This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
SMA-MVScopyleft87.56 690.17 684.52 991.71 290.57 990.77 875.19 1390.67 680.50 1486.59 1788.86 778.09 1689.92 189.41 190.84 1095.19 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS88.85 191.59 285.67 190.54 1592.29 291.71 376.40 292.41 283.24 292.50 390.64 381.10 289.53 288.02 791.00 895.73 2
ACMMP_NAP86.52 1289.01 1083.62 1790.28 1990.09 1390.32 1374.05 2088.32 1479.74 1687.04 1585.59 2376.97 2989.35 388.44 490.35 2994.27 10
CNVR-MVS86.36 1388.19 1684.23 1291.33 489.84 1490.34 1175.56 1087.36 1878.97 1881.19 2886.76 1778.74 1189.30 488.58 290.45 2694.33 9
DVP-MVS88.67 291.62 185.22 390.47 1792.36 190.69 976.15 393.08 182.75 492.19 590.71 280.45 589.27 587.91 890.82 1195.84 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP85.99 1588.31 1583.27 2190.73 1089.84 1490.27 1474.31 1584.56 3075.88 3087.32 1485.04 2477.31 2489.01 688.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft88.63 391.29 385.53 290.87 892.20 391.98 276.00 590.55 782.09 693.85 190.75 181.25 188.62 787.59 1390.96 995.48 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft87.09 888.92 1284.95 592.61 187.91 4090.23 1576.06 488.85 1281.20 1087.33 1387.93 1179.47 888.59 888.23 590.15 3493.60 20
DeepC-MVS78.47 284.81 2686.03 2883.37 1989.29 3290.38 1188.61 2776.50 186.25 2377.22 2475.12 3980.28 4577.59 2288.39 988.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS79.04 185.30 2188.93 1181.06 3288.77 3690.48 1085.46 4673.08 2990.97 573.77 3784.81 2285.95 2077.43 2388.22 1087.73 1087.85 8194.34 8
NCCC85.34 2086.59 2483.88 1691.48 388.88 2589.79 1775.54 1186.67 2177.94 2376.55 3584.99 2578.07 1788.04 1187.68 1190.46 2593.31 21
DeepC-MVS_fast78.24 384.27 2985.50 3182.85 2390.46 1889.24 2187.83 3374.24 1784.88 2676.23 2875.26 3881.05 4377.62 2188.02 1287.62 1290.69 1692.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS88.00 590.50 585.08 490.95 791.58 692.03 175.53 1291.15 480.10 1592.27 488.34 1080.80 488.00 1386.99 1891.09 695.16 5
MSP-MVS88.09 490.84 484.88 690.00 2391.80 591.63 475.80 691.99 381.23 992.54 289.18 580.89 387.99 1487.91 889.70 4494.51 6
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS85.13 2386.62 2383.39 1890.55 1489.82 1689.29 2273.89 2384.38 3176.03 2979.01 3185.90 2178.47 1287.81 1586.11 3492.11 193.29 22
zzz-MVS85.71 1686.88 2284.34 1190.54 1587.11 4489.77 1874.17 1888.54 1383.08 378.60 3286.10 1978.11 1587.80 1687.46 1490.35 2992.56 26
HFP-MVS86.15 1487.95 1784.06 1490.80 989.20 2389.62 2074.26 1687.52 1580.63 1286.82 1684.19 2978.22 1487.58 1787.19 1690.81 1293.13 24
SD-MVS86.96 989.45 884.05 1590.13 2089.23 2289.77 1874.59 1489.17 1080.70 1189.93 1189.67 478.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
xxxxxxxxxxxxxcwj85.35 1985.76 3084.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 761.35 11878.82 987.42 1986.23 3091.28 393.90 12
SF-MVS87.47 789.70 784.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 788.93 678.82 987.42 1986.23 3091.28 393.90 12
ACMMPR85.52 1787.53 1983.17 2290.13 2089.27 2089.30 2173.97 2186.89 2077.14 2586.09 1883.18 3277.74 2087.42 1987.20 1590.77 1392.63 25
MP-MVScopyleft85.50 1887.40 2083.28 2090.65 1289.51 1989.16 2474.11 1983.70 3478.06 2285.54 2084.89 2777.31 2487.40 2287.14 1790.41 2793.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
3Dnovator+75.73 482.40 3582.76 4081.97 2988.02 3889.67 1786.60 3771.48 3781.28 4378.18 2164.78 8477.96 5277.13 2787.32 2386.83 2190.41 2791.48 36
PHI-MVS82.36 3685.89 2978.24 4986.40 4889.52 1885.52 4469.52 4982.38 4065.67 6981.35 2782.36 3473.07 4787.31 2486.76 2389.24 5191.56 35
PGM-MVS84.42 2886.29 2782.23 2690.04 2288.82 2789.23 2371.74 3682.82 3774.61 3384.41 2382.09 3577.03 2887.13 2586.73 2490.73 1592.06 32
APD-MVScopyleft86.84 1188.91 1384.41 1090.66 1190.10 1290.78 775.64 987.38 1778.72 1990.68 1086.82 1680.15 687.13 2586.45 2890.51 2093.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + ACMM85.10 2488.81 1480.77 3589.55 2988.53 3388.59 2872.55 3187.39 1671.90 4390.95 987.55 1274.57 3687.08 2786.54 2687.47 8893.67 17
MVS_030481.73 3983.86 3679.26 4286.22 5089.18 2486.41 3867.15 6375.28 5570.75 5374.59 4183.49 3174.42 3887.05 2886.34 2990.58 1991.08 40
X-MVS83.23 3385.20 3380.92 3489.71 2788.68 2888.21 3273.60 2482.57 3871.81 4677.07 3381.92 3771.72 5986.98 2986.86 2090.47 2292.36 29
