This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 2995.54 397.36 196.97 199.04 199.05 196.61 195.92 1185.07 4699.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 296.46 290.58 792.86 4096.29 1688.16 3194.17 8686.07 3798.48 1797.22 17
LTVRE_ROB86.10 193.04 393.44 291.82 2193.73 6085.72 2896.79 195.51 588.86 1295.63 796.99 884.81 6493.16 12891.10 197.53 6696.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
abl_693.02 493.16 492.60 494.73 4288.99 693.26 1094.19 2689.11 1094.43 1595.27 3591.86 395.09 5587.54 1898.02 3793.71 107
HPM-MVS_fast92.50 592.54 592.37 595.93 1585.81 2792.99 1194.23 2285.21 2892.51 4795.13 3990.65 1095.34 4588.06 998.15 3295.95 39
SR-MVS92.23 692.34 691.91 1594.89 3887.85 892.51 2093.87 4188.20 1793.24 3494.02 7990.15 1695.67 2886.82 2697.34 7292.19 161
HPM-MVScopyleft92.13 792.20 891.91 1595.58 2584.67 3893.51 694.85 1482.88 5191.77 6193.94 8890.55 1295.73 2688.50 798.23 2895.33 51
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 892.24 791.48 2293.02 7585.17 3192.47 2295.05 1287.65 2093.21 3594.39 6590.09 1795.08 5686.67 2797.60 6394.18 87
COLMAP_ROBcopyleft83.01 391.97 991.95 992.04 1093.68 6186.15 1893.37 895.10 1190.28 892.11 5395.03 4189.75 2094.93 6079.95 9898.27 2695.04 60
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1091.87 1492.03 1195.53 2685.91 2293.35 994.16 2782.52 5592.39 5094.14 7489.15 2295.62 2987.35 2098.24 2794.56 70
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1191.47 2192.37 596.04 1288.48 792.72 1492.60 9083.09 4891.54 6494.25 7187.67 3995.51 3987.21 2498.11 3393.12 127
CP-MVS91.67 1291.58 1891.96 1295.29 3187.62 993.38 793.36 5683.16 4791.06 7394.00 8088.26 2895.71 2787.28 2398.39 2092.55 146
XVS91.54 1391.36 2392.08 895.64 2386.25 1692.64 1593.33 5885.07 2989.99 8894.03 7886.57 5295.80 2087.35 2097.62 6194.20 85
MTAPA91.52 1491.60 1791.29 2796.59 486.29 1492.02 2691.81 10984.07 3492.00 5694.40 6386.63 5095.28 4888.59 598.31 2392.30 153
UA-Net91.49 1591.53 1991.39 2494.98 3582.95 5193.52 592.79 8588.22 1688.53 12197.64 283.45 7694.55 7586.02 4098.60 1296.67 25
ACMMPR91.49 1591.35 2591.92 1495.74 1985.88 2492.58 1893.25 6681.99 5991.40 6794.17 7387.51 4095.87 1487.74 1197.76 5393.99 93
LPG-MVS_test91.47 1791.68 1590.82 3694.75 4081.69 5390.00 4894.27 1982.35 5693.67 3194.82 4791.18 595.52 3685.36 4498.73 695.23 56
region2R91.44 1891.30 2991.87 1795.75 1885.90 2392.63 1793.30 6381.91 6190.88 7894.21 7287.75 3795.87 1487.60 1697.71 5793.83 100
HFP-MVS91.30 1991.39 2291.02 3195.43 2884.66 3992.58 1893.29 6481.99 5991.47 6593.96 8488.35 2695.56 3287.74 1197.74 5592.85 135
zzz-MVS91.27 2091.26 3091.29 2796.59 486.29 1488.94 7391.81 10984.07 3492.00 5694.40 6386.63 5095.28 4888.59 598.31 2392.30 153
ZNCC-MVS91.26 2191.34 2691.01 3395.73 2083.05 4992.18 2494.22 2380.14 8191.29 7093.97 8187.93 3695.87 1488.65 497.96 4494.12 90
APDe-MVS91.22 2291.92 1089.14 6292.97 7778.04 8392.84 1294.14 2883.33 4593.90 2495.73 2588.77 2396.41 187.60 1697.98 4192.98 131
PGM-MVS91.20 2390.95 3891.93 1395.67 2285.85 2590.00 4893.90 3880.32 7891.74 6294.41 6288.17 3095.98 886.37 3097.99 3993.96 95
SteuartSystems-ACMMP91.16 2491.36 2390.55 4093.91 5680.97 6091.49 3293.48 5482.82 5292.60 4693.97 8188.19 2996.29 487.61 1598.20 3194.39 80
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2590.91 3991.83 1996.18 1186.88 1192.20 2393.03 7682.59 5488.52 12294.37 6686.74 4995.41 4386.32 3198.21 2993.19 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2691.01 3590.82 3695.45 2782.73 5291.75 3093.74 4480.98 7291.38 6893.80 9187.20 4495.80 2087.10 2597.69 5893.93 96
MP-MVS-pluss90.81 2791.08 3289.99 4995.97 1379.88 6588.13 8694.51 1775.79 13292.94 3794.96 4288.36 2595.01 5890.70 298.40 1995.09 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2891.50 2088.44 7393.00 7676.26 10989.65 5995.55 487.72 1993.89 2694.94 4391.62 493.44 11878.35 11498.76 395.61 46
ACMMP_NAP90.65 2991.07 3489.42 5895.93 1579.54 7089.95 5193.68 4877.65 10991.97 5894.89 4488.38 2495.45 4189.27 397.87 4993.27 121
ACMM79.39 990.65 2990.99 3689.63 5495.03 3483.53 4489.62 6093.35 5779.20 9293.83 2793.60 9790.81 892.96 13485.02 4898.45 1892.41 149
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3190.34 4691.38 2589.03 16784.23 4293.58 494.68 1590.65 690.33 8493.95 8784.50 6695.37 4480.87 8995.50 13094.53 74
ACMP79.16 1090.54 3290.60 4490.35 4494.36 4480.98 5989.16 6994.05 3179.03 9592.87 3993.74 9590.60 1195.21 5282.87 7098.76 394.87 61
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVS90.53 3391.08 3288.88 6493.38 6778.65 7989.15 7094.05 3184.68 3293.90 2494.11 7688.13 3296.30 384.51 5497.81 5191.70 176
#test#90.49 3490.31 4791.02 3195.43 2884.66 3990.65 3893.29 6477.00 11691.47 6593.96 8488.35 2695.56 3284.88 4997.74 5592.85 135
SED-MVS90.46 3591.64 1686.93 8994.18 4772.65 12790.47 4393.69 4683.77 3894.11 2294.27 6790.28 1495.84 1886.03 3897.92 4592.29 155
SMA-MVS90.31 3690.48 4589.83 5095.31 3079.52 7190.98 3693.24 6775.37 13992.84 4195.28 3485.58 6196.09 687.92 1097.76 5393.88 98
SF-MVS90.27 3790.80 4188.68 6992.86 8177.09 9891.19 3595.74 381.38 6792.28 5193.80 9186.89 4794.64 6985.52 4297.51 6794.30 83
v7n90.13 3890.96 3787.65 8491.95 10571.06 15289.99 5093.05 7386.53 2394.29 1896.27 1782.69 8394.08 9086.25 3497.63 6097.82 8
PMVScopyleft80.48 690.08 3990.66 4388.34 7596.71 392.97 190.31 4589.57 16888.51 1590.11 8595.12 4090.98 788.92 23277.55 12597.07 7983.13 295
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSP-MVS90.06 4091.32 2786.29 10294.16 5072.56 13290.54 4091.01 12983.61 4193.75 2894.65 5289.76 1895.78 2386.42 2897.97 4290.55 201
PS-CasMVS90.06 4091.92 1084.47 13996.56 758.83 26689.04 7192.74 8791.40 496.12 396.06 2287.23 4395.57 3179.42 10698.74 599.00 2
PEN-MVS90.03 4291.88 1384.48 13896.57 658.88 26388.95 7293.19 6891.62 396.01 596.16 2087.02 4595.60 3078.69 11198.72 898.97 3
OurMVSNet-221017-090.01 4389.74 5190.83 3593.16 7380.37 6291.91 2993.11 7081.10 7095.32 997.24 572.94 19294.85 6385.07 4697.78 5297.26 15
DTE-MVSNet89.98 4491.91 1284.21 14596.51 857.84 27188.93 7492.84 8491.92 296.16 296.23 1886.95 4695.99 779.05 10898.57 1498.80 6
XVG-ACMP-BASELINE89.98 4489.84 5090.41 4294.91 3784.50 4189.49 6593.98 3379.68 8592.09 5493.89 8983.80 7293.10 13282.67 7298.04 3493.64 111
3Dnovator+83.92 289.97 4689.66 5290.92 3491.27 12781.66 5691.25 3394.13 2988.89 1188.83 11694.26 7077.55 14195.86 1784.88 4995.87 11895.24 55
WR-MVS_H89.91 4791.31 2885.71 11896.32 1062.39 22589.54 6393.31 6190.21 995.57 895.66 2781.42 10795.90 1280.94 8898.80 298.84 5
