This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SMA-MVS87.56 590.17 584.52 891.71 290.57 890.77 775.19 1290.67 580.50 1386.59 1688.86 678.09 1589.92 189.41 190.84 995.19 4
CNVR-MVS86.36 1288.19 1584.23 1191.33 489.84 1390.34 1075.56 987.36 1778.97 1781.19 2786.76 1678.74 1089.30 388.58 290.45 2594.33 9
SteuartSystems-ACMMP85.99 1488.31 1483.27 2090.73 1089.84 1390.27 1374.31 1484.56 2975.88 2987.32 1385.04 2377.31 2389.01 588.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP86.52 1189.01 983.62 1690.28 1890.09 1290.32 1274.05 1988.32 1379.74 1587.04 1485.59 2276.97 2889.35 288.44 490.35 2894.27 10
HPM-MVS++copyleft87.09 788.92 1184.95 492.61 187.91 3990.23 1476.06 388.85 1181.20 987.33 1287.93 1079.47 788.59 788.23 590.15 3393.60 20
DeepC-MVS78.47 284.81 2586.03 2783.37 1889.29 3190.38 1088.61 2676.50 186.25 2277.22 2375.12 3880.28 4477.59 2188.39 888.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS88.67 191.62 185.22 290.47 1692.36 190.69 876.15 293.08 182.75 392.19 490.71 280.45 489.27 487.91 790.82 1095.84 1
DVP-MVS88.09 390.84 384.88 590.00 2291.80 491.63 375.80 591.99 281.23 892.54 289.18 480.89 287.99 1387.91 789.70 4294.51 6
DeepPCF-MVS79.04 185.30 2088.93 1081.06 3188.77 3590.48 985.46 4573.08 2890.97 473.77 3684.81 2185.95 1977.43 2288.22 987.73 987.85 7694.34 8
NCCC85.34 1986.59 2383.88 1591.48 388.88 2489.79 1675.54 1086.67 2077.94 2276.55 3484.99 2478.07 1688.04 1087.68 1090.46 2493.31 21
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2087.83 3274.24 1684.88 2576.23 2775.26 3781.05 4277.62 2088.02 1187.62 1190.69 1592.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPE-MVS88.63 291.29 285.53 190.87 892.20 291.98 276.00 490.55 682.09 593.85 190.75 181.25 188.62 687.59 1290.96 895.48 2
zzz-MVS85.71 1586.88 2184.34 1090.54 1587.11 4389.77 1774.17 1788.54 1283.08 278.60 3186.10 1878.11 1487.80 1587.46 1390.35 2892.56 26
ACMMPR85.52 1687.53 1883.17 2190.13 1989.27 1989.30 2073.97 2086.89 1977.14 2486.09 1783.18 3177.74 1987.42 1887.20 1490.77 1292.63 25
HFP-MVS86.15 1387.95 1684.06 1390.80 989.20 2289.62 1974.26 1587.52 1480.63 1186.82 1584.19 2878.22 1387.58 1687.19 1590.81 1193.13 24
MP-MVScopyleft85.50 1787.40 1983.28 1990.65 1289.51 1889.16 2374.11 1883.70 3378.06 2185.54 1984.89 2677.31 2387.40 2187.14 1690.41 2693.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVS88.00 490.50 485.08 390.95 791.58 592.03 175.53 1191.15 380.10 1492.27 388.34 980.80 388.00 1286.99 1791.09 695.16 5
DPM-MVS83.30 3184.33 3482.11 2689.56 2788.49 3390.33 1173.24 2783.85 3276.46 2672.43 4782.65 3273.02 4686.37 3586.91 1890.03 3589.62 51
X-MVS83.23 3285.20 3280.92 3389.71 2688.68 2788.21 3173.60 2382.57 3771.81 4577.07 3281.92 3671.72 5786.98 2886.86 1990.47 2192.36 29
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3789.67 1686.60 3671.48 3681.28 4278.18 2064.78 8277.96 5077.13 2687.32 2286.83 2090.41 2691.48 36
SD-MVS86.96 889.45 784.05 1490.13 1989.23 2189.77 1774.59 1389.17 980.70 1089.93 1089.67 378.47 1187.57 1786.79 2190.67 1693.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS82.36 3585.89 2878.24 4886.40 4789.52 1785.52 4369.52 4882.38 3965.67 6781.35 2682.36 3373.07 4487.31 2386.76 2289.24 4991.56 35
PGM-MVS84.42 2786.29 2682.23 2590.04 2188.82 2689.23 2271.74 3582.82 3674.61 3284.41 2282.09 3477.03 2787.13 2486.73 2390.73 1492.06 32
CSCG85.28 2187.68 1782.49 2489.95 2391.99 388.82 2471.20 3786.41 2179.63 1679.26 2888.36 873.94 3886.64 3186.67 2491.40 294.41 7
TSAR-MVS + ACMM85.10 2388.81 1380.77 3489.55 2888.53 3288.59 2772.55 3087.39 1571.90 4290.95 887.55 1174.57 3387.08 2686.54 2587.47 8393.67 17
CP-MVS84.74 2686.43 2582.77 2389.48 2988.13 3888.64 2573.93 2184.92 2476.77 2581.94 2583.50 2977.29 2586.92 3086.49 2690.49 2093.14 23
APD-MVScopyleft86.84 1088.91 1284.41 990.66 1190.10 1190.78 675.64 887.38 1678.72 1890.68 986.82 1580.15 587.13 2486.45 2790.51 1993.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_030481.73 3883.86 3579.26 4186.22 4989.18 2386.41 3767.15 6275.28 5470.75 5274.59 4083.49 3074.42 3587.05 2786.34 2890.58 1891.08 40
xxxxxxxxxxxxxcwj85.35 1885.76 2984.86 691.26 591.10 690.90 475.65 689.21 781.25 691.12 661.35 11378.82 887.42 1886.23 2991.28 393.90 12
