656.67 34780.75 34186.00 33773.09 31737.39 34964.63 34622.17 35279.49 34943.51 34523.96 35082.43 341
PMVScopyleft47.18 2252.22 31848.46 32163.48 33145.72 35746.20 35473.41 34678.31 34941.03 34930.06 35165.68 3456.05 35883.43 34630.04 34965.86 33860.80 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt35.64 32239.24 32424.84 33614.87 35823.90 35962.71 34851.51 3576.58 35436.66 35062.08 34744.37 34530.34 35552.40 34222.00 35220.27 350
testmvs8.92 32511.52 3281.12 3391.06 3590.46 36186.02 3220.65 3600.62 3552.74 3569.52 3550.31 3620.45 3572.38 3540.39 3542.46 353
test1238.76 32611.22 3291.39 3380.85 3600.97 36085.76 3250.35 3610.54 3562.45 3578.14 3560.60 3610.48 3562.16 3550.17 3552.71 352
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k22.14 32329.52 3260.00 3400.00 3610.00 3620.00 35295.76 1470.00 3570.00 35894.29 14275.66 1610.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas6.64 3288.86 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35879.70 1170.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re7.82 32710.43 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35893.88 1610.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
GSMVS96.12 139
sam_mvs171.70 21096.12 139
sam_mvs70.60 222
MTGPAbinary96.97 49
test_post188.00 3099.81 35469.31 24295.53 29576.65 254
test_post10.29 35370.57 22695.91 283
patchmatchnet-post83.76 32971.53 21196.48 256
MTMP96.16 4460.64 354
test9_res91.91 5898.71 3098.07 63
agg_prior290.54 8498.68 3598.27 47
test_prior485.96 5794.11 166
test_prior294.12 16487.67 9792.63 6896.39 7286.62 3991.50 6898.67 37
旧先验293.36 19971.25 32794.37 2697.13 21886.74 126
新几何293.11 214
无先验93.28 20696.26 10773.95 30899.05 6080.56 21296.59 125
原ACMM292.94 221
testdata298.75 9978.30 238
segment_acmp87.16 35
testdata192.15 24387.94 87
plane_prior596.22 11298.12 13688.15 10689.99 18494.63 191
plane_prior494.86 122
plane_prior382.75 13490.26 3086.91 158
plane_prior295.85 6190.81 17
plane_prior82.73 13795.21 9289.66 4189.88 189
n20.00 362
nn0.00 362
door-mid85.49 338
test1196.57 92
door85.33 339
HQP5-MVS81.56 160
BP-MVS87.11 123
HQP4-MVS85.43 19497.96 15494.51 201
HQP3-MVS96.04 12689.77 191
HQP2-MVS73.83 187
MDTV_nov1_ep13_2view55.91 35087.62 31573.32 31484.59 21270.33 22974.65 27395.50 161
ACMMP++_ref87.47 225
ACMMP++88.01 220
Test By Simon80.02 112