This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.85 191.59 285.67 190.54 1592.29 291.71 376.40 292.41 283.24 292.50 390.64 381.10 289.53 288.02 791.00 895.73 2
DPE-MVS88.63 391.29 385.53 290.87 892.20 391.98 276.00 590.55 782.09 693.85 190.75 181.25 188.62 787.59 1390.96 995.48 3
DVP-MVS88.67 291.62 185.22 390.47 1792.36 190.69 976.15 393.08 182.75 492.19 590.71 280.45 589.27 587.91 890.82 1195.84 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS88.00 590.50 585.08 490.95 791.58 692.03 175.53 1291.15 480.10 1592.27 488.34 1080.80 488.00 1386.99 1891.09 695.16 5
HPM-MVS++copyleft87.09 888.92 1284.95 592.61 187.91 4090.23 1576.06 488.85 1281.20 1087.33 1387.93 1179.47 888.59 888.23 590.15 3493.60 20
MSP-MVS88.09 490.84 484.88 690.00 2391.80 591.63 475.80 691.99 381.23 992.54 289.18 580.89 387.99 1487.91 889.70 4394.51 6
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xxxxxxxxxxxxxcwj85.35 1985.76 3084.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 761.35 11578.82 987.42 1986.23 3091.28 393.90 12
SF-MVS87.47 789.70 784.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 788.93 678.82 987.42 1986.23 3091.28 393.90 12
SMA-MVScopyleft87.56 690.17 684.52 991.71 290.57 990.77 875.19 1390.67 680.50 1486.59 1788.86 778.09 1689.92 189.41 190.84 1095.19 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft86.84 1188.91 1384.41 1090.66 1190.10 1290.78 775.64 987.38 1778.72 1990.68 1086.82 1680.15 687.13 2586.45 2890.51 2093.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
zzz-MVS85.71 1686.88 2284.34 1190.54 1587.11 4489.77 1874.17 1888.54 1383.08 378.60 3286.10 1978.11 1587.80 1687.46 1490.35 2992.56 26
CNVR-MVS86.36 1388.19 1684.23 1291.33 489.84 1490.34 1175.56 1087.36 1878.97 1881.19 2886.76 1778.74 1189.30 488.58 290.45 2694.33 9
TSAR-MVS + MP.86.88 1089.23 984.14 1389.78 2688.67 3190.59 1073.46 2788.99 1180.52 1391.26 688.65 879.91 786.96 3086.22 3290.59 1893.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS86.15 1487.95 1784.06 1490.80 989.20 2389.62 2074.26 1687.52 1580.63 1286.82 1684.19 2978.22 1487.58 1787.19 1690.81 1293.13 24
SD-MVS86.96 989.45 884.05 1590.13 2089.23 2289.77 1874.59 1489.17 1080.70 1189.93 1189.67 478.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC85.34 2086.59 2483.88 1691.48 388.88 2589.79 1775.54 1186.67 2177.94 2376.55 3584.99 2578.07 1788.04 1187.68 1190.46 2593.31 21
ACMMP_NAP86.52 1289.01 1083.62 1790.28 1990.09 1390.32 1374.05 2088.32 1479.74 1687.04 1585.59 2376.97 2989.35 388.44 490.35 2994.27 10
MCST-MVS85.13 2386.62 2383.39 1890.55 1489.82 1689.29 2273.89 2384.38 3176.03 2979.01 3185.90 2178.47 1287.81 1586.11 3492.11 193.29 22
DeepC-MVS78.47 284.81 2686.03 2883.37 1989.29 3290.38 1188.61 2776.50 186.25 2377.22 2475.12 3980.28 4577.59 2288.39 988.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft85.50 1887.40 2083.28 2090.65 1289.51 1989.16 2474.11 1983.70 3478.06 2285.54 2084.89 2777.31 2487.40 2287.14 1790.41 2793.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP85.99 1588.31 1583.27 2190.73 1089.84 1490.27 1474.31 1584.56 3075.88 3087.32 1485.04 2477.31 2489.01 688.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR85.52 1787.53 1983.17 2290.13 2089.27 2089.30 2173.97 2186.89 2077.14 2586.09 1883.18 3277.74 2087.42 1987.20 1590.77 1392.63 25
DeepC-MVS_fast78.24 384.27 2985.50 3182.85 2390.46 1889.24 2187.83 3374.24 1784.88 2676.23 2875.26 3881.05 4377.62 2188.02 1287.62 1290.69 1692.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS84.74 2786.43 2682.77 2489.48 3088.13 3988.64 2673.93 2284.92 2576.77 2681.94 2683.50 3077.29 2686.92 3186.49 2790.49 2193.14 23
CSCG85.28 2287.68 1882.49 2589.95 2491.99 488.82 2571.20 3886.41 2279.63 1779.26 2988.36 973.94 3986.64 3286.67 2591.40 294.41 7
PGM-MVS84.42 2886.29 2782.23 2690.04 2288.82 2789.23 2371.74 3682.82 3774.61 3384.41 2382.09 3577.03 2887.13 2586.73 2490.73 1592.06 32
DPM-MVS83.30 3284.33 3582.11 2789.56 2888.49 3490.33 1273.24 2883.85 3376.46 2772.43 4882.65 3373.02 4786.37 3686.91 1990.03 3689.62 51
train_agg84.86 2587.21 2182.11 2790.59 1385.47 5589.81 1673.55 2683.95 3273.30 3889.84 1287.23 1475.61 3286.47 3485.46 3989.78 3992.06 32
3Dnovator+75.73 482.40 3582.76 4081.97 2988.02 3889.67 1786.60 3771.48 3781.28 4378.18 2164.78 8377.96 5177.13 2787.32 2386.83 2190.41 2791.48 36