SF-MVS87.47 689.70 684.86 691.26 591.10 690.90 475.65 689.21 781.25 691.12 688.93 578.82 887.42 1886.23 2991.28 393.90 12
TSAR-MVS + MP.86.88 989.23 884.14 1289.78 2588.67 3090.59 973.46 2688.99 1080.52 1291.26 588.65 779.91 686.96 2986.22 3190.59 1793.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CDPH-MVS82.64 3385.03 3379.86 3889.41 3088.31 3588.32 2971.84 3480.11 4467.47 6082.09 2481.44 4071.85 5585.89 3986.15 3290.24 3191.25 38
MCST-MVS85.13 2286.62 2283.39 1790.55 1489.82 1589.29 2173.89 2284.38 3076.03 2879.01 3085.90 2078.47 1187.81 1486.11 3392.11 193.29 22
DELS-MVS79.15 5281.07 4776.91 5483.54 6187.31 4184.45 5064.92 7869.98 6669.34 5471.62 5176.26 5369.84 6686.57 3285.90 3489.39 4789.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3688.49 3388.31 3072.09 3283.42 3472.77 4082.65 2378.22 4875.18 3286.24 3785.76 3590.74 1392.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.83.69 2986.58 2480.32 3585.14 5486.96 4484.91 4970.25 4184.71 2873.91 3585.16 2085.63 2177.92 1785.44 4085.71 3689.77 3992.45 27
CANet81.62 3983.41 3679.53 4087.06 4288.59 3185.47 4467.96 5876.59 5274.05 3374.69 3981.98 3572.98 4786.14 3885.47 3789.68 4390.42 46
train_agg84.86 2487.21 2082.11 2690.59 1385.47 5489.81 1573.55 2583.95 3173.30 3789.84 1187.23 1375.61 3186.47 3385.46 3889.78 3892.06 32
3Dnovator73.76 579.75 4580.52 5078.84 4484.94 5987.35 4084.43 5165.54 7378.29 4873.97 3463.00 9075.62 5674.07 3785.00 4685.34 3990.11 3489.04 53
OPM-MVS79.68 4779.28 5680.15 3787.99 3886.77 4688.52 2872.72 2964.55 9167.65 5967.87 7074.33 6074.31 3686.37 3585.25 4089.73 4189.81 49
MVS_111021_HR80.13 4281.46 4478.58 4685.77 5185.17 5883.45 5569.28 4974.08 6070.31 5374.31 4275.26 5773.13 4386.46 3485.15 4189.53 4589.81 49
MAR-MVS79.21 5080.32 5277.92 5087.46 3988.15 3783.95 5267.48 6174.28 5868.25 5664.70 8377.04 5172.17 5185.42 4185.00 4288.22 6487.62 63
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4387.22 4285.82 4170.04 4280.30 4378.66 1968.67 6681.04 4377.81 1885.19 4584.88 4389.19 5291.31 37
CLD-MVS79.35 4981.23 4577.16 5385.01 5786.92 4585.87 4060.89 12480.07 4675.35 3172.96 4573.21 6468.43 7585.41 4284.63 4487.41 8485.44 84
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
canonicalmvs79.16 5182.37 4275.41 6182.33 6886.38 5080.80 6163.18 9182.90 3567.34 6172.79 4676.07 5469.62 6783.46 5984.41 4589.20 5190.60 44
LGP-MVS_train79.83 4381.22 4678.22 4986.28 4885.36 5786.76 3569.59 4677.34 4965.14 6975.68 3670.79 7471.37 6184.60 4784.01 4690.18 3290.74 42
ACMM72.26 878.86 5478.13 6079.71 3986.89 4483.40 7286.02 3970.50 3975.28 5471.49 4963.01 8969.26 8573.57 4084.11 5183.98 4789.76 4087.84 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS77.32 5978.81 5775.58 6082.24 6983.64 6979.98 6664.02 8569.64 7063.90 7470.89 5569.94 8173.41 4185.39 4383.91 4889.92 3688.31 57
HQP-MVS81.19 4083.27 3778.76 4587.40 4085.45 5586.95 3470.47 4081.31 4166.91 6379.24 2976.63 5271.67 5884.43 4983.78 4989.19 5292.05 34
EPNet79.08 5380.62 4877.28 5288.90 3483.17 7583.65 5372.41 3174.41 5767.15 6276.78 3374.37 5964.43 9383.70 5583.69 5087.15 8788.19 58
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS_MVSNet73.33 7777.34 7068.65 10781.29 7283.47 7174.45 11663.58 8865.75 8348.49 14367.11 7570.61 7654.63 15984.51 4883.58 5189.48 4686.34 74
ACMP73.23 779.79 4480.53 4978.94 4385.61 5285.68 5285.61 4269.59 4677.33 5071.00 5174.45 4169.16 8671.88 5383.15 6083.37 5289.92 3690.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
QAPM78.47 5580.22 5376.43 5685.03 5686.75 4780.62 6466.00 7073.77 6165.35 6865.54 7878.02 4972.69 4883.71 5483.36 5388.87 5890.41 47
AdaColmapbinary79.74 4678.62 5881.05 3289.23 3286.06 5184.95 4871.96 3379.39 4775.51 3063.16 8868.84 9176.51 2983.55 5682.85 5488.13 6886.46 73
CS-MVS76.92 6178.01 6175.64 5981.47 7183.59 7080.68 6262.47 11068.39 7265.83 6667.84 7170.74 7573.07 4485.31 4482.79 5590.33 3087.42 64
Vis-MVSNetpermissive72.77 8177.20 7167.59 11974.19 13284.01 6376.61 10261.69 11960.62 12350.61 13570.25 5871.31 7255.57 15583.85 5382.28 5686.90 9688.08 59
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net74.47 7377.80 6370.59 8785.33 5385.40 5673.54 13465.98 7160.65 12256.00 10472.11 4879.15 4554.63 15983.13 6182.25 5788.04 7081.92 121
