This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND87.71 3195.34 171.43 5893.49 794.23 597.49 189.08 496.41 894.21 32
SED-MVS90.08 190.85 187.77 2395.30 270.98 6593.57 594.06 1077.24 4793.10 195.72 682.99 197.44 289.07 696.63 294.88 7
IU-MVS95.30 271.25 5992.95 5066.81 22792.39 588.94 896.63 294.85 10
test_241102_ONE95.30 270.98 6594.06 1077.17 5093.10 195.39 982.99 197.27 7
DVP-MVS89.60 290.35 287.33 4295.27 571.25 5993.49 792.73 5877.33 4592.12 895.78 480.98 797.40 489.08 496.41 893.33 75
test072695.27 571.25 5993.60 494.11 677.33 4592.81 395.79 380.98 7
test_part295.06 772.65 3191.80 10
HPM-MVS++copyleft89.02 789.15 788.63 295.01 876.03 192.38 2392.85 5380.26 1387.78 2694.27 3475.89 1696.81 1987.45 1696.44 793.05 86
DPE-MVS89.48 489.98 388.01 1294.80 972.69 3091.59 4094.10 875.90 8192.29 695.66 881.67 497.38 687.44 1796.34 1193.95 44
CNVR-MVS88.93 889.13 888.33 594.77 1073.82 790.51 5993.00 4380.90 988.06 2494.06 4476.43 1396.84 1788.48 1195.99 1594.34 27
ACMMPR87.44 2587.23 3088.08 1194.64 1173.59 1093.04 1093.20 3476.78 6284.66 5994.52 2168.81 7996.65 2684.53 3794.90 4194.00 42
region2R87.42 2787.20 3188.09 1094.63 1273.55 1193.03 1293.12 3876.73 6584.45 6294.52 2169.09 7696.70 2384.37 4094.83 4694.03 39
OPU-MVS89.06 194.62 1375.42 293.57 594.02 4582.45 396.87 1683.77 4896.48 694.88 7
HFP-MVS87.58 2287.47 2487.94 1594.58 1473.54 1393.04 1093.24 3276.78 6284.91 5294.44 2870.78 5896.61 2984.53 3794.89 4293.66 57
#test#87.33 3087.13 3287.94 1594.58 1473.54 1392.34 2593.24 3275.23 9384.91 5294.44 2870.78 5896.61 2983.75 4994.89 4293.66 57
testtj87.78 1987.78 2087.77 2394.55 1672.47 3792.23 2993.49 2574.75 10388.33 2194.43 3073.27 3997.02 1384.18 4594.84 4493.82 52
MCST-MVS87.37 2987.25 2987.73 2794.53 1772.46 3889.82 7893.82 1673.07 13784.86 5792.89 6876.22 1496.33 3684.89 3295.13 3794.40 24
APDe-MVS89.15 589.63 587.73 2794.49 1871.69 5593.83 293.96 1475.70 8591.06 1296.03 176.84 1297.03 1289.09 395.65 2894.47 23
DP-MVS Recon83.11 8682.09 9386.15 6594.44 1970.92 7188.79 10692.20 8170.53 17679.17 12391.03 10564.12 11996.03 4768.39 18290.14 9991.50 132
XVS87.18 3386.91 3688.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7694.17 3867.45 8896.60 3183.06 5594.50 5294.07 37
X-MVStestdata80.37 13777.83 17188.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7612.47 35267.45 8896.60 3183.06 5594.50 5294.07 37
mPP-MVS86.67 4186.32 4387.72 2994.41 2273.55 1192.74 1792.22 8076.87 5982.81 8794.25 3666.44 9796.24 3982.88 5994.28 5893.38 72
NCCC88.06 1388.01 1788.24 894.41 2273.62 991.22 4992.83 5481.50 685.79 4193.47 5673.02 4297.00 1484.90 3094.94 4094.10 35
ZNCC-MVS87.94 1787.85 1988.20 994.39 2473.33 1893.03 1293.81 1776.81 6085.24 4794.32 3371.76 5196.93 1585.53 2695.79 2194.32 28
ZD-MVS94.38 2572.22 4592.67 6070.98 16787.75 2794.07 4374.01 3596.70 2384.66 3694.84 44
MP-MVScopyleft87.71 2087.64 2287.93 1894.36 2673.88 592.71 1992.65 6377.57 3883.84 7394.40 3272.24 4796.28 3885.65 2595.30 3693.62 64
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS89.51 389.91 488.30 794.28 2773.46 1692.90 1494.11 680.27 1291.35 1194.16 3978.35 1096.77 2089.59 194.22 6094.67 16
SMA-MVScopyleft89.08 689.23 688.61 394.25 2873.73 892.40 2093.63 2074.77 10292.29 695.97 274.28 3197.24 888.58 1096.91 194.87 9
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft87.44 2587.52 2387.19 4494.24 2972.39 4091.86 3792.83 5473.01 13988.58 1994.52 2173.36 3796.49 3484.26 4295.01 3892.70 96
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS86.68 4086.27 4487.90 1994.22 3073.38 1790.22 7193.04 3975.53 8783.86 7294.42 3167.87 8596.64 2782.70 6294.57 5193.66 57
CP-MVS87.11 3486.92 3587.68 3494.20 3173.86 693.98 192.82 5776.62 6783.68 7594.46 2567.93 8395.95 5284.20 4494.39 5593.23 78
zzz-MVS87.53 2387.41 2687.90 1994.18 3274.25 390.23 6992.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
MTAPA87.23 3287.00 3387.90 1994.18 3274.25 386.58 17692.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
GST-MVS87.42 2787.26 2887.89 2294.12 3472.97 2392.39 2293.43 2876.89 5884.68 5893.99 4770.67 6196.82 1884.18 4595.01 3893.90 47
SR-MVS86.73 3886.67 3986.91 4994.11 3572.11 4892.37 2492.56 6674.50 10786.84 3394.65 1867.31 9095.77 5784.80 3492.85 6892.84 94
114514_t80.68 12879.51 13284.20 11494.09 3667.27 14589.64 8591.11 12458.75 30974.08 22690.72 11058.10 18895.04 8869.70 17089.42 10890.30 171
test117286.20 4986.22 4586.12 6793.95 3769.89 9091.79 3992.28 7575.07 9786.40 3594.58 2065.00 11495.56 6284.34 4192.60 7292.90 92
HPM-MVScopyleft87.11 3486.98 3487.50 3893.88 3872.16 4692.19 3093.33 3176.07 8083.81 7493.95 4869.77 7096.01 4985.15 2894.66 4894.32 28
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
xxxxxxxxxxxxxcwj87.88 1887.92 1887.77 2393.80 3972.35 4290.47 6289.69 16274.31 11189.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
save fliter93.80 3972.35 4290.47 6291.17 12274.31 111
ETH3 D test640087.50 2487.44 2587.70 3293.71 4171.75 5490.62 5794.05 1370.80 16987.59 2993.51 5377.57 1196.63 2883.31 5095.77 2294.72 15
ACMMP_NAP88.05 1588.08 1687.94 1593.70 4273.05 2190.86 5293.59 2176.27 7788.14 2295.09 1371.06 5696.67 2587.67 1396.37 1094.09 36
HPM-MVS_fast85.35 6184.95 6686.57 5893.69 4370.58 7992.15 3291.62 10673.89 12282.67 8994.09 4262.60 13895.54 6580.93 7392.93 6693.57 66
TSAR-MVS + MP.88.02 1688.11 1587.72 2993.68 4472.13 4791.41 4592.35 7374.62 10688.90 1793.85 4975.75 1796.00 5087.80 1294.63 4995.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4572.04 4989.80 8093.50 2475.17 9686.34 3695.29 1070.86 5796.00 5088.78 996.04 1294.58 19
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft85.89 5285.39 5787.38 4193.59 4672.63 3292.74 1793.18 3676.78 6280.73 11293.82 5064.33 11796.29 3782.67 6390.69 9193.23 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast79.65 386.91 3786.62 4087.76 2693.52 4772.37 4191.26 4693.04 3976.62 6784.22 6793.36 5871.44 5496.76 2180.82 7595.33 3494.16 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS85.76 5485.29 6187.17 4593.49 4871.08 6388.58 11692.42 7168.32 21984.61 6093.48 5472.32 4696.15 4579.00 8695.43 3094.28 30
DP-MVS76.78 21274.57 22483.42 13693.29 4969.46 10188.55 11783.70 26263.98 26670.20 26088.89 15154.01 22194.80 10046.66 32081.88 19686.01 285
CPTT-MVS83.73 7483.33 7784.92 9293.28 5070.86 7292.09 3390.38 14068.75 21379.57 11992.83 7060.60 17593.04 17480.92 7491.56 8290.86 150
TEST993.26 5172.96 2488.75 10891.89 9668.44 21885.00 5093.10 6274.36 3095.41 71
train_agg86.43 4486.20 4687.13 4693.26 5172.96 2488.75 10891.89 9668.69 21485.00 5093.10 6274.43 2795.41 7184.97 2995.71 2693.02 88