MSLP-MVS++82.09 3782.66 4181.42 3087.03 4487.22 4385.82 4270.04 4380.30 4478.66 2068.67 6781.04 4477.81 1985.19 4684.88 4489.19 5391.31 37
ACMMPcopyleft83.42 3185.27 3281.26 3188.47 3788.49 3488.31 3172.09 3383.42 3572.77 4182.65 2478.22 4975.18 3386.24 3885.76 3690.74 1492.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS79.04 185.30 2188.93 1181.06 3288.77 3690.48 1085.46 4673.08 2990.97 573.77 3784.81 2285.95 2077.43 2388.22 1087.73 1087.85 7894.34 8
AdaColmapbinary79.74 4778.62 5981.05 3389.23 3386.06 5284.95 4971.96 3479.39 4875.51 3163.16 8968.84 9376.51 3083.55 5782.85 5588.13 7086.46 74
X-MVS83.23 3385.20 3380.92 3489.71 2788.68 2888.21 3273.60 2482.57 3871.81 4677.07 3381.92 3771.72 5886.98 2986.86 2090.47 2292.36 29
TSAR-MVS + ACMM85.10 2488.81 1480.77 3589.55 2988.53 3388.59 2872.55 3187.39 1671.90 4390.95 987.55 1274.57 3487.08 2786.54 2687.47 8593.67 17
TSAR-MVS + GP.83.69 3086.58 2580.32 3685.14 5586.96 4584.91 5070.25 4284.71 2973.91 3685.16 2185.63 2277.92 1885.44 4185.71 3789.77 4092.45 27
CPTT-MVS81.77 3883.10 3980.21 3785.93 5186.45 5087.72 3470.98 3982.54 3971.53 4974.23 4481.49 4076.31 3182.85 6481.87 6188.79 6192.26 30
OPM-MVS79.68 4879.28 5780.15 3887.99 3986.77 4788.52 2972.72 3064.55 9267.65 6167.87 7174.33 6174.31 3786.37 3685.25 4189.73 4289.81 49
CDPH-MVS82.64 3485.03 3479.86 3989.41 3188.31 3688.32 3071.84 3580.11 4567.47 6282.09 2581.44 4171.85 5685.89 4086.15 3390.24 3291.25 38
ACMM72.26 878.86 5578.13 6179.71 4086.89 4583.40 7386.02 4070.50 4075.28 5571.49 5063.01 9069.26 8773.57 4184.11 5283.98 4889.76 4187.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet81.62 4083.41 3779.53 4187.06 4388.59 3285.47 4567.96 5976.59 5374.05 3474.69 4081.98 3672.98 4886.14 3985.47 3889.68 4490.42 46
MVS_030481.73 3983.86 3679.26 4286.22 5089.18 2486.41 3867.15 6375.28 5570.75 5374.59 4183.49 3174.42 3687.05 2886.34 2990.58 1991.08 40
abl_679.05 4387.27 4288.85 2683.62 5668.25 5581.68 4172.94 4073.79 4584.45 2872.55 5089.66 4590.64 43
ACMP73.23 779.79 4580.53 5078.94 4485.61 5385.68 5385.61 4369.59 4777.33 5171.00 5274.45 4269.16 8871.88 5483.15 6183.37 5389.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator73.76 579.75 4680.52 5178.84 4584.94 6087.35 4184.43 5265.54 7478.29 4973.97 3563.00 9175.62 5774.07 3885.00 4785.34 4090.11 3589.04 53
HQP-MVS81.19 4183.27 3878.76 4687.40 4185.45 5686.95 3570.47 4181.31 4266.91 6579.24 3076.63 5371.67 5984.43 5083.78 5089.19 5392.05 34
MVS_111021_HR80.13 4381.46 4578.58 4785.77 5285.17 5983.45 5769.28 5074.08 6170.31 5474.31 4375.26 5873.13 4486.46 3585.15 4289.53 4689.81 49
PCF-MVS73.28 679.42 4980.41 5278.26 4884.88 6188.17 3786.08 3969.85 4475.23 5768.43 5768.03 7078.38 4871.76 5781.26 8280.65 8388.56 6491.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PHI-MVS82.36 3685.89 2978.24 4986.40 4889.52 1885.52 4469.52 4982.38 4065.67 6981.35 2782.36 3473.07 4587.31 2486.76 2389.24 5091.56 35
LGP-MVS_train79.83 4481.22 4778.22 5086.28 4985.36 5886.76 3669.59 4777.34 5065.14 7175.68 3770.79 7571.37 6284.60 4884.01 4790.18 3390.74 42
MAR-MVS79.21 5180.32 5377.92 5187.46 4088.15 3883.95 5367.48 6274.28 5968.25 5864.70 8477.04 5272.17 5285.42 4285.00 4388.22 6687.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OMC-MVS80.26 4282.59 4277.54 5283.04 6385.54 5483.25 5865.05 7887.32 1972.42 4272.04 5078.97 4773.30 4383.86 5381.60 6588.15 6988.83 55
EPNet79.08 5480.62 4977.28 5388.90 3583.17 7683.65 5572.41 3274.41 5867.15 6476.78 3474.37 6064.43 9583.70 5683.69 5187.15 8988.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CLD-MVS79.35 5081.23 4677.16 5485.01 5886.92 4685.87 4160.89 12680.07 4775.35 3272.96 4673.21 6568.43 7685.41 4384.63 4587.41 8685.44 85
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS79.15 5381.07 4876.91 5583.54 6287.31 4284.45 5164.92 7969.98 6769.34 5571.62 5276.26 5469.84 6786.57 3385.90 3589.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNLPA77.20 6177.54 6676.80 5682.63 6584.31 6379.77 7264.64 8085.17 2473.18 3956.37 12469.81 8374.53 3581.12 8678.69 10986.04 12587.29 68
QAPM78.47 5680.22 5476.43 5785.03 5786.75 4880.62 6666.00 7173.77 6265.35 7065.54 7978.02 5072.69 4983.71 5583.36 5488.87 5990.41 47
