This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
region2R97.07 2296.84 2497.77 3599.46 193.79 5498.52 1098.24 3593.19 7597.14 3898.34 3891.59 5399.87 795.46 6299.59 1599.64 10
MSP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 10894.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 40
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
ACMMPR97.07 2296.84 2497.79 3299.44 593.88 5198.52 1098.31 2293.21 7297.15 3798.33 4191.35 5699.86 895.63 5499.59 1599.62 13
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
IU-MVS99.42 695.39 997.94 9890.40 16698.94 597.41 799.66 899.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4498.52 1098.32 2093.21 7297.18 3598.29 4792.08 3899.83 2295.63 5499.59 1599.54 28
#test#97.02 2696.75 3197.83 2699.42 694.12 4498.15 3798.32 2092.57 9997.18 3598.29 4792.08 3899.83 2295.12 6899.59 1599.54 28
DVP-MVS97.59 797.54 597.73 3899.40 1193.77 5798.53 998.29 2495.55 598.56 1297.81 7893.90 1299.65 5396.62 2099.21 6599.77 1
mPP-MVS96.86 3596.60 3797.64 4699.40 1193.44 6498.50 1398.09 6493.27 7195.95 8098.33 4191.04 6399.88 495.20 6599.57 2099.60 16
MP-MVScopyleft96.77 4096.45 4697.72 3999.39 1393.80 5398.41 1898.06 7393.37 6795.54 9798.34 3890.59 7199.88 494.83 7899.54 2399.49 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS97.18 1696.96 1897.81 3099.38 1494.03 4998.59 798.20 4394.85 2496.59 5498.29 4791.70 4999.80 2795.66 4999.40 4599.62 13
X-MVStestdata91.71 19089.67 24797.81 3099.38 1494.03 4998.59 798.20 4394.85 2496.59 5432.69 34791.70 4999.80 2795.66 4999.40 4599.62 13
ZNCC-MVS96.96 3096.67 3597.85 2599.37 1694.12 4498.49 1498.18 4792.64 9896.39 6498.18 5591.61 5199.88 495.59 5999.55 2199.57 19
zzz-MVS97.07 2296.77 3097.97 2299.37 1694.42 3197.15 13298.08 6595.07 1996.11 7198.59 1590.88 6799.90 196.18 3899.50 3299.58 17
MTAPA97.08 2196.78 2997.97 2299.37 1694.42 3197.24 11998.08 6595.07 1996.11 7198.59 1590.88 6799.90 196.18 3899.50 3299.58 17
GST-MVS96.85 3696.52 4297.82 2999.36 1994.14 4398.29 2498.13 5592.72 9596.70 4698.06 6091.35 5699.86 894.83 7899.28 5799.47 43
HPM-MVScopyleft96.69 4396.45 4697.40 5399.36 1993.11 7398.87 198.06 7391.17 14296.40 6397.99 6590.99 6499.58 6995.61 5699.61 1499.49 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS96.81 3896.53 4197.65 4499.35 2193.53 6297.65 8098.98 192.22 10597.14 3898.44 2591.17 6199.85 1494.35 8799.46 3899.57 19
CP-MVS97.02 2696.81 2797.64 4699.33 2293.54 6198.80 398.28 2692.99 8196.45 6298.30 4691.90 4499.85 1495.61 5699.68 499.54 28
HPM-MVS_fast96.51 4996.27 5097.22 6499.32 2392.74 8198.74 498.06 7390.57 16296.77 4598.35 3590.21 7599.53 8594.80 8199.63 1299.38 53
MCST-MVS97.18 1696.84 2498.20 1099.30 2495.35 1297.12 13498.07 7093.54 6496.08 7397.69 8693.86 1399.71 3896.50 2499.39 4799.55 26
test_part299.28 2595.74 698.10 17
CPTT-MVS95.57 7495.19 7696.70 7599.27 2691.48 11798.33 2198.11 6087.79 23695.17 10298.03 6287.09 11499.61 6193.51 10499.42 4399.02 80
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3898.07 4397.85 10893.72 5698.57 1198.35 3593.69 1599.40 10497.06 899.46 3899.44 46
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG96.05 6195.91 5896.46 9199.24 2890.47 15498.30 2398.57 1189.01 19493.97 12297.57 9992.62 2899.76 3094.66 8499.27 5999.15 69
ACMMPcopyleft96.27 5695.93 5797.28 5999.24 2892.62 8598.25 2898.81 392.99 8194.56 11098.39 3288.96 8599.85 1494.57 8697.63 11599.36 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss96.70 4296.27 5097.98 2199.23 3094.71 2696.96 14798.06 7390.67 15395.55 9598.78 1091.07 6299.86 896.58 2299.55 2199.38 53
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DP-MVS Recon95.68 7095.12 7997.37 5499.19 3194.19 3997.03 13698.08 6588.35 21895.09 10497.65 9089.97 7999.48 9492.08 13098.59 9398.44 132
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 12698.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
testtj96.93 3396.56 4098.05 1799.10 3494.66 2797.78 6498.22 4092.74 9497.59 2498.20 5491.96 4399.86 894.21 8999.25 6199.63 11
SR-MVS97.01 2896.86 2297.47 5199.09 3593.27 7097.98 4798.07 7093.75 5597.45 2898.48 2291.43 5599.59 6696.22 3299.27 5999.54 28
ACMMP_NAP97.20 1596.86 2298.23 899.09 3595.16 2097.60 8698.19 4592.82 9197.93 2098.74 1191.60 5299.86 896.26 2999.52 2599.67 8
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3796.16 297.55 9097.97 9595.59 496.61 5297.89 6892.57 3099.84 1995.95 4399.51 2999.40 50
114514_t93.95 11793.06 12796.63 7899.07 3891.61 11297.46 10097.96 9677.99 32993.00 14397.57 9986.14 12899.33 10989.22 18499.15 6998.94 91
SMA-MVS97.35 1297.03 1498.30 699.06 3995.42 897.94 5098.18 4790.57 16298.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
APD-MVScopyleft96.95 3196.60 3798.01 1999.03 4094.93 2497.72 7298.10 6291.50 12698.01 1898.32 4392.33 3499.58 6994.85 7699.51 2999.53 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS97.39 1097.13 1198.17 1199.02 4195.28 1798.23 3198.27 2892.37 10398.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 33
APD-MVS_3200maxsize96.81 3896.71 3397.12 6899.01 4292.31 9297.98 4798.06 7393.11 7897.44 2998.55 1990.93 6599.55 8096.06 4099.25 6199.51 33
9.1496.75 3198.93 4397.73 6998.23 3991.28 13897.88 2298.44 2593.00 2199.65 5395.76 4899.47 36
CDPH-MVS95.97 6495.38 7197.77 3598.93 4394.44 3096.35 20097.88 10286.98 25596.65 5097.89 6891.99 4299.47 9592.26 12199.46 3899.39 51
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4594.28 3497.02 13997.22 17795.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 33
save fliter98.91 4594.28 3497.02 13998.02 8495.35 8
ETH3 D test640096.16 5995.52 6598.07 1698.90 4795.06 2297.03 13698.21 4188.16 22596.64 5197.70 8591.18 6099.67 4992.44 12099.47 3699.48 40
ETH3D-3000-0.197.07 2296.71 3398.14 1398.90 4795.33 1497.68 7698.24 3591.57 12497.90 2198.37 3392.61 2999.66 5295.59 5999.51 2999.43 48
CNVR-MVS97.68 597.44 898.37 598.90 4795.86 497.27 11798.08 6595.81 397.87 2398.31 4494.26 1099.68 4797.02 999.49 3499.57 19
abl_696.40 5296.21 5296.98 7298.89 5092.20 9797.89 5398.03 8393.34 7097.22 3498.42 2887.93 9999.72 3595.10 6999.07 7699.02 80
PAPM_NR95.01 8794.59 8996.26 10698.89 5090.68 14997.24 11997.73 11591.80 11992.93 14896.62 14989.13 8499.14 12689.21 18597.78 11298.97 87
OPU-MVS98.55 198.82 5296.86 198.25 2898.26 5096.04 199.24 11695.36 6399.59 1599.56 22
NCCC97.30 1497.03 1498.11 1498.77 5395.06 2297.34 10998.04 8195.96 297.09 4297.88 7093.18 2099.71 3895.84 4699.17 6899.56 22