TSAR-MVS + MP.86.88 1089.23 984.14 1389.78 2688.67 3190.59 1073.46 2788.99 1180.52 1391.26 688.65 879.91 786.96 3086.22 3290.59 1893.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CP-MVS84.74 2786.43 2682.77 2489.48 3088.13 3988.64 2673.93 2284.92 2576.77 2681.94 2683.50 3077.29 2686.92 3186.49 2790.49 2193.14 23
CSCG85.28 2287.68 1882.49 2589.95 2491.99 488.82 2571.20 3886.41 2279.63 1779.26 2988.36 973.94 4186.64 3286.67 2591.40 294.41 7
DELS-MVS79.15 5381.07 4876.91 5583.54 6287.31 4284.45 5164.92 7969.98 6969.34 5571.62 5476.26 5569.84 6986.57 3385.90 3589.39 4989.88 49
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
train_agg84.86 2587.21 2182.11 2790.59 1385.47 5589.81 1673.55 2683.95 3273.30 3889.84 1287.23 1475.61 3386.47 3485.46 3989.78 4092.06 32
MVS_111021_HR80.13 4381.46 4578.58 4785.77 5285.17 5983.45 5769.28 5074.08 6170.31 5474.31 4375.26 6073.13 4686.46 3585.15 4289.53 4789.81 50
DPM-MVS83.30 3284.33 3582.11 2789.56 2888.49 3490.33 1273.24 2883.85 3376.46 2772.43 4982.65 3373.02 4886.37 3686.91 1990.03 3789.62 52
OPM-MVS79.68 4879.28 5980.15 3887.99 3986.77 4788.52 2972.72 3064.55 9567.65 6267.87 7374.33 6374.31 3986.37 3685.25 4189.73 4389.81 50
ACMMPcopyleft83.42 3185.27 3281.26 3188.47 3788.49 3488.31 3172.09 3383.42 3572.77 4182.65 2478.22 5075.18 3586.24 3885.76 3690.74 1492.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet81.62 4083.41 3779.53 4187.06 4388.59 3285.47 4567.96 5976.59 5374.05 3474.69 4081.98 3672.98 4986.14 3985.47 3889.68 4590.42 46
CDPH-MVS82.64 3485.03 3479.86 3989.41 3188.31 3688.32 3071.84 3580.11 4567.47 6382.09 2581.44 4171.85 5785.89 4086.15 3390.24 3291.25 38
CS-MVS78.36 5780.42 5275.95 6081.17 7483.02 7780.84 6359.46 14571.65 6668.26 5872.53 4878.33 4975.63 3285.79 4183.62 5290.33 3188.01 62
TSAR-MVS + GP.83.69 3086.58 2580.32 3685.14 5586.96 4584.91 5070.25 4284.71 2973.91 3685.16 2185.63 2277.92 1885.44 4285.71 3789.77 4192.45 27
MAR-MVS79.21 5180.32 5477.92 5187.46 4088.15 3883.95 5367.48 6274.28 5968.25 5964.70 8577.04 5372.17 5385.42 4385.00 4388.22 6887.62 66
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS79.35 5081.23 4677.16 5485.01 5886.92 4685.87 4160.89 12680.07 4775.35 3272.96 4673.21 6768.43 7885.41 4484.63 4587.41 8985.44 87
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ETV-MVS77.32 6278.81 6075.58 6182.24 7083.64 7079.98 6864.02 8669.64 7363.90 7770.89 5869.94 8373.41 4485.39 4583.91 4989.92 3888.31 59
CS-MVS-test77.93 6080.30 5575.16 6580.73 8083.48 7179.80 7259.53 14271.49 6765.20 7172.27 5076.00 5775.55 3485.20 4683.35 5690.15 3490.33 48
MSLP-MVS++82.09 3782.66 4181.42 3087.03 4487.22 4385.82 4270.04 4380.30 4478.66 2068.67 6981.04 4477.81 1985.19 4784.88 4489.19 5491.31 37
3Dnovator73.76 579.75 4680.52 5178.84 4584.94 6087.35 4184.43 5265.54 7478.29 4973.97 3563.00 9275.62 5974.07 4085.00 4885.34 4090.11 3689.04 54
LGP-MVS_train79.83 4481.22 4778.22 5086.28 4985.36 5886.76 3669.59 4777.34 5065.14 7275.68 3770.79 7771.37 6384.60 4984.01 4790.18 3390.74 42
IS_MVSNet73.33 8177.34 7268.65 11281.29 7383.47 7274.45 12163.58 8965.75 8648.49 14867.11 7770.61 7854.63 16484.51 5083.58 5389.48 4886.34 77
HQP-MVS81.19 4183.27 3878.76 4687.40 4185.45 5686.95 3570.47 4181.31 4266.91 6679.24 3076.63 5471.67 6084.43 5183.78 5089.19 5492.05 34
PVSNet_Blended_VisFu76.57 6577.90 6475.02 6680.56 8286.58 4979.24 7966.18 6864.81 9268.18 6065.61 7871.45 7267.05 8184.16 5281.80 6388.90 5890.92 41
ACMM72.26 878.86 5578.13 6379.71 4086.89 4583.40 7386.02 4070.50 4075.28 5571.49 5063.01 9169.26 8873.57 4384.11 5383.98 4889.76 4287.84 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OMC-MVS80.26 4282.59 4277.54 5283.04 6385.54 5483.25 5865.05 7887.32 1972.42 4272.04 5278.97 4773.30 4583.86 5481.60 6688.15 7288.83 56
Vis-MVSNetpermissive72.77 8677.20 7367.59 12474.19 13784.01 6476.61 10761.69 12060.62 12850.61 14070.25 6171.31 7555.57 16083.85 5582.28 5886.90 10188.08 61
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
QAPM78.47 5680.22 5676.43 5785.03 5786.75 4880.62 6666.00 7173.77 6265.35 7065.54 8078.02 5172.69 5083.71 5683.36 5588.87 6090.41 47
EPNet79.08 5480.62 4977.28 5388.90 3583.17 7683.65 5572.41 3274.41 5867.15 6576.78 3474.37 6264.43 9883.70 5783.69 5187.15 9288.19 60
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AdaColmapbinary79.74 4778.62 6181.05 3389.23 3386.06 5284.95 4971.96 3479.39 4875.51 3163.16 9068.84 9476.51 3083.55 5882.85 5788.13 7386.46 76
