This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
mvs_tets99.90 299.90 299.90 499.96 499.79 3599.72 1999.88 1599.92 699.98 399.93 1399.94 199.98 699.77 12100.00 199.92 3
jajsoiax99.89 399.89 399.89 799.96 499.78 3899.70 2299.86 1999.89 1199.98 399.90 2199.94 199.98 699.75 13100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 44100.00 199.90 7100.00 199.97 999.61 1699.97 1699.75 13100.00 199.84 14
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 599.90 799.97 699.87 3099.81 599.95 4399.54 2599.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 899.85 2099.94 1199.95 1199.73 899.90 12499.65 1699.97 2999.69 52
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9199.93 499.95 1099.89 2599.71 999.96 3399.51 2999.97 2999.84 14
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4099.68 3199.85 2399.95 399.98 399.92 1699.28 4099.98 699.75 13100.00 199.94 2
test_djsdf99.84 899.81 999.91 299.94 1099.84 1799.77 1199.80 4699.73 3899.97 699.92 1699.77 799.98 699.43 36100.00 199.90 4
v7n99.82 1099.80 1099.88 1199.96 499.84 1799.82 899.82 3699.84 2299.94 1199.91 1999.13 5699.96 3399.83 999.99 1299.83 18
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2199.76 1399.87 1799.73 3899.89 2699.87 3099.63 1499.87 16699.54 2599.92 7399.63 94
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 799.73 1699.85 2399.70 4699.92 1899.93 1399.45 2199.97 1699.36 46100.00 199.85 13
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1299.75 1499.86 1999.70 4699.91 2099.89 2599.60 1899.87 16699.59 2099.74 18199.71 46
UA-Net99.78 1399.76 1499.86 1699.72 10699.71 6399.91 399.95 499.96 299.71 9899.91 1999.15 5299.97 1699.50 31100.00 199.90 4
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2399.66 8199.69 2899.92 599.67 5299.77 7299.75 7999.61 1699.98 699.35 4799.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2199.83 699.85 2399.80 3199.93 1499.93 1398.54 13299.93 6799.59 2099.98 2199.76 37
TDRefinement99.72 1799.70 1799.77 3999.90 1999.85 1299.86 599.92 599.69 4999.78 6799.92 1699.37 2999.88 15398.93 10699.95 4899.60 116
v899.68 2299.69 1899.65 9999.80 5599.40 14699.66 3999.76 6599.64 6099.93 1499.85 3698.66 11799.84 22099.88 699.99 1299.71 46
v1099.69 2199.69 1899.66 9499.81 5099.39 14899.66 3999.75 7199.60 7499.92 1899.87 3098.75 10699.86 18699.90 299.99 1299.73 42
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6199.59 5699.82 3699.39 10499.82 5099.84 4199.38 2799.91 10499.38 4399.93 6999.80 24
nrg03099.70 1999.66 2199.82 2399.76 8399.84 1799.61 5199.70 9599.93 499.78 6799.68 12399.10 5799.78 26899.45 3499.96 4199.83 18
FC-MVSNet-test99.70 1999.65 2299.86 1699.88 2399.86 1199.72 1999.78 5799.90 799.82 5099.83 4298.45 14799.87 16699.51 2999.97 2999.86 11
DSMNet-mixed99.48 5299.65 2298.95 25499.71 10997.27 30499.50 6599.82 3699.59 7699.41 19699.85 3699.62 15100.00 199.53 2799.89 9199.59 125
FMVSNet199.66 2499.63 2499.73 6999.78 7199.77 4099.68 3199.70 9599.67 5299.82 5099.83 4298.98 7299.90 12499.24 6399.97 2999.53 154
EU-MVSNet99.39 7799.62 2598.72 28199.88 2396.44 32099.56 6199.85 2399.90 799.90 2299.85 3698.09 18299.83 23199.58 2299.95 4899.90 4
VPA-MVSNet99.66 2499.62 2599.79 3499.68 12899.75 4899.62 4799.69 10199.85 2099.80 5999.81 5198.81 9199.91 10499.47 3399.88 9999.70 49