MVS_111021_LR78.13 5879.85 5676.13 5881.12 7681.50 8680.28 6765.25 7676.09 5471.32 5176.49 3672.87 6772.21 5182.79 6581.29 6786.59 11187.91 61
PLCcopyleft68.99 1175.68 6875.31 8076.12 5982.94 6481.26 8979.94 7066.10 6977.15 5266.86 6659.13 10768.53 9473.73 4080.38 9579.04 10487.13 9381.68 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CS-MVS76.92 6278.01 6275.64 6081.47 7383.59 7180.68 6462.47 11168.39 7365.83 6867.84 7270.74 7673.07 4585.31 4582.79 5690.33 3187.42 65
ETV-MVS77.32 6078.81 5875.58 6182.24 7083.64 7079.98 6864.02 8669.64 7163.90 7670.89 5669.94 8273.41 4285.39 4483.91 4989.92 3788.31 58
canonicalmvs79.16 5282.37 4375.41 6282.33 6986.38 5180.80 6363.18 9282.90 3667.34 6372.79 4776.07 5569.62 6883.46 6084.41 4689.20 5290.60 44
OpenMVScopyleft70.44 1076.15 6776.82 7575.37 6385.01 5884.79 6178.99 8162.07 11671.27 6667.88 6057.91 11772.36 6870.15 6682.23 6981.41 6688.12 7187.78 63
test_part174.24 7573.44 8775.18 6482.02 7282.34 8183.88 5462.40 11360.93 12268.68 5649.25 17469.71 8465.73 9381.26 8281.98 6088.35 6588.60 57
PVSNet_Blended_VisFu76.57 6477.90 6375.02 6580.56 8186.58 4979.24 7766.18 6864.81 8968.18 5965.61 7771.45 7067.05 7884.16 5181.80 6288.90 5790.92 41
TAPA-MVS71.42 977.69 5980.05 5574.94 6680.68 8084.52 6281.36 6063.14 9384.77 2764.82 7368.72 6575.91 5671.86 5581.62 7179.55 9987.80 8085.24 88
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D74.08 7673.39 8874.88 6785.05 5682.62 7979.71 7368.66 5372.82 6458.80 8957.61 11861.31 11671.07 6480.32 9678.87 10886.00 12780.18 136
casdiffmvs76.76 6378.46 6074.77 6880.32 8483.73 6980.65 6563.24 9173.58 6366.11 6769.39 6274.09 6269.49 7082.52 6779.35 10388.84 6086.52 73
PVSNet_BlendedMVS76.21 6577.52 6774.69 6979.46 9083.79 6777.50 9464.34 8469.88 6871.88 4468.54 6870.42 7867.05 7883.48 5879.63 9587.89 7686.87 70
PVSNet_Blended76.21 6577.52 6774.69 6979.46 9083.79 6777.50 9464.34 8469.88 6871.88 4468.54 6870.42 7867.05 7883.48 5879.63 9587.89 7686.87 70
EIA-MVS75.64 6976.60 7674.53 7182.43 6883.84 6678.32 8762.28 11565.96 8263.28 7968.95 6367.54 9771.61 6082.55 6681.63 6489.24 5085.72 79
TSAR-MVS + COLMAP78.34 5781.64 4474.48 7280.13 8785.01 6081.73 5965.93 7384.75 2861.68 8185.79 1966.27 10171.39 6182.91 6380.78 7486.01 12685.98 76
Effi-MVS+75.28 7176.20 7774.20 7381.15 7583.24 7481.11 6163.13 9466.37 7860.27 8564.30 8768.88 9270.93 6581.56 7381.69 6388.61 6287.35 66
DI_MVS_plusplus_trai75.13 7276.12 7873.96 7478.18 9881.55 8480.97 6262.54 10868.59 7265.13 7261.43 9374.81 5969.32 7181.01 8879.59 9787.64 8385.89 77
MSDG71.52 9069.87 11373.44 7582.21 7179.35 10879.52 7464.59 8166.15 8061.87 8053.21 14856.09 14065.85 9278.94 11578.50 11186.60 11076.85 158
MVS_Test75.37 7077.13 7373.31 7679.07 9381.32 8879.98 6860.12 13769.72 7064.11 7570.53 5773.22 6468.90 7280.14 10179.48 10187.67 8285.50 83
ACMH+66.54 1371.36 9370.09 11172.85 7782.59 6681.13 9178.56 8368.04 5761.55 11652.52 12851.50 16354.14 15068.56 7578.85 11679.50 10086.82 10183.94 104
Fast-Effi-MVS+73.11 8173.66 8572.48 7877.72 10480.88 9578.55 8458.83 15265.19 8660.36 8459.98 10262.42 11371.22 6381.66 7080.61 8588.20 6784.88 95
diffmvs74.86 7377.37 7071.93 7975.62 12080.35 10079.42 7660.15 13672.81 6564.63 7471.51 5373.11 6666.53 8879.02 11477.98 11785.25 14086.83 72
Effi-MVS+-dtu71.82 8871.86 10171.78 8078.77 9480.47 9878.55 8461.67 12360.68 12355.49 10758.48 11165.48 10368.85 7376.92 13675.55 14887.35 8785.46 84
ACMH65.37 1470.71 9770.00 11271.54 8182.51 6782.47 8077.78 9168.13 5656.19 15146.06 16154.30 13451.20 17768.68 7480.66 9180.72 7686.07 12184.45 101
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121171.90 8772.48 9671.21 8280.14 8681.53 8576.92 9962.89 9764.46 9458.94 8743.80 18570.98 7462.22 10780.70 9080.19 9086.18 11885.73 78
DCV-MVSNet73.65 7875.78 7971.16 8380.19 8579.27 10977.45 9661.68 12266.73 7758.72 9065.31 8069.96 8162.19 10881.29 8180.97 7186.74 10486.91 69
v1070.22 10369.76 11670.74 8474.79 12880.30 10279.22 7859.81 14057.71 14056.58 10454.22 13955.31 14366.95 8178.28 12277.47 12687.12 9585.07 91
v2v48270.05 10669.46 12070.74 8474.62 13080.32 10179.00 8060.62 12957.41 14256.89 10155.43 13055.14 14566.39 8977.25 13277.14 13286.90 9883.57 109