IB-MVS66.94 1271.21 9271.66 10070.68 8479.18 9082.83 7772.61 14061.77 11859.66 12763.44 7653.26 14559.65 12159.16 12876.78 13782.11 5887.90 7387.33 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CPTT-MVS81.77 3783.10 3880.21 3685.93 5086.45 4987.72 3370.98 3882.54 3871.53 4874.23 4381.49 3976.31 3082.85 6381.87 5988.79 6092.26 30
PVSNet_Blended_VisFu76.57 6377.90 6275.02 6380.56 7986.58 4879.24 7566.18 6764.81 8868.18 5765.61 7671.45 6967.05 7784.16 5081.80 6088.90 5690.92 41
Effi-MVS+75.28 7076.20 7674.20 7181.15 7383.24 7381.11 5963.13 9366.37 7760.27 8364.30 8668.88 9070.93 6481.56 7281.69 6188.61 6187.35 65
EIA-MVS75.64 6876.60 7574.53 6982.43 6783.84 6578.32 8562.28 11365.96 8163.28 7768.95 6267.54 9571.61 5982.55 6581.63 6289.24 4985.72 78
OMC-MVS80.26 4182.59 4177.54 5183.04 6285.54 5383.25 5665.05 7787.32 1872.42 4172.04 4978.97 4673.30 4283.86 5281.60 6388.15 6788.83 55
OpenMVScopyleft70.44 1076.15 6676.82 7475.37 6285.01 5784.79 6078.99 7962.07 11471.27 6567.88 5857.91 11672.36 6770.15 6582.23 6881.41 6488.12 6987.78 62
MVS_111021_LR78.13 5779.85 5576.13 5781.12 7481.50 8480.28 6565.25 7576.09 5371.32 5076.49 3572.87 6672.21 5082.79 6481.29 6586.59 10987.91 60
TranMVSNet+NR-MVSNet69.25 11270.81 10467.43 12077.23 10779.46 10573.48 13669.66 4460.43 12439.56 17558.82 10753.48 15755.74 15379.59 10381.21 6688.89 5782.70 111
ET-MVSNet_ETH3D72.46 8374.19 8270.44 8862.50 19081.17 8879.90 6962.46 11164.52 9257.52 9671.49 5359.15 12372.08 5278.61 11781.11 6788.16 6683.29 109
UniMVSNet_NR-MVSNet70.59 9672.19 9568.72 10577.72 10280.72 9473.81 13169.65 4561.99 11143.23 16760.54 9757.50 13058.57 12979.56 10581.07 6889.34 4883.97 101
DCV-MVSNet73.65 7675.78 7871.16 8180.19 8379.27 10777.45 9461.68 12066.73 7658.72 8865.31 7969.96 8062.19 10681.29 8080.97 6986.74 10286.91 68
CANet_DTU73.29 7876.96 7369.00 10477.04 10882.06 8079.49 7356.30 16067.85 7453.29 12071.12 5470.37 7961.81 11581.59 7180.96 7086.09 11884.73 95
FC-MVSNet-train72.60 8275.07 8069.71 9681.10 7578.79 11373.74 13365.23 7666.10 8053.34 11970.36 5763.40 10856.92 14481.44 7480.96 7087.93 7284.46 99
TSAR-MVS + COLMAP78.34 5681.64 4374.48 7080.13 8585.01 5981.73 5765.93 7284.75 2761.68 7985.79 1866.27 9971.39 6082.91 6280.78 7286.01 12485.98 75
EPP-MVSNet74.00 7577.41 6870.02 9380.53 8083.91 6474.99 11262.68 10565.06 8649.77 13968.68 6572.09 6863.06 10182.49 6780.73 7389.12 5488.91 54
GBi-Net70.78 9373.37 8767.76 11272.95 14478.00 12075.15 10762.72 10064.13 9451.44 12858.37 11169.02 8757.59 13681.33 7780.72 7486.70 10382.02 115
test170.78 9373.37 8767.76 11272.95 14478.00 12075.15 10762.72 10064.13 9451.44 12858.37 11169.02 8757.59 13681.33 7780.72 7486.70 10382.02 115
FMVSNet168.84 11670.47 10766.94 13171.35 16177.68 12874.71 11462.35 11256.93 14249.94 13850.01 16864.59 10357.07 14181.33 7780.72 7486.25 11482.00 118
ACMH65.37 1470.71 9570.00 11071.54 7982.51 6682.47 7977.78 8968.13 5556.19 14946.06 15854.30 13351.20 17568.68 7380.66 8980.72 7486.07 11984.45 100
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NR-MVSNet68.79 11770.56 10566.71 13677.48 10579.54 10373.52 13569.20 5061.20 11939.76 17458.52 10850.11 18151.37 16880.26 9780.71 7888.97 5583.59 107
UGNet72.78 8077.67 6467.07 12971.65 15683.24 7375.20 10663.62 8764.93 8756.72 10071.82 5073.30 6249.02 17281.02 8580.70 7986.22 11588.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EG-PatchMatch MVS67.24 13866.94 14567.60 11878.73 9381.35 8573.28 13859.49 14046.89 19051.42 13143.65 18353.49 15655.50 15681.38 7680.66 8087.15 8781.17 127
PCF-MVS73.28 679.42 4880.41 5178.26 4784.88 6088.17 3686.08 3869.85 4375.23 5668.43 5568.03 6978.38 4771.76 5681.26 8180.65 8188.56 6391.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet (Re)69.53 10871.90 9866.76 13476.42 11180.93 9072.59 14168.03 5761.75 11441.68 17258.34 11457.23 13253.27 16479.53 10680.62 8288.57 6284.90 93
Fast-Effi-MVS+73.11 7973.66 8472.48 7677.72 10280.88 9378.55 8258.83 15065.19 8560.36 8259.98 10162.42 11171.22 6281.66 6980.61 8388.20 6584.88 94
DU-MVS69.63 10770.91 10368.13 11175.99 11379.54 10373.81 13169.20 5061.20 11943.23 16758.52 10853.50 15558.57 12979.22 10980.45 8487.97 7183.97 101