baseline99.63 3099.62 2599.66 9499.80 5599.62 9499.44 7599.80 4699.71 4299.72 9399.69 11299.15 5299.83 23199.32 5399.94 6199.53 154
MIMVSNet199.66 2499.62 2599.80 2999.94 1099.87 899.69 2899.77 6099.78 3499.93 1499.89 2597.94 19499.92 8699.65 1699.98 2199.62 105
casdiffmvs99.63 3099.61 2999.67 8799.79 6599.59 10599.13 16299.85 2399.79 3399.76 7499.72 9299.33 3499.82 24199.21 6499.94 6199.59 125
DTE-MVSNet99.68 2299.61 2999.88 1199.80 5599.87 899.67 3599.71 9199.72 4199.84 4399.78 6598.67 11599.97 1699.30 5699.95 4899.80 24
DeepC-MVS98.90 499.62 3399.61 2999.67 8799.72 10699.44 13499.24 12599.71 9199.27 11999.93 1499.90 2199.70 1199.93 6798.99 9499.99 1299.64 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DIV-MVS_2432*160099.63 3099.59 3299.76 4599.84 3399.90 499.37 8899.79 5299.83 2599.88 3299.85 3698.42 15099.90 12499.60 1999.73 18899.49 177
PEN-MVS99.66 2499.59 3299.89 799.83 3799.87 899.66 3999.73 7999.70 4699.84 4399.73 8698.56 12999.96 3399.29 5999.94 6199.83 18
Gipumacopyleft99.57 3799.59 3299.49 15899.98 399.71 6399.72 1999.84 2999.81 2899.94 1199.78 6598.91 8199.71 29398.41 13799.95 4899.05 285
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FIs99.65 2999.58 3599.84 1999.84 3399.85 1299.66 3999.75 7199.86 1699.74 8799.79 5998.27 16799.85 20499.37 4599.93 6999.83 18
v124099.56 4099.58 3599.51 15299.80 5599.00 21499.00 18899.65 12499.15 14299.90 2299.75 7999.09 5999.88 15399.90 299.96 4199.67 65
PS-CasMVS99.66 2499.58 3599.89 799.80 5599.85 1299.66 3999.73 7999.62 6499.84 4399.71 9998.62 12199.96 3399.30 5699.96 4199.86 11
new-patchmatchnet99.35 8699.57 3898.71 28399.82 4396.62 31898.55 24799.75 7199.50 8399.88 3299.87 3099.31 3599.88 15399.43 36100.00 199.62 105
Anonymous2023121199.62 3399.57 3899.76 4599.61 14499.60 10299.81 999.73 7999.82 2799.90 2299.90 2197.97 19399.86 18699.42 4099.96 4199.80 24
v192192099.56 4099.57 3899.55 14299.75 9399.11 20399.05 17999.61 14299.15 14299.88 3299.71 9999.08 6299.87 16699.90 299.97 2999.66 75
v119299.57 3799.57 3899.57 13599.77 7999.22 18999.04 18199.60 15399.18 13399.87 3899.72 9299.08 6299.85 20499.89 599.98 2199.66 75
EG-PatchMatch MVS99.57 3799.56 4299.62 11999.77 7999.33 16499.26 11799.76 6599.32 11399.80 5999.78 6599.29 3899.87 16699.15 7899.91 8299.66 75
v14419299.55 4399.54 4399.58 13099.78 7199.20 19599.11 16899.62 13599.18 13399.89 2699.72 9298.66 11799.87 16699.88 699.97 2999.66 75
V4299.56 4099.54 4399.63 11099.79 6599.46 12799.39 8299.59 16099.24 12599.86 3999.70 10698.55 13099.82 24199.79 1199.95 4899.60 116
test20.0399.55 4399.54 4399.58 13099.79 6599.37 15499.02 18499.89 1299.60 7499.82 5099.62 15998.81 9199.89 13899.43 3699.86 11499.47 187
ACMH98.42 699.59 3699.54 4399.72 7599.86 2999.62 9499.56 6199.79 5298.77 19099.80 5999.85 3699.64 1399.85 20498.70 12399.89 9199.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114499.54 4599.53 4799.59 12699.79 6599.28 17299.10 16999.61 14299.20 13199.84 4399.73 8698.67 11599.84 22099.86 899.98 2199.64 89
WR-MVS_H99.61 3599.53 4799.87 1499.80 5599.83 2199.67 3599.75 7199.58 7799.85 4099.69 11298.18 17899.94 5499.28 6199.95 4899.83 18
EI-MVSNet-UG-set99.48 5299.50 4999.42 17799.57 16198.65 24599.24 12599.46 22599.68 5099.80 5999.66 13398.99 7199.89 13899.19 6999.90 8399.72 43
EI-MVSNet-Vis-set99.47 5899.49 5099.42 17799.57 16198.66 24299.24 12599.46 22599.67 5299.79 6499.65 13898.97 7499.89 13899.15 7899.89 9199.71 46