test_893.13 5372.57 3488.68 11391.84 9968.69 21484.87 5693.10 6274.43 2795.16 81
新几何183.42 13693.13 5370.71 7485.48 24357.43 31681.80 9891.98 7963.28 12692.27 19564.60 21492.99 6587.27 259
112180.84 11979.77 12684.05 12093.11 5570.78 7384.66 21985.42 24457.37 31781.76 10192.02 7863.41 12494.12 12267.28 19092.93 6687.26 260
AdaColmapbinary80.58 13279.42 13484.06 11993.09 5668.91 11089.36 8888.97 18769.27 19875.70 19589.69 12857.20 19995.77 5763.06 22388.41 12087.50 254
SR-MVS-dyc-post85.77 5385.61 5486.23 6393.06 5770.63 7691.88 3592.27 7673.53 13085.69 4294.45 2665.00 11495.56 6282.75 6091.87 7792.50 103
RE-MVS-def85.48 5593.06 5770.63 7691.88 3592.27 7673.53 13085.69 4294.45 2663.87 12182.75 6091.87 7792.50 103
原ACMM184.35 10993.01 5968.79 11192.44 6863.96 26781.09 10891.57 8966.06 10295.45 6867.19 19394.82 4788.81 228
CSCG86.41 4686.19 4787.07 4792.91 6072.48 3690.81 5393.56 2273.95 11983.16 8191.07 10275.94 1595.19 8079.94 8394.38 5693.55 67
agg_prior186.22 4886.09 5086.62 5692.85 6171.94 5188.59 11591.78 10268.96 20984.41 6393.18 6174.94 2394.93 9184.75 3595.33 3493.01 89
agg_prior92.85 6171.94 5191.78 10284.41 6394.93 91
9.1488.26 1492.84 6391.52 4394.75 173.93 12188.57 2094.67 1775.57 2095.79 5686.77 2095.76 24
SF-MVS88.46 1088.74 1087.64 3592.78 6471.95 5092.40 2094.74 275.71 8389.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
ETH3D-3000-0.188.09 1288.29 1387.50 3892.76 6571.89 5391.43 4494.70 374.47 10888.86 1894.61 1975.23 2195.84 5486.62 2395.92 1794.78 13
MG-MVS83.41 8083.45 7583.28 14192.74 6662.28 23388.17 13389.50 16675.22 9481.49 10292.74 7366.75 9395.11 8372.85 14591.58 8192.45 106
APD-MVS_3200maxsize85.97 5085.88 5186.22 6492.69 6769.53 9791.93 3492.99 4573.54 12985.94 3794.51 2465.80 10695.61 6083.04 5792.51 7493.53 69
test1286.80 5292.63 6870.70 7591.79 10182.71 8871.67 5296.16 4494.50 5293.54 68
test_prior386.73 3886.86 3886.33 6092.61 6969.59 9588.85 10492.97 4875.41 8984.91 5293.54 5174.28 3195.48 6683.31 5095.86 1893.91 45
test_prior86.33 6092.61 6969.59 9592.97 4895.48 6693.91 45
SD-MVS88.06 1388.50 1286.71 5492.60 7172.71 2891.81 3893.19 3577.87 3390.32 1394.00 4674.83 2493.78 13887.63 1494.27 5993.65 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PAPM_NR83.02 8782.41 8884.82 9492.47 7266.37 15887.93 14091.80 10073.82 12377.32 15990.66 11167.90 8494.90 9570.37 16389.48 10793.19 82
DeepPCF-MVS80.84 188.10 1188.56 1186.73 5392.24 7369.03 10589.57 8693.39 3077.53 4289.79 1494.12 4178.98 996.58 3385.66 2495.72 2594.58 19
abl_685.23 6284.95 6686.07 6892.23 7470.48 8090.80 5492.08 8573.51 13285.26 4694.16 3962.75 13795.92 5382.46 6591.30 8691.81 125
SteuartSystems-ACMMP88.72 988.86 988.32 692.14 7572.96 2493.73 393.67 1980.19 1488.10 2394.80 1473.76 3697.11 1087.51 1595.82 2094.90 6
Skip Steuart: Steuart Systems R&D Blog.
UA-Net85.08 6684.96 6585.45 7492.07 7668.07 13289.78 8190.86 13082.48 284.60 6193.20 6069.35 7395.22 7971.39 15590.88 9093.07 85
旧先验191.96 7765.79 16886.37 23593.08 6669.31 7592.74 6988.74 231
MSLP-MVS++85.43 5985.76 5384.45 10491.93 7870.24 8190.71 5592.86 5277.46 4484.22 6792.81 7267.16 9292.94 17680.36 7994.35 5790.16 175
LFMVS81.82 10381.23 10483.57 13391.89 7963.43 21589.84 7781.85 28777.04 5583.21 7993.10 6252.26 23293.43 15671.98 15089.95 10393.85 49
PLCcopyleft70.83 1178.05 18976.37 20683.08 15291.88 8067.80 13688.19 13289.46 16764.33 26269.87 26988.38 16553.66 22393.58 14758.86 26082.73 18687.86 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_111021_HR85.14 6484.75 6886.32 6291.65 8172.70 2985.98 19190.33 14476.11 7982.08 9391.61 8871.36 5594.17 12181.02 7292.58 7392.08 118
ETH3D cwj APD-0.1687.31 3187.27 2787.44 4091.60 8272.45 3990.02 7494.37 471.76 15387.28 3094.27 3475.18 2296.08 4685.16 2795.77 2293.80 55
test22291.50 8368.26 12884.16 23483.20 27454.63 32879.74 11791.63 8758.97 18491.42 8386.77 271
TSAR-MVS + GP.85.71 5585.33 5886.84 5091.34 8472.50 3589.07 9887.28 22476.41 7085.80 4090.22 11974.15 3495.37 7681.82 6791.88 7692.65 100
MAR-MVS81.84 10280.70 11085.27 7991.32 8571.53 5789.82 7890.92 12769.77 18978.50 13486.21 22762.36 14494.52 10765.36 20792.05 7589.77 199
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS79.81 287.08 3686.88 3787.69 3391.16 8672.32 4490.31 6793.94 1577.12 5282.82 8694.23 3772.13 4997.09 1184.83 3395.37 3193.65 62
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 5784.47 7188.51 491.08 8773.49 1593.18 993.78 1880.79 1076.66 17493.37 5760.40 17996.75 2277.20 10593.73 6395.29 2
Anonymous20240521178.25 18177.01 18981.99 18491.03 8860.67 25184.77 21783.90 26070.65 17580.00 11691.20 9841.08 31791.43 22165.21 20885.26 15593.85 49
VDD-MVS83.01 8882.36 9084.96 8991.02 8966.40 15788.91 10188.11 20477.57 3884.39 6593.29 5952.19 23393.91 13377.05 10788.70 11594.57 21
API-MVS81.99 10081.23 10484.26 11390.94 9070.18 8791.10 5089.32 17071.51 16078.66 13288.28 16865.26 10995.10 8664.74 21391.23 8787.51 253
testdata79.97 22690.90 9164.21 19784.71 24959.27 30485.40 4492.91 6762.02 15189.08 26468.95 17891.37 8486.63 275
PHI-MVS86.43 4486.17 4887.24 4390.88 9270.96 6792.27 2894.07 972.45 14285.22 4891.90 8169.47 7296.42 3583.28 5395.94 1694.35 26
VNet82.21 9582.41 8881.62 19090.82 9360.93 24784.47 22589.78 15876.36 7584.07 7091.88 8264.71 11690.26 24470.68 16088.89 11193.66 57
PVSNet_Blended_VisFu82.62 9181.83 9984.96 8990.80 9469.76 9288.74 11091.70 10569.39 19578.96 12588.46 16365.47 10894.87 9874.42 12788.57 11690.24 173
Anonymous2024052980.19 14178.89 14784.10 11790.60 9564.75 18788.95 10090.90 12865.97 24380.59 11391.17 9949.97 26193.73 14469.16 17682.70 18893.81 53
Anonymous2023121178.97 16777.69 17882.81 16690.54 9664.29 19690.11 7391.51 11065.01 25476.16 18988.13 17550.56 25593.03 17569.68 17177.56 23991.11 143
LS3D76.95 21074.82 22283.37 13990.45 9767.36 14489.15 9686.94 22761.87 28569.52 27290.61 11251.71 24494.53 10646.38 32386.71 14188.21 241
VDDNet81.52 10880.67 11184.05 12090.44 9864.13 19989.73 8385.91 24171.11 16483.18 8093.48 5450.54 25693.49 15373.40 13988.25 12194.54 22
CNLPA78.08 18776.79 19681.97 18590.40 9971.07 6487.59 14784.55 25266.03 24272.38 24289.64 13057.56 19386.04 29359.61 25283.35 17788.79 229
PAPR81.66 10680.89 10983.99 12590.27 10064.00 20086.76 17291.77 10468.84 21277.13 16689.50 13467.63 8694.88 9767.55 18788.52 11893.09 84
Vis-MVSNetpermissive83.46 7982.80 8585.43 7590.25 10168.74 11590.30 6890.13 15076.33 7680.87 11192.89 6861.00 16894.20 11872.45 14990.97 8893.35 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DPM-MVS84.93 6784.29 7286.84 5090.20 10273.04 2287.12 15893.04 3969.80 18882.85 8591.22 9773.06 4196.02 4876.72 11294.63 4991.46 135
