This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5299.27 199.54 1
LTVRE_ROB86.10 193.04 393.44 291.82 2393.73 6685.72 3396.79 195.51 888.86 1495.63 896.99 884.81 7093.16 13991.10 197.53 7396.58 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement93.52 293.39 393.88 195.94 1590.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3594.17 9686.07 4398.48 1897.22 17
abl_693.02 493.16 492.60 494.73 4488.99 793.26 1294.19 3089.11 1294.43 1695.27 3791.86 395.09 6487.54 1898.02 4093.71 112
RE-MVS-def92.61 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6490.64 1187.16 2897.60 6692.73 147
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3292.99 1394.23 2685.21 3492.51 5495.13 4190.65 1095.34 5488.06 998.15 3595.95 40
test117292.40 792.41 792.37 694.68 4589.04 691.98 3193.62 5790.14 1193.63 3694.16 8288.83 2495.51 4487.11 3097.54 7292.54 157
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6488.83 2495.51 4487.16 2897.60 6692.73 147
SR-MVS92.23 892.34 991.91 1794.89 3987.85 1192.51 2493.87 4988.20 2193.24 4194.02 8890.15 1795.67 3386.82 3297.34 7992.19 176
APD-MVS_3200maxsize92.05 1092.24 1091.48 2493.02 8185.17 3692.47 2695.05 1587.65 2493.21 4294.39 7090.09 1895.08 6586.67 3397.60 6694.18 91
HPM-MVScopyleft92.13 992.20 1191.91 1795.58 2684.67 4393.51 894.85 1682.88 5791.77 6893.94 9790.55 1395.73 3088.50 798.23 2995.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
COLMAP_ROBcopyleft83.01 391.97 1191.95 1292.04 1293.68 6786.15 2393.37 1095.10 1490.28 992.11 6095.03 4389.75 2194.93 6979.95 10798.27 2795.04 63
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVS91.22 2491.92 1389.14 6592.97 8378.04 9292.84 1694.14 3583.33 5193.90 2595.73 2688.77 2696.41 187.60 1697.98 4492.98 138
PS-CasMVS90.06 4391.92 1384.47 14996.56 758.83 28389.04 7892.74 9691.40 596.12 496.06 2287.23 4795.57 3679.42 11698.74 699.00 2
DTE-MVSNet89.98 4791.91 1584.21 15696.51 857.84 28888.93 8192.84 9391.92 396.16 396.23 1886.95 5095.99 1079.05 11898.57 1598.80 6
PEN-MVS90.03 4591.88 1684.48 14896.57 658.88 28088.95 7993.19 7791.62 496.01 696.16 2087.02 4995.60 3578.69 12198.72 998.97 3
ACMMPcopyleft91.91 1291.87 1792.03 1395.53 2785.91 2793.35 1194.16 3182.52 6192.39 5794.14 8389.15 2395.62 3487.35 2398.24 2894.56 75
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LPG-MVS_test91.47 1991.68 1890.82 3894.75 4281.69 6190.00 5594.27 2382.35 6393.67 3494.82 4991.18 595.52 4285.36 5098.73 795.23 58
SED-MVS90.46 3791.64 1986.93 9994.18 5072.65 13990.47 4993.69 5483.77 4494.11 2394.27 7290.28 1595.84 2286.03 4497.92 4892.29 170
MTAPA91.52 1691.60 2091.29 2996.59 486.29 1992.02 3091.81 11984.07 4092.00 6394.40 6886.63 5495.28 5788.59 598.31 2492.30 168
CP-MVS91.67 1491.58 2191.96 1495.29 3287.62 1293.38 993.36 6583.16 5391.06 7994.00 8988.26 3295.71 3187.28 2698.39 2192.55 156
UA-Net91.49 1791.53 2291.39 2694.98 3682.95 5693.52 792.79 9488.22 2088.53 13097.64 283.45 8394.55 8586.02 4698.60 1396.67 26
ACMH+77.89 1190.73 3091.50 2388.44 8093.00 8276.26 12089.65 6695.55 787.72 2393.89 2794.94 4591.62 493.44 12978.35 12598.76 495.61 47
mPP-MVS91.69 1391.47 2492.37 696.04 1388.48 1092.72 1892.60 9983.09 5491.54 7094.25 7687.67 4395.51 4487.21 2798.11 3693.12 133
HFP-MVS91.30 2191.39 2591.02 3395.43 2984.66 4492.58 2293.29 7381.99 6691.47 7193.96 9388.35 3095.56 3787.74 1197.74 5892.85 142
XVS91.54 1591.36 2692.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 9794.03 8786.57 5695.80 2487.35 2397.62 6494.20 89
SteuartSystems-ACMMP91.16 2691.36 2690.55 4293.91 6180.97 6891.49 3893.48 6382.82 5892.60 5393.97 9088.19 3396.29 487.61 1598.20 3294.39 84
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR91.49 1791.35 2891.92 1695.74 2085.88 2992.58 2293.25 7581.99 6691.40 7394.17 8187.51 4495.87 1887.74 1197.76 5693.99 97
ZNCC-MVS91.26 2391.34 2991.01 3595.73 2183.05 5492.18 2894.22 2780.14 8991.29 7693.97 9087.93 4095.87 1888.65 497.96 4794.12 94
DVP-MVScopyleft90.06 4391.32 3086.29 11294.16 5372.56 14590.54 4691.01 14083.61 4793.75 3194.65 5489.76 1995.78 2786.42 3497.97 4590.55 219
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
WR-MVS_H89.91 5091.31 3185.71 12896.32 1062.39 24189.54 7093.31 7090.21 1095.57 995.66 2981.42 11595.90 1580.94 9698.80 398.84 5
region2R91.44 2091.30 3291.87 1995.75 1985.90 2892.63 2193.30 7281.91 6890.88 8494.21 7787.75 4195.87 1887.60 1697.71 6093.83 104
zzz-MVS91.27 2291.26 3391.29 2996.59 486.29 1988.94 8091.81 11984.07 4092.00 6394.40 6886.63 5495.28 5788.59 598.31 2492.30 168
ACMH76.49 1489.34 6091.14 3483.96 16392.50 9570.36 17189.55 6893.84 5081.89 6994.70 1395.44 3490.69 988.31 26183.33 7198.30 2693.20 130
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++90.07 4291.09 3587.00 9891.55 13272.64 14196.19 294.10 3885.33 3293.49 3894.64 5781.12 11995.88 1687.41 2195.94 13092.48 159
DPE-MVScopyleft90.53 3591.08 3688.88 6793.38 7378.65 8889.15 7794.05 4084.68 3893.90 2594.11 8588.13 3696.30 384.51 6097.81 5491.70 191
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss90.81 2991.08 3689.99 5195.97 1479.88 7488.13 9394.51 2175.79 14192.94 4494.96 4488.36 2995.01 6790.70 298.40 2095.09 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP90.65 3191.07 3889.42 6095.93 1679.54 7989.95 5893.68 5677.65 11791.97 6594.89 4688.38 2895.45 4989.27 397.87 5293.27 127
GST-MVS90.96 2891.01 3990.82 3895.45 2882.73 5791.75 3693.74 5280.98 7991.38 7493.80 10087.20 4895.80 2487.10 3197.69 6193.93 100
ACMM79.39 990.65 3190.99 4089.63 5695.03 3583.53 4989.62 6793.35 6679.20 10093.83 2893.60 10790.81 892.96 14685.02 5498.45 1992.41 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v7n90.13 4090.96 4187.65 9291.95 11371.06 16689.99 5793.05 8286.53 2894.29 1996.27 1782.69 9094.08 10086.25 4097.63 6397.82 8
PGM-MVS91.20 2590.95 4291.93 1595.67 2385.85 3090.00 5593.90 4680.32 8691.74 6994.41 6788.17 3495.98 1186.37 3697.99 4293.96 99
MP-MVScopyleft91.14 2790.91 4391.83 2196.18 1186.88 1692.20 2793.03 8582.59 6088.52 13194.37 7186.74 5395.41 5186.32 3798.21 3093.19 131
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet89.27 6190.91 4384.37 15096.34 958.61 28588.66 8892.06 11090.78 695.67 795.17 4081.80 11195.54 4179.00 11998.69 1098.95 4
SF-MVS90.27 3990.80 4588.68 7592.86 8777.09 10991.19 4195.74 581.38 7492.28 5893.80 10086.89 5194.64 7885.52 4897.51 7494.30 87
UniMVSNet_ETH3D89.12 6490.72 4684.31 15497.00 264.33 21989.67 6588.38 19788.84 1594.29 1997.57 390.48 1491.26 19372.57 19397.65 6297.34 14
PMVScopyleft80.48 690.08 4190.66 4788.34 8396.71 392.97 190.31 5189.57 18088.51 1990.11 9395.12 4290.98 788.92 25177.55 14097.07 8683.13 316
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMP79.16 1090.54 3490.60 4890.35 4694.36 4780.98 6789.16 7694.05 4079.03 10392.87 4693.74 10490.60 1295.21 6182.87 7698.76 494.87 64
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft90.31 3890.48 4989.83 5295.31 3179.52 8090.98 4293.24 7675.37 14892.84 4895.28 3685.58 6696.09 787.92 1097.76 5693.88 102
