This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11599.39 3294.81 7799.96 497.91 7299.79 2999.77 27
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2898.88 6297.52 2999.41 2898.78 13196.00 3599.79 9897.79 8099.59 8099.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 5199.22 3798.79 9896.13 10597.92 12699.23 6294.54 8099.94 896.74 14099.78 3399.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2598.81 8696.24 9998.35 10099.23 6295.46 5199.94 897.42 10799.81 1699.77 27
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6499.44 1098.82 8194.46 19198.94 5499.20 6795.16 6899.74 11197.58 9699.85 699.77 27
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10498.94 5499.17 7495.91 3999.94 897.55 10099.79 2999.78 21
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10798.93 5899.19 7295.70 4599.94 897.62 9399.79 2999.78 21
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6899.53 798.80 9394.63 18298.61 8498.97 10595.13 7099.77 10697.65 9199.83 1599.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7399.03 7199.41 695.98 10997.60 14899.36 4294.45 8599.93 2597.14 11498.85 13999.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 12098.31 10399.10 8695.46 5199.93 2597.57 9999.81 1699.74 37
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3999.81 1699.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3999.81 1699.84 12
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 6098.82 8195.71 12698.73 7599.06 9695.27 6299.93 2597.07 11799.63 7399.72 45
MP-MVS-pluss98.31 5697.92 6599.49 1299.72 1298.88 1898.43 20398.78 10094.10 20097.69 13999.42 2995.25 6499.92 3198.09 6299.80 2399.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10798.94 5499.17 7496.06 3299.92 3197.62 9399.78 3399.75 35
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8199.49 595.43 13899.03 4799.32 4995.56 4899.94 896.80 13799.77 3599.78 21
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4399.81 1699.70 53
IU-MVS99.71 1999.23 798.64 13695.28 14899.63 1898.35 4999.81 1699.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 9099.20 6795.90 4199.89 4797.85 7699.74 4999.78 21
X-MVStestdata94.06 29292.30 31599.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 9043.50 40895.90 4199.89 4797.85 7699.74 4999.78 21
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5198.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 5099.73 5299.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.85 7497.74 7198.20 12199.67 2595.16 19499.22 3799.32 1193.04 26297.02 16698.92 11695.36 5799.91 3997.43 10699.64 7299.52 86
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1798.87 6995.96 11098.60 8599.13 8296.05 3399.94 897.77 8199.86 199.77 27
CPTT-MVS97.72 7997.32 9598.92 6499.64 2897.10 9899.12 5598.81 8692.34 28798.09 10899.08 9493.01 10599.92 3196.06 15899.77 3599.75 35
test_part299.63 2999.18 1099.27 35
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12598.81 8695.80 11999.16 4499.47 2095.37 5699.92 3197.89 7499.75 4599.79 19
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20698.68 12397.04 6398.52 8998.80 12896.78 1699.83 6997.93 7099.61 7699.74 37
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20598.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 9299.84 1399.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
dcpmvs_298.08 6098.59 1496.56 24499.57 3390.34 33399.15 4998.38 19896.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1198.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 699.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15699.32 3399.39 3296.22 2699.84 6797.72 8499.73 5299.67 65
patch_mono-298.36 5098.87 696.82 22099.53 3690.68 32698.64 17199.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6098.82 8196.58 8599.10 4699.32 4995.39 5499.82 7697.70 8999.63 7399.72 45
DP-MVS Recon97.86 7297.46 8799.06 5499.53 3698.35 4298.33 21098.89 5992.62 27698.05 11098.94 11395.34 5899.65 12996.04 15999.42 10999.19 143
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 23399.37 3199.52 1196.52 2299.89 4798.06 6399.81 1699.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13498.82 8194.52 18899.23 3799.25 6195.54 5099.80 8896.52 14499.77 3599.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10498.83 12595.70 4599.92 3197.53 10299.67 6399.66 68
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 4998.81 8696.24 9999.20 3899.37 3895.30 6099.80 8897.73 8399.67 6399.72 45
114514_t96.93 12696.27 14398.92 6499.50 4197.63 7298.85 11798.90 5784.80 38397.77 13099.11 8492.84 11199.66 12894.85 19799.77 3599.47 100
PAPM_NR97.46 9897.11 10498.50 9199.50 4196.41 13298.63 17498.60 14195.18 15397.06 16498.06 20694.26 9199.57 14293.80 23598.87 13899.52 86
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.34 5899.82 7697.72 8499.65 6899.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.29 6197.72 8499.65 6899.71 49
9.1498.06 5899.47 4798.71 15698.82 8194.36 19499.16 4499.29 5396.05 3399.81 8197.00 11899.71 57
CDPH-MVS97.94 6997.49 8499.28 3299.47 4798.44 3197.91 26598.67 12892.57 27998.77 7098.85 12295.93 3899.72 11395.56 17799.69 6099.68 61
ZD-MVS99.46 4998.70 2398.79 9893.21 25398.67 7798.97 10595.70 4599.83 6996.07 15599.58 83
save fliter99.46 4998.38 3598.21 22698.71 11697.95 13
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12698.30 21798.69 12097.21 5298.84 6399.36 4295.41 5399.78 10198.62 2699.65 6899.80 18
EI-MVSNet-UG-set98.41 4598.34 3598.61 8099.45 5296.32 13898.28 22098.68 12397.17 5598.74 7399.37 3895.25 6499.79 9898.57 2899.54 9399.73 42
F-COLMAP97.09 12296.80 11797.97 13999.45 5294.95 20798.55 18798.62 14093.02 26396.17 20398.58 15794.01 9599.81 8193.95 22998.90 13499.14 153
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2399.89 5
test_fmvsm_n_192098.87 1099.01 398.45 9799.42 5596.43 12998.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4598.94 179
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4999.90 3
新几何199.16 4599.34 5798.01 6198.69 12090.06 34498.13 10598.95 11294.60 7999.89 4791.97 28899.47 10399.59 79
DP-MVS96.59 13995.93 15698.57 8399.34 5796.19 14498.70 16098.39 19489.45 35594.52 24099.35 4491.85 13799.85 6392.89 26398.88 13699.68 61
SD-MVS98.64 1698.68 1198.53 8999.33 5998.36 4198.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 35398.17 5899.85 699.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HyFIR lowres test96.90 12896.49 13498.14 12499.33 5995.56 17397.38 31099.65 292.34 28797.61 14798.20 19789.29 19299.10 21296.97 12097.60 19199.77 27
OMC-MVS97.55 9697.34 9498.20 12199.33 5995.92 16198.28 22098.59 14495.52 13497.97 12099.10 8693.28 10399.49 15995.09 19198.88 13699.19 143
原ACMM198.65 7799.32 6296.62 11698.67 12893.27 25297.81 12998.97 10595.18 6799.83 6993.84 23399.46 10699.50 91
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19798.81 8697.72 1798.76 7199.16 7797.05 1399.78 10198.06 6399.66 6599.69 56
TEST999.31 6498.50 2997.92 26398.73 11192.63 27597.74 13498.68 14596.20 2899.80 88
train_agg97.97 6597.52 8399.33 2699.31 6498.50 2997.92 26398.73 11192.98 26497.74 13498.68 14596.20 2899.80 8896.59 14199.57 8499.68 61
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
PatchMatch-RL96.59 13996.03 15298.27 11299.31 6496.51 12597.91 26599.06 3493.72 22596.92 17198.06 20688.50 21799.65 12991.77 29299.00 13198.66 205
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12799.30 6895.25 19098.85 11799.39 797.94 1499.74 999.62 392.59 11599.91 3999.65 799.52 9699.25 133