Anonymous20240521172.16 9780.85 7781.85 8176.88 9965.40 7462.89 10646.35 17867.99 9462.05 10881.15 8380.38 8585.97 12684.50 98
FMVSNet270.39 9972.67 9367.72 11572.95 14478.00 12075.15 10762.69 10463.29 10251.25 13255.64 12568.49 9357.59 13680.91 8780.35 8686.70 10382.02 115
anonymousdsp65.28 14767.98 13662.13 15758.73 19873.98 15767.10 16350.69 18348.41 18647.66 15154.27 13452.75 16761.45 11976.71 13880.20 8787.13 9189.53 52
Anonymous2023121171.90 8572.48 9471.21 8080.14 8481.53 8376.92 9762.89 9664.46 9358.94 8543.80 18270.98 7362.22 10580.70 8880.19 8886.18 11685.73 77
thisisatest053071.48 8973.01 8969.70 9773.83 13778.62 11574.53 11559.12 14464.13 9458.63 8964.60 8458.63 12564.27 9480.28 9680.17 8987.82 7784.64 97
tttt051771.41 9072.95 9069.60 9873.70 13978.70 11474.42 11959.12 14463.89 9858.35 9264.56 8558.39 12764.27 9480.29 9580.17 8987.74 7984.69 96
CDS-MVSNet67.65 13269.83 11365.09 14175.39 12076.55 13874.42 11963.75 8653.55 16749.37 14159.41 10462.45 11044.44 17979.71 10279.82 9183.17 15477.36 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER72.06 8474.24 8169.51 9970.39 16775.97 14376.91 9857.36 15764.64 9061.39 8168.86 6363.76 10663.46 9881.44 7479.70 9287.56 8285.31 86
PVSNet_BlendedMVS76.21 6477.52 6674.69 6779.46 8883.79 6677.50 9264.34 8369.88 6771.88 4368.54 6770.42 7767.05 7783.48 5779.63 9387.89 7486.87 69
PVSNet_Blended76.21 6477.52 6674.69 6779.46 8883.79 6677.50 9264.34 8369.88 6771.88 4368.54 6770.42 7767.05 7783.48 5779.63 9387.89 7486.87 69
DI_MVS_plusplus_trai75.13 7176.12 7773.96 7278.18 9681.55 8280.97 6062.54 10768.59 7165.13 7061.43 9274.81 5869.32 7081.01 8679.59 9587.64 8185.89 76
FMVSNet370.49 9772.90 9167.67 11772.88 14777.98 12374.96 11362.72 10064.13 9451.44 12858.37 11169.02 8757.43 13979.43 10779.57 9686.59 10981.81 122
TAPA-MVS71.42 977.69 5880.05 5474.94 6480.68 7884.52 6181.36 5863.14 9284.77 2664.82 7168.72 6475.91 5571.86 5481.62 7079.55 9787.80 7885.24 87
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH+66.54 1371.36 9170.09 10972.85 7582.59 6581.13 8978.56 8168.04 5661.55 11552.52 12651.50 16254.14 14868.56 7478.85 11479.50 9886.82 9983.94 103
MVS_Test75.37 6977.13 7273.31 7479.07 9181.32 8679.98 6660.12 13569.72 6964.11 7370.53 5673.22 6368.90 7180.14 9979.48 9987.67 8085.50 82
Vis-MVSNet (Re-imp)67.83 12873.52 8561.19 16178.37 9576.72 13766.80 16662.96 9465.50 8434.17 18567.19 7469.68 8339.20 18979.39 10879.44 10085.68 13076.73 158
casdiffmvs76.76 6278.46 5974.77 6680.32 8283.73 6880.65 6363.24 9073.58 6266.11 6569.39 6174.09 6169.49 6982.52 6679.35 10188.84 5986.52 72
PLCcopyleft68.99 1175.68 6775.31 7976.12 5882.94 6381.26 8779.94 6866.10 6877.15 5166.86 6459.13 10668.53 9273.73 3980.38 9379.04 10287.13 9181.68 123
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gg-mvs-nofinetune62.55 16165.05 15959.62 17078.72 9477.61 12970.83 14853.63 16339.71 20222.04 20236.36 19564.32 10447.53 17481.16 8279.03 10385.00 14277.17 154
baseline170.10 10372.17 9667.69 11679.74 8676.80 13573.91 12764.38 8262.74 10748.30 14564.94 8064.08 10554.17 16181.46 7378.92 10485.66 13176.22 159
thisisatest051567.40 13668.78 12665.80 13970.02 16975.24 15069.36 15357.37 15654.94 16053.67 11755.53 12854.85 14458.00 13478.19 12178.91 10586.39 11383.78 105
LS3D74.08 7473.39 8674.88 6585.05 5582.62 7879.71 7168.66 5272.82 6358.80 8757.61 11761.31 11471.07 6380.32 9478.87 10686.00 12580.18 135
CNLPA77.20 6077.54 6576.80 5582.63 6484.31 6279.77 7064.64 7985.17 2373.18 3856.37 12369.81 8274.53 3481.12 8478.69 10786.04 12387.29 67
UniMVSNet_ETH3D67.18 13967.03 14467.36 12274.44 13078.12 11874.07 12666.38 6552.22 17346.87 15248.64 17251.84 17256.96 14277.29 12978.53 10885.42 13582.59 112
MSDG71.52 8869.87 11173.44 7382.21 7079.35 10679.52 7264.59 8066.15 7961.87 7853.21 14756.09 13865.85 9178.94 11378.50 10986.60 10876.85 157
tfpn200view968.11 12268.72 12867.40 12177.83 10078.93 10974.28 12162.81 9756.64 14446.82 15352.65 15553.47 15856.59 14580.41 9078.43 11086.11 11780.52 132
thres40067.95 12568.62 13067.17 12677.90 9778.59 11674.27 12262.72 10056.34 14845.77 16053.00 15053.35 16156.46 14680.21 9878.43 11085.91 12880.43 133