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LS3D90.60 3390.34 5091.38 2789.03 18584.23 4793.58 694.68 1990.65 790.33 9193.95 9684.50 7295.37 5380.87 9795.50 14694.53 78
#test#90.49 3690.31 5191.02 3395.43 2984.66 4490.65 4493.29 7377.00 12591.47 7193.96 9388.35 3095.56 3784.88 5597.74 5892.85 142
OPM-MVS89.80 5189.97 5289.27 6294.76 4179.86 7586.76 11692.78 9578.78 10692.51 5493.64 10688.13 3693.84 11084.83 5797.55 6994.10 95
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SD-MVS88.96 6789.88 5386.22 11591.63 12577.07 11089.82 6193.77 5178.90 10492.88 4592.29 14186.11 6290.22 22586.24 4197.24 8291.36 199
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4494.91 3884.50 4689.49 7293.98 4279.68 9392.09 6193.89 9883.80 7993.10 14382.67 7898.04 3793.64 117
OurMVSNet-221017-090.01 4689.74 5590.83 3793.16 7980.37 7191.91 3493.11 7981.10 7795.32 1097.24 572.94 20394.85 7285.07 5297.78 5597.26 15
3Dnovator+83.92 289.97 4989.66 5690.92 3691.27 14181.66 6491.25 3994.13 3688.89 1388.83 12594.26 7577.55 15195.86 2184.88 5595.87 13495.24 57
APD-MVScopyleft89.54 5689.63 5789.26 6392.57 9281.34 6690.19 5393.08 8180.87 8191.13 7793.19 11186.22 6195.97 1282.23 8397.18 8490.45 221
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Anonymous2023121188.40 7289.62 5884.73 14490.46 16365.27 21088.86 8293.02 8687.15 2593.05 4397.10 682.28 9892.02 17376.70 14897.99 4296.88 23
test_040288.65 7089.58 5985.88 12492.55 9372.22 15384.01 15889.44 18288.63 1894.38 1895.77 2586.38 6093.59 12179.84 10895.21 15591.82 188
testtj89.51 5789.48 6089.59 5892.26 10280.80 6990.14 5493.54 6183.37 5090.57 8892.55 13384.99 6896.15 581.26 9196.61 10191.83 187
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4794.47 4685.95 2686.84 11293.91 4580.07 9086.75 16293.26 11093.64 290.93 20384.60 5990.75 25993.97 98
9.1489.29 6291.84 12188.80 8495.32 1175.14 15091.07 7892.89 12187.27 4693.78 11283.69 6897.55 69
mvs_tets89.78 5289.27 6391.30 2893.51 6984.79 4189.89 6090.63 15070.00 21894.55 1596.67 1187.94 3993.59 12184.27 6295.97 12795.52 48
xxxxxxxxxxxxxcwj89.04 6689.13 6488.79 7193.75 6477.44 10286.31 12495.27 1270.80 20792.28 5893.80 10086.89 5194.64 7885.52 4897.51 7494.30 87
DeepC-MVS82.31 489.15 6389.08 6589.37 6193.64 6879.07 8388.54 8994.20 2873.53 16689.71 10694.82 4985.09 6795.77 2984.17 6398.03 3993.26 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_djsdf89.62 5489.01 6691.45 2592.36 9882.98 5591.98 3190.08 17071.54 19894.28 2196.54 1381.57 11394.27 8786.26 3896.49 10697.09 19
DP-MVS88.60 7189.01 6687.36 9591.30 13977.50 10187.55 10092.97 8887.95 2289.62 11092.87 12284.56 7193.89 10777.65 13896.62 10090.70 213
CPTT-MVS89.39 5988.98 6890.63 4195.09 3486.95 1592.09 2992.30 10579.74 9287.50 14792.38 13681.42 11593.28 13483.07 7397.24 8291.67 192
ETH3D-3000-0.188.85 6988.96 6988.52 7691.94 11577.27 10888.71 8695.26 1376.08 13290.66 8792.69 12884.48 7393.83 11183.38 7097.48 7694.47 79
anonymousdsp89.73 5388.88 7092.27 989.82 17586.67 1790.51 4890.20 16769.87 21995.06 1196.14 2184.28 7593.07 14487.68 1396.34 11297.09 19
XVG-OURS89.18 6288.83 7190.23 4894.28 4886.11 2585.91 12793.60 6080.16 8889.13 12193.44 10883.82 7890.98 20183.86 6695.30 15493.60 119
jajsoiax89.41 5888.81 7291.19 3293.38 7384.72 4289.70 6290.29 16469.27 22294.39 1796.38 1586.02 6493.52 12583.96 6495.92 13295.34 52
TranMVSNet+NR-MVSNet87.86 7988.76 7385.18 13694.02 5864.13 22084.38 15291.29 13284.88 3792.06 6293.84 9986.45 5893.73 11373.22 18498.66 1197.69 9
nrg03087.85 8088.49 7485.91 12290.07 17169.73 17487.86 9794.20 2874.04 16092.70 5294.66 5385.88 6591.50 18479.72 11097.32 8096.50 30
HPM-MVS++copyleft88.93 6888.45 7590.38 4594.92 3785.85 3089.70 6291.27 13378.20 11386.69 16592.28 14280.36 12995.06 6686.17 4296.49 10690.22 224
DROMVSNet88.01 7688.32 7687.09 9789.28 18072.03 15590.31 5196.31 380.88 8085.12 19389.67 20884.47 7495.46 4882.56 7996.26 11793.77 110
MSP-MVS89.08 6588.16 7791.83 2195.76 1886.14 2492.75 1793.90 4678.43 11189.16 12092.25 14372.03 21596.36 288.21 890.93 25492.98 138
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
pmmvs686.52 9588.06 7881.90 20392.22 10562.28 24484.66 14589.15 18683.54 4989.85 10297.32 488.08 3886.80 27770.43 21097.30 8196.62 27
PS-MVSNAJss88.31 7387.90 7989.56 5993.31 7577.96 9587.94 9691.97 11370.73 20994.19 2296.67 1176.94 16094.57 8283.07 7396.28 11496.15 32
test_part187.15 8787.82 8085.15 13788.88 18963.04 23187.98 9494.85 1682.52 6193.61 3795.73 2667.51 23495.71 3180.48 10498.83 296.69 25
TSAR-MVS + MP.88.14 7587.82 8089.09 6695.72 2276.74 11492.49 2591.19 13667.85 24086.63 16694.84 4879.58 13595.96 1387.62 1494.50 17894.56 75
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS87.81 8287.68 8288.21 8592.87 8577.30 10785.25 13791.23 13477.31 12287.07 15591.47 16282.94 8894.71 7584.67 5896.27 11692.62 154
ETH3D cwj APD-0.1687.83 8187.62 8388.47 7891.21 14278.20 9087.26 10594.54 2072.05 19488.89 12292.31 14083.86 7794.24 9081.59 9096.87 9192.97 141
OMC-MVS88.19 7487.52 8490.19 4991.94 11581.68 6387.49 10293.17 7876.02 13588.64 12891.22 16684.24 7693.37 13277.97 13697.03 8795.52 48
SixPastTwentyTwo87.20 8687.45 8586.45 10892.52 9469.19 18387.84 9888.05 20381.66 7194.64 1496.53 1465.94 24394.75 7483.02 7596.83 9495.41 50
HQP_MVS87.75 8387.43 8688.70 7493.45 7076.42 11889.45 7393.61 5879.44 9786.55 16792.95 11974.84 17895.22 5980.78 9995.83 13594.46 80
AllTest87.97 7887.40 8789.68 5491.59 12683.40 5089.50 7195.44 979.47 9588.00 14093.03 11482.66 9191.47 18570.81 20296.14 12194.16 92
Anonymous2024052986.20 10287.13 8883.42 17590.19 16764.55 21784.55 14790.71 14785.85 3189.94 10095.24 3982.13 10090.40 22069.19 22196.40 11095.31 54
v1086.54 9487.10 8984.84 14188.16 20363.28 22886.64 11992.20 10775.42 14792.81 5094.50 6074.05 18894.06 10183.88 6596.28 11497.17 18
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11992.86 8767.02 19782.55 20391.56 12383.08 5590.92 8191.82 15378.25 14493.99 10274.16 17298.35 2297.49 13
FC-MVSNet-test85.93 10787.05 9182.58 19492.25 10356.44 30085.75 13193.09 8077.33 12191.94 6694.65 5474.78 18093.41 13175.11 16798.58 1497.88 7
DU-MVS86.80 9186.99 9286.21 11793.24 7767.02 19783.16 18892.21 10681.73 7090.92 8191.97 14777.20 15493.99 10274.16 17298.35 2297.61 10
UniMVSNet (Re)86.87 8886.98 9386.55 10693.11 8068.48 18783.80 16792.87 9080.37 8489.61 11291.81 15477.72 14894.18 9475.00 16898.53 1696.99 22
RPSCF88.00 7786.93 9491.22 3190.08 16989.30 589.68 6491.11 13779.26 9989.68 10794.81 5282.44 9387.74 26576.54 15088.74 28196.61 28
NCCC87.36 8486.87 9588.83 6892.32 10178.84 8686.58 12091.09 13878.77 10784.85 19990.89 18080.85 12295.29 5581.14 9395.32 15192.34 166
v886.22 10186.83 9684.36 15287.82 20862.35 24386.42 12291.33 13176.78 12792.73 5194.48 6273.41 19793.72 11483.10 7295.41 14797.01 21
IS-MVSNet86.66 9386.82 9786.17 11992.05 11166.87 19991.21 4088.64 19386.30 3089.60 11392.59 13069.22 22694.91 7073.89 17697.89 5196.72 24