SDMVSNet96.85 13096.42 13698.14 12499.30 6896.38 13399.21 4099.23 2095.92 11195.96 21098.76 13785.88 26899.44 17397.93 7095.59 24598.60 209
sd_testset96.17 15995.76 16197.42 18099.30 6894.34 23798.82 12599.08 3295.92 11195.96 21098.76 13782.83 31899.32 18395.56 17795.59 24598.60 209
agg_prior99.30 6898.38 3598.72 11397.57 15099.81 81
CHOSEN 1792x268897.12 12096.80 11798.08 13399.30 6894.56 22898.05 25099.71 193.57 23897.09 16098.91 11788.17 22299.89 4796.87 13299.56 9099.81 17
test_899.29 7398.44 3197.89 27198.72 11392.98 26497.70 13898.66 14996.20 2899.80 88
旧先验199.29 7397.48 7898.70 11999.09 9295.56 4899.47 10399.61 75
PLCcopyleft95.07 497.20 11696.78 12098.44 9999.29 7396.31 14098.14 23898.76 10492.41 28596.39 19898.31 18694.92 7699.78 10194.06 22798.77 14399.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
COLMAP_ROBcopyleft93.27 1295.33 20694.87 20796.71 22599.29 7393.24 28198.58 18098.11 24889.92 34693.57 28699.10 8686.37 26099.79 9890.78 31098.10 17397.09 261
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19898.76 10497.82 1698.45 9398.93 11496.65 1999.83 6997.38 10999.41 11099.71 49
PVSNet_Blended_VisFu97.70 8197.46 8798.44 9999.27 7895.91 16298.63 17499.16 2794.48 19097.67 14098.88 11992.80 11299.91 3997.11 11599.12 12599.50 91
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10597.95 26099.58 397.14 5898.44 9599.01 10295.03 7399.62 13797.91 7299.75 4599.50 91
MSLP-MVS++98.56 2998.57 1598.55 8599.26 8096.80 10998.71 15699.05 3697.28 4598.84 6399.28 5496.47 2399.40 17598.52 3799.70 5899.47 100
AllTest95.24 21094.65 21596.99 20699.25 8193.21 28298.59 17898.18 23391.36 31593.52 28898.77 13384.67 29399.72 11389.70 32897.87 18098.02 235
TestCases96.99 20699.25 8193.21 28298.18 23391.36 31593.52 28898.77 13384.67 29399.72 11389.70 32897.87 18098.02 235
PVSNet_BlendedMVS96.73 13496.60 12997.12 19999.25 8195.35 18598.26 22399.26 1594.28 19597.94 12397.46 25992.74 11399.81 8196.88 12993.32 28396.20 346
PVSNet_Blended97.38 10797.12 10398.14 12499.25 8195.35 18597.28 32199.26 1593.13 25897.94 12398.21 19692.74 11399.81 8196.88 12999.40 11399.27 129
DeepC-MVS95.98 397.88 7197.58 7798.77 7199.25 8196.93 10398.83 12398.75 10696.96 6796.89 17399.50 1590.46 17199.87 5897.84 7899.76 4199.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19498.78 10097.72 1798.92 6099.28 5495.27 6299.82 7697.55 10099.77 3599.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17997.24 11299.73 5299.70 53
test22299.23 8897.17 9697.40 30898.66 13188.68 36398.05 11098.96 11094.14 9399.53 9599.61 75
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9298.11 24398.29 21797.19 5498.99 5299.02 9896.22 2699.67 12698.52 3798.56 15399.51 89
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5998.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 8199.85 699.78 21
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8497.91 26599.58 397.20 5398.33 10199.00 10395.99 3699.64 13198.05 6599.76 4199.69 56
CS-MVS-test98.49 3598.50 2098.46 9699.20 9297.05 9999.64 498.50 17397.45 3598.88 6199.14 8195.25 6499.15 20198.83 2299.56 9099.20 139
testdata98.26 11599.20 9295.36 18398.68 12391.89 30198.60 8599.10 8694.44 8699.82 7694.27 21999.44 10799.58 83
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3999.72 5599.74 37
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3199.80 2399.86 8
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3199.80 2399.86 8
PVSNet91.96 1896.35 15296.15 14796.96 21099.17 9492.05 30096.08 36998.68 12393.69 22997.75 13397.80 23388.86 20799.69 12494.26 22099.01 13099.15 151
test1299.18 4299.16 9898.19 5098.53 16298.07 10995.13 7099.72 11399.56 9099.63 73
AdaColmapbinary97.15 11996.70 12498.48 9499.16 9896.69 11598.01 25498.89 5994.44 19296.83 17498.68 14590.69 16899.76 10794.36 21499.29 12098.98 174
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5799.04 6899.09 3193.32 24898.83 6699.10 8696.54 2199.83 6997.70 8999.76 4199.59 79
TAPA-MVS93.98 795.35 20494.56 21997.74 15699.13 10194.83 21398.33 21098.64 13686.62 37196.29 20098.61 15294.00 9699.29 18580.00 38599.41 11099.09 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9597.02 34098.96 199.17 4199.47 2091.97 13699.94 899.85 499.69 6099.91 2
MG-MVS97.81 7597.60 7698.44 9999.12 10295.97 15497.75 28498.78 10096.89 7098.46 9099.22 6493.90 9799.68 12594.81 20099.52 9699.67 65
test_vis1_n_192096.71 13596.84 11696.31 26999.11 10489.74 34099.05 6598.58 14998.08 1299.87 199.37 3878.48 34699.93 2599.29 1499.69 6099.27 129
Anonymous2023121194.10 28893.26 29796.61 23799.11 10494.28 23899.01 7698.88 6286.43 37392.81 31297.57 25381.66 32398.68 26694.83 19889.02 33996.88 280
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 11299.09 10695.41 18098.86 11599.37 897.69 2199.78 699.61 492.38 11899.91 3999.58 1099.43 10899.49 96
CS-MVS98.44 4198.49 2198.31 11099.08 10796.73 11399.67 398.47 17997.17 5598.94 5499.10 8695.73 4499.13 20498.71 2499.49 10099.09 158
CNLPA97.45 10197.03 10898.73 7299.05 10897.44 8298.07 24898.53 16295.32 14696.80 17898.53 16193.32 10199.72 11394.31 21899.31 11999.02 170
DPM-MVS97.55 9696.99 11099.23 3899.04 10998.55 2797.17 33198.35 20394.85 17497.93 12598.58 15795.07 7299.71 11892.60 26799.34 11799.43 109
h-mvs3396.17 15995.62 17297.81 14999.03 11094.45 23098.64 17198.75 10697.48 3298.67 7798.72 14089.76 18199.86 6297.95 6881.59 38199.11 156
test250694.44 26493.91 26196.04 27899.02 11188.99 35599.06 6379.47 41396.96 6798.36 9899.26 5777.21 35899.52 15696.78 13899.04 12799.59 79
ECVR-MVScopyleft95.95 16795.71 16696.65 23099.02 11190.86 32199.03 7191.80 40096.96 6798.10 10799.26 5781.31 32599.51 15796.90 12699.04 12799.59 79
Anonymous2024052995.10 21894.22 23797.75 15599.01 11394.26 24098.87 11298.83 8085.79 37996.64 18298.97 10578.73 34399.85 6396.27 15094.89 25099.12 155
Anonymous20240521195.28 20894.49 22297.67 16499.00 11493.75 25798.70 16097.04 33790.66 33296.49 19398.80 12878.13 35099.83 6996.21 15495.36 24999.44 107
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 10895.32 37798.86 298.53 8899.44 2794.38 8799.94 899.86 199.70 5899.90 3
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28498.89 5997.71 1998.33 10198.97 10594.97 7499.88 5698.42 4599.76 4199.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS96.37 297.93 7098.48 2396.30 27099.00 11489.54 34597.43 30798.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 5199.77 3599.72 45
test111195.94 16995.78 16096.41 26298.99 11890.12 33599.04 6892.45 39996.99 6698.03 11399.27 5681.40 32499.48 16496.87 13299.04 12799.63 73
thres100view90095.38 20094.70 21397.41 18198.98 11994.92 20898.87 11296.90 34795.38 14196.61 18596.88 31384.29 29999.56 14588.11 34696.29 22797.76 240
thres600view795.49 19194.77 20997.67 16498.98 11995.02 20098.85 11796.90 34795.38 14196.63 18396.90 31284.29 29999.59 14088.65 34396.33 22398.40 220
test_cas_vis1_n_192097.38 10797.36 9397.45 17798.95 12193.25 28099.00 7898.53 16297.70 2099.77 799.35 4484.71 29299.85 6398.57 2899.66 6599.26 131
tfpn200view995.32 20794.62 21697.43 17998.94 12294.98 20498.68 16496.93 34595.33 14496.55 18996.53 33084.23 30399.56 14588.11 34696.29 22797.76 240
thres40095.38 20094.62 21697.65 16898.94 12294.98 20498.68 16496.93 34595.33 14496.55 18996.53 33084.23 30399.56 14588.11 34696.29 22798.40 220
MSDG95.93 17095.30 18697.83 14698.90 12495.36 18396.83 35698.37 20091.32 31994.43 24798.73 13990.27 17599.60 13990.05 32198.82 14198.52 215
