LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 29 | 95.54 3 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 11 | 85.07 46 | 99.27 1 | 99.54 1 |
|
LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 21 | 93.73 60 | 85.72 28 | 96.79 1 | 95.51 5 | 88.86 12 | 95.63 7 | 96.99 8 | 84.81 64 | 93.16 128 | 91.10 1 | 97.53 66 | 96.58 28 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 2 | 96.46 2 | 90.58 7 | 92.86 40 | 96.29 16 | 88.16 31 | 94.17 86 | 86.07 37 | 98.48 17 | 97.22 17 |
|
abl_6 | | | 93.02 4 | 93.16 4 | 92.60 4 | 94.73 42 | 88.99 6 | 93.26 10 | 94.19 26 | 89.11 10 | 94.43 15 | 95.27 35 | 91.86 3 | 95.09 55 | 87.54 18 | 98.02 37 | 93.71 107 |
|
HPM-MVS_fast | | | 92.50 5 | 92.54 5 | 92.37 5 | 95.93 15 | 85.81 27 | 92.99 11 | 94.23 22 | 85.21 28 | 92.51 47 | 95.13 39 | 90.65 10 | 95.34 45 | 88.06 9 | 98.15 32 | 95.95 39 |
|
SR-MVS | | | 92.23 6 | 92.34 6 | 91.91 15 | 94.89 38 | 87.85 8 | 92.51 20 | 93.87 41 | 88.20 17 | 93.24 34 | 94.02 79 | 90.15 16 | 95.67 28 | 86.82 26 | 97.34 72 | 92.19 161 |
|
APD-MVS_3200maxsize | | | 92.05 8 | 92.24 7 | 91.48 22 | 93.02 75 | 85.17 31 | 92.47 22 | 95.05 12 | 87.65 20 | 93.21 35 | 94.39 65 | 90.09 17 | 95.08 56 | 86.67 27 | 97.60 63 | 94.18 87 |
|
HPM-MVS | | | 92.13 7 | 92.20 8 | 91.91 15 | 95.58 25 | 84.67 38 | 93.51 6 | 94.85 14 | 82.88 51 | 91.77 61 | 93.94 88 | 90.55 12 | 95.73 26 | 88.50 7 | 98.23 28 | 95.33 51 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
COLMAP_ROB | | 83.01 3 | 91.97 9 | 91.95 9 | 92.04 10 | 93.68 61 | 86.15 18 | 93.37 8 | 95.10 11 | 90.28 8 | 92.11 53 | 95.03 41 | 89.75 20 | 94.93 60 | 79.95 98 | 98.27 26 | 95.04 60 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
APDe-MVS | | | 91.22 22 | 91.92 10 | 89.14 62 | 92.97 77 | 78.04 83 | 92.84 12 | 94.14 28 | 83.33 45 | 93.90 24 | 95.73 25 | 88.77 23 | 96.41 1 | 87.60 16 | 97.98 41 | 92.98 131 |
|
PS-CasMVS | | | 90.06 40 | 91.92 10 | 84.47 139 | 96.56 7 | 58.83 266 | 89.04 71 | 92.74 87 | 91.40 4 | 96.12 3 | 96.06 22 | 87.23 43 | 95.57 31 | 79.42 106 | 98.74 5 | 99.00 2 |
|
DTE-MVSNet | | | 89.98 44 | 91.91 12 | 84.21 145 | 96.51 8 | 57.84 271 | 88.93 74 | 92.84 84 | 91.92 2 | 96.16 2 | 96.23 18 | 86.95 46 | 95.99 7 | 79.05 108 | 98.57 14 | 98.80 6 |
|
PEN-MVS | | | 90.03 42 | 91.88 13 | 84.48 138 | 96.57 6 | 58.88 263 | 88.95 72 | 93.19 68 | 91.62 3 | 96.01 5 | 96.16 20 | 87.02 45 | 95.60 30 | 78.69 111 | 98.72 8 | 98.97 3 |
|
ACMMP | | | 91.91 10 | 91.87 14 | 92.03 11 | 95.53 26 | 85.91 22 | 93.35 9 | 94.16 27 | 82.52 55 | 92.39 50 | 94.14 74 | 89.15 22 | 95.62 29 | 87.35 20 | 98.24 27 | 94.56 70 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
LPG-MVS_test | | | 91.47 17 | 91.68 15 | 90.82 36 | 94.75 40 | 81.69 53 | 90.00 48 | 94.27 19 | 82.35 56 | 93.67 31 | 94.82 47 | 91.18 5 | 95.52 36 | 85.36 44 | 98.73 6 | 95.23 56 |
|
SED-MVS | | | 90.46 35 | 91.64 16 | 86.93 89 | 94.18 47 | 72.65 127 | 90.47 43 | 93.69 46 | 83.77 38 | 94.11 22 | 94.27 67 | 90.28 14 | 95.84 18 | 86.03 38 | 97.92 45 | 92.29 155 |
|
MTAPA | | | 91.52 14 | 91.60 17 | 91.29 27 | 96.59 4 | 86.29 14 | 92.02 26 | 91.81 109 | 84.07 34 | 92.00 56 | 94.40 63 | 86.63 50 | 95.28 48 | 88.59 5 | 98.31 23 | 92.30 153 |
|
CP-MVS | | | 91.67 12 | 91.58 18 | 91.96 12 | 95.29 31 | 87.62 9 | 93.38 7 | 93.36 56 | 83.16 47 | 91.06 73 | 94.00 80 | 88.26 28 | 95.71 27 | 87.28 23 | 98.39 20 | 92.55 146 |
|
UA-Net | | | 91.49 15 | 91.53 19 | 91.39 24 | 94.98 35 | 82.95 51 | 93.52 5 | 92.79 85 | 88.22 16 | 88.53 121 | 97.64 2 | 83.45 76 | 94.55 75 | 86.02 40 | 98.60 12 | 96.67 25 |
|
ACMH+ | | 77.89 11 | 90.73 28 | 91.50 20 | 88.44 73 | 93.00 76 | 76.26 109 | 89.65 59 | 95.55 4 | 87.72 19 | 93.89 26 | 94.94 43 | 91.62 4 | 93.44 118 | 78.35 114 | 98.76 3 | 95.61 46 |
|
mPP-MVS | | | 91.69 11 | 91.47 21 | 92.37 5 | 96.04 12 | 88.48 7 | 92.72 14 | 92.60 90 | 83.09 48 | 91.54 64 | 94.25 71 | 87.67 39 | 95.51 39 | 87.21 24 | 98.11 33 | 93.12 127 |
|
HFP-MVS | | | 91.30 19 | 91.39 22 | 91.02 31 | 95.43 28 | 84.66 39 | 92.58 18 | 93.29 64 | 81.99 59 | 91.47 65 | 93.96 84 | 88.35 26 | 95.56 32 | 87.74 11 | 97.74 55 | 92.85 135 |
|
XVS | | | 91.54 13 | 91.36 23 | 92.08 8 | 95.64 23 | 86.25 16 | 92.64 15 | 93.33 58 | 85.07 29 | 89.99 88 | 94.03 78 | 86.57 52 | 95.80 20 | 87.35 20 | 97.62 61 | 94.20 85 |
|
SteuartSystems-ACMMP | | | 91.16 24 | 91.36 23 | 90.55 40 | 93.91 56 | 80.97 60 | 91.49 32 | 93.48 54 | 82.82 52 | 92.60 46 | 93.97 81 | 88.19 29 | 96.29 4 | 87.61 15 | 98.20 31 | 94.39 80 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMPR | | | 91.49 15 | 91.35 25 | 91.92 14 | 95.74 19 | 85.88 24 | 92.58 18 | 93.25 66 | 81.99 59 | 91.40 67 | 94.17 73 | 87.51 40 | 95.87 14 | 87.74 11 | 97.76 53 | 93.99 93 |
|
ZNCC-MVS | | | 91.26 21 | 91.34 26 | 91.01 33 | 95.73 20 | 83.05 49 | 92.18 24 | 94.22 23 | 80.14 81 | 91.29 70 | 93.97 81 | 87.93 36 | 95.87 14 | 88.65 4 | 97.96 44 | 94.12 90 |
|
MSP-MVS | | | 90.06 40 | 91.32 27 | 86.29 102 | 94.16 50 | 72.56 132 | 90.54 40 | 91.01 129 | 83.61 41 | 93.75 28 | 94.65 52 | 89.76 18 | 95.78 23 | 86.42 28 | 97.97 42 | 90.55 201 |
|
WR-MVS_H | | | 89.91 47 | 91.31 28 | 85.71 118 | 96.32 10 | 62.39 225 | 89.54 63 | 93.31 61 | 90.21 9 | 95.57 8 | 95.66 27 | 81.42 107 | 95.90 12 | 80.94 88 | 98.80 2 | 98.84 5 |
|
region2R | | | 91.44 18 | 91.30 29 | 91.87 17 | 95.75 18 | 85.90 23 | 92.63 17 | 93.30 63 | 81.91 61 | 90.88 78 | 94.21 72 | 87.75 37 | 95.87 14 | 87.60 16 | 97.71 57 | 93.83 100 |
|
zzz-MVS | | | 91.27 20 | 91.26 30 | 91.29 27 | 96.59 4 | 86.29 14 | 88.94 73 | 91.81 109 | 84.07 34 | 92.00 56 | 94.40 63 | 86.63 50 | 95.28 48 | 88.59 5 | 98.31 23 | 92.30 153 |
|
ACMH | | 76.49 14 | 89.34 57 | 91.14 31 | 83.96 151 | 92.50 89 | 70.36 157 | 89.55 61 | 93.84 42 | 81.89 62 | 94.70 12 | 95.44 32 | 90.69 9 | 88.31 242 | 83.33 65 | 98.30 25 | 93.20 124 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPE-MVS | | | 90.53 33 | 91.08 32 | 88.88 64 | 93.38 67 | 78.65 79 | 89.15 70 | 94.05 31 | 84.68 32 | 93.90 24 | 94.11 76 | 88.13 32 | 96.30 3 | 84.51 54 | 97.81 51 | 91.70 176 |
|
MP-MVS-pluss | | | 90.81 27 | 91.08 32 | 89.99 49 | 95.97 13 | 79.88 65 | 88.13 86 | 94.51 17 | 75.79 132 | 92.94 37 | 94.96 42 | 88.36 25 | 95.01 58 | 90.70 2 | 98.40 19 | 95.09 59 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ACMMP_NAP | | | 90.65 29 | 91.07 34 | 89.42 58 | 95.93 15 | 79.54 70 | 89.95 51 | 93.68 48 | 77.65 109 | 91.97 58 | 94.89 44 | 88.38 24 | 95.45 41 | 89.27 3 | 97.87 49 | 93.27 121 |
|
GST-MVS | | | 90.96 26 | 91.01 35 | 90.82 36 | 95.45 27 | 82.73 52 | 91.75 30 | 93.74 44 | 80.98 72 | 91.38 68 | 93.80 91 | 87.20 44 | 95.80 20 | 87.10 25 | 97.69 58 | 93.93 96 |
|
ACMM | | 79.39 9 | 90.65 29 | 90.99 36 | 89.63 54 | 95.03 34 | 83.53 44 | 89.62 60 | 93.35 57 | 79.20 92 | 93.83 27 | 93.60 97 | 90.81 8 | 92.96 134 | 85.02 48 | 98.45 18 | 92.41 149 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
v7n | | | 90.13 38 | 90.96 37 | 87.65 84 | 91.95 105 | 71.06 152 | 89.99 50 | 93.05 73 | 86.53 23 | 94.29 18 | 96.27 17 | 82.69 83 | 94.08 90 | 86.25 34 | 97.63 60 | 97.82 8 |
|
PGM-MVS | | | 91.20 23 | 90.95 38 | 91.93 13 | 95.67 22 | 85.85 25 | 90.00 48 | 93.90 38 | 80.32 78 | 91.74 62 | 94.41 62 | 88.17 30 | 95.98 8 | 86.37 30 | 97.99 39 | 93.96 95 |
|
MP-MVS | | | 91.14 25 | 90.91 39 | 91.83 19 | 96.18 11 | 86.88 11 | 92.20 23 | 93.03 76 | 82.59 54 | 88.52 122 | 94.37 66 | 86.74 49 | 95.41 43 | 86.32 31 | 98.21 29 | 93.19 125 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CP-MVSNet | | | 89.27 58 | 90.91 39 | 84.37 140 | 96.34 9 | 58.61 268 | 88.66 81 | 92.06 101 | 90.78 5 | 95.67 6 | 95.17 38 | 81.80 103 | 95.54 35 | 79.00 109 | 98.69 9 | 98.95 4 |
|
SF-MVS | | | 90.27 37 | 90.80 41 | 88.68 69 | 92.86 81 | 77.09 98 | 91.19 35 | 95.74 3 | 81.38 67 | 92.28 51 | 93.80 91 | 86.89 47 | 94.64 69 | 85.52 42 | 97.51 67 | 94.30 83 |
|
UniMVSNet_ETH3D | | | 89.12 61 | 90.72 42 | 84.31 143 | 97.00 2 | 64.33 203 | 89.67 58 | 88.38 184 | 88.84 13 | 94.29 18 | 97.57 3 | 90.48 13 | 91.26 178 | 72.57 176 | 97.65 59 | 97.34 14 |
|
PMVS | | 80.48 6 | 90.08 39 | 90.66 43 | 88.34 75 | 96.71 3 | 92.97 1 | 90.31 45 | 89.57 168 | 88.51 15 | 90.11 85 | 95.12 40 | 90.98 7 | 88.92 232 | 77.55 125 | 97.07 79 | 83.13 295 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMP | | 79.16 10 | 90.54 32 | 90.60 44 | 90.35 44 | 94.36 44 | 80.98 59 | 89.16 69 | 94.05 31 | 79.03 95 | 92.87 39 | 93.74 95 | 90.60 11 | 95.21 52 | 82.87 70 | 98.76 3 | 94.87 61 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SMA-MVS | | | 90.31 36 | 90.48 45 | 89.83 50 | 95.31 30 | 79.52 71 | 90.98 36 | 93.24 67 | 75.37 139 | 92.84 41 | 95.28 34 | 85.58 61 | 96.09 6 | 87.92 10 | 97.76 53 | 93.88 98 |
|
LS3D | | | 90.60 31 | 90.34 46 | 91.38 25 | 89.03 167 | 84.23 42 | 93.58 4 | 94.68 15 | 90.65 6 | 90.33 84 | 93.95 87 | 84.50 66 | 95.37 44 | 80.87 89 | 95.50 130 | 94.53 74 |
|
#test# | | | 90.49 34 | 90.31 47 | 91.02 31 | 95.43 28 | 84.66 39 | 90.65 38 | 93.29 64 | 77.00 116 | 91.47 65 | 93.96 84 | 88.35 26 | 95.56 32 | 84.88 49 | 97.74 55 | 92.85 135 |
