LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 32 | 95.54 3 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 12 | 85.07 49 | 99.27 1 | 99.54 1 |
|
TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 2 | 96.46 2 | 90.58 7 | 92.86 44 | 96.29 16 | 88.16 34 | 94.17 93 | 86.07 40 | 98.48 18 | 97.22 17 |
|
LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 23 | 93.73 63 | 85.72 31 | 96.79 1 | 95.51 6 | 88.86 13 | 95.63 7 | 96.99 8 | 84.81 69 | 93.16 136 | 91.10 1 | 97.53 71 | 96.58 29 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
abl_6 | | | 93.02 4 | 93.16 4 | 92.60 4 | 94.73 42 | 88.99 7 | 93.26 10 | 94.19 29 | 89.11 11 | 94.43 15 | 95.27 36 | 91.86 3 | 95.09 60 | 87.54 18 | 98.02 38 | 93.71 108 |
|
HPM-MVS_fast | | | 92.50 5 | 92.54 6 | 92.37 6 | 95.93 15 | 85.81 30 | 92.99 11 | 94.23 25 | 85.21 31 | 92.51 51 | 95.13 40 | 90.65 10 | 95.34 50 | 88.06 9 | 98.15 33 | 95.95 40 |
|
SR-MVS-dyc-post | | | 92.41 6 | 92.41 7 | 92.39 5 | 94.13 53 | 88.95 8 | 92.87 12 | 94.16 30 | 88.75 15 | 93.79 28 | 94.43 61 | 88.83 24 | 95.51 41 | 87.16 25 | 97.60 64 | 92.73 144 |
|
test1172 | | | 92.40 7 | 92.41 7 | 92.37 6 | 94.68 43 | 89.04 6 | 91.98 29 | 93.62 54 | 90.14 10 | 93.63 35 | 94.16 76 | 88.83 24 | 95.51 41 | 87.11 27 | 97.54 70 | 92.54 154 |
|
SR-MVS | | | 92.23 8 | 92.34 9 | 91.91 17 | 94.89 38 | 87.85 11 | 92.51 22 | 93.87 46 | 88.20 20 | 93.24 38 | 94.02 82 | 90.15 17 | 95.67 30 | 86.82 29 | 97.34 77 | 92.19 169 |
|
HPM-MVS |  | | 92.13 9 | 92.20 11 | 91.91 17 | 95.58 25 | 84.67 41 | 93.51 6 | 94.85 14 | 82.88 54 | 91.77 65 | 93.94 91 | 90.55 13 | 95.73 27 | 88.50 7 | 98.23 29 | 95.33 53 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
APD-MVS_3200maxsize | | | 92.05 10 | 92.24 10 | 91.48 24 | 93.02 78 | 85.17 34 | 92.47 24 | 95.05 13 | 87.65 23 | 93.21 39 | 94.39 67 | 90.09 18 | 95.08 61 | 86.67 30 | 97.60 64 | 94.18 88 |
|
COLMAP_ROB |  | 83.01 3 | 91.97 11 | 91.95 12 | 92.04 12 | 93.68 64 | 86.15 21 | 93.37 8 | 95.10 12 | 90.28 8 | 92.11 57 | 95.03 42 | 89.75 21 | 94.93 65 | 79.95 104 | 98.27 27 | 95.04 62 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMMP |  | | 91.91 12 | 91.87 17 | 92.03 13 | 95.53 26 | 85.91 25 | 93.35 9 | 94.16 30 | 82.52 58 | 92.39 54 | 94.14 77 | 89.15 23 | 95.62 31 | 87.35 20 | 98.24 28 | 94.56 72 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
mPP-MVS | | | 91.69 13 | 91.47 24 | 92.37 6 | 96.04 12 | 88.48 10 | 92.72 16 | 92.60 96 | 83.09 51 | 91.54 67 | 94.25 73 | 87.67 42 | 95.51 41 | 87.21 24 | 98.11 34 | 93.12 129 |
|
CP-MVS | | | 91.67 14 | 91.58 21 | 91.96 14 | 95.29 31 | 87.62 12 | 93.38 7 | 93.36 62 | 83.16 50 | 91.06 76 | 94.00 83 | 88.26 31 | 95.71 28 | 87.28 23 | 98.39 21 | 92.55 153 |
|
XVS | | | 91.54 15 | 91.36 26 | 92.08 10 | 95.64 23 | 86.25 19 | 92.64 17 | 93.33 64 | 85.07 32 | 89.99 93 | 94.03 81 | 86.57 55 | 95.80 21 | 87.35 20 | 97.62 62 | 94.20 86 |
|
MTAPA | | | 91.52 16 | 91.60 20 | 91.29 29 | 96.59 4 | 86.29 17 | 92.02 28 | 91.81 116 | 84.07 37 | 92.00 60 | 94.40 65 | 86.63 53 | 95.28 53 | 88.59 5 | 98.31 24 | 92.30 161 |
|
UA-Net | | | 91.49 17 | 91.53 22 | 91.39 26 | 94.98 35 | 82.95 54 | 93.52 5 | 92.79 91 | 88.22 19 | 88.53 126 | 97.64 2 | 83.45 81 | 94.55 81 | 86.02 43 | 98.60 13 | 96.67 26 |
|
ACMMPR | | | 91.49 17 | 91.35 28 | 91.92 16 | 95.74 19 | 85.88 27 | 92.58 20 | 93.25 72 | 81.99 63 | 91.40 70 | 94.17 75 | 87.51 43 | 95.87 15 | 87.74 11 | 97.76 54 | 93.99 94 |
|
LPG-MVS_test | | | 91.47 19 | 91.68 18 | 90.82 38 | 94.75 40 | 81.69 59 | 90.00 51 | 94.27 22 | 82.35 60 | 93.67 33 | 94.82 48 | 91.18 5 | 95.52 39 | 85.36 47 | 98.73 7 | 95.23 58 |
|
region2R | | | 91.44 20 | 91.30 32 | 91.87 19 | 95.75 18 | 85.90 26 | 92.63 19 | 93.30 69 | 81.91 65 | 90.88 81 | 94.21 74 | 87.75 40 | 95.87 15 | 87.60 16 | 97.71 58 | 93.83 101 |
|
HFP-MVS | | | 91.30 21 | 91.39 25 | 91.02 33 | 95.43 28 | 84.66 42 | 92.58 20 | 93.29 70 | 81.99 63 | 91.47 68 | 93.96 87 | 88.35 29 | 95.56 34 | 87.74 11 | 97.74 56 | 92.85 139 |
|
zzz-MVS | | | 91.27 22 | 91.26 33 | 91.29 29 | 96.59 4 | 86.29 17 | 88.94 76 | 91.81 116 | 84.07 37 | 92.00 60 | 94.40 65 | 86.63 53 | 95.28 53 | 88.59 5 | 98.31 24 | 92.30 161 |
|
ZNCC-MVS | | | 91.26 23 | 91.34 29 | 91.01 35 | 95.73 20 | 83.05 52 | 92.18 26 | 94.22 26 | 80.14 85 | 91.29 73 | 93.97 84 | 87.93 39 | 95.87 15 | 88.65 4 | 97.96 45 | 94.12 91 |
|
APDe-MVS | | | 91.22 24 | 91.92 13 | 89.14 64 | 92.97 80 | 78.04 90 | 92.84 14 | 94.14 34 | 83.33 48 | 93.90 24 | 95.73 25 | 88.77 26 | 96.41 1 | 87.60 16 | 97.98 42 | 92.98 134 |
|
PGM-MVS | | | 91.20 25 | 90.95 41 | 91.93 15 | 95.67 22 | 85.85 28 | 90.00 51 | 93.90 43 | 80.32 82 | 91.74 66 | 94.41 64 | 88.17 33 | 95.98 9 | 86.37 33 | 97.99 40 | 93.96 96 |
|
SteuartSystems-ACMMP | | | 91.16 26 | 91.36 26 | 90.55 42 | 93.91 59 | 80.97 66 | 91.49 35 | 93.48 60 | 82.82 55 | 92.60 50 | 93.97 84 | 88.19 32 | 96.29 4 | 87.61 15 | 98.20 32 | 94.39 81 |
Skip Steuart: Steuart Systems R&D Blog. |
MP-MVS |  | | 91.14 27 | 90.91 42 | 91.83 21 | 96.18 11 | 86.88 14 | 92.20 25 | 93.03 82 | 82.59 57 | 88.52 127 | 94.37 68 | 86.74 52 | 95.41 47 | 86.32 34 | 98.21 30 | 93.19 127 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
GST-MVS | | | 90.96 28 | 91.01 38 | 90.82 38 | 95.45 27 | 82.73 55 | 91.75 33 | 93.74 49 | 80.98 76 | 91.38 71 | 93.80 94 | 87.20 47 | 95.80 21 | 87.10 28 | 97.69 59 | 93.93 97 |
|
MP-MVS-pluss | | | 90.81 29 | 91.08 35 | 89.99 51 | 95.97 13 | 79.88 72 | 88.13 90 | 94.51 20 | 75.79 137 | 92.94 41 | 94.96 43 | 88.36 28 | 95.01 63 | 90.70 2 | 98.40 20 | 95.09 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ACMH+ | | 77.89 11 | 90.73 30 | 91.50 23 | 88.44 77 | 93.00 79 | 76.26 116 | 89.65 62 | 95.55 5 | 87.72 22 | 93.89 26 | 94.94 44 | 91.62 4 | 93.44 126 | 78.35 121 | 98.76 4 | 95.61 47 |
|
ACMMP_NAP | | | 90.65 31 | 91.07 37 | 89.42 60 | 95.93 15 | 79.54 77 | 89.95 54 | 93.68 53 | 77.65 114 | 91.97 62 | 94.89 45 | 88.38 27 | 95.45 45 | 89.27 3 | 97.87 50 | 93.27 123 |
|
ACMM | | 79.39 9 | 90.65 31 | 90.99 39 | 89.63 56 | 95.03 34 | 83.53 47 | 89.62 63 | 93.35 63 | 79.20 96 | 93.83 27 | 93.60 101 | 90.81 8 | 92.96 142 | 85.02 51 | 98.45 19 | 92.41 157 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LS3D | | | 90.60 33 | 90.34 49 | 91.38 27 | 89.03 175 | 84.23 45 | 93.58 4 | 94.68 17 | 90.65 6 | 90.33 88 | 93.95 90 | 84.50 71 | 95.37 48 | 80.87 94 | 95.50 138 | 94.53 75 |
|
ACMP | | 79.16 10 | 90.54 34 | 90.60 47 | 90.35 46 | 94.36 45 | 80.98 65 | 89.16 72 | 94.05 37 | 79.03 99 | 92.87 43 | 93.74 98 | 90.60 12 | 95.21 57 | 82.87 73 | 98.76 4 | 94.87 63 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DPE-MVS |  | | 90.53 35 | 91.08 35 | 88.88 66 | 93.38 70 | 78.65 86 | 89.15 73 | 94.05 37 | 84.68 35 | 93.90 24 | 94.11 79 | 88.13 35 | 96.30 3 | 84.51 57 | 97.81 52 | 91.70 184 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
#test# | | | 90.49 36 | 90.31 50 | 91.02 33 | 95.43 28 | 84.66 42 | 90.65 41 | 93.29 70 | 77.00 121 | 91.47 68 | 93.96 87 | 88.35 29 | 95.56 34 | 84.88 52 | 97.74 56 | 92.85 139 |
|
SED-MVS | | | 90.46 37 | 91.64 19 | 86.93 94 | 94.18 48 | 72.65 134 | 90.47 46 | 93.69 51 | 83.77 41 | 94.11 22 | 94.27 69 | 90.28 15 | 95.84 19 | 86.03 41 | 97.92 46 | 92.29 163 |
|
SMA-MVS |  | | 90.31 38 | 90.48 48 | 89.83 52 | 95.31 30 | 79.52 78 | 90.98 39 | 93.24 73 | 75.37 144 | 92.84 45 | 95.28 35 | 85.58 65 | 96.09 7 | 87.92 10 | 97.76 54 | 93.88 99 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SF-MVS | | | 90.27 39 | 90.80 44 | 88.68 72 | 92.86 84 | 77.09 105 | 91.19 38 | 95.74 4 | 81.38 71 | 92.28 55 | 93.80 94 | 86.89 50 | 94.64 74 | 85.52 45 | 97.51 72 | 94.30 84 |
|
v7n | | | 90.13 40 | 90.96 40 | 87.65 89 | 91.95 109 | 71.06 159 | 89.99 53 | 93.05 79 | 86.53 26 | 94.29 18 | 96.27 17 | 82.69 89 | 94.08 97 | 86.25 37 | 97.63 61 | 97.82 8 |
|
PMVS |  | 80.48 6 | 90.08 41 | 90.66 46 | 88.34 80 | 96.71 3 | 92.97 1 | 90.31 48 | 89.57 175 | 88.51 18 | 90.11 90 | 95.12 41 | 90.98 7 | 88.92 243 | 77.55 135 | 97.07 84 | 83.13 308 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DVP-MVS | | | 90.06 42 | 91.32 30 | 86.29 107 | 94.16 51 | 72.56 139 | 90.54 43 | 91.01 137 | 83.61 44 | 93.75 30 | 94.65 53 | 89.76 19 | 95.78 24 | 86.42 31 | 97.97 43 | 90.55 210 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
PS-CasMVS | | | 90.06 42 | 91.92 13 | 84.47 145 | 96.56 7 | 58.83 277 | 89.04 74 | 92.74 93 | 91.40 4 | 96.12 3 | 96.06 22 | 87.23 46 | 95.57 33 | 79.42 112 | 98.74 6 | 99.00 2 |
|
PEN-MVS | | | 90.03 44 | 91.88 16 | 84.48 144 | 96.57 6 | 58.88 274 | 88.95 75 | 93.19 74 | 91.62 3 | 96.01 5 | 96.16 20 | 87.02 48 | 95.60 32 | 78.69 117 | 98.72 9 | 98.97 3 |
|
OurMVSNet-221017-0 | | | 90.01 45 | 89.74 54 | 90.83 37 | 93.16 76 | 80.37 69 | 91.91 32 | 93.11 76 | 81.10 74 | 95.32 9 | 97.24 5 | 72.94 199 | 94.85 68 | 85.07 49 | 97.78 53 | 97.26 15 |
|
DTE-MVSNet | | | 89.98 46 | 91.91 15 | 84.21 152 | 96.51 8 | 57.84 282 | 88.93 77 | 92.84 90 | 91.92 2 | 96.16 2 | 96.23 18 | 86.95 49 | 95.99 8 | 79.05 114 | 98.57 15 | 98.80 6 |
|
XVG-ACMP-BASELINE | | | 89.98 46 | 89.84 53 | 90.41 44 | 94.91 37 | 84.50 44 | 89.49 68 | 93.98 39 | 79.68 89 | 92.09 58 | 93.89 92 | 83.80 77 | 93.10 140 | 82.67 75 | 98.04 35 | 93.64 113 |
|
3Dnovator+ | | 83.92 2 | 89.97 48 | 89.66 55 | 90.92 36 | 91.27 132 | 81.66 62 | 91.25 36 | 94.13 35 | 88.89 12 | 88.83 121 | 94.26 72 | 77.55 146 | 95.86 18 | 84.88 52 | 95.87 125 | 95.24 57 |
|