PVSNet_BlendedMVS76.21 6677.52 6874.69 7079.46 9283.79 6777.50 9764.34 8469.88 7071.88 4468.54 7070.42 7967.05 8183.48 5979.63 9787.89 7986.87 72
PVSNet_Blended76.21 6677.52 6874.69 7079.46 9283.79 6777.50 9764.34 8469.88 7071.88 4468.54 7070.42 7967.05 8183.48 5979.63 9787.89 7986.87 72
canonicalmvs79.16 5282.37 4375.41 6282.33 6986.38 5180.80 6463.18 9282.90 3667.34 6472.79 4776.07 5669.62 7083.46 6184.41 4689.20 5390.60 44
ACMP73.23 779.79 4580.53 5078.94 4485.61 5385.68 5385.61 4369.59 4777.33 5171.00 5274.45 4269.16 8971.88 5583.15 6283.37 5489.92 3890.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UA-Net74.47 7577.80 6570.59 9285.33 5485.40 5773.54 13965.98 7260.65 12756.00 10972.11 5179.15 4654.63 16483.13 6382.25 5988.04 7581.92 125
TSAR-MVS + COLMAP78.34 5881.64 4474.48 7380.13 8985.01 6081.73 5965.93 7384.75 2861.68 8385.79 1966.27 10371.39 6282.91 6480.78 7586.01 12985.98 78
CPTT-MVS81.77 3883.10 3980.21 3785.93 5186.45 5087.72 3470.98 3982.54 3971.53 4974.23 4481.49 4076.31 3182.85 6581.87 6288.79 6292.26 30
MVS_111021_LR78.13 5979.85 5876.13 5881.12 7681.50 8780.28 6765.25 7676.09 5471.32 5176.49 3672.87 6972.21 5282.79 6681.29 6886.59 11487.91 63
EIA-MVS75.64 7076.60 7774.53 7282.43 6883.84 6678.32 9062.28 11465.96 8463.28 8168.95 6567.54 9971.61 6182.55 6781.63 6589.24 5185.72 81
casdiffmvs76.76 6478.46 6274.77 6980.32 8683.73 6980.65 6563.24 9173.58 6366.11 6869.39 6474.09 6469.49 7282.52 6879.35 10688.84 6186.52 75
EPP-MVSNet74.00 7977.41 7070.02 9880.53 8383.91 6574.99 11762.68 10665.06 9049.77 14468.68 6872.09 7163.06 10682.49 6980.73 7689.12 5688.91 55
OpenMVScopyleft70.44 1076.15 6876.82 7675.37 6385.01 5884.79 6178.99 8362.07 11571.27 6867.88 6157.91 12072.36 7070.15 6882.23 7081.41 6788.12 7487.78 65
Fast-Effi-MVS+73.11 8373.66 8772.48 8077.72 10680.88 9778.55 8658.83 15465.19 8860.36 8659.98 10362.42 11571.22 6481.66 7180.61 8688.20 6984.88 97
DROMVSNet73.11 8373.66 8772.48 8077.72 10680.88 9778.55 8658.83 15465.19 8860.36 8659.98 10362.42 11571.22 6481.66 7180.61 8688.20 6984.88 97
TAPA-MVS71.42 977.69 6180.05 5774.94 6780.68 8184.52 6281.36 6063.14 9384.77 2764.82 7468.72 6775.91 5871.86 5681.62 7379.55 10187.80 8385.24 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU73.29 8276.96 7569.00 10977.04 11382.06 8379.49 7756.30 16567.85 7653.29 12571.12 5770.37 8161.81 12081.59 7480.96 7386.09 12384.73 99
Effi-MVS+75.28 7276.20 7874.20 7481.15 7583.24 7481.11 6163.13 9466.37 8060.27 8864.30 8868.88 9370.93 6781.56 7581.69 6488.61 6387.35 67
baseline170.10 10872.17 10167.69 12179.74 9076.80 14073.91 13264.38 8362.74 11148.30 15064.94 8264.08 10954.17 16681.46 7678.92 10985.66 13676.22 163
FC-MVSNet-train72.60 8775.07 8269.71 10181.10 7778.79 11873.74 13865.23 7766.10 8353.34 12470.36 6063.40 11256.92 14981.44 7780.96 7387.93 7784.46 103
MVSTER72.06 8974.24 8469.51 10470.39 17275.97 14876.91 10357.36 16264.64 9461.39 8568.86 6663.76 11063.46 10381.44 7779.70 9687.56 8785.31 89
EG-PatchMatch MVS67.24 14366.94 15067.60 12378.73 9781.35 8973.28 14359.49 14346.89 19651.42 13643.65 18953.49 16155.50 16181.38 7980.66 8387.15 9281.17 131
GBi-Net70.78 9873.37 9267.76 11772.95 14978.00 12575.15 11262.72 10164.13 9851.44 13358.37 11569.02 9057.59 14181.33 8080.72 7786.70 10882.02 119
test170.78 9873.37 9267.76 11772.95 14978.00 12575.15 11262.72 10164.13 9851.44 13358.37 11569.02 9057.59 14181.33 8080.72 7786.70 10882.02 119
FMVSNet168.84 12170.47 11266.94 13671.35 16677.68 13374.71 11962.35 11356.93 14749.94 14350.01 17264.59 10757.07 14681.33 8080.72 7786.25 11982.00 122
DCV-MVSNet73.65 8075.78 8071.16 8680.19 8779.27 11277.45 9961.68 12166.73 7958.72 9365.31 8169.96 8262.19 11181.29 8380.97 7286.74 10786.91 71
test_part174.24 7673.44 9075.18 6482.02 7282.34 8283.88 5462.40 11260.93 12568.68 5649.25 17769.71 8565.73 9681.26 8481.98 6188.35 6688.60 58
PCF-MVS73.28 679.42 4980.41 5378.26 4884.88 6188.17 3786.08 3969.85 4475.23 5768.43 5768.03 7278.38 4871.76 5881.26 8480.65 8488.56 6591.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
gg-mvs-nofinetune62.55 16665.05 16459.62 17578.72 9877.61 13470.83 15353.63 16839.71 20822.04 20936.36 20164.32 10847.53 17981.16 8679.03 10885.00 14777.17 158