DP-MVS92.76 16091.51 17896.52 8398.77 5390.99 13797.38 10796.08 25082.38 30689.29 23197.87 7183.77 15599.69 4481.37 29396.69 14198.89 97
MSLP-MVS++96.94 3297.06 1396.59 8198.72 5591.86 10797.67 7798.49 1294.66 3597.24 3398.41 3192.31 3698.94 14696.61 2199.46 3898.96 88
TEST998.70 5694.19 3996.41 19298.02 8488.17 22396.03 7497.56 10192.74 2499.59 66
train_agg96.30 5595.83 6097.72 3998.70 5694.19 3996.41 19298.02 8488.58 21196.03 7497.56 10192.73 2599.59 6695.04 7099.37 5299.39 51
test_898.67 5894.06 4896.37 19998.01 8788.58 21195.98 7997.55 10392.73 2599.58 69
agg_prior196.22 5895.77 6197.56 4898.67 5893.79 5496.28 20898.00 8988.76 20895.68 8997.55 10392.70 2799.57 7795.01 7199.32 5399.32 57
agg_prior98.67 5893.79 5498.00 8995.68 8999.57 77
test_prior396.46 5196.20 5397.23 6298.67 5892.99 7596.35 20098.00 8992.80 9296.03 7497.59 9792.01 4099.41 10295.01 7199.38 4899.29 59
test_prior97.23 6298.67 5892.99 7598.00 8999.41 10299.29 59
DeepC-MVS_fast93.89 296.93 3396.64 3697.78 3398.64 6394.30 3397.41 10198.04 8194.81 2996.59 5498.37 3391.24 5899.64 6095.16 6699.52 2599.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何197.32 5698.60 6493.59 6097.75 11381.58 31295.75 8697.85 7490.04 7899.67 4986.50 23599.13 7198.69 112
原ACMM196.38 9798.59 6591.09 13697.89 10087.41 24795.22 10197.68 8790.25 7399.54 8287.95 20499.12 7498.49 124
AdaColmapbinary94.34 10493.68 10996.31 10198.59 6591.68 11196.59 18397.81 11089.87 17392.15 16197.06 12283.62 15799.54 8289.34 17998.07 10597.70 167
PLCcopyleft91.00 694.11 11193.43 11996.13 11198.58 6791.15 13596.69 17297.39 16287.29 25091.37 17396.71 13588.39 9499.52 8987.33 22397.13 13397.73 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
112194.71 10093.83 10497.34 5598.57 6893.64 5996.04 22197.73 11581.56 31395.68 8997.85 7490.23 7499.65 5387.68 21399.12 7498.73 108
SD-MVS97.41 997.53 697.06 6998.57 6894.46 2997.92 5298.14 5494.82 2899.01 398.55 1994.18 1197.41 29196.94 1099.64 1199.32 57
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1297.65 4498.46 7094.26 3697.66 12495.52 9890.89 6699.46 9699.25 6199.22 64
MVS_111021_HR96.68 4596.58 3996.99 7198.46 7092.31 9296.20 21598.90 294.30 4495.86 8297.74 8392.33 3499.38 10796.04 4199.42 4399.28 62
OMC-MVS95.09 8694.70 8796.25 10798.46 7091.28 12496.43 19097.57 13392.04 11494.77 10897.96 6787.01 11599.09 13291.31 14896.77 13798.36 139
MG-MVS95.61 7295.38 7196.31 10198.42 7390.53 15296.04 22197.48 14193.47 6595.67 9298.10 5789.17 8399.25 11591.27 14998.77 8699.13 71
PHI-MVS96.77 4096.46 4597.71 4198.40 7494.07 4798.21 3498.45 1589.86 17497.11 4198.01 6492.52 3299.69 4496.03 4299.53 2499.36 55
F-COLMAP93.58 12992.98 12895.37 15098.40 7488.98 20197.18 12897.29 17387.75 23990.49 19097.10 12085.21 13799.50 9286.70 23296.72 14097.63 169
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 7694.25 3798.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
旧先验198.38 7793.38 6697.75 11398.09 5892.30 3799.01 7999.16 67
CNLPA94.28 10593.53 11496.52 8398.38 7792.55 8796.59 18396.88 21190.13 17091.91 16597.24 11385.21 13799.09 13287.64 21697.83 11097.92 155
Regformer-396.85 3696.80 2897.01 7098.34 7992.02 10396.96 14797.76 11295.01 2197.08 4398.42 2891.71 4899.54 8296.80 1499.13 7199.48 40
Regformer-496.97 2996.87 2197.25 6198.34 7992.66 8496.96 14798.01 8795.12 1797.14 3898.42 2891.82 4599.61 6196.90 1199.13 7199.50 36
TAPA-MVS90.10 792.30 17391.22 18995.56 13898.33 8189.60 17396.79 16397.65 12681.83 31091.52 17097.23 11487.94 9898.91 14971.31 33198.37 9798.17 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Regformer-197.10 2096.96 1897.54 4998.32 8293.48 6396.83 15997.99 9395.20 1397.46 2798.25 5192.48 3399.58 6996.79 1699.29 5599.55 26
Regformer-297.16 1896.99 1697.67 4398.32 8293.84 5296.83 15998.10 6295.24 1197.49 2698.25 5192.57 3099.61 6196.80 1499.29 5599.56 22
TSAR-MVS + GP.96.69 4396.49 4397.27 6098.31 8493.39 6596.79 16396.72 22094.17 4597.44 2997.66 8992.76 2399.33 10996.86 1397.76 11499.08 77
CHOSEN 1792x268894.15 10893.51 11596.06 11498.27 8589.38 18595.18 26198.48 1485.60 27393.76 12697.11 11983.15 16499.61 6191.33 14798.72 8899.19 65
PVSNet_BlendedMVS94.06 11393.92 10294.47 18498.27 8589.46 18296.73 16798.36 1690.17 16894.36 11395.24 21488.02 9699.58 6993.44 10690.72 23194.36 298
PVSNet_Blended94.87 9594.56 9095.81 12498.27 8589.46 18295.47 24798.36 1688.84 20294.36 11396.09 17488.02 9699.58 6993.44 10698.18 10298.40 135
ETH3D cwj APD-0.1696.56 4896.06 5598.05 1798.26 8895.19 1896.99 14498.05 8089.85 17697.26 3298.22 5391.80 4699.69 4494.84 7799.28 5799.27 63
Anonymous2023121190.63 24189.42 25194.27 19298.24 8989.19 19798.05 4497.89 10079.95 32188.25 25694.96 22172.56 29298.13 20789.70 17085.14 28695.49 234
EI-MVSNet-Vis-set96.51 4996.47 4496.63 7898.24 8991.20 13096.89 15497.73 11594.74 3396.49 5898.49 2190.88 6799.58 6996.44 2798.32 9899.13 71
test22298.24 8992.21 9595.33 25297.60 13079.22 32595.25 10097.84 7788.80 8899.15 6998.72 109
HyFIR lowres test93.66 12692.92 13095.87 12298.24 8989.88 16894.58 26998.49 1285.06 28093.78 12595.78 18982.86 17398.67 16991.77 13695.71 15899.07 79
MVS_111021_LR96.24 5796.19 5496.39 9698.23 9391.35 12396.24 21398.79 493.99 4995.80 8497.65 9089.92 8099.24 11695.87 4499.20 6698.58 115
EI-MVSNet-UG-set96.34 5496.30 4996.47 8998.20 9490.93 14196.86 15597.72 11894.67 3496.16 7098.46 2390.43 7299.58 6996.23 3197.96 10898.90 95
PVSNet_Blended_VisFu95.27 8094.91 8296.38 9798.20 9490.86 14397.27 11798.25 3490.21 16794.18 11797.27 11187.48 10899.73 3293.53 10397.77 11398.55 116
Anonymous20240521192.07 18390.83 20195.76 12598.19 9688.75 20597.58 8795.00 29086.00 26993.64 12797.45 10566.24 32499.53 8590.68 15692.71 19799.01 84
PatchMatch-RL92.90 15392.02 15995.56 13898.19 9690.80 14595.27 25797.18 17887.96 22991.86 16795.68 19680.44 21698.99 14284.01 26997.54 11796.89 189
testdata95.46 14898.18 9888.90 20397.66 12482.73 30597.03 4498.07 5990.06 7798.85 15389.67 17198.98 8098.64 114
Anonymous2024052991.98 18590.73 20495.73 13098.14 9989.40 18497.99 4697.72 11879.63 32393.54 13097.41 10769.94 30899.56 7991.04 15291.11 22498.22 143
LFMVS93.60 12892.63 13996.52 8398.13 10091.27 12597.94 5093.39 32290.57 16296.29 6698.31 4469.00 31099.16 12394.18 9095.87 15399.12 74
DeepPCF-MVS93.97 196.61 4697.09 1295.15 15598.09 10186.63 25596.00 22598.15 5295.43 697.95 1998.56 1793.40 1699.36 10896.77 1799.48 3599.45 44