OPM-MVS89.80 4889.97 4889.27 6094.76 3979.86 6686.76 10792.78 8678.78 9892.51 4793.64 9688.13 3293.84 9984.83 5197.55 6494.10 91
mvs_tets89.78 4989.27 5991.30 2693.51 6384.79 3689.89 5390.63 13770.00 20194.55 1496.67 1187.94 3593.59 11084.27 5695.97 11495.52 47
anonymousdsp89.73 5088.88 6692.27 789.82 15886.67 1290.51 4290.20 15569.87 20295.06 1096.14 2184.28 6893.07 13387.68 1396.34 10297.09 19
test_djsdf89.62 5189.01 6291.45 2392.36 9282.98 5091.98 2790.08 15871.54 18694.28 2096.54 1381.57 10594.27 7786.26 3296.49 9797.09 19
XVG-OURS-SEG-HR89.59 5289.37 5790.28 4594.47 4385.95 2186.84 10393.91 3780.07 8286.75 15193.26 9993.64 290.93 18884.60 5390.75 23793.97 94
APD-MVScopyleft89.54 5389.63 5389.26 6192.57 8681.34 5890.19 4693.08 7280.87 7391.13 7193.19 10086.22 5795.97 982.23 7697.18 7790.45 203
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testtj89.51 5489.48 5689.59 5692.26 9680.80 6190.14 4793.54 5283.37 4490.57 8292.55 12184.99 6396.15 581.26 8396.61 9291.83 172
jajsoiax89.41 5588.81 6891.19 3093.38 6784.72 3789.70 5590.29 15269.27 20594.39 1696.38 1586.02 5993.52 11483.96 5895.92 11695.34 50
CPTT-MVS89.39 5688.98 6490.63 3995.09 3386.95 1092.09 2592.30 9679.74 8487.50 13792.38 12481.42 10793.28 12383.07 6797.24 7591.67 177
ACMH76.49 1489.34 5791.14 3183.96 15192.50 8970.36 15789.55 6193.84 4281.89 6294.70 1295.44 3290.69 988.31 24283.33 6598.30 2593.20 124
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet89.27 5890.91 3984.37 14096.34 958.61 26888.66 8192.06 10190.78 595.67 695.17 3881.80 10395.54 3579.00 10998.69 998.95 4
XVG-OURS89.18 5988.83 6790.23 4694.28 4586.11 2085.91 11893.60 5180.16 8089.13 11293.44 9883.82 7190.98 18683.86 6095.30 13893.60 113
DeepC-MVS82.31 489.15 6089.08 6189.37 5993.64 6279.07 7488.54 8294.20 2473.53 15789.71 9794.82 4785.09 6295.77 2584.17 5798.03 3693.26 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6190.72 4284.31 14397.00 264.33 20389.67 5888.38 18488.84 1394.29 1897.57 390.48 1391.26 17872.57 17697.65 5997.34 14
DVP-MVS89.08 6288.16 7291.83 1995.76 1786.14 1992.75 1393.90 3878.43 10389.16 11192.25 13172.03 20496.36 288.21 890.93 23292.98 131
xxxxxxxxxxxxxcwj89.04 6389.13 6088.79 6693.75 5877.44 9186.31 11595.27 970.80 19192.28 5193.80 9186.89 4794.64 6985.52 4297.51 6794.30 83
SD-MVS88.96 6489.88 4986.22 10591.63 11477.07 9989.82 5493.77 4378.90 9692.88 3892.29 12986.11 5890.22 21086.24 3597.24 7591.36 185
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6588.45 7190.38 4394.92 3685.85 2589.70 5591.27 12278.20 10586.69 15292.28 13080.36 11895.06 5786.17 3696.49 9790.22 206
ETH3D-3000-0.188.85 6688.96 6588.52 7091.94 10777.27 9788.71 7995.26 1076.08 12390.66 8192.69 11684.48 6793.83 10083.38 6497.48 6994.47 75
test_040288.65 6789.58 5585.88 11492.55 8772.22 14084.01 14989.44 17088.63 1494.38 1795.77 2486.38 5693.59 11079.84 9995.21 13991.82 173
DP-MVS88.60 6889.01 6287.36 8791.30 12577.50 9087.55 9292.97 7987.95 1889.62 10192.87 11084.56 6593.89 9677.65 12396.62 9190.70 196
Anonymous2023121188.40 6989.62 5484.73 13390.46 14765.27 19488.86 7593.02 7787.15 2193.05 3697.10 682.28 9192.02 15776.70 13497.99 3996.88 23
PS-MVSNAJss88.31 7087.90 7489.56 5793.31 6977.96 8487.94 8891.97 10470.73 19394.19 2196.67 1176.94 15094.57 7383.07 6796.28 10496.15 31
OMC-MVS88.19 7187.52 7890.19 4791.94 10781.68 5587.49 9493.17 6976.02 12688.64 11991.22 15384.24 6993.37 12177.97 12197.03 8095.52 47
TSAR-MVS + MP.88.14 7287.82 7589.09 6395.72 2176.74 10392.49 2191.19 12567.85 22186.63 15394.84 4679.58 12595.96 1087.62 1494.50 16194.56 70
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RPSCF88.00 7386.93 8891.22 2990.08 15389.30 589.68 5791.11 12679.26 9189.68 9894.81 5082.44 8687.74 24676.54 13688.74 25996.61 27
AllTest87.97 7487.40 8189.68 5291.59 11583.40 4589.50 6495.44 679.47 8788.00 13193.03 10382.66 8491.47 17070.81 18596.14 11094.16 88
TranMVSNet+NR-MVSNet87.86 7588.76 6985.18 12694.02 5364.13 20484.38 14491.29 12184.88 3192.06 5593.84 9086.45 5493.73 10273.22 16698.66 1097.69 9
nrg03087.85 7688.49 7085.91 11290.07 15469.73 16087.86 8994.20 2474.04 15192.70 4594.66 5185.88 6091.50 16979.72 10097.32 7396.50 29
ETH3D cwj APD-0.1687.83 7787.62 7788.47 7291.21 12878.20 8187.26 9694.54 1672.05 18288.89 11392.31 12883.86 7094.24 8081.59 8296.87 8492.97 134
CNVR-MVS87.81 7887.68 7688.21 7792.87 7977.30 9685.25 12891.23 12377.31 11387.07 14591.47 15082.94 8194.71 6684.67 5296.27 10692.62 145
HQP_MVS87.75 7987.43 8088.70 6893.45 6476.42 10789.45 6693.61 4979.44 8986.55 15492.95 10774.84 16895.22 5080.78 9195.83 11994.46 76
NCCC87.36 8086.87 8988.83 6592.32 9578.84 7786.58 11191.09 12778.77 9984.85 18490.89 16780.85 11295.29 4681.14 8595.32 13592.34 151
DeepPCF-MVS81.24 587.28 8186.21 9890.49 4191.48 12284.90 3483.41 16892.38 9570.25 19989.35 10990.68 17482.85 8294.57 7379.55 10295.95 11592.00 166
SixPastTwentyTwo87.20 8287.45 7986.45 9892.52 8869.19 16987.84 9088.05 19081.66 6494.64 1396.53 1465.94 23094.75 6583.02 6996.83 8795.41 49
UniMVSNet (Re)86.87 8386.98 8786.55 9693.11 7468.48 17383.80 15792.87 8180.37 7689.61 10391.81 14277.72 13894.18 8475.00 15198.53 1596.99 22
Vis-MVSNetpermissive86.86 8486.58 9287.72 8292.09 10177.43 9387.35 9592.09 10078.87 9784.27 19994.05 7778.35 13393.65 10480.54 9591.58 22092.08 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 8587.06 8486.17 10992.86 8167.02 18282.55 19091.56 11383.08 4990.92 7591.82 14178.25 13493.99 9274.16 15598.35 2197.49 13
DU-MVS86.80 8686.99 8686.21 10793.24 7167.02 18283.16 17792.21 9781.73 6390.92 7591.97 13577.20 14493.99 9274.16 15598.35 2197.61 10
Regformer-286.74 8786.08 10088.73 6784.18 25279.20 7383.52 16389.33 17183.33 4589.92 9285.07 26383.23 7993.16 12883.39 6392.72 20093.83 100
IS-MVSNet86.66 8886.82 9186.17 10992.05 10366.87 18491.21 3488.64 18086.30 2589.60 10492.59 11869.22 21594.91 6173.89 15997.89 4896.72 24
v1086.54 8987.10 8384.84 13088.16 18463.28 21386.64 11092.20 9875.42 13892.81 4394.50 5774.05 17794.06 9183.88 5996.28 10497.17 18
pmmvs686.52 9088.06 7381.90 19192.22 9962.28 22884.66 13689.15 17383.54 4389.85 9397.32 488.08 3486.80 25870.43 19397.30 7496.62 26
Regformer-486.41 9185.71 10788.52 7084.27 24877.57 8984.07 14788.00 19282.82 5289.84 9485.48 25182.06 9592.77 14083.83 6191.04 22695.22 58
PHI-MVS86.38 9285.81 10588.08 7888.44 17877.34 9489.35 6893.05 7373.15 16884.76 18587.70 22078.87 12994.18 8480.67 9396.29 10392.73 140