pmmvs-eth3d99.48 5299.47 5199.51 15299.77 7999.41 14598.81 22099.66 11399.42 10399.75 7999.66 13399.20 4799.76 27898.98 9699.99 1299.36 221
v2v48299.50 4899.47 5199.58 13099.78 7199.25 18099.14 15699.58 16999.25 12399.81 5699.62 15998.24 16999.84 22099.83 999.97 2999.64 89
TranMVSNet+NR-MVSNet99.54 4599.47 5199.76 4599.58 15199.64 8899.30 10599.63 13299.61 6899.71 9899.56 19498.76 10499.96 3399.14 8499.92 7399.68 58
IterMVS-LS99.41 7099.47 5199.25 22399.81 5098.09 27798.85 21299.76 6599.62 6499.83 4899.64 14098.54 13299.97 1699.15 7899.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMMVS299.48 5299.45 5599.57 13599.76 8398.99 21598.09 28899.90 1198.95 16599.78 6799.58 18399.57 1999.93 6799.48 3299.95 4899.79 30
TAMVS99.49 5099.45 5599.63 11099.48 20599.42 14199.45 7299.57 17199.66 5699.78 6799.83 4297.85 20399.86 18699.44 3599.96 4199.61 112
Regformer-499.45 6199.44 5799.50 15599.52 18398.94 22199.17 14699.53 19599.64 6099.76 7499.60 17598.96 7799.90 12498.91 10799.84 12199.67 65
EI-MVSNet99.38 7999.44 5799.21 22999.58 15198.09 27799.26 11799.46 22599.62 6499.75 7999.67 12998.54 13299.85 20499.15 7899.92 7399.68 58
MVSFormer99.41 7099.44 5799.31 21199.57 16198.40 25899.77 1199.80 4699.73 3899.63 12399.30 26298.02 18899.98 699.43 3699.69 20399.55 142
CP-MVSNet99.54 4599.43 6099.87 1499.76 8399.82 2599.57 5999.61 14299.54 7899.80 5999.64 14097.79 20799.95 4399.21 6499.94 6199.84 14
ACMH+98.40 899.50 4899.43 6099.71 7999.86 2999.76 4699.32 9899.77 6099.53 8099.77 7299.76 7599.26 4499.78 26897.77 19499.88 9999.60 116
v14899.40 7399.41 6299.39 19099.76 8398.94 22199.09 17399.59 16099.17 13699.81 5699.61 16898.41 15199.69 30199.32 5399.94 6199.53 154
Regformer-399.41 7099.41 6299.40 18799.52 18398.70 23999.17 14699.44 23099.62 6499.75 7999.60 17598.90 8499.85 20498.89 10899.84 12199.65 83
mvs_anonymous99.28 10399.39 6498.94 25599.19 28597.81 28999.02 18499.55 18199.78 3499.85 4099.80 5398.24 16999.86 18699.57 2399.50 25799.15 262
DP-MVS99.48 5299.39 6499.74 6199.57 16199.62 9499.29 11299.61 14299.87 1499.74 8799.76 7598.69 11199.87 16698.20 15699.80 15399.75 40
tfpnnormal99.43 6399.38 6699.60 12499.87 2799.75 4899.59 5699.78 5799.71 4299.90 2299.69 11298.85 8999.90 12497.25 23799.78 16499.15 262
PVSNet_Blended_VisFu99.40 7399.38 6699.44 17299.90 1998.66 24298.94 20399.91 897.97 26099.79 6499.73 8699.05 6799.97 1699.15 7899.99 1299.68 58
ACMM98.09 1199.46 5999.38 6699.72 7599.80 5599.69 7499.13 16299.65 12498.99 15999.64 11999.72 9299.39 2399.86 18698.23 15399.81 14899.60 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 5999.37 6999.71 7999.82 4399.59 10599.48 6999.70 9599.81 2899.69 10399.58 18397.66 21999.86 18699.17 7499.44 26599.67 65
Baseline_NR-MVSNet99.49 5099.37 6999.82 2399.91 1599.84 1798.83 21599.86 1999.68 5099.65 11799.88 2897.67 21599.87 16699.03 9199.86 11499.76 37
COLMAP_ROBcopyleft98.06 1299.45 6199.37 6999.70 8399.83 3799.70 7099.38 8499.78 5799.53 8099.67 10999.78 6599.19 4899.86 18697.32 22799.87 10799.55 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVS99.48 5299.36 7299.85 1899.55 17299.81 2899.50 6599.69 10198.99 15999.75 7999.71 9998.79 9899.93 6798.46 13599.85 11799.80 24
3Dnovator99.15 299.43 6399.36 7299.65 9999.39 23499.42 14199.70 2299.56 17699.23 12799.35 20799.80 5399.17 5099.95 4398.21 15599.84 12199.59 125