IB-MVS66.94 1271.21 9471.66 10270.68 8679.18 9282.83 7872.61 14261.77 12059.66 12963.44 7853.26 14659.65 12359.16 13076.78 13982.11 5987.90 7587.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v870.23 10269.86 11470.67 8774.69 12979.82 10478.79 8259.18 14558.80 13358.20 9555.00 13157.33 13366.31 9077.51 12976.71 13886.82 10183.88 105
v114469.93 10769.36 12170.61 8874.89 12780.93 9279.11 7960.64 12855.97 15355.31 10953.85 14154.14 15066.54 8778.10 12477.44 12787.14 9285.09 90
UA-Net74.47 7477.80 6470.59 8985.33 5485.40 5773.54 13665.98 7260.65 12456.00 10672.11 4979.15 4654.63 16183.13 6282.25 5888.04 7281.92 122
ET-MVSNet_ETH3D72.46 8574.19 8370.44 9062.50 19381.17 9079.90 7162.46 11264.52 9357.52 9871.49 5459.15 12572.08 5378.61 11981.11 6988.16 6883.29 110
IterMVS-LS71.69 8972.82 9470.37 9177.54 10676.34 14275.13 11260.46 13261.53 11757.57 9764.89 8267.33 9866.04 9177.09 13577.37 12985.48 13685.18 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119269.50 11168.83 12770.29 9274.49 13180.92 9478.55 8460.54 13055.04 15954.21 11252.79 15552.33 17066.92 8277.88 12677.35 13087.04 9685.51 82
v14419269.34 11368.68 13170.12 9374.06 13580.54 9778.08 9060.54 13054.99 16154.13 11452.92 15352.80 16866.73 8577.13 13476.72 13787.15 8985.63 80
HyFIR lowres test69.47 11268.94 12670.09 9476.77 11282.93 7776.63 10360.17 13559.00 13254.03 11540.54 19465.23 10467.89 7776.54 14278.30 11485.03 14380.07 137
EPP-MVSNet74.00 7777.41 6970.02 9580.53 8283.91 6574.99 11462.68 10665.06 8749.77 14168.68 6672.09 6963.06 10382.49 6880.73 7589.12 5588.91 54
v192192069.03 11668.32 13569.86 9674.03 13680.37 9977.55 9260.25 13454.62 16353.59 12052.36 15951.50 17666.75 8477.17 13376.69 13986.96 9785.56 81
MS-PatchMatch70.17 10470.49 10869.79 9780.98 7877.97 12777.51 9358.95 14962.33 11055.22 11053.14 14965.90 10262.03 11179.08 11377.11 13384.08 15077.91 150
FC-MVSNet-train72.60 8475.07 8169.71 9881.10 7778.79 11573.74 13565.23 7766.10 8153.34 12170.36 5863.40 11056.92 14681.44 7580.96 7287.93 7484.46 100
thisisatest053071.48 9173.01 9169.70 9973.83 13978.62 11774.53 11759.12 14664.13 9558.63 9164.60 8558.63 12764.27 9680.28 9880.17 9187.82 7984.64 98
tttt051771.41 9272.95 9269.60 10073.70 14178.70 11674.42 12159.12 14663.89 9958.35 9464.56 8658.39 12964.27 9680.29 9780.17 9187.74 8184.69 97
v124068.64 12167.89 14069.51 10173.89 13880.26 10376.73 10259.97 13953.43 17153.08 12351.82 16250.84 17966.62 8676.79 13876.77 13686.78 10385.34 86
MVSTER72.06 8674.24 8269.51 10170.39 16975.97 14576.91 10057.36 15964.64 9161.39 8368.86 6463.76 10863.46 10081.44 7579.70 9487.56 8485.31 87
CHOSEN 1792x268869.20 11569.26 12269.13 10376.86 11178.93 11177.27 9760.12 13761.86 11454.42 11142.54 18961.61 11466.91 8378.55 12078.14 11679.23 17083.23 111
PatchMatch-RL67.78 13166.65 15069.10 10473.01 14572.69 16368.49 15861.85 11962.93 10660.20 8656.83 12350.42 18169.52 6975.62 14574.46 15581.51 16073.62 177
baseline269.69 10870.27 11069.01 10575.72 11977.13 13573.82 13258.94 15061.35 11857.09 10061.68 9257.17 13561.99 11278.10 12476.58 14086.48 11479.85 138
CANet_DTU73.29 8076.96 7469.00 10677.04 11082.06 8279.49 7556.30 16267.85 7553.29 12271.12 5570.37 8061.81 11781.59 7280.96 7286.09 12084.73 96
UniMVSNet_NR-MVSNet70.59 9872.19 9768.72 10777.72 10480.72 9673.81 13369.65 4661.99 11243.23 17060.54 9857.50 13258.57 13179.56 10781.07 7089.34 4983.97 102
COLMAP_ROBcopyleft62.73 1567.66 13366.76 14968.70 10880.49 8377.98 12575.29 10762.95 9663.62 10149.96 13947.32 18050.72 18058.57 13176.87 13775.50 14984.94 14575.33 169
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IS_MVSNet73.33 7977.34 7168.65 10981.29 7483.47 7274.45 11863.58 8965.75 8448.49 14567.11 7670.61 7754.63 16184.51 4983.58 5289.48 4786.34 75
pmmvs467.89 12867.39 14568.48 11071.60 16073.57 16074.45 11860.98 12564.65 9057.97 9654.95 13251.73 17561.88 11473.78 15675.11 15083.99 15277.91 150
v14867.85 12967.53 14168.23 11173.25 14477.57 13374.26 12557.36 15955.70 15457.45 9953.53 14255.42 14261.96 11375.23 14773.92 15685.08 14281.32 127
CostFormer68.92 11769.58 11868.15 11275.98 11776.17 14478.22 8951.86 17865.80 8361.56 8263.57 8862.83 11161.85 11570.40 18268.67 17979.42 16879.62 141
DU-MVS69.63 10970.91 10568.13 11375.99 11579.54 10573.81 13369.20 5161.20 12043.23 17058.52 10953.50 15758.57 13179.22 11180.45 8687.97 7383.97 102