test_prior386.31 9386.31 9586.32 10090.59 14471.99 14283.37 16992.85 8275.43 13684.58 18891.57 14681.92 10194.17 8679.54 10396.97 8192.80 137
CSCG86.26 9486.47 9385.60 12090.87 13774.26 11887.98 8791.85 10780.35 7789.54 10788.01 21479.09 12792.13 15275.51 14495.06 14690.41 204
DeepC-MVS_fast80.27 886.23 9585.65 10987.96 8191.30 12576.92 10087.19 9791.99 10370.56 19484.96 18090.69 17380.01 12195.14 5378.37 11395.78 12391.82 173
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 9686.83 9084.36 14187.82 18962.35 22786.42 11391.33 12076.78 11892.73 4494.48 5973.41 18693.72 10383.10 6695.41 13197.01 21
Anonymous2024052986.20 9787.13 8283.42 16490.19 15164.55 20184.55 13990.71 13485.85 2689.94 9195.24 3782.13 9390.40 20569.19 20496.40 10095.31 52
CDPH-MVS86.17 9885.54 11088.05 8092.25 9775.45 11283.85 15492.01 10265.91 23686.19 16191.75 14483.77 7394.98 5977.43 12896.71 9093.73 106
Regformer-186.00 9985.50 11187.49 8584.18 25276.90 10183.52 16387.94 19482.18 5889.19 11085.07 26382.28 9191.89 16282.40 7492.72 20093.69 108
NR-MVSNet86.00 9986.22 9785.34 12493.24 7164.56 20082.21 20090.46 14080.99 7188.42 12491.97 13577.56 14093.85 9772.46 17798.65 1197.61 10
train_agg85.98 10185.28 11488.07 7992.34 9379.70 6883.94 15090.32 14565.79 23784.49 19090.97 16381.93 9993.63 10681.21 8496.54 9590.88 192
FC-MVSNet-test85.93 10287.05 8582.58 18292.25 9756.44 28285.75 12193.09 7177.33 11291.94 5994.65 5274.78 17093.41 12075.11 15098.58 1397.88 7
Effi-MVS+-dtu85.82 10383.38 14893.14 387.13 20491.15 287.70 9188.42 18274.57 14683.56 20785.65 24878.49 13194.21 8272.04 17992.88 19594.05 92
agg_prior185.72 10485.20 11587.28 8891.58 11877.69 8783.69 16090.30 14966.29 23384.32 19491.07 16082.13 9393.18 12681.02 8696.36 10190.98 188
TAPA-MVS77.73 1285.71 10584.83 12188.37 7488.78 17279.72 6787.15 9993.50 5369.17 20685.80 17189.56 19380.76 11392.13 15273.21 17195.51 12993.25 123
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs85.50 10686.14 9983.58 16087.97 18567.13 18187.55 9294.32 1873.44 15988.47 12387.54 22386.45 5491.06 18575.76 14393.76 17592.54 147
EPP-MVSNet85.47 10785.04 11786.77 9391.52 12169.37 16391.63 3187.98 19381.51 6687.05 14691.83 14066.18 22995.29 4670.75 18896.89 8395.64 44
FIs85.35 10886.27 9682.60 18191.86 11057.31 27585.10 13093.05 7375.83 13191.02 7493.97 8173.57 18292.91 13873.97 15898.02 3797.58 12
casdiffmvs85.21 10985.85 10483.31 16686.17 22762.77 21983.03 17993.93 3574.69 14588.21 12992.68 11782.29 9091.89 16277.87 12293.75 17795.27 54
baseline85.20 11085.93 10283.02 17186.30 22262.37 22684.55 13993.96 3474.48 14887.12 14192.03 13482.30 8991.94 15978.39 11294.21 16794.74 66
K. test v385.14 11184.73 12286.37 9991.13 13369.63 16285.45 12676.68 28084.06 3692.44 4996.99 862.03 24794.65 6880.58 9493.24 18594.83 65
EI-MVSNet-Vis-set85.12 11284.53 13186.88 9084.01 25572.76 12683.91 15385.18 23180.44 7588.75 11785.49 25080.08 12091.92 16082.02 7790.85 23595.97 37
ETH3 D test640085.09 11384.87 12085.75 11790.80 13969.34 16485.90 11993.31 6165.43 24386.11 16489.95 18880.92 11194.86 6275.90 14295.57 12893.05 128
Regformer-385.06 11484.67 12786.22 10584.27 24873.43 12284.07 14785.26 22980.77 7488.62 12085.48 25180.56 11690.39 20681.99 7891.04 22694.85 63
EI-MVSNet-UG-set85.04 11584.44 13386.85 9183.87 25872.52 13483.82 15585.15 23280.27 7988.75 11785.45 25479.95 12391.90 16181.92 7990.80 23696.13 32
X-MVStestdata85.04 11582.70 15792.08 895.64 2386.25 1692.64 1593.33 5885.07 2989.99 8816.05 34886.57 5295.80 2087.35 2097.62 6194.20 85
MSLP-MVS++85.00 11786.03 10181.90 19191.84 11171.56 15086.75 10893.02 7775.95 12987.12 14189.39 19477.98 13589.40 22877.46 12694.78 15484.75 272
F-COLMAP84.97 11883.42 14789.63 5492.39 9183.40 4588.83 7691.92 10673.19 16780.18 25389.15 20077.04 14893.28 12365.82 23092.28 20692.21 160
3Dnovator80.37 784.80 11984.71 12585.06 12886.36 22074.71 11588.77 7890.00 16075.65 13484.96 18093.17 10174.06 17691.19 18078.28 11691.09 22489.29 220
IterMVS-LS84.73 12084.98 11883.96 15187.35 19963.66 20883.25 17389.88 16276.06 12489.62 10192.37 12773.40 18892.52 14578.16 11794.77 15695.69 42
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 12184.34 13785.49 12390.18 15275.86 11179.23 24387.13 20473.35 16085.56 17589.34 19583.60 7590.50 20376.64 13594.05 17190.09 211
HQP-MVS84.61 12284.06 14086.27 10391.19 12970.66 15484.77 13292.68 8873.30 16380.55 24890.17 18672.10 20094.61 7177.30 12994.47 16293.56 115
v119284.57 12384.69 12684.21 14587.75 19162.88 21783.02 18091.43 11769.08 20889.98 9090.89 16772.70 19693.62 10982.41 7394.97 14996.13 32
mvs-test184.55 12482.12 16691.84 1887.13 20489.54 485.05 13188.42 18274.57 14680.60 24582.98 28478.49 13193.98 9472.04 17989.77 24692.00 166
FMVSNet184.55 12485.45 11281.85 19390.27 15061.05 23986.83 10488.27 18778.57 10289.66 10095.64 2875.43 16290.68 19869.09 20595.33 13493.82 102
v114484.54 12684.72 12484.00 14987.67 19362.55 22382.97 18190.93 13070.32 19889.80 9590.99 16273.50 18393.48 11681.69 8194.65 15995.97 37
Gipumacopyleft84.44 12786.33 9478.78 23784.20 25173.57 12189.55 6190.44 14184.24 3384.38 19294.89 4476.35 15980.40 30376.14 13996.80 8982.36 303
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testing_284.36 12884.64 12883.50 16386.74 21463.97 20784.56 13890.31 14766.22 23491.62 6394.55 5575.88 16091.95 15877.02 13394.89 15194.56 70
MCST-MVS84.36 12883.93 14385.63 11991.59 11571.58 14983.52 16392.13 9961.82 26383.96 20189.75 19279.93 12493.46 11778.33 11594.34 16591.87 171
VDDNet84.35 13085.39 11381.25 20195.13 3259.32 25685.42 12781.11 25886.41 2487.41 13896.21 1973.61 18190.61 20166.33 22496.85 8593.81 105
ETV-MVS84.31 13183.91 14485.52 12188.58 17470.40 15684.50 14393.37 5578.76 10084.07 20078.72 31880.39 11795.13 5473.82 16192.98 19391.04 187
v124084.30 13284.51 13283.65 15887.65 19461.26 23682.85 18491.54 11467.94 21990.68 8090.65 17671.71 20693.64 10582.84 7194.78 15496.07 34
MVS_111021_LR84.28 13383.76 14585.83 11689.23 16483.07 4880.99 21883.56 24372.71 17486.07 16589.07 20281.75 10486.19 26777.11 13193.36 18088.24 232
v14419284.24 13484.41 13483.71 15787.59 19661.57 23282.95 18291.03 12867.82 22289.80 9590.49 17873.28 18993.51 11581.88 8094.89 15196.04 36
v192192084.23 13584.37 13683.79 15487.64 19561.71 23182.91 18391.20 12467.94 21990.06 8690.34 18072.04 20393.59 11082.32 7594.91 15096.07 34
VDD-MVS84.23 13584.58 13083.20 16891.17 13265.16 19683.25 17384.97 23879.79 8387.18 14094.27 6774.77 17190.89 19169.24 20196.54 9593.55 117