Vis-MVSNetpermissive86.86 8986.58 9887.72 9092.09 10977.43 10487.35 10392.09 10978.87 10584.27 21494.05 8678.35 14393.65 11580.54 10391.58 24292.08 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG86.26 9986.47 9985.60 13090.87 15374.26 12987.98 9491.85 11680.35 8589.54 11688.01 23179.09 13792.13 16775.51 16195.06 16290.41 222
Gipumacopyleft84.44 13486.33 10078.78 25184.20 27373.57 13289.55 6890.44 15484.24 3984.38 20794.89 4676.35 16980.40 32576.14 15496.80 9682.36 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_prior386.31 9886.31 10186.32 11090.59 16071.99 15683.37 18092.85 9175.43 14584.58 20391.57 15881.92 10894.17 9679.54 11396.97 8892.80 144
FIs85.35 11486.27 10282.60 19391.86 11857.31 29385.10 13993.05 8275.83 14091.02 8093.97 9073.57 19392.91 15073.97 17598.02 4097.58 12
NR-MVSNet86.00 10486.22 10385.34 13493.24 7764.56 21682.21 21690.46 15380.99 7888.42 13391.97 14777.56 15093.85 10872.46 19498.65 1297.61 10
DeepPCF-MVS81.24 587.28 8586.21 10490.49 4391.48 13684.90 3983.41 17992.38 10470.25 21589.35 11890.68 18782.85 8994.57 8279.55 11295.95 12992.00 181
canonicalmvs85.50 11186.14 10583.58 17287.97 20467.13 19587.55 10094.32 2273.44 16888.47 13287.54 24086.45 5891.06 20075.76 16093.76 19392.54 157
Regformer-286.74 9286.08 10688.73 7284.18 27479.20 8283.52 17489.33 18483.33 5189.92 10185.07 28383.23 8693.16 13983.39 6992.72 22193.83 104
MSLP-MVS++85.00 12386.03 10781.90 20391.84 12171.56 16486.75 11793.02 8675.95 13887.12 15189.39 21077.98 14589.40 24777.46 14194.78 17184.75 293
baseline85.20 11685.93 10883.02 18286.30 24162.37 24284.55 14793.96 4374.48 15787.12 15192.03 14682.30 9691.94 17478.39 12394.21 18494.74 71
Baseline_NR-MVSNet84.00 14885.90 10978.29 26291.47 13753.44 31982.29 21287.00 22579.06 10289.55 11495.72 2877.20 15486.14 28872.30 19598.51 1795.28 55
casdiffmvs85.21 11585.85 11083.31 17786.17 24662.77 23583.03 19093.93 4474.69 15488.21 13892.68 12982.29 9791.89 17777.87 13793.75 19595.27 56
GeoE85.45 11385.81 11184.37 15090.08 16967.07 19685.86 13091.39 13072.33 18987.59 14590.25 19784.85 6992.37 16178.00 13491.94 23693.66 114
PHI-MVS86.38 9785.81 11188.08 8688.44 19777.34 10589.35 7593.05 8273.15 17784.76 20087.70 23778.87 13994.18 9480.67 10196.29 11392.73 147
TransMVSNet (Re)84.02 14785.74 11378.85 25091.00 15055.20 31082.29 21287.26 21379.65 9488.38 13595.52 3383.00 8786.88 27567.97 23396.60 10294.45 82
Regformer-486.41 9685.71 11488.52 7684.27 27077.57 10084.07 15588.00 20582.82 5889.84 10385.48 27182.06 10292.77 15283.83 6791.04 24895.22 60
ANet_high83.17 16585.68 11575.65 29281.24 30145.26 36079.94 24692.91 8983.83 4391.33 7596.88 1080.25 13085.92 29068.89 22495.89 13395.76 42
DeepC-MVS_fast80.27 886.23 10085.65 11687.96 8991.30 13976.92 11187.19 10691.99 11270.56 21084.96 19590.69 18680.01 13295.14 6278.37 12495.78 13991.82 188
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS86.17 10385.54 11788.05 8892.25 10375.45 12383.85 16492.01 11165.91 25586.19 17491.75 15683.77 8094.98 6877.43 14396.71 9893.73 111
Regformer-186.00 10485.50 11887.49 9384.18 27476.90 11283.52 17487.94 20782.18 6589.19 11985.07 28382.28 9891.89 17782.40 8192.72 22193.69 113
FMVSNet184.55 13185.45 11981.85 20590.27 16661.05 25586.83 11388.27 20078.57 11089.66 10995.64 3075.43 17290.68 21369.09 22295.33 15093.82 106
VDDNet84.35 13685.39 12081.25 21395.13 3359.32 27385.42 13681.11 27686.41 2987.41 14896.21 1973.61 19290.61 21666.33 24296.85 9293.81 109
CS-MVS-test85.00 12385.28 12184.17 15987.84 20766.12 20587.30 10495.67 677.63 11980.02 27485.85 26781.34 11795.41 5178.18 13093.71 19690.99 203
train_agg85.98 10685.28 12188.07 8792.34 9979.70 7783.94 16090.32 15865.79 25684.49 20590.97 17681.93 10693.63 11781.21 9296.54 10490.88 208
agg_prior185.72 10985.20 12387.28 9691.58 12977.69 9883.69 17090.30 16166.29 25284.32 20991.07 17382.13 10093.18 13781.02 9496.36 11190.98 204
LCM-MVSNet-Re83.48 15885.06 12478.75 25285.94 24955.75 30580.05 24494.27 2376.47 12896.09 594.54 5983.31 8589.75 24159.95 28894.89 16990.75 211
EPP-MVSNet85.47 11285.04 12586.77 10391.52 13569.37 17791.63 3787.98 20681.51 7387.05 15691.83 15266.18 24295.29 5570.75 20596.89 9095.64 45
IterMVS-LS84.73 12784.98 12683.96 16387.35 21863.66 22383.25 18489.88 17476.06 13389.62 11092.37 13973.40 19992.52 15778.16 13194.77 17395.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pm-mvs183.69 15384.95 12779.91 23690.04 17359.66 27082.43 20787.44 21075.52 14487.85 14295.26 3881.25 11885.65 29468.74 22696.04 12494.42 83
ETH3 D test640085.09 11984.87 12885.75 12790.80 15569.34 17885.90 12893.31 7065.43 26286.11 17789.95 20380.92 12194.86 7175.90 15895.57 14493.05 135
TAPA-MVS77.73 1285.71 11084.83 12988.37 8288.78 19179.72 7687.15 10893.50 6269.17 22385.80 18489.56 20980.76 12392.13 16773.21 18995.51 14593.25 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VPA-MVSNet83.47 15984.73 13079.69 24190.29 16557.52 29281.30 23088.69 19276.29 12987.58 14694.44 6380.60 12687.20 27066.60 24196.82 9594.34 86
K. test v385.14 11784.73 13086.37 10991.13 14769.63 17685.45 13576.68 30284.06 4292.44 5696.99 862.03 26294.65 7780.58 10293.24 20694.83 70
v114484.54 13384.72 13284.00 16187.67 21262.55 23982.97 19290.93 14370.32 21489.80 10490.99 17573.50 19493.48 12781.69 8994.65 17695.97 38
3Dnovator80.37 784.80 12684.71 13385.06 13986.36 23974.71 12688.77 8590.00 17275.65 14384.96 19593.17 11274.06 18791.19 19578.28 12791.09 24689.29 240
v119284.57 13084.69 13484.21 15687.75 21062.88 23383.02 19191.43 12769.08 22589.98 9990.89 18072.70 20793.62 12082.41 8094.97 16696.13 33
Regformer-385.06 12084.67 13586.22 11584.27 27073.43 13384.07 15585.26 24480.77 8288.62 12985.48 27180.56 12790.39 22181.99 8591.04 24894.85 68
MIMVSNet183.63 15584.59 13680.74 22394.06 5762.77 23582.72 19784.53 25777.57 12090.34 9095.92 2476.88 16685.83 29261.88 27497.42 7793.62 118
VDD-MVS84.23 14284.58 13783.20 17991.17 14665.16 21283.25 18484.97 25479.79 9187.18 15094.27 7274.77 18190.89 20669.24 21896.54 10493.55 123
EI-MVSNet-Vis-set85.12 11884.53 13886.88 10084.01 27772.76 13883.91 16385.18 24680.44 8388.75 12685.49 27080.08 13191.92 17582.02 8490.85 25795.97 38
v124084.30 13884.51 13983.65 17087.65 21361.26 25282.85 19591.54 12467.94 23890.68 8690.65 18971.71 21793.64 11682.84 7794.78 17196.07 35
EI-MVSNet-UG-set85.04 12184.44 14086.85 10183.87 28072.52 14783.82 16585.15 24780.27 8788.75 12685.45 27479.95 13391.90 17681.92 8790.80 25896.13 33
v14419284.24 14184.41 14183.71 16987.59 21561.57 24882.95 19391.03 13967.82 24189.80 10490.49 19273.28 20093.51 12681.88 8894.89 16996.04 37
WR-MVS83.56 15684.40 14281.06 21893.43 7254.88 31178.67 26785.02 25181.24 7590.74 8591.56 16072.85 20491.08 19968.00 23298.04 3797.23 16
v192192084.23 14284.37 14383.79 16687.64 21461.71 24782.91 19491.20 13567.94 23890.06 9490.34 19472.04 21493.59 12182.32 8294.91 16796.07 35
MVS_111021_HR84.63 12884.34 14485.49 13390.18 16875.86 12279.23 26087.13 21773.35 16985.56 18889.34 21183.60 8290.50 21876.64 14994.05 18990.09 229