EPP-MVSNet83.40 8183.02 8184.57 10090.13 10364.47 19392.32 2690.73 13174.45 11079.35 12291.10 10069.05 7895.12 8272.78 14687.22 13394.13 34
CANet86.45 4386.10 4987.51 3790.09 10470.94 6989.70 8492.59 6581.78 481.32 10391.43 9470.34 6397.23 984.26 4293.36 6494.37 25
HQP_MVS83.64 7683.14 7885.14 8390.08 10568.71 11791.25 4792.44 6879.12 2378.92 12791.00 10660.42 17795.38 7378.71 8986.32 14691.33 137
plane_prior790.08 10568.51 124
CHOSEN 1792x268877.63 20075.69 20983.44 13589.98 10768.58 12378.70 29487.50 22056.38 32275.80 19486.84 20358.67 18591.40 22261.58 23885.75 15490.34 170
IS-MVSNet83.15 8482.81 8484.18 11589.94 10863.30 21791.59 4088.46 20179.04 2579.49 12092.16 7665.10 11194.28 11267.71 18591.86 7994.95 5
plane_prior189.90 109
canonicalmvs85.91 5185.87 5286.04 6989.84 11069.44 10390.45 6593.00 4376.70 6688.01 2591.23 9673.28 3893.91 13381.50 6988.80 11394.77 14
plane_prior689.84 11068.70 11960.42 177
CS-MVS84.76 7084.61 7085.22 8289.66 11266.43 15690.23 6993.56 2276.52 6982.59 9085.93 23170.41 6295.80 5579.93 8492.68 7193.42 71
NP-MVS89.62 11368.32 12690.24 117
EIA-MVS83.31 8382.80 8584.82 9489.59 11465.59 17188.21 13192.68 5974.66 10578.96 12586.42 22369.06 7795.26 7875.54 12290.09 10093.62 64
HyFIR lowres test77.53 20175.40 21583.94 12889.59 11466.62 15380.36 27688.64 19856.29 32376.45 17785.17 24957.64 19293.28 15961.34 24183.10 18291.91 121
TAPA-MVS73.13 979.15 16177.94 16782.79 16989.59 11462.99 22688.16 13491.51 11065.77 24477.14 16591.09 10160.91 16993.21 16150.26 30387.05 13592.17 116
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thres100view90076.50 21575.55 21279.33 23889.52 11756.99 29185.83 19683.23 27273.94 12076.32 18287.12 19951.89 24191.95 20648.33 31183.75 17189.07 211
alignmvs85.48 5785.32 5985.96 7089.51 11869.47 9989.74 8292.47 6776.17 7887.73 2891.46 9370.32 6493.78 13881.51 6888.95 11094.63 18
PS-MVSNAJ81.69 10481.02 10883.70 13089.51 11868.21 13084.28 23390.09 15170.79 17081.26 10785.62 24063.15 13194.29 11175.62 12088.87 11288.59 234
ACMP74.13 681.51 11080.57 11284.36 10889.42 12068.69 12089.97 7691.50 11374.46 10975.04 21690.41 11553.82 22294.54 10577.56 10182.91 18389.86 195
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres600view776.50 21575.44 21379.68 23289.40 12157.16 28885.53 20483.23 27273.79 12476.26 18387.09 20051.89 24191.89 20948.05 31683.72 17490.00 187
ETV-MVS84.90 6984.67 6985.59 7389.39 12268.66 12188.74 11092.64 6479.97 1784.10 6985.71 23669.32 7495.38 7380.82 7591.37 8492.72 95
BH-RMVSNet79.61 14978.44 15583.14 14989.38 12365.93 16484.95 21487.15 22573.56 12878.19 14289.79 12756.67 20393.36 15759.53 25386.74 14090.13 177
Regformer-186.41 4686.33 4286.64 5589.33 12470.93 7088.43 11891.39 11582.14 386.65 3490.09 12174.39 2995.01 8983.97 4790.63 9293.97 43
Regformer-286.63 4286.53 4186.95 4889.33 12471.24 6288.43 11892.05 8682.50 186.88 3290.09 12174.45 2695.61 6084.38 3990.63 9294.01 41
HQP-NCC89.33 12489.17 9276.41 7077.23 162
ACMP_Plane89.33 12489.17 9276.41 7077.23 162
HQP-MVS82.61 9282.02 9584.37 10789.33 12466.98 14989.17 9292.19 8276.41 7077.23 16290.23 11860.17 18095.11 8377.47 10285.99 15191.03 144
ACMM73.20 880.78 12779.84 12583.58 13289.31 12968.37 12589.99 7591.60 10770.28 18077.25 16089.66 12953.37 22593.53 15274.24 13082.85 18488.85 226
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 21975.44 21379.27 23989.28 13058.09 27381.69 26687.07 22659.53 30272.48 24086.67 21361.30 16189.33 25960.81 24580.15 21690.41 167
F-COLMAP76.38 22074.33 22982.50 17689.28 13066.95 15288.41 12189.03 18264.05 26466.83 29488.61 15846.78 28392.89 17757.48 27278.55 22987.67 249
LPG-MVS_test82.08 9781.27 10384.50 10289.23 13268.76 11390.22 7191.94 9475.37 9176.64 17591.51 9054.29 21794.91 9378.44 9283.78 16989.83 196
LGP-MVS_train84.50 10289.23 13268.76 11391.94 9475.37 9176.64 17591.51 9054.29 21794.91 9378.44 9283.78 16989.83 196
BH-untuned79.47 15378.60 15182.05 18289.19 13465.91 16586.07 19088.52 20072.18 14875.42 20287.69 18161.15 16593.54 15160.38 24686.83 13986.70 273
xiu_mvs_v2_base81.69 10481.05 10783.60 13189.15 13568.03 13384.46 22790.02 15270.67 17381.30 10686.53 22163.17 13094.19 11975.60 12188.54 11788.57 235
test_yl81.17 11380.47 11583.24 14489.13 13663.62 20686.21 18689.95 15472.43 14581.78 9989.61 13157.50 19493.58 14770.75 15886.90 13792.52 101
DCV-MVSNet81.17 11380.47 11583.24 14489.13 13663.62 20686.21 18689.95 15472.43 14581.78 9989.61 13157.50 19493.58 14770.75 15886.90 13792.52 101
tfpn200view976.42 21875.37 21779.55 23789.13 13657.65 28385.17 20783.60 26373.41 13376.45 17786.39 22452.12 23491.95 20648.33 31183.75 17189.07 211
thres40076.50 21575.37 21779.86 22889.13 13657.65 28385.17 20783.60 26373.41 13376.45 17786.39 22452.12 23491.95 20648.33 31183.75 17190.00 187
1112_ss77.40 20476.43 20480.32 22189.11 14060.41 25683.65 24387.72 21662.13 28373.05 23486.72 20762.58 14089.97 24962.11 23380.80 20690.59 161
Regformer-385.23 6285.07 6385.70 7288.95 14169.01 10788.29 12889.91 15680.95 885.01 4990.01 12372.45 4594.19 11982.50 6487.57 12593.90 47
Regformer-485.68 5685.45 5686.35 5988.95 14169.67 9488.29 12891.29 11781.73 585.36 4590.01 12372.62 4495.35 7783.28 5387.57 12594.03 39
Fast-Effi-MVS+80.81 12279.92 12383.47 13488.85 14364.51 19085.53 20489.39 16870.79 17078.49 13585.06 25267.54 8793.58 14767.03 19686.58 14292.32 109
PVSNet_BlendedMVS80.60 13080.02 12182.36 17988.85 14365.40 17486.16 18892.00 9069.34 19778.11 14486.09 23066.02 10394.27 11371.52 15282.06 19387.39 255
PVSNet_Blended80.98 11680.34 11782.90 16188.85 14365.40 17484.43 22992.00 9067.62 22278.11 14485.05 25366.02 10394.27 11371.52 15289.50 10689.01 218
MVS_111021_LR82.61 9282.11 9284.11 11688.82 14671.58 5685.15 20986.16 23874.69 10480.47 11491.04 10362.29 14590.55 24280.33 8090.08 10190.20 174
BH-w/o78.21 18377.33 18580.84 21188.81 14765.13 18284.87 21587.85 21469.75 19074.52 22284.74 25661.34 16093.11 16958.24 26785.84 15384.27 302
FIs82.07 9882.42 8781.04 20888.80 14858.34 27188.26 13093.49 2576.93 5778.47 13691.04 10369.92 6892.34 19469.87 16984.97 15792.44 107
OPM-MVS83.50 7882.95 8285.14 8388.79 14970.95 6889.13 9791.52 10977.55 4180.96 11091.75 8360.71 17194.50 10879.67 8586.51 14489.97 191
WR-MVS79.49 15279.22 14180.27 22288.79 14958.35 27085.06 21188.61 19978.56 2977.65 15288.34 16663.81 12390.66 24164.98 21177.22 24291.80 126
OMC-MVS82.69 9081.97 9784.85 9388.75 15167.42 14187.98 13690.87 12974.92 10079.72 11891.65 8562.19 14893.96 12675.26 12486.42 14593.16 83