GBi-Net70.78 9573.37 8967.76 11472.95 14678.00 12275.15 10962.72 10164.13 9551.44 13058.37 11269.02 8957.59 13881.33 7880.72 7686.70 10582.02 116
test170.78 9573.37 8967.76 11472.95 14678.00 12275.15 10962.72 10164.13 9551.44 13058.37 11269.02 8957.59 13881.33 7880.72 7686.70 10582.02 116
V4268.76 12069.63 11767.74 11664.93 18978.01 12178.30 8856.48 16158.65 13456.30 10554.26 13757.03 13664.85 9477.47 13077.01 13485.60 13484.96 93
FMVSNet270.39 10172.67 9567.72 11772.95 14678.00 12275.15 10962.69 10563.29 10351.25 13455.64 12668.49 9557.59 13880.91 8980.35 8886.70 10582.02 116
baseline170.10 10572.17 9867.69 11879.74 8876.80 13773.91 12964.38 8362.74 10848.30 14764.94 8164.08 10754.17 16381.46 7478.92 10685.66 13376.22 160
FMVSNet370.49 9972.90 9367.67 11972.88 14977.98 12574.96 11562.72 10164.13 9551.44 13058.37 11269.02 8957.43 14179.43 10979.57 9886.59 11181.81 123
EG-PatchMatch MVS67.24 14066.94 14767.60 12078.73 9581.35 8773.28 14059.49 14246.89 19351.42 13343.65 18653.49 15855.50 15881.38 7780.66 8287.15 8981.17 128
Vis-MVSNetpermissive72.77 8377.20 7267.59 12174.19 13484.01 6476.61 10461.69 12160.62 12550.61 13770.25 5971.31 7355.57 15783.85 5482.28 5786.90 9888.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet69.25 11470.81 10667.43 12277.23 10979.46 10773.48 13869.66 4560.43 12639.56 17858.82 10853.48 15955.74 15579.59 10581.21 6888.89 5882.70 112
tfpn200view968.11 12468.72 13067.40 12377.83 10278.93 11174.28 12362.81 9856.64 14646.82 15552.65 15653.47 16056.59 14780.41 9278.43 11286.11 11980.52 133
UniMVSNet_ETH3D67.18 14167.03 14667.36 12474.44 13278.12 12074.07 12866.38 6652.22 17646.87 15448.64 17551.84 17456.96 14477.29 13178.53 11085.42 13782.59 113
TDRefinement66.09 14565.03 16267.31 12569.73 17376.75 13875.33 10564.55 8260.28 12749.72 14245.63 18342.83 20060.46 12775.75 14475.95 14584.08 15078.04 149
thres20067.98 12668.55 13367.30 12677.89 10178.86 11374.18 12762.75 9956.35 14946.48 15852.98 15253.54 15656.46 14880.41 9277.97 11886.05 12379.78 140
tpm cat165.41 14763.81 17067.28 12775.61 12172.88 16275.32 10652.85 17262.97 10563.66 7753.24 14753.29 16561.83 11665.54 19364.14 19574.43 19074.60 171
v7n67.05 14266.94 14767.17 12872.35 15178.97 11073.26 14158.88 15151.16 18250.90 13548.21 17750.11 18360.96 12277.70 12777.38 12886.68 10885.05 92
thres40067.95 12768.62 13267.17 12877.90 9978.59 11874.27 12462.72 10156.34 15045.77 16353.00 15153.35 16356.46 14880.21 10078.43 11285.91 13080.43 134
thres100view90067.60 13668.02 13767.12 13077.83 10277.75 12973.90 13062.52 10956.64 14646.82 15552.65 15653.47 16055.92 15278.77 11777.62 12385.72 13179.23 143
UGNet72.78 8277.67 6567.07 13171.65 15883.24 7475.20 10863.62 8864.93 8856.72 10271.82 5173.30 6349.02 17481.02 8780.70 8186.22 11788.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+-dtu68.34 12269.47 11967.01 13275.15 12377.97 12777.12 9855.40 16457.87 13546.68 15756.17 12560.39 11762.36 10676.32 14376.25 14485.35 13981.34 126
FMVSNet168.84 11870.47 10966.94 13371.35 16377.68 13074.71 11662.35 11456.93 14449.94 14050.01 16964.59 10557.07 14381.33 7880.72 7686.25 11682.00 119
GA-MVS68.14 12369.17 12466.93 13473.77 14078.50 11974.45 11858.28 15455.11 15848.44 14660.08 10053.99 15361.50 11978.43 12177.57 12485.13 14180.54 132
thres600view767.68 13268.43 13466.80 13577.90 9978.86 11373.84 13162.75 9956.07 15244.70 16852.85 15452.81 16755.58 15680.41 9277.77 12086.05 12380.28 135
UniMVSNet (Re)69.53 11071.90 10066.76 13676.42 11380.93 9272.59 14368.03 5861.75 11541.68 17558.34 11557.23 13453.27 16679.53 10880.62 8488.57 6384.90 94
USDC67.36 13967.90 13966.74 13771.72 15675.23 15371.58 14660.28 13367.45 7650.54 13860.93 9445.20 19762.08 10976.56 14174.50 15484.25 14975.38 168
NR-MVSNet68.79 11970.56 10766.71 13877.48 10779.54 10573.52 13769.20 5161.20 12039.76 17758.52 10950.11 18351.37 17080.26 9980.71 8088.97 5683.59 108
baseline70.45 10074.09 8466.20 13970.95 16675.67 14674.26 12553.57 16668.33 7458.42 9269.87 6071.45 7061.55 11874.84 15074.76 15378.42 17283.72 107
Baseline_NR-MVSNet67.53 13768.77 12966.09 14075.99 11574.75 15672.43 14468.41 5461.33 11938.33 18251.31 16454.13 15256.03 15179.22 11178.19 11585.37 13882.45 114