v2v48284.09 13784.24 13883.62 15987.13 20461.40 23382.71 18789.71 16472.19 18189.55 10591.41 15170.70 21193.20 12581.02 8693.76 17596.25 30
EG-PatchMatch MVS84.08 13884.11 13983.98 15092.22 9972.61 13182.20 20287.02 20972.63 17588.86 11491.02 16178.52 13091.11 18373.41 16591.09 22488.21 233
DP-MVS Recon84.05 13983.22 15086.52 9791.73 11375.27 11383.23 17592.40 9372.04 18382.04 22688.33 21077.91 13793.95 9566.17 22595.12 14490.34 205
TransMVSNet (Re)84.02 14085.74 10678.85 23691.00 13555.20 29282.29 19687.26 20079.65 8688.38 12695.52 3183.00 8086.88 25667.97 21596.60 9394.45 78
Baseline_NR-MVSNet84.00 14185.90 10378.29 24791.47 12353.44 30182.29 19687.00 21279.06 9489.55 10595.72 2677.20 14486.14 26872.30 17898.51 1695.28 53
TSAR-MVS + GP.83.95 14282.69 15887.72 8289.27 16381.45 5783.72 15981.58 25774.73 14485.66 17286.06 24572.56 19892.69 14275.44 14695.21 13989.01 228
alignmvs83.94 14383.98 14283.80 15387.80 19067.88 17884.54 14191.42 11973.27 16688.41 12587.96 21572.33 19990.83 19376.02 14194.11 16992.69 142
Effi-MVS+83.90 14484.01 14183.57 16187.22 20265.61 19386.55 11292.40 9378.64 10181.34 23884.18 27483.65 7492.93 13674.22 15487.87 26992.17 162
CANet83.79 14582.85 15686.63 9486.17 22772.21 14183.76 15891.43 11777.24 11474.39 29487.45 22575.36 16395.42 4277.03 13292.83 19692.25 159
pm-mvs183.69 14684.95 11979.91 22290.04 15659.66 25382.43 19287.44 19775.52 13587.85 13395.26 3681.25 10985.65 27468.74 20996.04 11394.42 79
AdaColmapbinary83.66 14783.69 14683.57 16190.05 15572.26 13986.29 11790.00 16078.19 10681.65 23387.16 23083.40 7794.24 8061.69 25594.76 15784.21 277
MIMVSNet183.63 14884.59 12980.74 21194.06 5262.77 21982.72 18684.53 24177.57 11190.34 8395.92 2376.88 15685.83 27261.88 25397.42 7093.62 112
WR-MVS83.56 14984.40 13581.06 20693.43 6654.88 29378.67 25085.02 23681.24 6890.74 7991.56 14872.85 19391.08 18468.00 21498.04 3497.23 16
CNLPA83.55 15083.10 15384.90 12989.34 16283.87 4384.54 14188.77 17779.09 9383.54 20888.66 20874.87 16781.73 29866.84 22192.29 20589.11 222
LCM-MVSNet-Re83.48 15185.06 11678.75 23885.94 23055.75 28780.05 22794.27 1976.47 11996.09 494.54 5683.31 7889.75 22359.95 26794.89 15190.75 195
V4283.47 15283.37 14983.75 15683.16 26463.33 21281.31 21290.23 15469.51 20490.91 7790.81 17074.16 17592.29 15080.06 9690.22 24395.62 45
VPA-MVSNet83.47 15284.73 12279.69 22790.29 14957.52 27481.30 21488.69 17976.29 12087.58 13694.44 6080.60 11587.20 25166.60 22396.82 8894.34 82
CS-MVS83.43 15483.04 15484.59 13787.87 18866.61 18685.57 12494.90 1373.02 17081.12 23978.56 31980.00 12295.52 3673.04 17393.29 18491.62 179
RRT_MVS83.25 15581.08 18089.74 5180.55 29179.32 7286.41 11486.69 21372.33 18087.00 14791.08 15844.98 32595.55 3484.47 5596.24 10794.36 81
PAPM_NR83.23 15683.19 15283.33 16590.90 13665.98 19088.19 8590.78 13378.13 10780.87 24387.92 21873.49 18592.42 14670.07 19588.40 26091.60 180
CLD-MVS83.18 15782.64 15984.79 13189.05 16667.82 17977.93 25892.52 9168.33 21485.07 17981.54 30182.06 9592.96 13469.35 20097.91 4793.57 114
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 15885.68 10875.65 27481.24 27845.26 33679.94 22992.91 8083.83 3791.33 6996.88 1080.25 11985.92 27068.89 20795.89 11795.76 41
114514_t83.10 15982.54 16284.77 13292.90 7869.10 17186.65 10990.62 13854.66 30181.46 23590.81 17076.98 14994.38 7672.62 17596.18 10890.82 194
UGNet82.78 16081.64 17286.21 10786.20 22676.24 11086.86 10285.68 22377.07 11573.76 29792.82 11169.64 21291.82 16569.04 20693.69 17890.56 200
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 16181.93 17085.19 12582.08 26980.15 6485.53 12588.76 17868.01 21685.58 17487.75 21971.80 20586.85 25774.02 15793.87 17488.58 231
EI-MVSNet82.61 16282.42 16483.20 16883.25 26263.66 20883.50 16685.07 23376.06 12486.55 15485.10 26073.41 18690.25 20778.15 11990.67 23995.68 43
QAPM82.59 16382.59 16182.58 18286.44 21566.69 18589.94 5290.36 14467.97 21884.94 18292.58 12072.71 19592.18 15170.63 19187.73 27188.85 229
Fast-Effi-MVS+-dtu82.54 16481.41 17685.90 11385.60 23176.53 10683.07 17889.62 16773.02 17079.11 26183.51 27980.74 11490.24 20968.76 20889.29 25090.94 190
MVS_Test82.47 16583.22 15080.22 21982.62 26857.75 27382.54 19191.96 10571.16 18982.89 21592.52 12377.41 14290.50 20380.04 9787.84 27092.40 150
v14882.31 16682.48 16381.81 19685.59 23259.66 25381.47 21086.02 22072.85 17288.05 13090.65 17670.73 21090.91 19075.15 14991.79 21594.87 61
API-MVS82.28 16782.61 16081.30 20086.29 22369.79 15888.71 7987.67 19678.42 10482.15 22584.15 27577.98 13591.59 16865.39 23292.75 19782.51 302
MVSFormer82.23 16881.57 17584.19 14785.54 23369.26 16691.98 2790.08 15871.54 18676.23 27885.07 26358.69 26794.27 7786.26 3288.77 25789.03 226
EIA-MVS82.19 16981.23 17885.10 12787.95 18669.17 17083.22 17693.33 5870.42 19578.58 26479.77 31577.29 14394.20 8371.51 18288.96 25591.93 170
PCF-MVS74.62 1582.15 17080.92 18385.84 11589.43 16072.30 13880.53 22391.82 10857.36 29087.81 13489.92 19077.67 13993.63 10658.69 27295.08 14591.58 181
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 17180.31 18987.45 8690.86 13880.29 6385.88 12090.65 13668.17 21576.32 27786.33 24073.12 19192.61 14461.40 25990.02 24589.44 215
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GBi-Net82.02 17282.07 16781.85 19386.38 21761.05 23986.83 10488.27 18772.43 17686.00 16695.64 2863.78 23990.68 19865.95 22693.34 18193.82 102
test182.02 17282.07 16781.85 19386.38 21761.05 23986.83 10488.27 18772.43 17686.00 16695.64 2863.78 23990.68 19865.95 22693.34 18193.82 102
OpenMVScopyleft76.72 1381.98 17482.00 16981.93 19084.42 24468.22 17588.50 8389.48 16966.92 22881.80 23291.86 13772.59 19790.16 21271.19 18491.25 22387.40 245
tfpnnormal81.79 17582.95 15578.31 24688.93 17055.40 28880.83 22182.85 24776.81 11785.90 17094.14 7474.58 17486.51 26266.82 22295.68 12793.01 130
cl_fuxian81.64 17681.59 17481.79 19780.86 28459.15 26078.61 25190.18 15668.36 21387.20 13987.11 23269.39 21391.62 16778.16 11794.43 16494.60 69
PVSNet_Blended_VisFu81.55 17780.49 18784.70 13591.58 11873.24 12484.21 14591.67 11262.86 25680.94 24187.16 23067.27 22492.87 13969.82 19788.94 25687.99 237
DELS-MVS81.44 17881.25 17782.03 18984.27 24862.87 21876.47 28092.49 9270.97 19081.64 23483.83 27675.03 16592.70 14174.29 15392.22 20990.51 202
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 17981.61 17380.41 21686.38 21758.75 26783.93 15286.58 21572.43 17687.65 13592.98 10563.78 23990.22 21066.86 21993.92 17392.27 157
TinyColmap81.25 18082.34 16577.99 25285.33 23560.68 24582.32 19588.33 18571.26 18886.97 14892.22 13377.10 14786.98 25562.37 24895.17 14186.31 256