|
OPM-MVS | | | 89.80 48 | 89.97 48 | 89.27 60 | 94.76 39 | 79.86 66 | 86.76 107 | 92.78 86 | 78.78 98 | 92.51 47 | 93.64 96 | 88.13 32 | 93.84 99 | 84.83 51 | 97.55 64 | 94.10 91 |
|
SD-MVS | | | 88.96 64 | 89.88 49 | 86.22 105 | 91.63 114 | 77.07 99 | 89.82 54 | 93.77 43 | 78.90 96 | 92.88 38 | 92.29 129 | 86.11 58 | 90.22 210 | 86.24 35 | 97.24 75 | 91.36 185 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
XVG-ACMP-BASELINE | | | 89.98 44 | 89.84 50 | 90.41 42 | 94.91 37 | 84.50 41 | 89.49 65 | 93.98 33 | 79.68 85 | 92.09 54 | 93.89 89 | 83.80 72 | 93.10 132 | 82.67 72 | 98.04 34 | 93.64 111 |
|
OurMVSNet-221017-0 | | | 90.01 43 | 89.74 51 | 90.83 35 | 93.16 73 | 80.37 62 | 91.91 29 | 93.11 70 | 81.10 70 | 95.32 9 | 97.24 5 | 72.94 192 | 94.85 63 | 85.07 46 | 97.78 52 | 97.26 15 |
|
3Dnovator+ | | 83.92 2 | 89.97 46 | 89.66 52 | 90.92 34 | 91.27 127 | 81.66 56 | 91.25 33 | 94.13 29 | 88.89 11 | 88.83 116 | 94.26 70 | 77.55 141 | 95.86 17 | 84.88 49 | 95.87 118 | 95.24 55 |
|
APD-MVS | | | 89.54 53 | 89.63 53 | 89.26 61 | 92.57 86 | 81.34 58 | 90.19 46 | 93.08 72 | 80.87 73 | 91.13 71 | 93.19 100 | 86.22 57 | 95.97 9 | 82.23 76 | 97.18 77 | 90.45 203 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Anonymous20231211 | | | 88.40 69 | 89.62 54 | 84.73 133 | 90.46 147 | 65.27 194 | 88.86 75 | 93.02 77 | 87.15 21 | 93.05 36 | 97.10 6 | 82.28 91 | 92.02 157 | 76.70 134 | 97.99 39 | 96.88 23 |
|
test_0402 | | | 88.65 67 | 89.58 55 | 85.88 114 | 92.55 87 | 72.22 140 | 84.01 149 | 89.44 170 | 88.63 14 | 94.38 17 | 95.77 24 | 86.38 56 | 93.59 110 | 79.84 99 | 95.21 139 | 91.82 173 |
|
testtj | | | 89.51 54 | 89.48 56 | 89.59 56 | 92.26 96 | 80.80 61 | 90.14 47 | 93.54 52 | 83.37 44 | 90.57 82 | 92.55 121 | 84.99 63 | 96.15 5 | 81.26 83 | 96.61 92 | 91.83 172 |
|
XVG-OURS-SEG-HR | | | 89.59 52 | 89.37 57 | 90.28 45 | 94.47 43 | 85.95 21 | 86.84 103 | 93.91 37 | 80.07 82 | 86.75 151 | 93.26 99 | 93.64 2 | 90.93 188 | 84.60 53 | 90.75 237 | 93.97 94 |
|
9.14 | | | | 89.29 58 | | 91.84 111 | | 88.80 77 | 95.32 8 | 75.14 141 | 91.07 72 | 92.89 109 | 87.27 42 | 93.78 101 | 83.69 62 | 97.55 64 | |
|
mvs_tets | | | 89.78 49 | 89.27 59 | 91.30 26 | 93.51 63 | 84.79 36 | 89.89 53 | 90.63 137 | 70.00 201 | 94.55 14 | 96.67 11 | 87.94 35 | 93.59 110 | 84.27 56 | 95.97 114 | 95.52 47 |
|
xxxxxxxxxxxxxcwj | | | 89.04 63 | 89.13 60 | 88.79 66 | 93.75 58 | 77.44 91 | 86.31 115 | 95.27 9 | 70.80 191 | 92.28 51 | 93.80 91 | 86.89 47 | 94.64 69 | 85.52 42 | 97.51 67 | 94.30 83 |
|
DeepC-MVS | | 82.31 4 | 89.15 60 | 89.08 61 | 89.37 59 | 93.64 62 | 79.07 74 | 88.54 82 | 94.20 24 | 73.53 157 | 89.71 97 | 94.82 47 | 85.09 62 | 95.77 25 | 84.17 57 | 98.03 36 | 93.26 122 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_djsdf | | | 89.62 51 | 89.01 62 | 91.45 23 | 92.36 92 | 82.98 50 | 91.98 27 | 90.08 158 | 71.54 186 | 94.28 20 | 96.54 13 | 81.57 105 | 94.27 77 | 86.26 32 | 96.49 97 | 97.09 19 |
|
DP-MVS | | | 88.60 68 | 89.01 62 | 87.36 87 | 91.30 125 | 77.50 90 | 87.55 92 | 92.97 79 | 87.95 18 | 89.62 101 | 92.87 110 | 84.56 65 | 93.89 96 | 77.65 123 | 96.62 91 | 90.70 196 |
|
CPTT-MVS | | | 89.39 56 | 88.98 64 | 90.63 39 | 95.09 33 | 86.95 10 | 92.09 25 | 92.30 96 | 79.74 84 | 87.50 137 | 92.38 124 | 81.42 107 | 93.28 123 | 83.07 67 | 97.24 75 | 91.67 177 |
|
ETH3D-3000-0.1 | | | 88.85 66 | 88.96 65 | 88.52 70 | 91.94 107 | 77.27 97 | 88.71 79 | 95.26 10 | 76.08 123 | 90.66 81 | 92.69 116 | 84.48 67 | 93.83 100 | 83.38 64 | 97.48 69 | 94.47 75 |
|
anonymousdsp | | | 89.73 50 | 88.88 66 | 92.27 7 | 89.82 158 | 86.67 12 | 90.51 42 | 90.20 155 | 69.87 202 | 95.06 10 | 96.14 21 | 84.28 68 | 93.07 133 | 87.68 13 | 96.34 102 | 97.09 19 |
|
XVG-OURS | | | 89.18 59 | 88.83 67 | 90.23 46 | 94.28 45 | 86.11 20 | 85.91 118 | 93.60 51 | 80.16 80 | 89.13 112 | 93.44 98 | 83.82 71 | 90.98 186 | 83.86 60 | 95.30 138 | 93.60 113 |
|
jajsoiax | | | 89.41 55 | 88.81 68 | 91.19 30 | 93.38 67 | 84.72 37 | 89.70 55 | 90.29 152 | 69.27 205 | 94.39 16 | 96.38 15 | 86.02 59 | 93.52 114 | 83.96 58 | 95.92 116 | 95.34 50 |
|
TranMVSNet+NR-MVSNet | | | 87.86 75 | 88.76 69 | 85.18 126 | 94.02 53 | 64.13 204 | 84.38 144 | 91.29 121 | 84.88 31 | 92.06 55 | 93.84 90 | 86.45 54 | 93.73 102 | 73.22 166 | 98.66 10 | 97.69 9 |
|
nrg030 | | | 87.85 76 | 88.49 70 | 85.91 112 | 90.07 154 | 69.73 160 | 87.86 89 | 94.20 24 | 74.04 151 | 92.70 45 | 94.66 51 | 85.88 60 | 91.50 169 | 79.72 100 | 97.32 73 | 96.50 29 |
|
HPM-MVS++ | | | 88.93 65 | 88.45 71 | 90.38 43 | 94.92 36 | 85.85 25 | 89.70 55 | 91.27 122 | 78.20 105 | 86.69 152 | 92.28 130 | 80.36 118 | 95.06 57 | 86.17 36 | 96.49 97 | 90.22 206 |
|
DVP-MVS | | | 89.08 62 | 88.16 72 | 91.83 19 | 95.76 17 | 86.14 19 | 92.75 13 | 93.90 38 | 78.43 103 | 89.16 111 | 92.25 131 | 72.03 204 | 96.36 2 | 88.21 8 | 90.93 232 | 92.98 131 |
|
pmmvs6 | | | 86.52 90 | 88.06 73 | 81.90 191 | 92.22 99 | 62.28 228 | 84.66 136 | 89.15 173 | 83.54 43 | 89.85 93 | 97.32 4 | 88.08 34 | 86.80 258 | 70.43 193 | 97.30 74 | 96.62 26 |
|
PS-MVSNAJss | | | 88.31 70 | 87.90 74 | 89.56 57 | 93.31 69 | 77.96 84 | 87.94 88 | 91.97 104 | 70.73 193 | 94.19 21 | 96.67 11 | 76.94 150 | 94.57 73 | 83.07 67 | 96.28 104 | 96.15 31 |
|
TSAR-MVS + MP. | | | 88.14 72 | 87.82 75 | 89.09 63 | 95.72 21 | 76.74 103 | 92.49 21 | 91.19 125 | 67.85 221 | 86.63 153 | 94.84 46 | 79.58 125 | 95.96 10 | 87.62 14 | 94.50 161 | 94.56 70 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CNVR-MVS | | | 87.81 78 | 87.68 76 | 88.21 77 | 92.87 79 | 77.30 96 | 85.25 128 | 91.23 123 | 77.31 113 | 87.07 145 | 91.47 150 | 82.94 81 | 94.71 66 | 84.67 52 | 96.27 106 | 92.62 145 |
|
ETH3D cwj APD-0.16 | | | 87.83 77 | 87.62 77 | 88.47 72 | 91.21 128 | 78.20 81 | 87.26 96 | 94.54 16 | 72.05 182 | 88.89 113 | 92.31 128 | 83.86 70 | 94.24 80 | 81.59 82 | 96.87 84 | 92.97 134 |
|
OMC-MVS | | | 88.19 71 | 87.52 78 | 90.19 47 | 91.94 107 | 81.68 55 | 87.49 94 | 93.17 69 | 76.02 126 | 88.64 119 | 91.22 153 | 84.24 69 | 93.37 121 | 77.97 121 | 97.03 80 | 95.52 47 |
|
SixPastTwentyTwo | | | 87.20 82 | 87.45 79 | 86.45 98 | 92.52 88 | 69.19 169 | 87.84 90 | 88.05 190 | 81.66 64 | 94.64 13 | 96.53 14 | 65.94 230 | 94.75 65 | 83.02 69 | 96.83 87 | 95.41 49 |
|
HQP_MVS | | | 87.75 79 | 87.43 80 | 88.70 68 | 93.45 64 | 76.42 107 | 89.45 66 | 93.61 49 | 79.44 89 | 86.55 154 | 92.95 107 | 74.84 168 | 95.22 50 | 80.78 91 | 95.83 119 | 94.46 76 |
|
AllTest | | | 87.97 74 | 87.40 81 | 89.68 52 | 91.59 115 | 83.40 45 | 89.50 64 | 95.44 6 | 79.47 87 | 88.00 131 | 93.03 103 | 82.66 84 | 91.47 170 | 70.81 185 | 96.14 110 | 94.16 88 |
|
Anonymous20240529 | | | 86.20 97 | 87.13 82 | 83.42 164 | 90.19 151 | 64.55 201 | 84.55 139 | 90.71 134 | 85.85 26 | 89.94 91 | 95.24 37 | 82.13 93 | 90.40 205 | 69.19 204 | 96.40 100 | 95.31 52 |
|
v10 | | | 86.54 89 | 87.10 83 | 84.84 130 | 88.16 184 | 63.28 213 | 86.64 110 | 92.20 98 | 75.42 138 | 92.81 43 | 94.50 57 | 74.05 177 | 94.06 91 | 83.88 59 | 96.28 104 | 97.17 18 |
|
UniMVSNet_NR-MVSNet | | | 86.84 85 | 87.06 84 | 86.17 109 | 92.86 81 | 67.02 182 | 82.55 190 | 91.56 113 | 83.08 49 | 90.92 75 | 91.82 141 | 78.25 134 | 93.99 92 | 74.16 155 | 98.35 21 | 97.49 13 |
|
FC-MVSNet-test | | | 85.93 102 | 87.05 85 | 82.58 182 | 92.25 97 | 56.44 282 | 85.75 121 | 93.09 71 | 77.33 112 | 91.94 59 | 94.65 52 | 74.78 170 | 93.41 120 | 75.11 150 | 98.58 13 | 97.88 7 |
|
DU-MVS | | | 86.80 86 | 86.99 86 | 86.21 107 | 93.24 71 | 67.02 182 | 83.16 177 | 92.21 97 | 81.73 63 | 90.92 75 | 91.97 135 | 77.20 144 | 93.99 92 | 74.16 155 | 98.35 21 | 97.61 10 |
|
UniMVSNet (Re) | | | 86.87 83 | 86.98 87 | 86.55 96 | 93.11 74 | 68.48 173 | 83.80 157 | 92.87 81 | 80.37 76 | 89.61 103 | 91.81 142 | 77.72 138 | 94.18 84 | 75.00 151 | 98.53 15 | 96.99 22 |
|
RPSCF | | | 88.00 73 | 86.93 88 | 91.22 29 | 90.08 153 | 89.30 5 | 89.68 57 | 91.11 126 | 79.26 91 | 89.68 98 | 94.81 50 | 82.44 86 | 87.74 246 | 76.54 136 | 88.74 259 | 96.61 27 |
|
NCCC | | | 87.36 80 | 86.87 89 | 88.83 65 | 92.32 95 | 78.84 77 | 86.58 111 | 91.09 127 | 78.77 99 | 84.85 184 | 90.89 167 | 80.85 112 | 95.29 46 | 81.14 85 | 95.32 135 | 92.34 151 |
|
v8 | | | 86.22 96 | 86.83 90 | 84.36 141 | 87.82 189 | 62.35 227 | 86.42 113 | 91.33 120 | 76.78 118 | 92.73 44 | 94.48 59 | 73.41 186 | 93.72 103 | 83.10 66 | 95.41 131 | 97.01 21 |
|
IS-MVSNet | | | 86.66 88 | 86.82 91 | 86.17 109 | 92.05 103 | 66.87 184 | 91.21 34 | 88.64 180 | 86.30 25 | 89.60 104 | 92.59 118 | 69.22 215 | 94.91 61 | 73.89 159 | 97.89 48 | 96.72 24 |
|
Vis-MVSNet | | | 86.86 84 | 86.58 92 | 87.72 82 | 92.09 101 | 77.43 93 | 87.35 95 | 92.09 100 | 78.87 97 | 84.27 199 | 94.05 77 | 78.35 133 | 93.65 104 | 80.54 95 | 91.58 220 | 92.08 163 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CSCG | | | 86.26 94 | 86.47 93 | 85.60 120 | 90.87 137 | 74.26 118 | 87.98 87 | 91.85 107 | 80.35 77 | 89.54 107 | 88.01 214 | 79.09 127 | 92.13 152 | 75.51 144 | 95.06 146 | 90.41 204 |
|