HyFIR lowres test69.47 11068.94 12470.09 9276.77 11082.93 7676.63 10160.17 13359.00 13054.03 11340.54 19165.23 10267.89 7676.54 14078.30 11285.03 14180.07 136
Baseline_NR-MVSNet67.53 13568.77 12766.09 13875.99 11374.75 15472.43 14268.41 5361.33 11838.33 17851.31 16354.13 15056.03 14979.22 10978.19 11385.37 13682.45 113
CHOSEN 1792x268869.20 11369.26 12069.13 10176.86 10978.93 10977.27 9560.12 13561.86 11354.42 10942.54 18661.61 11266.91 8278.55 11878.14 11479.23 16883.23 110
diffmvs74.86 7277.37 6971.93 7775.62 11880.35 9879.42 7460.15 13472.81 6464.63 7271.51 5273.11 6566.53 8779.02 11277.98 11585.25 13886.83 71
thres20067.98 12468.55 13167.30 12477.89 9978.86 11174.18 12562.75 9856.35 14746.48 15652.98 15153.54 15456.46 14680.41 9077.97 11686.05 12179.78 139
pm-mvs165.62 14467.42 14163.53 15373.66 14076.39 13969.66 15060.87 12549.73 18343.97 16651.24 16457.00 13548.16 17379.89 10077.84 11784.85 14579.82 138
thres600view767.68 13068.43 13266.80 13377.90 9778.86 11173.84 12962.75 9856.07 15044.70 16552.85 15352.81 16555.58 15480.41 9077.77 11886.05 12180.28 134
WR-MVS63.03 15767.40 14257.92 17675.14 12277.60 13060.56 18966.10 6854.11 16623.88 19653.94 13953.58 15334.50 19373.93 15377.71 11987.35 8580.94 128
TransMVSNet (Re)64.74 15065.66 15363.66 15277.40 10675.33 14969.86 14962.67 10647.63 18841.21 17350.01 16852.33 16845.31 17879.57 10477.69 12085.49 13377.07 156
thres100view90067.60 13468.02 13567.12 12877.83 10077.75 12773.90 12862.52 10856.64 14446.82 15352.65 15553.47 15855.92 15078.77 11577.62 12185.72 12979.23 142
GA-MVS68.14 12169.17 12266.93 13273.77 13878.50 11774.45 11658.28 15255.11 15648.44 14460.08 9953.99 15161.50 11778.43 11977.57 12285.13 13980.54 131
gm-plane-assit57.00 18557.62 19256.28 18276.10 11262.43 19847.62 20546.57 19633.84 20523.24 19837.52 19240.19 20259.61 12779.81 10177.55 12384.55 14672.03 178
v1070.22 10169.76 11470.74 8274.79 12680.30 10079.22 7659.81 13857.71 13856.58 10254.22 13855.31 14166.95 8078.28 12077.47 12487.12 9385.07 90
v114469.93 10569.36 11970.61 8674.89 12580.93 9079.11 7760.64 12655.97 15155.31 10753.85 14054.14 14866.54 8678.10 12277.44 12587.14 9085.09 89
v7n67.05 14066.94 14567.17 12672.35 14978.97 10873.26 13958.88 14951.16 17950.90 13348.21 17450.11 18160.96 12077.70 12577.38 12686.68 10685.05 91
IterMVS-LS71.69 8772.82 9270.37 8977.54 10476.34 14075.13 11060.46 13061.53 11657.57 9564.89 8167.33 9666.04 9077.09 13377.37 12785.48 13485.18 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119269.50 10968.83 12570.29 9074.49 12980.92 9278.55 8260.54 12855.04 15754.21 11052.79 15452.33 16866.92 8177.88 12477.35 12887.04 9485.51 81
PEN-MVS62.96 15865.77 15259.70 16973.98 13575.45 14763.39 18267.61 6052.49 17125.49 19553.39 14249.12 18440.85 18771.94 16577.26 12986.86 9880.72 130
v2v48270.05 10469.46 11870.74 8274.62 12880.32 9979.00 7860.62 12757.41 14056.89 9955.43 12955.14 14366.39 8877.25 13077.14 13086.90 9683.57 108
MS-PatchMatch70.17 10270.49 10669.79 9580.98 7677.97 12577.51 9158.95 14762.33 10955.22 10853.14 14865.90 10062.03 10979.08 11177.11 13184.08 14877.91 149
V4268.76 11869.63 11567.74 11464.93 18778.01 11978.30 8656.48 15958.65 13256.30 10354.26 13657.03 13464.85 9277.47 12877.01 13285.60 13284.96 92
tfpnnormal64.27 15363.64 16965.02 14275.84 11675.61 14671.24 14762.52 10847.79 18742.97 16942.65 18544.49 19552.66 16678.77 11576.86 13384.88 14479.29 141
v124068.64 11967.89 13869.51 9973.89 13680.26 10176.73 10059.97 13753.43 16853.08 12151.82 16150.84 17766.62 8576.79 13676.77 13486.78 10185.34 85
v14419269.34 11168.68 12970.12 9174.06 13380.54 9578.08 8860.54 12854.99 15954.13 11252.92 15252.80 16666.73 8477.13 13276.72 13587.15 8785.63 79
v870.23 10069.86 11270.67 8574.69 12779.82 10278.79 8059.18 14358.80 13158.20 9355.00 13057.33 13166.31 8977.51 12776.71 13686.82 9983.88 104
v192192069.03 11468.32 13369.86 9474.03 13480.37 9777.55 9060.25 13254.62 16153.59 11852.36 15851.50 17466.75 8377.17 13176.69 13786.96 9585.56 80
baseline269.69 10670.27 10869.01 10375.72 11777.13 13373.82 13058.94 14861.35 11757.09 9861.68 9157.17 13361.99 11078.10 12276.58 13886.48 11279.85 137