ACMH67.68 1675.89 22573.93 23281.77 18888.71 15266.61 15488.62 11489.01 18469.81 18766.78 29586.70 21241.95 31491.51 22055.64 28278.14 23587.17 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)78.36 18078.45 15478.07 25788.64 15351.78 32586.70 17379.63 30874.14 11775.11 21390.83 10961.29 16289.75 25258.10 26891.60 8092.69 98
PatchMatch-RL72.38 26170.90 26076.80 27588.60 15467.38 14379.53 28476.17 32362.75 27769.36 27482.00 29045.51 29484.89 30053.62 28980.58 20978.12 333
ACMH+68.96 1476.01 22474.01 23182.03 18388.60 15465.31 17888.86 10387.55 21870.25 18167.75 28387.47 18841.27 31593.19 16458.37 26575.94 26187.60 251
LTVRE_ROB69.57 1376.25 22174.54 22681.41 19588.60 15464.38 19579.24 28789.12 18170.76 17269.79 27187.86 17749.09 27293.20 16356.21 28180.16 21586.65 274
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DELS-MVS85.41 6085.30 6085.77 7188.49 15767.93 13485.52 20693.44 2778.70 2883.63 7889.03 14974.57 2595.71 5980.26 8194.04 6193.66 57
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS82.31 9481.65 10084.29 11288.47 15867.73 13885.81 19792.35 7375.78 8278.33 13986.58 21864.01 12094.35 11076.05 11687.48 13090.79 151
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10181.54 10182.92 16088.46 15963.46 21387.13 15792.37 7280.19 1478.38 13789.14 14471.66 5393.05 17270.05 16676.46 25392.25 112
ab-mvs79.51 15178.97 14581.14 20588.46 15960.91 24883.84 24089.24 17570.36 17879.03 12488.87 15263.23 12990.21 24665.12 20982.57 18992.28 111
FC-MVSNet-test81.52 10882.02 9580.03 22588.42 16155.97 30787.95 13893.42 2977.10 5377.38 15790.98 10869.96 6791.79 21168.46 18184.50 16292.33 108
Effi-MVS+83.62 7783.08 7985.24 8088.38 16267.45 14088.89 10289.15 17875.50 8882.27 9188.28 16869.61 7194.45 10977.81 9987.84 12393.84 51
UniMVSNet (Re)81.60 10781.11 10683.09 15188.38 16264.41 19487.60 14693.02 4278.42 3178.56 13388.16 17169.78 6993.26 16069.58 17276.49 25291.60 128
VPNet78.69 17278.66 15078.76 24688.31 16455.72 30984.45 22886.63 23176.79 6178.26 14090.55 11359.30 18289.70 25466.63 19777.05 24490.88 149
TR-MVS77.44 20276.18 20781.20 20388.24 16563.24 21884.61 22386.40 23467.55 22377.81 14986.48 22254.10 21993.15 16657.75 27182.72 18787.20 261
EI-MVSNet-Vis-set84.19 7183.81 7385.31 7788.18 16667.85 13587.66 14589.73 16180.05 1682.95 8289.59 13370.74 6094.82 9980.66 7884.72 16093.28 77
baseline176.98 20976.75 19977.66 26288.13 16755.66 31085.12 21081.89 28573.04 13876.79 16988.90 15062.43 14387.78 28263.30 22171.18 30789.55 205
test_040272.79 25870.44 26479.84 22988.13 16765.99 16385.93 19384.29 25465.57 24767.40 28885.49 24246.92 28292.61 18435.88 34174.38 28580.94 325
tttt051779.40 15677.91 16883.90 12988.10 16963.84 20388.37 12584.05 25871.45 16176.78 17089.12 14649.93 26494.89 9670.18 16583.18 18092.96 91
VPA-MVSNet80.60 13080.55 11380.76 21388.07 17060.80 25086.86 16691.58 10875.67 8680.24 11589.45 14063.34 12590.25 24570.51 16279.22 22891.23 140
UGNet80.83 12179.59 13184.54 10188.04 17168.09 13189.42 8788.16 20376.95 5676.22 18489.46 13849.30 27093.94 12968.48 18090.31 9591.60 128
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H78.51 17678.49 15378.56 24988.02 17256.38 30288.43 11892.67 6077.14 5173.89 22787.55 18566.25 9989.24 26158.92 25973.55 29390.06 185
QAPM80.88 11779.50 13385.03 8688.01 17368.97 10991.59 4092.00 9066.63 23575.15 21292.16 7657.70 19195.45 6863.52 21788.76 11490.66 156
3Dnovator76.31 583.38 8282.31 9186.59 5787.94 17472.94 2790.64 5692.14 8477.21 4975.47 19892.83 7058.56 18694.72 10373.24 14292.71 7092.13 117
EI-MVSNet-UG-set83.81 7383.38 7685.09 8587.87 17567.53 13987.44 15189.66 16379.74 1882.23 9289.41 14270.24 6594.74 10279.95 8283.92 16892.99 90
TranMVSNet+NR-MVSNet80.84 11980.31 11882.42 17787.85 17662.33 23187.74 14491.33 11680.55 1177.99 14789.86 12565.23 11092.62 18367.05 19575.24 27892.30 110
CP-MVSNet78.22 18278.34 15977.84 25987.83 17754.54 31487.94 13991.17 12277.65 3573.48 22988.49 16262.24 14788.43 27462.19 23074.07 28690.55 162
DU-MVS81.12 11580.52 11482.90 16187.80 17863.46 21387.02 16191.87 9879.01 2678.38 13789.07 14765.02 11293.05 17270.05 16676.46 25392.20 114
NR-MVSNet80.23 13979.38 13682.78 17087.80 17863.34 21686.31 18391.09 12579.01 2672.17 24489.07 14767.20 9192.81 18266.08 20275.65 26492.20 114
TAMVS78.89 16977.51 18183.03 15587.80 17867.79 13784.72 21885.05 24867.63 22176.75 17187.70 18062.25 14690.82 23758.53 26487.13 13490.49 164
thres20075.55 23074.47 22778.82 24587.78 18157.85 28083.07 25483.51 26672.44 14475.84 19384.42 25852.08 23691.75 21247.41 31883.64 17586.86 269
PS-CasMVS78.01 19178.09 16477.77 26187.71 18254.39 31688.02 13591.22 11977.50 4373.26 23188.64 15760.73 17088.41 27561.88 23473.88 29090.53 163
PCF-MVS73.52 780.38 13678.84 14885.01 8787.71 18268.99 10883.65 24391.46 11463.00 27277.77 15190.28 11666.10 10095.09 8761.40 23988.22 12290.94 148
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053079.40 15677.76 17584.31 11187.69 18465.10 18387.36 15284.26 25670.04 18377.42 15688.26 17049.94 26294.79 10170.20 16484.70 16193.03 87
GBi-Net78.40 17777.40 18281.40 19687.60 18563.01 22388.39 12289.28 17171.63 15675.34 20587.28 19154.80 21091.11 22862.72 22479.57 22090.09 181
test178.40 17777.40 18281.40 19687.60 18563.01 22388.39 12289.28 17171.63 15675.34 20587.28 19154.80 21091.11 22862.72 22479.57 22090.09 181
FMVSNet278.20 18477.21 18681.20 20387.60 18562.89 22787.47 15089.02 18371.63 15675.29 20987.28 19154.80 21091.10 23162.38 22879.38 22489.61 203
CDS-MVSNet79.07 16477.70 17783.17 14887.60 18568.23 12984.40 23186.20 23767.49 22476.36 18186.54 22061.54 15690.79 23861.86 23587.33 13190.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS69.67 1277.95 19277.15 18780.36 21987.57 18960.21 25883.37 25087.78 21566.11 23975.37 20487.06 20263.27 12790.48 24361.38 24082.43 19090.40 168
xiu_mvs_v1_base_debu80.80 12479.72 12884.03 12287.35 19070.19 8485.56 19988.77 19269.06 20581.83 9588.16 17150.91 25092.85 17878.29 9687.56 12789.06 213
xiu_mvs_v1_base80.80 12479.72 12884.03 12287.35 19070.19 8485.56 19988.77 19269.06 20581.83 9588.16 17150.91 25092.85 17878.29 9687.56 12789.06 213
xiu_mvs_v1_base_debi80.80 12479.72 12884.03 12287.35 19070.19 8485.56 19988.77 19269.06 20581.83 9588.16 17150.91 25092.85 17878.29 9687.56 12789.06 213
MVSFormer82.85 8982.05 9485.24 8087.35 19070.21 8290.50 6090.38 14068.55 21681.32 10389.47 13661.68 15393.46 15478.98 8790.26 9792.05 119
lupinMVS81.39 11180.27 12084.76 9787.35 19070.21 8285.55 20286.41 23362.85 27581.32 10388.61 15861.68 15392.24 19778.41 9490.26 9791.83 123