WR-MVS_H | | | 89.91 49 | 91.31 31 | 85.71 123 | 96.32 10 | 62.39 234 | 89.54 66 | 93.31 67 | 90.21 9 | 95.57 8 | 95.66 28 | 81.42 113 | 95.90 13 | 80.94 93 | 98.80 3 | 98.84 5 |
|
OPM-MVS | | | 89.80 50 | 89.97 51 | 89.27 62 | 94.76 39 | 79.86 73 | 86.76 112 | 92.78 92 | 78.78 102 | 92.51 51 | 93.64 100 | 88.13 35 | 93.84 107 | 84.83 54 | 97.55 67 | 94.10 92 |
|
mvs_tets | | | 89.78 51 | 89.27 62 | 91.30 28 | 93.51 66 | 84.79 39 | 89.89 56 | 90.63 145 | 70.00 212 | 94.55 14 | 96.67 11 | 87.94 38 | 93.59 118 | 84.27 59 | 95.97 121 | 95.52 48 |
|
anonymousdsp | | | 89.73 52 | 88.88 69 | 92.27 9 | 89.82 166 | 86.67 15 | 90.51 45 | 90.20 162 | 69.87 213 | 95.06 10 | 96.14 21 | 84.28 73 | 93.07 141 | 87.68 13 | 96.34 109 | 97.09 19 |
|
test_djsdf | | | 89.62 53 | 89.01 65 | 91.45 25 | 92.36 95 | 82.98 53 | 91.98 29 | 90.08 165 | 71.54 191 | 94.28 20 | 96.54 13 | 81.57 111 | 94.27 84 | 86.26 35 | 96.49 104 | 97.09 19 |
|
XVG-OURS-SEG-HR | | | 89.59 54 | 89.37 60 | 90.28 47 | 94.47 44 | 85.95 24 | 86.84 108 | 93.91 42 | 80.07 86 | 86.75 158 | 93.26 104 | 93.64 2 | 90.93 199 | 84.60 56 | 90.75 251 | 93.97 95 |
|
APD-MVS |  | | 89.54 55 | 89.63 56 | 89.26 63 | 92.57 89 | 81.34 64 | 90.19 49 | 93.08 78 | 80.87 77 | 91.13 74 | 93.19 105 | 86.22 60 | 95.97 10 | 82.23 79 | 97.18 82 | 90.45 212 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
testtj | | | 89.51 56 | 89.48 59 | 89.59 58 | 92.26 99 | 80.80 67 | 90.14 50 | 93.54 58 | 83.37 47 | 90.57 85 | 92.55 127 | 84.99 67 | 96.15 5 | 81.26 88 | 96.61 99 | 91.83 180 |
|
jajsoiax | | | 89.41 57 | 88.81 71 | 91.19 32 | 93.38 70 | 84.72 40 | 89.70 58 | 90.29 159 | 69.27 216 | 94.39 16 | 96.38 15 | 86.02 63 | 93.52 122 | 83.96 61 | 95.92 123 | 95.34 52 |
|
CPTT-MVS | | | 89.39 58 | 88.98 67 | 90.63 41 | 95.09 33 | 86.95 13 | 92.09 27 | 92.30 102 | 79.74 88 | 87.50 143 | 92.38 130 | 81.42 113 | 93.28 131 | 83.07 70 | 97.24 80 | 91.67 185 |
|
ACMH | | 76.49 14 | 89.34 59 | 91.14 34 | 83.96 158 | 92.50 92 | 70.36 164 | 89.55 64 | 93.84 47 | 81.89 66 | 94.70 12 | 95.44 33 | 90.69 9 | 88.31 253 | 83.33 68 | 98.30 26 | 93.20 126 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CP-MVSNet | | | 89.27 60 | 90.91 42 | 84.37 146 | 96.34 9 | 58.61 279 | 88.66 85 | 92.06 107 | 90.78 5 | 95.67 6 | 95.17 39 | 81.80 109 | 95.54 38 | 79.00 115 | 98.69 10 | 98.95 4 |
|
XVG-OURS | | | 89.18 61 | 88.83 70 | 90.23 48 | 94.28 46 | 86.11 23 | 85.91 123 | 93.60 57 | 80.16 84 | 89.13 117 | 93.44 102 | 83.82 76 | 90.98 197 | 83.86 63 | 95.30 146 | 93.60 115 |
|
DeepC-MVS | | 82.31 4 | 89.15 62 | 89.08 64 | 89.37 61 | 93.64 65 | 79.07 81 | 88.54 86 | 94.20 27 | 73.53 162 | 89.71 102 | 94.82 48 | 85.09 66 | 95.77 26 | 84.17 60 | 98.03 37 | 93.26 124 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
UniMVSNet_ETH3D | | | 89.12 63 | 90.72 45 | 84.31 150 | 97.00 2 | 64.33 212 | 89.67 61 | 88.38 192 | 88.84 14 | 94.29 18 | 97.57 3 | 90.48 14 | 91.26 189 | 72.57 188 | 97.65 60 | 97.34 14 |
|
MSP-MVS | | | 89.08 64 | 88.16 75 | 91.83 21 | 95.76 17 | 86.14 22 | 92.75 15 | 93.90 43 | 78.43 107 | 89.16 116 | 92.25 137 | 72.03 211 | 96.36 2 | 88.21 8 | 90.93 246 | 92.98 134 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
xxxxxxxxxxxxxcwj | | | 89.04 65 | 89.13 63 | 88.79 68 | 93.75 61 | 77.44 98 | 86.31 120 | 95.27 10 | 70.80 200 | 92.28 55 | 93.80 94 | 86.89 50 | 94.64 74 | 85.52 45 | 97.51 72 | 94.30 84 |
|
SD-MVS | | | 88.96 66 | 89.88 52 | 86.22 110 | 91.63 119 | 77.07 106 | 89.82 57 | 93.77 48 | 78.90 100 | 92.88 42 | 92.29 135 | 86.11 61 | 90.22 221 | 86.24 38 | 97.24 80 | 91.36 192 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HPM-MVS++ |  | | 88.93 67 | 88.45 74 | 90.38 45 | 94.92 36 | 85.85 28 | 89.70 58 | 91.27 130 | 78.20 109 | 86.69 161 | 92.28 136 | 80.36 124 | 95.06 62 | 86.17 39 | 96.49 104 | 90.22 215 |
|
ETH3D-3000-0.1 | | | 88.85 68 | 88.96 68 | 88.52 73 | 91.94 111 | 77.27 104 | 88.71 83 | 95.26 11 | 76.08 128 | 90.66 84 | 92.69 122 | 84.48 72 | 93.83 108 | 83.38 67 | 97.48 74 | 94.47 76 |
|
test_0402 | | | 88.65 69 | 89.58 58 | 85.88 119 | 92.55 90 | 72.22 147 | 84.01 153 | 89.44 177 | 88.63 17 | 94.38 17 | 95.77 24 | 86.38 59 | 93.59 118 | 79.84 105 | 95.21 147 | 91.82 181 |
|
DP-MVS | | | 88.60 70 | 89.01 65 | 87.36 92 | 91.30 130 | 77.50 97 | 87.55 97 | 92.97 85 | 87.95 21 | 89.62 106 | 92.87 116 | 84.56 70 | 93.89 104 | 77.65 133 | 96.62 98 | 90.70 204 |
|
Anonymous20231211 | | | 88.40 71 | 89.62 57 | 84.73 140 | 90.46 154 | 65.27 203 | 88.86 79 | 93.02 83 | 87.15 24 | 93.05 40 | 97.10 6 | 82.28 97 | 92.02 169 | 76.70 143 | 97.99 40 | 96.88 23 |
|
PS-MVSNAJss | | | 88.31 72 | 87.90 77 | 89.56 59 | 93.31 72 | 77.96 91 | 87.94 93 | 91.97 110 | 70.73 202 | 94.19 21 | 96.67 11 | 76.94 155 | 94.57 78 | 83.07 70 | 96.28 111 | 96.15 32 |
|
OMC-MVS | | | 88.19 73 | 87.52 82 | 90.19 49 | 91.94 111 | 81.68 61 | 87.49 99 | 93.17 75 | 76.02 131 | 88.64 124 | 91.22 159 | 84.24 74 | 93.37 129 | 77.97 131 | 97.03 85 | 95.52 48 |
|
TSAR-MVS + MP. | | | 88.14 74 | 87.82 78 | 89.09 65 | 95.72 21 | 76.74 110 | 92.49 23 | 91.19 133 | 67.85 234 | 86.63 162 | 94.84 47 | 79.58 130 | 95.96 11 | 87.62 14 | 94.50 170 | 94.56 72 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
RPSCF | | | 88.00 75 | 86.93 93 | 91.22 31 | 90.08 160 | 89.30 5 | 89.68 60 | 91.11 134 | 79.26 95 | 89.68 103 | 94.81 51 | 82.44 92 | 87.74 257 | 76.54 145 | 88.74 273 | 96.61 28 |
|
AllTest | | | 87.97 76 | 87.40 85 | 89.68 54 | 91.59 120 | 83.40 48 | 89.50 67 | 95.44 7 | 79.47 91 | 88.00 136 | 93.03 108 | 82.66 90 | 91.47 181 | 70.81 197 | 96.14 117 | 94.16 89 |
|
TranMVSNet+NR-MVSNet | | | 87.86 77 | 88.76 72 | 85.18 132 | 94.02 56 | 64.13 213 | 84.38 148 | 91.29 129 | 84.88 34 | 92.06 59 | 93.84 93 | 86.45 57 | 93.73 110 | 73.22 179 | 98.66 11 | 97.69 9 |
|
nrg030 | | | 87.85 78 | 88.49 73 | 85.91 117 | 90.07 162 | 69.73 167 | 87.86 94 | 94.20 27 | 74.04 156 | 92.70 49 | 94.66 52 | 85.88 64 | 91.50 180 | 79.72 106 | 97.32 78 | 96.50 30 |
|
ETH3D cwj APD-0.16 | | | 87.83 79 | 87.62 81 | 88.47 75 | 91.21 133 | 78.20 88 | 87.26 101 | 94.54 19 | 72.05 187 | 88.89 118 | 92.31 134 | 83.86 75 | 94.24 87 | 81.59 86 | 96.87 89 | 92.97 137 |
|
CNVR-MVS | | | 87.81 80 | 87.68 80 | 88.21 82 | 92.87 82 | 77.30 103 | 85.25 133 | 91.23 131 | 77.31 118 | 87.07 151 | 91.47 156 | 82.94 86 | 94.71 71 | 84.67 55 | 96.27 113 | 92.62 151 |
|
HQP_MVS | | | 87.75 81 | 87.43 84 | 88.70 71 | 93.45 67 | 76.42 114 | 89.45 69 | 93.61 55 | 79.44 93 | 86.55 163 | 92.95 113 | 74.84 174 | 95.22 55 | 80.78 96 | 95.83 126 | 94.46 77 |
|
NCCC | | | 87.36 82 | 86.87 94 | 88.83 67 | 92.32 98 | 78.84 84 | 86.58 116 | 91.09 135 | 78.77 103 | 84.85 193 | 90.89 173 | 80.85 118 | 95.29 51 | 81.14 90 | 95.32 143 | 92.34 159 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 83 | 86.21 103 | 90.49 43 | 91.48 127 | 84.90 37 | 83.41 173 | 92.38 101 | 70.25 208 | 89.35 114 | 90.68 180 | 82.85 88 | 94.57 78 | 79.55 108 | 95.95 122 | 92.00 174 |
|
SixPastTwentyTwo | | | 87.20 84 | 87.45 83 | 86.45 103 | 92.52 91 | 69.19 176 | 87.84 95 | 88.05 198 | 81.66 68 | 94.64 13 | 96.53 14 | 65.94 239 | 94.75 70 | 83.02 72 | 96.83 92 | 95.41 50 |
|
test_part1 | | | 87.15 85 | 87.82 78 | 85.15 133 | 88.88 179 | 63.04 224 | 87.98 91 | 94.85 14 | 82.52 58 | 93.61 36 | 95.73 25 | 67.51 230 | 95.71 28 | 80.48 101 | 98.83 2 | 96.69 25 |
|
UniMVSNet (Re) | | | 86.87 86 | 86.98 92 | 86.55 101 | 93.11 77 | 68.48 180 | 83.80 162 | 92.87 87 | 80.37 80 | 89.61 108 | 91.81 148 | 77.72 143 | 94.18 91 | 75.00 162 | 98.53 16 | 96.99 22 |
|
Vis-MVSNet |  | | 86.86 87 | 86.58 97 | 87.72 87 | 92.09 105 | 77.43 100 | 87.35 100 | 92.09 106 | 78.87 101 | 84.27 208 | 94.05 80 | 78.35 138 | 93.65 112 | 80.54 100 | 91.58 234 | 92.08 171 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UniMVSNet_NR-MVSNet | | | 86.84 88 | 87.06 88 | 86.17 114 | 92.86 84 | 67.02 191 | 82.55 196 | 91.56 120 | 83.08 52 | 90.92 78 | 91.82 147 | 78.25 139 | 93.99 99 | 74.16 167 | 98.35 22 | 97.49 13 |
|
DU-MVS | | | 86.80 89 | 86.99 91 | 86.21 112 | 93.24 74 | 67.02 191 | 83.16 182 | 92.21 103 | 81.73 67 | 90.92 78 | 91.97 141 | 77.20 149 | 93.99 99 | 74.16 167 | 98.35 22 | 97.61 10 |
|
Regformer-2 | | | 86.74 90 | 86.08 105 | 88.73 69 | 84.18 265 | 79.20 80 | 83.52 168 | 89.33 179 | 83.33 48 | 89.92 97 | 85.07 275 | 83.23 84 | 93.16 136 | 83.39 66 | 92.72 213 | 93.83 101 |
|
DROMVSNet | | | 86.66 91 | 87.04 90 | 85.54 126 | 88.38 188 | 68.42 181 | 88.88 78 | 96.08 3 | 77.93 112 | 83.41 219 | 88.62 217 | 82.91 87 | 95.35 49 | 81.39 87 | 95.75 131 | 92.86 138 |
|
IS-MVSNet | | | 86.66 91 | 86.82 96 | 86.17 114 | 92.05 107 | 66.87 193 | 91.21 37 | 88.64 188 | 86.30 28 | 89.60 109 | 92.59 124 | 69.22 222 | 94.91 66 | 73.89 171 | 97.89 49 | 96.72 24 |
|
v10 | | | 86.54 93 | 87.10 87 | 84.84 137 | 88.16 194 | 63.28 221 | 86.64 115 | 92.20 104 | 75.42 143 | 92.81 47 | 94.50 57 | 74.05 184 | 94.06 98 | 83.88 62 | 96.28 111 | 97.17 18 |
|
pmmvs6 | | | 86.52 94 | 88.06 76 | 81.90 198 | 92.22 102 | 62.28 237 | 84.66 141 | 89.15 181 | 83.54 46 | 89.85 98 | 97.32 4 | 88.08 37 | 86.80 269 | 70.43 205 | 97.30 79 | 96.62 27 |
|
Regformer-4 | | | 86.41 95 | 85.71 113 | 88.52 73 | 84.27 261 | 77.57 96 | 84.07 151 | 88.00 200 | 82.82 55 | 89.84 99 | 85.48 263 | 82.06 101 | 92.77 148 | 83.83 64 | 91.04 240 | 95.22 60 |
|
PHI-MVS | | | 86.38 96 | 85.81 110 | 88.08 83 | 88.44 187 | 77.34 101 | 89.35 71 | 93.05 79 | 73.15 173 | 84.76 194 | 87.70 230 | 78.87 134 | 94.18 91 | 80.67 98 | 96.29 110 | 92.73 144 |
|