RPSCF94.87 23495.40 17593.26 35298.89 12582.06 39098.33 21098.06 26390.30 34196.56 18799.26 5787.09 24699.49 15993.82 23496.32 22498.24 227
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 9298.82 12599.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 2399.93 1
VNet97.79 7697.40 9198.96 6298.88 12697.55 7598.63 17498.93 5096.74 7899.02 4898.84 12390.33 17499.83 6998.53 3196.66 21299.50 91
LFMVS95.86 17494.98 20198.47 9598.87 12896.32 13898.84 12196.02 36793.40 24598.62 8399.20 6774.99 37199.63 13497.72 8497.20 19899.46 104
UA-Net97.96 6797.62 7598.98 5998.86 12997.47 8098.89 10399.08 3296.67 8298.72 7699.54 893.15 10499.81 8194.87 19698.83 14099.65 69
WTY-MVS97.37 10996.92 11398.72 7398.86 12996.89 10798.31 21598.71 11695.26 14997.67 14098.56 16092.21 12699.78 10195.89 16396.85 20799.48 98
IS-MVSNet97.22 11396.88 11498.25 11698.85 13196.36 13699.19 4497.97 26995.39 14097.23 15698.99 10491.11 15998.93 23794.60 20798.59 15199.47 100
VDD-MVS95.82 17795.23 18897.61 17098.84 13293.98 24898.68 16497.40 31695.02 16397.95 12199.34 4874.37 37699.78 10198.64 2596.80 20899.08 162
test_fmvs196.42 14896.67 12795.66 29598.82 13388.53 36398.80 13498.20 22896.39 9599.64 1799.20 6780.35 33599.67 12699.04 1799.57 8498.78 193
CHOSEN 280x42097.18 11797.18 10297.20 19198.81 13493.27 27895.78 37699.15 2895.25 15096.79 17998.11 20392.29 12199.07 21598.56 3099.85 699.25 133
thres20095.25 20994.57 21897.28 18898.81 13494.92 20898.20 22897.11 33095.24 15296.54 19196.22 34184.58 29699.53 15387.93 35096.50 21997.39 254
XVG-OURS-SEG-HR96.51 14496.34 13997.02 20598.77 13693.76 25597.79 28298.50 17395.45 13796.94 16899.09 9287.87 23399.55 15296.76 13995.83 24497.74 242
XVG-OURS96.55 14396.41 13796.99 20698.75 13793.76 25597.50 30498.52 16695.67 12896.83 17499.30 5288.95 20699.53 15395.88 16496.26 23297.69 245
test_yl97.22 11396.78 12098.54 8798.73 13896.60 11998.45 19898.31 20994.70 17698.02 11598.42 17190.80 16599.70 11996.81 13596.79 20999.34 116
DCV-MVSNet97.22 11396.78 12098.54 8798.73 13896.60 11998.45 19898.31 20994.70 17698.02 11598.42 17190.80 16599.70 11996.81 13596.79 20999.34 116
CANet98.05 6297.76 6998.90 6798.73 13897.27 8798.35 20898.78 10097.37 4197.72 13798.96 11091.53 14899.92 3198.79 2399.65 6899.51 89
Vis-MVSNet (Re-imp)96.87 12996.55 13197.83 14698.73 13895.46 17899.20 4298.30 21594.96 16796.60 18698.87 12090.05 17798.59 27393.67 23998.60 15099.46 104
PAPR96.84 13196.24 14598.65 7798.72 14296.92 10497.36 31498.57 15193.33 24796.67 18197.57 25394.30 8999.56 14591.05 30798.59 15199.47 100
sasdasda97.67 8397.23 9898.98 5998.70 14398.38 3599.34 1798.39 19496.76 7697.67 14097.40 26692.26 12299.49 15998.28 5296.28 23099.08 162
canonicalmvs97.67 8397.23 9898.98 5998.70 14398.38 3599.34 1798.39 19496.76 7697.67 14097.40 26692.26 12299.49 15998.28 5296.28 23099.08 162
API-MVS97.41 10597.25 9797.91 14298.70 14396.80 10998.82 12598.69 12094.53 18698.11 10698.28 18894.50 8499.57 14294.12 22499.49 10097.37 256
MAR-MVS96.91 12796.40 13898.45 9798.69 14696.90 10598.66 16998.68 12392.40 28697.07 16397.96 21691.54 14799.75 10993.68 23798.92 13398.69 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ97.73 7897.77 6897.62 16998.68 14795.58 17297.34 31698.51 16897.29 4498.66 8197.88 22394.51 8199.90 4597.87 7599.17 12497.39 254
test_fmvs1_n95.90 17295.99 15495.63 29698.67 14888.32 36799.26 2898.22 22596.40 9499.67 1499.26 5773.91 37799.70 11999.02 1899.50 9898.87 184
MGCFI-Net97.62 8897.19 10198.92 6498.66 14998.20 4999.32 2298.38 19896.69 8197.58 14997.42 26592.10 13099.50 15898.28 5296.25 23399.08 162
alignmvs97.56 9597.07 10799.01 5698.66 14998.37 4098.83 12398.06 26396.74 7898.00 11997.65 24590.80 16599.48 16498.37 4796.56 21699.19 143
Vis-MVSNetpermissive97.42 10497.11 10498.34 10798.66 14996.23 14199.22 3799.00 3996.63 8498.04 11299.21 6588.05 22899.35 18096.01 16199.21 12199.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet97.46 9897.28 9697.99 13898.64 15295.38 18299.33 2198.31 20993.61 23797.19 15799.07 9594.05 9499.23 19196.89 12798.43 16199.37 114
ab-mvs96.42 14895.71 16698.55 8598.63 15396.75 11297.88 27298.74 10893.84 21596.54 19198.18 19985.34 27899.75 10995.93 16296.35 22299.15 151
PCF-MVS93.45 1194.68 24293.43 29298.42 10398.62 15496.77 11195.48 38098.20 22884.63 38493.34 29798.32 18588.55 21599.81 8184.80 37198.96 13298.68 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v2_base97.66 8597.70 7297.56 17398.61 15595.46 17897.44 30598.46 18097.15 5798.65 8298.15 20094.33 8899.80 8897.84 7898.66 14897.41 252
iter_conf05_1198.04 6397.94 6498.34 10798.60 15696.38 13399.24 3198.57 15195.90 11398.99 5298.79 13092.97 10799.47 16698.58 2799.85 699.17 149
sss97.39 10696.98 11198.61 8098.60 15696.61 11898.22 22598.93 5093.97 20898.01 11898.48 16691.98 13499.85 6396.45 14698.15 17199.39 112
Test_1112_low_res96.34 15395.66 17198.36 10698.56 15895.94 15797.71 28798.07 25892.10 29694.79 23597.29 27291.75 13999.56 14594.17 22296.50 21999.58 83
1112_ss96.63 13796.00 15398.50 9198.56 15896.37 13598.18 23698.10 25192.92 26794.84 23198.43 16992.14 12899.58 14194.35 21596.51 21899.56 85
BH-untuned95.95 16795.72 16396.65 23098.55 16092.26 29598.23 22497.79 28193.73 22394.62 23798.01 21188.97 20599.00 22693.04 25698.51 15598.68 201
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 13198.54 16195.24 19198.87 11299.24 1797.50 3199.70 1399.67 191.33 15299.89 4799.47 1299.54 9399.21 138
LS3D97.16 11896.66 12898.68 7598.53 16297.19 9598.93 9598.90 5792.83 27195.99 20899.37 3892.12 12999.87 5893.67 23999.57 8498.97 175
hse-mvs295.71 18195.30 18696.93 21298.50 16393.53 26698.36 20798.10 25197.48 3298.67 7797.99 21389.76 18199.02 22397.95 6880.91 38698.22 229
AUN-MVS94.53 25593.73 27796.92 21598.50 16393.52 26798.34 20998.10 25193.83 21795.94 21297.98 21585.59 27399.03 22094.35 21580.94 38598.22 229
baseline195.84 17595.12 19498.01 13798.49 16595.98 14998.73 14997.03 33895.37 14396.22 20198.19 19889.96 17999.16 19894.60 20787.48 35398.90 182
HY-MVS93.96 896.82 13296.23 14698.57 8398.46 16697.00 10098.14 23898.21 22693.95 20996.72 18097.99 21391.58 14399.76 10794.51 21196.54 21798.95 178
bld_raw_dy_0_6497.62 8897.67 7497.46 17598.43 16794.02 24797.71 28798.53 16295.87 11698.78 6998.70 14292.93 10899.46 16898.25 5699.86 198.90 182
ETV-MVS97.96 6797.81 6798.40 10498.42 16897.27 8798.73 14998.55 15896.84 7198.38 9797.44 26295.39 5499.35 18097.62 9398.89 13598.58 213
casdiffmvs_mvgpermissive97.72 7997.48 8698.44 9998.42 16896.59 12198.92 9798.44 18496.20 10197.76 13199.20 6791.66 14299.23 19198.27 5598.41 16299.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051796.07 16295.51 17497.78 15198.41 17094.84 21199.28 2594.33 38894.26 19797.64 14598.64 15084.05 30799.47 16695.34 18297.60 19199.03 169
EIA-MVS97.75 7797.58 7798.27 11298.38 17196.44 12899.01 7698.60 14195.88 11597.26 15597.53 25694.97 7499.33 18297.38 10999.20 12299.05 168
thisisatest053096.01 16495.36 18097.97 13998.38 17195.52 17698.88 10894.19 39094.04 20297.64 14598.31 18683.82 31499.46 16895.29 18697.70 18898.93 180
FE-MVS95.62 18794.90 20597.78 15198.37 17394.92 20897.17 33197.38 31890.95 33097.73 13697.70 23985.32 28099.63 13491.18 30098.33 16698.79 190
GeoE96.58 14196.07 14998.10 13298.35 17495.89 16499.34 1798.12 24593.12 25996.09 20498.87 12089.71 18398.97 22792.95 25998.08 17499.43 109
xiu_mvs_v1_base_debu97.60 9097.56 7997.72 15798.35 17495.98 14997.86 27498.51 16897.13 5999.01 4998.40 17391.56 14499.80 8898.53 3198.68 14497.37 256