Gipuma | | | 84.44 127 | 86.33 94 | 78.78 237 | 84.20 251 | 73.57 121 | 89.55 61 | 90.44 141 | 84.24 33 | 84.38 192 | 94.89 44 | 76.35 159 | 80.40 303 | 76.14 139 | 96.80 89 | 82.36 303 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_prior3 | | | 86.31 93 | 86.31 95 | 86.32 100 | 90.59 144 | 71.99 142 | 83.37 169 | 92.85 82 | 75.43 136 | 84.58 188 | 91.57 146 | 81.92 101 | 94.17 86 | 79.54 103 | 96.97 81 | 92.80 137 |
|
FIs | | | 85.35 108 | 86.27 96 | 82.60 181 | 91.86 110 | 57.31 275 | 85.10 130 | 93.05 73 | 75.83 131 | 91.02 74 | 93.97 81 | 73.57 182 | 92.91 138 | 73.97 158 | 98.02 37 | 97.58 12 |
|
NR-MVSNet | | | 86.00 99 | 86.22 97 | 85.34 124 | 93.24 71 | 64.56 200 | 82.21 200 | 90.46 140 | 80.99 71 | 88.42 124 | 91.97 135 | 77.56 140 | 93.85 97 | 72.46 177 | 98.65 11 | 97.61 10 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 81 | 86.21 98 | 90.49 41 | 91.48 122 | 84.90 34 | 83.41 168 | 92.38 95 | 70.25 199 | 89.35 109 | 90.68 174 | 82.85 82 | 94.57 73 | 79.55 102 | 95.95 115 | 92.00 166 |
|
canonicalmvs | | | 85.50 106 | 86.14 99 | 83.58 160 | 87.97 185 | 67.13 181 | 87.55 92 | 94.32 18 | 73.44 159 | 88.47 123 | 87.54 223 | 86.45 54 | 91.06 185 | 75.76 143 | 93.76 175 | 92.54 147 |
|
Regformer-2 | | | 86.74 87 | 86.08 100 | 88.73 67 | 84.18 252 | 79.20 73 | 83.52 163 | 89.33 171 | 83.33 45 | 89.92 92 | 85.07 263 | 83.23 79 | 93.16 128 | 83.39 63 | 92.72 200 | 93.83 100 |
|
MSLP-MVS++ | | | 85.00 117 | 86.03 101 | 81.90 191 | 91.84 111 | 71.56 150 | 86.75 108 | 93.02 77 | 75.95 129 | 87.12 141 | 89.39 194 | 77.98 135 | 89.40 228 | 77.46 126 | 94.78 154 | 84.75 272 |
|
baseline | | | 85.20 110 | 85.93 102 | 83.02 171 | 86.30 222 | 62.37 226 | 84.55 139 | 93.96 34 | 74.48 148 | 87.12 141 | 92.03 134 | 82.30 89 | 91.94 159 | 78.39 112 | 94.21 167 | 94.74 66 |
|
Baseline_NR-MVSNet | | | 84.00 141 | 85.90 103 | 78.29 247 | 91.47 123 | 53.44 301 | 82.29 196 | 87.00 212 | 79.06 94 | 89.55 105 | 95.72 26 | 77.20 144 | 86.14 268 | 72.30 178 | 98.51 16 | 95.28 53 |
|
casdiffmvs | | | 85.21 109 | 85.85 104 | 83.31 166 | 86.17 227 | 62.77 219 | 83.03 179 | 93.93 35 | 74.69 145 | 88.21 129 | 92.68 117 | 82.29 90 | 91.89 162 | 77.87 122 | 93.75 177 | 95.27 54 |
|
PHI-MVS | | | 86.38 92 | 85.81 105 | 88.08 78 | 88.44 178 | 77.34 94 | 89.35 68 | 93.05 73 | 73.15 168 | 84.76 185 | 87.70 220 | 78.87 129 | 94.18 84 | 80.67 93 | 96.29 103 | 92.73 140 |
|
TransMVSNet (Re) | | | 84.02 140 | 85.74 106 | 78.85 236 | 91.00 135 | 55.20 292 | 82.29 196 | 87.26 200 | 79.65 86 | 88.38 126 | 95.52 31 | 83.00 80 | 86.88 256 | 67.97 215 | 96.60 93 | 94.45 78 |
|
Regformer-4 | | | 86.41 91 | 85.71 107 | 88.52 70 | 84.27 248 | 77.57 89 | 84.07 147 | 88.00 192 | 82.82 52 | 89.84 94 | 85.48 251 | 82.06 95 | 92.77 140 | 83.83 61 | 91.04 226 | 95.22 58 |
|
ANet_high | | | 83.17 158 | 85.68 108 | 75.65 274 | 81.24 278 | 45.26 336 | 79.94 229 | 92.91 80 | 83.83 37 | 91.33 69 | 96.88 10 | 80.25 119 | 85.92 270 | 68.89 207 | 95.89 117 | 95.76 41 |
|
DeepC-MVS_fast | | 80.27 8 | 86.23 95 | 85.65 109 | 87.96 81 | 91.30 125 | 76.92 100 | 87.19 97 | 91.99 103 | 70.56 194 | 84.96 180 | 90.69 173 | 80.01 121 | 95.14 53 | 78.37 113 | 95.78 123 | 91.82 173 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CDPH-MVS | | | 86.17 98 | 85.54 110 | 88.05 80 | 92.25 97 | 75.45 112 | 83.85 154 | 92.01 102 | 65.91 236 | 86.19 161 | 91.75 144 | 83.77 73 | 94.98 59 | 77.43 128 | 96.71 90 | 93.73 106 |
|
Regformer-1 | | | 86.00 99 | 85.50 111 | 87.49 85 | 84.18 252 | 76.90 101 | 83.52 163 | 87.94 194 | 82.18 58 | 89.19 110 | 85.07 263 | 82.28 91 | 91.89 162 | 82.40 74 | 92.72 200 | 93.69 108 |
|
FMVSNet1 | | | 84.55 124 | 85.45 112 | 81.85 193 | 90.27 150 | 61.05 239 | 86.83 104 | 88.27 187 | 78.57 102 | 89.66 100 | 95.64 28 | 75.43 162 | 90.68 198 | 69.09 205 | 95.33 134 | 93.82 102 |
|
VDDNet | | | 84.35 130 | 85.39 113 | 81.25 201 | 95.13 32 | 59.32 256 | 85.42 127 | 81.11 258 | 86.41 24 | 87.41 138 | 96.21 19 | 73.61 181 | 90.61 201 | 66.33 224 | 96.85 85 | 93.81 105 |
|
train_agg | | | 85.98 101 | 85.28 114 | 88.07 79 | 92.34 93 | 79.70 68 | 83.94 150 | 90.32 145 | 65.79 237 | 84.49 190 | 90.97 163 | 81.93 99 | 93.63 106 | 81.21 84 | 96.54 95 | 90.88 192 |
|
agg_prior1 | | | 85.72 104 | 85.20 115 | 87.28 88 | 91.58 118 | 77.69 87 | 83.69 160 | 90.30 149 | 66.29 233 | 84.32 194 | 91.07 160 | 82.13 93 | 93.18 126 | 81.02 86 | 96.36 101 | 90.98 188 |
|
LCM-MVSNet-Re | | | 83.48 151 | 85.06 116 | 78.75 238 | 85.94 230 | 55.75 287 | 80.05 227 | 94.27 19 | 76.47 119 | 96.09 4 | 94.54 56 | 83.31 78 | 89.75 223 | 59.95 267 | 94.89 151 | 90.75 195 |
|
EPP-MVSNet | | | 85.47 107 | 85.04 117 | 86.77 93 | 91.52 121 | 69.37 163 | 91.63 31 | 87.98 193 | 81.51 66 | 87.05 146 | 91.83 140 | 66.18 229 | 95.29 46 | 70.75 188 | 96.89 83 | 95.64 44 |
|
IterMVS-LS | | | 84.73 120 | 84.98 118 | 83.96 151 | 87.35 199 | 63.66 208 | 83.25 173 | 89.88 162 | 76.06 124 | 89.62 101 | 92.37 127 | 73.40 188 | 92.52 145 | 78.16 117 | 94.77 156 | 95.69 42 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
pm-mvs1 | | | 83.69 146 | 84.95 119 | 79.91 222 | 90.04 156 | 59.66 253 | 82.43 192 | 87.44 197 | 75.52 135 | 87.85 133 | 95.26 36 | 81.25 109 | 85.65 274 | 68.74 209 | 96.04 113 | 94.42 79 |
|
ETH3 D test6400 | | | 85.09 113 | 84.87 120 | 85.75 117 | 90.80 139 | 69.34 164 | 85.90 119 | 93.31 61 | 65.43 243 | 86.11 164 | 89.95 188 | 80.92 111 | 94.86 62 | 75.90 142 | 95.57 128 | 93.05 128 |
|
TAPA-MVS | | 77.73 12 | 85.71 105 | 84.83 121 | 88.37 74 | 88.78 172 | 79.72 67 | 87.15 99 | 93.50 53 | 69.17 206 | 85.80 171 | 89.56 193 | 80.76 113 | 92.13 152 | 73.21 171 | 95.51 129 | 93.25 123 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
VPA-MVSNet | | | 83.47 152 | 84.73 122 | 79.69 227 | 90.29 149 | 57.52 274 | 81.30 214 | 88.69 179 | 76.29 120 | 87.58 136 | 94.44 60 | 80.60 115 | 87.20 251 | 66.60 223 | 96.82 88 | 94.34 82 |
|
K. test v3 | | | 85.14 111 | 84.73 122 | 86.37 99 | 91.13 133 | 69.63 162 | 85.45 126 | 76.68 280 | 84.06 36 | 92.44 49 | 96.99 8 | 62.03 247 | 94.65 68 | 80.58 94 | 93.24 185 | 94.83 65 |
|
v1144 | | | 84.54 126 | 84.72 124 | 84.00 149 | 87.67 193 | 62.55 223 | 82.97 181 | 90.93 130 | 70.32 198 | 89.80 95 | 90.99 162 | 73.50 183 | 93.48 116 | 81.69 81 | 94.65 159 | 95.97 37 |
|
3Dnovator | | 80.37 7 | 84.80 119 | 84.71 125 | 85.06 128 | 86.36 220 | 74.71 115 | 88.77 78 | 90.00 160 | 75.65 134 | 84.96 180 | 93.17 101 | 74.06 176 | 91.19 180 | 78.28 116 | 91.09 224 | 89.29 220 |
|
v1192 | | | 84.57 123 | 84.69 126 | 84.21 145 | 87.75 191 | 62.88 217 | 83.02 180 | 91.43 117 | 69.08 208 | 89.98 90 | 90.89 167 | 72.70 196 | 93.62 109 | 82.41 73 | 94.97 149 | 96.13 32 |
|
Regformer-3 | | | 85.06 114 | 84.67 127 | 86.22 105 | 84.27 248 | 73.43 122 | 84.07 147 | 85.26 229 | 80.77 74 | 88.62 120 | 85.48 251 | 80.56 116 | 90.39 206 | 81.99 78 | 91.04 226 | 94.85 63 |
|
testing_2 | | | 84.36 128 | 84.64 128 | 83.50 163 | 86.74 214 | 63.97 207 | 84.56 138 | 90.31 147 | 66.22 234 | 91.62 63 | 94.55 55 | 75.88 160 | 91.95 158 | 77.02 133 | 94.89 151 | 94.56 70 |
|
MIMVSNet1 | | | 83.63 148 | 84.59 129 | 80.74 211 | 94.06 52 | 62.77 219 | 82.72 186 | 84.53 241 | 77.57 111 | 90.34 83 | 95.92 23 | 76.88 156 | 85.83 272 | 61.88 253 | 97.42 70 | 93.62 112 |
|
VDD-MVS | | | 84.23 135 | 84.58 130 | 83.20 168 | 91.17 132 | 65.16 196 | 83.25 173 | 84.97 238 | 79.79 83 | 87.18 140 | 94.27 67 | 74.77 171 | 90.89 191 | 69.24 201 | 96.54 95 | 93.55 117 |
|
EI-MVSNet-Vis-set | | | 85.12 112 | 84.53 131 | 86.88 90 | 84.01 255 | 72.76 126 | 83.91 153 | 85.18 231 | 80.44 75 | 88.75 117 | 85.49 250 | 80.08 120 | 91.92 160 | 82.02 77 | 90.85 235 | 95.97 37 |
|
v1240 | | | 84.30 132 | 84.51 132 | 83.65 158 | 87.65 194 | 61.26 236 | 82.85 184 | 91.54 114 | 67.94 219 | 90.68 80 | 90.65 176 | 71.71 206 | 93.64 105 | 82.84 71 | 94.78 154 | 96.07 34 |
|
EI-MVSNet-UG-set | | | 85.04 115 | 84.44 133 | 86.85 91 | 83.87 258 | 72.52 134 | 83.82 155 | 85.15 232 | 80.27 79 | 88.75 117 | 85.45 254 | 79.95 123 | 91.90 161 | 81.92 79 | 90.80 236 | 96.13 32 |
|
v144192 | | | 84.24 134 | 84.41 134 | 83.71 157 | 87.59 196 | 61.57 232 | 82.95 182 | 91.03 128 | 67.82 222 | 89.80 95 | 90.49 178 | 73.28 189 | 93.51 115 | 81.88 80 | 94.89 151 | 96.04 36 |
|
WR-MVS | | | 83.56 149 | 84.40 135 | 81.06 206 | 93.43 66 | 54.88 293 | 78.67 250 | 85.02 236 | 81.24 68 | 90.74 79 | 91.56 148 | 72.85 193 | 91.08 184 | 68.00 214 | 98.04 34 | 97.23 16 |
|
v1921920 | | | 84.23 135 | 84.37 136 | 83.79 154 | 87.64 195 | 61.71 231 | 82.91 183 | 91.20 124 | 67.94 219 | 90.06 86 | 90.34 180 | 72.04 203 | 93.59 110 | 82.32 75 | 94.91 150 | 96.07 34 |
|
MVS_111021_HR | | | 84.63 121 | 84.34 137 | 85.49 123 | 90.18 152 | 75.86 111 | 79.23 243 | 87.13 204 | 73.35 160 | 85.56 175 | 89.34 195 | 83.60 75 | 90.50 203 | 76.64 135 | 94.05 171 | 90.09 211 |
|
v2v482 | | | 84.09 137 | 84.24 138 | 83.62 159 | 87.13 204 | 61.40 233 | 82.71 187 | 89.71 164 | 72.19 181 | 89.55 105 | 91.41 151 | 70.70 211 | 93.20 125 | 81.02 86 | 93.76 175 | 96.25 30 |
|