baseline84.93 6784.98 6484.80 9687.30 19565.39 17687.30 15492.88 5177.62 3684.04 7192.26 7571.81 5093.96 12681.31 7090.30 9695.03 4
PAPM77.68 19976.40 20581.51 19387.29 19661.85 23883.78 24189.59 16464.74 25671.23 25288.70 15462.59 13993.66 14652.66 29387.03 13689.01 218
LCM-MVSNet-Re77.05 20776.94 19277.36 26787.20 19751.60 32680.06 27980.46 30075.20 9567.69 28486.72 20762.48 14188.98 26663.44 21989.25 10991.51 131
casdiffmvs85.11 6585.14 6285.01 8787.20 19765.77 16987.75 14392.83 5477.84 3484.36 6692.38 7472.15 4893.93 13281.27 7190.48 9495.33 1
COLMAP_ROBcopyleft66.92 1773.01 25570.41 26580.81 21287.13 19965.63 17088.30 12784.19 25762.96 27363.80 31587.69 18138.04 32892.56 18646.66 32074.91 28084.24 303
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS77.73 19677.69 17877.84 25987.07 20053.91 31887.91 14191.18 12177.56 4073.14 23388.82 15361.23 16389.17 26259.95 24972.37 29890.43 166
MVS_Test83.15 8483.06 8083.41 13886.86 20163.21 21986.11 18992.00 9074.31 11182.87 8489.44 14170.03 6693.21 16177.39 10488.50 11993.81 53
UniMVSNet_ETH3D79.10 16378.24 16281.70 18986.85 20260.24 25787.28 15588.79 19174.25 11476.84 16790.53 11449.48 26791.56 21767.98 18382.15 19293.29 76
FMVSNet377.88 19476.85 19480.97 20986.84 20362.36 23086.52 17988.77 19271.13 16375.34 20586.66 21454.07 22091.10 23162.72 22479.57 22089.45 206
FMVSNet177.44 20276.12 20881.40 19686.81 20463.01 22388.39 12289.28 17170.49 17774.39 22387.28 19149.06 27391.11 22860.91 24378.52 23090.09 181
nrg03083.88 7283.53 7484.96 8986.77 20569.28 10490.46 6492.67 6074.79 10182.95 8291.33 9572.70 4393.09 17080.79 7779.28 22792.50 103
test_part180.58 13278.97 14585.40 7686.75 20669.46 10192.32 2693.13 3766.72 23076.67 17387.81 17856.73 20295.01 8975.34 12375.27 27691.73 127
ET-MVSNet_ETH3D78.63 17376.63 20284.64 9986.73 20769.47 9985.01 21284.61 25169.54 19366.51 29886.59 21650.16 25991.75 21276.26 11484.24 16692.69 98
jason81.39 11180.29 11984.70 9886.63 20869.90 8985.95 19286.77 22963.24 26981.07 10989.47 13661.08 16792.15 20078.33 9590.07 10292.05 119
jason: jason.
PS-MVSNAJss82.07 9881.31 10284.34 11086.51 20967.27 14589.27 9091.51 11071.75 15479.37 12190.22 11963.15 13194.27 11377.69 10082.36 19191.49 133
WTY-MVS75.65 22975.68 21075.57 28386.40 21056.82 29377.92 30182.40 28165.10 25176.18 18687.72 17963.13 13480.90 31660.31 24781.96 19489.00 220
DTE-MVSNet76.99 20876.80 19577.54 26686.24 21153.06 32287.52 14890.66 13277.08 5472.50 23988.67 15660.48 17689.52 25657.33 27570.74 30990.05 186
PVSNet64.34 1872.08 26370.87 26275.69 28186.21 21256.44 30074.37 31980.73 29562.06 28470.17 26282.23 28742.86 30783.31 30854.77 28584.45 16487.32 258
tfpnnormal74.39 23873.16 24178.08 25686.10 21358.05 27484.65 22287.53 21970.32 17971.22 25385.63 23954.97 20989.86 25043.03 33275.02 27986.32 277
RRT_test8_iter0578.38 17977.40 18281.34 19986.00 21458.86 26686.55 17891.26 11872.13 15175.91 19087.42 18944.97 29693.73 14477.02 10875.30 27491.45 136
IterMVS-LS80.06 14279.38 13682.11 18185.89 21563.20 22086.79 16989.34 16974.19 11575.45 20186.72 20766.62 9492.39 19172.58 14776.86 24790.75 153
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Baseline_NR-MVSNet78.15 18678.33 16077.61 26485.79 21656.21 30586.78 17085.76 24273.60 12777.93 14887.57 18465.02 11288.99 26567.14 19475.33 27387.63 250
cascas76.72 21374.64 22382.99 15785.78 21765.88 16682.33 26089.21 17660.85 29172.74 23681.02 29647.28 28093.75 14267.48 18885.02 15689.34 208
MVS78.19 18576.99 19181.78 18785.66 21866.99 14884.66 21990.47 13855.08 32772.02 24685.27 24663.83 12294.11 12466.10 20189.80 10484.24 303
XVG-OURS80.41 13579.23 14083.97 12685.64 21969.02 10683.03 25590.39 13971.09 16577.63 15391.49 9254.62 21691.35 22375.71 11883.47 17691.54 130
CANet_DTU80.61 12979.87 12482.83 16485.60 22063.17 22287.36 15288.65 19776.37 7475.88 19288.44 16453.51 22493.07 17173.30 14089.74 10592.25 112
XVG-OURS-SEG-HR80.81 12279.76 12783.96 12785.60 22068.78 11283.54 24890.50 13770.66 17476.71 17291.66 8460.69 17291.26 22576.94 10981.58 19891.83 123
TransMVSNet (Re)75.39 23474.56 22577.86 25885.50 22257.10 29086.78 17086.09 24072.17 14971.53 25087.34 19063.01 13589.31 26056.84 27861.83 32987.17 262
RRT_MVS79.88 14678.38 15784.38 10685.42 22370.60 7888.71 11288.75 19672.30 14778.83 12989.14 14444.44 29992.18 19978.50 9179.33 22690.35 169
MVP-Stereo76.12 22274.46 22881.13 20685.37 22469.79 9184.42 23087.95 21065.03 25367.46 28685.33 24553.28 22691.73 21458.01 26983.27 17881.85 322
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thisisatest051577.33 20575.38 21683.18 14785.27 22563.80 20482.11 26283.27 27165.06 25275.91 19083.84 26649.54 26694.27 11367.24 19286.19 14891.48 134
OpenMVScopyleft72.83 1079.77 14778.33 16084.09 11885.17 22669.91 8890.57 5890.97 12666.70 23172.17 24491.91 8054.70 21493.96 12661.81 23690.95 8988.41 239
AllTest70.96 26868.09 28079.58 23585.15 22763.62 20684.58 22479.83 30662.31 28160.32 32586.73 20532.02 33988.96 26850.28 30171.57 30586.15 281
TestCases79.58 23585.15 22763.62 20679.83 30662.31 28160.32 32586.73 20532.02 33988.96 26850.28 30171.57 30586.15 281
Effi-MVS+-dtu80.03 14378.57 15284.42 10585.13 22968.74 11588.77 10788.10 20574.99 9874.97 21783.49 27257.27 19793.36 15773.53 13580.88 20491.18 141
mvs-test180.88 11779.40 13585.29 7885.13 22969.75 9389.28 8988.10 20574.99 9876.44 18086.72 20757.27 19794.26 11773.53 13583.18 18091.87 122
SixPastTwentyTwo73.37 24971.26 25879.70 23185.08 23157.89 27985.57 19883.56 26571.03 16665.66 30285.88 23342.10 31292.57 18559.11 25763.34 32888.65 233
EG-PatchMatch MVS74.04 24371.82 25280.71 21484.92 23267.42 14185.86 19588.08 20766.04 24164.22 31283.85 26535.10 33692.56 18657.44 27380.83 20582.16 321
IB-MVS68.01 1575.85 22673.36 23883.31 14084.76 23366.03 16183.38 24985.06 24770.21 18269.40 27381.05 29545.76 29294.66 10465.10 21075.49 26789.25 210
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_tets79.13 16277.77 17483.22 14684.70 23466.37 15889.17 9290.19 14869.38 19675.40 20389.46 13844.17 30193.15 16676.78 11180.70 20890.14 176
jajsoiax79.29 15977.96 16683.27 14284.68 23566.57 15589.25 9190.16 14969.20 20275.46 20089.49 13545.75 29393.13 16876.84 11080.80 20690.11 179
MIMVSNet70.69 27069.30 26974.88 28984.52 23656.35 30375.87 31179.42 30964.59 25767.76 28282.41 28341.10 31681.54 31546.64 32281.34 19986.75 272
MSDG73.36 25170.99 25980.49 21784.51 23765.80 16780.71 27386.13 23965.70 24565.46 30383.74 26944.60 29790.91 23651.13 29876.89 24684.74 298
mvs_anonymous79.42 15579.11 14280.34 22084.45 23857.97 27782.59 25787.62 21767.40 22576.17 18888.56 16168.47 8089.59 25570.65 16186.05 15093.47 70