xiu_mvs_v1_base97.60 9097.56 7997.72 15798.35 17495.98 14997.86 27498.51 16897.13 5999.01 4998.40 17391.56 14499.80 8898.53 3198.68 14497.37 256
xiu_mvs_v1_base_debi97.60 9097.56 7997.72 15798.35 17495.98 14997.86 27498.51 16897.13 5999.01 4998.40 17391.56 14499.80 8898.53 3198.68 14497.37 256
baseline97.64 8697.44 8998.25 11698.35 17496.20 14299.00 7898.32 20796.33 9898.03 11399.17 7491.35 15199.16 19898.10 6198.29 16999.39 112
BH-w/o95.38 20095.08 19696.26 27298.34 17991.79 30397.70 28997.43 31492.87 26994.24 25897.22 27888.66 21098.84 25091.55 29697.70 18898.16 232
EC-MVSNet98.21 5898.11 5698.49 9398.34 17997.26 9199.61 598.43 18896.78 7498.87 6298.84 12393.72 9899.01 22598.91 2099.50 9899.19 143
test_fmvsmvis_n_192098.44 4198.51 1898.23 11898.33 18196.15 14598.97 8499.15 2898.55 798.45 9399.55 694.26 9199.97 199.65 799.66 6598.57 214
MVS_Test97.28 11197.00 10998.13 12798.33 18195.97 15498.74 14598.07 25894.27 19698.44 9598.07 20592.48 11699.26 18796.43 14798.19 17099.16 150
casdiffmvspermissive97.63 8797.41 9098.28 11198.33 18196.14 14698.82 12598.32 20796.38 9697.95 12199.21 6591.23 15699.23 19198.12 6098.37 16399.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive97.58 9397.40 9198.13 12798.32 18495.81 16798.06 24998.37 20096.20 10198.74 7398.89 11891.31 15499.25 18898.16 5998.52 15499.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet95.92 17195.32 18497.69 16198.32 18494.64 22098.19 23197.45 31294.56 18496.03 20698.61 15285.02 28399.12 20690.68 31299.06 12699.30 125
Fast-Effi-MVS+96.28 15695.70 16898.03 13698.29 18695.97 15498.58 18098.25 22391.74 30495.29 22397.23 27791.03 16299.15 20192.90 26197.96 17798.97 175
mamv497.97 6597.75 7098.63 7998.28 18797.36 8398.72 15498.57 15195.76 12198.76 7198.70 14292.91 10999.45 17098.24 5799.84 1399.07 166
MVSMamba_pp98.02 6497.82 6698.61 8098.25 18897.32 8498.73 14998.56 15596.18 10398.84 6398.72 14092.90 11099.45 17098.37 4799.85 699.07 166
mvsany_test197.69 8297.70 7297.66 16798.24 18994.18 24397.53 30197.53 30295.52 13499.66 1599.51 1394.30 8999.56 14598.38 4698.62 14999.23 135
UGNet96.78 13396.30 14298.19 12398.24 18995.89 16498.88 10898.93 5097.39 3896.81 17797.84 22782.60 31999.90 4596.53 14399.49 10098.79 190
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSTER96.06 16395.72 16397.08 20298.23 19195.93 16098.73 14998.27 21894.86 17295.07 22698.09 20488.21 22198.54 27896.59 14193.46 27896.79 288
ET-MVSNet_ETH3D94.13 28492.98 30197.58 17198.22 19296.20 14297.31 31995.37 37694.53 18679.56 39497.63 24986.51 25597.53 35796.91 12390.74 31399.02 170
FA-MVS(test-final)96.41 15195.94 15597.82 14898.21 19395.20 19397.80 28097.58 29293.21 25397.36 15397.70 23989.47 18799.56 14594.12 22497.99 17598.71 199
GBi-Net94.49 25993.80 27096.56 24498.21 19395.00 20198.82 12598.18 23392.46 28094.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
test194.49 25993.80 27096.56 24498.21 19395.00 20198.82 12598.18 23392.46 28094.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
FMVSNet294.47 26293.61 28397.04 20498.21 19396.43 12998.79 13998.27 21892.46 28093.50 29197.09 28781.16 32698.00 33491.09 30391.93 29896.70 301
Effi-MVS+97.12 12096.69 12598.39 10598.19 19796.72 11497.37 31298.43 18893.71 22697.65 14498.02 20992.20 12799.25 18896.87 13297.79 18399.19 143
mvs_anonymous96.70 13696.53 13397.18 19498.19 19793.78 25498.31 21598.19 23094.01 20594.47 24298.27 19192.08 13298.46 28697.39 10897.91 17899.31 122
ETVMVS94.50 25893.44 29197.68 16398.18 19995.35 18598.19 23197.11 33093.73 22396.40 19795.39 36374.53 37398.84 25091.10 30296.31 22598.84 187
LCM-MVSNet-Re95.22 21195.32 18494.91 31998.18 19987.85 37398.75 14295.66 37495.11 15788.96 36096.85 31690.26 17697.65 35195.65 17598.44 15999.22 137
FMVSNet394.97 22994.26 23597.11 20098.18 19996.62 11698.56 18698.26 22293.67 23394.09 26597.10 28384.25 30198.01 33292.08 28192.14 29596.70 301
CANet_DTU96.96 12596.55 13198.21 11998.17 20296.07 14897.98 25898.21 22697.24 5097.13 15998.93 11486.88 25199.91 3995.00 19499.37 11698.66 205
thisisatest051595.61 19094.89 20697.76 15498.15 20395.15 19696.77 35794.41 38692.95 26697.18 15897.43 26384.78 28999.45 17094.63 20497.73 18798.68 201
IterMVS-LS95.46 19395.21 18996.22 27398.12 20493.72 26098.32 21498.13 24493.71 22694.26 25697.31 27192.24 12498.10 32594.63 20490.12 32096.84 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2294.68 24294.19 23996.13 27698.11 20593.60 26296.94 34398.31 20992.43 28493.32 29896.87 31586.51 25598.28 31594.10 22691.16 30996.51 329
VDDNet95.36 20394.53 22097.86 14498.10 20695.13 19798.85 11797.75 28390.46 33698.36 9899.39 3273.27 37999.64 13197.98 6696.58 21598.81 189
testing393.19 31092.48 31295.30 30998.07 20792.27 29498.64 17197.17 32893.94 21193.98 27197.04 29767.97 38796.01 38288.40 34497.14 19997.63 247
MVSFormer97.57 9497.49 8497.84 14598.07 20795.76 16899.47 898.40 19294.98 16598.79 6798.83 12592.34 11998.41 29896.91 12399.59 8099.34 116
lupinMVS97.44 10297.22 10098.12 13098.07 20795.76 16897.68 29097.76 28294.50 18998.79 6798.61 15292.34 11999.30 18497.58 9699.59 8099.31 122
TAMVS97.02 12396.79 11997.70 16098.06 21095.31 18898.52 18998.31 20993.95 20997.05 16598.61 15293.49 10098.52 28095.33 18397.81 18299.29 127
CDS-MVSNet96.99 12496.69 12597.90 14398.05 21195.98 14998.20 22898.33 20693.67 23396.95 16798.49 16593.54 9998.42 29195.24 18997.74 18699.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
testing22294.12 28693.03 30097.37 18698.02 21294.66 21897.94 26296.65 36094.63 18295.78 21495.76 35371.49 38198.92 23891.17 30195.88 24298.52 215
ADS-MVSNet294.58 25194.40 23195.11 31498.00 21388.74 35996.04 37097.30 32090.15 34296.47 19496.64 32787.89 23197.56 35690.08 31997.06 20099.02 170
ADS-MVSNet95.00 22394.45 22796.63 23498.00 21391.91 30296.04 37097.74 28490.15 34296.47 19496.64 32787.89 23198.96 23190.08 31997.06 20099.02 170
IterMVS94.09 28993.85 26794.80 32697.99 21590.35 33297.18 32998.12 24593.68 23192.46 32697.34 26884.05 30797.41 36092.51 27491.33 30596.62 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet_088.72 1991.28 32990.03 33595.00 31797.99 21587.29 37694.84 38598.50 17392.06 29789.86 35395.19 36679.81 33899.39 17892.27 27869.79 40198.33 225
tt080594.54 25393.85 26796.63 23497.98 21793.06 28898.77 14197.84 27993.67 23393.80 28098.04 20876.88 36398.96 23194.79 20192.86 28997.86 239
IterMVS-SCA-FT94.11 28793.87 26594.85 32397.98 21790.56 32997.18 32998.11 24893.75 22092.58 32097.48 25883.97 30997.41 36092.48 27691.30 30696.58 314
testing1195.00 22394.28 23497.16 19697.96 21993.36 27698.09 24697.06 33694.94 17095.33 22296.15 34376.89 36299.40 17595.77 17096.30 22698.72 196
testing9194.98 22794.25 23697.20 19197.94 22093.41 27198.00 25697.58 29294.99 16495.45 21896.04 34777.20 35999.42 17494.97 19596.02 24098.78 193
testing9994.83 23594.08 24797.07 20397.94 22093.13 28498.10 24597.17 32894.86 17295.34 21996.00 35076.31 36599.40 17595.08 19295.90 24198.68 201
EI-MVSNet95.96 16695.83 15996.36 26597.93 22293.70 26198.12 24198.27 21893.70 22895.07 22699.02 9892.23 12598.54 27894.68 20293.46 27896.84 285
CVMVSNet95.43 19696.04 15193.57 34697.93 22283.62 38498.12 24198.59 14495.68 12796.56 18799.02 9887.51 23997.51 35893.56 24397.44 19499.60 77
PMMVS96.60 13896.33 14097.41 18197.90 22493.93 25097.35 31598.41 19092.84 27097.76 13197.45 26191.10 16099.20 19596.26 15197.91 17899.11 156