EG-PatchMatch MVS | | | 84.08 138 | 84.11 139 | 83.98 150 | 92.22 99 | 72.61 131 | 82.20 202 | 87.02 209 | 72.63 175 | 88.86 114 | 91.02 161 | 78.52 130 | 91.11 183 | 73.41 165 | 91.09 224 | 88.21 233 |
|
HQP-MVS | | | 84.61 122 | 84.06 140 | 86.27 103 | 91.19 129 | 70.66 154 | 84.77 132 | 92.68 88 | 73.30 163 | 80.55 248 | 90.17 186 | 72.10 200 | 94.61 71 | 77.30 129 | 94.47 162 | 93.56 115 |
|
Effi-MVS+ | | | 83.90 144 | 84.01 141 | 83.57 161 | 87.22 202 | 65.61 193 | 86.55 112 | 92.40 93 | 78.64 101 | 81.34 238 | 84.18 274 | 83.65 74 | 92.93 136 | 74.22 154 | 87.87 269 | 92.17 162 |
|
alignmvs | | | 83.94 143 | 83.98 142 | 83.80 153 | 87.80 190 | 67.88 178 | 84.54 141 | 91.42 119 | 73.27 166 | 88.41 125 | 87.96 215 | 72.33 199 | 90.83 193 | 76.02 141 | 94.11 169 | 92.69 142 |
|
MCST-MVS | | | 84.36 128 | 83.93 143 | 85.63 119 | 91.59 115 | 71.58 149 | 83.52 163 | 92.13 99 | 61.82 263 | 83.96 201 | 89.75 192 | 79.93 124 | 93.46 117 | 78.33 115 | 94.34 165 | 91.87 171 |
|
ETV-MVS | | | 84.31 131 | 83.91 144 | 85.52 121 | 88.58 174 | 70.40 156 | 84.50 143 | 93.37 55 | 78.76 100 | 84.07 200 | 78.72 318 | 80.39 117 | 95.13 54 | 73.82 161 | 92.98 193 | 91.04 187 |
|
MVS_111021_LR | | | 84.28 133 | 83.76 145 | 85.83 116 | 89.23 164 | 83.07 48 | 80.99 218 | 83.56 243 | 72.71 174 | 86.07 165 | 89.07 202 | 81.75 104 | 86.19 267 | 77.11 131 | 93.36 180 | 88.24 232 |
|
AdaColmap | | | 83.66 147 | 83.69 146 | 83.57 161 | 90.05 155 | 72.26 139 | 86.29 117 | 90.00 160 | 78.19 106 | 81.65 233 | 87.16 230 | 83.40 77 | 94.24 80 | 61.69 255 | 94.76 157 | 84.21 277 |
|
F-COLMAP | | | 84.97 118 | 83.42 147 | 89.63 54 | 92.39 91 | 83.40 45 | 88.83 76 | 91.92 106 | 73.19 167 | 80.18 253 | 89.15 200 | 77.04 148 | 93.28 123 | 65.82 230 | 92.28 206 | 92.21 160 |
|
Effi-MVS+-dtu | | | 85.82 103 | 83.38 148 | 93.14 3 | 87.13 204 | 91.15 2 | 87.70 91 | 88.42 182 | 74.57 146 | 83.56 207 | 85.65 248 | 78.49 131 | 94.21 82 | 72.04 179 | 92.88 195 | 94.05 92 |
|
V42 | | | 83.47 152 | 83.37 149 | 83.75 156 | 83.16 264 | 63.33 212 | 81.31 212 | 90.23 154 | 69.51 204 | 90.91 77 | 90.81 170 | 74.16 175 | 92.29 150 | 80.06 96 | 90.22 243 | 95.62 45 |
|
MVS_Test | | | 82.47 165 | 83.22 150 | 80.22 219 | 82.62 268 | 57.75 273 | 82.54 191 | 91.96 105 | 71.16 189 | 82.89 215 | 92.52 123 | 77.41 142 | 90.50 203 | 80.04 97 | 87.84 270 | 92.40 150 |
|
DP-MVS Recon | | | 84.05 139 | 83.22 150 | 86.52 97 | 91.73 113 | 75.27 113 | 83.23 175 | 92.40 93 | 72.04 183 | 82.04 226 | 88.33 210 | 77.91 137 | 93.95 95 | 66.17 225 | 95.12 144 | 90.34 205 |
|
PAPM_NR | | | 83.23 156 | 83.19 152 | 83.33 165 | 90.90 136 | 65.98 190 | 88.19 85 | 90.78 133 | 78.13 107 | 80.87 243 | 87.92 218 | 73.49 185 | 92.42 146 | 70.07 195 | 88.40 260 | 91.60 180 |
|
CNLPA | | | 83.55 150 | 83.10 153 | 84.90 129 | 89.34 162 | 83.87 43 | 84.54 141 | 88.77 177 | 79.09 93 | 83.54 208 | 88.66 208 | 74.87 167 | 81.73 298 | 66.84 221 | 92.29 205 | 89.11 222 |
|
CS-MVS | | | 83.43 154 | 83.04 154 | 84.59 137 | 87.87 188 | 66.61 186 | 85.57 124 | 94.90 13 | 73.02 170 | 81.12 239 | 78.56 319 | 80.00 122 | 95.52 36 | 73.04 173 | 93.29 184 | 91.62 179 |
|
tfpnnormal | | | 81.79 175 | 82.95 155 | 78.31 246 | 88.93 170 | 55.40 288 | 80.83 221 | 82.85 247 | 76.81 117 | 85.90 170 | 94.14 74 | 74.58 174 | 86.51 262 | 66.82 222 | 95.68 127 | 93.01 130 |
|
CANet | | | 83.79 145 | 82.85 156 | 86.63 94 | 86.17 227 | 72.21 141 | 83.76 158 | 91.43 117 | 77.24 114 | 74.39 294 | 87.45 225 | 75.36 163 | 95.42 42 | 77.03 132 | 92.83 196 | 92.25 159 |
|
X-MVStestdata | | | 85.04 115 | 82.70 157 | 92.08 8 | 95.64 23 | 86.25 16 | 92.64 15 | 93.33 58 | 85.07 29 | 89.99 88 | 16.05 348 | 86.57 52 | 95.80 20 | 87.35 20 | 97.62 61 | 94.20 85 |
|
TSAR-MVS + GP. | | | 83.95 142 | 82.69 158 | 87.72 82 | 89.27 163 | 81.45 57 | 83.72 159 | 81.58 257 | 74.73 144 | 85.66 172 | 86.06 245 | 72.56 198 | 92.69 142 | 75.44 146 | 95.21 139 | 89.01 228 |
|
CLD-MVS | | | 83.18 157 | 82.64 159 | 84.79 131 | 89.05 166 | 67.82 179 | 77.93 258 | 92.52 91 | 68.33 214 | 85.07 179 | 81.54 301 | 82.06 95 | 92.96 134 | 69.35 200 | 97.91 47 | 93.57 114 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
API-MVS | | | 82.28 167 | 82.61 160 | 81.30 200 | 86.29 223 | 69.79 158 | 88.71 79 | 87.67 196 | 78.42 104 | 82.15 225 | 84.15 275 | 77.98 135 | 91.59 168 | 65.39 232 | 92.75 197 | 82.51 302 |
|
QAPM | | | 82.59 163 | 82.59 161 | 82.58 182 | 86.44 215 | 66.69 185 | 89.94 52 | 90.36 144 | 67.97 218 | 84.94 182 | 92.58 120 | 72.71 195 | 92.18 151 | 70.63 191 | 87.73 271 | 88.85 229 |
|
114514_t | | | 83.10 159 | 82.54 162 | 84.77 132 | 92.90 78 | 69.10 171 | 86.65 109 | 90.62 138 | 54.66 301 | 81.46 235 | 90.81 170 | 76.98 149 | 94.38 76 | 72.62 175 | 96.18 108 | 90.82 194 |
|
v148 | | | 82.31 166 | 82.48 163 | 81.81 196 | 85.59 232 | 59.66 253 | 81.47 210 | 86.02 220 | 72.85 172 | 88.05 130 | 90.65 176 | 70.73 210 | 90.91 190 | 75.15 149 | 91.79 215 | 94.87 61 |
|
EI-MVSNet | | | 82.61 162 | 82.42 164 | 83.20 168 | 83.25 262 | 63.66 208 | 83.50 166 | 85.07 233 | 76.06 124 | 86.55 154 | 85.10 260 | 73.41 186 | 90.25 207 | 78.15 119 | 90.67 239 | 95.68 43 |
|
TinyColmap | | | 81.25 180 | 82.34 165 | 77.99 252 | 85.33 235 | 60.68 245 | 82.32 195 | 88.33 185 | 71.26 188 | 86.97 148 | 92.22 133 | 77.10 147 | 86.98 255 | 62.37 248 | 95.17 141 | 86.31 256 |
|
mvs-test1 | | | 84.55 124 | 82.12 166 | 91.84 18 | 87.13 204 | 89.54 4 | 85.05 131 | 88.42 182 | 74.57 146 | 80.60 245 | 82.98 284 | 78.49 131 | 93.98 94 | 72.04 179 | 89.77 246 | 92.00 166 |
|
GBi-Net | | | 82.02 172 | 82.07 167 | 81.85 193 | 86.38 217 | 61.05 239 | 86.83 104 | 88.27 187 | 72.43 176 | 86.00 166 | 95.64 28 | 63.78 239 | 90.68 198 | 65.95 226 | 93.34 181 | 93.82 102 |
|
test1 | | | 82.02 172 | 82.07 167 | 81.85 193 | 86.38 217 | 61.05 239 | 86.83 104 | 88.27 187 | 72.43 176 | 86.00 166 | 95.64 28 | 63.78 239 | 90.68 198 | 65.95 226 | 93.34 181 | 93.82 102 |
|
OpenMVS | | 76.72 13 | 81.98 174 | 82.00 169 | 81.93 190 | 84.42 244 | 68.22 175 | 88.50 83 | 89.48 169 | 66.92 228 | 81.80 232 | 91.86 137 | 72.59 197 | 90.16 212 | 71.19 184 | 91.25 223 | 87.40 245 |
|
LF4IMVS | | | 82.75 161 | 81.93 170 | 85.19 125 | 82.08 269 | 80.15 64 | 85.53 125 | 88.76 178 | 68.01 216 | 85.58 174 | 87.75 219 | 71.80 205 | 86.85 257 | 74.02 157 | 93.87 174 | 88.58 231 |
|
VPNet | | | 80.25 198 | 81.68 171 | 75.94 273 | 92.46 90 | 47.98 330 | 76.70 275 | 81.67 256 | 73.45 158 | 84.87 183 | 92.82 111 | 74.66 173 | 86.51 262 | 61.66 256 | 96.85 85 | 93.33 118 |
|
UGNet | | | 82.78 160 | 81.64 172 | 86.21 107 | 86.20 226 | 76.24 110 | 86.86 102 | 85.68 223 | 77.07 115 | 73.76 297 | 92.82 111 | 69.64 212 | 91.82 165 | 69.04 206 | 93.69 178 | 90.56 200 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
FMVSNet2 | | | 81.31 179 | 81.61 173 | 80.41 216 | 86.38 217 | 58.75 267 | 83.93 152 | 86.58 215 | 72.43 176 | 87.65 135 | 92.98 105 | 63.78 239 | 90.22 210 | 66.86 219 | 93.92 173 | 92.27 157 |
|
cl_fuxian | | | 81.64 176 | 81.59 174 | 81.79 197 | 80.86 284 | 59.15 260 | 78.61 251 | 90.18 156 | 68.36 213 | 87.20 139 | 87.11 232 | 69.39 213 | 91.62 167 | 78.16 117 | 94.43 164 | 94.60 69 |
|
MVSFormer | | | 82.23 168 | 81.57 175 | 84.19 147 | 85.54 233 | 69.26 166 | 91.98 27 | 90.08 158 | 71.54 186 | 76.23 278 | 85.07 263 | 58.69 267 | 94.27 77 | 86.26 32 | 88.77 257 | 89.03 226 |
|
Fast-Effi-MVS+-dtu | | | 82.54 164 | 81.41 176 | 85.90 113 | 85.60 231 | 76.53 106 | 83.07 178 | 89.62 167 | 73.02 170 | 79.11 261 | 83.51 279 | 80.74 114 | 90.24 209 | 68.76 208 | 89.29 250 | 90.94 190 |
|
DELS-MVS | | | 81.44 178 | 81.25 177 | 82.03 189 | 84.27 248 | 62.87 218 | 76.47 280 | 92.49 92 | 70.97 190 | 81.64 234 | 83.83 276 | 75.03 165 | 92.70 141 | 74.29 153 | 92.22 209 | 90.51 202 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
EIA-MVS | | | 82.19 169 | 81.23 178 | 85.10 127 | 87.95 186 | 69.17 170 | 83.22 176 | 93.33 58 | 70.42 195 | 78.58 264 | 79.77 315 | 77.29 143 | 94.20 83 | 71.51 182 | 88.96 255 | 91.93 170 |
|
Anonymous202405211 | | | 80.51 191 | 81.19 179 | 78.49 243 | 88.48 176 | 57.26 276 | 76.63 276 | 82.49 249 | 81.21 69 | 84.30 197 | 92.24 132 | 67.99 221 | 86.24 266 | 62.22 249 | 95.13 142 | 91.98 169 |
|
RRT_MVS | | | 83.25 155 | 81.08 180 | 89.74 51 | 80.55 291 | 79.32 72 | 86.41 114 | 86.69 213 | 72.33 180 | 87.00 147 | 91.08 158 | 44.98 325 | 95.55 34 | 84.47 55 | 96.24 107 | 94.36 81 |
|
BH-untuned | | | 80.96 183 | 80.99 181 | 80.84 210 | 88.55 175 | 68.23 174 | 80.33 225 | 88.46 181 | 72.79 173 | 86.55 154 | 86.76 235 | 74.72 172 | 91.77 166 | 61.79 254 | 88.99 254 | 82.52 301 |
|
MG-MVS | | | 80.32 197 | 80.94 182 | 78.47 244 | 88.18 182 | 52.62 307 | 82.29 196 | 85.01 237 | 72.01 184 | 79.24 260 | 92.54 122 | 69.36 214 | 93.36 122 | 70.65 190 | 89.19 253 | 89.45 214 |
|
PCF-MVS | | 74.62 15 | 82.15 170 | 80.92 183 | 85.84 115 | 89.43 160 | 72.30 138 | 80.53 223 | 91.82 108 | 57.36 290 | 87.81 134 | 89.92 190 | 77.67 139 | 93.63 106 | 58.69 272 | 95.08 145 | 91.58 181 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Fast-Effi-MVS+ | | | 81.04 182 | 80.57 184 | 82.46 186 | 87.50 197 | 63.22 214 | 78.37 254 | 89.63 166 | 68.01 216 | 81.87 228 | 82.08 296 | 82.31 88 | 92.65 143 | 67.10 218 | 88.30 265 | 91.51 183 |