DPM-MVS95.69 6994.92 8198.01 1998.08 10295.71 795.27 25797.62 12990.43 16595.55 9597.07 12191.72 4799.50 9289.62 17398.94 8298.82 103
VNet95.89 6695.45 6897.21 6598.07 10392.94 7897.50 9398.15 5293.87 5197.52 2597.61 9685.29 13699.53 8595.81 4795.27 16499.16 67
MAR-MVS94.22 10693.46 11796.51 8698.00 10492.19 9897.67 7797.47 14488.13 22793.00 14395.84 18284.86 14299.51 9087.99 20398.17 10397.83 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS93.07 396.06 6095.66 6297.29 5897.96 10593.17 7297.30 11598.06 7393.92 5093.38 13598.66 1286.83 11699.73 3295.60 5899.22 6498.96 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft87.81 1590.40 24689.28 25493.79 21797.95 10687.13 24496.92 15195.89 25582.83 30486.88 28597.18 11573.77 28899.29 11378.44 30993.62 18994.95 266
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest90.23 25088.98 25893.98 20397.94 10786.64 25296.51 18795.54 26785.38 27485.49 29596.77 13370.28 30599.15 12480.02 29992.87 19496.15 208
TestCases93.98 20397.94 10786.64 25295.54 26785.38 27485.49 29596.77 13370.28 30599.15 12480.02 29992.87 19496.15 208
thres100view90092.43 16691.58 17394.98 16397.92 10989.37 18697.71 7494.66 30292.20 10793.31 13794.90 22578.06 25899.08 13481.40 29094.08 18196.48 200
thres600view792.49 16591.60 17295.18 15497.91 11089.47 18097.65 8094.66 30292.18 11193.33 13694.91 22478.06 25899.10 12981.61 28794.06 18496.98 184
API-MVS94.84 9694.49 9495.90 12197.90 11192.00 10497.80 6297.48 14189.19 19094.81 10796.71 13588.84 8799.17 12288.91 19198.76 8796.53 197
VDD-MVS93.82 12193.08 12696.02 11697.88 11289.96 16797.72 7295.85 25692.43 10195.86 8298.44 2568.42 31499.39 10596.31 2894.85 17098.71 111
tfpn200view992.38 16991.52 17694.95 16697.85 11389.29 19197.41 10194.88 29792.19 10993.27 13994.46 24878.17 25599.08 13481.40 29094.08 18196.48 200
thres40092.42 16791.52 17695.12 15897.85 11389.29 19197.41 10194.88 29792.19 10993.27 13994.46 24878.17 25599.08 13481.40 29094.08 18196.98 184
DELS-MVS96.61 4696.38 4897.30 5797.79 11593.19 7195.96 22798.18 4795.23 1295.87 8197.65 9091.45 5499.70 4395.87 4499.44 4299.00 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet86.66 1892.24 17791.74 16993.73 21897.77 11683.69 29492.88 31296.72 22087.91 23193.00 14394.86 22778.51 25099.05 13886.53 23397.45 12298.47 127
test_yl94.78 9894.23 9996.43 9297.74 11791.22 12696.85 15697.10 18791.23 14095.71 8796.93 12584.30 14899.31 11193.10 11395.12 16698.75 105
DCV-MVSNet94.78 9894.23 9996.43 9297.74 11791.22 12696.85 15697.10 18791.23 14095.71 8796.93 12584.30 14899.31 11193.10 11395.12 16698.75 105
WTY-MVS94.71 10094.02 10196.79 7497.71 11992.05 10196.59 18397.35 16890.61 15994.64 10996.93 12586.41 12299.39 10591.20 15194.71 17698.94 91
UA-Net95.95 6595.53 6497.20 6697.67 12092.98 7797.65 8098.13 5594.81 2996.61 5298.35 3588.87 8699.51 9090.36 15997.35 12599.11 75
IS-MVSNet94.90 9394.52 9396.05 11597.67 12090.56 15198.44 1696.22 24693.21 7293.99 12097.74 8385.55 13498.45 18589.98 16297.86 10999.14 70
PAPR94.18 10793.42 12196.48 8897.64 12291.42 12295.55 24397.71 12288.99 19592.34 15795.82 18489.19 8299.11 12886.14 24197.38 12398.90 95
CANet96.39 5396.02 5697.50 5097.62 12393.38 6697.02 13997.96 9695.42 794.86 10697.81 7887.38 11099.82 2596.88 1299.20 6699.29 59
thres20092.23 17891.39 17994.75 17697.61 12489.03 20096.60 18295.09 28792.08 11393.28 13894.00 27178.39 25399.04 14081.26 29494.18 18096.19 205
Vis-MVSNet (Re-imp)94.15 10893.88 10394.95 16697.61 12487.92 22698.10 3995.80 25892.22 10593.02 14297.45 10584.53 14697.91 24888.24 19997.97 10799.02 80
canonicalmvs96.02 6295.45 6897.75 3797.59 12695.15 2198.28 2597.60 13094.52 3896.27 6796.12 17187.65 10399.18 12196.20 3794.82 17298.91 94
LS3D93.57 13092.61 14196.47 8997.59 12691.61 11297.67 7797.72 11885.17 27890.29 19598.34 3884.60 14499.73 3283.85 27398.27 9998.06 151
alignmvs95.87 6795.23 7597.78 3397.56 12895.19 1897.86 5597.17 18094.39 4196.47 6096.40 16085.89 12999.20 11896.21 3695.11 16898.95 90
EPP-MVSNet95.22 8395.04 8095.76 12597.49 12989.56 17598.67 597.00 20090.69 15294.24 11697.62 9589.79 8198.81 15693.39 10996.49 14598.92 93
PS-MVSNAJ95.37 7795.33 7395.49 14497.35 13090.66 15095.31 25497.48 14193.85 5296.51 5795.70 19588.65 9099.65 5394.80 8198.27 9996.17 206
CS-MVS95.80 6895.65 6396.24 10897.32 13191.43 12198.10 3997.91 9993.38 6695.16 10394.57 24190.21 7598.98 14395.53 6198.67 9098.30 142
ab-mvs93.57 13092.55 14396.64 7697.28 13291.96 10695.40 24997.45 15289.81 17893.22 14196.28 16579.62 23399.46 9690.74 15493.11 19398.50 122
xiu_mvs_v2_base95.32 7995.29 7495.40 14997.22 13390.50 15395.44 24897.44 15693.70 5896.46 6196.18 16888.59 9399.53 8594.79 8397.81 11196.17 206
BH-untuned92.94 15192.62 14093.92 21297.22 13386.16 26496.40 19596.25 24590.06 17189.79 21496.17 17083.19 16298.35 19187.19 22697.27 12897.24 181
baseline192.82 15891.90 16395.55 14097.20 13590.77 14797.19 12794.58 30592.20 10792.36 15596.34 16384.16 15198.21 19989.20 18683.90 30697.68 168
Vis-MVSNetpermissive95.23 8294.81 8396.51 8697.18 13691.58 11598.26 2798.12 5794.38 4294.90 10598.15 5682.28 18798.92 14791.45 14698.58 9499.01 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.02 6295.89 5996.40 9497.16 13792.44 9097.47 9897.77 11194.55 3796.48 5994.51 24391.23 5998.92 14795.65 5298.19 10197.82 163
BH-RMVSNet92.72 16191.97 16194.97 16497.16 13787.99 22596.15 21795.60 26490.62 15891.87 16697.15 11878.41 25298.57 17883.16 27597.60 11698.36 139
MSDG91.42 20490.24 22394.96 16597.15 13988.91 20293.69 29796.32 24185.72 27286.93 28396.47 15580.24 22098.98 14380.57 29695.05 16996.98 184
tttt051792.96 14992.33 15194.87 16997.11 14087.16 24397.97 4992.09 33090.63 15793.88 12497.01 12476.50 26899.06 13790.29 16195.45 16198.38 137
HY-MVS89.66 993.87 11992.95 12996.63 7897.10 14192.49 8995.64 24196.64 22989.05 19393.00 14395.79 18885.77 13299.45 9889.16 18894.35 17897.96 152
thisisatest053093.03 14692.21 15495.49 14497.07 14289.11 19997.49 9792.19 32990.16 16994.09 11896.41 15976.43 27199.05 13890.38 15895.68 15998.31 141
XVG-OURS93.72 12593.35 12294.80 17397.07 14288.61 20894.79 26597.46 14691.97 11793.99 12097.86 7381.74 19898.88 15292.64 11992.67 19996.92 188
sss94.51 10293.80 10596.64 7697.07 14291.97 10596.32 20498.06 7388.94 19894.50 11196.78 13284.60 14499.27 11491.90 13296.02 14998.68 113
EIA-MVS95.53 7595.47 6795.71 13197.06 14589.63 17197.82 6097.87 10493.57 6093.92 12395.04 22090.61 7098.95 14594.62 8598.68 8998.54 117