tttt051781.07 18179.58 20185.52 12188.99 16966.45 18887.03 10175.51 28873.76 15588.32 12890.20 18337.96 34194.16 8979.36 10795.13 14295.93 40
Fast-Effi-MVS+81.04 18280.57 18482.46 18687.50 19763.22 21478.37 25489.63 16668.01 21681.87 22882.08 29682.31 8892.65 14367.10 21888.30 26591.51 183
BH-untuned80.96 18380.99 18180.84 21088.55 17568.23 17480.33 22588.46 18172.79 17386.55 15486.76 23574.72 17291.77 16661.79 25488.99 25482.52 301
112180.86 18479.81 20084.02 14893.93 5578.70 7881.64 20780.18 26455.43 29883.67 20491.15 15671.29 20891.41 17567.95 21693.06 19081.96 307
eth_miper_zixun_eth80.84 18580.22 19382.71 17981.41 27660.98 24277.81 26090.14 15767.31 22686.95 14987.24 22964.26 23592.31 14875.23 14891.61 21894.85 63
xiu_mvs_v1_base_debu80.84 18580.14 19582.93 17488.31 17971.73 14579.53 23487.17 20165.43 24379.59 25582.73 29176.94 15090.14 21573.22 16688.33 26186.90 251
xiu_mvs_v1_base80.84 18580.14 19582.93 17488.31 17971.73 14579.53 23487.17 20165.43 24379.59 25582.73 29176.94 15090.14 21573.22 16688.33 26186.90 251
xiu_mvs_v1_base_debi80.84 18580.14 19582.93 17488.31 17971.73 14579.53 23487.17 20165.43 24379.59 25582.73 29176.94 15090.14 21573.22 16688.33 26186.90 251
IterMVS-SCA-FT80.64 18979.41 20284.34 14283.93 25669.66 16176.28 28281.09 25972.43 17686.47 16090.19 18460.46 25393.15 13077.45 12786.39 28290.22 206
BH-RMVSNet80.53 19080.22 19381.49 19987.19 20366.21 18977.79 26186.23 21774.21 15083.69 20388.50 20973.25 19090.75 19563.18 24587.90 26887.52 243
Anonymous20240521180.51 19181.19 17978.49 24388.48 17657.26 27676.63 27682.49 24981.21 6984.30 19792.24 13267.99 22186.24 26662.22 24995.13 14291.98 169
cl-mvsnet180.43 19280.23 19181.02 20779.99 29459.25 25777.07 27187.02 20967.38 22486.19 16189.22 19763.09 24390.16 21276.32 13795.80 12193.66 109
cl-mvsnet_80.42 19380.23 19181.02 20779.99 29459.25 25777.07 27187.02 20967.37 22586.18 16389.21 19863.08 24490.16 21276.31 13895.80 12193.65 110
diffmvs80.40 19480.48 18880.17 22079.02 30660.04 24977.54 26590.28 15366.65 23182.40 22087.33 22873.50 18387.35 25077.98 12089.62 24893.13 126
EPNet80.37 19578.41 21186.23 10476.75 31773.28 12387.18 9877.45 27576.24 12268.14 31788.93 20465.41 23293.85 9769.47 19996.12 11291.55 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth80.34 19680.04 19881.24 20379.82 29658.95 26277.66 26289.66 16565.75 24085.99 16985.11 25968.29 22091.42 17476.03 14092.03 21193.33 118
MG-MVS80.32 19780.94 18278.47 24488.18 18252.62 30782.29 19685.01 23772.01 18479.24 26092.54 12269.36 21493.36 12270.65 19089.19 25389.45 214
VPNet80.25 19881.68 17175.94 27392.46 9047.98 33076.70 27581.67 25673.45 15884.87 18392.82 11174.66 17386.51 26261.66 25696.85 8593.33 118
MAR-MVS80.24 19978.74 20784.73 13386.87 21378.18 8285.75 12187.81 19565.67 24277.84 26778.50 32073.79 18090.53 20261.59 25890.87 23485.49 265
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 20079.00 20583.78 15588.17 18386.66 1381.31 21266.81 33169.64 20388.33 12790.19 18464.58 23383.63 29271.99 18190.03 24481.06 321
LFMVS80.15 20180.56 18578.89 23589.19 16555.93 28485.22 12973.78 29982.96 5084.28 19892.72 11557.38 27690.07 21963.80 24095.75 12490.68 197
DPM-MVS80.10 20279.18 20482.88 17790.71 14269.74 15978.87 24790.84 13160.29 27575.64 28685.92 24767.28 22393.11 13171.24 18391.79 21585.77 262
MSDG80.06 20379.99 19980.25 21883.91 25768.04 17777.51 26689.19 17277.65 10981.94 22783.45 28176.37 15886.31 26563.31 24486.59 27986.41 254
ab-mvs79.67 20480.56 18576.99 26088.48 17656.93 27884.70 13586.06 21968.95 21080.78 24493.08 10275.30 16484.62 28356.78 28190.90 23389.43 216
VNet79.31 20580.27 19076.44 26887.92 18753.95 29775.58 28884.35 24274.39 14982.23 22390.72 17272.84 19484.39 28560.38 26693.98 17290.97 189
thisisatest053079.07 20677.33 21984.26 14487.13 20464.58 19983.66 16175.95 28368.86 21185.22 17887.36 22738.10 33993.57 11375.47 14594.28 16694.62 67
cl-mvsnet278.97 20778.21 21281.24 20377.74 31059.01 26177.46 26887.13 20465.79 23784.32 19485.10 26058.96 26690.88 19275.36 14792.03 21193.84 99
PAPR78.84 20878.10 21381.07 20585.17 23660.22 24882.21 20090.57 13962.51 25875.32 28984.61 27074.99 16692.30 14959.48 27088.04 26790.68 197
PVSNet_BlendedMVS78.80 20977.84 21481.65 19884.43 24263.41 21079.49 23790.44 14161.70 26675.43 28787.07 23369.11 21691.44 17260.68 26492.24 20790.11 210
FMVSNet378.80 20978.55 20879.57 22982.89 26756.89 28081.76 20485.77 22269.04 20986.00 16690.44 17951.75 29490.09 21865.95 22693.34 18191.72 175
test_yl78.71 21178.51 20979.32 23284.32 24658.84 26478.38 25285.33 22775.99 12782.49 21886.57 23658.01 27090.02 22062.74 24692.73 19889.10 223
DCV-MVSNet78.71 21178.51 20979.32 23284.32 24658.84 26478.38 25285.33 22775.99 12782.49 21886.57 23658.01 27090.02 22062.74 24692.73 19889.10 223
pmmvs-eth3d78.42 21377.04 22282.57 18487.44 19874.41 11780.86 22079.67 26755.68 29684.69 18690.31 18260.91 25185.42 27562.20 25091.59 21987.88 240
MVS_030478.17 21477.23 22080.99 20984.13 25469.07 17281.39 21180.81 26176.28 12167.53 32289.11 20162.87 24586.77 25960.90 26392.01 21487.13 248
mvs_anonymous78.13 21578.76 20676.23 27279.24 30350.31 32478.69 24984.82 23961.60 26783.09 21492.82 11173.89 17987.01 25268.33 21386.41 28191.37 184
RRT_test8_iter0578.08 21677.52 21679.75 22580.84 28552.54 30880.61 22288.96 17567.77 22384.62 18789.29 19633.89 34692.10 15577.59 12494.15 16894.62 67
TAMVS78.08 21676.36 22883.23 16790.62 14372.87 12579.08 24480.01 26661.72 26581.35 23786.92 23463.96 23888.78 23650.61 31193.01 19288.04 236
miper_enhance_ethall77.83 21876.93 22380.51 21476.15 32358.01 27075.47 29088.82 17658.05 28483.59 20680.69 30564.41 23491.20 17973.16 17292.03 21192.33 152
Vis-MVSNet (Re-imp)77.82 21977.79 21577.92 25388.82 17151.29 31783.28 17171.97 31274.04 15182.23 22389.78 19157.38 27689.41 22757.22 28095.41 13193.05 128
CANet_DTU77.81 22077.05 22180.09 22181.37 27759.90 25183.26 17288.29 18669.16 20767.83 32083.72 27760.93 25089.47 22469.22 20389.70 24790.88 192
OpenMVS_ROBcopyleft70.19 1777.77 22177.46 21778.71 23984.39 24561.15 23781.18 21682.52 24862.45 26083.34 20987.37 22666.20 22888.66 23864.69 23685.02 29386.32 255
MDA-MVSNet-bldmvs77.47 22276.90 22479.16 23479.03 30564.59 19866.58 32775.67 28673.15 16888.86 11488.99 20366.94 22581.23 30064.71 23588.22 26691.64 178
jason77.42 22375.75 23582.43 18787.10 20869.27 16577.99 25781.94 25451.47 32077.84 26785.07 26360.32 25589.00 23070.74 18989.27 25289.03 226
jason: jason.