|
LFMVS | | | 80.15 201 | 80.56 185 | 78.89 235 | 89.19 165 | 55.93 284 | 85.22 129 | 73.78 299 | 82.96 50 | 84.28 198 | 92.72 115 | 57.38 276 | 90.07 219 | 63.80 240 | 95.75 124 | 90.68 197 |
|
ab-mvs | | | 79.67 204 | 80.56 185 | 76.99 260 | 88.48 176 | 56.93 278 | 84.70 135 | 86.06 219 | 68.95 210 | 80.78 244 | 93.08 102 | 75.30 164 | 84.62 283 | 56.78 281 | 90.90 233 | 89.43 216 |
|
PVSNet_Blended_VisFu | | | 81.55 177 | 80.49 187 | 84.70 135 | 91.58 118 | 73.24 124 | 84.21 145 | 91.67 112 | 62.86 256 | 80.94 241 | 87.16 230 | 67.27 224 | 92.87 139 | 69.82 197 | 88.94 256 | 87.99 237 |
|
diffmvs | | | 80.40 194 | 80.48 188 | 80.17 220 | 79.02 306 | 60.04 249 | 77.54 265 | 90.28 153 | 66.65 231 | 82.40 220 | 87.33 228 | 73.50 183 | 87.35 250 | 77.98 120 | 89.62 248 | 93.13 126 |
|
PLC | | 73.85 16 | 82.09 171 | 80.31 189 | 87.45 86 | 90.86 138 | 80.29 63 | 85.88 120 | 90.65 136 | 68.17 215 | 76.32 277 | 86.33 240 | 73.12 191 | 92.61 144 | 61.40 259 | 90.02 245 | 89.44 215 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
VNet | | | 79.31 205 | 80.27 190 | 76.44 268 | 87.92 187 | 53.95 297 | 75.58 288 | 84.35 242 | 74.39 149 | 82.23 223 | 90.72 172 | 72.84 194 | 84.39 285 | 60.38 266 | 93.98 172 | 90.97 189 |
|
cl-mvsnet_ | | | 80.42 193 | 80.23 191 | 81.02 207 | 79.99 294 | 59.25 257 | 77.07 271 | 87.02 209 | 67.37 225 | 86.18 163 | 89.21 198 | 63.08 244 | 90.16 212 | 76.31 138 | 95.80 121 | 93.65 110 |
|
cl-mvsnet1 | | | 80.43 192 | 80.23 191 | 81.02 207 | 79.99 294 | 59.25 257 | 77.07 271 | 87.02 209 | 67.38 224 | 86.19 161 | 89.22 197 | 63.09 243 | 90.16 212 | 76.32 137 | 95.80 121 | 93.66 109 |
|
eth_miper_zixun_eth | | | 80.84 185 | 80.22 193 | 82.71 179 | 81.41 276 | 60.98 242 | 77.81 260 | 90.14 157 | 67.31 226 | 86.95 149 | 87.24 229 | 64.26 235 | 92.31 148 | 75.23 148 | 91.61 218 | 94.85 63 |
|
BH-RMVSNet | | | 80.53 190 | 80.22 193 | 81.49 199 | 87.19 203 | 66.21 189 | 77.79 261 | 86.23 217 | 74.21 150 | 83.69 203 | 88.50 209 | 73.25 190 | 90.75 195 | 63.18 245 | 87.90 268 | 87.52 243 |
|
xiu_mvs_v1_base_debu | | | 80.84 185 | 80.14 195 | 82.93 174 | 88.31 179 | 71.73 145 | 79.53 234 | 87.17 201 | 65.43 243 | 79.59 255 | 82.73 291 | 76.94 150 | 90.14 215 | 73.22 166 | 88.33 261 | 86.90 251 |
|
xiu_mvs_v1_base | | | 80.84 185 | 80.14 195 | 82.93 174 | 88.31 179 | 71.73 145 | 79.53 234 | 87.17 201 | 65.43 243 | 79.59 255 | 82.73 291 | 76.94 150 | 90.14 215 | 73.22 166 | 88.33 261 | 86.90 251 |
|
xiu_mvs_v1_base_debi | | | 80.84 185 | 80.14 195 | 82.93 174 | 88.31 179 | 71.73 145 | 79.53 234 | 87.17 201 | 65.43 243 | 79.59 255 | 82.73 291 | 76.94 150 | 90.14 215 | 73.22 166 | 88.33 261 | 86.90 251 |
|
miper_ehance_all_eth | | | 80.34 196 | 80.04 198 | 81.24 203 | 79.82 296 | 58.95 262 | 77.66 262 | 89.66 165 | 65.75 240 | 85.99 169 | 85.11 259 | 68.29 220 | 91.42 174 | 76.03 140 | 92.03 211 | 93.33 118 |
|
MSDG | | | 80.06 203 | 79.99 199 | 80.25 218 | 83.91 257 | 68.04 177 | 77.51 266 | 89.19 172 | 77.65 109 | 81.94 227 | 83.45 281 | 76.37 158 | 86.31 265 | 63.31 244 | 86.59 279 | 86.41 254 |
|
1121 | | | 80.86 184 | 79.81 200 | 84.02 148 | 93.93 55 | 78.70 78 | 81.64 207 | 80.18 264 | 55.43 298 | 83.67 204 | 91.15 156 | 71.29 208 | 91.41 175 | 67.95 216 | 93.06 190 | 81.96 307 |
|
tttt0517 | | | 81.07 181 | 79.58 201 | 85.52 121 | 88.99 169 | 66.45 188 | 87.03 101 | 75.51 288 | 73.76 155 | 88.32 128 | 90.20 183 | 37.96 341 | 94.16 89 | 79.36 107 | 95.13 142 | 95.93 40 |
|
IterMVS-SCA-FT | | | 80.64 189 | 79.41 202 | 84.34 142 | 83.93 256 | 69.66 161 | 76.28 282 | 81.09 259 | 72.43 176 | 86.47 160 | 90.19 184 | 60.46 253 | 93.15 130 | 77.45 127 | 86.39 282 | 90.22 206 |
|
wuyk23d | | | 75.13 245 | 79.30 203 | 62.63 319 | 75.56 326 | 75.18 114 | 80.89 219 | 73.10 305 | 75.06 142 | 94.76 11 | 95.32 33 | 87.73 38 | 52.85 346 | 34.16 344 | 97.11 78 | 59.85 342 |
|
DPM-MVS | | | 80.10 202 | 79.18 204 | 82.88 177 | 90.71 142 | 69.74 159 | 78.87 247 | 90.84 131 | 60.29 275 | 75.64 286 | 85.92 247 | 67.28 223 | 93.11 131 | 71.24 183 | 91.79 215 | 85.77 262 |
|
PM-MVS | | | 80.20 200 | 79.00 205 | 83.78 155 | 88.17 183 | 86.66 13 | 81.31 212 | 66.81 331 | 69.64 203 | 88.33 127 | 90.19 184 | 64.58 233 | 83.63 292 | 71.99 181 | 90.03 244 | 81.06 321 |
|
mvs_anonymous | | | 78.13 215 | 78.76 206 | 76.23 272 | 79.24 303 | 50.31 324 | 78.69 249 | 84.82 239 | 61.60 267 | 83.09 214 | 92.82 111 | 73.89 179 | 87.01 252 | 68.33 213 | 86.41 281 | 91.37 184 |
|
MAR-MVS | | | 80.24 199 | 78.74 207 | 84.73 133 | 86.87 213 | 78.18 82 | 85.75 121 | 87.81 195 | 65.67 242 | 77.84 267 | 78.50 320 | 73.79 180 | 90.53 202 | 61.59 258 | 90.87 234 | 85.49 265 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
FMVSNet3 | | | 78.80 209 | 78.55 208 | 79.57 229 | 82.89 267 | 56.89 280 | 81.76 204 | 85.77 222 | 69.04 209 | 86.00 166 | 90.44 179 | 51.75 294 | 90.09 218 | 65.95 226 | 93.34 181 | 91.72 175 |
|
test_yl | | | 78.71 211 | 78.51 209 | 79.32 232 | 84.32 246 | 58.84 264 | 78.38 252 | 85.33 227 | 75.99 127 | 82.49 218 | 86.57 236 | 58.01 270 | 90.02 220 | 62.74 246 | 92.73 198 | 89.10 223 |
|
DCV-MVSNet | | | 78.71 211 | 78.51 209 | 79.32 232 | 84.32 246 | 58.84 264 | 78.38 252 | 85.33 227 | 75.99 127 | 82.49 218 | 86.57 236 | 58.01 270 | 90.02 220 | 62.74 246 | 92.73 198 | 89.10 223 |
|
EPNet | | | 80.37 195 | 78.41 211 | 86.23 104 | 76.75 317 | 73.28 123 | 87.18 98 | 77.45 275 | 76.24 122 | 68.14 317 | 88.93 204 | 65.41 232 | 93.85 97 | 69.47 199 | 96.12 112 | 91.55 182 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
cl-mvsnet2 | | | 78.97 207 | 78.21 212 | 81.24 203 | 77.74 310 | 59.01 261 | 77.46 268 | 87.13 204 | 65.79 237 | 84.32 194 | 85.10 260 | 58.96 266 | 90.88 192 | 75.36 147 | 92.03 211 | 93.84 99 |
|
PAPR | | | 78.84 208 | 78.10 213 | 81.07 205 | 85.17 236 | 60.22 248 | 82.21 200 | 90.57 139 | 62.51 258 | 75.32 289 | 84.61 270 | 74.99 166 | 92.30 149 | 59.48 270 | 88.04 267 | 90.68 197 |
|
PVSNet_BlendedMVS | | | 78.80 209 | 77.84 214 | 81.65 198 | 84.43 242 | 63.41 210 | 79.49 237 | 90.44 141 | 61.70 266 | 75.43 287 | 87.07 233 | 69.11 216 | 91.44 172 | 60.68 264 | 92.24 207 | 90.11 210 |
|
Vis-MVSNet (Re-imp) | | | 77.82 219 | 77.79 215 | 77.92 253 | 88.82 171 | 51.29 317 | 83.28 171 | 71.97 312 | 74.04 151 | 82.23 223 | 89.78 191 | 57.38 276 | 89.41 227 | 57.22 280 | 95.41 131 | 93.05 128 |
|
RRT_test8_iter05 | | | 78.08 216 | 77.52 216 | 79.75 225 | 80.84 285 | 52.54 308 | 80.61 222 | 88.96 175 | 67.77 223 | 84.62 187 | 89.29 196 | 33.89 346 | 92.10 155 | 77.59 124 | 94.15 168 | 94.62 67 |
|
Patchmtry | | | 76.56 233 | 77.46 217 | 73.83 282 | 79.37 302 | 46.60 333 | 82.41 193 | 76.90 277 | 73.81 154 | 85.56 175 | 92.38 124 | 48.07 303 | 83.98 289 | 63.36 243 | 95.31 137 | 90.92 191 |
|
OpenMVS_ROB | | 70.19 17 | 77.77 221 | 77.46 217 | 78.71 239 | 84.39 245 | 61.15 237 | 81.18 216 | 82.52 248 | 62.45 260 | 83.34 209 | 87.37 226 | 66.20 228 | 88.66 238 | 64.69 236 | 85.02 293 | 86.32 255 |
|
thisisatest0530 | | | 79.07 206 | 77.33 219 | 84.26 144 | 87.13 204 | 64.58 199 | 83.66 161 | 75.95 283 | 68.86 211 | 85.22 178 | 87.36 227 | 38.10 339 | 93.57 113 | 75.47 145 | 94.28 166 | 94.62 67 |
|
MVS_0304 | | | 78.17 214 | 77.23 220 | 80.99 209 | 84.13 254 | 69.07 172 | 81.39 211 | 80.81 261 | 76.28 121 | 67.53 322 | 89.11 201 | 62.87 245 | 86.77 259 | 60.90 263 | 92.01 214 | 87.13 248 |
|
CANet_DTU | | | 77.81 220 | 77.05 221 | 80.09 221 | 81.37 277 | 59.90 251 | 83.26 172 | 88.29 186 | 69.16 207 | 67.83 320 | 83.72 277 | 60.93 250 | 89.47 224 | 69.22 203 | 89.70 247 | 90.88 192 |
|
pmmvs-eth3d | | | 78.42 213 | 77.04 222 | 82.57 184 | 87.44 198 | 74.41 117 | 80.86 220 | 79.67 267 | 55.68 296 | 84.69 186 | 90.31 182 | 60.91 251 | 85.42 275 | 62.20 250 | 91.59 219 | 87.88 240 |
|
miper_enhance_ethall | | | 77.83 218 | 76.93 223 | 80.51 214 | 76.15 323 | 58.01 270 | 75.47 290 | 88.82 176 | 58.05 284 | 83.59 206 | 80.69 305 | 64.41 234 | 91.20 179 | 73.16 172 | 92.03 211 | 92.33 152 |
|
MDA-MVSNet-bldmvs | | | 77.47 222 | 76.90 224 | 79.16 234 | 79.03 305 | 64.59 198 | 66.58 327 | 75.67 286 | 73.15 168 | 88.86 114 | 88.99 203 | 66.94 225 | 81.23 300 | 64.71 235 | 88.22 266 | 91.64 178 |
|
xiu_mvs_v2_base | | | 77.19 225 | 76.75 225 | 78.52 242 | 87.01 210 | 61.30 235 | 75.55 289 | 87.12 207 | 61.24 269 | 74.45 293 | 78.79 317 | 77.20 144 | 90.93 188 | 64.62 238 | 84.80 297 | 83.32 291 |
|
USDC | | | 76.63 231 | 76.73 226 | 76.34 270 | 83.46 260 | 57.20 277 | 80.02 228 | 88.04 191 | 52.14 316 | 83.65 205 | 91.25 152 | 63.24 242 | 86.65 261 | 54.66 296 | 94.11 169 | 85.17 267 |
|
PS-MVSNAJ | | | 77.04 227 | 76.53 227 | 78.56 241 | 87.09 209 | 61.40 233 | 75.26 291 | 87.13 204 | 61.25 268 | 74.38 295 | 77.22 327 | 76.94 150 | 90.94 187 | 64.63 237 | 84.83 296 | 83.35 290 |
|