v2v48284.09 14484.24 14583.62 17187.13 22361.40 24982.71 19889.71 17672.19 19389.55 11491.41 16370.70 22293.20 13681.02 9493.76 19396.25 31
EG-PatchMatch MVS84.08 14584.11 14683.98 16292.22 10572.61 14482.20 21887.02 22272.63 18388.86 12391.02 17478.52 14091.11 19873.41 18391.09 24688.21 254
HQP-MVS84.61 12984.06 14786.27 11391.19 14370.66 16884.77 14192.68 9773.30 17280.55 26690.17 20172.10 21194.61 8077.30 14494.47 17993.56 121
Effi-MVS+83.90 15184.01 14883.57 17387.22 22165.61 20986.55 12192.40 10278.64 10981.34 25784.18 29583.65 8192.93 14874.22 17187.87 29192.17 177
alignmvs83.94 15083.98 14983.80 16587.80 20967.88 19284.54 14991.42 12973.27 17588.41 13487.96 23272.33 21090.83 20876.02 15794.11 18792.69 151
MCST-MVS84.36 13583.93 15085.63 12991.59 12671.58 16383.52 17492.13 10861.82 28383.96 21789.75 20779.93 13493.46 12878.33 12694.34 18291.87 186
ETV-MVS84.31 13783.91 15185.52 13188.58 19370.40 17084.50 15193.37 6478.76 10884.07 21678.72 34280.39 12895.13 6373.82 17892.98 21491.04 202
MVS_111021_LR84.28 13983.76 15285.83 12689.23 18283.07 5380.99 23483.56 26172.71 18286.07 17889.07 21881.75 11286.19 28777.11 14693.36 20288.24 253
AdaColmapbinary83.66 15483.69 15383.57 17390.05 17272.26 15286.29 12690.00 17278.19 11481.65 25287.16 24783.40 8494.24 9061.69 27694.76 17484.21 298
F-COLMAP84.97 12583.42 15489.63 5692.39 9783.40 5088.83 8391.92 11573.19 17680.18 27389.15 21677.04 15893.28 13465.82 24892.28 22792.21 175
Effi-MVS+-dtu85.82 10883.38 15593.14 387.13 22391.15 287.70 9988.42 19574.57 15583.56 22385.65 26878.49 14194.21 9272.04 19692.88 21694.05 96
V4283.47 15983.37 15683.75 16883.16 28663.33 22781.31 22890.23 16669.51 22190.91 8390.81 18374.16 18692.29 16580.06 10590.22 26595.62 46
MVS_Test82.47 17283.22 15780.22 23282.62 29157.75 29082.54 20491.96 11471.16 20582.89 23292.52 13577.41 15290.50 21880.04 10687.84 29292.40 163
DP-MVS Recon84.05 14683.22 15786.52 10791.73 12475.27 12483.23 18692.40 10272.04 19582.04 24388.33 22777.91 14793.95 10566.17 24395.12 16090.34 223
PAPM_NR83.23 16383.19 15983.33 17690.90 15265.98 20688.19 9290.78 14678.13 11580.87 26187.92 23573.49 19692.42 15870.07 21288.40 28291.60 194
KD-MVS_self_test81.93 18383.14 16078.30 26184.75 26152.75 32380.37 24189.42 18370.24 21690.26 9293.39 10974.55 18586.77 27868.61 22896.64 9995.38 51
CNLPA83.55 15783.10 16184.90 14089.34 17983.87 4884.54 14988.77 19079.09 10183.54 22488.66 22474.87 17781.73 31966.84 23992.29 22689.11 242
tfpnnormal81.79 18482.95 16278.31 26088.93 18855.40 30680.83 23782.85 26576.81 12685.90 18394.14 8374.58 18486.51 28266.82 24095.68 14393.01 137
CANet83.79 15282.85 16386.63 10486.17 24672.21 15483.76 16891.43 12777.24 12374.39 31787.45 24275.36 17395.42 5077.03 14792.83 21792.25 174
h-mvs3384.25 14082.76 16488.72 7391.82 12382.60 5884.00 15984.98 25371.27 20086.70 16390.55 19163.04 25893.92 10678.26 12894.20 18589.63 231
X-MVStestdata85.04 12182.70 16592.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 9716.05 37286.57 5695.80 2487.35 2397.62 6494.20 89
TSAR-MVS + GP.83.95 14982.69 16687.72 9089.27 18181.45 6583.72 16981.58 27574.73 15385.66 18586.06 26272.56 20992.69 15475.44 16395.21 15589.01 248
CLD-MVS83.18 16482.64 16784.79 14289.05 18467.82 19377.93 27592.52 10068.33 23285.07 19481.54 32382.06 10292.96 14669.35 21797.91 5093.57 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS82.02 17982.63 16880.19 23384.80 26057.56 29182.39 20994.72 1871.24 20380.22 27284.89 28775.85 17094.56 8476.08 15593.49 20188.46 252
API-MVS82.28 17482.61 16981.30 21286.29 24269.79 17288.71 8687.67 20978.42 11282.15 24284.15 29677.98 14591.59 18365.39 25092.75 21882.51 323
QAPM82.59 17082.59 17082.58 19486.44 23466.69 20189.94 5990.36 15767.97 23784.94 19792.58 13272.71 20692.18 16670.63 20887.73 29388.85 249
114514_t83.10 16682.54 17184.77 14392.90 8469.10 18586.65 11890.62 15154.66 32481.46 25490.81 18376.98 15994.38 8672.62 19296.18 11990.82 210
v14882.31 17382.48 17281.81 20885.59 25259.66 27081.47 22686.02 23472.85 18088.05 13990.65 18970.73 22190.91 20575.15 16691.79 23794.87 64
EI-MVSNet82.61 16982.42 17383.20 17983.25 28463.66 22383.50 17785.07 24876.06 13386.55 16785.10 28073.41 19790.25 22278.15 13390.67 26195.68 44
TinyColmap81.25 18982.34 17477.99 26785.33 25560.68 26282.32 21188.33 19871.26 20286.97 15892.22 14577.10 15786.98 27462.37 26995.17 15786.31 277
mvs-test184.55 13182.12 17591.84 2087.13 22389.54 485.05 14088.42 19574.57 15580.60 26382.98 30678.49 14193.98 10472.04 19689.77 26892.00 181
GBi-Net82.02 17982.07 17681.85 20586.38 23661.05 25586.83 11388.27 20072.43 18486.00 17995.64 3063.78 25290.68 21365.95 24493.34 20393.82 106
test182.02 17982.07 17681.85 20586.38 23661.05 25586.83 11388.27 20072.43 18486.00 17995.64 3063.78 25290.68 21365.95 24493.34 20393.82 106
OpenMVScopyleft76.72 1381.98 18282.00 17881.93 20284.42 26668.22 18988.50 9089.48 18166.92 24781.80 25091.86 14972.59 20890.16 22771.19 20191.25 24587.40 266
LF4IMVS82.75 16881.93 17985.19 13582.08 29280.15 7385.53 13488.76 19168.01 23585.58 18787.75 23671.80 21686.85 27674.02 17493.87 19288.58 251
hse-mvs283.47 15981.81 18088.47 7891.03 14982.27 5982.61 19983.69 25971.27 20086.70 16386.05 26363.04 25892.41 15978.26 12893.62 20090.71 212
VPNet80.25 20881.68 18175.94 29192.46 9647.98 35176.70 29281.67 27473.45 16784.87 19892.82 12374.66 18386.51 28261.66 27796.85 9293.33 124
UGNet82.78 16781.64 18286.21 11786.20 24576.24 12186.86 11185.68 23877.07 12473.76 32092.82 12369.64 22391.82 18069.04 22393.69 19790.56 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FMVSNet281.31 18881.61 18380.41 22986.38 23658.75 28483.93 16286.58 22872.43 18487.65 14492.98 11663.78 25290.22 22566.86 23793.92 19192.27 172
c3_l81.64 18581.59 18481.79 20980.86 30759.15 27778.61 26890.18 16868.36 23187.20 14987.11 24969.39 22491.62 18278.16 13194.43 18194.60 74
MVSFormer82.23 17581.57 18584.19 15885.54 25369.26 18091.98 3190.08 17071.54 19876.23 30185.07 28358.69 28394.27 8786.26 3888.77 27989.03 246
Fast-Effi-MVS+-dtu82.54 17181.41 18685.90 12385.60 25176.53 11783.07 18989.62 17973.02 17979.11 28283.51 30080.74 12490.24 22468.76 22589.29 27290.94 206
Anonymous2024052180.18 21181.25 18776.95 27883.15 28760.84 26082.46 20685.99 23568.76 22986.78 16093.73 10559.13 28077.44 33273.71 17997.55 6992.56 155
DELS-MVS81.44 18781.25 18782.03 20184.27 27062.87 23476.47 29792.49 10170.97 20681.64 25383.83 29775.03 17592.70 15374.29 17092.22 23090.51 220
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EIA-MVS82.19 17681.23 18985.10 13887.95 20569.17 18483.22 18793.33 6770.42 21178.58 28579.77 33977.29 15394.20 9371.51 19988.96 27791.93 185
Anonymous20240521180.51 20181.19 19078.49 25788.48 19557.26 29476.63 29382.49 26781.21 7684.30 21292.24 14467.99 23286.24 28662.22 27095.13 15891.98 184
RRT_MVS83.25 16281.08 19189.74 5380.55 31479.32 8186.41 12386.69 22672.33 18987.00 15791.08 17144.98 34595.55 4084.47 6196.24 11894.36 85