XVG-OURS-SEG-HR93.86 12093.55 11294.81 17297.06 14588.53 21095.28 25597.45 15291.68 12294.08 11997.68 8782.41 18598.90 15093.84 9992.47 20196.98 184
1112_ss93.37 13492.42 14996.21 10997.05 14790.99 13796.31 20596.72 22086.87 25889.83 21396.69 13986.51 12099.14 12688.12 20193.67 18798.50 122
Test_1112_low_res92.84 15791.84 16595.85 12397.04 14889.97 16695.53 24596.64 22985.38 27489.65 21995.18 21585.86 13099.10 12987.70 21093.58 19298.49 124
BH-w/o92.14 18291.75 16793.31 23996.99 14985.73 26895.67 23895.69 26088.73 20989.26 23394.82 23082.97 17198.07 22085.26 25696.32 14896.13 210
3Dnovator+91.43 495.40 7694.48 9598.16 1296.90 15095.34 1398.48 1597.87 10494.65 3688.53 24998.02 6383.69 15699.71 3893.18 11298.96 8199.44 46
UGNet94.04 11593.28 12496.31 10196.85 15191.19 13197.88 5497.68 12394.40 4093.00 14396.18 16873.39 29199.61 6191.72 13798.46 9598.13 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet93.05 14592.07 15696.02 11696.84 15290.39 15898.08 4295.85 25686.22 26695.79 8598.46 2367.59 31799.19 11994.92 7594.85 17098.47 127
RPSCF90.75 23690.86 19790.42 30596.84 15276.29 33395.61 24296.34 24083.89 29491.38 17297.87 7176.45 26998.78 15887.16 22892.23 20496.20 204
MVS_Test94.89 9494.62 8895.68 13296.83 15489.55 17696.70 17097.17 18091.17 14295.60 9496.11 17387.87 10098.76 16193.01 11797.17 13298.72 109
LCM-MVSNet-Re92.50 16392.52 14692.44 26496.82 15581.89 30696.92 15193.71 31992.41 10284.30 30494.60 24085.08 13997.03 30391.51 14397.36 12498.40 135
baseline95.58 7395.42 7096.08 11296.78 15690.41 15797.16 13097.45 15293.69 5995.65 9397.85 7487.29 11198.68 16895.66 4997.25 12999.13 71
Fast-Effi-MVS+93.46 13292.75 13595.59 13796.77 15790.03 16096.81 16297.13 18388.19 22191.30 17794.27 25986.21 12598.63 17287.66 21596.46 14798.12 147
QAPM93.45 13392.27 15396.98 7296.77 15792.62 8598.39 1998.12 5784.50 28888.27 25597.77 8182.39 18699.81 2685.40 25498.81 8598.51 121
casdiffmvs95.64 7195.49 6696.08 11296.76 15990.45 15597.29 11697.44 15694.00 4895.46 9997.98 6687.52 10798.73 16395.64 5397.33 12699.08 77
CHOSEN 280x42093.12 14292.72 13794.34 19096.71 16087.27 23790.29 32897.72 11886.61 26191.34 17495.29 21184.29 15098.41 18693.25 11198.94 8297.35 180
Effi-MVS+94.93 9294.45 9696.36 9996.61 16191.47 11896.41 19297.41 16191.02 14794.50 11195.92 17887.53 10698.78 15893.89 9796.81 13698.84 102
thisisatest051592.29 17491.30 18495.25 15296.60 16288.90 20394.36 27892.32 32887.92 23093.43 13494.57 24177.28 26599.00 14189.42 17795.86 15497.86 159
PCF-MVS89.48 1191.56 19789.95 23596.36 9996.60 16292.52 8892.51 31797.26 17479.41 32488.90 23896.56 15184.04 15399.55 8077.01 31597.30 12797.01 183
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v1_base_debu95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
xiu_mvs_v1_base95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
xiu_mvs_v1_base_debi95.01 8794.76 8495.75 12796.58 16491.71 10896.25 21097.35 16892.99 8196.70 4696.63 14682.67 17799.44 9996.22 3297.46 11896.11 211
MVSTER93.20 14092.81 13294.37 18896.56 16789.59 17497.06 13597.12 18491.24 13991.30 17795.96 17682.02 19298.05 22393.48 10590.55 23395.47 237
3Dnovator91.36 595.19 8594.44 9797.44 5296.56 16793.36 6898.65 698.36 1694.12 4689.25 23498.06 6082.20 18999.77 2993.41 10899.32 5399.18 66
FMVSNet391.78 18990.69 20695.03 16096.53 16992.27 9497.02 13996.93 20489.79 17989.35 22894.65 23877.01 26697.47 28586.12 24288.82 24895.35 249
GBi-Net91.35 20990.27 22194.59 17896.51 17091.18 13297.50 9396.93 20488.82 20489.35 22894.51 24373.87 28597.29 29786.12 24288.82 24895.31 251
test191.35 20990.27 22194.59 17896.51 17091.18 13297.50 9396.93 20488.82 20489.35 22894.51 24373.87 28597.29 29786.12 24288.82 24895.31 251
FMVSNet291.31 21290.08 23094.99 16196.51 17092.21 9597.41 10196.95 20288.82 20488.62 24694.75 23373.87 28597.42 29085.20 25788.55 25495.35 249
ACMH+87.92 1490.20 25189.18 25693.25 24196.48 17386.45 25796.99 14496.68 22688.83 20384.79 30196.22 16770.16 30798.53 18084.42 26788.04 25694.77 287
CANet_DTU94.37 10393.65 11096.55 8296.46 17492.13 9996.21 21496.67 22894.38 4293.53 13197.03 12379.34 23699.71 3890.76 15398.45 9697.82 163
mvs_anonymous93.82 12193.74 10694.06 19996.44 17585.41 27395.81 23497.05 19489.85 17690.09 20696.36 16287.44 10997.75 26193.97 9396.69 14199.02 80
diffmvs95.25 8195.13 7895.63 13496.43 17689.34 18795.99 22697.35 16892.83 9096.31 6597.37 10886.44 12198.67 16996.26 2997.19 13198.87 99
ET-MVSNet_ETH3D91.49 20190.11 22995.63 13496.40 17791.57 11695.34 25193.48 32190.60 16175.58 33295.49 20680.08 22396.79 31294.25 8889.76 24298.52 119
TR-MVS91.48 20290.59 20994.16 19696.40 17787.33 23595.67 23895.34 27687.68 24191.46 17195.52 20576.77 26798.35 19182.85 27993.61 19096.79 193
ACMP89.59 1092.62 16292.14 15594.05 20096.40 17788.20 21997.36 10897.25 17691.52 12588.30 25396.64 14278.46 25198.72 16691.86 13591.48 21895.23 258
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer95.37 7795.16 7795.99 11896.34 18091.21 12898.22 3297.57 13391.42 13096.22 6897.32 10986.20 12697.92 24594.07 9199.05 7798.85 100
lupinMVS94.99 9194.56 9096.29 10496.34 18091.21 12895.83 23396.27 24388.93 19996.22 6896.88 13086.20 12698.85 15395.27 6499.05 7798.82 103
ACMM89.79 892.96 14992.50 14794.35 18996.30 18288.71 20697.58 8797.36 16791.40 13390.53 18996.65 14179.77 22998.75 16291.24 15091.64 21495.59 233
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS92.29 17491.94 16293.34 23896.25 18386.97 24796.57 18697.05 19490.67 15389.50 22594.80 23186.59 11797.64 26989.91 16486.11 27595.40 245
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP_MVS93.78 12393.43 11994.82 17096.21 18489.99 16397.74 6797.51 13994.85 2491.34 17496.64 14281.32 20398.60 17593.02 11592.23 20495.86 217
plane_prior796.21 18489.98 165
ACMH87.59 1690.53 24389.42 25193.87 21396.21 18487.92 22697.24 11996.94 20388.45 21583.91 31096.27 16671.92 29398.62 17484.43 26689.43 24495.05 264
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDS-MVSNet94.14 11093.54 11395.93 11996.18 18791.46 11996.33 20397.04 19688.97 19793.56 12896.51 15387.55 10597.89 24989.80 16795.95 15198.44 132
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LTVRE_ROB88.41 1390.99 22689.92 23694.19 19496.18 18789.55 17696.31 20597.09 18987.88 23285.67 29395.91 17978.79 24898.57 17881.50 28889.98 23994.44 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test92.94 15192.56 14294.10 19796.16 18988.26 21697.65 8097.46 14691.29 13590.12 20397.16 11679.05 24098.73 16392.25 12391.89 21295.31 251