CDS-MVSNet77.32 22475.40 23883.06 17089.00 16872.48 13577.90 25982.17 25260.81 27078.94 26283.49 28059.30 26388.76 23754.64 29792.37 20487.93 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 22576.75 22578.52 24287.01 21061.30 23575.55 28987.12 20761.24 26974.45 29378.79 31777.20 14490.93 18864.62 23884.80 29783.32 291
MVSTER77.09 22675.70 23681.25 20175.27 33061.08 23877.49 26785.07 23360.78 27186.55 15488.68 20743.14 33190.25 20773.69 16290.67 23992.42 148
PS-MVSNAJ77.04 22776.53 22778.56 24187.09 20961.40 23375.26 29187.13 20461.25 26874.38 29577.22 32776.94 15090.94 18764.63 23784.83 29683.35 290
IterMVS76.91 22876.34 22978.64 24080.91 28264.03 20576.30 28179.03 26864.88 25083.11 21289.16 19959.90 25984.46 28468.61 21185.15 29287.42 244
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 22975.67 23780.34 21780.48 29262.16 23073.50 30284.80 24057.61 28882.24 22287.54 22351.31 29587.65 24770.40 19493.19 18791.23 186
TR-MVS76.77 23075.79 23379.72 22686.10 22965.79 19277.14 26983.02 24565.20 24881.40 23682.10 29566.30 22790.73 19755.57 28985.27 29082.65 297
USDC76.63 23176.73 22676.34 27083.46 26057.20 27780.02 22888.04 19152.14 31683.65 20591.25 15263.24 24286.65 26154.66 29694.11 16985.17 267
BH-w/o76.57 23276.07 23278.10 25086.88 21265.92 19177.63 26386.33 21665.69 24180.89 24279.95 31268.97 21890.74 19653.01 30385.25 29177.62 325
Patchmtry76.56 23377.46 21773.83 28279.37 30246.60 33382.41 19376.90 27773.81 15485.56 17592.38 12448.07 30383.98 28963.36 24395.31 13790.92 191
PVSNet_Blended76.49 23475.40 23879.76 22484.43 24263.41 21075.14 29290.44 14157.36 29075.43 28778.30 32169.11 21691.44 17260.68 26487.70 27284.42 275
miper_lstm_enhance76.45 23576.10 23177.51 25776.72 31860.97 24364.69 33085.04 23563.98 25283.20 21188.22 21156.67 27978.79 30873.22 16693.12 18892.78 139
lupinMVS76.37 23674.46 24682.09 18885.54 23369.26 16676.79 27380.77 26250.68 32676.23 27882.82 28958.69 26788.94 23169.85 19688.77 25788.07 234
cascas76.29 23774.81 24280.72 21384.47 24162.94 21673.89 30087.34 19855.94 29575.16 29176.53 33063.97 23791.16 18165.00 23390.97 23188.06 235
RPMNet76.06 23875.79 23376.85 26479.58 29762.64 22182.58 18871.75 31574.80 14375.72 28492.59 11848.69 30184.07 28773.48 16482.91 30783.85 282
thres600view775.97 23975.35 24077.85 25587.01 21051.84 31480.45 22473.26 30375.20 14083.10 21386.31 24245.54 31689.05 22955.03 29492.24 20792.66 143
GA-MVS75.83 24074.61 24379.48 23181.87 27159.25 25773.42 30382.88 24668.68 21279.75 25481.80 29850.62 29789.46 22566.85 22085.64 28789.72 212
MVP-Stereo75.81 24173.51 25582.71 17989.35 16173.62 12080.06 22685.20 23060.30 27473.96 29687.94 21657.89 27489.45 22652.02 30674.87 33385.06 269
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres100view90075.45 24275.05 24176.66 26787.27 20051.88 31381.07 21773.26 30375.68 13383.25 21086.37 23945.54 31688.80 23351.98 30790.99 22889.31 218
ET-MVSNet_ETH3D75.28 24372.77 26182.81 17883.03 26668.11 17677.09 27076.51 28160.67 27377.60 27180.52 30738.04 34091.15 18270.78 18790.68 23889.17 221
thres40075.14 24474.23 24877.86 25486.24 22452.12 31079.24 24173.87 29773.34 16181.82 23084.60 27146.02 31088.80 23351.98 30790.99 22892.66 143
wuyk23d75.13 24579.30 20362.63 31975.56 32675.18 11480.89 21973.10 30575.06 14294.76 1195.32 3387.73 3852.85 34634.16 34497.11 7859.85 342
EU-MVSNet75.12 24674.43 24777.18 25983.11 26559.48 25585.71 12382.43 25039.76 34485.64 17388.76 20544.71 32787.88 24573.86 16085.88 28684.16 278
HyFIR lowres test75.12 24672.66 26382.50 18591.44 12465.19 19572.47 30687.31 19946.79 33280.29 25184.30 27352.70 29392.10 15551.88 31086.73 27890.22 206
CMPMVSbinary59.41 2075.12 24673.57 25379.77 22375.84 32567.22 18081.21 21582.18 25150.78 32476.50 27487.66 22155.20 28882.99 29462.17 25290.64 24289.09 225
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 24972.98 26080.73 21284.95 23771.71 14876.23 28377.59 27452.83 31077.73 27086.38 23856.35 28284.97 27957.72 27987.05 27685.51 264
tfpn200view974.86 25074.23 24876.74 26686.24 22452.12 31079.24 24173.87 29773.34 16181.82 23084.60 27146.02 31088.80 23351.98 30790.99 22889.31 218
1112_ss74.82 25173.74 25178.04 25189.57 15960.04 24976.49 27987.09 20854.31 30273.66 29879.80 31360.25 25686.76 26058.37 27384.15 30087.32 246
ppachtmachnet_test74.73 25274.00 25076.90 26280.71 28856.89 28071.53 31078.42 27058.24 28279.32 25982.92 28857.91 27384.26 28665.60 23191.36 22289.56 213
Patchmatch-RL test74.48 25373.68 25276.89 26384.83 23966.54 18772.29 30769.16 32457.70 28686.76 15086.33 24045.79 31582.59 29569.63 19890.65 24181.54 312
PatchMatch-RL74.48 25373.22 25778.27 24887.70 19285.26 3075.92 28570.09 32164.34 25176.09 28081.25 30365.87 23178.07 30953.86 29983.82 30171.48 333
XXY-MVS74.44 25576.19 23069.21 30084.61 24052.43 30971.70 30977.18 27660.73 27280.60 24590.96 16575.44 16169.35 32756.13 28588.33 26185.86 261
CR-MVSNet74.00 25673.04 25976.85 26479.58 29762.64 22182.58 18876.90 27750.50 32775.72 28492.38 12448.07 30384.07 28768.72 21082.91 30783.85 282
Test_1112_low_res73.90 25773.08 25876.35 26990.35 14855.95 28373.40 30486.17 21850.70 32573.14 29985.94 24658.31 26985.90 27156.51 28383.22 30487.20 247
test20.0373.75 25874.59 24571.22 29581.11 28051.12 31970.15 31572.10 31170.42 19580.28 25291.50 14964.21 23674.72 31946.96 32794.58 16087.82 242
SCA73.32 25972.57 26575.58 27581.62 27355.86 28578.89 24671.37 31861.73 26474.93 29283.42 28260.46 25387.01 25258.11 27782.63 31183.88 279
baseline173.26 26073.54 25472.43 29184.92 23847.79 33179.89 23074.00 29665.93 23578.81 26386.28 24356.36 28181.63 29956.63 28279.04 32487.87 241
131473.22 26172.56 26675.20 27680.41 29357.84 27181.64 20785.36 22651.68 31973.10 30076.65 32961.45 24985.19 27763.54 24179.21 32382.59 298
MVS73.21 26272.59 26475.06 27780.97 28160.81 24481.64 20785.92 22146.03 33571.68 30677.54 32368.47 21989.77 22255.70 28885.39 28874.60 330
HY-MVS64.64 1873.03 26372.47 26774.71 27883.36 26154.19 29582.14 20381.96 25356.76 29469.57 31486.21 24460.03 25784.83 28249.58 31682.65 30985.11 268
thisisatest051573.00 26470.52 27880.46 21581.45 27559.90 25173.16 30574.31 29557.86 28576.08 28177.78 32237.60 34292.12 15465.00 23391.45 22189.35 217
EPNet_dtu72.87 26571.33 27677.49 25877.72 31160.55 24682.35 19475.79 28466.49 23258.39 34581.06 30453.68 29185.98 26953.55 30092.97 19485.95 259
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 26671.41 27576.28 27183.25 26260.34 24783.50 16679.02 26937.77 34576.33 27685.10 26049.60 30087.41 24970.54 19277.54 32981.08 319