thisisatest051567.40 13868.78 12865.80 14170.02 17175.24 15269.36 15557.37 15854.94 16253.67 11955.53 12954.85 14658.00 13678.19 12378.91 10786.39 11583.78 106
dps64.00 15762.99 17365.18 14273.29 14372.07 16568.98 15753.07 17157.74 13958.41 9355.55 12847.74 19060.89 12569.53 18567.14 18876.44 18271.19 181
CDS-MVSNet67.65 13469.83 11565.09 14375.39 12276.55 14074.42 12163.75 8753.55 16949.37 14359.41 10562.45 11244.44 18179.71 10479.82 9383.17 15677.36 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpnnormal64.27 15563.64 17165.02 14475.84 11875.61 14871.24 14962.52 10947.79 19042.97 17242.65 18844.49 19852.66 16878.77 11776.86 13584.88 14679.29 142
TinyColmap62.84 16161.03 18664.96 14569.61 17471.69 16668.48 15959.76 14155.41 15547.69 15247.33 17934.20 20862.76 10574.52 15172.59 16481.44 16171.47 180
pmmvs-eth3d63.52 15862.44 18064.77 14666.82 18470.12 17269.41 15459.48 14354.34 16752.71 12446.24 18244.35 19956.93 14572.37 16073.77 15883.30 15475.91 162
EPNet_dtu68.08 12571.00 10464.67 14779.64 8968.62 17875.05 11363.30 9066.36 7945.27 16567.40 7466.84 10043.64 18375.37 14674.98 15281.15 16277.44 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-LLR64.42 15364.36 16664.49 14875.02 12563.93 19166.61 17061.96 11754.41 16447.77 15057.46 11960.25 11855.20 15970.80 17669.33 17480.40 16674.38 173
IterMVS-SCA-FT66.89 14369.22 12364.17 14971.30 16475.64 14771.33 14753.17 17057.63 14149.08 14460.72 9660.05 12163.09 10274.99 14973.92 15677.07 17881.57 125
IterMVS66.36 14468.30 13664.10 15069.48 17674.61 15773.41 13950.79 18457.30 14348.28 14860.64 9759.92 12260.85 12674.14 15472.66 16381.80 15978.82 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SCA65.40 14866.58 15164.02 15170.65 16773.37 16167.35 16253.46 16863.66 10054.14 11360.84 9560.20 12061.50 11969.96 18368.14 18477.01 17969.91 183
CR-MVSNet64.83 15165.54 15664.01 15270.64 16869.41 17365.97 17352.74 17357.81 13752.65 12554.27 13556.31 13960.92 12372.20 16573.09 16181.12 16375.69 165
PatchmatchNetpermissive64.21 15664.65 16463.69 15371.29 16568.66 17769.63 15351.70 18063.04 10453.77 11859.83 10458.34 13060.23 12868.54 18966.06 19175.56 18568.08 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TransMVSNet (Re)64.74 15265.66 15563.66 15477.40 10875.33 15169.86 15162.67 10747.63 19141.21 17650.01 16952.33 17045.31 18079.57 10677.69 12285.49 13577.07 157
pm-mvs165.62 14667.42 14363.53 15573.66 14276.39 14169.66 15260.87 12749.73 18643.97 16951.24 16557.00 13748.16 17579.89 10277.84 11984.85 14779.82 139
RPSCF67.64 13571.25 10363.43 15661.86 19570.73 17067.26 16350.86 18374.20 6058.91 8867.49 7369.33 8664.10 9871.41 16968.45 18377.61 17477.17 155
MDTV_nov1_ep1364.37 15465.24 15863.37 15768.94 17870.81 16972.40 14550.29 18760.10 12853.91 11760.07 10159.15 12557.21 14269.43 18667.30 18677.47 17569.78 185
CMPMVSbinary47.78 1762.49 16562.52 17862.46 15870.01 17270.66 17162.97 18551.84 17951.98 17856.71 10342.87 18753.62 15457.80 13772.23 16370.37 17175.45 18775.91 162
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
anonymousdsp65.28 14967.98 13862.13 15958.73 20173.98 15967.10 16550.69 18548.41 18947.66 15354.27 13552.75 16961.45 12176.71 14080.20 8987.13 9389.53 52
pmmvs662.41 16662.88 17461.87 16071.38 16275.18 15567.76 16159.45 14441.64 20142.52 17437.33 19652.91 16646.87 17777.67 12876.26 14383.23 15579.18 144
tpmrst62.00 17062.35 18161.58 16171.62 15964.14 19069.07 15648.22 19762.21 11153.93 11658.26 11655.30 14455.81 15463.22 19862.62 19770.85 19970.70 182
tpm62.41 16663.15 17261.55 16272.24 15263.79 19371.31 14846.12 20157.82 13655.33 10859.90 10354.74 14753.63 16467.24 19264.29 19470.65 20074.25 175
Vis-MVSNet (Re-imp)67.83 13073.52 8661.19 16378.37 9776.72 13966.80 16862.96 9565.50 8534.17 18967.19 7569.68 8539.20 19279.39 11079.44 10285.68 13276.73 159
SixPastTwentyTwo61.84 17362.45 17961.12 16469.20 17772.20 16462.03 18857.40 15746.54 19438.03 18457.14 12241.72 20258.12 13569.67 18471.58 16781.94 15878.30 148
LTVRE_ROB59.44 1661.82 17562.64 17760.87 16572.83 15077.19 13464.37 18058.97 14833.56 20928.00 19652.59 15842.21 20163.93 9974.52 15176.28 14277.15 17782.13 115
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs562.37 16964.04 16860.42 16665.03 18771.67 16767.17 16452.70 17550.30 18344.80 16654.23 13851.19 17849.37 17372.88 15973.48 16083.45 15374.55 172