Effi-MVS+-dtu96.29 15496.56 13095.51 30097.89 22590.22 33498.80 13498.10 25196.57 8796.45 19696.66 32490.81 16498.91 24095.72 17197.99 17597.40 253
QAPM96.29 15495.40 17598.96 6297.85 22697.60 7499.23 3398.93 5089.76 34993.11 30699.02 9889.11 19899.93 2591.99 28699.62 7599.34 116
UWE-MVS94.30 27193.89 26495.53 29997.83 22788.95 35697.52 30393.25 39494.44 19296.63 18397.07 29078.70 34499.28 18691.99 28697.56 19398.36 223
3Dnovator+94.38 697.43 10396.78 12099.38 1897.83 22798.52 2899.37 1398.71 11697.09 6292.99 30999.13 8289.36 19099.89 4796.97 12099.57 8499.71 49
ACMH+92.99 1494.30 27193.77 27395.88 28897.81 22992.04 30198.71 15698.37 20093.99 20790.60 34898.47 16780.86 33199.05 21692.75 26592.40 29496.55 320
3Dnovator94.51 597.46 9896.93 11299.07 5397.78 23097.64 7199.35 1699.06 3497.02 6493.75 28299.16 7789.25 19399.92 3197.22 11399.75 4599.64 71
test_vis1_n95.47 19295.13 19296.49 25297.77 23190.41 33199.27 2798.11 24896.58 8599.66 1599.18 7367.00 39099.62 13799.21 1599.40 11399.44 107
miper_lstm_enhance94.33 26994.07 24895.11 31497.75 23290.97 31897.22 32498.03 26591.67 30892.76 31496.97 30590.03 17897.78 34892.51 27489.64 32696.56 318
c3_l94.79 23794.43 22995.89 28797.75 23293.12 28697.16 33398.03 26592.23 29293.46 29397.05 29691.39 14998.01 33293.58 24289.21 33596.53 323
TR-MVS94.94 23294.20 23897.17 19597.75 23294.14 24497.59 29897.02 34092.28 29195.75 21597.64 24783.88 31198.96 23189.77 32596.15 23798.40 220
Fast-Effi-MVS+-dtu95.87 17395.85 15895.91 28597.74 23591.74 30698.69 16398.15 24195.56 13294.92 22997.68 24488.98 20498.79 25793.19 25197.78 18497.20 260
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23697.15 9798.84 12198.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2999.89 5
MIMVSNet93.26 30792.21 31696.41 26297.73 23693.13 28495.65 37797.03 33891.27 32394.04 26896.06 34675.33 36997.19 36386.56 35696.23 23598.92 181
miper_ehance_all_eth95.01 22294.69 21495.97 28297.70 23893.31 27797.02 33998.07 25892.23 29293.51 29096.96 30791.85 13798.15 32193.68 23791.16 30996.44 337
dmvs_re94.48 26194.18 24195.37 30697.68 23990.11 33698.54 18897.08 33294.56 18494.42 24897.24 27684.25 30197.76 34991.02 30892.83 29098.24 227
SCA95.46 19395.13 19296.46 25897.67 24091.29 31497.33 31797.60 29194.68 17996.92 17197.10 28383.97 30998.89 24492.59 26998.32 16899.20 139
ACMP93.49 1095.34 20594.98 20196.43 26097.67 24093.48 26898.73 14998.44 18494.94 17092.53 32298.53 16184.50 29899.14 20395.48 18194.00 26596.66 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11997.66 24295.39 18198.89 10399.17 2697.24 5099.76 899.67 191.13 15799.88 5699.39 1399.41 11099.35 115
eth_miper_zixun_eth94.68 24294.41 23095.47 30297.64 24391.71 30796.73 36098.07 25892.71 27493.64 28397.21 27990.54 17098.17 32093.38 24589.76 32496.54 321
ACMH92.88 1694.55 25293.95 25896.34 26797.63 24493.26 27998.81 13398.49 17893.43 24489.74 35498.53 16181.91 32199.08 21493.69 23693.30 28496.70 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMM93.85 995.69 18495.38 17996.61 23797.61 24593.84 25398.91 9898.44 18495.25 15094.28 25598.47 16786.04 26799.12 20695.50 18093.95 26796.87 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-test94.42 26593.68 28196.63 23497.60 24691.76 30494.83 38697.49 30789.45 35594.14 26397.10 28388.99 20198.83 25385.37 36698.13 17299.29 127
cl____94.51 25794.01 25396.02 27997.58 24793.40 27397.05 33797.96 27191.73 30692.76 31497.08 28989.06 20098.13 32392.61 26690.29 31896.52 326
tpm cat193.36 30292.80 30495.07 31697.58 24787.97 37196.76 35897.86 27882.17 39093.53 28796.04 34786.13 26399.13 20489.24 33695.87 24398.10 233
MVS-HIRNet89.46 34688.40 34692.64 35797.58 24782.15 38994.16 39593.05 39875.73 39790.90 34482.52 40079.42 34098.33 30683.53 37698.68 14497.43 251
PatchmatchNetpermissive95.71 18195.52 17396.29 27197.58 24790.72 32596.84 35597.52 30394.06 20197.08 16196.96 30789.24 19498.90 24392.03 28598.37 16399.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DIV-MVS_self_test94.52 25694.03 25095.99 28097.57 25193.38 27497.05 33797.94 27291.74 30492.81 31297.10 28389.12 19798.07 32992.60 26790.30 31796.53 323
tpmrst95.63 18695.69 16995.44 30497.54 25288.54 36296.97 34197.56 29593.50 24097.52 15196.93 31189.49 18599.16 19895.25 18896.42 22198.64 207
FMVSNet193.19 31092.07 31796.56 24497.54 25295.00 20198.82 12598.18 23390.38 33992.27 32997.07 29073.68 37897.95 33789.36 33591.30 30696.72 297
miper_enhance_ethall95.10 21894.75 21196.12 27797.53 25493.73 25996.61 36398.08 25692.20 29593.89 27496.65 32692.44 11798.30 31194.21 22191.16 30996.34 340
CLD-MVS95.62 18795.34 18196.46 25897.52 25593.75 25797.27 32298.46 18095.53 13394.42 24898.00 21286.21 26298.97 22796.25 15394.37 25196.66 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MDTV_nov1_ep1395.40 17597.48 25688.34 36696.85 35497.29 32193.74 22297.48 15297.26 27389.18 19599.05 21691.92 28997.43 195
IB-MVS91.98 1793.27 30691.97 31997.19 19397.47 25793.41 27197.09 33695.99 36893.32 24892.47 32595.73 35678.06 35199.53 15394.59 20982.98 37698.62 208
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs94.60 24894.36 23295.33 30897.46 25888.60 36196.88 35297.68 28591.29 32193.80 28096.42 33488.58 21199.24 19091.06 30596.04 23998.17 231
LPG-MVS_test95.62 18795.34 18196.47 25597.46 25893.54 26498.99 8198.54 16094.67 18094.36 25198.77 13385.39 27599.11 20895.71 17294.15 25996.76 291
LGP-MVS_train96.47 25597.46 25893.54 26498.54 16094.67 18094.36 25198.77 13385.39 27599.11 20895.71 17294.15 25996.76 291
test_vis1_rt91.29 32890.65 32893.19 35497.45 26186.25 37998.57 18590.90 40493.30 25086.94 37393.59 38262.07 39699.11 20897.48 10595.58 24794.22 377
jason97.32 11097.08 10698.06 13597.45 26195.59 17197.87 27397.91 27594.79 17598.55 8798.83 12591.12 15899.23 19197.58 9699.60 7899.34 116
jason: jason.
HQP_MVS96.14 16195.90 15796.85 21897.42 26394.60 22698.80 13498.56 15597.28 4595.34 21998.28 18887.09 24699.03 22096.07 15594.27 25396.92 271
plane_prior797.42 26394.63 221
ITE_SJBPF95.44 30497.42 26391.32 31397.50 30595.09 16093.59 28498.35 17981.70 32298.88 24689.71 32793.39 28296.12 348
LTVRE_ROB92.95 1594.60 24893.90 26296.68 22997.41 26694.42 23298.52 18998.59 14491.69 30791.21 34198.35 17984.87 28699.04 21991.06 30593.44 28196.60 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Syy-MVS92.55 31892.61 30992.38 35997.39 26783.41 38597.91 26597.46 30893.16 25693.42 29495.37 36484.75 29096.12 38077.00 39396.99 20297.60 248
myMVS_eth3d92.73 31692.01 31894.89 32197.39 26790.94 31997.91 26597.46 30893.16 25693.42 29495.37 36468.09 38696.12 38088.34 34596.99 20297.60 248
plane_prior197.37 269
plane_prior697.35 27094.61 22487.09 246
dp94.15 28393.90 26294.90 32097.31 27186.82 37896.97 34197.19 32791.22 32596.02 20796.61 32985.51 27499.02 22390.00 32394.30 25298.85 185
NP-MVS97.28 27294.51 22997.73 236
CostFormer94.95 23094.73 21295.60 29897.28 27289.06 35297.53 30196.89 34989.66 35196.82 17696.72 32286.05 26598.95 23695.53 17996.13 23898.79 190
VPA-MVSNet95.75 17995.11 19597.69 16197.24 27497.27 8798.94 9399.23 2095.13 15595.51 21797.32 27085.73 27098.91 24097.33 11189.55 32996.89 279
tpm294.19 27993.76 27595.46 30397.23 27589.04 35397.31 31996.85 35387.08 37096.21 20296.79 31983.75 31598.74 26092.43 27796.23 23598.59 211
EPMVS94.99 22594.48 22396.52 25097.22 27691.75 30597.23 32391.66 40194.11 19997.28 15496.81 31885.70 27198.84 25093.04 25697.28 19798.97 175
FMVSNet591.81 32390.92 32694.49 33597.21 27792.09 29898.00 25697.55 30089.31 35890.86 34595.61 36174.48 37495.32 38885.57 36389.70 32596.07 350