BH-untuned80.96 19380.99 19280.84 22288.55 19468.23 18880.33 24288.46 19472.79 18186.55 16786.76 25274.72 18291.77 18161.79 27588.99 27682.52 322
MG-MVS80.32 20780.94 19378.47 25888.18 20152.62 32682.29 21285.01 25272.01 19679.24 28192.54 13469.36 22593.36 13370.65 20789.19 27589.45 234
PCF-MVS74.62 1582.15 17780.92 19485.84 12589.43 17772.30 15180.53 23991.82 11857.36 31387.81 14389.92 20577.67 14993.63 11758.69 29395.08 16191.58 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Fast-Effi-MVS+81.04 19280.57 19582.46 19887.50 21663.22 22978.37 27189.63 17868.01 23581.87 24682.08 31882.31 9592.65 15567.10 23688.30 28791.51 197
LFMVS80.15 21280.56 19678.89 24989.19 18355.93 30285.22 13873.78 32282.96 5684.28 21392.72 12757.38 29290.07 23463.80 26095.75 14090.68 214
ab-mvs79.67 21580.56 19676.99 27788.48 19556.93 29684.70 14486.06 23368.95 22780.78 26293.08 11375.30 17484.62 30356.78 30290.90 25589.43 236
PVSNet_Blended_VisFu81.55 18680.49 19884.70 14691.58 12973.24 13684.21 15391.67 12262.86 27680.94 25987.16 24767.27 23692.87 15169.82 21488.94 27887.99 258
diffmvs80.40 20480.48 19980.17 23479.02 32960.04 26677.54 28290.28 16566.65 25082.40 23787.33 24573.50 19487.35 26977.98 13589.62 27093.13 132
PLCcopyleft73.85 1682.09 17880.31 20087.45 9490.86 15480.29 7285.88 12990.65 14968.17 23476.32 30086.33 25773.12 20292.61 15661.40 28090.02 26789.44 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet79.31 21680.27 20176.44 28587.92 20653.95 31575.58 30584.35 25874.39 15882.23 24090.72 18572.84 20584.39 30560.38 28793.98 19090.97 205
cl____80.42 20380.23 20281.02 21979.99 31759.25 27477.07 28887.02 22267.37 24486.18 17689.21 21463.08 25790.16 22776.31 15295.80 13793.65 116
DIV-MVS_self_test80.43 20280.23 20281.02 21979.99 31759.25 27477.07 28887.02 22267.38 24386.19 17489.22 21363.09 25690.16 22776.32 15195.80 13793.66 114
eth_miper_zixun_eth80.84 19580.22 20482.71 19181.41 29960.98 25877.81 27790.14 16967.31 24586.95 15987.24 24664.26 24892.31 16375.23 16591.61 24094.85 68
BH-RMVSNet80.53 20080.22 20481.49 21187.19 22266.21 20477.79 27886.23 23174.21 15983.69 21988.50 22573.25 20190.75 21063.18 26687.90 29087.52 264
xiu_mvs_v1_base_debu80.84 19580.14 20682.93 18588.31 19871.73 15979.53 25187.17 21465.43 26279.59 27682.73 31376.94 16090.14 23073.22 18488.33 28386.90 272
xiu_mvs_v1_base80.84 19580.14 20682.93 18588.31 19871.73 15979.53 25187.17 21465.43 26279.59 27682.73 31376.94 16090.14 23073.22 18488.33 28386.90 272
xiu_mvs_v1_base_debi80.84 19580.14 20682.93 18588.31 19871.73 15979.53 25187.17 21465.43 26279.59 27682.73 31376.94 16090.14 23073.22 18488.33 28386.90 272
miper_ehance_all_eth80.34 20680.04 20981.24 21579.82 31958.95 27977.66 27989.66 17765.75 25985.99 18285.11 27968.29 23191.42 18976.03 15692.03 23293.33 124
MSDG80.06 21479.99 21080.25 23183.91 27968.04 19177.51 28389.19 18577.65 11781.94 24483.45 30276.37 16886.31 28563.31 26586.59 30186.41 275
112180.86 19479.81 21184.02 16093.93 6078.70 8781.64 22380.18 28355.43 32183.67 22091.15 16971.29 21991.41 19067.95 23493.06 21181.96 328
tttt051781.07 19179.58 21285.52 13188.99 18766.45 20387.03 11075.51 31073.76 16488.32 13790.20 19837.96 36194.16 9979.36 11795.13 15895.93 41
IterMVS-SCA-FT80.64 19979.41 21384.34 15383.93 27869.66 17576.28 29981.09 27772.43 18486.47 17390.19 19960.46 26893.15 14177.45 14286.39 30490.22 224
wuyk23d75.13 26079.30 21462.63 34075.56 34975.18 12580.89 23573.10 32875.06 15194.76 1295.32 3587.73 4252.85 36934.16 36897.11 8559.85 365
DPM-MVS80.10 21379.18 21582.88 18890.71 15869.74 17378.87 26490.84 14460.29 29775.64 30985.92 26567.28 23593.11 14271.24 20091.79 23785.77 283
PM-MVS80.20 21079.00 21683.78 16788.17 20286.66 1881.31 22866.81 35569.64 22088.33 13690.19 19964.58 24683.63 31171.99 19890.03 26681.06 342
test111178.53 22678.85 21777.56 27392.22 10547.49 35382.61 19969.24 34772.43 18485.28 19194.20 7851.91 31190.07 23465.36 25196.45 10895.11 61
AUN-MVS81.18 19078.78 21888.39 8190.93 15182.14 6082.51 20583.67 26064.69 27080.29 26985.91 26651.07 31592.38 16076.29 15393.63 19990.65 216
mvs_anonymous78.13 23078.76 21976.23 29079.24 32650.31 34478.69 26684.82 25561.60 28783.09 23192.82 12373.89 19087.01 27168.33 23186.41 30391.37 198
MAR-MVS80.24 20978.74 22084.73 14486.87 23378.18 9185.75 13187.81 20865.67 26177.84 29078.50 34373.79 19190.53 21761.59 27990.87 25685.49 286
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ECVR-MVScopyleft78.44 22778.63 22177.88 26991.85 11948.95 34783.68 17169.91 34572.30 19184.26 21594.20 7851.89 31289.82 23863.58 26196.02 12594.87 64
FMVSNet378.80 22278.55 22279.57 24382.89 29056.89 29881.76 22085.77 23769.04 22686.00 17990.44 19351.75 31390.09 23365.95 24493.34 20391.72 190
test_yl78.71 22478.51 22379.32 24684.32 26858.84 28178.38 26985.33 24275.99 13682.49 23586.57 25358.01 28690.02 23662.74 26792.73 21989.10 243
DCV-MVSNet78.71 22478.51 22379.32 24684.32 26858.84 28178.38 26985.33 24275.99 13682.49 23586.57 25358.01 28690.02 23662.74 26792.73 21989.10 243
EPNet80.37 20578.41 22586.23 11476.75 34073.28 13487.18 10777.45 29776.24 13168.14 34088.93 22065.41 24593.85 10869.47 21696.12 12391.55 196
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet78.88 22078.28 22680.68 22679.58 32062.64 23782.58 20194.16 3174.80 15275.72 30792.59 13048.69 32195.56 3773.48 18282.91 33183.85 303
cl2278.97 21978.21 22781.24 21577.74 33359.01 27877.46 28587.13 21765.79 25684.32 20985.10 28058.96 28290.88 20775.36 16492.03 23293.84 103
PAPR78.84 22178.10 22881.07 21785.17 25660.22 26582.21 21690.57 15262.51 27875.32 31284.61 29174.99 17692.30 16459.48 29188.04 28990.68 214
bset_n11_16_dypcd79.19 21777.97 22982.86 18985.81 25066.85 20075.02 31079.31 28766.07 25383.50 22583.37 30555.04 30692.10 17078.63 12294.99 16589.63 231
PVSNet_BlendedMVS78.80 22277.84 23081.65 21084.43 26463.41 22579.49 25490.44 15461.70 28675.43 31087.07 25069.11 22791.44 18760.68 28592.24 22890.11 228
Vis-MVSNet (Re-imp)77.82 23477.79 23177.92 26888.82 19051.29 33783.28 18271.97 33574.04 16082.23 24089.78 20657.38 29289.41 24657.22 30195.41 14793.05 135
RRT_test8_iter0578.08 23177.52 23279.75 23980.84 30852.54 32780.61 23888.96 18867.77 24284.62 20289.29 21233.89 36692.10 17077.59 13994.15 18694.62 72
Patchmtry76.56 24977.46 23373.83 30179.37 32546.60 35782.41 20876.90 29973.81 16385.56 18892.38 13648.07 32383.98 30863.36 26495.31 15390.92 207
OpenMVS_ROBcopyleft70.19 1777.77 23677.46 23378.71 25384.39 26761.15 25381.18 23282.52 26662.45 28083.34 22687.37 24366.20 24188.66 25764.69 25685.02 31586.32 276
CL-MVSNet_self_test76.81 24577.38 23575.12 29586.90 23151.34 33573.20 32380.63 28168.30 23381.80 25088.40 22666.92 23880.90 32255.35 31394.90 16893.12 133
thisisatest053079.07 21877.33 23684.26 15587.13 22364.58 21583.66 17275.95 30568.86 22885.22 19287.36 24438.10 35993.57 12475.47 16294.28 18394.62 72
MVS_030478.17 22977.23 23780.99 22184.13 27669.07 18681.39 22780.81 27976.28 13067.53 34589.11 21762.87 26086.77 27860.90 28492.01 23587.13 269