RPMNet61.71 17662.88 17460.34 16769.51 17569.41 17363.48 18349.23 18957.81 13745.64 16450.51 16750.12 18253.13 16768.17 19168.49 18281.07 16475.62 167
PMMVS65.06 15069.17 12460.26 16855.25 20763.43 19466.71 16943.01 20362.41 10950.64 13669.44 6167.04 9963.29 10174.36 15373.54 15982.68 15773.99 176
PM-MVS60.48 17960.94 18759.94 16958.85 20066.83 18464.27 18151.39 18155.03 16048.03 14950.00 17140.79 20458.26 13469.20 18767.13 18978.84 17177.60 152
MDTV_nov1_ep13_2view60.16 18060.51 18859.75 17065.39 18669.05 17668.00 16048.29 19551.99 17745.95 16248.01 17849.64 18553.39 16568.83 18866.52 19077.47 17569.55 186
PEN-MVS62.96 16065.77 15459.70 17173.98 13775.45 14963.39 18467.61 6152.49 17425.49 19953.39 14349.12 18640.85 18971.94 16777.26 13186.86 10080.72 131
gg-mvs-nofinetune62.55 16365.05 16159.62 17278.72 9677.61 13170.83 15053.63 16539.71 20522.04 20636.36 19864.32 10647.53 17681.16 8479.03 10585.00 14477.17 155
PatchT61.97 17164.04 16859.55 17360.49 19767.40 18156.54 19848.65 19356.69 14552.65 12551.10 16652.14 17360.92 12372.20 16573.09 16178.03 17375.69 165
CP-MVSNet62.68 16265.49 15759.40 17471.84 15475.34 15062.87 18667.04 6452.64 17327.19 19753.38 14448.15 18841.40 18771.26 17075.68 14686.07 12182.00 119
PS-CasMVS62.38 16865.06 16059.25 17571.73 15575.21 15462.77 18766.99 6551.94 18026.96 19852.00 16147.52 19141.06 18871.16 17375.60 14785.97 12881.97 121
CVMVSNet62.55 16365.89 15258.64 17666.95 18269.15 17566.49 17256.29 16352.46 17532.70 19059.27 10658.21 13150.09 17271.77 16871.39 16879.31 16978.99 145
DTE-MVSNet61.85 17264.96 16358.22 17774.32 13374.39 15861.01 19067.85 6051.76 18121.91 20753.28 14548.17 18737.74 19372.22 16476.44 14186.52 11378.49 147
WR-MVS63.03 15967.40 14457.92 17875.14 12477.60 13260.56 19166.10 6954.11 16823.88 20053.94 14053.58 15534.50 19673.93 15577.71 12187.35 8780.94 129
EPMVS60.00 18161.97 18257.71 17968.46 17963.17 19764.54 17948.23 19663.30 10244.72 16760.19 9956.05 14150.85 17165.27 19662.02 19869.44 20263.81 196
TESTMET0.1,161.10 17764.36 16657.29 18057.53 20263.93 19166.61 17036.22 20754.41 16447.77 15057.46 11960.25 11855.20 15970.80 17669.33 17480.40 16674.38 173
WR-MVS_H61.83 17465.87 15357.12 18171.72 15676.87 13661.45 18966.19 6751.97 17922.92 20453.13 15052.30 17233.80 19771.03 17475.00 15186.65 10980.78 130
MVS-HIRNet54.41 19352.10 20057.11 18258.99 19956.10 20649.68 20649.10 19046.18 19552.15 12933.18 20246.11 19456.10 15063.19 19959.70 20276.64 18160.25 202
test-mter60.84 17864.62 16556.42 18355.99 20564.18 18965.39 17534.23 20854.39 16646.21 16057.40 12159.49 12455.86 15371.02 17569.65 17380.87 16576.20 161
gm-plane-assit57.00 18757.62 19456.28 18476.10 11462.43 20047.62 20846.57 19933.84 20823.24 20237.52 19540.19 20559.61 12979.81 10377.55 12584.55 14872.03 179
TAMVS59.58 18262.81 17655.81 18566.03 18565.64 18863.86 18248.74 19249.95 18537.07 18654.77 13358.54 12844.44 18172.29 16271.79 16574.70 18966.66 191
test0.0.03 158.80 18361.58 18455.56 18675.02 12568.45 17959.58 19561.96 11752.74 17229.57 19349.75 17254.56 14831.46 19971.19 17169.77 17275.75 18364.57 194
MIMVSNet58.52 18561.34 18555.22 18760.76 19667.01 18366.81 16749.02 19156.43 14838.90 18040.59 19354.54 14940.57 19073.16 15871.65 16675.30 18866.00 192
CHOSEN 280x42058.70 18461.88 18354.98 18855.45 20650.55 20964.92 17740.36 20455.21 15638.13 18348.31 17663.76 10863.03 10473.73 15768.58 18168.00 20573.04 178
Anonymous2023120656.36 18957.80 19354.67 18970.08 17066.39 18560.46 19257.54 15649.50 18829.30 19433.86 20146.64 19235.18 19570.44 18068.88 17875.47 18668.88 188
FPMVS51.87 19750.00 20254.07 19066.83 18357.25 20460.25 19350.91 18250.25 18434.36 18836.04 19932.02 21041.49 18658.98 20456.07 20370.56 20159.36 204
FMVSNet557.24 18660.02 18953.99 19156.45 20462.74 19865.27 17647.03 19855.14 15739.55 17940.88 19153.42 16241.83 18472.35 16171.10 17073.79 19264.50 195
MDA-MVSNet-bldmvs53.37 19653.01 19953.79 19243.67 21167.95 18059.69 19457.92 15543.69 19732.41 19141.47 19027.89 21352.38 16956.97 20665.99 19276.68 18067.13 190
ADS-MVSNet55.94 19058.01 19153.54 19362.48 19458.48 20359.12 19646.20 20059.65 13042.88 17352.34 16053.31 16446.31 17862.00 20060.02 20164.23 20760.24 203