Anonymous2024052999.42 6699.34 7499.65 9999.53 17899.60 10299.63 4699.39 24699.47 9099.76 7499.78 6598.13 18099.86 18698.70 12399.68 20699.49 177
xiu_mvs_v1_base_debu99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
xiu_mvs_v1_base99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
xiu_mvs_v1_base_debi99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
UGNet99.38 7999.34 7499.49 15898.90 31698.90 22999.70 2299.35 25799.86 1698.57 30199.81 5198.50 14299.93 6799.38 4399.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
diffmvs99.34 9199.32 7999.39 19099.67 13398.77 23698.57 24599.81 4599.61 6899.48 17599.41 23598.47 14399.86 18698.97 9899.90 8399.53 154
Anonymous2023120699.35 8699.31 8099.47 16399.74 9999.06 21399.28 11399.74 7699.23 12799.72 9399.53 20597.63 22199.88 15399.11 8699.84 12199.48 182
MVS_Test99.28 10399.31 8099.19 23299.35 24498.79 23599.36 9199.49 21599.17 13699.21 23499.67 12998.78 10099.66 32199.09 8799.66 21799.10 272
NR-MVSNet99.40 7399.31 8099.68 8599.43 22399.55 11499.73 1699.50 21099.46 9499.88 3299.36 24897.54 22399.87 16698.97 9899.87 10799.63 94
GBi-Net99.42 6699.31 8099.73 6999.49 19999.77 4099.68 3199.70 9599.44 9699.62 13099.83 4297.21 23899.90 12498.96 10099.90 8399.53 154
test199.42 6699.31 8099.73 6999.49 19999.77 4099.68 3199.70 9599.44 9699.62 13099.83 4297.21 23899.90 12498.96 10099.90 8399.53 154
SD-MVS99.01 17599.30 8598.15 30399.50 19499.40 14698.94 20399.61 14299.22 13099.75 7999.82 4899.54 2095.51 36097.48 21999.87 10799.54 149
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.43 6399.30 8599.80 2999.83 3799.81 2899.52 6399.70 9598.35 23499.51 17299.50 21399.31 3599.88 15398.18 16099.84 12199.69 52
SixPastTwentyTwo99.42 6699.30 8599.76 4599.92 1499.67 7999.70 2299.14 29599.65 5899.89 2699.90 2196.20 26899.94 5499.42 4099.92 7399.67 65
CHOSEN 1792x268899.39 7799.30 8599.65 9999.88 2399.25 18098.78 22799.88 1598.66 19899.96 899.79 5997.45 22699.93 6799.34 4899.99 1299.78 32
DELS-MVS99.34 9199.30 8599.48 16199.51 18899.36 15798.12 28499.53 19599.36 10899.41 19699.61 16899.22 4699.87 16699.21 6499.68 20699.20 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PM-MVS99.36 8499.29 9099.58 13099.83 3799.66 8198.95 20199.86 1998.85 17999.81 5699.73 8698.40 15599.92 8698.36 14099.83 13199.17 258
CSCG99.37 8199.29 9099.60 12499.71 10999.46 12799.43 7799.85 2398.79 18799.41 19699.60 17598.92 7999.92 8698.02 17099.92 7399.43 204
SED-MVS99.40 7399.28 9299.77 3999.69 11999.82 2599.20 13599.54 18699.13 14499.82 5099.63 15098.91 8199.92 8697.85 18999.70 20099.58 130
FMVSNet299.35 8699.28 9299.55 14299.49 19999.35 16199.45 7299.57 17199.44 9699.70 10099.74 8297.21 23899.87 16699.03 9199.94 6199.44 198
ab-mvs99.33 9599.28 9299.47 16399.57 16199.39 14899.78 1099.43 23398.87 17799.57 14699.82 4898.06 18599.87 16698.69 12599.73 18899.15 262
Regformer-199.32 9799.27 9599.47 16399.41 22998.95 22098.99 19399.48 21799.48 8599.66 11399.52 20798.78 10099.87 16698.36 14099.74 18199.60 116
Regformer-299.34 9199.27 9599.53 14899.41 22999.10 20798.99 19399.53 19599.47 9099.66 11399.52 20798.80 9599.89 13898.31 14699.74 18199.60 116
testgi99.29 10299.26 9799.37 19799.75 9398.81 23398.84 21399.89 1298.38 22799.75 7999.04 30499.36 3299.86 18699.08 8899.25 29399.45 193