Anonymous20240521172.16 10280.85 7981.85 8476.88 10465.40 7562.89 11046.35 18467.99 9862.05 11381.15 8780.38 8985.97 13184.50 102
CNLPA77.20 6377.54 6776.80 5682.63 6584.31 6379.77 7364.64 8085.17 2473.18 3956.37 12769.81 8474.53 3781.12 8878.69 11286.04 12887.29 69
UGNet72.78 8577.67 6667.07 13471.65 16183.24 7475.20 11163.62 8864.93 9156.72 10571.82 5373.30 6549.02 17781.02 8980.70 8286.22 12088.67 57
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DI_MVS_plusplus_trai75.13 7376.12 7973.96 7578.18 10081.55 8580.97 6262.54 10868.59 7465.13 7361.43 9474.81 6169.32 7381.01 9079.59 9987.64 8685.89 79
FMVSNet270.39 10472.67 9867.72 12072.95 14978.00 12575.15 11262.69 10563.29 10651.25 13755.64 12968.49 9757.59 14180.91 9180.35 9086.70 10882.02 119
Anonymous2023121171.90 9072.48 9971.21 8580.14 8881.53 8676.92 10262.89 9764.46 9758.94 9043.80 18870.98 7662.22 11080.70 9280.19 9286.18 12185.73 80
ACMH65.37 1470.71 10070.00 11571.54 8482.51 6782.47 8177.78 9468.13 5656.19 15446.06 16454.30 13751.20 18068.68 7680.66 9380.72 7786.07 12484.45 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpn200view968.11 12768.72 13367.40 12677.83 10478.93 11474.28 12662.81 9856.64 14946.82 15852.65 15953.47 16356.59 15080.41 9478.43 11586.11 12280.52 136
thres600view767.68 13568.43 13766.80 13877.90 10178.86 11673.84 13462.75 9956.07 15544.70 17152.85 15752.81 17055.58 15980.41 9477.77 12386.05 12680.28 138
thres20067.98 12968.55 13667.30 12977.89 10378.86 11674.18 13062.75 9956.35 15246.48 16152.98 15553.54 15956.46 15180.41 9477.97 12186.05 12679.78 143
PLCcopyleft68.99 1175.68 6975.31 8176.12 5982.94 6481.26 9179.94 7066.10 6977.15 5266.86 6759.13 11068.53 9673.73 4280.38 9779.04 10787.13 9681.68 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D74.08 7873.39 9174.88 6885.05 5682.62 8079.71 7568.66 5372.82 6458.80 9257.61 12161.31 11971.07 6680.32 9878.87 11186.00 13080.18 139
tttt051771.41 9572.95 9569.60 10373.70 14478.70 11974.42 12459.12 14863.89 10258.35 9764.56 8758.39 13264.27 9980.29 9980.17 9387.74 8484.69 100
thisisatest053071.48 9473.01 9469.70 10273.83 14278.62 12074.53 12059.12 14864.13 9858.63 9464.60 8658.63 13064.27 9980.28 10080.17 9387.82 8284.64 101
NR-MVSNet68.79 12270.56 11066.71 14177.48 11079.54 10873.52 14069.20 5161.20 12339.76 18058.52 11250.11 18651.37 17380.26 10180.71 8188.97 5783.59 111
GeoE74.23 7774.84 8373.52 7680.42 8581.46 8879.77 7361.06 12467.23 7863.67 7859.56 10768.74 9567.90 7980.25 10279.37 10588.31 6787.26 70
thres40067.95 13068.62 13567.17 13177.90 10178.59 12174.27 12762.72 10156.34 15345.77 16653.00 15453.35 16656.46 15180.21 10378.43 11585.91 13380.43 137
MVS_Test75.37 7177.13 7473.31 7879.07 9581.32 9079.98 6860.12 13769.72 7264.11 7670.53 5973.22 6668.90 7480.14 10479.48 10387.67 8585.50 85
pm-mvs165.62 14967.42 14663.53 15873.66 14576.39 14469.66 15560.87 12749.73 18943.97 17251.24 16857.00 14048.16 17879.89 10577.84 12284.85 15079.82 142
gm-plane-assit57.00 19057.62 19756.28 18776.10 11762.43 20347.62 21146.57 20233.84 21223.24 20537.52 19840.19 20859.61 13279.81 10677.55 12884.55 15172.03 182
CDS-MVSNet67.65 13769.83 11865.09 14675.39 12576.55 14374.42 12463.75 8753.55 17249.37 14659.41 10862.45 11444.44 18479.71 10779.82 9583.17 15977.36 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TranMVSNet+NR-MVSNet69.25 11770.81 10967.43 12577.23 11279.46 11073.48 14169.66 4560.43 12939.56 18158.82 11153.48 16255.74 15879.59 10881.21 6988.89 5982.70 115
TransMVSNet (Re)64.74 15565.66 15863.66 15777.40 11175.33 15469.86 15462.67 10747.63 19441.21 17950.01 17252.33 17345.31 18379.57 10977.69 12585.49 13877.07 160
UniMVSNet_NR-MVSNet70.59 10172.19 10068.72 11077.72 10680.72 9973.81 13669.65 4661.99 11543.23 17360.54 9957.50 13558.57 13479.56 11081.07 7189.34 5083.97 105
UniMVSNet (Re)69.53 11371.90 10366.76 13976.42 11680.93 9472.59 14668.03 5861.75 11841.68 17858.34 11857.23 13753.27 16979.53 11180.62 8588.57 6484.90 96
FMVSNet370.49 10272.90 9667.67 12272.88 15277.98 12874.96 11862.72 10164.13 9851.44 13358.37 11569.02 9057.43 14479.43 11279.57 10086.59 11481.81 126
Vis-MVSNet (Re-imp)67.83 13373.52 8961.19 16678.37 9976.72 14266.80 17162.96 9565.50 8734.17 19267.19 7669.68 8639.20 19579.39 11379.44 10485.68 13576.73 162
DU-MVS69.63 11270.91 10868.13 11675.99 11879.54 10873.81 13669.20 5161.20 12343.23 17358.52 11253.50 16058.57 13479.22 11480.45 8887.97 7683.97 105