test_prior3 | | | 86.31 97 | 86.31 100 | 86.32 105 | 90.59 151 | 71.99 149 | 83.37 174 | 92.85 88 | 75.43 141 | 84.58 197 | 91.57 152 | 81.92 107 | 94.17 93 | 79.54 109 | 96.97 86 | 92.80 141 |
|
CSCG | | | 86.26 98 | 86.47 98 | 85.60 125 | 90.87 144 | 74.26 125 | 87.98 91 | 91.85 113 | 80.35 81 | 89.54 112 | 88.01 224 | 79.09 132 | 92.13 163 | 75.51 155 | 95.06 154 | 90.41 213 |
|
DeepC-MVS_fast | | 80.27 8 | 86.23 99 | 85.65 115 | 87.96 86 | 91.30 130 | 76.92 107 | 87.19 102 | 91.99 109 | 70.56 203 | 84.96 189 | 90.69 179 | 80.01 127 | 95.14 58 | 78.37 120 | 95.78 130 | 91.82 181 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
v8 | | | 86.22 100 | 86.83 95 | 84.36 148 | 87.82 198 | 62.35 236 | 86.42 118 | 91.33 128 | 76.78 123 | 92.73 48 | 94.48 59 | 73.41 193 | 93.72 111 | 83.10 69 | 95.41 139 | 97.01 21 |
|
Anonymous20240529 | | | 86.20 101 | 87.13 86 | 83.42 170 | 90.19 158 | 64.55 210 | 84.55 143 | 90.71 142 | 85.85 29 | 89.94 96 | 95.24 38 | 82.13 99 | 90.40 216 | 69.19 216 | 96.40 107 | 95.31 54 |
|
CDPH-MVS | | | 86.17 102 | 85.54 116 | 88.05 85 | 92.25 100 | 75.45 119 | 83.85 159 | 92.01 108 | 65.91 249 | 86.19 170 | 91.75 150 | 83.77 78 | 94.98 64 | 77.43 138 | 96.71 96 | 93.73 107 |
|
Regformer-1 | | | 86.00 103 | 85.50 117 | 87.49 90 | 84.18 265 | 76.90 108 | 83.52 168 | 87.94 202 | 82.18 62 | 89.19 115 | 85.07 275 | 82.28 97 | 91.89 173 | 82.40 77 | 92.72 213 | 93.69 109 |
|
NR-MVSNet | | | 86.00 103 | 86.22 102 | 85.34 130 | 93.24 74 | 64.56 209 | 82.21 209 | 90.46 148 | 80.99 75 | 88.42 129 | 91.97 141 | 77.56 145 | 93.85 105 | 72.46 189 | 98.65 12 | 97.61 10 |
|
train_agg | | | 85.98 105 | 85.28 120 | 88.07 84 | 92.34 96 | 79.70 75 | 83.94 155 | 90.32 153 | 65.79 250 | 84.49 199 | 90.97 169 | 81.93 105 | 93.63 114 | 81.21 89 | 96.54 102 | 90.88 199 |
|
FC-MVSNet-test | | | 85.93 106 | 87.05 89 | 82.58 189 | 92.25 100 | 56.44 294 | 85.75 127 | 93.09 77 | 77.33 117 | 91.94 63 | 94.65 53 | 74.78 176 | 93.41 128 | 75.11 161 | 98.58 14 | 97.88 7 |
|
Effi-MVS+-dtu | | | 85.82 107 | 83.38 153 | 93.14 3 | 87.13 213 | 91.15 2 | 87.70 96 | 88.42 190 | 74.57 151 | 83.56 216 | 85.65 260 | 78.49 136 | 94.21 89 | 72.04 191 | 92.88 208 | 94.05 93 |
|
agg_prior1 | | | 85.72 108 | 85.20 121 | 87.28 93 | 91.58 123 | 77.69 94 | 83.69 165 | 90.30 156 | 66.29 246 | 84.32 203 | 91.07 166 | 82.13 99 | 93.18 134 | 81.02 91 | 96.36 108 | 90.98 195 |
|
TAPA-MVS | | 77.73 12 | 85.71 109 | 84.83 127 | 88.37 79 | 88.78 181 | 79.72 74 | 87.15 104 | 93.50 59 | 69.17 217 | 85.80 180 | 89.56 201 | 80.76 119 | 92.13 163 | 73.21 184 | 95.51 137 | 93.25 125 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
canonicalmvs | | | 85.50 110 | 86.14 104 | 83.58 167 | 87.97 195 | 67.13 189 | 87.55 97 | 94.32 21 | 73.44 164 | 88.47 128 | 87.54 233 | 86.45 57 | 91.06 196 | 75.76 154 | 93.76 185 | 92.54 154 |
|
EPP-MVSNet | | | 85.47 111 | 85.04 123 | 86.77 98 | 91.52 126 | 69.37 170 | 91.63 34 | 87.98 201 | 81.51 70 | 87.05 152 | 91.83 146 | 66.18 238 | 95.29 51 | 70.75 200 | 96.89 88 | 95.64 45 |
|
GeoE | | | 85.45 112 | 85.81 110 | 84.37 146 | 90.08 160 | 67.07 190 | 85.86 126 | 91.39 127 | 72.33 184 | 87.59 141 | 90.25 190 | 84.85 68 | 92.37 157 | 78.00 129 | 91.94 228 | 93.66 110 |
|
FIs | | | 85.35 113 | 86.27 101 | 82.60 188 | 91.86 114 | 57.31 287 | 85.10 135 | 93.05 79 | 75.83 136 | 91.02 77 | 93.97 84 | 73.57 189 | 92.91 146 | 73.97 170 | 98.02 38 | 97.58 12 |
|
casdiffmvs | | | 85.21 114 | 85.85 109 | 83.31 172 | 86.17 236 | 62.77 228 | 83.03 184 | 93.93 41 | 74.69 150 | 88.21 134 | 92.68 123 | 82.29 96 | 91.89 173 | 77.87 132 | 93.75 187 | 95.27 56 |
|
baseline | | | 85.20 115 | 85.93 107 | 83.02 177 | 86.30 231 | 62.37 235 | 84.55 143 | 93.96 40 | 74.48 153 | 87.12 147 | 92.03 140 | 82.30 95 | 91.94 170 | 78.39 119 | 94.21 176 | 94.74 68 |
|
K. test v3 | | | 85.14 116 | 84.73 128 | 86.37 104 | 91.13 138 | 69.63 169 | 85.45 131 | 76.68 296 | 84.06 39 | 92.44 53 | 96.99 8 | 62.03 258 | 94.65 73 | 80.58 99 | 93.24 198 | 94.83 67 |
|
EI-MVSNet-Vis-set | | | 85.12 117 | 84.53 136 | 86.88 95 | 84.01 268 | 72.76 133 | 83.91 158 | 85.18 240 | 80.44 79 | 88.75 122 | 85.49 262 | 80.08 126 | 91.92 171 | 82.02 80 | 90.85 249 | 95.97 38 |
|
ETH3 D test6400 | | | 85.09 118 | 84.87 126 | 85.75 122 | 90.80 146 | 69.34 171 | 85.90 124 | 93.31 67 | 65.43 256 | 86.11 173 | 89.95 196 | 80.92 117 | 94.86 67 | 75.90 153 | 95.57 136 | 93.05 131 |
|
Regformer-3 | | | 85.06 119 | 84.67 133 | 86.22 110 | 84.27 261 | 73.43 129 | 84.07 151 | 85.26 238 | 80.77 78 | 88.62 125 | 85.48 263 | 80.56 122 | 90.39 217 | 81.99 81 | 91.04 240 | 94.85 65 |
|
EI-MVSNet-UG-set | | | 85.04 120 | 84.44 138 | 86.85 96 | 83.87 271 | 72.52 141 | 83.82 160 | 85.15 241 | 80.27 83 | 88.75 122 | 85.45 266 | 79.95 128 | 91.90 172 | 81.92 83 | 90.80 250 | 96.13 33 |
|
X-MVStestdata | | | 85.04 120 | 82.70 163 | 92.08 10 | 95.64 23 | 86.25 19 | 92.64 17 | 93.33 64 | 85.07 32 | 89.99 93 | 16.05 365 | 86.57 55 | 95.80 21 | 87.35 20 | 97.62 62 | 94.20 86 |
|
MSLP-MVS++ | | | 85.00 122 | 86.03 106 | 81.90 198 | 91.84 115 | 71.56 157 | 86.75 113 | 93.02 83 | 75.95 134 | 87.12 147 | 89.39 202 | 77.98 140 | 89.40 239 | 77.46 136 | 94.78 163 | 84.75 285 |
|
F-COLMAP | | | 84.97 123 | 83.42 152 | 89.63 56 | 92.39 94 | 83.40 48 | 88.83 80 | 91.92 112 | 73.19 172 | 80.18 266 | 89.15 208 | 77.04 153 | 93.28 131 | 65.82 243 | 92.28 219 | 92.21 168 |
|
3Dnovator | | 80.37 7 | 84.80 124 | 84.71 131 | 85.06 135 | 86.36 229 | 74.71 122 | 88.77 82 | 90.00 167 | 75.65 139 | 84.96 189 | 93.17 106 | 74.06 183 | 91.19 191 | 78.28 123 | 91.09 238 | 89.29 231 |
|
IterMVS-LS | | | 84.73 125 | 84.98 124 | 83.96 158 | 87.35 208 | 63.66 216 | 83.25 178 | 89.88 169 | 76.06 129 | 89.62 106 | 92.37 133 | 73.40 195 | 92.52 153 | 78.16 126 | 94.77 165 | 95.69 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS_111021_HR | | | 84.63 126 | 84.34 142 | 85.49 129 | 90.18 159 | 75.86 118 | 79.23 254 | 87.13 212 | 73.35 165 | 85.56 184 | 89.34 203 | 83.60 80 | 90.50 214 | 76.64 144 | 94.05 181 | 90.09 220 |
|
HQP-MVS | | | 84.61 127 | 84.06 145 | 86.27 108 | 91.19 134 | 70.66 161 | 84.77 137 | 92.68 94 | 73.30 168 | 80.55 259 | 90.17 194 | 72.10 207 | 94.61 76 | 77.30 139 | 94.47 171 | 93.56 117 |
|
v1192 | | | 84.57 128 | 84.69 132 | 84.21 152 | 87.75 200 | 62.88 226 | 83.02 185 | 91.43 124 | 69.08 219 | 89.98 95 | 90.89 173 | 72.70 203 | 93.62 117 | 82.41 76 | 94.97 158 | 96.13 33 |
|
mvs-test1 | | | 84.55 129 | 82.12 173 | 91.84 20 | 87.13 213 | 89.54 4 | 85.05 136 | 88.42 190 | 74.57 151 | 80.60 256 | 82.98 298 | 78.49 136 | 93.98 101 | 72.04 191 | 89.77 260 | 92.00 174 |
|
FMVSNet1 | | | 84.55 129 | 85.45 118 | 81.85 200 | 90.27 157 | 61.05 249 | 86.83 109 | 88.27 195 | 78.57 106 | 89.66 105 | 95.64 29 | 75.43 167 | 90.68 209 | 69.09 217 | 95.33 142 | 93.82 103 |
|
v1144 | | | 84.54 131 | 84.72 130 | 84.00 156 | 87.67 202 | 62.55 232 | 82.97 186 | 90.93 138 | 70.32 207 | 89.80 100 | 90.99 168 | 73.50 190 | 93.48 124 | 81.69 85 | 94.65 168 | 95.97 38 |
|
Gipuma |  | | 84.44 132 | 86.33 99 | 78.78 247 | 84.20 264 | 73.57 128 | 89.55 64 | 90.44 149 | 84.24 36 | 84.38 201 | 94.89 45 | 76.35 164 | 80.40 317 | 76.14 149 | 96.80 94 | 82.36 316 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MCST-MVS | | | 84.36 133 | 83.93 148 | 85.63 124 | 91.59 120 | 71.58 156 | 83.52 168 | 92.13 105 | 61.82 277 | 83.96 210 | 89.75 200 | 79.93 129 | 93.46 125 | 78.33 122 | 94.34 174 | 91.87 179 |
|
VDDNet | | | 84.35 134 | 85.39 119 | 81.25 208 | 95.13 32 | 59.32 267 | 85.42 132 | 81.11 270 | 86.41 27 | 87.41 144 | 96.21 19 | 73.61 188 | 90.61 212 | 66.33 237 | 96.85 90 | 93.81 106 |
|
ETV-MVS | | | 84.31 135 | 83.91 149 | 85.52 127 | 88.58 183 | 70.40 163 | 84.50 147 | 93.37 61 | 78.76 104 | 84.07 209 | 78.72 335 | 80.39 123 | 95.13 59 | 73.82 173 | 92.98 206 | 91.04 194 |
|
v1240 | | | 84.30 136 | 84.51 137 | 83.65 165 | 87.65 203 | 61.26 245 | 82.85 189 | 91.54 121 | 67.94 232 | 90.68 83 | 90.65 182 | 71.71 213 | 93.64 113 | 82.84 74 | 94.78 163 | 96.07 35 |
|
MVS_111021_LR | | | 84.28 137 | 83.76 150 | 85.83 121 | 89.23 172 | 83.07 51 | 80.99 228 | 83.56 255 | 72.71 178 | 86.07 174 | 89.07 210 | 81.75 110 | 86.19 279 | 77.11 141 | 93.36 193 | 88.24 244 |
|
hse-mvs3 | | | 84.25 138 | 82.76 162 | 88.72 70 | 91.82 117 | 82.60 56 | 84.00 154 | 84.98 247 | 71.27 193 | 86.70 159 | 90.55 184 | 63.04 254 | 93.92 103 | 78.26 124 | 94.20 177 | 89.63 222 |
|
v144192 | | | 84.24 139 | 84.41 139 | 83.71 164 | 87.59 205 | 61.57 241 | 82.95 187 | 91.03 136 | 67.82 235 | 89.80 100 | 90.49 185 | 73.28 196 | 93.51 123 | 81.88 84 | 94.89 161 | 96.04 37 |
|
v1921920 | | | 84.23 140 | 84.37 141 | 83.79 161 | 87.64 204 | 61.71 240 | 82.91 188 | 91.20 132 | 67.94 232 | 90.06 91 | 90.34 187 | 72.04 210 | 93.59 118 | 82.32 78 | 94.91 159 | 96.07 35 |
|
VDD-MVS | | | 84.23 140 | 84.58 135 | 83.20 174 | 91.17 137 | 65.16 205 | 83.25 178 | 84.97 248 | 79.79 87 | 87.18 146 | 94.27 69 | 74.77 177 | 90.89 202 | 69.24 213 | 96.54 102 | 93.55 119 |
|
v2v482 | | | 84.09 142 | 84.24 143 | 83.62 166 | 87.13 213 | 61.40 242 | 82.71 192 | 89.71 171 | 72.19 186 | 89.55 110 | 91.41 157 | 70.70 218 | 93.20 133 | 81.02 91 | 93.76 185 | 96.25 31 |
|
EG-PatchMatch MVS | | | 84.08 143 | 84.11 144 | 83.98 157 | 92.22 102 | 72.61 138 | 82.20 211 | 87.02 217 | 72.63 179 | 88.86 119 | 91.02 167 | 78.52 135 | 91.11 194 | 73.41 178 | 91.09 238 | 88.21 245 |
|
DP-MVS Recon | | | 84.05 144 | 83.22 155 | 86.52 102 | 91.73 118 | 75.27 120 | 83.23 180 | 92.40 99 | 72.04 188 | 82.04 237 | 88.33 220 | 77.91 142 | 93.95 102 | 66.17 238 | 95.12 152 | 90.34 214 |