EI-MVSNet80.52 13479.98 12282.12 18084.28 23963.19 22186.41 18088.95 18874.18 11678.69 13087.54 18666.62 9492.43 18972.57 14880.57 21090.74 154
CVMVSNet72.99 25672.58 24574.25 29584.28 23950.85 33186.41 18083.45 26944.56 33873.23 23287.54 18649.38 26885.70 29565.90 20378.44 23286.19 280
pm-mvs177.25 20676.68 20178.93 24484.22 24158.62 26986.41 18088.36 20271.37 16273.31 23088.01 17661.22 16489.15 26364.24 21573.01 29589.03 217
EPNet83.72 7582.92 8386.14 6684.22 24169.48 9891.05 5185.27 24581.30 776.83 16891.65 8566.09 10195.56 6276.00 11793.85 6293.38 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v879.97 14579.02 14482.80 16784.09 24364.50 19287.96 13790.29 14774.13 11875.24 21086.81 20462.88 13693.89 13574.39 12875.40 27190.00 187
v1079.74 14878.67 14982.97 15984.06 24464.95 18487.88 14290.62 13373.11 13675.11 21386.56 21961.46 15794.05 12573.68 13375.55 26689.90 193
SCA74.22 24172.33 24879.91 22784.05 24562.17 23479.96 28179.29 31066.30 23872.38 24280.13 30451.95 23988.60 27259.25 25577.67 23888.96 222
test_djsdf80.30 13879.32 13883.27 14283.98 24665.37 17790.50 6090.38 14068.55 21676.19 18588.70 15456.44 20493.46 15478.98 8780.14 21790.97 147
131476.53 21475.30 21980.21 22383.93 24762.32 23284.66 21988.81 19060.23 29570.16 26384.07 26355.30 20890.73 24067.37 18983.21 17987.59 252
MS-PatchMatch73.83 24572.67 24477.30 26983.87 24866.02 16281.82 26384.66 25061.37 28968.61 27982.82 27947.29 27988.21 27659.27 25484.32 16577.68 334
v114480.03 14379.03 14383.01 15683.78 24964.51 19087.11 15990.57 13571.96 15278.08 14686.20 22861.41 15893.94 12974.93 12577.23 24190.60 159
OurMVSNet-221017-074.26 24072.42 24779.80 23083.76 25059.59 26285.92 19486.64 23066.39 23766.96 29187.58 18339.46 32291.60 21565.76 20569.27 31388.22 240
v2v48280.23 13979.29 13983.05 15483.62 25164.14 19887.04 16089.97 15373.61 12678.18 14387.22 19561.10 16693.82 13676.11 11576.78 25091.18 141
XXY-MVS75.41 23375.56 21174.96 28883.59 25257.82 28180.59 27583.87 26166.54 23674.93 21888.31 16763.24 12880.09 31962.16 23176.85 24886.97 267
v119279.59 15078.43 15683.07 15383.55 25364.52 18986.93 16490.58 13470.83 16877.78 15085.90 23259.15 18393.94 12973.96 13277.19 24390.76 152
v7n78.97 16777.58 18083.14 14983.45 25465.51 17288.32 12691.21 12073.69 12572.41 24186.32 22657.93 18993.81 13769.18 17575.65 26490.11 179
v14419279.47 15378.37 15882.78 17083.35 25563.96 20186.96 16290.36 14369.99 18477.50 15485.67 23860.66 17393.77 14074.27 12976.58 25190.62 157
tpm273.26 25271.46 25478.63 24783.34 25656.71 29680.65 27480.40 30156.63 32173.55 22882.02 28951.80 24391.24 22656.35 28078.42 23387.95 243
v192192079.22 16078.03 16582.80 16783.30 25763.94 20286.80 16890.33 14469.91 18677.48 15585.53 24158.44 18793.75 14273.60 13476.85 24890.71 155
baseline275.70 22873.83 23581.30 20083.26 25861.79 24082.57 25880.65 29666.81 22766.88 29283.42 27357.86 19092.19 19863.47 21879.57 22089.91 192
v124078.99 16677.78 17382.64 17383.21 25963.54 21086.62 17590.30 14669.74 19277.33 15885.68 23757.04 20093.76 14173.13 14376.92 24590.62 157
XVG-ACMP-BASELINE76.11 22374.27 23081.62 19083.20 26064.67 18883.60 24689.75 16069.75 19071.85 24787.09 20032.78 33892.11 20169.99 16880.43 21388.09 242
MDTV_nov1_ep1369.97 26883.18 26153.48 32077.10 30580.18 30560.45 29269.33 27580.44 30148.89 27486.90 28751.60 29678.51 231
PatchmatchNetpermissive73.12 25471.33 25678.49 25283.18 26160.85 24979.63 28378.57 31264.13 26371.73 24879.81 30951.20 24885.97 29457.40 27476.36 25888.66 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Fast-Effi-MVS+-dtu78.02 19076.49 20382.62 17483.16 26366.96 15186.94 16387.45 22272.45 14271.49 25184.17 26154.79 21391.58 21667.61 18680.31 21489.30 209
gg-mvs-nofinetune69.95 27867.96 28175.94 27983.07 26454.51 31577.23 30470.29 33663.11 27070.32 25962.33 33943.62 30388.69 27153.88 28887.76 12484.62 301
MVSTER79.01 16577.88 17082.38 17883.07 26464.80 18684.08 23988.95 18869.01 20878.69 13087.17 19854.70 21492.43 18974.69 12680.57 21089.89 194
K. test v371.19 26668.51 27479.21 24183.04 26657.78 28284.35 23276.91 32172.90 14162.99 31882.86 27839.27 32391.09 23361.65 23752.66 34188.75 230
eth_miper_zixun_eth77.92 19376.69 20081.61 19283.00 26761.98 23683.15 25189.20 17769.52 19474.86 21984.35 25961.76 15292.56 18671.50 15472.89 29690.28 172
diffmvs82.10 9681.88 9882.76 17283.00 26763.78 20583.68 24289.76 15972.94 14082.02 9489.85 12665.96 10590.79 23882.38 6687.30 13293.71 56
FMVSNet569.50 28067.96 28174.15 29682.97 26955.35 31180.01 28082.12 28462.56 27963.02 31681.53 29136.92 33181.92 31348.42 31074.06 28785.17 294
DWT-MVSNet_test73.70 24671.86 25179.21 24182.91 27058.94 26582.34 25982.17 28265.21 24971.05 25578.31 31544.21 30090.17 24763.29 22277.28 24088.53 236
cl_fuxian78.75 17077.91 16881.26 20182.89 27161.56 24284.09 23889.13 18069.97 18575.56 19684.29 26066.36 9892.09 20273.47 13875.48 26890.12 178
sss73.60 24773.64 23673.51 29882.80 27255.01 31276.12 30781.69 28862.47 28074.68 22185.85 23557.32 19678.11 32660.86 24480.93 20387.39 255
GA-MVS76.87 21175.17 22081.97 18582.75 27362.58 22881.44 27086.35 23672.16 15074.74 22082.89 27746.20 28892.02 20468.85 17981.09 20291.30 139
v14878.72 17177.80 17281.47 19482.73 27461.96 23786.30 18488.08 20773.26 13576.18 18685.47 24362.46 14292.36 19371.92 15173.82 29190.09 181
IterMVS-SCA-FT75.43 23273.87 23480.11 22482.69 27564.85 18581.57 26883.47 26869.16 20370.49 25784.15 26251.95 23988.15 27769.23 17472.14 30187.34 257
miper_ehance_all_eth78.59 17577.76 17581.08 20782.66 27661.56 24283.65 24389.15 17868.87 21175.55 19783.79 26866.49 9692.03 20373.25 14176.39 25589.64 202
CostFormer75.24 23573.90 23379.27 23982.65 27758.27 27280.80 27182.73 27961.57 28675.33 20883.13 27555.52 20691.07 23464.98 21178.34 23488.45 237
EPNet_dtu75.46 23174.86 22177.23 27182.57 27854.60 31386.89 16583.09 27571.64 15566.25 30085.86 23455.99 20588.04 27954.92 28486.55 14389.05 216
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF73.23 25371.46 25478.54 25082.50 27959.85 25982.18 26182.84 27858.96 30671.15 25489.41 14245.48 29584.77 30158.82 26171.83 30391.02 146
cl-mvsnet_77.72 19776.76 19780.58 21582.49 28060.48 25483.09 25287.87 21269.22 20074.38 22485.22 24862.10 14991.53 21871.09 15675.41 27089.73 201
cl-mvsnet177.72 19776.76 19780.58 21582.48 28160.48 25483.09 25287.86 21369.22 20074.38 22485.24 24762.10 14991.53 21871.09 15675.40 27189.74 200
tpm cat170.57 27168.31 27677.35 26882.41 28257.95 27878.08 29980.22 30452.04 33368.54 28077.66 32152.00 23887.84 28151.77 29472.07 30286.25 278