Baseline_NR-MVSNet67.53 14068.77 13266.09 14375.99 11874.75 15972.43 14768.41 5461.33 12238.33 18551.31 16754.13 15556.03 15479.22 11478.19 11885.37 14182.45 117
MS-PatchMatch70.17 10770.49 11169.79 10080.98 7877.97 13077.51 9658.95 15162.33 11355.22 11353.14 15265.90 10462.03 11479.08 11677.11 13684.08 15377.91 153
diffmvs74.86 7477.37 7171.93 8275.62 12380.35 10379.42 7860.15 13672.81 6564.63 7571.51 5573.11 6866.53 9179.02 11777.98 12085.25 14386.83 74
MSDG71.52 9369.87 11673.44 7782.21 7179.35 11179.52 7664.59 8166.15 8261.87 8253.21 15156.09 14365.85 9578.94 11878.50 11486.60 11376.85 161
ACMH+66.54 1371.36 9670.09 11472.85 7982.59 6681.13 9378.56 8568.04 5761.55 11952.52 13151.50 16654.14 15368.56 7778.85 11979.50 10286.82 10483.94 107
thres100view90067.60 13968.02 14067.12 13377.83 10477.75 13273.90 13362.52 10956.64 14946.82 15852.65 15953.47 16355.92 15578.77 12077.62 12685.72 13479.23 146
tfpnnormal64.27 15863.64 17465.02 14775.84 12175.61 15171.24 15262.52 10947.79 19342.97 17542.65 19144.49 20152.66 17178.77 12076.86 13884.88 14979.29 145
ET-MVSNet_ETH3D72.46 8874.19 8570.44 9362.50 19681.17 9279.90 7162.46 11164.52 9657.52 10171.49 5659.15 12872.08 5478.61 12281.11 7088.16 7183.29 113
CHOSEN 1792x268869.20 11869.26 12569.13 10676.86 11478.93 11477.27 10060.12 13761.86 11754.42 11442.54 19261.61 11766.91 8678.55 12378.14 11979.23 17383.23 114
GA-MVS68.14 12669.17 12766.93 13773.77 14378.50 12274.45 12158.28 15755.11 16148.44 14960.08 10153.99 15661.50 12278.43 12477.57 12785.13 14480.54 135
v1070.22 10669.76 11970.74 8774.79 13180.30 10579.22 8059.81 14057.71 14356.58 10754.22 14255.31 14666.95 8478.28 12577.47 12987.12 9885.07 93
thisisatest051567.40 14168.78 13165.80 14470.02 17475.24 15569.36 15857.37 16154.94 16553.67 12255.53 13254.85 14958.00 13978.19 12678.91 11086.39 11883.78 109
v114469.93 11069.36 12470.61 9174.89 13080.93 9479.11 8160.64 12855.97 15655.31 11253.85 14454.14 15366.54 9078.10 12777.44 13087.14 9585.09 92
baseline269.69 11170.27 11369.01 10875.72 12277.13 13873.82 13558.94 15261.35 12157.09 10361.68 9357.17 13861.99 11578.10 12776.58 14386.48 11779.85 141
v119269.50 11468.83 13070.29 9574.49 13480.92 9678.55 8660.54 13055.04 16254.21 11552.79 15852.33 17366.92 8577.88 12977.35 13387.04 9985.51 84
v7n67.05 14566.94 15067.17 13172.35 15478.97 11373.26 14458.88 15351.16 18550.90 13848.21 18050.11 18660.96 12577.70 13077.38 13186.68 11185.05 94
pmmvs662.41 16962.88 17761.87 16371.38 16575.18 15867.76 16459.45 14641.64 20442.52 17737.33 19952.91 16946.87 18077.67 13176.26 14683.23 15879.18 147
v870.23 10569.86 11770.67 9074.69 13279.82 10778.79 8459.18 14758.80 13658.20 9855.00 13457.33 13666.31 9377.51 13276.71 14186.82 10483.88 108
V4268.76 12369.63 12067.74 11964.93 19278.01 12478.30 9156.48 16458.65 13756.30 10854.26 14057.03 13964.85 9777.47 13377.01 13785.60 13784.96 95
UniMVSNet_ETH3D67.18 14467.03 14967.36 12774.44 13578.12 12374.07 13166.38 6652.22 17946.87 15748.64 17851.84 17756.96 14777.29 13478.53 11385.42 14082.59 116
v2v48270.05 10969.46 12370.74 8774.62 13380.32 10479.00 8260.62 12957.41 14556.89 10455.43 13355.14 14866.39 9277.25 13577.14 13586.90 10183.57 112
v192192069.03 11968.32 13869.86 9974.03 13980.37 10277.55 9560.25 13454.62 16653.59 12352.36 16251.50 17966.75 8777.17 13676.69 14286.96 10085.56 83
v14419269.34 11668.68 13470.12 9674.06 13880.54 10078.08 9360.54 13054.99 16454.13 11752.92 15652.80 17166.73 8877.13 13776.72 14087.15 9285.63 82
IterMVS-LS71.69 9272.82 9770.37 9477.54 10976.34 14575.13 11560.46 13261.53 12057.57 10064.89 8367.33 10066.04 9477.09 13877.37 13285.48 13985.18 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu71.82 9171.86 10471.78 8378.77 9680.47 10178.55 8661.67 12260.68 12655.49 11058.48 11465.48 10568.85 7576.92 13975.55 15187.35 9085.46 86
COLMAP_ROBcopyleft62.73 1567.66 13666.76 15268.70 11180.49 8477.98 12875.29 11062.95 9663.62 10449.96 14247.32 18350.72 18358.57 13476.87 14075.50 15284.94 14875.33 172
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v124068.64 12467.89 14369.51 10473.89 14180.26 10676.73 10559.97 13953.43 17453.08 12651.82 16550.84 18266.62 8976.79 14176.77 13986.78 10685.34 88
IB-MVS66.94 1271.21 9771.66 10570.68 8979.18 9482.83 7972.61 14561.77 11959.66 13263.44 8053.26 14959.65 12659.16 13376.78 14282.11 6087.90 7887.33 68