|
TransMVSNet (Re) | | | 84.02 145 | 85.74 112 | 78.85 246 | 91.00 141 | 55.20 304 | 82.29 205 | 87.26 208 | 79.65 90 | 88.38 131 | 95.52 32 | 83.00 85 | 86.88 267 | 67.97 228 | 96.60 100 | 94.45 79 |
|
Baseline_NR-MVSNet | | | 84.00 146 | 85.90 108 | 78.29 258 | 91.47 128 | 53.44 313 | 82.29 205 | 87.00 220 | 79.06 98 | 89.55 110 | 95.72 27 | 77.20 149 | 86.14 280 | 72.30 190 | 98.51 17 | 95.28 55 |
|
TSAR-MVS + GP. | | | 83.95 147 | 82.69 164 | 87.72 87 | 89.27 171 | 81.45 63 | 83.72 164 | 81.58 269 | 74.73 149 | 85.66 181 | 86.06 255 | 72.56 205 | 92.69 150 | 75.44 157 | 95.21 147 | 89.01 239 |
|
alignmvs | | | 83.94 148 | 83.98 147 | 83.80 160 | 87.80 199 | 67.88 186 | 84.54 145 | 91.42 126 | 73.27 171 | 88.41 130 | 87.96 225 | 72.33 206 | 90.83 204 | 76.02 152 | 94.11 179 | 92.69 148 |
|
Effi-MVS+ | | | 83.90 149 | 84.01 146 | 83.57 168 | 87.22 211 | 65.61 202 | 86.55 117 | 92.40 99 | 78.64 105 | 81.34 250 | 84.18 287 | 83.65 79 | 92.93 144 | 74.22 166 | 87.87 283 | 92.17 170 |
|
CANet | | | 83.79 150 | 82.85 161 | 86.63 99 | 86.17 236 | 72.21 148 | 83.76 163 | 91.43 124 | 77.24 119 | 74.39 310 | 87.45 235 | 75.36 168 | 95.42 46 | 77.03 142 | 92.83 209 | 92.25 167 |
|
pm-mvs1 | | | 83.69 151 | 84.95 125 | 79.91 232 | 90.04 164 | 59.66 264 | 82.43 200 | 87.44 205 | 75.52 140 | 87.85 138 | 95.26 37 | 81.25 115 | 85.65 286 | 68.74 221 | 96.04 120 | 94.42 80 |
|
AdaColmap |  | | 83.66 152 | 83.69 151 | 83.57 168 | 90.05 163 | 72.26 146 | 86.29 122 | 90.00 167 | 78.19 110 | 81.65 245 | 87.16 240 | 83.40 82 | 94.24 87 | 61.69 268 | 94.76 166 | 84.21 290 |
|
MIMVSNet1 | | | 83.63 153 | 84.59 134 | 80.74 219 | 94.06 55 | 62.77 228 | 82.72 191 | 84.53 251 | 77.57 116 | 90.34 87 | 95.92 23 | 76.88 161 | 85.83 284 | 61.88 266 | 97.42 75 | 93.62 114 |
|
WR-MVS | | | 83.56 154 | 84.40 140 | 81.06 214 | 93.43 69 | 54.88 305 | 78.67 261 | 85.02 245 | 81.24 72 | 90.74 82 | 91.56 154 | 72.85 200 | 91.08 195 | 68.00 227 | 98.04 35 | 97.23 16 |
|
CNLPA | | | 83.55 155 | 83.10 159 | 84.90 136 | 89.34 170 | 83.87 46 | 84.54 145 | 88.77 185 | 79.09 97 | 83.54 217 | 88.66 216 | 74.87 173 | 81.73 311 | 66.84 234 | 92.29 218 | 89.11 233 |
|
LCM-MVSNet-Re | | | 83.48 156 | 85.06 122 | 78.75 248 | 85.94 239 | 55.75 299 | 80.05 238 | 94.27 22 | 76.47 124 | 96.09 4 | 94.54 56 | 83.31 83 | 89.75 234 | 59.95 280 | 94.89 161 | 90.75 202 |
|
hse-mvs2 | | | 83.47 157 | 81.81 178 | 88.47 75 | 91.03 140 | 82.27 57 | 82.61 193 | 83.69 253 | 71.27 193 | 86.70 159 | 86.05 256 | 63.04 254 | 92.41 155 | 78.26 124 | 93.62 191 | 90.71 203 |
|
V42 | | | 83.47 157 | 83.37 154 | 83.75 163 | 83.16 277 | 63.33 220 | 81.31 222 | 90.23 161 | 69.51 215 | 90.91 80 | 90.81 176 | 74.16 182 | 92.29 161 | 80.06 102 | 90.22 257 | 95.62 46 |
|
VPA-MVSNet | | | 83.47 157 | 84.73 128 | 79.69 237 | 90.29 156 | 57.52 286 | 81.30 224 | 88.69 187 | 76.29 125 | 87.58 142 | 94.44 60 | 80.60 121 | 87.20 262 | 66.60 236 | 96.82 93 | 94.34 83 |
|
RRT_MVS | | | 83.25 160 | 81.08 190 | 89.74 53 | 80.55 305 | 79.32 79 | 86.41 119 | 86.69 221 | 72.33 184 | 87.00 153 | 91.08 164 | 44.98 339 | 95.55 37 | 84.47 58 | 96.24 114 | 94.36 82 |
|
PAPM_NR | | | 83.23 161 | 83.19 157 | 83.33 171 | 90.90 143 | 65.98 199 | 88.19 89 | 90.78 141 | 78.13 111 | 80.87 254 | 87.92 228 | 73.49 192 | 92.42 154 | 70.07 207 | 88.40 274 | 91.60 187 |
|
CLD-MVS | | | 83.18 162 | 82.64 165 | 84.79 138 | 89.05 174 | 67.82 187 | 77.93 269 | 92.52 97 | 68.33 226 | 85.07 188 | 81.54 316 | 82.06 101 | 92.96 142 | 69.35 212 | 97.91 48 | 93.57 116 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ANet_high | | | 83.17 163 | 85.68 114 | 75.65 285 | 81.24 292 | 45.26 352 | 79.94 240 | 92.91 86 | 83.83 40 | 91.33 72 | 96.88 10 | 80.25 125 | 85.92 282 | 68.89 219 | 95.89 124 | 95.76 42 |
|
114514_t | | | 83.10 164 | 82.54 169 | 84.77 139 | 92.90 81 | 69.10 178 | 86.65 114 | 90.62 146 | 54.66 317 | 81.46 247 | 90.81 176 | 76.98 154 | 94.38 83 | 72.62 187 | 96.18 115 | 90.82 201 |
|
UGNet | | | 82.78 165 | 81.64 180 | 86.21 112 | 86.20 235 | 76.24 117 | 86.86 107 | 85.68 232 | 77.07 120 | 73.76 313 | 92.82 117 | 69.64 219 | 91.82 176 | 69.04 218 | 93.69 188 | 90.56 209 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LF4IMVS | | | 82.75 166 | 81.93 177 | 85.19 131 | 82.08 283 | 80.15 71 | 85.53 130 | 88.76 186 | 68.01 229 | 85.58 183 | 87.75 229 | 71.80 212 | 86.85 268 | 74.02 169 | 93.87 184 | 88.58 242 |
|
EI-MVSNet | | | 82.61 167 | 82.42 171 | 83.20 174 | 83.25 275 | 63.66 216 | 83.50 171 | 85.07 242 | 76.06 129 | 86.55 163 | 85.10 272 | 73.41 193 | 90.25 218 | 78.15 128 | 90.67 253 | 95.68 44 |
|
QAPM | | | 82.59 168 | 82.59 168 | 82.58 189 | 86.44 224 | 66.69 195 | 89.94 55 | 90.36 152 | 67.97 231 | 84.94 191 | 92.58 126 | 72.71 202 | 92.18 162 | 70.63 203 | 87.73 285 | 88.85 240 |
|
Fast-Effi-MVS+-dtu | | | 82.54 169 | 81.41 185 | 85.90 118 | 85.60 241 | 76.53 113 | 83.07 183 | 89.62 174 | 73.02 175 | 79.11 274 | 83.51 292 | 80.74 120 | 90.24 220 | 68.76 220 | 89.29 264 | 90.94 197 |
|
MVS_Test | | | 82.47 170 | 83.22 155 | 80.22 228 | 82.62 282 | 57.75 284 | 82.54 197 | 91.96 111 | 71.16 198 | 82.89 226 | 92.52 129 | 77.41 147 | 90.50 214 | 80.04 103 | 87.84 284 | 92.40 158 |
|
v148 | | | 82.31 171 | 82.48 170 | 81.81 203 | 85.59 242 | 59.66 264 | 81.47 220 | 86.02 228 | 72.85 176 | 88.05 135 | 90.65 182 | 70.73 217 | 90.91 201 | 75.15 160 | 91.79 229 | 94.87 63 |
|
API-MVS | | | 82.28 172 | 82.61 167 | 81.30 207 | 86.29 232 | 69.79 165 | 88.71 83 | 87.67 204 | 78.42 108 | 82.15 236 | 84.15 288 | 77.98 140 | 91.59 179 | 65.39 245 | 92.75 210 | 82.51 315 |
|
MVSFormer | | | 82.23 173 | 81.57 183 | 84.19 154 | 85.54 243 | 69.26 173 | 91.98 29 | 90.08 165 | 71.54 191 | 76.23 294 | 85.07 275 | 58.69 279 | 94.27 84 | 86.26 35 | 88.77 271 | 89.03 237 |
|
EIA-MVS | | | 82.19 174 | 81.23 188 | 85.10 134 | 87.95 196 | 69.17 177 | 83.22 181 | 93.33 64 | 70.42 204 | 78.58 277 | 79.77 332 | 77.29 148 | 94.20 90 | 71.51 194 | 88.96 269 | 91.93 178 |
|
PCF-MVS | | 74.62 15 | 82.15 175 | 80.92 193 | 85.84 120 | 89.43 168 | 72.30 145 | 80.53 233 | 91.82 115 | 57.36 306 | 87.81 139 | 89.92 198 | 77.67 144 | 93.63 114 | 58.69 285 | 95.08 153 | 91.58 188 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PLC |  | 73.85 16 | 82.09 176 | 80.31 199 | 87.45 91 | 90.86 145 | 80.29 70 | 85.88 125 | 90.65 144 | 68.17 228 | 76.32 293 | 86.33 250 | 73.12 198 | 92.61 152 | 61.40 272 | 90.02 259 | 89.44 226 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CS-MVS | | | 82.02 177 | 82.63 166 | 80.19 229 | 84.80 251 | 57.56 285 | 82.39 202 | 94.72 16 | 71.24 196 | 80.22 265 | 84.89 279 | 75.85 165 | 94.56 80 | 76.08 150 | 93.49 192 | 88.46 243 |
|
GBi-Net | | | 82.02 177 | 82.07 174 | 81.85 200 | 86.38 226 | 61.05 249 | 86.83 109 | 88.27 195 | 72.43 180 | 86.00 175 | 95.64 29 | 63.78 248 | 90.68 209 | 65.95 239 | 93.34 194 | 93.82 103 |
|
test1 | | | 82.02 177 | 82.07 174 | 81.85 200 | 86.38 226 | 61.05 249 | 86.83 109 | 88.27 195 | 72.43 180 | 86.00 175 | 95.64 29 | 63.78 248 | 90.68 209 | 65.95 239 | 93.34 194 | 93.82 103 |
|
OpenMVS |  | 76.72 13 | 81.98 180 | 82.00 176 | 81.93 197 | 84.42 257 | 68.22 183 | 88.50 87 | 89.48 176 | 66.92 241 | 81.80 243 | 91.86 143 | 72.59 204 | 90.16 223 | 71.19 196 | 91.25 237 | 87.40 258 |
|
DIV-MVS_2432*1600 | | | 81.93 181 | 83.14 158 | 78.30 257 | 84.75 252 | 52.75 317 | 80.37 235 | 89.42 178 | 70.24 209 | 90.26 89 | 93.39 103 | 74.55 181 | 86.77 270 | 68.61 223 | 96.64 97 | 95.38 51 |
|
tfpnnormal | | | 81.79 182 | 82.95 160 | 78.31 256 | 88.93 178 | 55.40 300 | 80.83 231 | 82.85 259 | 76.81 122 | 85.90 179 | 94.14 77 | 74.58 180 | 86.51 274 | 66.82 235 | 95.68 135 | 93.01 133 |
|
cl_fuxian | | | 81.64 183 | 81.59 182 | 81.79 204 | 80.86 298 | 59.15 271 | 78.61 262 | 90.18 163 | 68.36 225 | 87.20 145 | 87.11 242 | 69.39 220 | 91.62 178 | 78.16 126 | 94.43 173 | 94.60 71 |
|
PVSNet_Blended_VisFu | | | 81.55 184 | 80.49 197 | 84.70 142 | 91.58 123 | 73.24 131 | 84.21 149 | 91.67 119 | 62.86 270 | 80.94 252 | 87.16 240 | 67.27 232 | 92.87 147 | 69.82 209 | 88.94 270 | 87.99 249 |
|
CS-MVS-test | | | 81.45 185 | 81.56 184 | 81.13 212 | 85.28 246 | 61.14 247 | 81.92 213 | 94.59 18 | 70.05 211 | 77.34 288 | 81.92 311 | 75.32 169 | 94.52 82 | 74.28 165 | 93.32 197 | 87.74 255 |
|
DELS-MVS | | | 81.44 186 | 81.25 186 | 82.03 196 | 84.27 261 | 62.87 227 | 76.47 291 | 92.49 98 | 70.97 199 | 81.64 246 | 83.83 289 | 75.03 171 | 92.70 149 | 74.29 164 | 92.22 222 | 90.51 211 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
FMVSNet2 | | | 81.31 187 | 81.61 181 | 80.41 225 | 86.38 226 | 58.75 278 | 83.93 157 | 86.58 223 | 72.43 180 | 87.65 140 | 92.98 110 | 63.78 248 | 90.22 221 | 66.86 232 | 93.92 183 | 92.27 165 |
|
TinyColmap | | | 81.25 188 | 82.34 172 | 77.99 263 | 85.33 245 | 60.68 256 | 82.32 204 | 88.33 193 | 71.26 195 | 86.97 154 | 92.22 139 | 77.10 152 | 86.98 266 | 62.37 261 | 95.17 149 | 86.31 269 |
|
AUN-MVS | | | 81.18 189 | 78.78 216 | 88.39 78 | 90.93 142 | 82.14 58 | 82.51 198 | 83.67 254 | 64.69 264 | 80.29 262 | 85.91 259 | 51.07 309 | 92.38 156 | 76.29 148 | 93.63 190 | 90.65 207 |
|
tttt0517 | | | 81.07 190 | 79.58 211 | 85.52 127 | 88.99 177 | 66.45 197 | 87.03 106 | 75.51 304 | 73.76 160 | 88.32 133 | 90.20 191 | 37.96 355 | 94.16 96 | 79.36 113 | 95.13 150 | 95.93 41 |
|