cl-mvsnet278.07 18877.01 18981.23 20282.37 28361.83 23983.55 24787.98 20968.96 20975.06 21583.87 26461.40 15991.88 21073.53 13576.39 25589.98 190
MVS_030472.48 25970.89 26177.24 27082.20 28459.68 26084.11 23683.49 26767.10 22666.87 29380.59 30035.00 33787.40 28459.07 25879.58 21984.63 300
tpm72.37 26271.71 25374.35 29482.19 28552.00 32379.22 28877.29 31964.56 25872.95 23583.68 27151.35 24683.26 30958.33 26675.80 26287.81 247
tpmvs71.09 26769.29 27076.49 27682.04 28656.04 30678.92 29281.37 29164.05 26467.18 29078.28 31649.74 26589.77 25149.67 30672.37 29883.67 308
pmmvs474.03 24471.91 25080.39 21881.96 28768.32 12681.45 26982.14 28359.32 30369.87 26985.13 25052.40 23088.13 27860.21 24874.74 28284.73 299
TinyColmap67.30 29264.81 29674.76 29181.92 28856.68 29780.29 27881.49 29060.33 29356.27 33783.22 27424.77 34487.66 28345.52 32669.47 31279.95 329
ITE_SJBPF78.22 25481.77 28960.57 25283.30 27069.25 19967.54 28587.20 19636.33 33387.28 28654.34 28674.62 28386.80 270
miper_enhance_ethall77.87 19576.86 19380.92 21081.65 29061.38 24482.68 25688.98 18565.52 24875.47 19882.30 28565.76 10792.00 20572.95 14476.39 25589.39 207
MVS-HIRNet59.14 30857.67 31163.57 32381.65 29043.50 34471.73 32465.06 34639.59 34351.43 34157.73 34338.34 32782.58 31239.53 33873.95 28864.62 342
GG-mvs-BLEND75.38 28681.59 29255.80 30879.32 28669.63 33867.19 28973.67 33243.24 30488.90 27050.41 30084.50 16281.45 324
IterMVS74.29 23972.94 24378.35 25381.53 29363.49 21281.58 26782.49 28068.06 22069.99 26683.69 27051.66 24585.54 29665.85 20471.64 30486.01 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42066.51 29664.71 29771.90 30281.45 29463.52 21157.98 34468.95 34253.57 32962.59 32076.70 32446.22 28775.29 33855.25 28379.68 21876.88 336
gm-plane-assit81.40 29553.83 31962.72 27880.94 29892.39 19163.40 220
pmmvs674.69 23773.39 23778.61 24881.38 29657.48 28686.64 17487.95 21064.99 25570.18 26186.61 21550.43 25789.52 25662.12 23270.18 31188.83 227
test-LLR72.94 25772.43 24674.48 29281.35 29758.04 27578.38 29577.46 31766.66 23269.95 26779.00 31348.06 27679.24 32066.13 19984.83 15886.15 281
test-mter71.41 26570.39 26674.48 29281.35 29758.04 27578.38 29577.46 31760.32 29469.95 26779.00 31336.08 33479.24 32066.13 19984.83 15886.15 281
CR-MVSNet73.37 24971.27 25779.67 23381.32 29965.19 18075.92 30980.30 30259.92 29872.73 23781.19 29252.50 22886.69 28859.84 25077.71 23687.11 265
RPMNet73.51 24870.49 26382.58 17581.32 29965.19 18075.92 30992.27 7657.60 31572.73 23776.45 32652.30 23195.43 7048.14 31577.71 23687.11 265
V4279.38 15878.24 16282.83 16481.10 30165.50 17385.55 20289.82 15771.57 15978.21 14186.12 22960.66 17393.18 16575.64 11975.46 26989.81 198
lessismore_v078.97 24381.01 30257.15 28965.99 34461.16 32282.82 27939.12 32491.34 22459.67 25146.92 34488.43 238
Patchmtry70.74 26969.16 27175.49 28580.72 30354.07 31774.94 31880.30 30258.34 31070.01 26481.19 29252.50 22886.54 28953.37 29071.09 30885.87 288
PatchT68.46 28767.85 28370.29 31180.70 30443.93 34372.47 32274.88 32660.15 29670.55 25676.57 32549.94 26281.59 31450.58 29974.83 28185.34 291
USDC70.33 27468.37 27576.21 27880.60 30556.23 30479.19 28986.49 23260.89 29061.29 32185.47 24331.78 34189.47 25853.37 29076.21 25982.94 318
tpmrst72.39 26072.13 24973.18 30080.54 30649.91 33479.91 28279.08 31163.11 27071.69 24979.95 30655.32 20782.77 31165.66 20673.89 28986.87 268
anonymousdsp78.60 17477.15 18782.98 15880.51 30767.08 14787.24 15689.53 16565.66 24675.16 21187.19 19752.52 22792.25 19677.17 10679.34 22589.61 203
OpenMVS_ROBcopyleft64.09 1970.56 27268.19 27777.65 26380.26 30859.41 26485.01 21282.96 27758.76 30865.43 30482.33 28437.63 33091.23 22745.34 32876.03 26082.32 319
Anonymous2023120668.60 28467.80 28571.02 30980.23 30950.75 33278.30 29880.47 29956.79 32066.11 30182.63 28246.35 28678.95 32243.62 33175.70 26383.36 311
miper_lstm_enhance74.11 24273.11 24277.13 27280.11 31059.62 26172.23 32386.92 22866.76 22970.40 25882.92 27656.93 20182.92 31069.06 17772.63 29788.87 225
MIMVSNet168.58 28566.78 29273.98 29780.07 31151.82 32480.77 27284.37 25364.40 26059.75 32882.16 28836.47 33283.63 30642.73 33370.33 31086.48 276
ADS-MVSNet266.20 29963.33 30174.82 29079.92 31258.75 26867.55 33675.19 32553.37 33065.25 30675.86 32742.32 31080.53 31841.57 33568.91 31585.18 292
ADS-MVSNet64.36 30362.88 30568.78 31879.92 31247.17 33967.55 33671.18 33453.37 33065.25 30675.86 32742.32 31073.99 34241.57 33568.91 31585.18 292
D2MVS74.82 23673.21 24079.64 23479.81 31462.56 22980.34 27787.35 22364.37 26168.86 27682.66 28146.37 28590.10 24867.91 18481.24 20186.25 278
our_test_369.14 28267.00 29075.57 28379.80 31558.80 26777.96 30077.81 31559.55 30162.90 31978.25 31747.43 27883.97 30351.71 29567.58 31983.93 307
ppachtmachnet_test70.04 27767.34 28978.14 25579.80 31561.13 24579.19 28980.59 29759.16 30565.27 30579.29 31046.75 28487.29 28549.33 30766.72 32086.00 287
dp66.80 29365.43 29570.90 31079.74 31748.82 33775.12 31674.77 32759.61 30064.08 31377.23 32242.89 30680.72 31748.86 30966.58 32283.16 313
EPMVS69.02 28368.16 27871.59 30379.61 31849.80 33677.40 30366.93 34362.82 27670.01 26479.05 31145.79 29177.86 32856.58 27975.26 27787.13 264
PVSNet_057.27 2061.67 30759.27 31068.85 31779.61 31857.44 28768.01 33573.44 33255.93 32458.54 33070.41 33644.58 29877.55 32947.01 31935.91 34571.55 339
Patchmatch-test64.82 30263.24 30269.57 31379.42 32049.82 33563.49 34269.05 34151.98 33459.95 32780.13 30450.91 25070.98 34440.66 33773.57 29287.90 245
MDA-MVSNet-bldmvs66.68 29463.66 30075.75 28079.28 32160.56 25373.92 32078.35 31364.43 25950.13 34279.87 30844.02 30283.67 30546.10 32456.86 33683.03 316
TESTMET0.1,169.89 27969.00 27272.55 30179.27 32256.85 29278.38 29574.71 32957.64 31468.09 28177.19 32337.75 32976.70 33163.92 21684.09 16784.10 306
N_pmnet52.79 31353.26 31451.40 33078.99 3237.68 35969.52 3293.89 35851.63 33557.01 33474.98 33040.83 31865.96 34737.78 34064.67 32680.56 328
EU-MVSNet68.53 28667.61 28871.31 30878.51 32447.01 34084.47 22584.27 25542.27 33966.44 29984.79 25540.44 32083.76 30458.76 26268.54 31883.17 312
pmmvs571.55 26470.20 26775.61 28277.83 32556.39 30181.74 26580.89 29257.76 31367.46 28684.49 25749.26 27185.32 29957.08 27775.29 27585.11 295
test0.0.03 168.00 28867.69 28768.90 31677.55 32647.43 33875.70 31272.95 33366.66 23266.56 29682.29 28648.06 27675.87 33544.97 32974.51 28483.41 310
Patchmatch-RL test70.24 27567.78 28677.61 26477.43 32759.57 26371.16 32570.33 33562.94 27468.65 27872.77 33350.62 25485.49 29769.58 17266.58 32287.77 248
pmmvs-eth3d70.50 27367.83 28478.52 25177.37 32866.18 16081.82 26381.51 28958.90 30763.90 31480.42 30242.69 30886.28 29258.56 26365.30 32583.11 314