TAMVS | | | 78.08 216 | 76.36 228 | 83.23 167 | 90.62 143 | 72.87 125 | 79.08 244 | 80.01 266 | 61.72 265 | 81.35 237 | 86.92 234 | 63.96 238 | 88.78 236 | 50.61 311 | 93.01 192 | 88.04 236 |
|
IterMVS | | | 76.91 228 | 76.34 229 | 78.64 240 | 80.91 282 | 64.03 205 | 76.30 281 | 79.03 268 | 64.88 250 | 83.11 212 | 89.16 199 | 59.90 259 | 84.46 284 | 68.61 211 | 85.15 292 | 87.42 244 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
XXY-MVS | | | 74.44 255 | 76.19 230 | 69.21 300 | 84.61 240 | 52.43 309 | 71.70 309 | 77.18 276 | 60.73 272 | 80.60 245 | 90.96 165 | 75.44 161 | 69.35 327 | 56.13 285 | 88.33 261 | 85.86 261 |
|
miper_lstm_enhance | | | 76.45 235 | 76.10 231 | 77.51 257 | 76.72 318 | 60.97 243 | 64.69 330 | 85.04 235 | 63.98 252 | 83.20 211 | 88.22 211 | 56.67 279 | 78.79 308 | 73.22 166 | 93.12 188 | 92.78 139 |
|
BH-w/o | | | 76.57 232 | 76.07 232 | 78.10 250 | 86.88 212 | 65.92 191 | 77.63 263 | 86.33 216 | 65.69 241 | 80.89 242 | 79.95 312 | 68.97 218 | 90.74 196 | 53.01 303 | 85.25 291 | 77.62 325 |
|
RPMNet | | | 76.06 238 | 75.79 233 | 76.85 264 | 79.58 297 | 62.64 221 | 82.58 188 | 71.75 315 | 74.80 143 | 75.72 284 | 92.59 118 | 48.69 301 | 84.07 287 | 73.48 164 | 82.91 307 | 83.85 282 |
|
TR-MVS | | | 76.77 230 | 75.79 233 | 79.72 226 | 86.10 229 | 65.79 192 | 77.14 269 | 83.02 245 | 65.20 248 | 81.40 236 | 82.10 295 | 66.30 227 | 90.73 197 | 55.57 289 | 85.27 290 | 82.65 297 |
|
jason | | | 77.42 223 | 75.75 235 | 82.43 187 | 87.10 208 | 69.27 165 | 77.99 257 | 81.94 254 | 51.47 320 | 77.84 267 | 85.07 263 | 60.32 255 | 89.00 230 | 70.74 189 | 89.27 252 | 89.03 226 |
jason: jason. |
MVSTER | | | 77.09 226 | 75.70 236 | 81.25 201 | 75.27 330 | 61.08 238 | 77.49 267 | 85.07 233 | 60.78 271 | 86.55 154 | 88.68 207 | 43.14 331 | 90.25 207 | 73.69 162 | 90.67 239 | 92.42 148 |
|
D2MVS | | | 76.84 229 | 75.67 237 | 80.34 217 | 80.48 292 | 62.16 230 | 73.50 302 | 84.80 240 | 57.61 288 | 82.24 222 | 87.54 223 | 51.31 295 | 87.65 247 | 70.40 194 | 93.19 187 | 91.23 186 |
|
PVSNet_Blended | | | 76.49 234 | 75.40 238 | 79.76 224 | 84.43 242 | 63.41 210 | 75.14 292 | 90.44 141 | 57.36 290 | 75.43 287 | 78.30 321 | 69.11 216 | 91.44 172 | 60.68 264 | 87.70 272 | 84.42 275 |
|
CDS-MVSNet | | | 77.32 224 | 75.40 238 | 83.06 170 | 89.00 168 | 72.48 135 | 77.90 259 | 82.17 252 | 60.81 270 | 78.94 262 | 83.49 280 | 59.30 263 | 88.76 237 | 54.64 297 | 92.37 204 | 87.93 239 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
thres600view7 | | | 75.97 239 | 75.35 240 | 77.85 255 | 87.01 210 | 51.84 314 | 80.45 224 | 73.26 303 | 75.20 140 | 83.10 213 | 86.31 242 | 45.54 316 | 89.05 229 | 55.03 294 | 92.24 207 | 92.66 143 |
|
thres100view900 | | | 75.45 242 | 75.05 241 | 76.66 267 | 87.27 200 | 51.88 313 | 81.07 217 | 73.26 303 | 75.68 133 | 83.25 210 | 86.37 239 | 45.54 316 | 88.80 233 | 51.98 307 | 90.99 228 | 89.31 218 |
|
cascas | | | 76.29 237 | 74.81 242 | 80.72 213 | 84.47 241 | 62.94 216 | 73.89 300 | 87.34 198 | 55.94 295 | 75.16 291 | 76.53 330 | 63.97 237 | 91.16 181 | 65.00 233 | 90.97 231 | 88.06 235 |
|
GA-MVS | | | 75.83 240 | 74.61 243 | 79.48 231 | 81.87 271 | 59.25 257 | 73.42 303 | 82.88 246 | 68.68 212 | 79.75 254 | 81.80 298 | 50.62 297 | 89.46 225 | 66.85 220 | 85.64 287 | 89.72 212 |
|
testgi | | | 72.36 268 | 74.61 243 | 65.59 313 | 80.56 290 | 42.82 342 | 68.29 320 | 73.35 302 | 66.87 229 | 81.84 229 | 89.93 189 | 72.08 202 | 66.92 335 | 46.05 329 | 92.54 202 | 87.01 250 |
|
test20.03 | | | 73.75 258 | 74.59 245 | 71.22 295 | 81.11 280 | 51.12 319 | 70.15 315 | 72.10 311 | 70.42 195 | 80.28 252 | 91.50 149 | 64.21 236 | 74.72 319 | 46.96 327 | 94.58 160 | 87.82 242 |
|
lupinMVS | | | 76.37 236 | 74.46 246 | 82.09 188 | 85.54 233 | 69.26 166 | 76.79 273 | 80.77 262 | 50.68 326 | 76.23 278 | 82.82 289 | 58.69 267 | 88.94 231 | 69.85 196 | 88.77 257 | 88.07 234 |
|
EU-MVSNet | | | 75.12 246 | 74.43 247 | 77.18 259 | 83.11 265 | 59.48 255 | 85.71 123 | 82.43 250 | 39.76 344 | 85.64 173 | 88.76 205 | 44.71 327 | 87.88 245 | 73.86 160 | 85.88 286 | 84.16 278 |
|
tfpn200view9 | | | 74.86 250 | 74.23 248 | 76.74 266 | 86.24 224 | 52.12 310 | 79.24 241 | 73.87 297 | 73.34 161 | 81.82 230 | 84.60 271 | 46.02 310 | 88.80 233 | 51.98 307 | 90.99 228 | 89.31 218 |
|
thres400 | | | 75.14 244 | 74.23 248 | 77.86 254 | 86.24 224 | 52.12 310 | 79.24 241 | 73.87 297 | 73.34 161 | 81.82 230 | 84.60 271 | 46.02 310 | 88.80 233 | 51.98 307 | 90.99 228 | 92.66 143 |
|
ppachtmachnet_test | | | 74.73 252 | 74.00 250 | 76.90 262 | 80.71 288 | 56.89 280 | 71.53 310 | 78.42 270 | 58.24 282 | 79.32 259 | 82.92 288 | 57.91 273 | 84.26 286 | 65.60 231 | 91.36 222 | 89.56 213 |
|
1112_ss | | | 74.82 251 | 73.74 251 | 78.04 251 | 89.57 159 | 60.04 249 | 76.49 279 | 87.09 208 | 54.31 302 | 73.66 298 | 79.80 313 | 60.25 256 | 86.76 260 | 58.37 273 | 84.15 300 | 87.32 246 |
|
Patchmatch-RL test | | | 74.48 253 | 73.68 252 | 76.89 263 | 84.83 239 | 66.54 187 | 72.29 307 | 69.16 324 | 57.70 286 | 86.76 150 | 86.33 240 | 45.79 315 | 82.59 295 | 69.63 198 | 90.65 241 | 81.54 312 |
|
CMPMVS | | 59.41 20 | 75.12 246 | 73.57 253 | 79.77 223 | 75.84 325 | 67.22 180 | 81.21 215 | 82.18 251 | 50.78 324 | 76.50 274 | 87.66 221 | 55.20 288 | 82.99 294 | 62.17 252 | 90.64 242 | 89.09 225 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
baseline1 | | | 73.26 260 | 73.54 254 | 72.43 291 | 84.92 238 | 47.79 331 | 79.89 230 | 74.00 296 | 65.93 235 | 78.81 263 | 86.28 243 | 56.36 281 | 81.63 299 | 56.63 282 | 79.04 324 | 87.87 241 |
|
MVP-Stereo | | | 75.81 241 | 73.51 255 | 82.71 179 | 89.35 161 | 73.62 120 | 80.06 226 | 85.20 230 | 60.30 274 | 73.96 296 | 87.94 216 | 57.89 274 | 89.45 226 | 52.02 306 | 74.87 333 | 85.06 269 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
new-patchmatchnet | | | 70.10 283 | 73.37 256 | 60.29 326 | 81.23 279 | 16.95 352 | 59.54 336 | 74.62 291 | 62.93 255 | 80.97 240 | 87.93 217 | 62.83 246 | 71.90 322 | 55.24 292 | 95.01 148 | 92.00 166 |
|
PatchMatch-RL | | | 74.48 253 | 73.22 257 | 78.27 248 | 87.70 192 | 85.26 30 | 75.92 285 | 70.09 321 | 64.34 251 | 76.09 280 | 81.25 303 | 65.87 231 | 78.07 309 | 53.86 299 | 83.82 301 | 71.48 333 |
|
Test_1112_low_res | | | 73.90 257 | 73.08 258 | 76.35 269 | 90.35 148 | 55.95 283 | 73.40 304 | 86.17 218 | 50.70 325 | 73.14 299 | 85.94 246 | 58.31 269 | 85.90 271 | 56.51 283 | 83.22 304 | 87.20 247 |
|
CR-MVSNet | | | 74.00 256 | 73.04 259 | 76.85 264 | 79.58 297 | 62.64 221 | 82.58 188 | 76.90 277 | 50.50 327 | 75.72 284 | 92.38 124 | 48.07 303 | 84.07 287 | 68.72 210 | 82.91 307 | 83.85 282 |
|
pmmvs4 | | | 74.92 249 | 72.98 260 | 80.73 212 | 84.95 237 | 71.71 148 | 76.23 283 | 77.59 274 | 52.83 310 | 77.73 270 | 86.38 238 | 56.35 282 | 84.97 279 | 57.72 279 | 87.05 276 | 85.51 264 |
|
ET-MVSNet_ETH3D | | | 75.28 243 | 72.77 261 | 82.81 178 | 83.03 266 | 68.11 176 | 77.09 270 | 76.51 281 | 60.67 273 | 77.60 271 | 80.52 307 | 38.04 340 | 91.15 182 | 70.78 187 | 90.68 238 | 89.17 221 |
|
PatchT | | | 70.52 280 | 72.76 262 | 63.79 318 | 79.38 301 | 33.53 348 | 77.63 263 | 65.37 333 | 73.61 156 | 71.77 305 | 92.79 114 | 44.38 328 | 75.65 316 | 64.53 239 | 85.37 289 | 82.18 305 |
|
HyFIR lowres test | | | 75.12 246 | 72.66 263 | 82.50 185 | 91.44 124 | 65.19 195 | 72.47 306 | 87.31 199 | 46.79 332 | 80.29 251 | 84.30 273 | 52.70 293 | 92.10 155 | 51.88 310 | 86.73 278 | 90.22 206 |
|
MVS | | | 73.21 262 | 72.59 264 | 75.06 277 | 80.97 281 | 60.81 244 | 81.64 207 | 85.92 221 | 46.03 335 | 71.68 306 | 77.54 323 | 68.47 219 | 89.77 222 | 55.70 288 | 85.39 288 | 74.60 330 |
|
SCA | | | 73.32 259 | 72.57 265 | 75.58 275 | 81.62 273 | 55.86 285 | 78.89 246 | 71.37 318 | 61.73 264 | 74.93 292 | 83.42 282 | 60.46 253 | 87.01 252 | 58.11 277 | 82.63 311 | 83.88 279 |
|
1314 | | | 73.22 261 | 72.56 266 | 75.20 276 | 80.41 293 | 57.84 271 | 81.64 207 | 85.36 226 | 51.68 319 | 73.10 300 | 76.65 329 | 61.45 249 | 85.19 277 | 63.54 241 | 79.21 323 | 82.59 298 |
|
HY-MVS | | 64.64 18 | 73.03 263 | 72.47 267 | 74.71 278 | 83.36 261 | 54.19 295 | 82.14 203 | 81.96 253 | 56.76 294 | 69.57 314 | 86.21 244 | 60.03 257 | 84.83 282 | 49.58 316 | 82.65 309 | 85.11 268 |
|
UnsupCasMVSNet_eth | | | 71.63 275 | 72.30 268 | 69.62 298 | 76.47 320 | 52.70 306 | 70.03 316 | 80.97 260 | 59.18 278 | 79.36 258 | 88.21 212 | 60.50 252 | 69.12 328 | 58.33 275 | 77.62 328 | 87.04 249 |
|
FPMVS | | | 72.29 270 | 72.00 269 | 73.14 285 | 88.63 173 | 85.00 32 | 74.65 296 | 67.39 325 | 71.94 185 | 77.80 269 | 87.66 221 | 50.48 298 | 75.83 315 | 49.95 313 | 79.51 319 | 58.58 344 |
|
Anonymous20231206 | | | 71.38 276 | 71.88 270 | 69.88 296 | 86.31 221 | 54.37 294 | 70.39 314 | 74.62 291 | 52.57 312 | 76.73 273 | 88.76 205 | 59.94 258 | 72.06 321 | 44.35 332 | 93.23 186 | 83.23 293 |
|
FMVSNet5 | | | 72.10 271 | 71.69 271 | 73.32 283 | 81.57 274 | 53.02 304 | 76.77 274 | 78.37 271 | 63.31 253 | 76.37 275 | 91.85 138 | 36.68 343 | 78.98 306 | 47.87 323 | 92.45 203 | 87.95 238 |
|