LGP-MVS_train94.10 19796.16 18988.26 21697.46 14691.29 13590.12 20397.16 11679.05 24098.73 16392.25 12391.89 21295.31 251
TAMVS94.01 11693.46 11795.64 13396.16 18990.45 15596.71 16996.89 21089.27 18893.46 13396.92 12887.29 11197.94 24188.70 19595.74 15698.53 118
plane_prior196.14 192
CLD-MVS92.98 14892.53 14594.32 19196.12 19389.20 19595.28 25597.47 14492.66 9689.90 21095.62 19880.58 21398.40 18792.73 11892.40 20295.38 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior696.10 19490.00 16181.32 203
cl-mvsnet291.21 21690.56 21193.14 24696.09 19586.80 24994.41 27696.58 23587.80 23588.58 24893.99 27280.85 21197.62 27289.87 16686.93 26694.99 265
Effi-MVS+-dtu93.08 14393.21 12592.68 26196.02 19683.25 29797.14 13396.72 22093.85 5291.20 18493.44 29083.08 16698.30 19491.69 14095.73 15796.50 199
mvs-test193.63 12793.69 10893.46 23396.02 19684.61 28397.24 11996.72 22093.85 5292.30 15895.76 19083.08 16698.89 15191.69 14096.54 14496.87 190
NP-MVS95.99 19889.81 17095.87 180
ADS-MVSNet289.45 26288.59 26392.03 27395.86 19982.26 30590.93 32494.32 31283.23 30291.28 18091.81 31479.01 24495.99 31979.52 30191.39 22097.84 160
ADS-MVSNet89.89 25788.68 26293.53 22995.86 19984.89 28090.93 32495.07 28883.23 30291.28 18091.81 31479.01 24497.85 25179.52 30191.39 22097.84 160
HQP-NCC95.86 19996.65 17593.55 6190.14 197
ACMP_Plane95.86 19996.65 17593.55 6190.14 197
HQP-MVS93.19 14192.74 13694.54 18395.86 19989.33 18896.65 17597.39 16293.55 6190.14 19795.87 18080.95 20698.50 18292.13 12792.10 20995.78 224
EI-MVSNet93.03 14692.88 13193.48 23195.77 20486.98 24696.44 18897.12 18490.66 15591.30 17797.64 9386.56 11898.05 22389.91 16490.55 23395.41 241
CVMVSNet91.23 21591.75 16789.67 31195.77 20474.69 33596.44 18894.88 29785.81 27092.18 16097.64 9379.07 23995.58 32688.06 20295.86 15498.74 107
RRT_test8_iter0591.19 22090.78 20292.41 26695.76 20683.14 29897.32 11297.46 14691.37 13489.07 23795.57 20070.33 30498.21 19993.56 10286.62 27195.89 216
FIs94.09 11293.70 10795.27 15195.70 20792.03 10298.10 3998.68 793.36 6990.39 19396.70 13787.63 10497.94 24192.25 12390.50 23595.84 220
VPA-MVSNet93.24 13892.48 14895.51 14295.70 20792.39 9197.86 5598.66 992.30 10492.09 16395.37 20980.49 21598.40 18793.95 9485.86 27695.75 228
SCA91.84 18891.18 19193.83 21495.59 20984.95 27994.72 26695.58 26690.82 14892.25 15993.69 28175.80 27498.10 21286.20 23995.98 15098.45 129
cl_fuxian91.38 20690.89 19592.88 25495.58 21086.30 25994.68 26796.84 21688.17 22388.83 24394.23 26285.65 13397.47 28589.36 17884.63 29494.89 274
VPNet92.23 17891.31 18394.99 16195.56 21190.96 13997.22 12597.86 10792.96 8790.96 18596.62 14975.06 27998.20 20191.90 13283.65 30895.80 223
miper_ehance_all_eth91.59 19491.13 19292.97 25195.55 21286.57 25694.47 27296.88 21187.77 23788.88 24094.01 27086.22 12497.54 27889.49 17586.93 26694.79 284
IterMVS-SCA-FT90.31 24789.81 24191.82 27995.52 21384.20 28794.30 28196.15 24890.61 15987.39 27394.27 25975.80 27496.44 31587.34 22286.88 27094.82 279
jason94.84 9694.39 9896.18 11095.52 21390.93 14196.09 21996.52 23689.28 18796.01 7897.32 10984.70 14398.77 16095.15 6798.91 8498.85 100
jason: jason.
FC-MVSNet-test93.94 11893.57 11195.04 15995.48 21591.45 12098.12 3898.71 593.37 6790.23 19696.70 13787.66 10297.85 25191.49 14490.39 23695.83 221
IterMVS90.15 25389.67 24791.61 28695.48 21583.72 29194.33 28096.12 24989.99 17287.31 27694.15 26775.78 27696.27 31886.97 23086.89 26994.83 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet189.88 25888.31 26694.59 17895.41 21791.18 13297.50 9396.93 20486.62 26087.41 27294.51 24365.94 32697.29 29783.04 27787.43 26295.31 251
UniMVSNet (Re)93.31 13692.55 14395.61 13695.39 21893.34 6997.39 10598.71 593.14 7790.10 20594.83 22987.71 10198.03 22791.67 14283.99 30295.46 238
MVS-HIRNet82.47 30681.21 30786.26 32195.38 21969.21 34288.96 33689.49 34066.28 33880.79 31974.08 34168.48 31397.39 29271.93 32995.47 16092.18 326
PatchmatchNetpermissive91.91 18691.35 18093.59 22695.38 21984.11 28893.15 30895.39 27089.54 18092.10 16293.68 28382.82 17598.13 20784.81 26095.32 16398.52 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl-mvsnet_90.96 22990.32 21792.89 25395.37 22186.21 26294.46 27496.64 22987.82 23388.15 25994.18 26582.98 17097.54 27887.70 21085.59 27894.92 272
cl-mvsnet190.97 22890.33 21692.88 25495.36 22286.19 26394.46 27496.63 23287.82 23388.18 25894.23 26282.99 16997.53 28087.72 20885.57 27994.93 270
miper_enhance_ethall91.54 19991.01 19393.15 24595.35 22387.07 24593.97 29096.90 20886.79 25989.17 23593.43 29286.55 11997.64 26989.97 16386.93 26694.74 288
UniMVSNet_NR-MVSNet93.37 13492.67 13895.47 14795.34 22492.83 7997.17 12998.58 1092.98 8690.13 20195.80 18588.37 9597.85 25191.71 13883.93 30395.73 230
ITE_SJBPF92.43 26595.34 22485.37 27495.92 25391.47 12787.75 26796.39 16171.00 30097.96 23882.36 28489.86 24193.97 308
OpenMVScopyleft89.19 1292.86 15591.68 17096.40 9495.34 22492.73 8298.27 2698.12 5784.86 28385.78 29297.75 8278.89 24799.74 3187.50 22098.65 9196.73 194
eth_miper_zixun_eth91.02 22590.59 20992.34 26895.33 22784.35 28494.10 28796.90 20888.56 21388.84 24294.33 25484.08 15297.60 27488.77 19484.37 29995.06 263
miper_lstm_enhance90.50 24590.06 23391.83 27895.33 22783.74 29093.86 29296.70 22587.56 24487.79 26593.81 27883.45 16096.92 30987.39 22184.62 29594.82 279
131492.81 15992.03 15895.14 15695.33 22789.52 17996.04 22197.44 15687.72 24086.25 28995.33 21083.84 15498.79 15789.26 18297.05 13497.11 182
PAPM91.52 20090.30 21995.20 15395.30 23089.83 16993.38 30496.85 21586.26 26588.59 24795.80 18584.88 14198.15 20675.67 31995.93 15297.63 169
Fast-Effi-MVS+-dtu92.29 17491.99 16093.21 24495.27 23185.52 27197.03 13696.63 23292.09 11289.11 23695.14 21780.33 21998.08 21787.54 21994.74 17596.03 214
Patchmatch-test89.42 26387.99 26993.70 22195.27 23185.11 27588.98 33594.37 31081.11 31487.10 27993.69 28182.28 18797.50 28374.37 32294.76 17398.48 126
PVSNet_082.17 1985.46 29983.64 30190.92 29695.27 23179.49 32490.55 32795.60 26483.76 29783.00 31389.95 32071.09 29997.97 23482.75 28160.79 34195.31 251
IB-MVS87.33 1789.91 25688.28 26794.79 17495.26 23487.70 23295.12 26293.95 31889.35 18687.03 28092.49 30270.74 30299.19 11989.18 18781.37 31997.49 178
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
nrg03094.05 11493.31 12396.27 10595.22 23594.59 2898.34 2097.46 14692.93 8891.21 18396.64 14287.23 11398.22 19894.99 7485.80 27795.98 215