CHOSEN 1792x268872.45 26770.56 27778.13 24990.02 15763.08 21568.72 31983.16 24442.99 34175.92 28285.46 25357.22 27885.18 27849.87 31581.67 31286.14 257
testgi72.36 26874.61 24365.59 31380.56 29042.82 34268.29 32073.35 30266.87 22981.84 22989.93 18972.08 20266.92 33546.05 32992.54 20287.01 250
thres20072.34 26971.55 27474.70 27983.48 25951.60 31575.02 29373.71 30070.14 20078.56 26580.57 30646.20 30888.20 24346.99 32689.29 25084.32 276
FPMVS72.29 27072.00 26973.14 28588.63 17385.00 3274.65 29667.39 32571.94 18577.80 26987.66 22150.48 29875.83 31549.95 31379.51 31958.58 344
FMVSNet572.10 27171.69 27173.32 28381.57 27453.02 30476.77 27478.37 27163.31 25376.37 27591.85 13836.68 34378.98 30647.87 32392.45 20387.95 238
our_test_371.85 27271.59 27272.62 28980.71 28853.78 29869.72 31771.71 31758.80 27978.03 26680.51 30856.61 28078.84 30762.20 25086.04 28585.23 266
PAPM71.77 27370.06 28376.92 26186.39 21653.97 29676.62 27786.62 21453.44 30763.97 33584.73 26957.79 27592.34 14739.65 33981.33 31584.45 274
IB-MVS62.13 1971.64 27468.97 28779.66 22880.80 28762.26 22973.94 29976.90 27763.27 25468.63 31676.79 32833.83 34791.84 16459.28 27187.26 27484.88 270
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 27572.30 26869.62 29876.47 32052.70 30670.03 31680.97 26059.18 27879.36 25888.21 21260.50 25269.12 32858.33 27577.62 32887.04 249
Anonymous2023120671.38 27671.88 27069.88 29686.31 22154.37 29470.39 31474.62 29152.57 31276.73 27388.76 20559.94 25872.06 32144.35 33293.23 18683.23 293
MIMVSNet71.09 27771.59 27269.57 29987.23 20150.07 32578.91 24571.83 31360.20 27671.26 30791.76 14355.08 28976.09 31341.06 33787.02 27782.54 300
MS-PatchMatch70.93 27870.22 28173.06 28681.85 27262.50 22473.82 30177.90 27252.44 31375.92 28281.27 30255.67 28581.75 29755.37 29177.70 32774.94 329
pmmvs570.73 27970.07 28272.72 28777.03 31652.73 30574.14 29775.65 28750.36 32872.17 30485.37 25755.42 28780.67 30252.86 30487.59 27384.77 271
PatchT70.52 28072.76 26263.79 31879.38 30133.53 34877.63 26365.37 33373.61 15671.77 30592.79 11444.38 32875.65 31664.53 23985.37 28982.18 305
N_pmnet70.20 28168.80 28974.38 28080.91 28284.81 3559.12 33876.45 28255.06 29975.31 29082.36 29455.74 28454.82 34547.02 32587.24 27583.52 286
tpmvs70.16 28269.56 28571.96 29374.71 33448.13 32879.63 23275.45 28965.02 24970.26 31181.88 29745.34 32185.68 27358.34 27475.39 33282.08 306
new-patchmatchnet70.10 28373.37 25660.29 32681.23 27916.95 35259.54 33674.62 29162.93 25580.97 24087.93 21762.83 24671.90 32255.24 29295.01 14892.00 166
YYNet170.06 28470.44 27968.90 30173.76 33653.42 30258.99 33967.20 32758.42 28187.10 14385.39 25659.82 26067.32 33259.79 26883.50 30385.96 258
MDA-MVSNet_test_wron70.05 28570.44 27968.88 30273.84 33553.47 30058.93 34067.28 32658.43 28087.09 14485.40 25559.80 26167.25 33359.66 26983.54 30285.92 260
CostFormer69.98 28668.68 29073.87 28177.14 31450.72 32279.26 24074.51 29351.94 31870.97 31084.75 26845.16 32487.49 24855.16 29379.23 32283.40 289
baseline269.77 28766.89 29678.41 24579.51 29958.09 26976.23 28369.57 32357.50 28964.82 33377.45 32546.02 31088.44 23953.08 30277.83 32688.70 230
PatchmatchNetpermissive69.71 28868.83 28872.33 29277.66 31253.60 29979.29 23969.99 32257.66 28772.53 30282.93 28746.45 30780.08 30560.91 26272.09 33683.31 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
JIA-IIPM69.41 28966.64 30077.70 25673.19 33871.24 15175.67 28665.56 33270.42 19565.18 32992.97 10633.64 34883.06 29353.52 30169.61 34278.79 324
UnsupCasMVSNet_bld69.21 29069.68 28467.82 30779.42 30051.15 31867.82 32475.79 28454.15 30377.47 27285.36 25859.26 26470.64 32448.46 32079.35 32181.66 310
gg-mvs-nofinetune68.96 29169.11 28668.52 30676.12 32445.32 33583.59 16255.88 34686.68 2264.62 33497.01 730.36 35183.97 29044.78 33182.94 30676.26 327
tpm268.45 29266.83 29773.30 28478.93 30748.50 32779.76 23171.76 31447.50 33169.92 31383.60 27842.07 33388.40 24048.44 32179.51 31983.01 296
tpm67.95 29368.08 29367.55 30878.74 30843.53 34075.60 28767.10 33054.92 30072.23 30388.10 21342.87 33275.97 31452.21 30580.95 31883.15 294
WTY-MVS67.91 29468.35 29166.58 31180.82 28648.12 32965.96 32872.60 30753.67 30671.20 30881.68 30058.97 26569.06 32948.57 31981.67 31282.55 299
test-LLR67.21 29566.74 29868.63 30476.45 32155.21 29067.89 32167.14 32862.43 26165.08 33072.39 33543.41 32969.37 32561.00 26084.89 29481.31 314
sss66.92 29667.26 29565.90 31277.23 31351.10 32064.79 32971.72 31652.12 31770.13 31280.18 31057.96 27265.36 34050.21 31281.01 31781.25 316
tpm cat166.76 29765.21 30271.42 29477.09 31550.62 32378.01 25673.68 30144.89 33768.64 31579.00 31645.51 31882.42 29649.91 31470.15 33981.23 318
DWT-MVSNet_test66.43 29864.37 30372.63 28874.86 33350.86 32176.52 27872.74 30654.06 30465.50 32768.30 34132.13 34984.84 28161.63 25773.59 33482.19 304
PVSNet58.17 2166.41 29965.63 30168.75 30381.96 27049.88 32662.19 33472.51 30951.03 32268.04 31875.34 33350.84 29674.77 31745.82 33082.96 30581.60 311
tpmrst66.28 30066.69 29965.05 31672.82 34239.33 34378.20 25570.69 32053.16 30967.88 31980.36 30948.18 30274.75 31858.13 27670.79 33881.08 319
Patchmatch-test65.91 30167.38 29461.48 32475.51 32743.21 34168.84 31863.79 33562.48 25972.80 30183.42 28244.89 32659.52 34448.27 32286.45 28081.70 309
ADS-MVSNet265.87 30263.64 30672.55 29073.16 33956.92 27967.10 32574.81 29049.74 32966.04 32582.97 28546.71 30577.26 31042.29 33469.96 34083.46 287
test-mter65.00 30363.79 30568.63 30476.45 32155.21 29067.89 32167.14 32850.98 32365.08 33072.39 33528.27 35369.37 32561.00 26084.89 29481.31 314
test0.0.03 164.66 30464.36 30465.57 31475.03 33246.89 33264.69 33061.58 34062.43 26171.18 30977.54 32343.41 32968.47 33040.75 33882.65 30981.35 313
pmmvs362.47 30560.02 31669.80 29771.58 34564.00 20670.52 31358.44 34439.77 34366.05 32475.84 33127.10 35572.28 32046.15 32884.77 29873.11 331
EPMVS62.47 30562.63 30862.01 32070.63 34638.74 34474.76 29452.86 34853.91 30567.71 32180.01 31139.40 33766.60 33655.54 29068.81 34380.68 323
ADS-MVSNet61.90 30762.19 30961.03 32573.16 33936.42 34667.10 32561.75 33849.74 32966.04 32582.97 28546.71 30563.21 34242.29 33469.96 34083.46 287
PMMVS61.65 30860.38 31365.47 31565.40 34969.26 16663.97 33261.73 33936.80 34660.11 34068.43 33959.42 26266.35 33748.97 31878.57 32560.81 341
E-PMN61.59 30961.62 31061.49 32366.81 34755.40 28853.77 34260.34 34166.80 23058.90 34365.50 34240.48 33666.12 33855.72 28786.25 28362.95 340