testing_275.73 22773.34 23982.89 16377.37 32865.22 17984.10 23790.54 13669.09 20460.46 32481.15 29440.48 31992.84 18176.36 11380.54 21290.60 159
JIA-IIPM66.32 29862.82 30676.82 27477.09 33061.72 24165.34 33975.38 32458.04 31264.51 31062.32 34042.05 31386.51 29051.45 29769.22 31482.21 320
Gipumacopyleft45.18 31641.86 31955.16 32877.03 33151.52 32732.50 35080.52 29832.46 34727.12 34835.02 3489.52 35575.50 33622.31 34760.21 33438.45 346
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet_test_wron65.03 30062.92 30371.37 30575.93 33256.73 29469.09 33474.73 32857.28 31854.03 33977.89 31845.88 28974.39 34149.89 30561.55 33082.99 317
YYNet165.03 30062.91 30471.38 30475.85 33356.60 29869.12 33374.66 33057.28 31854.12 33877.87 31945.85 29074.48 34049.95 30461.52 33183.05 315
PMMVS69.34 28168.67 27371.35 30775.67 33462.03 23575.17 31373.46 33150.00 33668.68 27779.05 31152.07 23778.13 32561.16 24282.77 18573.90 337
testgi66.67 29566.53 29367.08 32175.62 33541.69 34675.93 30876.50 32266.11 23965.20 30886.59 21635.72 33574.71 33943.71 33073.38 29484.84 297
test20.0367.45 29066.95 29168.94 31575.48 33644.84 34277.50 30277.67 31666.66 23263.01 31783.80 26747.02 28178.40 32442.53 33468.86 31783.58 309
PM-MVS66.41 29764.14 29973.20 29973.92 33756.45 29978.97 29164.96 34763.88 26864.72 30980.24 30319.84 34883.44 30766.24 19864.52 32779.71 330
UnsupCasMVSNet_bld63.70 30561.53 30970.21 31273.69 33851.39 32972.82 32181.89 28555.63 32557.81 33271.80 33538.67 32578.61 32349.26 30852.21 34280.63 326
UnsupCasMVSNet_eth67.33 29165.99 29471.37 30573.48 33951.47 32875.16 31485.19 24665.20 25060.78 32380.93 29942.35 30977.20 33057.12 27653.69 34085.44 290
TDRefinement67.49 28964.34 29876.92 27373.47 34061.07 24684.86 21682.98 27659.77 29958.30 33185.13 25026.06 34387.89 28047.92 31760.59 33381.81 323
ambc75.24 28773.16 34150.51 33363.05 34387.47 22164.28 31177.81 32017.80 34989.73 25357.88 27060.64 33285.49 289
CMPMVSbinary51.72 2170.19 27668.16 27876.28 27773.15 34257.55 28579.47 28583.92 25948.02 33756.48 33684.81 25443.13 30586.42 29162.67 22781.81 19784.89 296
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new-patchmatchnet61.73 30661.73 30861.70 32472.74 34324.50 35669.16 33278.03 31461.40 28756.72 33575.53 32938.42 32676.48 33345.95 32557.67 33584.13 305
LF4IMVS64.02 30462.19 30769.50 31470.90 34453.29 32176.13 30677.18 32052.65 33258.59 32980.98 29723.55 34576.52 33253.06 29266.66 32178.68 332
new_pmnet50.91 31450.29 31652.78 32968.58 34534.94 35163.71 34156.63 34939.73 34244.95 34365.47 33821.93 34658.48 34834.98 34256.62 33764.92 341
DSMNet-mixed57.77 31056.90 31260.38 32567.70 34635.61 34969.18 33153.97 35032.30 34857.49 33379.88 30740.39 32168.57 34638.78 33972.37 29876.97 335
FPMVS53.68 31251.64 31559.81 32665.08 34751.03 33069.48 33069.58 33941.46 34040.67 34472.32 33416.46 35170.00 34524.24 34665.42 32458.40 343
pmmvs357.79 30954.26 31368.37 31964.02 34856.72 29575.12 31665.17 34540.20 34152.93 34069.86 33720.36 34775.48 33745.45 32755.25 33972.90 338
wuyk23d16.82 32415.94 32719.46 33658.74 34931.45 35239.22 3483.74 3596.84 3536.04 3552.70 3551.27 36024.29 35410.54 35314.40 3532.63 351
PMMVS240.82 31838.86 32146.69 33153.84 35016.45 35748.61 34749.92 35137.49 34431.67 34660.97 3428.14 35756.42 34928.42 34430.72 34667.19 340
LCM-MVSNet54.25 31149.68 31767.97 32053.73 35145.28 34166.85 33880.78 29435.96 34539.45 34562.23 3418.70 35678.06 32748.24 31451.20 34380.57 327
E-PMN31.77 31930.64 32235.15 33352.87 35227.67 35357.09 34547.86 35224.64 34916.40 35333.05 34911.23 35354.90 35014.46 35118.15 34922.87 348
EMVS30.81 32029.65 32334.27 33450.96 35325.95 35556.58 34646.80 35324.01 35015.53 35430.68 35012.47 35254.43 35112.81 35217.05 35022.43 349
ANet_high50.57 31546.10 31863.99 32248.67 35439.13 34770.99 32780.85 29361.39 28831.18 34757.70 34417.02 35073.65 34331.22 34315.89 35179.18 331
MVEpermissive26.22 2330.37 32125.89 32543.81 33244.55 35535.46 35028.87 35139.07 35418.20 35118.58 35240.18 3472.68 35947.37 35217.07 35023.78 34848.60 345
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft37.38 2244.16 31740.28 32055.82 32740.82 35642.54 34565.12 34063.99 34834.43 34624.48 34957.12 3453.92 35876.17 33417.10 34955.52 33848.75 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 33540.17 35726.90 35424.59 35717.44 35223.95 35048.61 3469.77 35426.48 35318.06 34824.47 34728.83 347
tmp_tt18.61 32321.40 32610.23 3374.82 35810.11 35834.70 34930.74 3561.48 35423.91 35126.07 35128.42 34213.41 35527.12 34515.35 3527.17 350
testmvs6.04 3278.02 3300.10 3390.08 3590.03 36169.74 3280.04 3600.05 3550.31 3561.68 3560.02 3620.04 3560.24 3540.02 3540.25 353
test1236.12 3268.11 3290.14 3380.06 3600.09 36071.05 3260.03 3610.04 3560.25 3571.30 3570.05 3610.03 3570.21 3550.01 3550.29 352
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k19.96 32226.61 3240.00 3400.00 3610.00 3620.00 35289.26 1740.00 3570.00 35888.61 15861.62 1550.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas5.26 3287.02 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35863.15 1310.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re7.23 3259.64 3280.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35886.72 2070.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
test_241102_TWO94.06 1077.24 4792.78 495.72 681.26 697.44 289.07 696.58 494.26 31
test_0728_THIRD78.38 3292.12 895.78 481.46 597.40 489.42 296.57 594.67 16
GSMVS88.96 222
sam_mvs151.32 24788.96 222
sam_mvs50.01 260
MTGPAbinary92.02 87
test_post178.90 2935.43 35448.81 27585.44 29859.25 255
test_post5.46 35350.36 25884.24 302
patchmatchnet-post74.00 33151.12 24988.60 272
MTMP92.18 3132.83 355
test9_res84.90 3095.70 2792.87 93
agg_prior282.91 5895.45 2992.70 96
test_prior472.60 3389.01 99
test_prior288.85 10475.41 8984.91 5293.54 5174.28 3183.31 5095.86 18
旧先验286.56 17758.10 31187.04 3188.98 26674.07 131
新几何286.29 185
无先验87.48 14988.98 18560.00 29794.12 12267.28 19088.97 221
原ACMM286.86 166
testdata291.01 23562.37 229
segment_acmp73.08 40
testdata184.14 23575.71 83
plane_prior592.44 6895.38 7378.71 8986.32 14691.33 137
plane_prior491.00 106
plane_prior368.60 12278.44 3078.92 127
plane_prior291.25 4779.12 23
plane_prior68.71 11790.38 6677.62 3686.16 149
n20.00 362
nn0.00 362
door-mid69.98 337
test1192.23 79
door69.44 340
HQP5-MVS66.98 149
BP-MVS77.47 102
HQP4-MVS77.24 16195.11 8391.03 144
HQP3-MVS92.19 8285.99 151
HQP2-MVS60.17 180
MDTV_nov1_ep13_2view37.79 34875.16 31455.10 32666.53 29749.34 26953.98 28787.94 244
ACMMP++_ref81.95 195
ACMMP++81.25 200
Test By Simon64.33 117