MDTV_nov1_ep1390.76 20395.22 23580.33 31793.03 31195.28 27788.14 22692.84 14993.83 27581.34 20298.08 21782.86 27894.34 179
MVS91.71 19090.44 21395.51 14295.20 23791.59 11496.04 22197.45 15273.44 33687.36 27495.60 19985.42 13599.10 12985.97 24697.46 11895.83 221
tfpnnormal89.70 26188.40 26593.60 22595.15 23890.10 15997.56 8998.16 5187.28 25186.16 29094.63 23977.57 26398.05 22374.48 32084.59 29692.65 320
tpmrst91.44 20391.32 18291.79 28195.15 23879.20 32793.42 30395.37 27288.55 21493.49 13293.67 28482.49 18398.27 19590.41 15789.34 24597.90 156
WR-MVS92.34 17091.53 17594.77 17595.13 24090.83 14496.40 19597.98 9491.88 11889.29 23195.54 20482.50 18297.80 25689.79 16885.27 28495.69 231
tpm cat188.36 27687.21 27891.81 28095.13 24080.55 31592.58 31695.70 25974.97 33387.45 27091.96 31278.01 26098.17 20580.39 29888.74 25196.72 195
WR-MVS_H92.00 18491.35 18093.95 20795.09 24289.47 18098.04 4598.68 791.46 12888.34 25194.68 23685.86 13097.56 27685.77 24984.24 30094.82 279
CP-MVSNet91.89 18791.24 18793.82 21595.05 24388.57 20997.82 6098.19 4591.70 12188.21 25795.76 19081.96 19397.52 28287.86 20584.65 29395.37 248
DWT-MVSNet_test90.76 23489.89 23793.38 23695.04 24483.70 29395.85 23294.30 31388.19 22190.46 19192.80 29773.61 28998.50 18288.16 20090.58 23297.95 154
test_040286.46 29184.79 29591.45 28995.02 24585.55 27096.29 20794.89 29680.90 31582.21 31493.97 27368.21 31597.29 29762.98 33988.68 25391.51 330
cascas91.20 21790.08 23094.58 18294.97 24689.16 19893.65 29997.59 13279.90 32289.40 22692.92 29675.36 27898.36 19092.14 12694.75 17496.23 203
PS-CasMVS91.55 19890.84 20093.69 22294.96 24788.28 21597.84 5998.24 3591.46 12888.04 26195.80 18579.67 23197.48 28487.02 22984.54 29795.31 251
DU-MVS92.90 15392.04 15795.49 14494.95 24892.83 7997.16 13098.24 3593.02 8090.13 20195.71 19383.47 15897.85 25191.71 13883.93 30395.78 224
NR-MVSNet92.34 17091.27 18695.53 14194.95 24893.05 7497.39 10598.07 7092.65 9784.46 30295.71 19385.00 14097.77 26089.71 16983.52 30995.78 224
RRT_MVS93.21 13992.32 15295.91 12094.92 25094.15 4296.92 15196.86 21491.42 13091.28 18096.43 15779.66 23298.10 21293.29 11090.06 23895.46 238
tpmvs89.83 26089.15 25791.89 27694.92 25080.30 31893.11 30995.46 26986.28 26488.08 26092.65 29980.44 21698.52 18181.47 28989.92 24096.84 191
PMMVS92.86 15592.34 15094.42 18794.92 25086.73 25194.53 27196.38 23984.78 28594.27 11595.12 21983.13 16598.40 18791.47 14596.49 14598.12 147
tpm289.96 25589.21 25592.23 27094.91 25381.25 30993.78 29494.42 30880.62 31991.56 16993.44 29076.44 27097.94 24185.60 25192.08 21197.49 178
TinyColmap86.82 28985.35 29291.21 29294.91 25382.99 29993.94 29194.02 31783.58 29881.56 31694.68 23662.34 33398.13 20775.78 31787.35 26592.52 322
UniMVSNet_ETH3D91.34 21190.22 22694.68 17794.86 25587.86 22997.23 12497.46 14687.99 22889.90 21096.92 12866.35 32298.23 19790.30 16090.99 22797.96 152
CostFormer91.18 22190.70 20592.62 26294.84 25681.76 30794.09 28894.43 30784.15 29192.72 15093.77 27979.43 23598.20 20190.70 15592.18 20797.90 156
MIMVSNet88.50 27586.76 28193.72 22094.84 25687.77 23191.39 32194.05 31586.41 26387.99 26392.59 30163.27 33095.82 32277.44 31192.84 19697.57 176
FMVSNet587.29 28685.79 28891.78 28294.80 25887.28 23695.49 24695.28 27784.09 29283.85 31191.82 31362.95 33194.17 33378.48 30885.34 28393.91 309
TranMVSNet+NR-MVSNet92.50 16391.63 17195.14 15694.76 25992.07 10097.53 9198.11 6092.90 8989.56 22296.12 17183.16 16397.60 27489.30 18083.20 31295.75 228
XXY-MVS92.16 18091.23 18894.95 16694.75 26090.94 14097.47 9897.43 15989.14 19188.90 23896.43 15779.71 23098.24 19689.56 17487.68 25995.67 232
EPMVS90.70 23989.81 24193.37 23794.73 26184.21 28693.67 29888.02 34189.50 18292.38 15493.49 28877.82 26297.78 25886.03 24592.68 19898.11 150
D2MVS91.30 21390.95 19492.35 26794.71 26285.52 27196.18 21698.21 4188.89 20086.60 28693.82 27779.92 22797.95 24089.29 18190.95 22893.56 312
USDC88.94 26687.83 27192.27 26994.66 26384.96 27893.86 29295.90 25487.34 24983.40 31295.56 20267.43 31898.19 20382.64 28389.67 24393.66 311
MVS_030488.79 27087.57 27292.46 26394.65 26486.15 26596.40 19597.17 18086.44 26288.02 26291.71 31656.68 33897.03 30384.47 26592.58 20094.19 304
GA-MVS91.38 20690.31 21894.59 17894.65 26487.62 23394.34 27996.19 24790.73 15190.35 19493.83 27571.84 29497.96 23887.22 22593.61 19098.21 144
OPM-MVS93.28 13792.76 13394.82 17094.63 26690.77 14796.65 17597.18 17893.72 5691.68 16897.26 11279.33 23798.63 17292.13 12792.28 20395.07 262
test-LLR91.42 20491.19 19092.12 27194.59 26780.66 31294.29 28292.98 32491.11 14490.76 18792.37 30479.02 24298.07 22088.81 19296.74 13897.63 169
test-mter90.19 25289.54 25092.12 27194.59 26780.66 31294.29 28292.98 32487.68 24190.76 18792.37 30467.67 31698.07 22088.81 19296.74 13897.63 169
dp88.90 26888.26 26890.81 29894.58 26976.62 33292.85 31394.93 29585.12 27990.07 20893.07 29475.81 27398.12 21080.53 29787.42 26397.71 166
PEN-MVS91.20 21790.44 21393.48 23194.49 27087.91 22897.76 6598.18 4791.29 13587.78 26695.74 19280.35 21897.33 29585.46 25382.96 31395.19 260
gg-mvs-nofinetune87.82 28185.61 28994.44 18594.46 27189.27 19491.21 32384.61 34680.88 31689.89 21274.98 33971.50 29697.53 28085.75 25097.21 13096.51 198
CR-MVSNet90.82 23389.77 24393.95 20794.45 27287.19 24190.23 32995.68 26286.89 25792.40 15292.36 30780.91 20897.05 30181.09 29593.95 18597.60 174
RPMNet88.52 27486.72 28393.95 20794.45 27287.19 24190.23 32994.99 29277.87 33192.40 15287.55 33280.17 22297.05 30168.84 33593.95 18597.60 174
TESTMET0.1,190.06 25489.42 25191.97 27494.41 27480.62 31494.29 28291.97 33287.28 25190.44 19292.47 30368.79 31197.67 26688.50 19896.60 14397.61 173
TransMVSNet (Re)88.94 26687.56 27393.08 24894.35 27588.45 21397.73 6995.23 28187.47 24584.26 30595.29 21179.86 22897.33 29579.44 30574.44 33393.45 315
MS-PatchMatch90.27 24889.77 24391.78 28294.33 27684.72 28295.55 24396.73 21986.17 26786.36 28895.28 21371.28 29897.80 25684.09 26898.14 10492.81 319
baseline291.63 19390.86 19793.94 21094.33 27686.32 25895.92 22991.64 33489.37 18586.94 28294.69 23581.62 20098.69 16788.64 19694.57 17796.81 192
XVG-ACMP-BASELINE90.93 23090.21 22793.09 24794.31 27885.89 26695.33 25297.26 17491.06 14689.38 22795.44 20868.61 31298.60 17589.46 17691.05 22594.79 284
pm-mvs190.72 23889.65 24993.96 20694.29 27989.63 17197.79 6396.82 21789.07 19286.12 29195.48 20778.61 24997.78 25886.97 23081.67 31794.46 295
v891.29 21490.53 21293.57 22894.15 28088.12 22397.34 10997.06 19388.99 19588.32 25294.26 26183.08 16698.01 22987.62 21783.92 30594.57 293