Fast-Effi-MVS+ | | | 81.04 191 | 80.57 194 | 82.46 193 | 87.50 206 | 63.22 222 | 78.37 265 | 89.63 173 | 68.01 229 | 81.87 239 | 82.08 310 | 82.31 94 | 92.65 151 | 67.10 231 | 88.30 279 | 91.51 190 |
|
BH-untuned | | | 80.96 192 | 80.99 191 | 80.84 218 | 88.55 184 | 68.23 182 | 80.33 236 | 88.46 189 | 72.79 177 | 86.55 163 | 86.76 245 | 74.72 178 | 91.77 177 | 61.79 267 | 88.99 268 | 82.52 314 |
|
1121 | | | 80.86 193 | 79.81 210 | 84.02 155 | 93.93 58 | 78.70 85 | 81.64 217 | 80.18 277 | 55.43 314 | 83.67 213 | 91.15 162 | 71.29 215 | 91.41 186 | 67.95 229 | 93.06 203 | 81.96 320 |
|
eth_miper_zixun_eth | | | 80.84 194 | 80.22 203 | 82.71 186 | 81.41 290 | 60.98 252 | 77.81 271 | 90.14 164 | 67.31 239 | 86.95 155 | 87.24 239 | 64.26 244 | 92.31 159 | 75.23 159 | 91.61 232 | 94.85 65 |
|
xiu_mvs_v1_base_debu | | | 80.84 194 | 80.14 205 | 82.93 180 | 88.31 189 | 71.73 152 | 79.53 245 | 87.17 209 | 65.43 256 | 79.59 268 | 82.73 305 | 76.94 155 | 90.14 226 | 73.22 179 | 88.33 275 | 86.90 264 |
|
xiu_mvs_v1_base | | | 80.84 194 | 80.14 205 | 82.93 180 | 88.31 189 | 71.73 152 | 79.53 245 | 87.17 209 | 65.43 256 | 79.59 268 | 82.73 305 | 76.94 155 | 90.14 226 | 73.22 179 | 88.33 275 | 86.90 264 |
|
xiu_mvs_v1_base_debi | | | 80.84 194 | 80.14 205 | 82.93 180 | 88.31 189 | 71.73 152 | 79.53 245 | 87.17 209 | 65.43 256 | 79.59 268 | 82.73 305 | 76.94 155 | 90.14 226 | 73.22 179 | 88.33 275 | 86.90 264 |
|
IterMVS-SCA-FT | | | 80.64 198 | 79.41 212 | 84.34 149 | 83.93 269 | 69.66 168 | 76.28 293 | 81.09 271 | 72.43 180 | 86.47 169 | 90.19 192 | 60.46 264 | 93.15 138 | 77.45 137 | 86.39 296 | 90.22 215 |
|
BH-RMVSNet | | | 80.53 199 | 80.22 203 | 81.49 206 | 87.19 212 | 66.21 198 | 77.79 272 | 86.23 225 | 74.21 155 | 83.69 212 | 88.50 218 | 73.25 197 | 90.75 206 | 63.18 258 | 87.90 282 | 87.52 256 |
|
Anonymous202405211 | | | 80.51 200 | 81.19 189 | 78.49 253 | 88.48 185 | 57.26 288 | 76.63 287 | 82.49 261 | 81.21 73 | 84.30 206 | 92.24 138 | 67.99 228 | 86.24 278 | 62.22 262 | 95.13 150 | 91.98 177 |
|
cl-mvsnet1 | | | 80.43 201 | 80.23 201 | 81.02 215 | 79.99 308 | 59.25 268 | 77.07 282 | 87.02 217 | 67.38 237 | 86.19 170 | 89.22 205 | 63.09 252 | 90.16 223 | 76.32 146 | 95.80 128 | 93.66 110 |
|
cl-mvsnet____ | | | 80.42 202 | 80.23 201 | 81.02 215 | 79.99 308 | 59.25 268 | 77.07 282 | 87.02 217 | 67.37 238 | 86.18 172 | 89.21 206 | 63.08 253 | 90.16 223 | 76.31 147 | 95.80 128 | 93.65 112 |
|
diffmvs | | | 80.40 203 | 80.48 198 | 80.17 230 | 79.02 320 | 60.04 260 | 77.54 276 | 90.28 160 | 66.65 244 | 82.40 231 | 87.33 238 | 73.50 190 | 87.35 261 | 77.98 130 | 89.62 262 | 93.13 128 |
|
EPNet | | | 80.37 204 | 78.41 222 | 86.23 109 | 76.75 331 | 73.28 130 | 87.18 103 | 77.45 291 | 76.24 127 | 68.14 333 | 88.93 212 | 65.41 241 | 93.85 105 | 69.47 211 | 96.12 119 | 91.55 189 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_ehance_all_eth | | | 80.34 205 | 80.04 208 | 81.24 210 | 79.82 310 | 58.95 273 | 77.66 273 | 89.66 172 | 65.75 253 | 85.99 178 | 85.11 271 | 68.29 227 | 91.42 185 | 76.03 151 | 92.03 224 | 93.33 120 |
|
MG-MVS | | | 80.32 206 | 80.94 192 | 78.47 254 | 88.18 192 | 52.62 320 | 82.29 205 | 85.01 246 | 72.01 189 | 79.24 273 | 92.54 128 | 69.36 221 | 93.36 130 | 70.65 202 | 89.19 267 | 89.45 225 |
|
VPNet | | | 80.25 207 | 81.68 179 | 75.94 284 | 92.46 93 | 47.98 344 | 76.70 286 | 81.67 268 | 73.45 163 | 84.87 192 | 92.82 117 | 74.66 179 | 86.51 274 | 61.66 269 | 96.85 90 | 93.33 120 |
|
MAR-MVS | | | 80.24 208 | 78.74 218 | 84.73 140 | 86.87 223 | 78.18 89 | 85.75 127 | 87.81 203 | 65.67 255 | 77.84 282 | 78.50 336 | 73.79 187 | 90.53 213 | 61.59 271 | 90.87 248 | 85.49 278 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PM-MVS | | | 80.20 209 | 79.00 215 | 83.78 162 | 88.17 193 | 86.66 16 | 81.31 222 | 66.81 347 | 69.64 214 | 88.33 132 | 90.19 192 | 64.58 242 | 83.63 303 | 71.99 193 | 90.03 258 | 81.06 334 |
|
Anonymous20240521 | | | 80.18 210 | 81.25 186 | 76.95 272 | 83.15 278 | 60.84 254 | 82.46 199 | 85.99 229 | 68.76 223 | 86.78 156 | 93.73 99 | 59.13 276 | 77.44 324 | 73.71 174 | 97.55 67 | 92.56 152 |
|
LFMVS | | | 80.15 211 | 80.56 195 | 78.89 245 | 89.19 173 | 55.93 296 | 85.22 134 | 73.78 316 | 82.96 53 | 84.28 207 | 92.72 121 | 57.38 288 | 90.07 230 | 63.80 253 | 95.75 131 | 90.68 205 |
|
DPM-MVS | | | 80.10 212 | 79.18 214 | 82.88 183 | 90.71 149 | 69.74 166 | 78.87 258 | 90.84 139 | 60.29 291 | 75.64 302 | 85.92 258 | 67.28 231 | 93.11 139 | 71.24 195 | 91.79 229 | 85.77 275 |
|
MSDG | | | 80.06 213 | 79.99 209 | 80.25 227 | 83.91 270 | 68.04 185 | 77.51 277 | 89.19 180 | 77.65 114 | 81.94 238 | 83.45 294 | 76.37 163 | 86.31 277 | 63.31 257 | 86.59 293 | 86.41 267 |
|
ab-mvs | | | 79.67 214 | 80.56 195 | 76.99 271 | 88.48 185 | 56.93 290 | 84.70 140 | 86.06 227 | 68.95 221 | 80.78 255 | 93.08 107 | 75.30 170 | 84.62 295 | 56.78 294 | 90.90 247 | 89.43 227 |
|
VNet | | | 79.31 215 | 80.27 200 | 76.44 279 | 87.92 197 | 53.95 309 | 75.58 299 | 84.35 252 | 74.39 154 | 82.23 234 | 90.72 178 | 72.84 201 | 84.39 297 | 60.38 279 | 93.98 182 | 90.97 196 |
|
bset_n11_16_dypcd | | | 79.19 216 | 77.97 226 | 82.86 184 | 85.81 240 | 66.85 194 | 75.02 304 | 79.31 281 | 66.07 247 | 83.50 218 | 83.37 297 | 55.04 302 | 92.10 166 | 78.63 118 | 94.99 157 | 89.63 222 |
|
thisisatest0530 | | | 79.07 217 | 77.33 233 | 84.26 151 | 87.13 213 | 64.58 208 | 83.66 166 | 75.95 299 | 68.86 222 | 85.22 187 | 87.36 237 | 38.10 353 | 93.57 121 | 75.47 156 | 94.28 175 | 94.62 69 |
|
cl-mvsnet2 | | | 78.97 218 | 78.21 224 | 81.24 210 | 77.74 324 | 59.01 272 | 77.46 279 | 87.13 212 | 65.79 250 | 84.32 203 | 85.10 272 | 58.96 278 | 90.88 203 | 75.36 158 | 92.03 224 | 93.84 100 |
|
RPMNet | | | 78.88 219 | 78.28 223 | 80.68 222 | 79.58 311 | 62.64 230 | 82.58 194 | 94.16 30 | 74.80 148 | 75.72 300 | 92.59 124 | 48.69 315 | 95.56 34 | 73.48 177 | 82.91 323 | 83.85 295 |
|
PAPR | | | 78.84 220 | 78.10 225 | 81.07 213 | 85.17 247 | 60.22 259 | 82.21 209 | 90.57 147 | 62.51 272 | 75.32 305 | 84.61 283 | 74.99 172 | 92.30 160 | 59.48 283 | 88.04 281 | 90.68 205 |
|
PVSNet_BlendedMVS | | | 78.80 221 | 77.84 227 | 81.65 205 | 84.43 255 | 63.41 218 | 79.49 248 | 90.44 149 | 61.70 280 | 75.43 303 | 87.07 243 | 69.11 223 | 91.44 183 | 60.68 277 | 92.24 220 | 90.11 219 |
|
FMVSNet3 | | | 78.80 221 | 78.55 219 | 79.57 239 | 82.89 281 | 56.89 292 | 81.76 214 | 85.77 231 | 69.04 220 | 86.00 175 | 90.44 186 | 51.75 307 | 90.09 229 | 65.95 239 | 93.34 194 | 91.72 183 |
|
test_yl | | | 78.71 223 | 78.51 220 | 79.32 242 | 84.32 259 | 58.84 275 | 78.38 263 | 85.33 236 | 75.99 132 | 82.49 229 | 86.57 246 | 58.01 282 | 90.02 231 | 62.74 259 | 92.73 211 | 89.10 234 |
|
DCV-MVSNet | | | 78.71 223 | 78.51 220 | 79.32 242 | 84.32 259 | 58.84 275 | 78.38 263 | 85.33 236 | 75.99 132 | 82.49 229 | 86.57 246 | 58.01 282 | 90.02 231 | 62.74 259 | 92.73 211 | 89.10 234 |
|
pmmvs-eth3d | | | 78.42 225 | 77.04 236 | 82.57 191 | 87.44 207 | 74.41 124 | 80.86 230 | 79.67 280 | 55.68 312 | 84.69 195 | 90.31 189 | 60.91 262 | 85.42 287 | 62.20 263 | 91.59 233 | 87.88 252 |
|
MVS_0304 | | | 78.17 226 | 77.23 234 | 80.99 217 | 84.13 267 | 69.07 179 | 81.39 221 | 80.81 273 | 76.28 126 | 67.53 338 | 89.11 209 | 62.87 256 | 86.77 270 | 60.90 276 | 92.01 227 | 87.13 261 |
|
mvs_anonymous | | | 78.13 227 | 78.76 217 | 76.23 283 | 79.24 317 | 50.31 338 | 78.69 260 | 84.82 249 | 61.60 281 | 83.09 225 | 92.82 117 | 73.89 186 | 87.01 263 | 68.33 226 | 86.41 295 | 91.37 191 |
|
RRT_test8_iter05 | | | 78.08 228 | 77.52 229 | 79.75 235 | 80.84 299 | 52.54 321 | 80.61 232 | 88.96 183 | 67.77 236 | 84.62 196 | 89.29 204 | 33.89 360 | 92.10 166 | 77.59 134 | 94.15 178 | 94.62 69 |
|
TAMVS | | | 78.08 228 | 76.36 242 | 83.23 173 | 90.62 150 | 72.87 132 | 79.08 255 | 80.01 279 | 61.72 279 | 81.35 249 | 86.92 244 | 63.96 247 | 88.78 247 | 50.61 327 | 93.01 205 | 88.04 248 |
|
miper_enhance_ethall | | | 77.83 230 | 76.93 237 | 80.51 223 | 76.15 337 | 58.01 281 | 75.47 301 | 88.82 184 | 58.05 300 | 83.59 215 | 80.69 320 | 64.41 243 | 91.20 190 | 73.16 185 | 92.03 224 | 92.33 160 |
|
Vis-MVSNet (Re-imp) | | | 77.82 231 | 77.79 228 | 77.92 264 | 88.82 180 | 51.29 331 | 83.28 176 | 71.97 329 | 74.04 156 | 82.23 234 | 89.78 199 | 57.38 288 | 89.41 238 | 57.22 293 | 95.41 139 | 93.05 131 |
|
CANet_DTU | | | 77.81 232 | 77.05 235 | 80.09 231 | 81.37 291 | 59.90 262 | 83.26 177 | 88.29 194 | 69.16 218 | 67.83 336 | 83.72 290 | 60.93 261 | 89.47 235 | 69.22 215 | 89.70 261 | 90.88 199 |
|
OpenMVS_ROB |  | 70.19 17 | 77.77 233 | 77.46 230 | 78.71 249 | 84.39 258 | 61.15 246 | 81.18 226 | 82.52 260 | 62.45 274 | 83.34 220 | 87.37 236 | 66.20 237 | 88.66 249 | 64.69 249 | 85.02 307 | 86.32 268 |
|
MDA-MVSNet-bldmvs | | | 77.47 234 | 76.90 238 | 79.16 244 | 79.03 319 | 64.59 207 | 66.58 340 | 75.67 302 | 73.15 173 | 88.86 119 | 88.99 211 | 66.94 233 | 81.23 313 | 64.71 248 | 88.22 280 | 91.64 186 |
|
jason | | | 77.42 235 | 75.75 248 | 82.43 194 | 87.10 217 | 69.27 172 | 77.99 268 | 81.94 266 | 51.47 336 | 77.84 282 | 85.07 275 | 60.32 266 | 89.00 241 | 70.74 201 | 89.27 266 | 89.03 237 |
jason: jason. |
CDS-MVSNet | | | 77.32 236 | 75.40 251 | 83.06 176 | 89.00 176 | 72.48 142 | 77.90 270 | 82.17 264 | 60.81 286 | 78.94 275 | 83.49 293 | 59.30 274 | 88.76 248 | 54.64 311 | 92.37 217 | 87.93 251 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
xiu_mvs_v2_base | | | 77.19 237 | 76.75 239 | 78.52 252 | 87.01 219 | 61.30 244 | 75.55 300 | 87.12 215 | 61.24 283 | 74.45 309 | 78.79 334 | 77.20 149 | 90.93 199 | 64.62 251 | 84.80 313 | 83.32 304 |