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
anonymousdsp65.28 15267.98 14162.13 16258.73 20473.98 16267.10 16850.69 18848.41 19247.66 15654.27 13852.75 17261.45 12476.71 14380.20 9187.13 9689.53 53
USDC67.36 14267.90 14266.74 14071.72 15975.23 15671.58 14960.28 13367.45 7750.54 14160.93 9545.20 20062.08 11276.56 14474.50 15784.25 15275.38 171
HyFIR lowres test69.47 11568.94 12970.09 9776.77 11582.93 7876.63 10660.17 13559.00 13554.03 11840.54 19765.23 10667.89 8076.54 14578.30 11785.03 14680.07 140
Fast-Effi-MVS+-dtu68.34 12569.47 12267.01 13575.15 12677.97 13077.12 10155.40 16757.87 13846.68 16056.17 12860.39 12062.36 10976.32 14676.25 14785.35 14281.34 129
TDRefinement66.09 14865.03 16567.31 12869.73 17676.75 14175.33 10864.55 8260.28 13049.72 14545.63 18642.83 20360.46 13075.75 14775.95 14884.08 15378.04 152
PatchMatch-RL67.78 13466.65 15369.10 10773.01 14872.69 16668.49 16161.85 11862.93 10960.20 8956.83 12650.42 18469.52 7175.62 14874.46 15881.51 16373.62 180
EPNet_dtu68.08 12871.00 10764.67 15079.64 9168.62 18175.05 11663.30 9066.36 8145.27 16867.40 7566.84 10243.64 18675.37 14974.98 15581.15 16577.44 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v14867.85 13267.53 14468.23 11473.25 14777.57 13674.26 12857.36 16255.70 15757.45 10253.53 14555.42 14561.96 11675.23 15073.92 15985.08 14581.32 130
ambc53.42 20064.99 19163.36 19849.96 20847.07 19537.12 18828.97 20816.36 22041.82 18875.10 15167.34 18871.55 20175.72 167
IterMVS-SCA-FT66.89 14669.22 12664.17 15271.30 16775.64 15071.33 15053.17 17357.63 14449.08 14760.72 9760.05 12463.09 10574.99 15273.92 15977.07 18181.57 128
baseline70.45 10374.09 8666.20 14270.95 16975.67 14974.26 12853.57 16968.33 7558.42 9569.87 6271.45 7261.55 12174.84 15374.76 15678.42 17583.72 110
TinyColmap62.84 16461.03 18964.96 14869.61 17771.69 16968.48 16259.76 14155.41 15847.69 15547.33 18234.20 21262.76 10874.52 15472.59 16781.44 16471.47 183
LTVRE_ROB59.44 1661.82 17862.64 18060.87 16872.83 15377.19 13764.37 18358.97 15033.56 21328.00 19952.59 16142.21 20463.93 10274.52 15476.28 14577.15 18082.13 118
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMMVS65.06 15369.17 12760.26 17155.25 21063.43 19766.71 17243.01 20662.41 11250.64 13969.44 6367.04 10163.29 10474.36 15673.54 16282.68 16073.99 179
IterMVS66.36 14768.30 13964.10 15369.48 17974.61 16073.41 14250.79 18757.30 14648.28 15160.64 9859.92 12560.85 12974.14 15772.66 16681.80 16278.82 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS63.03 16267.40 14757.92 18175.14 12777.60 13560.56 19466.10 6954.11 17123.88 20353.94 14353.58 15834.50 19973.93 15877.71 12487.35 9080.94 132
pmmvs467.89 13167.39 14868.48 11371.60 16373.57 16374.45 12160.98 12564.65 9357.97 9954.95 13551.73 17861.88 11773.78 15975.11 15383.99 15577.91 153
CHOSEN 280x42058.70 18761.88 18654.98 19155.45 20950.55 21264.92 18040.36 20755.21 15938.13 18648.31 17963.76 11063.03 10773.73 16068.58 18468.00 20873.04 181
MIMVSNet58.52 18861.34 18855.22 19060.76 19967.01 18666.81 17049.02 19456.43 15138.90 18340.59 19654.54 15240.57 19373.16 16171.65 16975.30 19166.00 195
pmmvs562.37 17264.04 17160.42 16965.03 19071.67 17067.17 16752.70 17850.30 18644.80 16954.23 14151.19 18149.37 17672.88 16273.48 16383.45 15674.55 175
pmmvs-eth3d63.52 16162.44 18364.77 14966.82 18770.12 17569.41 15759.48 14454.34 17052.71 12746.24 18544.35 20256.93 14872.37 16373.77 16183.30 15775.91 165
FMVSNet557.24 18960.02 19253.99 19456.45 20762.74 20165.27 17947.03 20155.14 16039.55 18240.88 19453.42 16541.83 18772.35 16471.10 17373.79 19564.50 198
TAMVS59.58 18562.81 17955.81 18866.03 18865.64 19163.86 18548.74 19549.95 18837.07 18954.77 13658.54 13144.44 18472.29 16571.79 16874.70 19266.66 194
CMPMVSbinary47.78 1762.49 16862.52 18162.46 16170.01 17570.66 17462.97 18851.84 18251.98 18156.71 10642.87 19053.62 15757.80 14072.23 16670.37 17475.45 19075.91 165
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DTE-MVSNet61.85 17564.96 16658.22 18074.32 13674.39 16161.01 19367.85 6051.76 18421.91 21053.28 14848.17 19037.74 19672.22 16776.44 14486.52 11678.49 150
CR-MVSNet64.83 15465.54 15964.01 15570.64 17169.41 17665.97 17652.74 17657.81 14052.65 12854.27 13856.31 14260.92 12672.20 16873.09 16481.12 16675.69 168
PatchT61.97 17464.04 17159.55 17660.49 20067.40 18456.54 20148.65 19656.69 14852.65 12851.10 16952.14 17660.92 12672.20 16873.09 16478.03 17675.69 168