our_test_3 | | | 71.85 272 | 71.59 272 | 72.62 289 | 80.71 288 | 53.78 298 | 69.72 317 | 71.71 317 | 58.80 279 | 78.03 266 | 80.51 308 | 56.61 280 | 78.84 307 | 62.20 250 | 86.04 285 | 85.23 266 |
|
MIMVSNet | | | 71.09 277 | 71.59 272 | 69.57 299 | 87.23 201 | 50.07 325 | 78.91 245 | 71.83 313 | 60.20 276 | 71.26 307 | 91.76 143 | 55.08 289 | 76.09 313 | 41.06 337 | 87.02 277 | 82.54 300 |
|
thres200 | | | 72.34 269 | 71.55 274 | 74.70 279 | 83.48 259 | 51.60 315 | 75.02 293 | 73.71 300 | 70.14 200 | 78.56 265 | 80.57 306 | 46.20 308 | 88.20 243 | 46.99 326 | 89.29 250 | 84.32 276 |
|
CVMVSNet | | | 72.62 266 | 71.41 275 | 76.28 271 | 83.25 262 | 60.34 247 | 83.50 166 | 79.02 269 | 37.77 345 | 76.33 276 | 85.10 260 | 49.60 300 | 87.41 249 | 70.54 192 | 77.54 329 | 81.08 319 |
|
EPNet_dtu | | | 72.87 265 | 71.33 276 | 77.49 258 | 77.72 311 | 60.55 246 | 82.35 194 | 75.79 284 | 66.49 232 | 58.39 345 | 81.06 304 | 53.68 291 | 85.98 269 | 53.55 300 | 92.97 194 | 85.95 259 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CHOSEN 1792x2688 | | | 72.45 267 | 70.56 277 | 78.13 249 | 90.02 157 | 63.08 215 | 68.72 319 | 83.16 244 | 42.99 341 | 75.92 282 | 85.46 253 | 57.22 278 | 85.18 278 | 49.87 315 | 81.67 312 | 86.14 257 |
|
thisisatest0515 | | | 73.00 264 | 70.52 278 | 80.46 215 | 81.45 275 | 59.90 251 | 73.16 305 | 74.31 295 | 57.86 285 | 76.08 281 | 77.78 322 | 37.60 342 | 92.12 154 | 65.00 233 | 91.45 221 | 89.35 217 |
|
YYNet1 | | | 70.06 284 | 70.44 279 | 68.90 301 | 73.76 336 | 53.42 302 | 58.99 339 | 67.20 327 | 58.42 281 | 87.10 143 | 85.39 256 | 59.82 260 | 67.32 332 | 59.79 268 | 83.50 303 | 85.96 258 |
|
MDA-MVSNet_test_wron | | | 70.05 285 | 70.44 279 | 68.88 302 | 73.84 335 | 53.47 300 | 58.93 340 | 67.28 326 | 58.43 280 | 87.09 144 | 85.40 255 | 59.80 261 | 67.25 333 | 59.66 269 | 83.54 302 | 85.92 260 |
|
MS-PatchMatch | | | 70.93 278 | 70.22 281 | 73.06 286 | 81.85 272 | 62.50 224 | 73.82 301 | 77.90 272 | 52.44 313 | 75.92 282 | 81.27 302 | 55.67 285 | 81.75 297 | 55.37 291 | 77.70 327 | 74.94 329 |
|
pmmvs5 | | | 70.73 279 | 70.07 282 | 72.72 287 | 77.03 316 | 52.73 305 | 74.14 297 | 75.65 287 | 50.36 328 | 72.17 304 | 85.37 257 | 55.42 287 | 80.67 302 | 52.86 304 | 87.59 273 | 84.77 271 |
|
PAPM | | | 71.77 273 | 70.06 283 | 76.92 261 | 86.39 216 | 53.97 296 | 76.62 277 | 86.62 214 | 53.44 307 | 63.97 335 | 84.73 269 | 57.79 275 | 92.34 147 | 39.65 339 | 81.33 315 | 84.45 274 |
|
UnsupCasMVSNet_bld | | | 69.21 290 | 69.68 284 | 67.82 307 | 79.42 300 | 51.15 318 | 67.82 324 | 75.79 284 | 54.15 303 | 77.47 272 | 85.36 258 | 59.26 264 | 70.64 324 | 48.46 320 | 79.35 321 | 81.66 310 |
|
tpmvs | | | 70.16 282 | 69.56 285 | 71.96 293 | 74.71 334 | 48.13 328 | 79.63 232 | 75.45 289 | 65.02 249 | 70.26 311 | 81.88 297 | 45.34 321 | 85.68 273 | 58.34 274 | 75.39 332 | 82.08 306 |
|
gg-mvs-nofinetune | | | 68.96 291 | 69.11 286 | 68.52 306 | 76.12 324 | 45.32 335 | 83.59 162 | 55.88 346 | 86.68 22 | 64.62 334 | 97.01 7 | 30.36 351 | 83.97 290 | 44.78 331 | 82.94 306 | 76.26 327 |
|
IB-MVS | | 62.13 19 | 71.64 274 | 68.97 287 | 79.66 228 | 80.80 287 | 62.26 229 | 73.94 299 | 76.90 277 | 63.27 254 | 68.63 316 | 76.79 328 | 33.83 347 | 91.84 164 | 59.28 271 | 87.26 274 | 84.88 270 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PatchmatchNet | | | 69.71 288 | 68.83 288 | 72.33 292 | 77.66 312 | 53.60 299 | 79.29 239 | 69.99 322 | 57.66 287 | 72.53 302 | 82.93 287 | 46.45 307 | 80.08 305 | 60.91 262 | 72.09 336 | 83.31 292 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
N_pmnet | | | 70.20 281 | 68.80 289 | 74.38 280 | 80.91 282 | 84.81 35 | 59.12 338 | 76.45 282 | 55.06 299 | 75.31 290 | 82.36 294 | 55.74 284 | 54.82 345 | 47.02 325 | 87.24 275 | 83.52 286 |
|
CostFormer | | | 69.98 286 | 68.68 290 | 73.87 281 | 77.14 314 | 50.72 322 | 79.26 240 | 74.51 293 | 51.94 318 | 70.97 310 | 84.75 268 | 45.16 324 | 87.49 248 | 55.16 293 | 79.23 322 | 83.40 289 |
|
WTY-MVS | | | 67.91 294 | 68.35 291 | 66.58 311 | 80.82 286 | 48.12 329 | 65.96 328 | 72.60 307 | 53.67 306 | 71.20 308 | 81.68 300 | 58.97 265 | 69.06 329 | 48.57 319 | 81.67 312 | 82.55 299 |
|
MDTV_nov1_ep13 | | | | 68.29 292 | | 78.03 309 | 43.87 339 | 74.12 298 | 72.22 310 | 52.17 314 | 67.02 323 | 85.54 249 | 45.36 320 | 80.85 301 | 55.73 286 | 84.42 299 | |
|
tpm | | | 67.95 293 | 68.08 293 | 67.55 308 | 78.74 308 | 43.53 340 | 75.60 287 | 67.10 330 | 54.92 300 | 72.23 303 | 88.10 213 | 42.87 332 | 75.97 314 | 52.21 305 | 80.95 318 | 83.15 294 |
|
Patchmatch-test | | | 65.91 301 | 67.38 294 | 61.48 324 | 75.51 327 | 43.21 341 | 68.84 318 | 63.79 335 | 62.48 259 | 72.80 301 | 83.42 282 | 44.89 326 | 59.52 344 | 48.27 322 | 86.45 280 | 81.70 309 |
|
sss | | | 66.92 296 | 67.26 295 | 65.90 312 | 77.23 313 | 51.10 320 | 64.79 329 | 71.72 316 | 52.12 317 | 70.13 312 | 80.18 310 | 57.96 272 | 65.36 340 | 50.21 312 | 81.01 317 | 81.25 316 |
|
baseline2 | | | 69.77 287 | 66.89 296 | 78.41 245 | 79.51 299 | 58.09 269 | 76.23 283 | 69.57 323 | 57.50 289 | 64.82 333 | 77.45 325 | 46.02 310 | 88.44 239 | 53.08 302 | 77.83 326 | 88.70 230 |
|
tpm2 | | | 68.45 292 | 66.83 297 | 73.30 284 | 78.93 307 | 48.50 327 | 79.76 231 | 71.76 314 | 47.50 331 | 69.92 313 | 83.60 278 | 42.07 333 | 88.40 240 | 48.44 321 | 79.51 319 | 83.01 296 |
|
test-LLR | | | 67.21 295 | 66.74 298 | 68.63 304 | 76.45 321 | 55.21 290 | 67.89 321 | 67.14 328 | 62.43 261 | 65.08 330 | 72.39 335 | 43.41 329 | 69.37 325 | 61.00 260 | 84.89 294 | 81.31 314 |
|
tpmrst | | | 66.28 300 | 66.69 299 | 65.05 316 | 72.82 342 | 39.33 343 | 78.20 255 | 70.69 320 | 53.16 309 | 67.88 319 | 80.36 309 | 48.18 302 | 74.75 318 | 58.13 276 | 70.79 338 | 81.08 319 |
|
JIA-IIPM | | | 69.41 289 | 66.64 300 | 77.70 256 | 73.19 338 | 71.24 151 | 75.67 286 | 65.56 332 | 70.42 195 | 65.18 329 | 92.97 106 | 33.64 348 | 83.06 293 | 53.52 301 | 69.61 342 | 78.79 324 |
|
PVSNet | | 58.17 21 | 66.41 299 | 65.63 301 | 68.75 303 | 81.96 270 | 49.88 326 | 62.19 334 | 72.51 309 | 51.03 322 | 68.04 318 | 75.34 333 | 50.84 296 | 74.77 317 | 45.82 330 | 82.96 305 | 81.60 311 |
|
tpm cat1 | | | 66.76 297 | 65.21 302 | 71.42 294 | 77.09 315 | 50.62 323 | 78.01 256 | 73.68 301 | 44.89 337 | 68.64 315 | 79.00 316 | 45.51 318 | 82.42 296 | 49.91 314 | 70.15 339 | 81.23 318 |
|
DWT-MVSNet_test | | | 66.43 298 | 64.37 303 | 72.63 288 | 74.86 333 | 50.86 321 | 76.52 278 | 72.74 306 | 54.06 304 | 65.50 327 | 68.30 341 | 32.13 349 | 84.84 281 | 61.63 257 | 73.59 334 | 82.19 304 |
|
test0.0.03 1 | | | 64.66 304 | 64.36 304 | 65.57 314 | 75.03 332 | 46.89 332 | 64.69 330 | 61.58 340 | 62.43 261 | 71.18 309 | 77.54 323 | 43.41 329 | 68.47 330 | 40.75 338 | 82.65 309 | 81.35 313 |
|
test-mter | | | 65.00 303 | 63.79 305 | 68.63 304 | 76.45 321 | 55.21 290 | 67.89 321 | 67.14 328 | 50.98 323 | 65.08 330 | 72.39 335 | 28.27 353 | 69.37 325 | 61.00 260 | 84.89 294 | 81.31 314 |
|
ADS-MVSNet2 | | | 65.87 302 | 63.64 306 | 72.55 290 | 73.16 339 | 56.92 279 | 67.10 325 | 74.81 290 | 49.74 329 | 66.04 325 | 82.97 285 | 46.71 305 | 77.26 310 | 42.29 334 | 69.96 340 | 83.46 287 |
|
MVS-HIRNet | | | 61.16 311 | 62.92 307 | 55.87 329 | 79.09 304 | 35.34 347 | 71.83 308 | 57.98 345 | 46.56 333 | 59.05 342 | 91.14 157 | 49.95 299 | 76.43 312 | 38.74 340 | 71.92 337 | 55.84 345 |
|
EPMVS | | | 62.47 305 | 62.63 308 | 62.01 320 | 70.63 346 | 38.74 344 | 74.76 294 | 52.86 348 | 53.91 305 | 67.71 321 | 80.01 311 | 39.40 337 | 66.60 336 | 55.54 290 | 68.81 343 | 80.68 323 |
|
ADS-MVSNet | | | 61.90 307 | 62.19 309 | 61.03 325 | 73.16 339 | 36.42 346 | 67.10 325 | 61.75 338 | 49.74 329 | 66.04 325 | 82.97 285 | 46.71 305 | 63.21 342 | 42.29 334 | 69.96 340 | 83.46 287 |
|
E-PMN | | | 61.59 309 | 61.62 310 | 61.49 323 | 66.81 347 | 55.40 288 | 53.77 342 | 60.34 341 | 66.80 230 | 58.90 343 | 65.50 342 | 40.48 336 | 66.12 338 | 55.72 287 | 86.25 283 | 62.95 340 |
|
DSMNet-mixed | | | 60.98 313 | 61.61 311 | 59.09 328 | 72.88 341 | 45.05 337 | 74.70 295 | 46.61 351 | 26.20 347 | 65.34 328 | 90.32 181 | 55.46 286 | 63.12 343 | 41.72 336 | 81.30 316 | 69.09 337 |
|
EMVS | | | 61.10 312 | 60.81 312 | 61.99 321 | 65.96 348 | 55.86 285 | 53.10 343 | 58.97 343 | 67.06 227 | 56.89 346 | 63.33 343 | 40.98 334 | 67.03 334 | 54.79 295 | 86.18 284 | 63.08 339 |
|
PMMVS | | | 61.65 308 | 60.38 313 | 65.47 315 | 65.40 349 | 69.26 166 | 63.97 332 | 61.73 339 | 36.80 346 | 60.11 340 | 68.43 339 | 59.42 262 | 66.35 337 | 48.97 318 | 78.57 325 | 60.81 341 |
|
TESTMET0.1,1 | | | 61.29 310 | 60.32 314 | 64.19 317 | 72.06 343 | 51.30 316 | 67.89 321 | 62.09 336 | 45.27 336 | 60.65 339 | 69.01 338 | 27.93 354 | 64.74 341 | 56.31 284 | 81.65 314 | 76.53 326 |
|
dp | | | 60.70 314 | 60.29 315 | 61.92 322 | 72.04 344 | 38.67 345 | 70.83 311 | 64.08 334 | 51.28 321 | 60.75 338 | 77.28 326 | 36.59 344 | 71.58 323 | 47.41 324 | 62.34 345 | 75.52 328 |
|
pmmvs3 | | | 62.47 305 | 60.02 316 | 69.80 297 | 71.58 345 | 64.00 206 | 70.52 313 | 58.44 344 | 39.77 343 | 66.05 324 | 75.84 331 | 27.10 355 | 72.28 320 | 46.15 328 | 84.77 298 | 73.11 331 |
|