HQP-NCC97.20 27898.05 25096.43 9194.45 243
ACMP_Plane97.20 27898.05 25096.43 9194.45 243
HQP-MVS95.72 18095.40 17596.69 22897.20 27894.25 24198.05 25098.46 18096.43 9194.45 24397.73 23686.75 25298.96 23195.30 18494.18 25796.86 284
UniMVSNet_ETH3D94.24 27693.33 29496.97 20997.19 28193.38 27498.74 14598.57 15191.21 32693.81 27998.58 15772.85 38098.77 25995.05 19393.93 26898.77 195
OpenMVScopyleft93.04 1395.83 17695.00 19998.32 10997.18 28297.32 8499.21 4098.97 4289.96 34591.14 34299.05 9786.64 25499.92 3193.38 24599.47 10397.73 243
VPNet94.99 22594.19 23997.40 18397.16 28396.57 12298.71 15698.97 4295.67 12894.84 23198.24 19580.36 33498.67 26796.46 14587.32 35796.96 268
GA-MVS94.81 23694.03 25097.14 19797.15 28493.86 25296.76 35897.58 29294.00 20694.76 23697.04 29780.91 32998.48 28291.79 29196.25 23399.09 158
FIs96.51 14496.12 14897.67 16497.13 28597.54 7699.36 1499.22 2395.89 11494.03 26998.35 17991.98 13498.44 28996.40 14892.76 29197.01 264
131496.25 15895.73 16297.79 15097.13 28595.55 17598.19 23198.59 14493.47 24292.03 33497.82 23191.33 15299.49 15994.62 20698.44 15998.32 226
D2MVS95.18 21495.08 19695.48 30197.10 28792.07 29998.30 21799.13 3094.02 20492.90 31096.73 32189.48 18698.73 26194.48 21293.60 27795.65 359
DeepMVS_CXcopyleft86.78 37297.09 28872.30 40295.17 38175.92 39684.34 38695.19 36670.58 38295.35 38679.98 38689.04 33892.68 390
PAPM94.95 23094.00 25497.78 15197.04 28995.65 17096.03 37298.25 22391.23 32494.19 26197.80 23391.27 15598.86 24982.61 37997.61 19098.84 187
CR-MVSNet94.76 23994.15 24396.59 24097.00 29093.43 26994.96 38297.56 29592.46 28096.93 16996.24 33788.15 22397.88 34587.38 35296.65 21398.46 218
RPMNet92.81 31591.34 32497.24 18997.00 29093.43 26994.96 38298.80 9382.27 38996.93 16992.12 39386.98 24999.82 7676.32 39496.65 21398.46 218
UniMVSNet (Re)95.78 17895.19 19097.58 17196.99 29297.47 8098.79 13999.18 2595.60 13093.92 27397.04 29791.68 14098.48 28295.80 16887.66 35296.79 288
test_fmvs293.43 30193.58 28492.95 35696.97 29383.91 38399.19 4497.24 32595.74 12395.20 22498.27 19169.65 38398.72 26296.26 15193.73 27196.24 344
FC-MVSNet-test96.42 14896.05 15097.53 17496.95 29497.27 8799.36 1499.23 2095.83 11893.93 27298.37 17792.00 13398.32 30796.02 16092.72 29297.00 265
tfpnnormal93.66 29792.70 30796.55 24896.94 29595.94 15798.97 8499.19 2491.04 32891.38 34097.34 26884.94 28598.61 27085.45 36589.02 33995.11 367
TESTMET0.1,194.18 28293.69 28095.63 29696.92 29689.12 35196.91 34694.78 38393.17 25594.88 23096.45 33378.52 34598.92 23893.09 25398.50 15698.85 185
TinyColmap92.31 32191.53 32294.65 33196.92 29689.75 33996.92 34496.68 35790.45 33789.62 35597.85 22676.06 36798.81 25586.74 35592.51 29395.41 361
cascas94.63 24793.86 26696.93 21296.91 29894.27 23996.00 37398.51 16885.55 38094.54 23996.23 33984.20 30598.87 24795.80 16896.98 20597.66 246
nrg03096.28 15695.72 16397.96 14196.90 29998.15 5499.39 1198.31 20995.47 13694.42 24898.35 17992.09 13198.69 26397.50 10489.05 33797.04 263
MVS94.67 24593.54 28798.08 13396.88 30096.56 12398.19 23198.50 17378.05 39492.69 31798.02 20991.07 16199.63 13490.09 31898.36 16598.04 234
WR-MVS_H95.05 22194.46 22596.81 22196.86 30195.82 16699.24 3199.24 1793.87 21492.53 32296.84 31790.37 17298.24 31793.24 24987.93 34996.38 339
UniMVSNet_NR-MVSNet95.71 18195.15 19197.40 18396.84 30296.97 10198.74 14599.24 1795.16 15493.88 27597.72 23891.68 14098.31 30995.81 16687.25 35896.92 271
USDC93.33 30592.71 30695.21 31096.83 30390.83 32396.91 34697.50 30593.84 21590.72 34698.14 20177.69 35398.82 25489.51 33293.21 28695.97 352
WB-MVSnew94.19 27994.04 24994.66 33096.82 30492.14 29697.86 27495.96 37093.50 24095.64 21696.77 32088.06 22797.99 33584.87 36896.86 20693.85 385
test-LLR95.10 21894.87 20795.80 29096.77 30589.70 34196.91 34695.21 37895.11 15794.83 23395.72 35887.71 23598.97 22793.06 25498.50 15698.72 196
test-mter94.08 29093.51 28895.80 29096.77 30589.70 34196.91 34695.21 37892.89 26894.83 23395.72 35877.69 35398.97 22793.06 25498.50 15698.72 196
Patchmtry93.22 30892.35 31495.84 28996.77 30593.09 28794.66 38997.56 29587.37 36992.90 31096.24 33788.15 22397.90 34187.37 35390.10 32196.53 323
gg-mvs-nofinetune92.21 32290.58 33097.13 19896.75 30895.09 19895.85 37489.40 40685.43 38194.50 24181.98 40180.80 33298.40 30492.16 27998.33 16697.88 237
XXY-MVS95.20 21394.45 22797.46 17596.75 30896.56 12398.86 11598.65 13593.30 25093.27 29998.27 19184.85 28798.87 24794.82 19991.26 30896.96 268
iter_conf0596.47 14696.48 13596.43 26096.72 31093.98 24898.70 16097.88 27695.76 12195.84 21398.67 14893.01 10598.55 27597.71 8894.02 26496.76 291
CP-MVSNet94.94 23294.30 23396.83 21996.72 31095.56 17399.11 5698.95 4693.89 21292.42 32797.90 22087.19 24598.12 32494.32 21788.21 34696.82 287
PatchT93.06 31391.97 31996.35 26696.69 31292.67 29194.48 39297.08 33286.62 37197.08 16192.23 39287.94 23097.90 34178.89 38996.69 21198.49 217
PS-CasMVS94.67 24593.99 25696.71 22596.68 31395.26 18999.13 5499.03 3793.68 23192.33 32897.95 21785.35 27798.10 32593.59 24188.16 34896.79 288
WR-MVS95.15 21594.46 22597.22 19096.67 31496.45 12798.21 22698.81 8694.15 19893.16 30297.69 24187.51 23998.30 31195.29 18688.62 34396.90 278
baseline295.11 21794.52 22196.87 21796.65 31593.56 26398.27 22294.10 39293.45 24392.02 33597.43 26387.45 24399.19 19693.88 23297.41 19697.87 238
mvsmamba96.57 14296.32 14197.32 18796.60 31696.43 12999.54 697.98 26896.49 8895.20 22498.64 15090.82 16398.55 27597.97 6793.65 27496.98 266
test_040291.32 32790.27 33394.48 33696.60 31691.12 31698.50 19497.22 32686.10 37688.30 36696.98 30477.65 35597.99 33578.13 39192.94 28894.34 374
TransMVSNet (Re)92.67 31791.51 32396.15 27496.58 31894.65 21998.90 9996.73 35490.86 33189.46 35897.86 22485.62 27298.09 32786.45 35781.12 38395.71 357
XVG-ACMP-BASELINE94.54 25394.14 24495.75 29396.55 31991.65 30898.11 24398.44 18494.96 16794.22 25997.90 22079.18 34299.11 20894.05 22893.85 26996.48 334
DU-MVS95.42 19794.76 21097.40 18396.53 32096.97 10198.66 16998.99 4195.43 13893.88 27597.69 24188.57 21298.31 30995.81 16687.25 35896.92 271
NR-MVSNet94.98 22794.16 24297.44 17896.53 32097.22 9498.74 14598.95 4694.96 16789.25 35997.69 24189.32 19198.18 31994.59 20987.40 35596.92 271
tpm94.13 28493.80 27095.12 31396.50 32287.91 37297.44 30595.89 37392.62 27696.37 19996.30 33684.13 30698.30 31193.24 24991.66 30399.14 153
pm-mvs193.94 29593.06 29996.59 24096.49 32395.16 19498.95 9098.03 26592.32 28991.08 34397.84 22784.54 29798.41 29892.16 27986.13 36996.19 347
JIA-IIPM93.35 30392.49 31195.92 28496.48 32490.65 32795.01 38196.96 34385.93 37796.08 20587.33 39887.70 23798.78 25891.35 29895.58 24798.34 224
TranMVSNet+NR-MVSNet95.14 21694.48 22397.11 20096.45 32596.36 13699.03 7199.03 3795.04 16293.58 28597.93 21888.27 22098.03 33194.13 22386.90 36396.95 270
testgi93.06 31392.45 31394.88 32296.43 32689.90 33798.75 14297.54 30195.60 13091.63 33997.91 21974.46 37597.02 36586.10 35993.67 27297.72 244
v1094.29 27393.55 28696.51 25196.39 32794.80 21598.99 8198.19 23091.35 31793.02 30896.99 30388.09 22598.41 29890.50 31488.41 34596.33 342
v894.47 26293.77 27396.57 24396.36 32894.83 21399.05 6598.19 23091.92 30093.16 30296.97 30588.82 20998.48 28291.69 29487.79 35096.39 338
GG-mvs-BLEND96.59 24096.34 32994.98 20496.51 36688.58 40793.10 30794.34 37880.34 33698.05 33089.53 33196.99 20296.74 294
V4294.78 23894.14 24496.70 22796.33 33095.22 19298.97 8498.09 25592.32 28994.31 25497.06 29488.39 21898.55 27592.90 26188.87 34196.34 340