TESTMET0.1,161.29 31060.32 31464.19 31772.06 34351.30 31667.89 32162.09 33645.27 33660.65 33969.01 33827.93 35464.74 34156.31 28481.65 31476.53 326
MVS-HIRNet61.16 31162.92 30755.87 32979.09 30435.34 34771.83 30857.98 34546.56 33359.05 34291.14 15749.95 29976.43 31238.74 34071.92 33755.84 345
EMVS61.10 31260.81 31261.99 32165.96 34855.86 28553.10 34358.97 34367.06 22756.89 34663.33 34340.98 33467.03 33454.79 29586.18 28463.08 339
DSMNet-mixed60.98 31361.61 31159.09 32872.88 34145.05 33774.70 29546.61 35126.20 34765.34 32890.32 18155.46 28663.12 34341.72 33681.30 31669.09 337
dp60.70 31460.29 31561.92 32272.04 34438.67 34570.83 31164.08 33451.28 32160.75 33877.28 32636.59 34471.58 32347.41 32462.34 34575.52 328
CHOSEN 280x42059.08 31556.52 31966.76 31076.51 31964.39 20249.62 34459.00 34243.86 33955.66 34768.41 34035.55 34568.21 33143.25 33376.78 33167.69 338
PVSNet_051.08 2256.10 31654.97 32059.48 32775.12 33153.28 30355.16 34161.89 33744.30 33859.16 34162.48 34454.22 29065.91 33935.40 34347.01 34659.25 343
new_pmnet55.69 31757.66 31849.76 33175.47 32830.59 34959.56 33551.45 34943.62 34062.49 33675.48 33240.96 33549.15 34837.39 34272.52 33569.55 336
PMMVS255.64 31859.27 31744.74 33264.30 35012.32 35340.60 34549.79 35053.19 30865.06 33284.81 26753.60 29249.76 34732.68 34689.41 24972.15 332
MVEpermissive40.22 2351.82 31950.47 32155.87 32962.66 35151.91 31231.61 34739.28 35240.65 34250.76 34874.98 33456.24 28344.67 34933.94 34564.11 34471.04 335
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k20.81 32027.75 3220.00 3370.00 3560.00 3570.00 34885.44 2250.00 3520.00 35382.82 28981.46 1060.00 3540.00 3510.00 3510.00 350
tmp_tt20.25 32124.50 3237.49 3344.47 3538.70 35434.17 34625.16 3541.00 34932.43 35018.49 34739.37 3389.21 35121.64 34743.75 3474.57 347
ab-mvs-re6.65 3228.87 3240.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35379.80 3130.00 3580.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas6.41 3238.55 3250.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35376.94 1500.00 3540.00 3510.00 3510.00 350
test1236.27 3248.08 3260.84 3351.11 3550.57 35562.90 3330.82 3560.54 3501.07 3522.75 3521.26 3560.30 3521.04 3491.26 3501.66 348
testmvs5.91 3257.65 3270.72 3361.20 3540.37 35659.14 3370.67 3570.49 3511.11 3512.76 3510.94 3570.24 3531.02 3501.47 3491.55 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS94.18 4772.64 12990.82 13256.98 29289.67 9985.78 4197.92 4593.28 120
OPU-MVS88.27 7691.89 10977.83 8590.47 4391.22 15381.12 11094.68 6774.48 15295.35 13392.29 155
test_241102_TWO93.71 4583.77 3893.49 3394.27 6789.27 2195.84 1886.03 3897.82 5092.04 164
test_241102_ONE94.18 4772.65 12793.69 4683.62 4094.11 2293.78 9490.28 1495.50 40
9.1489.29 5891.84 11188.80 7795.32 875.14 14191.07 7292.89 10987.27 4293.78 10183.69 6297.55 64
save fliter93.75 5877.44 9186.31 11589.72 16370.80 191
test_0728_THIRD85.33 2793.75 2894.65 5287.44 4195.78 2387.41 1998.21 2992.98 131
test_0728_SECOND86.79 9294.25 4672.45 13690.54 4094.10 3095.88 1386.42 2897.97 4292.02 165
test072694.16 5072.56 13290.63 3993.90 3883.61 4193.75 2894.49 5889.76 18
GSMVS83.88 279
test_part293.86 5777.77 8692.84 41
test_part10.00 3370.00 3570.00 34893.93 350.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs146.11 30983.88 279
sam_mvs45.92 314
ambc82.98 17290.55 14664.86 19788.20 8489.15 17389.40 10893.96 8471.67 20791.38 17778.83 11096.55 9492.71 141
MTGPAbinary91.81 109
test_post178.85 2483.13 34945.19 32380.13 30458.11 277
test_post3.10 35045.43 31977.22 311
patchmatchnet-post81.71 29945.93 31387.01 252
GG-mvs-BLEND67.16 30973.36 33746.54 33484.15 14655.04 34758.64 34461.95 34529.93 35283.87 29138.71 34176.92 33071.07 334
MTMP90.66 3733.14 353
gm-plane-assit75.42 32944.97 33852.17 31472.36 33787.90 24454.10 298
test9_res80.83 9096.45 9990.57 199
TEST992.34 9379.70 6883.94 15090.32 14565.41 24784.49 19090.97 16382.03 9793.63 106
test_892.09 10178.87 7683.82 15590.31 14765.79 23784.36 19390.96 16581.93 9993.44 118
agg_prior279.68 10196.16 10990.22 206
agg_prior91.58 11877.69 8790.30 14984.32 19493.18 126
TestCases89.68 5291.59 11583.40 4595.44 679.47 8788.00 13193.03 10382.66 8491.47 17070.81 18596.14 11094.16 88
test_prior478.97 7584.59 137
test_prior283.37 16975.43 13684.58 18891.57 14681.92 10179.54 10396.97 81
test_prior86.32 10090.59 14471.99 14292.85 8294.17 8692.80 137
旧先验281.73 20556.88 29386.54 15984.90 28072.81 174
新几何281.72 206
新几何182.95 17393.96 5478.56 8080.24 26355.45 29783.93 20291.08 15871.19 20988.33 24165.84 22993.07 18981.95 308
旧先验191.97 10471.77 14481.78 25591.84 13973.92 17893.65 17983.61 285
无先验82.81 18585.62 22458.09 28391.41 17567.95 21684.48 273
原ACMM282.26 199
原ACMM184.60 13692.81 8474.01 11991.50 11562.59 25782.73 21790.67 17576.53 15794.25 7969.24 20195.69 12685.55 263
test22293.31 6976.54 10479.38 23877.79 27352.59 31182.36 22190.84 16966.83 22691.69 21781.25 316
testdata286.43 26463.52 242
segment_acmp81.94 98
testdata79.54 23092.87 7972.34 13780.14 26559.91 27785.47 17791.75 14467.96 22285.24 27668.57 21292.18 21081.06 321
testdata179.62 23373.95 153
test1286.57 9590.74 14072.63 13090.69 13582.76 21679.20 12694.80 6495.32 13592.27 157
plane_prior793.45 6477.31 95
plane_prior692.61 8576.54 10474.84 168
plane_prior593.61 4995.22 5080.78 9195.83 11994.46 76
plane_prior492.95 107
plane_prior376.85 10277.79 10886.55 154
plane_prior289.45 6679.44 89
plane_prior192.83 83
plane_prior76.42 10787.15 9975.94 13095.03 147
n20.00 358
nn0.00 358
door-mid74.45 294
lessismore_v085.95 11191.10 13470.99 15370.91 31991.79 6094.42 6161.76 24892.93 13679.52 10593.03 19193.93 96
LGP-MVS_train90.82 3694.75 4081.69 5394.27 1982.35 5693.67 3194.82 4791.18 595.52 3685.36 4498.73 695.23 56
test1191.46 116
door72.57 308
HQP5-MVS70.66 154
HQP-NCC91.19 12984.77 13273.30 16380.55 248
ACMP_Plane91.19 12984.77 13273.30 16380.55 248
BP-MVS77.30 129
HQP4-MVS80.56 24794.61 7193.56 115
HQP3-MVS92.68 8894.47 162
HQP2-MVS72.10 200
NP-MVS91.95 10574.55 11690.17 186
MDTV_nov1_ep13_2view27.60 35170.76 31246.47 33461.27 33745.20 32249.18 31783.75 284
MDTV_nov1_ep1368.29 29278.03 30943.87 33974.12 29872.22 31052.17 31467.02 32385.54 24945.36 32080.85 30155.73 28684.42 299
ACMMP++_ref95.74 125
ACMMP++97.35 71
Test By Simon79.09 127
ITE_SJBPF90.11 4890.72 14184.97 3390.30 14981.56 6590.02 8791.20 15582.40 8790.81 19473.58 16394.66 15894.56 70
DeepMVS_CXcopyleft24.13 33332.95 35229.49 35021.63 35512.07 34837.95 34945.07 34630.84 35019.21 35017.94 34833.06 34823.69 346