PMMVS2 | | | 55.64 318 | 59.27 317 | 44.74 332 | 64.30 350 | 12.32 353 | 40.60 345 | 49.79 350 | 53.19 308 | 65.06 332 | 84.81 267 | 53.60 292 | 49.76 347 | 32.68 346 | 89.41 249 | 72.15 332 |
|
new_pmnet | | | 55.69 317 | 57.66 318 | 49.76 331 | 75.47 328 | 30.59 349 | 59.56 335 | 51.45 349 | 43.62 340 | 62.49 336 | 75.48 332 | 40.96 335 | 49.15 348 | 37.39 342 | 72.52 335 | 69.55 336 |
|
CHOSEN 280x420 | | | 59.08 315 | 56.52 319 | 66.76 310 | 76.51 319 | 64.39 202 | 49.62 344 | 59.00 342 | 43.86 339 | 55.66 347 | 68.41 340 | 35.55 345 | 68.21 331 | 43.25 333 | 76.78 331 | 67.69 338 |
|
PVSNet_0 | | 51.08 22 | 56.10 316 | 54.97 320 | 59.48 327 | 75.12 331 | 53.28 303 | 55.16 341 | 61.89 337 | 44.30 338 | 59.16 341 | 62.48 344 | 54.22 290 | 65.91 339 | 35.40 343 | 47.01 346 | 59.25 343 |
|
MVE | | 40.22 23 | 51.82 319 | 50.47 321 | 55.87 329 | 62.66 351 | 51.91 312 | 31.61 347 | 39.28 352 | 40.65 342 | 50.76 348 | 74.98 334 | 56.24 283 | 44.67 349 | 33.94 345 | 64.11 344 | 71.04 335 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
cdsmvs_eth3d_5k | | | 20.81 320 | 27.75 322 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 85.44 225 | 0.00 352 | 0.00 353 | 82.82 289 | 81.46 106 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
tmp_tt | | | 20.25 321 | 24.50 323 | 7.49 334 | 4.47 353 | 8.70 354 | 34.17 346 | 25.16 354 | 1.00 349 | 32.43 350 | 18.49 347 | 39.37 338 | 9.21 351 | 21.64 347 | 43.75 347 | 4.57 347 |
|
ab-mvs-re | | | 6.65 322 | 8.87 324 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 79.80 313 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
pcd_1.5k_mvsjas | | | 6.41 323 | 8.55 325 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 76.94 150 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
test123 | | | 6.27 324 | 8.08 326 | 0.84 335 | 1.11 355 | 0.57 355 | 62.90 333 | 0.82 356 | 0.54 350 | 1.07 352 | 2.75 352 | 1.26 356 | 0.30 352 | 1.04 349 | 1.26 350 | 1.66 348 |
|
testmvs | | | 5.91 325 | 7.65 327 | 0.72 336 | 1.20 354 | 0.37 356 | 59.14 337 | 0.67 357 | 0.49 351 | 1.11 351 | 2.76 351 | 0.94 357 | 0.24 353 | 1.02 350 | 1.47 349 | 1.55 349 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
IU-MVS | | | | | | 94.18 47 | 72.64 129 | | 90.82 132 | 56.98 292 | 89.67 99 | | | | 85.78 41 | 97.92 45 | 93.28 120 |
|
OPU-MVS | | | | | 88.27 76 | 91.89 109 | 77.83 85 | 90.47 43 | | | | 91.22 153 | 81.12 110 | 94.68 67 | 74.48 152 | 95.35 133 | 92.29 155 |
|
test_241102_TWO | | | | | | | | | 93.71 45 | 83.77 38 | 93.49 33 | 94.27 67 | 89.27 21 | 95.84 18 | 86.03 38 | 97.82 50 | 92.04 164 |
|
test_241102_ONE | | | | | | 94.18 47 | 72.65 127 | | 93.69 46 | 83.62 40 | 94.11 22 | 93.78 94 | 90.28 14 | 95.50 40 | | | |
|
save fliter | | | | | | 93.75 58 | 77.44 91 | 86.31 115 | 89.72 163 | 70.80 191 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 85.33 27 | 93.75 28 | 94.65 52 | 87.44 41 | 95.78 23 | 87.41 19 | 98.21 29 | 92.98 131 |
|
test_0728_SECOND | | | | | 86.79 92 | 94.25 46 | 72.45 136 | 90.54 40 | 94.10 30 | | | | | 95.88 13 | 86.42 28 | 97.97 42 | 92.02 165 |
|
test0726 | | | | | | 94.16 50 | 72.56 132 | 90.63 39 | 93.90 38 | 83.61 41 | 93.75 28 | 94.49 58 | 89.76 18 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 279 |
|
test_part2 | | | | | | 93.86 57 | 77.77 86 | | | | 92.84 41 | | | | | | |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 93.93 35 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 309 | | | | 83.88 279 |
|
sam_mvs | | | | | | | | | | | | | 45.92 314 | | | | |
|
ambc | | | | | 82.98 172 | 90.55 146 | 64.86 197 | 88.20 84 | 89.15 173 | | 89.40 108 | 93.96 84 | 71.67 207 | 91.38 177 | 78.83 110 | 96.55 94 | 92.71 141 |
|
MTGPA | | | | | | | | | 91.81 109 | | | | | | | | |
|
test_post1 | | | | | | | | 78.85 248 | | | | 3.13 349 | 45.19 323 | 80.13 304 | 58.11 277 | | |
|
test_post | | | | | | | | | | | | 3.10 350 | 45.43 319 | 77.22 311 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 299 | 45.93 313 | 87.01 252 | | | |
|
GG-mvs-BLEND | | | | | 67.16 309 | 73.36 337 | 46.54 334 | 84.15 146 | 55.04 347 | | 58.64 344 | 61.95 345 | 29.93 352 | 83.87 291 | 38.71 341 | 76.92 330 | 71.07 334 |
|
MTMP | | | | | | | | 90.66 37 | 33.14 353 | | | | | | | | |
|
gm-plane-assit | | | | | | 75.42 329 | 44.97 338 | | | 52.17 314 | | 72.36 337 | | 87.90 244 | 54.10 298 | | |
|
test9_res | | | | | | | | | | | | | | | 80.83 90 | 96.45 99 | 90.57 199 |
|
TEST9 | | | | | | 92.34 93 | 79.70 68 | 83.94 150 | 90.32 145 | 65.41 247 | 84.49 190 | 90.97 163 | 82.03 97 | 93.63 106 | | | |
|
test_8 | | | | | | 92.09 101 | 78.87 76 | 83.82 155 | 90.31 147 | 65.79 237 | 84.36 193 | 90.96 165 | 81.93 99 | 93.44 118 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 101 | 96.16 109 | 90.22 206 |
|
agg_prior | | | | | | 91.58 118 | 77.69 87 | | 90.30 149 | | 84.32 194 | | | 93.18 126 | | | |
|
TestCases | | | | | 89.68 52 | 91.59 115 | 83.40 45 | | 95.44 6 | 79.47 87 | 88.00 131 | 93.03 103 | 82.66 84 | 91.47 170 | 70.81 185 | 96.14 110 | 94.16 88 |
|
test_prior4 | | | | | | | 78.97 75 | 84.59 137 | | | | | | | | | |
|
test_prior2 | | | | | | | | 83.37 169 | | 75.43 136 | 84.58 188 | 91.57 146 | 81.92 101 | | 79.54 103 | 96.97 81 | |
|
test_prior | | | | | 86.32 100 | 90.59 144 | 71.99 142 | | 92.85 82 | | | | | 94.17 86 | | | 92.80 137 |
|
旧先验2 | | | | | | | | 81.73 205 | | 56.88 293 | 86.54 159 | | | 84.90 280 | 72.81 174 | | |
|
新几何2 | | | | | | | | 81.72 206 | | | | | | | | | |
|
新几何1 | | | | | 82.95 173 | 93.96 54 | 78.56 80 | | 80.24 263 | 55.45 297 | 83.93 202 | 91.08 158 | 71.19 209 | 88.33 241 | 65.84 229 | 93.07 189 | 81.95 308 |
|
旧先验1 | | | | | | 91.97 104 | 71.77 144 | | 81.78 255 | | | 91.84 139 | 73.92 178 | | | 93.65 179 | 83.61 285 |
|
无先验 | | | | | | | | 82.81 185 | 85.62 224 | 58.09 283 | | | | 91.41 175 | 67.95 216 | | 84.48 273 |
|
原ACMM2 | | | | | | | | 82.26 199 | | | | | | | | | |
|
原ACMM1 | | | | | 84.60 136 | 92.81 84 | 74.01 119 | | 91.50 115 | 62.59 257 | 82.73 217 | 90.67 175 | 76.53 157 | 94.25 79 | 69.24 201 | 95.69 126 | 85.55 263 |
|
test222 | | | | | | 93.31 69 | 76.54 104 | 79.38 238 | 77.79 273 | 52.59 311 | 82.36 221 | 90.84 169 | 66.83 226 | | | 91.69 217 | 81.25 316 |
|
testdata2 | | | | | | | | | | | | | | 86.43 264 | 63.52 242 | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 98 | | | | |
|
testdata | | | | | 79.54 230 | 92.87 79 | 72.34 137 | | 80.14 265 | 59.91 277 | 85.47 177 | 91.75 144 | 67.96 222 | 85.24 276 | 68.57 212 | 92.18 210 | 81.06 321 |
|
testdata1 | | | | | | | | 79.62 233 | | 73.95 153 | | | | | | | |
|
test12 | | | | | 86.57 95 | 90.74 140 | 72.63 130 | | 90.69 135 | | 82.76 216 | | 79.20 126 | 94.80 64 | | 95.32 135 | 92.27 157 |
|
plane_prior7 | | | | | | 93.45 64 | 77.31 95 | | | | | | | | | | |
|
plane_prior6 | | | | | | 92.61 85 | 76.54 104 | | | | | | 74.84 168 | | | | |
|
plane_prior5 | | | | | | | | | 93.61 49 | | | | | 95.22 50 | 80.78 91 | 95.83 119 | 94.46 76 |
|
plane_prior4 | | | | | | | | | | | | 92.95 107 | | | | | |
|
plane_prior3 | | | | | | | 76.85 102 | | | 77.79 108 | 86.55 154 | | | | | | |
|
plane_prior2 | | | | | | | | 89.45 66 | | 79.44 89 | | | | | | | |
|
plane_prior1 | | | | | | 92.83 83 | | | | | | | | | | | |
|
plane_prior | | | | | | | 76.42 107 | 87.15 99 | | 75.94 130 | | | | | | 95.03 147 | |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 294 | | | | | | | | |
|
lessismore_v0 | | | | | 85.95 111 | 91.10 134 | 70.99 153 | | 70.91 319 | | 91.79 60 | 94.42 61 | 61.76 248 | 92.93 136 | 79.52 105 | 93.03 191 | 93.93 96 |
|
LGP-MVS_train | | | | | 90.82 36 | 94.75 40 | 81.69 53 | | 94.27 19 | 82.35 56 | 93.67 31 | 94.82 47 | 91.18 5 | 95.52 36 | 85.36 44 | 98.73 6 | 95.23 56 |
|
test11 | | | | | | | | | 91.46 116 | | | | | | | | |
|
door | | | | | | | | | 72.57 308 | | | | | | | | |
|
HQP5-MVS | | | | | | | 70.66 154 | | | | | | | | | | |
|
HQP-NCC | | | | | | 91.19 129 | | 84.77 132 | | 73.30 163 | 80.55 248 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 129 | | 84.77 132 | | 73.30 163 | 80.55 248 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 129 | | |
|
HQP4-MVS | | | | | | | | | | | 80.56 247 | | | 94.61 71 | | | 93.56 115 |
|
HQP3-MVS | | | | | | | | | 92.68 88 | | | | | | | 94.47 162 | |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 200 | | | | |
|
NP-MVS | | | | | | 91.95 105 | 74.55 116 | | | | | 90.17 186 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 351 | 70.76 312 | | 46.47 334 | 61.27 337 | | 45.20 322 | | 49.18 317 | | 83.75 284 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 125 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 71 | |
|
Test By Simon | | | | | | | | | | | | | 79.09 127 | | | | |
|
ITE_SJBPF | | | | | 90.11 48 | 90.72 141 | 84.97 33 | | 90.30 149 | 81.56 65 | 90.02 87 | 91.20 155 | 82.40 87 | 90.81 194 | 73.58 163 | 94.66 158 | 94.56 70 |
|
DeepMVS_CX | | | | | 24.13 333 | 32.95 352 | 29.49 350 | | 21.63 355 | 12.07 348 | 37.95 349 | 45.07 346 | 30.84 350 | 19.21 350 | 17.94 348 | 33.06 348 | 23.69 346 |
|