PEN-MVS94.42 26593.73 27796.49 25296.28 33194.84 21199.17 4799.00 3993.51 23992.23 33097.83 23086.10 26497.90 34192.55 27286.92 36296.74 294
v114494.59 25093.92 25996.60 23996.21 33294.78 21798.59 17898.14 24391.86 30394.21 26097.02 30087.97 22998.41 29891.72 29389.57 32796.61 311
Baseline_NR-MVSNet94.35 26893.81 26995.96 28396.20 33394.05 24698.61 17796.67 35891.44 31393.85 27797.60 25088.57 21298.14 32294.39 21386.93 36195.68 358
MS-PatchMatch93.84 29693.63 28294.46 33896.18 33489.45 34697.76 28398.27 21892.23 29292.13 33297.49 25779.50 33998.69 26389.75 32699.38 11595.25 363
v2v48294.69 24094.03 25096.65 23096.17 33594.79 21698.67 16798.08 25692.72 27394.00 27097.16 28187.69 23898.45 28792.91 26088.87 34196.72 297
EPNet_dtu95.21 21294.95 20395.99 28096.17 33590.45 33098.16 23797.27 32396.77 7593.14 30598.33 18490.34 17398.42 29185.57 36398.81 14299.09 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS95.69 18495.33 18396.76 22396.16 33794.63 22198.43 20398.39 19496.64 8395.02 22898.78 13185.15 28299.05 21695.21 19094.20 25696.60 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v119294.32 27093.58 28496.53 24996.10 33894.45 23098.50 19498.17 23891.54 31094.19 26197.06 29486.95 25098.43 29090.14 31789.57 32796.70 301
v14894.29 27393.76 27595.91 28596.10 33892.93 28998.58 18097.97 26992.59 27893.47 29296.95 30988.53 21698.32 30792.56 27187.06 36096.49 332
v14419294.39 26793.70 27996.48 25496.06 34094.35 23698.58 18098.16 24091.45 31294.33 25397.02 30087.50 24198.45 28791.08 30489.11 33696.63 309
DTE-MVSNet93.98 29493.26 29796.14 27596.06 34094.39 23499.20 4298.86 7593.06 26191.78 33697.81 23285.87 26997.58 35590.53 31386.17 36796.46 336
v124094.06 29293.29 29696.34 26796.03 34293.90 25198.44 20198.17 23891.18 32794.13 26497.01 30286.05 26598.42 29189.13 33889.50 33196.70 301
APD_test188.22 35088.01 35088.86 36995.98 34374.66 40197.21 32596.44 36383.96 38686.66 37697.90 22060.95 39797.84 34782.73 37790.23 31994.09 380
v192192094.20 27893.47 29096.40 26495.98 34394.08 24598.52 18998.15 24191.33 31894.25 25797.20 28086.41 25998.42 29190.04 32289.39 33396.69 306
EU-MVSNet93.66 29794.14 24492.25 36295.96 34583.38 38698.52 18998.12 24594.69 17892.61 31998.13 20287.36 24496.39 37891.82 29090.00 32296.98 266
v7n94.19 27993.43 29296.47 25595.90 34694.38 23599.26 2898.34 20591.99 29892.76 31497.13 28288.31 21998.52 28089.48 33387.70 35196.52 326
gm-plane-assit95.88 34787.47 37489.74 35096.94 31099.19 19693.32 248
LF4IMVS93.14 31292.79 30594.20 34195.88 34788.67 36097.66 29297.07 33493.81 21891.71 33797.65 24577.96 35298.81 25591.47 29791.92 29995.12 366
PS-MVSNAJss96.43 14796.26 14496.92 21595.84 34995.08 19999.16 4898.50 17395.87 11693.84 27898.34 18394.51 8198.61 27096.88 12993.45 28097.06 262
pmmvs494.69 24093.99 25696.81 22195.74 35095.94 15797.40 30897.67 28690.42 33893.37 29697.59 25189.08 19998.20 31892.97 25891.67 30296.30 343
test_djsdf96.00 16595.69 16996.93 21295.72 35195.49 17799.47 898.40 19294.98 16594.58 23897.86 22489.16 19698.41 29896.91 12394.12 26196.88 280
SixPastTwentyTwo93.34 30492.86 30394.75 32795.67 35289.41 34898.75 14296.67 35893.89 21290.15 35298.25 19480.87 33098.27 31690.90 30990.64 31496.57 316
K. test v392.55 31891.91 32194.48 33695.64 35389.24 34999.07 6294.88 38294.04 20286.78 37497.59 25177.64 35697.64 35292.08 28189.43 33296.57 316
OurMVSNet-221017-094.21 27794.00 25494.85 32395.60 35489.22 35098.89 10397.43 31495.29 14792.18 33198.52 16482.86 31798.59 27393.46 24491.76 30096.74 294
mvs_tets95.41 19995.00 19996.65 23095.58 35594.42 23299.00 7898.55 15895.73 12593.21 30198.38 17683.45 31698.63 26997.09 11694.00 26596.91 276
Gipumacopyleft78.40 36776.75 37083.38 38095.54 35680.43 39279.42 40597.40 31664.67 40273.46 39980.82 40345.65 40293.14 39766.32 40187.43 35476.56 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 194.08 29093.51 28895.80 29095.53 35792.89 29097.38 31095.97 36995.11 15792.51 32496.66 32487.71 23596.94 36787.03 35493.67 27297.57 250
pmmvs593.65 29992.97 30295.68 29495.49 35892.37 29398.20 22897.28 32289.66 35192.58 32097.26 27382.14 32098.09 32793.18 25290.95 31296.58 314
test_fmvsmconf0.01_n97.86 7297.54 8298.83 6995.48 35996.83 10898.95 9098.60 14198.58 698.93 5899.55 688.57 21299.91 3999.54 1199.61 7699.77 27
N_pmnet87.12 35587.77 35385.17 37595.46 36061.92 41197.37 31270.66 41685.83 37888.73 36596.04 34785.33 27997.76 34980.02 38490.48 31595.84 354
our_test_393.65 29993.30 29594.69 32895.45 36189.68 34396.91 34697.65 28791.97 29991.66 33896.88 31389.67 18497.93 34088.02 34991.49 30496.48 334
ppachtmachnet_test93.22 30892.63 30894.97 31895.45 36190.84 32296.88 35297.88 27690.60 33392.08 33397.26 27388.08 22697.86 34685.12 36790.33 31696.22 345
jajsoiax95.45 19595.03 19896.73 22495.42 36394.63 22199.14 5198.52 16695.74 12393.22 30098.36 17883.87 31298.65 26896.95 12294.04 26296.91 276
dmvs_testset87.64 35288.93 34583.79 37895.25 36463.36 41097.20 32691.17 40293.07 26085.64 38295.98 35185.30 28191.52 40069.42 39987.33 35696.49 332
MDA-MVSNet-bldmvs89.97 34188.35 34794.83 32595.21 36591.34 31297.64 29497.51 30488.36 36571.17 40296.13 34479.22 34196.63 37583.65 37586.27 36696.52 326
dongtai82.47 36081.88 36384.22 37795.19 36676.03 39494.59 39174.14 41582.63 38787.19 37296.09 34564.10 39387.85 40558.91 40384.11 37488.78 397
anonymousdsp95.42 19794.91 20496.94 21195.10 36795.90 16399.14 5198.41 19093.75 22093.16 30297.46 25987.50 24198.41 29895.63 17694.03 26396.50 331
EPNet97.28 11196.87 11598.51 9094.98 36896.14 14698.90 9997.02 34098.28 1095.99 20899.11 8491.36 15099.89 4796.98 11999.19 12399.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo94.28 27593.92 25995.35 30794.95 36992.60 29297.97 25997.65 28791.61 30990.68 34797.09 28786.32 26198.42 29189.70 32899.34 11795.02 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lessismore_v094.45 33994.93 37088.44 36591.03 40386.77 37597.64 24776.23 36698.42 29190.31 31685.64 37096.51 329
MDA-MVSNet_test_wron90.71 33589.38 34094.68 32994.83 37190.78 32497.19 32897.46 30887.60 36772.41 40195.72 35886.51 25596.71 37385.92 36186.80 36496.56 318
EGC-MVSNET75.22 37069.54 37392.28 36194.81 37289.58 34497.64 29496.50 3621.82 4135.57 41495.74 35468.21 38596.26 37973.80 39691.71 30190.99 391
YYNet190.70 33689.39 33994.62 33294.79 37390.65 32797.20 32697.46 30887.54 36872.54 40095.74 35486.51 25596.66 37486.00 36086.76 36596.54 321
EG-PatchMatch MVS91.13 33190.12 33494.17 34394.73 37489.00 35498.13 24097.81 28089.22 35985.32 38496.46 33267.71 38898.42 29187.89 35193.82 27095.08 368
pmmvs691.77 32490.63 32995.17 31294.69 37591.24 31598.67 16797.92 27486.14 37589.62 35597.56 25575.79 36898.34 30590.75 31184.56 37195.94 353
new_pmnet90.06 34089.00 34493.22 35394.18 37688.32 36796.42 36896.89 34986.19 37485.67 38193.62 38177.18 36097.10 36481.61 38189.29 33494.23 376
DSMNet-mixed92.52 32092.58 31092.33 36094.15 37782.65 38898.30 21794.26 38989.08 36092.65 31895.73 35685.01 28495.76 38486.24 35897.76 18598.59 211
UnsupCasMVSNet_eth90.99 33389.92 33694.19 34294.08 37889.83 33897.13 33598.67 12893.69 22985.83 38096.19 34275.15 37096.74 37089.14 33779.41 39096.00 351
KD-MVS_2432*160089.61 34487.96 35194.54 33394.06 37991.59 30995.59 37897.63 28989.87 34788.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
miper_refine_blended89.61 34487.96 35194.54 33394.06 37991.59 30995.59 37897.63 28989.87 34788.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