v1091.04 22490.23 22493.49 23094.12 28188.16 22297.32 11297.08 19088.26 22088.29 25494.22 26482.17 19097.97 23486.45 23684.12 30194.33 299
Patchmtry88.64 27387.25 27692.78 25894.09 28286.64 25289.82 33295.68 26280.81 31887.63 26992.36 30780.91 20897.03 30378.86 30785.12 28794.67 290
PatchT88.87 26987.42 27493.22 24394.08 28385.10 27689.51 33394.64 30481.92 30992.36 15588.15 33080.05 22497.01 30672.43 32793.65 18897.54 177
V4291.58 19690.87 19693.73 21894.05 28488.50 21197.32 11296.97 20188.80 20789.71 21594.33 25482.54 18198.05 22389.01 18985.07 28894.64 292
DTE-MVSNet90.56 24289.75 24593.01 24993.95 28587.25 23897.64 8497.65 12690.74 15087.12 27795.68 19679.97 22697.00 30783.33 27481.66 31894.78 286
tpm90.25 24989.74 24691.76 28493.92 28679.73 32393.98 28993.54 32088.28 21991.99 16493.25 29377.51 26497.44 28887.30 22487.94 25798.12 147
PS-MVSNAJss93.74 12493.51 11594.44 18593.91 28789.28 19397.75 6697.56 13692.50 10089.94 20996.54 15288.65 9098.18 20493.83 10090.90 22995.86 217
v114491.37 20890.60 20893.68 22393.89 28888.23 21896.84 15897.03 19888.37 21789.69 21794.39 25082.04 19197.98 23187.80 20785.37 28294.84 276
v2v48291.59 19490.85 19993.80 21693.87 28988.17 22196.94 15096.88 21189.54 18089.53 22394.90 22581.70 19998.02 22889.25 18385.04 29095.20 259
v14890.99 22690.38 21592.81 25793.83 29085.80 26796.78 16596.68 22689.45 18388.75 24593.93 27482.96 17297.82 25587.83 20683.25 31094.80 282
Baseline_NR-MVSNet91.20 21790.62 20792.95 25293.83 29088.03 22497.01 14395.12 28688.42 21689.70 21695.13 21883.47 15897.44 28889.66 17283.24 31193.37 316
EPNet_dtu91.71 19091.28 18592.99 25093.76 29283.71 29296.69 17295.28 27793.15 7687.02 28195.95 17783.37 16197.38 29379.46 30496.84 13597.88 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v119291.07 22290.23 22493.58 22793.70 29387.82 23096.73 16797.07 19187.77 23789.58 22094.32 25680.90 21097.97 23486.52 23485.48 28094.95 266
GG-mvs-BLEND93.62 22493.69 29489.20 19592.39 31983.33 34787.98 26489.84 32271.00 30096.87 31082.08 28695.40 16294.80 282
v14419291.06 22390.28 22093.39 23593.66 29587.23 24096.83 15997.07 19187.43 24689.69 21794.28 25881.48 20198.00 23087.18 22784.92 29294.93 270
v192192090.85 23290.03 23493.29 24093.55 29686.96 24896.74 16697.04 19687.36 24889.52 22494.34 25380.23 22197.97 23486.27 23785.21 28594.94 268
v7n90.76 23489.86 23893.45 23493.54 29787.60 23497.70 7597.37 16588.85 20187.65 26894.08 26981.08 20598.10 21284.68 26283.79 30794.66 291
JIA-IIPM88.26 27887.04 28091.91 27593.52 29881.42 30889.38 33494.38 30980.84 31790.93 18680.74 33779.22 23897.92 24582.76 28091.62 21596.38 202
v124090.70 23989.85 23993.23 24293.51 29986.80 24996.61 18097.02 19987.16 25389.58 22094.31 25779.55 23497.98 23185.52 25285.44 28194.90 273
test_djsdf93.07 14492.76 13394.00 20293.49 30088.70 20798.22 3297.57 13391.42 13090.08 20795.55 20382.85 17497.92 24594.07 9191.58 21695.40 245
SixPastTwentyTwo89.15 26588.54 26490.98 29593.49 30080.28 31996.70 17094.70 30190.78 14984.15 30795.57 20071.78 29597.71 26484.63 26385.07 28894.94 268
mvs_tets92.31 17291.76 16693.94 21093.41 30288.29 21497.63 8597.53 13792.04 11488.76 24496.45 15674.62 28198.09 21693.91 9691.48 21895.45 240
OurMVSNet-221017-090.51 24490.19 22891.44 29093.41 30281.25 30996.98 14696.28 24291.68 12286.55 28796.30 16474.20 28497.98 23188.96 19087.40 26495.09 261
pmmvs490.93 23089.85 23994.17 19593.34 30490.79 14694.60 26896.02 25184.62 28687.45 27095.15 21681.88 19697.45 28787.70 21087.87 25894.27 303
jajsoiax92.42 16791.89 16494.03 20193.33 30588.50 21197.73 6997.53 13792.00 11688.85 24196.50 15475.62 27798.11 21193.88 9891.56 21795.48 235
gm-plane-assit93.22 30678.89 32984.82 28493.52 28798.64 17187.72 208
MVP-Stereo90.74 23790.08 23092.71 25993.19 30788.20 21995.86 23196.27 24386.07 26884.86 30094.76 23277.84 26197.75 26183.88 27298.01 10692.17 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet88.72 27288.90 25988.20 31493.15 30874.21 33696.63 17994.22 31485.18 27787.32 27595.97 17576.16 27294.98 33085.27 25586.17 27395.41 241
MDA-MVSNet-bldmvs85.00 30082.95 30391.17 29493.13 30983.33 29694.56 27095.00 29084.57 28765.13 34092.65 29970.45 30395.85 32073.57 32577.49 32694.33 299
K. test v387.64 28386.75 28290.32 30693.02 31079.48 32596.61 18092.08 33190.66 15580.25 32494.09 26867.21 32096.65 31485.96 24780.83 32194.83 277
pmmvs589.86 25988.87 26092.82 25692.86 31186.23 26196.26 20995.39 27084.24 29087.12 27794.51 24374.27 28397.36 29487.61 21887.57 26094.86 275
testgi87.97 27987.21 27890.24 30792.86 31180.76 31196.67 17494.97 29391.74 12085.52 29495.83 18362.66 33294.47 33276.25 31688.36 25595.48 235
EPNet95.20 8494.56 9097.14 6792.80 31392.68 8397.85 5894.87 30096.64 192.46 15197.80 8086.23 12399.65 5393.72 10198.62 9299.10 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
N_pmnet78.73 30978.71 31078.79 32492.80 31346.50 35194.14 28643.71 35478.61 32780.83 31891.66 31774.94 28096.36 31667.24 33684.45 29893.50 313
EG-PatchMatch MVS87.02 28885.44 29091.76 28492.67 31585.00 27796.08 22096.45 23783.41 30179.52 32693.49 28857.10 33797.72 26379.34 30690.87 23092.56 321
Gipumacopyleft67.86 31365.41 31575.18 32792.66 31673.45 33766.50 34694.52 30653.33 34357.80 34366.07 34330.81 34689.20 34148.15 34378.88 32562.90 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp92.16 18091.55 17493.97 20592.58 31789.55 17697.51 9297.42 16089.42 18488.40 25094.84 22880.66 21297.88 25091.87 13491.28 22294.48 294
test0.0.03 189.37 26488.70 26191.41 29192.47 31885.63 26995.22 26092.70 32691.11 14486.91 28493.65 28579.02 24293.19 33878.00 31089.18 24695.41 241
our_test_388.78 27187.98 27091.20 29392.45 31982.53 30193.61 30195.69 26085.77 27184.88 29993.71 28079.99 22596.78 31379.47 30386.24 27294.28 302
ppachtmachnet_test88.35 27787.29 27591.53 28792.45 31983.57 29593.75 29595.97 25284.28 28985.32 29894.18 26579.00 24696.93 30875.71 31884.99 29194.10 305
YYNet185.87 29684.23 29990.78 30192.38 32182.46 30393.17 30695.14 28582.12 30867.69 33692.36 30778.16 25795.50 32877.31 31379.73 32394.39 297
MDA-MVSNet_test_wron85.87 29684.23 29990.80 30092.38 32182.57 30093.17 30695.15 28482.15 30767.65 33792.33 31078.20 25495.51 32777.33 31279.74 32294.31 301
LF4IMVS87.94 28087.25 27689.98 30992.38 32180.05 32294.38 27795.25 28087.59 24384.34 30394.74 23464.31 32997.66 26884.83 25987.45 26192.23 325