PEN-MVS62.96 16365.77 15759.70 17473.98 14075.45 15263.39 18767.61 6152.49 17725.49 20253.39 14649.12 18940.85 19271.94 17077.26 13486.86 10380.72 134
CVMVSNet62.55 16665.89 15558.64 17966.95 18569.15 17866.49 17556.29 16652.46 17832.70 19359.27 10958.21 13450.09 17571.77 17171.39 17179.31 17278.99 148
RPSCF67.64 13871.25 10663.43 15961.86 19870.73 17367.26 16650.86 18674.20 6058.91 9167.49 7469.33 8764.10 10171.41 17268.45 18677.61 17777.17 158
CP-MVSNet62.68 16565.49 16059.40 17771.84 15775.34 15362.87 18967.04 6452.64 17627.19 20053.38 14748.15 19141.40 19071.26 17375.68 14986.07 12482.00 122
test0.0.03 158.80 18661.58 18755.56 18975.02 12868.45 18259.58 19861.96 11652.74 17529.57 19649.75 17554.56 15131.46 20271.19 17469.77 17575.75 18664.57 197
FC-MVSNet-test56.90 19165.20 16247.21 20266.98 18463.20 19949.11 21058.60 15659.38 13411.50 21765.60 7956.68 14124.66 20971.17 17571.36 17272.38 19969.02 190
PS-CasMVS62.38 17165.06 16359.25 17871.73 15875.21 15762.77 19066.99 6551.94 18326.96 20152.00 16447.52 19441.06 19171.16 17675.60 15085.97 13181.97 124
WR-MVS_H61.83 17765.87 15657.12 18471.72 15976.87 13961.45 19266.19 6751.97 18222.92 20753.13 15352.30 17533.80 20071.03 17775.00 15486.65 11280.78 133
test-mter60.84 18164.62 16856.42 18655.99 20864.18 19265.39 17834.23 21154.39 16946.21 16357.40 12459.49 12755.86 15671.02 17869.65 17680.87 16876.20 164
test-LLR64.42 15664.36 16964.49 15175.02 12863.93 19466.61 17361.96 11654.41 16747.77 15357.46 12260.25 12155.20 16270.80 17969.33 17780.40 16974.38 176
TESTMET0.1,161.10 18064.36 16957.29 18357.53 20563.93 19466.61 17336.22 21054.41 16747.77 15357.46 12260.25 12155.20 16270.80 17969.33 17780.40 16974.38 176
GG-mvs-BLEND46.86 20567.51 14522.75 2110.05 22276.21 14664.69 1810.04 21961.90 1160.09 22355.57 13071.32 740.08 21870.54 18167.19 19071.58 20069.86 187
testgi54.39 19757.86 19550.35 19971.59 16467.24 18554.95 20353.25 17243.36 20123.78 20444.64 18747.87 19224.96 20770.45 18268.66 18373.60 19662.78 202
Anonymous2023120656.36 19257.80 19654.67 19270.08 17366.39 18860.46 19557.54 15949.50 19129.30 19733.86 20446.64 19535.18 19870.44 18368.88 18175.47 18968.88 191
test20.0353.93 19856.28 19951.19 19872.19 15665.83 18953.20 20561.08 12342.74 20222.08 20837.07 20045.76 19924.29 21070.44 18369.04 17974.31 19463.05 201
CostFormer68.92 12069.58 12168.15 11575.98 12076.17 14778.22 9251.86 18165.80 8561.56 8463.57 8962.83 11361.85 11870.40 18568.67 18279.42 17179.62 144
SCA65.40 15166.58 15464.02 15470.65 17073.37 16467.35 16553.46 17163.66 10354.14 11660.84 9660.20 12361.50 12269.96 18668.14 18777.01 18269.91 186
SixPastTwentyTwo61.84 17662.45 18261.12 16769.20 18072.20 16762.03 19157.40 16046.54 19738.03 18757.14 12541.72 20558.12 13869.67 18771.58 17081.94 16178.30 151
dps64.00 16062.99 17665.18 14573.29 14672.07 16868.98 16053.07 17457.74 14258.41 9655.55 13147.74 19360.89 12869.53 18867.14 19176.44 18571.19 184
MDTV_nov1_ep1364.37 15765.24 16163.37 16068.94 18170.81 17272.40 14850.29 19060.10 13153.91 12060.07 10259.15 12857.21 14569.43 18967.30 18977.47 17869.78 188
PM-MVS60.48 18260.94 19059.94 17258.85 20366.83 18764.27 18451.39 18455.03 16348.03 15250.00 17440.79 20758.26 13769.20 19067.13 19278.84 17477.60 155
MDTV_nov1_ep13_2view60.16 18360.51 19159.75 17365.39 18969.05 17968.00 16348.29 19851.99 18045.95 16548.01 18149.64 18853.39 16868.83 19166.52 19377.47 17869.55 189
PatchmatchNetpermissive64.21 15964.65 16763.69 15671.29 16868.66 18069.63 15651.70 18363.04 10753.77 12159.83 10658.34 13360.23 13168.54 19266.06 19475.56 18868.08 192
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet149.27 20153.25 20144.62 20444.61 21261.52 20453.61 20452.18 17941.62 20518.68 21328.14 21041.58 20625.50 20568.46 19369.04 17973.15 19762.37 203
RPMNet61.71 17962.88 17760.34 17069.51 17869.41 17663.48 18649.23 19257.81 14045.64 16750.51 17050.12 18553.13 17068.17 19468.49 18581.07 16775.62 170
tpm62.41 16963.15 17561.55 16572.24 15563.79 19671.31 15146.12 20457.82 13955.33 11159.90 10554.74 15053.63 16767.24 19564.29 19770.65 20374.25 178
tpm cat165.41 15063.81 17367.28 13075.61 12472.88 16575.32 10952.85 17562.97 10863.66 7953.24 15053.29 16861.83 11965.54 19664.14 19874.43 19374.60 174
EU-MVSNet54.63 19558.69 19349.90 20056.99 20662.70 20256.41 20250.64 18945.95 19923.14 20650.42 17146.51 19636.63 19765.51 19764.85 19675.57 18774.91 173