CANet_DTU77.81 23577.05 23880.09 23581.37 30059.90 26883.26 18388.29 19969.16 22467.83 34383.72 29860.93 26589.47 24369.22 22089.70 26990.88 208
pmmvs-eth3d78.42 22877.04 23982.57 19687.44 21774.41 12880.86 23679.67 28655.68 31984.69 20190.31 19660.91 26685.42 29562.20 27191.59 24187.88 261
miper_enhance_ethall77.83 23376.93 24080.51 22776.15 34658.01 28775.47 30788.82 18958.05 30783.59 22280.69 32764.41 24791.20 19473.16 19092.03 23292.33 167
MDA-MVSNet-bldmvs77.47 23776.90 24179.16 24879.03 32864.59 21466.58 34675.67 30873.15 17788.86 12388.99 21966.94 23781.23 32164.71 25588.22 28891.64 193
xiu_mvs_v2_base77.19 24076.75 24278.52 25687.01 22961.30 25175.55 30687.12 22061.24 28974.45 31678.79 34177.20 15490.93 20364.62 25884.80 32183.32 312
USDC76.63 24776.73 24376.34 28783.46 28257.20 29580.02 24588.04 20452.14 33983.65 22191.25 16563.24 25586.65 28154.66 31894.11 18785.17 288
PS-MVSNAJ77.04 24276.53 24478.56 25587.09 22861.40 24975.26 30887.13 21761.25 28874.38 31877.22 35076.94 16090.94 20264.63 25784.83 32083.35 311
TAMVS78.08 23176.36 24583.23 17890.62 15972.87 13779.08 26180.01 28561.72 28581.35 25686.92 25163.96 25188.78 25550.61 33593.01 21388.04 257
IterMVS76.91 24376.34 24678.64 25480.91 30564.03 22176.30 29879.03 29064.88 26983.11 22989.16 21559.90 27484.46 30468.61 22885.15 31487.42 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XXY-MVS74.44 27176.19 24769.21 32184.61 26252.43 32871.70 32877.18 29860.73 29480.60 26390.96 17875.44 17169.35 35056.13 30688.33 28385.86 282
miper_lstm_enhance76.45 25176.10 24877.51 27476.72 34160.97 25964.69 34985.04 25063.98 27283.20 22888.22 22856.67 29578.79 33073.22 18493.12 20992.78 146
BH-w/o76.57 24876.07 24978.10 26586.88 23265.92 20777.63 28086.33 22965.69 26080.89 26079.95 33668.97 22990.74 21153.01 32785.25 31377.62 348
TR-MVS76.77 24675.79 25079.72 24086.10 24865.79 20877.14 28683.02 26365.20 26781.40 25582.10 31766.30 24090.73 21255.57 31085.27 31282.65 318
jason77.42 23875.75 25182.43 19987.10 22769.27 17977.99 27481.94 27251.47 34377.84 29085.07 28360.32 27089.00 24970.74 20689.27 27489.03 246
jason: jason.
MVSTER77.09 24175.70 25281.25 21375.27 35361.08 25477.49 28485.07 24860.78 29386.55 16788.68 22343.14 35190.25 22273.69 18090.67 26192.42 161
D2MVS76.84 24475.67 25380.34 23080.48 31562.16 24673.50 32084.80 25657.61 31182.24 23987.54 24051.31 31487.65 26670.40 21193.19 20891.23 200
PVSNet_Blended76.49 25075.40 25479.76 23884.43 26463.41 22575.14 30990.44 15457.36 31375.43 31078.30 34469.11 22791.44 18760.68 28587.70 29484.42 296
CDS-MVSNet77.32 23975.40 25483.06 18189.00 18672.48 14877.90 27682.17 27060.81 29278.94 28383.49 30159.30 27888.76 25654.64 31992.37 22587.93 260
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres600view775.97 25475.35 25677.85 27187.01 22951.84 33380.45 24073.26 32675.20 14983.10 23086.31 25945.54 33689.05 24855.03 31692.24 22892.66 152
thres100view90075.45 25775.05 25776.66 28487.27 21951.88 33281.07 23373.26 32675.68 14283.25 22786.37 25645.54 33688.80 25251.98 33190.99 25089.31 238
cascas76.29 25374.81 25880.72 22584.47 26362.94 23273.89 31887.34 21155.94 31875.16 31476.53 35363.97 25091.16 19665.00 25290.97 25388.06 256
GA-MVS75.83 25574.61 25979.48 24581.87 29459.25 27473.42 32182.88 26468.68 23079.75 27581.80 32050.62 31789.46 24466.85 23885.64 30989.72 230
testgi72.36 28574.61 25965.59 33480.56 31342.82 36768.29 33973.35 32566.87 24881.84 24789.93 20472.08 21366.92 35846.05 35392.54 22387.01 271
test20.0373.75 27574.59 26171.22 31481.11 30351.12 33970.15 33472.10 33470.42 21180.28 27191.50 16164.21 24974.72 34246.96 35194.58 17787.82 263
lupinMVS76.37 25274.46 26282.09 20085.54 25369.26 18076.79 29080.77 28050.68 34976.23 30182.82 31158.69 28388.94 25069.85 21388.77 27988.07 255
EU-MVSNet75.12 26174.43 26377.18 27683.11 28859.48 27285.71 13382.43 26839.76 36785.64 18688.76 22144.71 34787.88 26473.86 17785.88 30884.16 299
tfpn200view974.86 26574.23 26476.74 28386.24 24352.12 32979.24 25873.87 32073.34 17081.82 24884.60 29246.02 33088.80 25251.98 33190.99 25089.31 238
thres40075.14 25974.23 26477.86 27086.24 24352.12 32979.24 25873.87 32073.34 17081.82 24884.60 29246.02 33088.80 25251.98 33190.99 25092.66 152
ppachtmachnet_test74.73 26874.00 26676.90 28080.71 31156.89 29871.53 32978.42 29258.24 30579.32 28082.92 31057.91 28984.26 30665.60 24991.36 24489.56 233
1112_ss74.82 26673.74 26778.04 26689.57 17660.04 26676.49 29687.09 22154.31 32573.66 32179.80 33760.25 27186.76 28058.37 29484.15 32487.32 267
Patchmatch-RL test74.48 26973.68 26876.89 28184.83 25966.54 20272.29 32669.16 34857.70 30986.76 16186.33 25745.79 33582.59 31469.63 21590.65 26381.54 333
CMPMVSbinary59.41 2075.12 26173.57 26979.77 23775.84 34867.22 19481.21 23182.18 26950.78 34776.50 29787.66 23855.20 30482.99 31362.17 27390.64 26489.09 245
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline173.26 27773.54 27072.43 31084.92 25847.79 35279.89 24774.00 31865.93 25478.81 28486.28 26056.36 29781.63 32056.63 30379.04 34887.87 262
MVP-Stereo75.81 25673.51 27182.71 19189.35 17873.62 13180.06 24385.20 24560.30 29673.96 31987.94 23357.89 29089.45 24552.02 33074.87 35785.06 290
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test250674.12 27273.39 27276.28 28891.85 11944.20 36384.06 15748.20 37572.30 19181.90 24594.20 7827.22 37689.77 23964.81 25496.02 12594.87 64
new-patchmatchnet70.10 30073.37 27360.29 34781.23 30216.95 37759.54 35774.62 31362.93 27580.97 25887.93 23462.83 26171.90 34555.24 31495.01 16492.00 181
PatchMatch-RL74.48 26973.22 27478.27 26387.70 21185.26 3575.92 30270.09 34364.34 27176.09 30381.25 32565.87 24478.07 33153.86 32183.82 32571.48 356
Test_1112_low_res73.90 27473.08 27576.35 28690.35 16455.95 30173.40 32286.17 23250.70 34873.14 32285.94 26458.31 28585.90 29156.51 30483.22 32887.20 268
CR-MVSNet74.00 27373.04 27676.85 28279.58 32062.64 23782.58 20176.90 29950.50 35075.72 30792.38 13648.07 32384.07 30768.72 22782.91 33183.85 303
pmmvs474.92 26472.98 27780.73 22484.95 25771.71 16276.23 30077.59 29652.83 33377.73 29386.38 25556.35 29884.97 29957.72 30087.05 29885.51 285
ET-MVSNet_ETH3D75.28 25872.77 27882.81 19083.03 28968.11 19077.09 28776.51 30360.67 29577.60 29480.52 33138.04 36091.15 19770.78 20490.68 26089.17 241
PatchT70.52 29772.76 27963.79 33979.38 32433.53 37377.63 28065.37 35773.61 16571.77 32892.79 12644.38 34875.65 33964.53 25985.37 31182.18 326
HyFIR lowres test75.12 26172.66 28082.50 19791.44 13865.19 21172.47 32587.31 21246.79 35580.29 26984.30 29452.70 31092.10 17051.88 33486.73 30090.22 224
MVS73.21 27972.59 28175.06 29680.97 30460.81 26181.64 22385.92 23646.03 35871.68 32977.54 34668.47 23089.77 23955.70 30985.39 31074.60 353
SCA73.32 27672.57 28275.58 29381.62 29655.86 30378.89 26371.37 34061.73 28474.93 31583.42 30360.46 26887.01 27158.11 29882.63 33583.88 300
131473.22 27872.56 28375.20 29480.41 31657.84 28881.64 22385.36 24151.68 34273.10 32376.65 35261.45 26485.19 29763.54 26279.21 34782.59 319