DTE-MVSNet61.85 17064.96 16158.22 17574.32 13174.39 15661.01 18867.85 5951.76 17821.91 20353.28 14448.17 18537.74 19072.22 16276.44 13986.52 11178.49 146
LTVRE_ROB59.44 1661.82 17362.64 17560.87 16372.83 14877.19 13264.37 17858.97 14633.56 20628.00 19252.59 15742.21 19863.93 9774.52 14976.28 14077.15 17582.13 114
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs662.41 16462.88 17261.87 15871.38 16075.18 15367.76 15959.45 14241.64 19842.52 17137.33 19352.91 16446.87 17577.67 12676.26 14183.23 15379.18 143
Fast-Effi-MVS+-dtu68.34 12069.47 11767.01 13075.15 12177.97 12577.12 9655.40 16257.87 13346.68 15556.17 12460.39 11562.36 10476.32 14176.25 14285.35 13781.34 125
TDRefinement66.09 14365.03 16067.31 12369.73 17176.75 13675.33 10364.55 8160.28 12549.72 14045.63 18042.83 19760.46 12575.75 14275.95 14384.08 14878.04 148
CP-MVSNet62.68 16065.49 15559.40 17271.84 15275.34 14862.87 18467.04 6352.64 17027.19 19353.38 14348.15 18641.40 18571.26 16875.68 14486.07 11982.00 118
PS-CasMVS62.38 16665.06 15859.25 17371.73 15375.21 15262.77 18566.99 6451.94 17726.96 19452.00 16047.52 18941.06 18671.16 17175.60 14585.97 12681.97 120
Effi-MVS+-dtu71.82 8671.86 9971.78 7878.77 9280.47 9678.55 8261.67 12160.68 12155.49 10558.48 11065.48 10168.85 7276.92 13475.55 14687.35 8585.46 83
COLMAP_ROBcopyleft62.73 1567.66 13166.76 14768.70 10680.49 8177.98 12375.29 10562.95 9563.62 10049.96 13747.32 17750.72 17858.57 12976.87 13575.50 14784.94 14375.33 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs467.89 12667.39 14368.48 10871.60 15873.57 15874.45 11660.98 12364.65 8957.97 9454.95 13151.73 17361.88 11273.78 15475.11 14883.99 15077.91 149
WR-MVS_H61.83 17265.87 15157.12 17971.72 15476.87 13461.45 18766.19 6651.97 17622.92 20053.13 14952.30 17033.80 19471.03 17275.00 14986.65 10780.78 129
EPNet_dtu68.08 12371.00 10264.67 14579.64 8768.62 17675.05 11163.30 8966.36 7845.27 16267.40 7366.84 9843.64 18175.37 14474.98 15081.15 16077.44 152
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline70.45 9874.09 8366.20 13770.95 16475.67 14474.26 12353.57 16468.33 7358.42 9069.87 5971.45 6961.55 11674.84 14874.76 15178.42 17083.72 106
USDC67.36 13767.90 13766.74 13571.72 15475.23 15171.58 14460.28 13167.45 7550.54 13660.93 9345.20 19462.08 10776.56 13974.50 15284.25 14775.38 167
PatchMatch-RL67.78 12966.65 14869.10 10273.01 14372.69 16168.49 15661.85 11762.93 10560.20 8456.83 12250.42 17969.52 6875.62 14374.46 15381.51 15873.62 176
IterMVS-SCA-FT66.89 14169.22 12164.17 14771.30 16275.64 14571.33 14553.17 16857.63 13949.08 14260.72 9560.05 11963.09 10074.99 14773.92 15477.07 17681.57 124
v14867.85 12767.53 13968.23 10973.25 14277.57 13174.26 12357.36 15755.70 15257.45 9753.53 14155.42 14061.96 11175.23 14573.92 15485.08 14081.32 126
pmmvs-eth3d63.52 15662.44 17864.77 14466.82 18270.12 17069.41 15259.48 14154.34 16552.71 12246.24 17944.35 19656.93 14372.37 15873.77 15683.30 15275.91 161
PMMVS65.06 14869.17 12260.26 16655.25 20463.43 19266.71 16743.01 20062.41 10850.64 13469.44 6067.04 9763.29 9974.36 15173.54 15782.68 15573.99 175
pmmvs562.37 16764.04 16660.42 16465.03 18571.67 16567.17 16252.70 17350.30 18044.80 16354.23 13751.19 17649.37 17172.88 15773.48 15883.45 15174.55 171
CR-MVSNet64.83 14965.54 15464.01 15070.64 16669.41 17165.97 17152.74 17157.81 13552.65 12354.27 13456.31 13760.92 12172.20 16373.09 15981.12 16175.69 164
PatchT61.97 16964.04 16659.55 17160.49 19467.40 17956.54 19548.65 19056.69 14352.65 12351.10 16552.14 17160.92 12172.20 16373.09 15978.03 17175.69 164
IterMVS66.36 14268.30 13464.10 14869.48 17474.61 15573.41 13750.79 18257.30 14148.28 14660.64 9659.92 12060.85 12474.14 15272.66 16181.80 15778.82 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap62.84 15961.03 18464.96 14369.61 17271.69 16468.48 15759.76 13955.41 15347.69 15047.33 17634.20 20562.76 10374.52 14972.59 16281.44 15971.47 179
TAMVS59.58 18062.81 17455.81 18366.03 18365.64 18663.86 18048.74 18949.95 18237.07 18254.77 13258.54 12644.44 17972.29 16071.79 16374.70 18766.66 190
MIMVSNet58.52 18361.34 18355.22 18560.76 19367.01 18166.81 16549.02 18856.43 14638.90 17740.59 19054.54 14740.57 18873.16 15671.65 16475.30 18666.00 191