|
MVSTER | | | 77.09 238 | 75.70 249 | 81.25 208 | 75.27 344 | 61.08 248 | 77.49 278 | 85.07 242 | 60.78 287 | 86.55 163 | 88.68 215 | 43.14 345 | 90.25 218 | 73.69 175 | 90.67 253 | 92.42 156 |
|
PS-MVSNAJ | | | 77.04 239 | 76.53 241 | 78.56 251 | 87.09 218 | 61.40 242 | 75.26 302 | 87.13 212 | 61.25 282 | 74.38 311 | 77.22 343 | 76.94 155 | 90.94 198 | 64.63 250 | 84.83 312 | 83.35 303 |
|
IterMVS | | | 76.91 240 | 76.34 243 | 78.64 250 | 80.91 296 | 64.03 214 | 76.30 292 | 79.03 284 | 64.88 263 | 83.11 223 | 89.16 207 | 59.90 270 | 84.46 296 | 68.61 223 | 85.15 306 | 87.42 257 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
D2MVS | | | 76.84 241 | 75.67 250 | 80.34 226 | 80.48 306 | 62.16 239 | 73.50 314 | 84.80 250 | 57.61 304 | 82.24 233 | 87.54 233 | 51.31 308 | 87.65 258 | 70.40 206 | 93.19 200 | 91.23 193 |
|
CL-MVSNet_2432*1600 | | | 76.81 242 | 77.38 232 | 75.12 288 | 86.90 221 | 51.34 329 | 73.20 317 | 80.63 275 | 68.30 227 | 81.80 243 | 88.40 219 | 66.92 234 | 80.90 314 | 55.35 305 | 94.90 160 | 93.12 129 |
|
TR-MVS | | | 76.77 243 | 75.79 247 | 79.72 236 | 86.10 238 | 65.79 201 | 77.14 280 | 83.02 257 | 65.20 261 | 81.40 248 | 82.10 309 | 66.30 236 | 90.73 208 | 55.57 302 | 85.27 304 | 82.65 310 |
|
USDC | | | 76.63 244 | 76.73 240 | 76.34 281 | 83.46 273 | 57.20 289 | 80.02 239 | 88.04 199 | 52.14 332 | 83.65 214 | 91.25 158 | 63.24 251 | 86.65 273 | 54.66 310 | 94.11 179 | 85.17 280 |
|
BH-w/o | | | 76.57 245 | 76.07 246 | 78.10 261 | 86.88 222 | 65.92 200 | 77.63 274 | 86.33 224 | 65.69 254 | 80.89 253 | 79.95 329 | 68.97 225 | 90.74 207 | 53.01 319 | 85.25 305 | 77.62 340 |
|
Patchmtry | | | 76.56 246 | 77.46 230 | 73.83 294 | 79.37 316 | 46.60 349 | 82.41 201 | 76.90 293 | 73.81 159 | 85.56 184 | 92.38 130 | 48.07 317 | 83.98 300 | 63.36 256 | 95.31 145 | 90.92 198 |
|
PVSNet_Blended | | | 76.49 247 | 75.40 251 | 79.76 234 | 84.43 255 | 63.41 218 | 75.14 303 | 90.44 149 | 57.36 306 | 75.43 303 | 78.30 337 | 69.11 223 | 91.44 183 | 60.68 277 | 87.70 286 | 84.42 288 |
|
miper_lstm_enhance | | | 76.45 248 | 76.10 245 | 77.51 268 | 76.72 332 | 60.97 253 | 64.69 343 | 85.04 244 | 63.98 266 | 83.20 222 | 88.22 221 | 56.67 291 | 78.79 322 | 73.22 179 | 93.12 201 | 92.78 143 |
|
lupinMVS | | | 76.37 249 | 74.46 259 | 82.09 195 | 85.54 243 | 69.26 173 | 76.79 284 | 80.77 274 | 50.68 342 | 76.23 294 | 82.82 303 | 58.69 279 | 88.94 242 | 69.85 208 | 88.77 271 | 88.07 246 |
|
cascas | | | 76.29 250 | 74.81 255 | 80.72 221 | 84.47 254 | 62.94 225 | 73.89 312 | 87.34 206 | 55.94 311 | 75.16 307 | 76.53 346 | 63.97 246 | 91.16 192 | 65.00 246 | 90.97 245 | 88.06 247 |
|
thres600view7 | | | 75.97 251 | 75.35 253 | 77.85 266 | 87.01 219 | 51.84 327 | 80.45 234 | 73.26 320 | 75.20 145 | 83.10 224 | 86.31 252 | 45.54 330 | 89.05 240 | 55.03 308 | 92.24 220 | 92.66 149 |
|
GA-MVS | | | 75.83 252 | 74.61 256 | 79.48 241 | 81.87 285 | 59.25 268 | 73.42 315 | 82.88 258 | 68.68 224 | 79.75 267 | 81.80 313 | 50.62 311 | 89.46 236 | 66.85 233 | 85.64 301 | 89.72 221 |
|
MVP-Stereo | | | 75.81 253 | 73.51 268 | 82.71 186 | 89.35 169 | 73.62 127 | 80.06 237 | 85.20 239 | 60.30 290 | 73.96 312 | 87.94 226 | 57.89 286 | 89.45 237 | 52.02 322 | 74.87 349 | 85.06 282 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
thres100view900 | | | 75.45 254 | 75.05 254 | 76.66 278 | 87.27 209 | 51.88 326 | 81.07 227 | 73.26 320 | 75.68 138 | 83.25 221 | 86.37 249 | 45.54 330 | 88.80 244 | 51.98 323 | 90.99 242 | 89.31 229 |
|
ET-MVSNet_ETH3D | | | 75.28 255 | 72.77 274 | 82.81 185 | 83.03 280 | 68.11 184 | 77.09 281 | 76.51 297 | 60.67 289 | 77.60 286 | 80.52 324 | 38.04 354 | 91.15 193 | 70.78 199 | 90.68 252 | 89.17 232 |
|
thres400 | | | 75.14 256 | 74.23 261 | 77.86 265 | 86.24 233 | 52.12 323 | 79.24 252 | 73.87 314 | 73.34 166 | 81.82 241 | 84.60 284 | 46.02 324 | 88.80 244 | 51.98 323 | 90.99 242 | 92.66 149 |
|
wuyk23d | | | 75.13 257 | 79.30 213 | 62.63 333 | 75.56 340 | 75.18 121 | 80.89 229 | 73.10 322 | 75.06 147 | 94.76 11 | 95.32 34 | 87.73 41 | 52.85 361 | 34.16 360 | 97.11 83 | 59.85 357 |
|
EU-MVSNet | | | 75.12 258 | 74.43 260 | 77.18 270 | 83.11 279 | 59.48 266 | 85.71 129 | 82.43 262 | 39.76 360 | 85.64 182 | 88.76 213 | 44.71 341 | 87.88 256 | 73.86 172 | 85.88 300 | 84.16 291 |
|
HyFIR lowres test | | | 75.12 258 | 72.66 276 | 82.50 192 | 91.44 129 | 65.19 204 | 72.47 319 | 87.31 207 | 46.79 348 | 80.29 262 | 84.30 286 | 52.70 306 | 92.10 166 | 51.88 326 | 86.73 292 | 90.22 215 |
|
CMPMVS |  | 59.41 20 | 75.12 258 | 73.57 266 | 79.77 233 | 75.84 339 | 67.22 188 | 81.21 225 | 82.18 263 | 50.78 340 | 76.50 290 | 87.66 231 | 55.20 300 | 82.99 305 | 62.17 265 | 90.64 256 | 89.09 236 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs4 | | | 74.92 261 | 72.98 273 | 80.73 220 | 84.95 248 | 71.71 155 | 76.23 294 | 77.59 290 | 52.83 326 | 77.73 285 | 86.38 248 | 56.35 294 | 84.97 291 | 57.72 292 | 87.05 290 | 85.51 277 |
|
tfpn200view9 | | | 74.86 262 | 74.23 261 | 76.74 277 | 86.24 233 | 52.12 323 | 79.24 252 | 73.87 314 | 73.34 166 | 81.82 241 | 84.60 284 | 46.02 324 | 88.80 244 | 51.98 323 | 90.99 242 | 89.31 229 |
|
1112_ss | | | 74.82 263 | 73.74 264 | 78.04 262 | 89.57 167 | 60.04 260 | 76.49 290 | 87.09 216 | 54.31 318 | 73.66 314 | 79.80 330 | 60.25 267 | 86.76 272 | 58.37 286 | 84.15 316 | 87.32 259 |
|
ppachtmachnet_test | | | 74.73 264 | 74.00 263 | 76.90 274 | 80.71 302 | 56.89 292 | 71.53 323 | 78.42 286 | 58.24 298 | 79.32 272 | 82.92 302 | 57.91 285 | 84.26 298 | 65.60 244 | 91.36 236 | 89.56 224 |
|
Patchmatch-RL test | | | 74.48 265 | 73.68 265 | 76.89 275 | 84.83 250 | 66.54 196 | 72.29 320 | 69.16 340 | 57.70 302 | 86.76 157 | 86.33 250 | 45.79 329 | 82.59 306 | 69.63 210 | 90.65 255 | 81.54 325 |
|
PatchMatch-RL | | | 74.48 265 | 73.22 270 | 78.27 259 | 87.70 201 | 85.26 33 | 75.92 296 | 70.09 337 | 64.34 265 | 76.09 296 | 81.25 318 | 65.87 240 | 78.07 323 | 53.86 313 | 83.82 317 | 71.48 348 |
|
XXY-MVS | | | 74.44 267 | 76.19 244 | 69.21 314 | 84.61 253 | 52.43 322 | 71.70 322 | 77.18 292 | 60.73 288 | 80.60 256 | 90.96 171 | 75.44 166 | 69.35 342 | 56.13 298 | 88.33 275 | 85.86 274 |
|
CR-MVSNet | | | 74.00 268 | 73.04 272 | 76.85 276 | 79.58 311 | 62.64 230 | 82.58 194 | 76.90 293 | 50.50 343 | 75.72 300 | 92.38 130 | 48.07 317 | 84.07 299 | 68.72 222 | 82.91 323 | 83.85 295 |
|
Test_1112_low_res | | | 73.90 269 | 73.08 271 | 76.35 280 | 90.35 155 | 55.95 295 | 73.40 316 | 86.17 226 | 50.70 341 | 73.14 315 | 85.94 257 | 58.31 281 | 85.90 283 | 56.51 296 | 83.22 320 | 87.20 260 |
|
test20.03 | | | 73.75 270 | 74.59 258 | 71.22 307 | 81.11 294 | 51.12 333 | 70.15 328 | 72.10 328 | 70.42 204 | 80.28 264 | 91.50 155 | 64.21 245 | 74.72 334 | 46.96 343 | 94.58 169 | 87.82 254 |
|
SCA | | | 73.32 271 | 72.57 278 | 75.58 286 | 81.62 287 | 55.86 297 | 78.89 257 | 71.37 334 | 61.73 278 | 74.93 308 | 83.42 295 | 60.46 264 | 87.01 263 | 58.11 290 | 82.63 327 | 83.88 292 |
|
baseline1 | | | 73.26 272 | 73.54 267 | 72.43 303 | 84.92 249 | 47.79 345 | 79.89 241 | 74.00 312 | 65.93 248 | 78.81 276 | 86.28 253 | 56.36 293 | 81.63 312 | 56.63 295 | 79.04 340 | 87.87 253 |
|
1314 | | | 73.22 273 | 72.56 279 | 75.20 287 | 80.41 307 | 57.84 282 | 81.64 217 | 85.36 235 | 51.68 335 | 73.10 316 | 76.65 345 | 61.45 260 | 85.19 289 | 63.54 254 | 79.21 339 | 82.59 311 |
|
MVS | | | 73.21 274 | 72.59 277 | 75.06 289 | 80.97 295 | 60.81 255 | 81.64 217 | 85.92 230 | 46.03 351 | 71.68 322 | 77.54 339 | 68.47 226 | 89.77 233 | 55.70 301 | 85.39 302 | 74.60 345 |
|
HY-MVS | | 64.64 18 | 73.03 275 | 72.47 280 | 74.71 290 | 83.36 274 | 54.19 307 | 82.14 212 | 81.96 265 | 56.76 310 | 69.57 330 | 86.21 254 | 60.03 268 | 84.83 294 | 49.58 332 | 82.65 325 | 85.11 281 |
|
thisisatest0515 | | | 73.00 276 | 70.52 291 | 80.46 224 | 81.45 289 | 59.90 262 | 73.16 318 | 74.31 311 | 57.86 301 | 76.08 297 | 77.78 338 | 37.60 356 | 92.12 165 | 65.00 246 | 91.45 235 | 89.35 228 |
|
EPNet_dtu | | | 72.87 277 | 71.33 289 | 77.49 269 | 77.72 325 | 60.55 257 | 82.35 203 | 75.79 300 | 66.49 245 | 58.39 361 | 81.06 319 | 53.68 304 | 85.98 281 | 53.55 314 | 92.97 207 | 85.95 272 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CVMVSNet | | | 72.62 278 | 71.41 288 | 76.28 282 | 83.25 275 | 60.34 258 | 83.50 171 | 79.02 285 | 37.77 361 | 76.33 292 | 85.10 272 | 49.60 314 | 87.41 260 | 70.54 204 | 77.54 345 | 81.08 332 |
|
CHOSEN 1792x2688 | | | 72.45 279 | 70.56 290 | 78.13 260 | 90.02 165 | 63.08 223 | 68.72 332 | 83.16 256 | 42.99 357 | 75.92 298 | 85.46 265 | 57.22 290 | 85.18 290 | 49.87 331 | 81.67 328 | 86.14 270 |
|
testgi | | | 72.36 280 | 74.61 256 | 65.59 327 | 80.56 304 | 42.82 358 | 68.29 333 | 73.35 319 | 66.87 242 | 81.84 240 | 89.93 197 | 72.08 209 | 66.92 350 | 46.05 345 | 92.54 215 | 87.01 263 |
|
thres200 | | | 72.34 281 | 71.55 287 | 74.70 291 | 83.48 272 | 51.60 328 | 75.02 304 | 73.71 317 | 70.14 210 | 78.56 278 | 80.57 323 | 46.20 322 | 88.20 254 | 46.99 342 | 89.29 264 | 84.32 289 |
|
FPMVS | | | 72.29 282 | 72.00 282 | 73.14 297 | 88.63 182 | 85.00 35 | 74.65 308 | 67.39 341 | 71.94 190 | 77.80 284 | 87.66 231 | 50.48 312 | 75.83 330 | 49.95 329 | 79.51 335 | 58.58 359 |
|
FMVSNet5 | | | 72.10 283 | 71.69 284 | 73.32 295 | 81.57 288 | 53.02 316 | 76.77 285 | 78.37 287 | 63.31 267 | 76.37 291 | 91.85 144 | 36.68 357 | 78.98 320 | 47.87 339 | 92.45 216 | 87.95 250 |
|