HY-MVS64.64 1873.03 28072.47 28474.71 29783.36 28354.19 31382.14 21981.96 27156.76 31769.57 33786.21 26160.03 27284.83 30249.58 34082.65 33385.11 289
UnsupCasMVSNet_eth71.63 29272.30 28569.62 31976.47 34352.70 32570.03 33580.97 27859.18 30079.36 27988.21 22960.50 26769.12 35158.33 29677.62 35287.04 270
FPMVS72.29 28772.00 28673.14 30488.63 19285.00 3774.65 31467.39 34971.94 19777.80 29287.66 23850.48 31875.83 33849.95 33779.51 34358.58 367
Anonymous2023120671.38 29371.88 28769.88 31786.31 24054.37 31270.39 33374.62 31352.57 33576.73 29688.76 22159.94 27372.06 34444.35 35693.23 20783.23 314
FMVSNet572.10 28871.69 28873.32 30281.57 29753.02 32276.77 29178.37 29363.31 27376.37 29891.85 15036.68 36378.98 32847.87 34792.45 22487.95 259
our_test_371.85 28971.59 28972.62 30880.71 31153.78 31669.72 33671.71 33958.80 30278.03 28780.51 33256.61 29678.84 32962.20 27186.04 30785.23 287
MIMVSNet71.09 29471.59 28969.57 32087.23 22050.07 34578.91 26271.83 33660.20 29871.26 33091.76 15555.08 30576.09 33641.06 36187.02 29982.54 321
thres20072.34 28671.55 29174.70 29883.48 28151.60 33475.02 31073.71 32370.14 21778.56 28680.57 33046.20 32888.20 26246.99 35089.29 27284.32 297
CVMVSNet72.62 28371.41 29276.28 28883.25 28460.34 26483.50 17779.02 29137.77 36876.33 29985.10 28049.60 32087.41 26870.54 20977.54 35381.08 340
EPNet_dtu72.87 28271.33 29377.49 27577.72 33460.55 26382.35 21075.79 30666.49 25158.39 36881.06 32653.68 30885.98 28953.55 32292.97 21585.95 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268872.45 28470.56 29478.13 26490.02 17463.08 23068.72 33883.16 26242.99 36475.92 30585.46 27357.22 29485.18 29849.87 33981.67 33686.14 278
thisisatest051573.00 28170.52 29580.46 22881.45 29859.90 26873.16 32474.31 31757.86 30876.08 30477.78 34537.60 36292.12 16965.00 25291.45 24389.35 237
YYNet170.06 30170.44 29668.90 32273.76 35953.42 32058.99 36067.20 35158.42 30487.10 15385.39 27659.82 27567.32 35559.79 28983.50 32785.96 279
MDA-MVSNet_test_wron70.05 30270.44 29668.88 32373.84 35853.47 31858.93 36167.28 35058.43 30387.09 15485.40 27559.80 27667.25 35659.66 29083.54 32685.92 281
MS-PatchMatch70.93 29570.22 29873.06 30581.85 29562.50 24073.82 31977.90 29452.44 33675.92 30581.27 32455.67 30181.75 31855.37 31277.70 35174.94 352
pmmvs570.73 29670.07 29972.72 30677.03 33952.73 32474.14 31575.65 30950.36 35172.17 32785.37 27755.42 30380.67 32452.86 32887.59 29584.77 292
PAPM71.77 29070.06 30076.92 27986.39 23553.97 31476.62 29486.62 22753.44 33063.97 35884.73 29057.79 29192.34 16239.65 36381.33 33984.45 295
EGC-MVSNET74.79 26769.99 30189.19 6494.89 3987.00 1491.89 3586.28 2301.09 3732.23 37595.98 2381.87 11089.48 24279.76 10995.96 12891.10 201
UnsupCasMVSNet_bld69.21 30769.68 30267.82 32879.42 32351.15 33867.82 34375.79 30654.15 32677.47 29585.36 27859.26 27970.64 34748.46 34479.35 34581.66 331
tpmvs70.16 29969.56 30371.96 31274.71 35748.13 34979.63 24975.45 31165.02 26870.26 33481.88 31945.34 34185.68 29358.34 29575.39 35682.08 327
gg-mvs-nofinetune68.96 30869.11 30468.52 32776.12 34745.32 35983.59 17355.88 37086.68 2664.62 35797.01 730.36 37183.97 30944.78 35582.94 33076.26 350
IB-MVS62.13 1971.64 29168.97 30579.66 24280.80 31062.26 24573.94 31776.90 29963.27 27468.63 33976.79 35133.83 36791.84 17959.28 29287.26 29684.88 291
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchmatchNetpermissive69.71 30568.83 30672.33 31177.66 33553.60 31779.29 25669.99 34457.66 31072.53 32582.93 30946.45 32780.08 32760.91 28372.09 36083.31 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet70.20 29868.80 30774.38 29980.91 30584.81 4059.12 35976.45 30455.06 32275.31 31382.36 31655.74 30054.82 36847.02 34987.24 29783.52 307
CostFormer69.98 30368.68 30873.87 30077.14 33750.72 34279.26 25774.51 31551.94 34170.97 33384.75 28945.16 34487.49 26755.16 31579.23 34683.40 310
WTY-MVS67.91 31168.35 30966.58 33280.82 30948.12 35065.96 34772.60 33053.67 32971.20 33181.68 32258.97 28169.06 35248.57 34381.67 33682.55 320
MDTV_nov1_ep1368.29 31078.03 33243.87 36474.12 31672.22 33352.17 33767.02 34685.54 26945.36 34080.85 32355.73 30784.42 323
tpm67.95 31068.08 31167.55 32978.74 33143.53 36575.60 30467.10 35454.92 32372.23 32688.10 23042.87 35275.97 33752.21 32980.95 34283.15 315
Patchmatch-test65.91 32067.38 31261.48 34575.51 35043.21 36668.84 33763.79 35962.48 27972.80 32483.42 30344.89 34659.52 36748.27 34686.45 30281.70 330
sss66.92 31367.26 31365.90 33377.23 33651.10 34064.79 34871.72 33852.12 34070.13 33580.18 33457.96 28865.36 36350.21 33681.01 34181.25 337
baseline269.77 30466.89 31478.41 25979.51 32258.09 28676.23 30069.57 34657.50 31264.82 35677.45 34846.02 33088.44 25853.08 32477.83 35088.70 250
tpm268.45 30966.83 31573.30 30378.93 33048.50 34879.76 24871.76 33747.50 35469.92 33683.60 29942.07 35388.40 25948.44 34579.51 34383.01 317
test-LLR67.21 31266.74 31668.63 32576.45 34455.21 30867.89 34067.14 35262.43 28165.08 35372.39 35843.41 34969.37 34861.00 28184.89 31881.31 335
tpmrst66.28 31966.69 31765.05 33772.82 36539.33 36878.20 27270.69 34253.16 33267.88 34280.36 33348.18 32274.75 34158.13 29770.79 36281.08 340
JIA-IIPM69.41 30666.64 31877.70 27273.19 36171.24 16575.67 30365.56 35670.42 21165.18 35292.97 11833.64 36883.06 31253.52 32369.61 36678.79 347
KD-MVS_2432*160066.87 31465.81 31970.04 31567.50 37047.49 35362.56 35379.16 28861.21 29077.98 28880.61 32825.29 37882.48 31553.02 32584.92 31680.16 345
miper_refine_blended66.87 31465.81 31970.04 31567.50 37047.49 35362.56 35379.16 28861.21 29077.98 28880.61 32825.29 37882.48 31553.02 32584.92 31680.16 345
PVSNet58.17 2166.41 31865.63 32168.75 32481.96 29349.88 34662.19 35572.51 33251.03 34568.04 34175.34 35650.84 31674.77 34045.82 35482.96 32981.60 332
tpm cat166.76 31665.21 32271.42 31377.09 33850.62 34378.01 27373.68 32444.89 36068.64 33879.00 34045.51 33882.42 31749.91 33870.15 36381.23 339
DWT-MVSNet_test66.43 31764.37 32372.63 30774.86 35650.86 34176.52 29572.74 32954.06 32765.50 35068.30 36432.13 36984.84 30161.63 27873.59 35882.19 325
test0.0.03 164.66 32364.36 32465.57 33575.03 35546.89 35664.69 34961.58 36462.43 28171.18 33277.54 34643.41 34968.47 35340.75 36282.65 33381.35 334
test-mter65.00 32263.79 32568.63 32576.45 34455.21 30867.89 34067.14 35250.98 34665.08 35372.39 35828.27 37469.37 34861.00 28184.89 31881.31 335
ADS-MVSNet265.87 32163.64 32672.55 30973.16 36256.92 29767.10 34474.81 31249.74 35266.04 34882.97 30746.71 32577.26 33342.29 35869.96 36483.46 308
MVS-HIRNet61.16 33062.92 32755.87 35079.09 32735.34 37271.83 32757.98 36946.56 35659.05 36591.14 17049.95 31976.43 33538.74 36471.92 36155.84 368
EPMVS62.47 32462.63 32862.01 34170.63 36938.74 36974.76 31252.86 37253.91 32867.71 34480.01 33539.40 35766.60 35955.54 31168.81 36780.68 344
ADS-MVSNet61.90 32662.19 32961.03 34673.16 36236.42 37167.10 34461.75 36249.74 35266.04 34882.97 30746.71 32563.21 36542.29 35869.96 36483.46 308
E-PMN61.59 32861.62 33061.49 34466.81 37255.40 30653.77 36360.34 36566.80 24958.90 36665.50 36540.48 35666.12 36155.72 30886.25 30562.95 363