SixPastTwentyTwo61.84 17162.45 17761.12 16269.20 17572.20 16262.03 18657.40 15546.54 19138.03 18057.14 12141.72 19958.12 13369.67 18271.58 16581.94 15678.30 147
CVMVSNet62.55 16165.89 15058.64 17466.95 18069.15 17366.49 17056.29 16152.46 17232.70 18659.27 10558.21 12950.09 17071.77 16671.39 16679.31 16778.99 144
FC-MVSNet-test56.90 18665.20 15747.21 19666.98 17963.20 19449.11 20458.60 15159.38 12911.50 20965.60 7756.68 13624.66 20371.17 17071.36 16772.38 19469.02 186
FMVSNet557.24 18460.02 18753.99 18956.45 20162.74 19665.27 17447.03 19555.14 15539.55 17640.88 18853.42 16041.83 18272.35 15971.10 16873.79 19064.50 193
CMPMVSbinary47.78 1762.49 16362.52 17662.46 15670.01 17070.66 16962.97 18351.84 17751.98 17556.71 10142.87 18453.62 15257.80 13572.23 16170.37 16975.45 18575.91 161
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 158.80 18161.58 18255.56 18475.02 12368.45 17759.58 19361.96 11552.74 16929.57 18949.75 17154.56 14631.46 19671.19 16969.77 17075.75 18164.57 192
test-mter60.84 17664.62 16356.42 18155.99 20264.18 18765.39 17334.23 20554.39 16446.21 15757.40 12059.49 12255.86 15171.02 17369.65 17180.87 16376.20 160
test-LLR64.42 15164.36 16464.49 14675.02 12363.93 18966.61 16861.96 11554.41 16247.77 14857.46 11860.25 11655.20 15770.80 17469.33 17280.40 16474.38 172
TESTMET0.1,161.10 17564.36 16457.29 17857.53 19963.93 18966.61 16836.22 20454.41 16247.77 14857.46 11860.25 11655.20 15770.80 17469.33 17280.40 16474.38 172
test20.0353.93 19256.28 19351.19 19272.19 15165.83 18453.20 19961.08 12242.74 19622.08 20137.07 19445.76 19324.29 20470.44 17869.04 17474.31 18963.05 196
MIMVSNet149.27 19553.25 19544.62 19844.61 20661.52 19953.61 19852.18 17441.62 19918.68 20528.14 20441.58 20025.50 19968.46 18869.04 17473.15 19262.37 198
Anonymous2023120656.36 18757.80 19154.67 18770.08 16866.39 18360.46 19057.54 15449.50 18529.30 19033.86 19846.64 19035.18 19270.44 17868.88 17675.47 18468.88 187
CostFormer68.92 11569.58 11668.15 11075.98 11576.17 14278.22 8751.86 17665.80 8261.56 8063.57 8762.83 10961.85 11370.40 18068.67 17779.42 16679.62 140
testgi54.39 19157.86 19050.35 19371.59 15967.24 18054.95 19753.25 16743.36 19523.78 19744.64 18147.87 18724.96 20170.45 17768.66 17873.60 19162.78 197
CHOSEN 280x42058.70 18261.88 18154.98 18655.45 20350.55 20664.92 17540.36 20155.21 15438.13 17948.31 17363.76 10663.03 10273.73 15568.58 17968.00 20273.04 177
RPMNet61.71 17462.88 17260.34 16569.51 17369.41 17163.48 18149.23 18657.81 13545.64 16150.51 16650.12 18053.13 16568.17 18968.49 18081.07 16275.62 166
RPSCF67.64 13371.25 10163.43 15461.86 19270.73 16867.26 16150.86 18174.20 5958.91 8667.49 7269.33 8464.10 9671.41 16768.45 18177.61 17277.17 154
SCA65.40 14666.58 14964.02 14970.65 16573.37 15967.35 16053.46 16663.66 9954.14 11160.84 9460.20 11861.50 11769.96 18168.14 18277.01 17769.91 182
ambc53.42 19464.99 18663.36 19349.96 20247.07 18937.12 18128.97 20216.36 21341.82 18375.10 14667.34 18371.55 19675.72 163
MDTV_nov1_ep1364.37 15265.24 15663.37 15568.94 17670.81 16772.40 14350.29 18560.10 12653.91 11560.07 10059.15 12357.21 14069.43 18467.30 18477.47 17369.78 184
GG-mvs-BLEND46.86 19967.51 14022.75 2050.05 21576.21 14164.69 1760.04 21261.90 1120.09 21555.57 12671.32 710.08 21170.54 17667.19 18571.58 19569.86 183
dps64.00 15562.99 17165.18 14073.29 14172.07 16368.98 15553.07 16957.74 13758.41 9155.55 12747.74 18860.89 12369.53 18367.14 18676.44 18071.19 180
PM-MVS60.48 17760.94 18559.94 16758.85 19766.83 18264.27 17951.39 17955.03 15848.03 14750.00 17040.79 20158.26 13269.20 18567.13 18778.84 16977.60 151
MDTV_nov1_ep13_2view60.16 17860.51 18659.75 16865.39 18469.05 17468.00 15848.29 19251.99 17445.95 15948.01 17549.64 18353.39 16368.83 18666.52 18877.47 17369.55 185
PatchmatchNetpermissive64.21 15464.65 16263.69 15171.29 16368.66 17569.63 15151.70 17863.04 10353.77 11659.83 10358.34 12860.23 12668.54 18766.06 18975.56 18368.08 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs53.37 19353.01 19653.79 19043.67 20867.95 17859.69 19257.92 15343.69 19432.41 18741.47 18727.89 21052.38 16756.97 20365.99 19076.68 17867.13 189
EU-MVSNet54.63 18958.69 18849.90 19456.99 20062.70 19756.41 19650.64 18445.95 19323.14 19950.42 16746.51 19136.63 19165.51 19264.85 19175.57 18274.91 169