pmnet_mix0255.30 19157.01 19553.30 19464.14 19059.09 20258.39 19750.24 18853.47 17038.68 18149.75 17245.86 19540.14 19165.38 19560.22 20068.19 20465.33 193
test20.0353.93 19556.28 19651.19 19572.19 15365.83 18653.20 20261.08 12442.74 19922.08 20537.07 19745.76 19624.29 20770.44 18069.04 17674.31 19163.05 198
testgi54.39 19457.86 19250.35 19671.59 16167.24 18254.95 20053.25 16943.36 19823.78 20144.64 18447.87 18924.96 20470.45 17968.66 18073.60 19362.78 199
EU-MVSNet54.63 19258.69 19049.90 19756.99 20362.70 19956.41 19950.64 18645.95 19623.14 20350.42 16846.51 19336.63 19465.51 19464.85 19375.57 18474.91 170
PMVScopyleft39.38 1846.06 20343.30 20549.28 19862.93 19138.75 21141.88 21053.50 16733.33 21035.46 18728.90 20631.01 21133.04 19858.61 20554.63 20668.86 20357.88 205
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FC-MVSNet-test56.90 18865.20 15947.21 19966.98 18163.20 19649.11 20758.60 15359.38 13111.50 21365.60 7856.68 13824.66 20671.17 17271.36 16972.38 19669.02 187
pmmvs347.65 19949.08 20445.99 20044.61 20954.79 20750.04 20431.95 21133.91 20729.90 19230.37 20333.53 20946.31 17863.50 19763.67 19673.14 19563.77 197
MIMVSNet149.27 19853.25 19844.62 20144.61 20961.52 20153.61 20152.18 17641.62 20218.68 20928.14 20741.58 20325.50 20268.46 19069.04 17673.15 19462.37 200
N_pmnet47.35 20050.13 20144.11 20259.98 19851.64 20851.86 20344.80 20249.58 18720.76 20840.65 19240.05 20629.64 20059.84 20255.15 20457.63 20854.00 206
new-patchmatchnet46.97 20149.47 20344.05 20362.82 19256.55 20545.35 20952.01 17742.47 20017.04 21135.73 20035.21 20721.84 21061.27 20154.83 20565.26 20660.26 201
Gipumacopyleft36.38 20535.80 20737.07 20445.76 20833.90 21229.81 21248.47 19439.91 20418.02 2108.00 2148.14 21825.14 20359.29 20361.02 19955.19 21040.31 208
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet38.40 20442.64 20633.44 20537.54 21445.00 21036.60 21132.72 21040.27 20312.72 21229.89 20428.90 21224.78 20553.17 20752.90 20756.31 20948.34 207
E-PMN21.77 20718.24 21025.89 20640.22 21219.58 21512.46 21639.87 20518.68 2146.71 2159.57 2114.31 22122.36 20919.89 21227.28 21133.73 21228.34 212
EMVS20.98 20817.15 21125.44 20739.51 21319.37 21612.66 21539.59 20619.10 2136.62 2169.27 2124.40 22022.43 20817.99 21324.40 21231.81 21325.53 213
GG-mvs-BLEND46.86 20267.51 14222.75 2080.05 21876.21 14364.69 1780.04 21561.90 1130.09 21955.57 12771.32 720.08 21470.54 17867.19 18771.58 19769.86 184
PMMVS225.60 20629.75 20820.76 20928.00 21530.93 21323.10 21329.18 21223.14 2121.46 21818.23 21016.54 2155.08 21240.22 20841.40 20937.76 21137.79 210
MVEpermissive19.12 1920.47 20923.27 20917.20 21012.66 21725.41 21410.52 21734.14 20914.79 2156.53 2178.79 2134.68 21916.64 21129.49 21041.63 20822.73 21538.11 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt14.50 21114.68 2167.17 21810.46 2182.21 21437.73 20628.71 19525.26 20816.98 2144.37 21331.49 20929.77 21026.56 214
testmvs0.09 2100.15 2120.02 2120.01 2190.02 2190.05 2200.01 2160.11 2160.01 2200.26 2160.01 2220.06 2160.10 2140.10 2130.01 2170.43 215
test1230.09 2100.14 2130.02 2120.00 2200.02 2190.02 2210.01 2160.09 2170.00 2210.30 2150.00 2230.08 2140.03 2150.09 2140.01 2170.45 214
uanet_test0.00 2120.00 2140.00 2140.00 2200.00 2210.00 2220.00 2180.00 2180.00 2210.00 2170.00 2230.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2200.00 2210.00 2220.00 2180.00 2180.00 2210.00 2170.00 2230.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2200.00 2210.00 2220.00 2180.00 2180.00 2210.00 2170.00 2230.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def46.24 159
9.1486.88 15
SR-MVS88.99 3473.57 2587.54 13
Anonymous20240521172.16 9980.85 7981.85 8376.88 10165.40 7562.89 10746.35 18167.99 9662.05 11081.15 8580.38 8785.97 12884.50 99
our_test_367.93 18070.99 16866.89 166
ambc53.42 19764.99 18863.36 19549.96 20547.07 19237.12 18528.97 20516.36 21641.82 18575.10 14867.34 18571.55 19875.72 164
MTAPA83.48 186.45 18
MTMP82.66 584.91 26
Patchmatch-RL test2.85 219
XVS86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
X-MVStestdata86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
mPP-MVS89.90 2581.29 42
NP-MVS80.10 46
Patchmtry65.80 18765.97 17352.74 17352.65 125
DeepMVS_CXcopyleft18.74 21718.55 2148.02 21326.96 2117.33 21423.81 20913.05 21725.99 20125.17 21122.45 21636.25 211