DSMNet-mixed60.98 33261.61 33159.09 34972.88 36445.05 36174.70 31346.61 37626.20 37065.34 35190.32 19555.46 30263.12 36641.72 36081.30 34069.09 360
EMVS61.10 33160.81 33261.99 34265.96 37355.86 30353.10 36458.97 36767.06 24656.89 36963.33 36640.98 35467.03 35754.79 31786.18 30663.08 362
PMMVS61.65 32760.38 33365.47 33665.40 37469.26 18063.97 35161.73 36336.80 36960.11 36368.43 36259.42 27766.35 36048.97 34278.57 34960.81 364
TESTMET0.1,161.29 32960.32 33464.19 33872.06 36651.30 33667.89 34062.09 36045.27 35960.65 36269.01 36127.93 37564.74 36456.31 30581.65 33876.53 349
dp60.70 33360.29 33561.92 34372.04 36738.67 37070.83 33064.08 35851.28 34460.75 36177.28 34936.59 36471.58 34647.41 34862.34 36975.52 351
pmmvs362.47 32460.02 33669.80 31871.58 36864.00 22270.52 33258.44 36839.77 36666.05 34775.84 35427.10 37772.28 34346.15 35284.77 32273.11 354
PMMVS255.64 33759.27 33744.74 35364.30 37512.32 37840.60 36649.79 37453.19 33165.06 35584.81 28853.60 30949.76 37032.68 37089.41 27172.15 355
new_pmnet55.69 33657.66 33849.76 35275.47 35130.59 37459.56 35651.45 37343.62 36362.49 35975.48 35540.96 35549.15 37137.39 36672.52 35969.55 359
CHOSEN 280x42059.08 33456.52 33966.76 33176.51 34264.39 21849.62 36559.00 36643.86 36255.66 37068.41 36335.55 36568.21 35443.25 35776.78 35567.69 361
PVSNet_051.08 2256.10 33554.97 34059.48 34875.12 35453.28 32155.16 36261.89 36144.30 36159.16 36462.48 36754.22 30765.91 36235.40 36747.01 37059.25 366
MVEpermissive40.22 2351.82 33850.47 34155.87 35062.66 37651.91 33131.61 36839.28 37740.65 36550.76 37174.98 35756.24 29944.67 37233.94 36964.11 36871.04 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 33929.60 34233.06 35417.99 3783.84 38013.62 36973.92 3192.79 37218.29 37453.41 36928.53 37343.25 37322.56 37135.27 37252.11 369
cdsmvs_eth3d_5k20.81 34027.75 3430.00 3590.00 3820.00 3830.00 37085.44 2400.00 3770.00 37882.82 31181.46 1140.00 3780.00 3760.00 3760.00 374
tmp_tt20.25 34124.50 3447.49 3564.47 3798.70 37934.17 36725.16 3791.00 37432.43 37318.49 37139.37 3589.21 37521.64 37243.75 3714.57 371
ab-mvs-re6.65 3428.87 3450.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37879.80 3370.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas6.41 3438.55 3460.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37776.94 1600.00 3780.00 3760.00 3760.00 374
test1236.27 3448.08 3470.84 3571.11 3810.57 38162.90 3520.82 3810.54 3751.07 3772.75 3761.26 3800.30 3761.04 3741.26 3751.66 372
testmvs5.91 3457.65 3480.72 3581.20 3800.37 38259.14 3580.67 3820.49 3761.11 3762.76 3750.94 3810.24 3771.02 3751.47 3741.55 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS196.08 1287.41 1396.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 13277.99 9391.01 14096.05 887.45 1998.17 3392.40 163
PC_three_145258.96 30190.06 9491.33 16480.66 12593.03 14575.78 15995.94 13092.48 159
No_MVS88.81 6991.55 13277.99 9391.01 14096.05 887.45 1998.17 3392.40 163
test_one_060193.85 6373.27 13594.11 3786.57 2793.47 4094.64 5788.42 27
eth-test20.00 382
eth-test0.00 382
ZD-MVS92.22 10580.48 7091.85 11671.22 20490.38 8992.98 11686.06 6396.11 681.99 8596.75 97
IU-MVS94.18 5072.64 14190.82 14556.98 31589.67 10885.78 4797.92 4893.28 126
OPU-MVS88.27 8491.89 11777.83 9690.47 4991.22 16681.12 11994.68 7674.48 16995.35 14992.29 170
test_241102_TWO93.71 5383.77 4493.49 3894.27 7289.27 2295.84 2286.03 4497.82 5392.04 179
test_241102_ONE94.18 5072.65 13993.69 5483.62 4694.11 2393.78 10390.28 1595.50 47
save fliter93.75 6477.44 10286.31 12489.72 17570.80 207
test_0728_THIRD85.33 3293.75 3194.65 5487.44 4595.78 2787.41 2198.21 3092.98 138
test_0728_SECOND86.79 10294.25 4972.45 14990.54 4694.10 3895.88 1686.42 3497.97 4592.02 180
test072694.16 5372.56 14590.63 4593.90 4683.61 4793.75 3194.49 6189.76 19
GSMVS83.88 300
test_part293.86 6277.77 9792.84 48
sam_mvs146.11 32983.88 300
sam_mvs45.92 334
ambc82.98 18390.55 16264.86 21388.20 9189.15 18689.40 11793.96 9371.67 21891.38 19278.83 12096.55 10392.71 150
MTGPAbinary91.81 119
test_post178.85 2653.13 37345.19 34380.13 32658.11 298
test_post3.10 37445.43 33977.22 334
patchmatchnet-post81.71 32145.93 33387.01 271
GG-mvs-BLEND67.16 33073.36 36046.54 35884.15 15455.04 37158.64 36761.95 36829.93 37283.87 31038.71 36576.92 35471.07 357
MTMP90.66 4333.14 378
gm-plane-assit75.42 35244.97 36252.17 33772.36 36087.90 26354.10 320
test9_res80.83 9896.45 10890.57 217
TEST992.34 9979.70 7783.94 16090.32 15865.41 26684.49 20590.97 17682.03 10493.63 117
test_892.09 10978.87 8583.82 16590.31 16065.79 25684.36 20890.96 17881.93 10693.44 129
agg_prior279.68 11196.16 12090.22 224
agg_prior91.58 12977.69 9890.30 16184.32 20993.18 137
TestCases89.68 5491.59 12683.40 5095.44 979.47 9588.00 14093.03 11482.66 9191.47 18570.81 20296.14 12194.16 92
test_prior478.97 8484.59 146
test_prior283.37 18075.43 14584.58 20391.57 15881.92 10879.54 11396.97 88
test_prior86.32 11090.59 16071.99 15692.85 9194.17 9692.80 144
旧先验281.73 22156.88 31686.54 17284.90 30072.81 191
新几何281.72 222
新几何182.95 18493.96 5978.56 8980.24 28255.45 32083.93 21891.08 17171.19 22088.33 26065.84 24793.07 21081.95 329
旧先验191.97 11271.77 15881.78 27391.84 15173.92 18993.65 19883.61 306
无先验82.81 19685.62 23958.09 30691.41 19067.95 23484.48 294
原ACMM282.26 215
原ACMM184.60 14792.81 9074.01 13091.50 12562.59 27782.73 23490.67 18876.53 16794.25 8969.24 21895.69 14285.55 284
test22293.31 7576.54 11579.38 25577.79 29552.59 33482.36 23890.84 18266.83 23991.69 23981.25 337
testdata286.43 28463.52 263
segment_acmp81.94 105
testdata79.54 24492.87 8572.34 15080.14 28459.91 29985.47 19091.75 15667.96 23385.24 29668.57 23092.18 23181.06 342
testdata179.62 25073.95 162
test1286.57 10590.74 15672.63 14390.69 14882.76 23379.20 13694.80 7395.32 15192.27 172
plane_prior793.45 7077.31 106
plane_prior692.61 9176.54 11574.84 178
plane_prior593.61 5895.22 5980.78 9995.83 13594.46 80
plane_prior492.95 119
plane_prior376.85 11377.79 11686.55 167
plane_prior289.45 7379.44 97
plane_prior192.83 89
plane_prior76.42 11887.15 10875.94 13995.03 163
n20.00 383
nn0.00 383
door-mid74.45 316
lessismore_v085.95 12191.10 14870.99 16770.91 34191.79 6794.42 6661.76 26392.93 14879.52 11593.03 21293.93 100
LGP-MVS_train90.82 3894.75 4281.69 6194.27 2382.35 6393.67 3494.82 4991.18 595.52 4285.36 5098.73 795.23 58
test1191.46 126
door72.57 331
HQP5-MVS70.66 168
HQP-NCC91.19 14384.77 14173.30 17280.55 266
ACMP_Plane91.19 14384.77 14173.30 17280.55 266
BP-MVS77.30 144
HQP4-MVS80.56 26594.61 8093.56 121
HQP3-MVS92.68 9794.47 179
HQP2-MVS72.10 211
NP-MVS91.95 11374.55 12790.17 201
MDTV_nov1_ep13_2view27.60 37670.76 33146.47 35761.27 36045.20 34249.18 34183.75 305
ACMMP++_ref95.74 141
ACMMP++97.35 78
Test By Simon79.09 137
ITE_SJBPF90.11 5090.72 15784.97 3890.30 16181.56 7290.02 9691.20 16882.40 9490.81 20973.58 18194.66 17594.56 75
DeepMVS_CXcopyleft24.13 35532.95 37729.49 37521.63 38012.07 37137.95 37245.07 37030.84 37019.21 37417.94 37333.06 37323.69 370