tpm62.41 16463.15 17061.55 16072.24 15063.79 19171.31 14646.12 19857.82 13455.33 10659.90 10254.74 14553.63 16267.24 19064.29 19270.65 19874.25 174
tpm cat165.41 14563.81 16867.28 12575.61 11972.88 16075.32 10452.85 17062.97 10463.66 7553.24 14653.29 16361.83 11465.54 19164.14 19374.43 18874.60 170
pmmvs347.65 19649.08 20145.99 19744.61 20654.79 20450.04 20131.95 20833.91 20429.90 18830.37 20033.53 20646.31 17663.50 19463.67 19473.14 19363.77 195
tpmrst62.00 16862.35 17961.58 15971.62 15764.14 18869.07 15448.22 19462.21 11053.93 11458.26 11555.30 14255.81 15263.22 19562.62 19570.85 19770.70 181
EPMVS60.00 17961.97 18057.71 17768.46 17763.17 19564.54 17748.23 19363.30 10144.72 16460.19 9856.05 13950.85 16965.27 19362.02 19669.44 20063.81 194
Gipumacopyleft36.38 20235.80 20437.07 20145.76 20533.90 20929.81 20948.47 19139.91 20118.02 2068.00 2118.14 21525.14 20059.29 20061.02 19755.19 20740.31 206
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ADS-MVSNet55.94 18858.01 18953.54 19162.48 19158.48 20059.12 19446.20 19759.65 12842.88 17052.34 15953.31 16246.31 17662.00 19760.02 19864.23 20460.24 201
MVS-HIRNet54.41 19052.10 19757.11 18058.99 19656.10 20349.68 20349.10 18746.18 19252.15 12733.18 19946.11 19256.10 14863.19 19659.70 19976.64 17960.25 200
FPMVS51.87 19450.00 19954.07 18866.83 18157.25 20160.25 19150.91 18050.25 18134.36 18436.04 19632.02 20741.49 18458.98 20156.07 20070.56 19959.36 202
N_pmnet47.35 19750.13 19844.11 19959.98 19551.64 20551.86 20044.80 19949.58 18420.76 20440.65 18940.05 20329.64 19759.84 19955.15 20157.63 20554.00 204
new-patchmatchnet46.97 19849.47 20044.05 20062.82 18956.55 20245.35 20652.01 17542.47 19717.04 20735.73 19735.21 20421.84 20761.27 19854.83 20265.26 20360.26 199
PMVScopyleft39.38 1846.06 20043.30 20249.28 19562.93 18838.75 20841.88 20753.50 16533.33 20735.46 18328.90 20331.01 20833.04 19558.61 20254.63 20368.86 20157.88 203
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet38.40 20142.64 20333.44 20237.54 21145.00 20736.60 20832.72 20740.27 20012.72 20829.89 20128.90 20924.78 20253.17 20452.90 20456.31 20648.34 205
MVEpermissive19.12 1920.47 20623.27 20617.20 20712.66 21425.41 21110.52 21434.14 20614.79 2126.53 2138.79 2104.68 21616.64 20829.49 20741.63 20522.73 21238.11 207
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS225.60 20329.75 20520.76 20628.00 21230.93 21023.10 21029.18 20923.14 2091.46 21418.23 20716.54 2125.08 20940.22 20541.40 20637.76 20837.79 208
tmp_tt14.50 20814.68 2137.17 21510.46 2152.21 21137.73 20328.71 19125.26 20516.98 2114.37 21031.49 20629.77 20726.56 211
E-PMN21.77 20418.24 20725.89 20340.22 20919.58 21212.46 21339.87 20218.68 2116.71 2119.57 2084.31 21822.36 20619.89 20927.28 20833.73 20928.34 210
EMVS20.98 20517.15 20825.44 20439.51 21019.37 21312.66 21239.59 20319.10 2106.62 2129.27 2094.40 21722.43 20517.99 21024.40 20931.81 21025.53 211
testmvs0.09 2070.15 2090.02 2090.01 2160.02 2160.05 2170.01 2130.11 2130.01 2160.26 2130.01 2190.06 2130.10 2110.10 2100.01 2140.43 213
test1230.09 2070.14 2100.02 2090.00 2170.02 2160.02 2180.01 2130.09 2140.00 2170.30 2120.00 2200.08 2110.03 2120.09 2110.01 2140.45 212
uanet_test0.00 2090.00 2110.00 2110.00 2170.00 2180.00 2190.00 2150.00 2150.00 2170.00 2140.00 2200.00 2140.00 2130.00 2120.00 2160.00 214
sosnet-low-res0.00 2090.00 2110.00 2110.00 2170.00 2180.00 2190.00 2150.00 2150.00 2170.00 2140.00 2200.00 2140.00 2130.00 2120.00 2160.00 214
sosnet0.00 2090.00 2110.00 2110.00 2170.00 2180.00 2190.00 2150.00 2150.00 2170.00 2140.00 2200.00 2140.00 2130.00 2120.00 2160.00 214
9.1486.88 14
SR-MVS88.99 3373.57 2487.54 12
our_test_367.93 17870.99 16666.89 164
test_part195.35 3
MTAPA83.48 186.45 17
MTMP82.66 484.91 25
Patchmatch-RL test2.85 216
XVS86.63 4588.68 2785.00 4671.81 4581.92 3690.47 21
X-MVStestdata86.63 4588.68 2785.00 4671.81 4581.92 3690.47 21
abl_679.05 4287.27 4188.85 2583.62 5468.25 5481.68 4072.94 3973.79 4484.45 2772.55 4989.66 4490.64 43
mPP-MVS89.90 2481.29 41
NP-MVS80.10 45
Patchmtry65.80 18565.97 17152.74 17152.65 123
DeepMVS_CXcopyleft18.74 21418.55 2118.02 21026.96 2087.33 21023.81 20613.05 21425.99 19825.17 20822.45 21336.25 209