Anonymous2023120691.66 32591.10 32593.33 35094.02 38187.35 37598.58 18097.26 32490.48 33590.16 35196.31 33583.83 31396.53 37679.36 38789.90 32396.12 348
Anonymous2024052191.18 33090.44 33193.42 34793.70 38288.47 36498.94 9397.56 29588.46 36489.56 35795.08 36977.15 36196.97 36683.92 37489.55 32994.82 372
test20.0390.89 33490.38 33292.43 35893.48 38388.14 37098.33 21097.56 29593.40 24587.96 36796.71 32380.69 33394.13 39379.15 38886.17 36795.01 371
CMPMVSbinary66.06 2189.70 34289.67 33889.78 36793.19 38476.56 39397.00 34098.35 20380.97 39181.57 39097.75 23574.75 37298.61 27089.85 32493.63 27594.17 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft86.42 2089.00 34787.43 35593.69 34593.08 38589.42 34797.91 26596.89 34978.58 39385.86 37994.69 37169.48 38498.29 31477.13 39293.29 28593.36 387
KD-MVS_self_test90.38 33789.38 34093.40 34992.85 38688.94 35797.95 26097.94 27290.35 34090.25 35093.96 37979.82 33795.94 38384.62 37376.69 39695.33 362
MIMVSNet189.67 34388.28 34893.82 34492.81 38791.08 31798.01 25497.45 31287.95 36687.90 36895.87 35267.63 38994.56 39278.73 39088.18 34795.83 355
kuosan78.45 36677.69 36780.72 38592.73 38875.32 39894.63 39074.51 41475.96 39580.87 39393.19 38663.23 39579.99 40942.56 40981.56 38286.85 401
UnsupCasMVSNet_bld87.17 35385.12 36093.31 35191.94 38988.77 35894.92 38498.30 21584.30 38582.30 38890.04 39563.96 39497.25 36285.85 36274.47 40093.93 384
CL-MVSNet_self_test90.11 33989.14 34293.02 35591.86 39088.23 36996.51 36698.07 25890.49 33490.49 34994.41 37484.75 29095.34 38780.79 38374.95 39895.50 360
Patchmatch-RL test91.49 32690.85 32793.41 34891.37 39184.40 38192.81 39695.93 37291.87 30287.25 37094.87 37088.99 20196.53 37692.54 27382.00 37899.30 125
test_fmvs387.17 35387.06 35687.50 37191.21 39275.66 39699.05 6596.61 36192.79 27288.85 36392.78 38843.72 40393.49 39493.95 22984.56 37193.34 388
pmmvs-eth3d90.36 33889.05 34394.32 34091.10 39392.12 29797.63 29796.95 34488.86 36284.91 38593.13 38778.32 34796.74 37088.70 34181.81 38094.09 380
PM-MVS87.77 35186.55 35791.40 36591.03 39483.36 38796.92 34495.18 38091.28 32286.48 37893.42 38353.27 40096.74 37089.43 33481.97 37994.11 379
new-patchmatchnet88.50 34987.45 35491.67 36490.31 39585.89 38097.16 33397.33 31989.47 35483.63 38792.77 38976.38 36495.06 39082.70 37877.29 39594.06 382
mvsany_test388.80 34888.04 34991.09 36689.78 39681.57 39197.83 27995.49 37593.81 21887.53 36993.95 38056.14 39997.43 35994.68 20283.13 37594.26 375
WB-MVS84.86 35885.33 35983.46 37989.48 39769.56 40598.19 23196.42 36489.55 35381.79 38994.67 37284.80 28890.12 40152.44 40580.64 38790.69 392
test_f86.07 35785.39 35888.10 37089.28 39875.57 39797.73 28696.33 36589.41 35785.35 38391.56 39443.31 40595.53 38591.32 29984.23 37393.21 389
SSC-MVS84.27 35984.71 36282.96 38389.19 39968.83 40698.08 24796.30 36689.04 36181.37 39194.47 37384.60 29589.89 40249.80 40779.52 38990.15 393
pmmvs386.67 35684.86 36192.11 36388.16 40087.19 37796.63 36294.75 38479.88 39287.22 37192.75 39066.56 39195.20 38981.24 38276.56 39793.96 383
testf179.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
APD_test279.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
ambc89.49 36886.66 40375.78 39592.66 39796.72 35586.55 37792.50 39146.01 40197.90 34190.32 31582.09 37794.80 373
test_vis3_rt79.22 36177.40 36884.67 37686.44 40474.85 40097.66 29281.43 41184.98 38267.12 40481.91 40228.09 41397.60 35388.96 33980.04 38881.55 402
test_method79.03 36278.17 36481.63 38486.06 40554.40 41682.75 40496.89 34939.54 40880.98 39295.57 36258.37 39894.73 39184.74 37278.61 39195.75 356
TDRefinement91.06 33289.68 33795.21 31085.35 40691.49 31198.51 19397.07 33491.47 31188.83 36497.84 22777.31 35799.09 21392.79 26477.98 39495.04 369
PMMVS277.95 36875.44 37285.46 37482.54 40774.95 39994.23 39493.08 39772.80 39874.68 39687.38 39736.36 40891.56 39973.95 39563.94 40489.87 394
E-PMN64.94 37464.25 37667.02 39182.28 40859.36 41491.83 39985.63 40852.69 40560.22 40677.28 40541.06 40680.12 40846.15 40841.14 40661.57 407
EMVS64.07 37563.26 37866.53 39281.73 40958.81 41591.85 39884.75 40951.93 40759.09 40775.13 40643.32 40479.09 41042.03 41039.47 40761.69 406
FPMVS77.62 36977.14 36979.05 38779.25 41060.97 41295.79 37595.94 37165.96 40167.93 40394.40 37537.73 40788.88 40468.83 40088.46 34487.29 398
wuyk23d30.17 37730.18 38130.16 39378.61 41143.29 41866.79 40614.21 41717.31 41014.82 41311.93 41311.55 41641.43 41237.08 41119.30 4105.76 410
LCM-MVSNet78.70 36576.24 37186.08 37377.26 41271.99 40394.34 39396.72 35561.62 40376.53 39589.33 39633.91 41192.78 39881.85 38074.60 39993.46 386
MVEpermissive62.14 2263.28 37659.38 37974.99 38874.33 41365.47 40985.55 40280.50 41252.02 40651.10 40875.00 40710.91 41780.50 40751.60 40653.40 40578.99 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 37165.37 37580.22 38665.99 41471.96 40490.91 40090.09 40582.62 38849.93 40978.39 40429.36 41281.75 40662.49 40238.52 40886.95 400
PMVScopyleft61.03 2365.95 37363.57 37773.09 39057.90 41551.22 41785.05 40393.93 39354.45 40444.32 41083.57 39913.22 41489.15 40358.68 40481.00 38478.91 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt68.90 37266.97 37474.68 38950.78 41659.95 41387.13 40183.47 41038.80 40962.21 40596.23 33964.70 39276.91 41188.91 34030.49 40987.19 399
testmvs21.48 37924.95 38211.09 39514.89 4176.47 42096.56 3649.87 4187.55 41117.93 41139.02 4099.43 4185.90 41416.56 41312.72 41120.91 409
test12320.95 38023.72 38312.64 39413.54 4188.19 41996.55 3656.13 4197.48 41216.74 41237.98 41012.97 4156.05 41316.69 4125.43 41223.68 408
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.98 37831.98 3800.00 3960.00 4190.00 4210.00 40798.59 1440.00 4140.00 41598.61 15290.60 1690.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.88 38210.50 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41494.51 810.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.20 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.43 1690.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.94 31988.66 342
PC_three_145295.08 16199.60 1999.16 7797.86 298.47 28597.52 10399.72 5599.74 37
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4399.80 2399.83 13
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3999.86 199.85 10
GSMVS99.20 139
sam_mvs189.45 18899.20 139
sam_mvs88.99 201
MTGPAbinary98.74 108
test_post196.68 36130.43 41287.85 23498.69 26392.59 269
test_post31.83 41188.83 20898.91 240
patchmatchnet-post95.10 36889.42 18998.89 244
MTMP98.89 10394.14 391
test9_res96.39 14999.57 8499.69 56
agg_prior295.87 16599.57 8499.68 61
test_prior498.01 6197.86 274
test_prior297.80 28096.12 10697.89 12898.69 14495.96 3796.89 12799.60 78
旧先验297.57 30091.30 32098.67 7799.80 8895.70 174
新几何297.64 294
无先验97.58 29998.72 11391.38 31499.87 5893.36 24799.60 77
原ACMM297.67 291
testdata299.89 4791.65 295
segment_acmp96.85 14
testdata197.32 31896.34 97
plane_prior598.56 15599.03 22096.07 15594.27 25396.92 271
plane_prior498.28 188
plane_prior394.61 22497.02 6495.34 219
plane_prior298.80 13497.28 45
plane_prior94.60 22698.44 20196.74 7894.22 255
n20.00 420
nn0.00 420
door-mid94.37 387
test1198.66 131
door94.64 385
HQP5-MVS94.25 241
BP-MVS95.30 184
HQP4-MVS94.45 24398.96 23196.87 282
HQP3-MVS98.46 18094.18 257
HQP2-MVS86.75 252
MDTV_nov1_ep13_2view84.26 38296.89 35190.97 32997.90 12789.89 18093.91 23199.18 148
ACMMP++_ref92.97 287
ACMMP++93.61 276
Test By Simon94.64 78