our_test_3 | | | 71.85 284 | 71.59 285 | 72.62 301 | 80.71 302 | 53.78 310 | 69.72 330 | 71.71 333 | 58.80 295 | 78.03 279 | 80.51 325 | 56.61 292 | 78.84 321 | 62.20 263 | 86.04 299 | 85.23 279 |
|
PAPM | | | 71.77 285 | 70.06 296 | 76.92 273 | 86.39 225 | 53.97 308 | 76.62 288 | 86.62 222 | 53.44 323 | 63.97 351 | 84.73 282 | 57.79 287 | 92.34 158 | 39.65 355 | 81.33 331 | 84.45 287 |
|
IB-MVS | | 62.13 19 | 71.64 286 | 68.97 300 | 79.66 238 | 80.80 301 | 62.26 238 | 73.94 311 | 76.90 293 | 63.27 268 | 68.63 332 | 76.79 344 | 33.83 361 | 91.84 175 | 59.28 284 | 87.26 288 | 84.88 283 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
UnsupCasMVSNet_eth | | | 71.63 287 | 72.30 281 | 69.62 312 | 76.47 334 | 52.70 319 | 70.03 329 | 80.97 272 | 59.18 294 | 79.36 271 | 88.21 222 | 60.50 263 | 69.12 343 | 58.33 288 | 77.62 344 | 87.04 262 |
|
Anonymous20231206 | | | 71.38 288 | 71.88 283 | 69.88 310 | 86.31 230 | 54.37 306 | 70.39 327 | 74.62 307 | 52.57 328 | 76.73 289 | 88.76 213 | 59.94 269 | 72.06 336 | 44.35 348 | 93.23 199 | 83.23 306 |
|
MIMVSNet | | | 71.09 289 | 71.59 285 | 69.57 313 | 87.23 210 | 50.07 339 | 78.91 256 | 71.83 330 | 60.20 292 | 71.26 323 | 91.76 149 | 55.08 301 | 76.09 328 | 41.06 353 | 87.02 291 | 82.54 313 |
|
MS-PatchMatch | | | 70.93 290 | 70.22 294 | 73.06 298 | 81.85 286 | 62.50 233 | 73.82 313 | 77.90 288 | 52.44 329 | 75.92 298 | 81.27 317 | 55.67 297 | 81.75 310 | 55.37 304 | 77.70 343 | 74.94 344 |
|
pmmvs5 | | | 70.73 291 | 70.07 295 | 72.72 299 | 77.03 330 | 52.73 318 | 74.14 309 | 75.65 303 | 50.36 344 | 72.17 320 | 85.37 269 | 55.42 299 | 80.67 316 | 52.86 320 | 87.59 287 | 84.77 284 |
|
PatchT | | | 70.52 292 | 72.76 275 | 63.79 332 | 79.38 315 | 33.53 364 | 77.63 274 | 65.37 349 | 73.61 161 | 71.77 321 | 92.79 120 | 44.38 342 | 75.65 331 | 64.53 252 | 85.37 303 | 82.18 318 |
|
N_pmnet | | | 70.20 293 | 68.80 302 | 74.38 292 | 80.91 296 | 84.81 38 | 59.12 353 | 76.45 298 | 55.06 315 | 75.31 306 | 82.36 308 | 55.74 296 | 54.82 360 | 47.02 341 | 87.24 289 | 83.52 299 |
|
tpmvs | | | 70.16 294 | 69.56 298 | 71.96 305 | 74.71 348 | 48.13 342 | 79.63 243 | 75.45 305 | 65.02 262 | 70.26 327 | 81.88 312 | 45.34 335 | 85.68 285 | 58.34 287 | 75.39 348 | 82.08 319 |
|
new-patchmatchnet | | | 70.10 295 | 73.37 269 | 60.29 340 | 81.23 293 | 16.95 368 | 59.54 351 | 74.62 307 | 62.93 269 | 80.97 251 | 87.93 227 | 62.83 257 | 71.90 337 | 55.24 306 | 95.01 156 | 92.00 174 |
|
YYNet1 | | | 70.06 296 | 70.44 292 | 68.90 315 | 73.76 350 | 53.42 314 | 58.99 354 | 67.20 343 | 58.42 297 | 87.10 149 | 85.39 268 | 59.82 271 | 67.32 347 | 59.79 281 | 83.50 319 | 85.96 271 |
|
MDA-MVSNet_test_wron | | | 70.05 297 | 70.44 292 | 68.88 316 | 73.84 349 | 53.47 312 | 58.93 355 | 67.28 342 | 58.43 296 | 87.09 150 | 85.40 267 | 59.80 272 | 67.25 348 | 59.66 282 | 83.54 318 | 85.92 273 |
|
CostFormer | | | 69.98 298 | 68.68 303 | 73.87 293 | 77.14 328 | 50.72 336 | 79.26 251 | 74.51 309 | 51.94 334 | 70.97 326 | 84.75 281 | 45.16 338 | 87.49 259 | 55.16 307 | 79.23 338 | 83.40 302 |
|
baseline2 | | | 69.77 299 | 66.89 309 | 78.41 255 | 79.51 313 | 58.09 280 | 76.23 294 | 69.57 339 | 57.50 305 | 64.82 349 | 77.45 341 | 46.02 324 | 88.44 250 | 53.08 316 | 77.83 342 | 88.70 241 |
|
PatchmatchNet |  | | 69.71 300 | 68.83 301 | 72.33 304 | 77.66 326 | 53.60 311 | 79.29 250 | 69.99 338 | 57.66 303 | 72.53 318 | 82.93 301 | 46.45 321 | 80.08 319 | 60.91 275 | 72.09 352 | 83.31 305 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
JIA-IIPM | | | 69.41 301 | 66.64 313 | 77.70 267 | 73.19 352 | 71.24 158 | 75.67 297 | 65.56 348 | 70.42 204 | 65.18 345 | 92.97 112 | 33.64 362 | 83.06 304 | 53.52 315 | 69.61 358 | 78.79 339 |
|
UnsupCasMVSNet_bld | | | 69.21 302 | 69.68 297 | 67.82 321 | 79.42 314 | 51.15 332 | 67.82 337 | 75.79 300 | 54.15 319 | 77.47 287 | 85.36 270 | 59.26 275 | 70.64 339 | 48.46 336 | 79.35 337 | 81.66 323 |
|
gg-mvs-nofinetune | | | 68.96 303 | 69.11 299 | 68.52 320 | 76.12 338 | 45.32 351 | 83.59 167 | 55.88 362 | 86.68 25 | 64.62 350 | 97.01 7 | 30.36 365 | 83.97 301 | 44.78 347 | 82.94 322 | 76.26 342 |
|
tpm2 | | | 68.45 304 | 66.83 310 | 73.30 296 | 78.93 321 | 48.50 341 | 79.76 242 | 71.76 331 | 47.50 347 | 69.92 329 | 83.60 291 | 42.07 347 | 88.40 251 | 48.44 337 | 79.51 335 | 83.01 309 |
|
tpm | | | 67.95 305 | 68.08 306 | 67.55 322 | 78.74 322 | 43.53 356 | 75.60 298 | 67.10 346 | 54.92 316 | 72.23 319 | 88.10 223 | 42.87 346 | 75.97 329 | 52.21 321 | 80.95 334 | 83.15 307 |
|
WTY-MVS | | | 67.91 306 | 68.35 304 | 66.58 325 | 80.82 300 | 48.12 343 | 65.96 341 | 72.60 324 | 53.67 322 | 71.20 324 | 81.68 315 | 58.97 277 | 69.06 344 | 48.57 335 | 81.67 328 | 82.55 312 |
|
test-LLR | | | 67.21 307 | 66.74 311 | 68.63 318 | 76.45 335 | 55.21 302 | 67.89 334 | 67.14 344 | 62.43 275 | 65.08 346 | 72.39 351 | 43.41 343 | 69.37 340 | 61.00 273 | 84.89 310 | 81.31 327 |
|
sss | | | 66.92 308 | 67.26 308 | 65.90 326 | 77.23 327 | 51.10 334 | 64.79 342 | 71.72 332 | 52.12 333 | 70.13 328 | 80.18 327 | 57.96 284 | 65.36 355 | 50.21 328 | 81.01 333 | 81.25 329 |
|
KD-MVS_2432*1600 | | | 66.87 309 | 65.81 314 | 70.04 308 | 67.50 361 | 47.49 346 | 62.56 347 | 79.16 282 | 61.21 284 | 77.98 280 | 80.61 321 | 25.29 371 | 82.48 307 | 53.02 317 | 84.92 308 | 80.16 337 |
|
miper_refine_blended | | | 66.87 309 | 65.81 314 | 70.04 308 | 67.50 361 | 47.49 346 | 62.56 347 | 79.16 282 | 61.21 284 | 77.98 280 | 80.61 321 | 25.29 371 | 82.48 307 | 53.02 317 | 84.92 308 | 80.16 337 |
|
tpm cat1 | | | 66.76 311 | 65.21 317 | 71.42 306 | 77.09 329 | 50.62 337 | 78.01 267 | 73.68 318 | 44.89 353 | 68.64 331 | 79.00 333 | 45.51 332 | 82.42 309 | 49.91 330 | 70.15 355 | 81.23 331 |
|
DWT-MVSNet_test | | | 66.43 312 | 64.37 318 | 72.63 300 | 74.86 347 | 50.86 335 | 76.52 289 | 72.74 323 | 54.06 320 | 65.50 343 | 68.30 357 | 32.13 363 | 84.84 293 | 61.63 270 | 73.59 350 | 82.19 317 |
|
PVSNet | | 58.17 21 | 66.41 313 | 65.63 316 | 68.75 317 | 81.96 284 | 49.88 340 | 62.19 349 | 72.51 326 | 51.03 338 | 68.04 334 | 75.34 349 | 50.84 310 | 74.77 332 | 45.82 346 | 82.96 321 | 81.60 324 |
|
tpmrst | | | 66.28 314 | 66.69 312 | 65.05 330 | 72.82 356 | 39.33 359 | 78.20 266 | 70.69 336 | 53.16 325 | 67.88 335 | 80.36 326 | 48.18 316 | 74.75 333 | 58.13 289 | 70.79 354 | 81.08 332 |
|
Patchmatch-test | | | 65.91 315 | 67.38 307 | 61.48 338 | 75.51 341 | 43.21 357 | 68.84 331 | 63.79 351 | 62.48 273 | 72.80 317 | 83.42 295 | 44.89 340 | 59.52 359 | 48.27 338 | 86.45 294 | 81.70 322 |
|
ADS-MVSNet2 | | | 65.87 316 | 63.64 321 | 72.55 302 | 73.16 353 | 56.92 291 | 67.10 338 | 74.81 306 | 49.74 345 | 66.04 341 | 82.97 299 | 46.71 319 | 77.26 325 | 42.29 350 | 69.96 356 | 83.46 300 |
|
test-mter | | | 65.00 317 | 63.79 320 | 68.63 318 | 76.45 335 | 55.21 302 | 67.89 334 | 67.14 344 | 50.98 339 | 65.08 346 | 72.39 351 | 28.27 368 | 69.37 340 | 61.00 273 | 84.89 310 | 81.31 327 |
|
test0.0.03 1 | | | 64.66 318 | 64.36 319 | 65.57 328 | 75.03 346 | 46.89 348 | 64.69 343 | 61.58 356 | 62.43 275 | 71.18 325 | 77.54 339 | 43.41 343 | 68.47 345 | 40.75 354 | 82.65 325 | 81.35 326 |
|
pmmvs3 | | | 62.47 319 | 60.02 331 | 69.80 311 | 71.58 359 | 64.00 215 | 70.52 326 | 58.44 360 | 39.77 359 | 66.05 340 | 75.84 347 | 27.10 370 | 72.28 335 | 46.15 344 | 84.77 314 | 73.11 346 |
|
EPMVS | | | 62.47 319 | 62.63 323 | 62.01 334 | 70.63 360 | 38.74 360 | 74.76 306 | 52.86 364 | 53.91 321 | 67.71 337 | 80.01 328 | 39.40 351 | 66.60 351 | 55.54 303 | 68.81 359 | 80.68 336 |
|
ADS-MVSNet | | | 61.90 321 | 62.19 324 | 61.03 339 | 73.16 353 | 36.42 362 | 67.10 338 | 61.75 354 | 49.74 345 | 66.04 341 | 82.97 299 | 46.71 319 | 63.21 357 | 42.29 350 | 69.96 356 | 83.46 300 |
|
PMMVS | | | 61.65 322 | 60.38 328 | 65.47 329 | 65.40 365 | 69.26 173 | 63.97 345 | 61.73 355 | 36.80 362 | 60.11 356 | 68.43 355 | 59.42 273 | 66.35 352 | 48.97 334 | 78.57 341 | 60.81 356 |
|
E-PMN | | | 61.59 323 | 61.62 325 | 61.49 337 | 66.81 363 | 55.40 300 | 53.77 357 | 60.34 357 | 66.80 243 | 58.90 359 | 65.50 358 | 40.48 350 | 66.12 353 | 55.72 300 | 86.25 297 | 62.95 355 |
|
TESTMET0.1,1 | | | 61.29 324 | 60.32 329 | 64.19 331 | 72.06 357 | 51.30 330 | 67.89 334 | 62.09 352 | 45.27 352 | 60.65 355 | 69.01 354 | 27.93 369 | 64.74 356 | 56.31 297 | 81.65 330 | 76.53 341 |
|
MVS-HIRNet | | | 61.16 325 | 62.92 322 | 55.87 343 | 79.09 318 | 35.34 363 | 71.83 321 | 57.98 361 | 46.56 349 | 59.05 358 | 91.14 163 | 49.95 313 | 76.43 327 | 38.74 356 | 71.92 353 | 55.84 360 |
|
EMVS | | | 61.10 326 | 60.81 327 | 61.99 335 | 65.96 364 | 55.86 297 | 53.10 358 | 58.97 359 | 67.06 240 | 56.89 362 | 63.33 359 | 40.98 348 | 67.03 349 | 54.79 309 | 86.18 298 | 63.08 354 |
|
DSMNet-mixed | | | 60.98 327 | 61.61 326 | 59.09 342 | 72.88 355 | 45.05 353 | 74.70 307 | 46.61 367 | 26.20 363 | 65.34 344 | 90.32 188 | 55.46 298 | 63.12 358 | 41.72 352 | 81.30 332 | 69.09 352 |
|
dp | | | 60.70 328 | 60.29 330 | 61.92 336 | 72.04 358 | 38.67 361 | 70.83 324 | 64.08 350 | 51.28 337 | 60.75 354 | 77.28 342 | 36.59 358 | 71.58 338 | 47.41 340 | 62.34 361 | 75.52 343 |
|
CHOSEN 280x420 | | | 59.08 329 | 56.52 334 | 66.76 324 | 76.51 333 | 64.39 211 | 49.62 359 | 59.00 358 | 43.86 355 | 55.66 363 | 68.41 356 | 35.55 359 | 68.21 346 | 43.25 349 | 76.78 347 | 67.69 353 |
|
PVSNet_0 | | 51.08 22 | 56.10 330 | 54.97 335 | 59.48 341 | 75.12 345 | 53.28 315 | 55.16 356 | 61.89 353 | 44.30 354 | 59.16 357 | 62.48 360 | 54.22 303 | 65.91 354 | 35.40 359 | 47.01 362 | 59.25 358 |
|