pmnet_mix0255.30 19457.01 19853.30 19764.14 19359.09 20558.39 20050.24 19153.47 17338.68 18449.75 17545.86 19840.14 19465.38 19860.22 20368.19 20765.33 196
EPMVS60.00 18461.97 18557.71 18268.46 18263.17 20064.54 18248.23 19963.30 10544.72 17060.19 10056.05 14450.85 17465.27 19962.02 20169.44 20563.81 199
pmmvs347.65 20249.08 20745.99 20344.61 21254.79 21050.04 20731.95 21433.91 21129.90 19530.37 20633.53 21346.31 18163.50 20063.67 19973.14 19863.77 200
tpmrst62.00 17362.35 18461.58 16471.62 16264.14 19369.07 15948.22 20062.21 11453.93 11958.26 11955.30 14755.81 15763.22 20162.62 20070.85 20270.70 185
MVS-HIRNet54.41 19652.10 20357.11 18558.99 20256.10 20949.68 20949.10 19346.18 19852.15 13233.18 20546.11 19756.10 15363.19 20259.70 20576.64 18460.25 205
ADS-MVSNet55.94 19358.01 19453.54 19662.48 19758.48 20659.12 19946.20 20359.65 13342.88 17652.34 16353.31 16746.31 18162.00 20360.02 20464.23 21060.24 206
new-patchmatchnet46.97 20449.47 20644.05 20662.82 19556.55 20845.35 21252.01 18042.47 20317.04 21535.73 20335.21 21121.84 21361.27 20454.83 20865.26 20960.26 204
N_pmnet47.35 20350.13 20444.11 20559.98 20151.64 21151.86 20644.80 20549.58 19020.76 21140.65 19540.05 20929.64 20359.84 20555.15 20757.63 21154.00 209
Gipumacopyleft36.38 20835.80 21037.07 20745.76 21133.90 21529.81 21548.47 19739.91 20718.02 2148.00 2188.14 22225.14 20659.29 20661.02 20255.19 21340.31 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS51.87 20050.00 20554.07 19366.83 18657.25 20760.25 19650.91 18550.25 18734.36 19136.04 20232.02 21441.49 18958.98 20756.07 20670.56 20459.36 207
PMVScopyleft39.38 1846.06 20643.30 20849.28 20162.93 19438.75 21441.88 21353.50 17033.33 21435.46 19028.90 20931.01 21533.04 20158.61 20854.63 20968.86 20657.88 208
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MDA-MVSNet-bldmvs53.37 19953.01 20253.79 19543.67 21467.95 18359.69 19757.92 15843.69 20032.41 19441.47 19327.89 21752.38 17256.97 20965.99 19576.68 18367.13 193
new_pmnet38.40 20742.64 20933.44 20837.54 21745.00 21336.60 21432.72 21340.27 20612.72 21629.89 20728.90 21624.78 20853.17 21052.90 21056.31 21248.34 210
PMMVS225.60 20929.75 21120.76 21228.00 21830.93 21623.10 21729.18 21523.14 2161.46 22218.23 21416.54 2195.08 21640.22 21141.40 21237.76 21437.79 213
test_method22.26 21025.94 21217.95 2133.24 2217.17 22123.83 2167.27 21737.35 21020.44 21221.87 21339.16 21018.67 21434.56 21220.84 21634.28 21520.64 217
tmp_tt14.50 21514.68 2197.17 22110.46 2222.21 21837.73 20928.71 19825.26 21116.98 2184.37 21731.49 21329.77 21326.56 218
MVEpermissive19.12 1920.47 21323.27 21317.20 21412.66 22025.41 21710.52 22134.14 21214.79 2196.53 2218.79 2174.68 22316.64 21529.49 21441.63 21122.73 21938.11 212
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft18.74 22018.55 2188.02 21626.96 2157.33 21823.81 21213.05 22125.99 20425.17 21522.45 22036.25 214
E-PMN21.77 21118.24 21425.89 20940.22 21519.58 21812.46 22039.87 20818.68 2186.71 2199.57 2154.31 22522.36 21219.89 21627.28 21433.73 21628.34 215
EMVS20.98 21217.15 21525.44 21039.51 21619.37 21912.66 21939.59 20919.10 2176.62 2209.27 2164.40 22422.43 21117.99 21724.40 21531.81 21725.53 216
testmvs0.09 2140.15 2160.02 2160.01 2230.02 2230.05 2240.01 2200.11 2200.01 2240.26 2200.01 2260.06 2200.10 2180.10 2170.01 2210.43 219
test1230.09 2140.14 2170.02 2160.00 2240.02 2230.02 2250.01 2200.09 2210.00 2250.30 2190.00 2270.08 2180.03 2190.09 2180.01 2210.45 218
uanet_test0.00 2160.00 2180.00 2180.00 2240.00 2250.00 2260.00 2220.00 2220.00 2250.00 2210.00 2270.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2240.00 2250.00 2260.00 2220.00 2220.00 2250.00 2210.00 2270.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2240.00 2250.00 2260.00 2220.00 2220.00 2250.00 2210.00 2270.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def46.24 162
9.1486.88 15
SR-MVS88.99 3473.57 2587.54 13
our_test_367.93 18370.99 17166.89 169
MTAPA83.48 186.45 18
MTMP82.66 584.91 26
Patchmatch-RL test2.85 223
XVS86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
X-MVStestdata86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
abl_679.05 4387.27 4288.85 2683.62 5668.25 5581.68 4172.94 4073.79 4584.45 2872.55 5189.66 4690.64 43
mPP-MVS89.90 2581.29 42
NP-MVS80.10 46
Patchmtry65.80 19065.97 17652.74 17652.65 128