lessismore_v090.45 30491.96 32479.09 32887.19 34480.32 32394.39 25066.31 32397.55 27784.00 27076.84 32894.70 289
pmmvs687.81 28286.19 28592.69 26091.32 32586.30 25997.34 10996.41 23880.59 32084.05 30994.37 25267.37 31997.67 26684.75 26179.51 32494.09 307
Anonymous2023120687.09 28786.14 28689.93 31091.22 32680.35 31696.11 21895.35 27383.57 29984.16 30693.02 29573.54 29095.61 32472.16 32886.14 27493.84 310
DeepMVS_CXcopyleft74.68 32890.84 32764.34 34681.61 34965.34 33967.47 33888.01 33148.60 34380.13 34662.33 34073.68 33579.58 340
test20.0386.14 29485.40 29188.35 31290.12 32880.06 32195.90 23095.20 28288.59 21081.29 31793.62 28671.43 29792.65 33971.26 33281.17 32092.34 324
OpenMVS_ROBcopyleft81.14 2084.42 30282.28 30490.83 29790.06 32984.05 28995.73 23794.04 31673.89 33580.17 32591.53 31859.15 33597.64 26966.92 33789.05 24790.80 333
UnsupCasMVSNet_eth85.99 29584.45 29790.62 30289.97 33082.40 30493.62 30097.37 16589.86 17478.59 32992.37 30465.25 32895.35 32982.27 28570.75 33694.10 305
DSMNet-mixed86.34 29286.12 28787.00 31989.88 33170.43 33994.93 26490.08 33977.97 33085.42 29792.78 29874.44 28293.96 33474.43 32195.14 16596.62 196
new_pmnet82.89 30581.12 30888.18 31589.63 33280.18 32091.77 32092.57 32776.79 33275.56 33388.23 32961.22 33494.48 33171.43 33082.92 31489.87 335
MIMVSNet184.93 30183.05 30290.56 30389.56 33384.84 28195.40 24995.35 27383.91 29380.38 32292.21 31157.23 33693.34 33770.69 33482.75 31693.50 313
CMPMVSbinary62.92 2185.62 29884.92 29487.74 31689.14 33473.12 33894.17 28596.80 21873.98 33473.65 33494.93 22366.36 32197.61 27383.95 27191.28 22292.48 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Patchmatch-RL test87.38 28486.24 28490.81 29888.74 33578.40 33088.12 33793.17 32387.11 25482.17 31589.29 32481.95 19495.60 32588.64 19677.02 32798.41 134
pmmvs-eth3d86.22 29384.45 29791.53 28788.34 33687.25 23894.47 27295.01 28983.47 30079.51 32789.61 32369.75 30995.71 32383.13 27676.73 32991.64 328
UnsupCasMVSNet_bld82.13 30779.46 30990.14 30888.00 33782.47 30290.89 32696.62 23478.94 32675.61 33184.40 33556.63 33996.31 31777.30 31466.77 34091.63 329
PM-MVS83.48 30381.86 30688.31 31387.83 33877.59 33193.43 30291.75 33386.91 25680.63 32089.91 32144.42 34495.84 32185.17 25876.73 32991.50 331
testing_287.33 28585.03 29394.22 19387.77 33989.32 19094.97 26397.11 18689.22 18971.64 33588.73 32555.16 34097.94 24191.95 13188.73 25295.41 241
new-patchmatchnet83.18 30481.87 30587.11 31886.88 34075.99 33493.70 29695.18 28385.02 28177.30 33088.40 32765.99 32593.88 33574.19 32470.18 33791.47 332
ambc86.56 32083.60 34170.00 34185.69 33994.97 29380.60 32188.45 32637.42 34596.84 31182.69 28275.44 33192.86 318
pmmvs379.97 30877.50 31187.39 31782.80 34279.38 32692.70 31590.75 33870.69 33778.66 32887.47 33351.34 34293.40 33673.39 32669.65 33889.38 336
TDRefinement86.53 29084.76 29691.85 27782.23 34384.25 28596.38 19895.35 27384.97 28284.09 30894.94 22265.76 32798.34 19384.60 26474.52 33292.97 317
PMMVS270.19 31266.92 31480.01 32376.35 34465.67 34486.22 33887.58 34364.83 34062.38 34180.29 33826.78 35088.49 34263.79 33854.07 34285.88 337
FPMVS71.27 31169.85 31275.50 32674.64 34559.03 34791.30 32291.50 33558.80 34157.92 34288.28 32829.98 34885.53 34453.43 34182.84 31581.95 339
E-PMN53.28 31652.56 31955.43 33174.43 34647.13 35083.63 34276.30 35042.23 34542.59 34662.22 34528.57 34974.40 34731.53 34631.51 34444.78 344
wuyk23d25.11 32024.57 32326.74 33473.98 34739.89 35457.88 3479.80 35512.27 34910.39 3506.97 3527.03 35436.44 35125.43 34817.39 3483.89 349
EMVS52.08 31851.31 32054.39 33272.62 34845.39 35283.84 34175.51 35141.13 34640.77 34759.65 34630.08 34773.60 34828.31 34729.90 34644.18 345
LCM-MVSNet72.55 31069.39 31382.03 32270.81 34965.42 34590.12 33194.36 31155.02 34265.88 33981.72 33624.16 35289.96 34074.32 32368.10 33990.71 334
MVEpermissive50.73 2353.25 31748.81 32166.58 33065.34 35057.50 34872.49 34570.94 35240.15 34739.28 34863.51 3446.89 35573.48 34938.29 34542.38 34368.76 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high63.94 31459.58 31677.02 32561.24 35166.06 34385.66 34087.93 34278.53 32842.94 34571.04 34225.42 35180.71 34552.60 34230.83 34584.28 338
PMVScopyleft53.92 2258.58 31555.40 31768.12 32951.00 35248.64 34978.86 34387.10 34546.77 34435.84 34974.28 3408.76 35386.34 34342.07 34473.91 33469.38 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 31953.82 31846.29 33333.73 35345.30 35378.32 34467.24 35318.02 34850.93 34487.05 33452.99 34153.11 35070.76 33325.29 34740.46 346
testmvs13.36 32216.33 3244.48 3365.04 3542.26 35693.18 3053.28 3562.70 3508.24 35121.66 3482.29 3572.19 3527.58 3492.96 3499.00 348
test12313.04 32315.66 3255.18 3354.51 3553.45 35592.50 3181.81 3572.50 3517.58 35220.15 3493.67 3562.18 3537.13 3501.07 3509.90 347
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.24 32130.99 3220.00 3370.00 3560.00 3570.00 34897.63 1280.00 3520.00 35396.88 13084.38 1470.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.39 3259.85 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35388.65 900.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.06 32410.74 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35396.69 1390.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
GSMVS98.45 129
test_part10.00 3370.00 3570.00 34898.26 330.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs182.76 17698.45 129
sam_mvs81.94 195
MTGPAbinary98.08 65
test_post192.81 31416.58 35180.53 21497.68 26586.20 239
test_post17.58 35081.76 19798.08 217
patchmatchnet-post90.45 31982.65 18098.10 212
MTMP97.86 5582.03 348
test9_res94.81 8099.38 4899.45 44
agg_prior293.94 9599.38 4899.50 36
test_prior493.66 5896.42 191
test_prior296.35 20092.80 9296.03 7497.59 9792.01 4095.01 7199.38 48
旧先验295.94 22881.66 31197.34 3198.82 15592.26 121
新几何295.79 235
无先验95.79 23597.87 10483.87 29699.65 5387.68 21398.89 97
原ACMM295.67 238
testdata299.67 4985.96 247
segment_acmp92.89 22
testdata195.26 25993.10 79
plane_prior597.51 13998.60 17593.02 11592.23 20495.86 217
plane_prior496.64 142
plane_prior390.00 16194.46 3991.34 174
plane_prior297.74 6794.85 24
plane_prior89.99 16397.24 11994.06 4792.16 208
n20.00 358
nn0.00 358
door-mid91.06 337
test1197.88 102
door91.13 336
HQP5-MVS89.33 188
BP-MVS92.13 127
HQP4-MVS90.14 19798.50 18295.78 224
HQP3-MVS97.39 16292.10 209
HQP2-MVS80.95 206
MDTV_nov1_ep13_2view70.35 34093.10 31083.88 29593.55 12982.47 18486.25 23898.38 137
ACMMP++_ref90.30 237
ACMMP++91.02 226
Test By Simon88.73 89