new_pmnet | | | 55.69 331 | 57.66 333 | 49.76 345 | 75.47 342 | 30.59 365 | 59.56 350 | 51.45 365 | 43.62 356 | 62.49 352 | 75.48 348 | 40.96 349 | 49.15 363 | 37.39 358 | 72.52 351 | 69.55 351 |
|
PMMVS2 | | | 55.64 332 | 59.27 332 | 44.74 346 | 64.30 366 | 12.32 369 | 40.60 360 | 49.79 366 | 53.19 324 | 65.06 348 | 84.81 280 | 53.60 305 | 49.76 362 | 32.68 362 | 89.41 263 | 72.15 347 |
|
MVE |  | 40.22 23 | 51.82 333 | 50.47 336 | 55.87 343 | 62.66 367 | 51.91 325 | 31.61 362 | 39.28 368 | 40.65 358 | 50.76 364 | 74.98 350 | 56.24 295 | 44.67 364 | 33.94 361 | 64.11 360 | 71.04 350 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 30.46 334 | 29.60 337 | 33.06 347 | 17.99 369 | 3.84 371 | 13.62 363 | 73.92 313 | 2.79 365 | 18.29 367 | 53.41 362 | 28.53 367 | 43.25 365 | 22.56 363 | 35.27 364 | 52.11 361 |
|
cdsmvs_eth3d_5k | | | 20.81 335 | 27.75 338 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 85.44 234 | 0.00 369 | 0.00 370 | 82.82 303 | 81.46 112 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
tmp_tt | | | 20.25 336 | 24.50 339 | 7.49 349 | 4.47 370 | 8.70 370 | 34.17 361 | 25.16 370 | 1.00 366 | 32.43 366 | 18.49 364 | 39.37 352 | 9.21 367 | 21.64 364 | 43.75 363 | 4.57 363 |
|
ab-mvs-re | | | 6.65 337 | 8.87 340 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 79.80 330 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
pcd_1.5k_mvsjas | | | 6.41 338 | 8.55 341 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 76.94 155 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
test123 | | | 6.27 339 | 8.08 342 | 0.84 350 | 1.11 372 | 0.57 372 | 62.90 346 | 0.82 372 | 0.54 367 | 1.07 369 | 2.75 369 | 1.26 373 | 0.30 368 | 1.04 366 | 1.26 367 | 1.66 364 |
|
testmvs | | | 5.91 340 | 7.65 343 | 0.72 351 | 1.20 371 | 0.37 373 | 59.14 352 | 0.67 373 | 0.49 368 | 1.11 368 | 2.76 368 | 0.94 374 | 0.24 369 | 1.02 367 | 1.47 366 | 1.55 365 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 373 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 373 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 92.22 102 | 80.48 68 | | 91.85 113 | 71.22 197 | 90.38 86 | 92.98 110 | 86.06 62 | 96.11 6 | 81.99 81 | 96.75 95 | |
|
RE-MVS-def | | | | 92.61 5 | | 94.13 53 | 88.95 8 | 92.87 12 | 94.16 30 | 88.75 15 | 93.79 28 | 94.43 61 | 90.64 11 | | 87.16 25 | 97.60 64 | 92.73 144 |
|
IU-MVS | | | | | | 94.18 48 | 72.64 136 | | 90.82 140 | 56.98 308 | 89.67 104 | | | | 85.78 44 | 97.92 46 | 93.28 122 |
|
OPU-MVS | | | | | 88.27 81 | 91.89 113 | 77.83 92 | 90.47 46 | | | | 91.22 159 | 81.12 116 | 94.68 72 | 74.48 163 | 95.35 141 | 92.29 163 |
|
test_241102_TWO | | | | | | | | | 93.71 50 | 83.77 41 | 93.49 37 | 94.27 69 | 89.27 22 | 95.84 19 | 86.03 41 | 97.82 51 | 92.04 172 |
|
test_241102_ONE | | | | | | 94.18 48 | 72.65 134 | | 93.69 51 | 83.62 43 | 94.11 22 | 93.78 97 | 90.28 15 | 95.50 44 | | | |
|
9.14 | | | | 89.29 61 | | 91.84 115 | | 88.80 81 | 95.32 9 | 75.14 146 | 91.07 75 | 92.89 115 | 87.27 45 | 93.78 109 | 83.69 65 | 97.55 67 | |
|
save fliter | | | | | | 93.75 61 | 77.44 98 | 86.31 120 | 89.72 170 | 70.80 200 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 85.33 30 | 93.75 30 | 94.65 53 | 87.44 44 | 95.78 24 | 87.41 19 | 98.21 30 | 92.98 134 |
|
test_0728_SECOND | | | | | 86.79 97 | 94.25 47 | 72.45 143 | 90.54 43 | 94.10 36 | | | | | 95.88 14 | 86.42 31 | 97.97 43 | 92.02 173 |
|
test0726 | | | | | | 94.16 51 | 72.56 139 | 90.63 42 | 93.90 43 | 83.61 44 | 93.75 30 | 94.49 58 | 89.76 19 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 292 |
|
test_part2 | | | | | | 93.86 60 | 77.77 93 | | | | 92.84 45 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 323 | | | | 83.88 292 |
|
sam_mvs | | | | | | | | | | | | | 45.92 328 | | | | |
|
ambc | | | | | 82.98 178 | 90.55 153 | 64.86 206 | 88.20 88 | 89.15 181 | | 89.40 113 | 93.96 87 | 71.67 214 | 91.38 188 | 78.83 116 | 96.55 101 | 92.71 147 |
|
MTGPA |  | | | | | | | | 91.81 116 | | | | | | | | |
|
test_post1 | | | | | | | | 78.85 259 | | | | 3.13 366 | 45.19 337 | 80.13 318 | 58.11 290 | | |
|
test_post | | | | | | | | | | | | 3.10 367 | 45.43 333 | 77.22 326 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 314 | 45.93 327 | 87.01 263 | | | |
|
GG-mvs-BLEND | | | | | 67.16 323 | 73.36 351 | 46.54 350 | 84.15 150 | 55.04 363 | | 58.64 360 | 61.95 361 | 29.93 366 | 83.87 302 | 38.71 357 | 76.92 346 | 71.07 349 |
|
MTMP | | | | | | | | 90.66 40 | 33.14 369 | | | | | | | | |
|
gm-plane-assit | | | | | | 75.42 343 | 44.97 354 | | | 52.17 330 | | 72.36 353 | | 87.90 255 | 54.10 312 | | |
|
test9_res | | | | | | | | | | | | | | | 80.83 95 | 96.45 106 | 90.57 208 |
|
TEST9 | | | | | | 92.34 96 | 79.70 75 | 83.94 155 | 90.32 153 | 65.41 260 | 84.49 199 | 90.97 169 | 82.03 103 | 93.63 114 | | | |
|
test_8 | | | | | | 92.09 105 | 78.87 83 | 83.82 160 | 90.31 155 | 65.79 250 | 84.36 202 | 90.96 171 | 81.93 105 | 93.44 126 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 107 | 96.16 116 | 90.22 215 |
|
agg_prior | | | | | | 91.58 123 | 77.69 94 | | 90.30 156 | | 84.32 203 | | | 93.18 134 | | | |
|
TestCases | | | | | 89.68 54 | 91.59 120 | 83.40 48 | | 95.44 7 | 79.47 91 | 88.00 136 | 93.03 108 | 82.66 90 | 91.47 181 | 70.81 197 | 96.14 117 | 94.16 89 |
|
test_prior4 | | | | | | | 78.97 82 | 84.59 142 | | | | | | | | | |
|
test_prior2 | | | | | | | | 83.37 174 | | 75.43 141 | 84.58 197 | 91.57 152 | 81.92 107 | | 79.54 109 | 96.97 86 | |
|
test_prior | | | | | 86.32 105 | 90.59 151 | 71.99 149 | | 92.85 88 | | | | | 94.17 93 | | | 92.80 141 |
|
旧先验2 | | | | | | | | 81.73 215 | | 56.88 309 | 86.54 168 | | | 84.90 292 | 72.81 186 | | |
|
新几何2 | | | | | | | | 81.72 216 | | | | | | | | | |
|
新几何1 | | | | | 82.95 179 | 93.96 57 | 78.56 87 | | 80.24 276 | 55.45 313 | 83.93 211 | 91.08 164 | 71.19 216 | 88.33 252 | 65.84 242 | 93.07 202 | 81.95 321 |
|
旧先验1 | | | | | | 91.97 108 | 71.77 151 | | 81.78 267 | | | 91.84 145 | 73.92 185 | | | 93.65 189 | 83.61 298 |
|
无先验 | | | | | | | | 82.81 190 | 85.62 233 | 58.09 299 | | | | 91.41 186 | 67.95 229 | | 84.48 286 |
|
原ACMM2 | | | | | | | | 82.26 208 | | | | | | | | | |
|
原ACMM1 | | | | | 84.60 143 | 92.81 87 | 74.01 126 | | 91.50 122 | 62.59 271 | 82.73 228 | 90.67 181 | 76.53 162 | 94.25 86 | 69.24 213 | 95.69 134 | 85.55 276 |
|
test222 | | | | | | 93.31 72 | 76.54 111 | 79.38 249 | 77.79 289 | 52.59 327 | 82.36 232 | 90.84 175 | 66.83 235 | | | 91.69 231 | 81.25 329 |
|
testdata2 | | | | | | | | | | | | | | 86.43 276 | 63.52 255 | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 104 | | | | |
|
testdata | | | | | 79.54 240 | 92.87 82 | 72.34 144 | | 80.14 278 | 59.91 293 | 85.47 186 | 91.75 150 | 67.96 229 | 85.24 288 | 68.57 225 | 92.18 223 | 81.06 334 |
|
testdata1 | | | | | | | | 79.62 244 | | 73.95 158 | | | | | | | |
|
test12 | | | | | 86.57 100 | 90.74 147 | 72.63 137 | | 90.69 143 | | 82.76 227 | | 79.20 131 | 94.80 69 | | 95.32 143 | 92.27 165 |
|
plane_prior7 | | | | | | 93.45 67 | 77.31 102 | | | | | | | | | | |
|
plane_prior6 | | | | | | 92.61 88 | 76.54 111 | | | | | | 74.84 174 | | | | |
|
plane_prior5 | | | | | | | | | 93.61 55 | | | | | 95.22 55 | 80.78 96 | 95.83 126 | 94.46 77 |
|
plane_prior4 | | | | | | | | | | | | 92.95 113 | | | | | |
|
plane_prior3 | | | | | | | 76.85 109 | | | 77.79 113 | 86.55 163 | | | | | | |
|
plane_prior2 | | | | | | | | 89.45 69 | | 79.44 93 | | | | | | | |
|
plane_prior1 | | | | | | 92.83 86 | | | | | | | | | | | |
|
plane_prior | | | | | | | 76.42 114 | 87.15 104 | | 75.94 135 | | | | | | 95.03 155 | |
|
n2 | | | | | | | | | 0.00 374 | | | | | | | | |
|
nn | | | | | | | | | 0.00 374 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 310 | | | | | | | | |
|
lessismore_v0 | | | | | 85.95 116 | 91.10 139 | 70.99 160 | | 70.91 335 | | 91.79 64 | 94.42 63 | 61.76 259 | 92.93 144 | 79.52 111 | 93.03 204 | 93.93 97 |
|
LGP-MVS_train | | | | | 90.82 38 | 94.75 40 | 81.69 59 | | 94.27 22 | 82.35 60 | 93.67 33 | 94.82 48 | 91.18 5 | 95.52 39 | 85.36 47 | 98.73 7 | 95.23 58 |
|
test11 | | | | | | | | | 91.46 123 | | | | | | | | |
|
door | | | | | | | | | 72.57 325 | | | | | | | | |
|
HQP5-MVS | | | | | | | 70.66 161 | | | | | | | | | | |
|
HQP-NCC | | | | | | 91.19 134 | | 84.77 137 | | 73.30 168 | 80.55 259 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 134 | | 84.77 137 | | 73.30 168 | 80.55 259 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 139 | | |
|
HQP4-MVS | | | | | | | | | | | 80.56 258 | | | 94.61 76 | | | 93.56 117 |
|
HQP3-MVS | | | | | | | | | 92.68 94 | | | | | | | 94.47 171 | |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 207 | | | | |
|
NP-MVS | | | | | | 91.95 109 | 74.55 123 | | | | | 90.17 194 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 367 | 70.76 325 | | 46.47 350 | 61.27 353 | | 45.20 336 | | 49.18 333 | | 83.75 297 |
|
MDTV_nov1_ep13 | | | | 68.29 305 | | 78.03 323 | 43.87 355 | 74.12 310 | 72.22 327 | 52.17 330 | 67.02 339 | 85.54 261 | 45.36 334 | 80.85 315 | 55.73 299 | 84.42 315 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 133 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 76 | |
|
Test By Simon | | | | | | | | | | | | | 79.09 132 | | | | |
|
ITE_SJBPF | | | | | 90.11 50 | 90.72 148 | 84.97 36 | | 90.30 156 | 81.56 69 | 90.02 92 | 91.20 161 | 82.40 93 | 90.81 205 | 73.58 176 | 94.66 167 | 94.56 72 |
|
DeepMVS_CX |  | | | | 24.13 348 | 32.95 368 | 29.49 366 | | 21.63 371 | 12.07 364 | 37.95 365 | 45.07 363 | 30.84 364 | 19.21 366 | 17.94 365 | 33.06 365 | 23.69 362 |
|