UniMVSNet (Re)99.37 8199.26 9799.68 8599.51 18899.58 10898.98 19799.60 15399.43 10199.70 10099.36 24897.70 21099.88 15399.20 6799.87 10799.59 125
UniMVSNet_NR-MVSNet99.37 8199.25 9999.72 7599.47 21099.56 11198.97 19999.61 14299.43 10199.67 10999.28 26797.85 20399.95 4399.17 7499.81 14899.65 83
TSAR-MVS + MP.99.34 9199.24 10099.63 11099.82 4399.37 15499.26 11799.35 25798.77 19099.57 14699.70 10699.27 4399.88 15397.71 19999.75 17399.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+98.92 399.35 8699.24 10099.67 8799.35 24499.47 12399.62 4799.50 21099.44 9699.12 24899.78 6598.77 10399.94 5497.87 18699.72 19499.62 105
abl_699.36 8499.23 10299.75 5599.71 10999.74 5499.33 9599.76 6599.07 15299.65 11799.63 15099.09 5999.92 8697.13 24599.76 17099.58 130
DU-MVS99.33 9599.21 10399.71 7999.43 22399.56 11198.83 21599.53 19599.38 10599.67 10999.36 24897.67 21599.95 4399.17 7499.81 14899.63 94
MTAPA99.35 8699.20 10499.80 2999.81 5099.81 2899.33 9599.53 19599.27 11999.42 18899.63 15098.21 17399.95 4397.83 19299.79 15899.65 83
D2MVS99.22 12399.19 10599.29 21499.69 11998.74 23798.81 22099.41 23698.55 20999.68 10599.69 11298.13 18099.87 16698.82 11399.98 2199.24 242
ETV-MVS99.18 13799.18 10699.16 23599.34 25499.28 17299.12 16699.79 5299.48 8598.93 26498.55 34099.40 2299.93 6798.51 13399.52 25498.28 331
DVP-MVS99.32 9799.17 10799.77 3999.69 11999.80 3399.14 15699.31 26699.16 13899.62 13099.61 16898.35 15999.91 10497.88 18399.72 19499.61 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
IterMVS-SCA-FT99.00 17799.16 10898.51 28899.75 9395.90 32898.07 29199.84 2999.84 2299.89 2699.73 8696.01 27299.99 499.33 51100.00 199.63 94
APD-MVS_3200maxsize99.31 9999.16 10899.74 6199.53 17899.75 4899.27 11699.61 14299.19 13299.57 14699.64 14098.76 10499.90 12497.29 22999.62 22599.56 139
IterMVS98.97 18199.16 10898.42 29299.74 9995.64 33198.06 29399.83 3199.83 2599.85 4099.74 8296.10 27199.99 499.27 62100.00 199.63 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LCM-MVSNet-Re99.28 10399.15 11199.67 8799.33 25999.76 4699.34 9399.97 298.93 16999.91 2099.79 5998.68 11299.93 6796.80 26299.56 24099.30 233
zzz-MVS99.30 10099.14 11299.80 2999.81 5099.81 2898.73 23299.53 19599.27 11999.42 18899.63 15098.21 17399.95 4397.83 19299.79 15899.65 83
SteuartSystems-ACMMP99.30 10099.14 11299.76 4599.87 2799.66 8199.18 14199.60 15398.55 20999.57 14699.67 12999.03 6999.94 5497.01 24999.80 15399.69 52
Skip Steuart: Steuart Systems R&D Blog.
test_040299.22 12399.14 11299.45 17099.79 6599.43 13899.28 11399.68 10499.54 7899.40 20199.56 19499.07 6499.82 24196.01 29799.96 4199.11 270
RE-MVS-def99.13 11599.54 17399.74 5499.26 11799.62 13599.16 13899.52 16799.64 14098.57 12797.27 23299.61 23299.54 149
OPM-MVS99.26 10999.13 11599.63 11099.70 11699.61 10098.58 24199.48 21798.50 21599.52 16799.63 15099.14 5499.76 27897.89 18299.77 16899.51 166
CDS-MVSNet99.22 12399.13 11599.50 15599.35 24499.11 20398.96 20099.54 18699.46 9499.61 13699.70 10696.31 26599.83 23199.34 4899.88 9999.55 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
wuyk23d97.58 28699.13 11592.93 34299.69 11999.49 11999.52 6399.77 6097.97 26099.96 899.79 5999.84 399.94 5495.85 30599.82 14079.36 356
ppachtmachnet_test98.89 19599.12 11998.20 30299.66 13495.24 33597.63 32199.68 10499.08 15099.78 6799.62 15998.65 11999.88 15398.02 17099.96 4199.48 182
Fast-Effi-MVS+-dtu99.20 13099.12 11999.43 17599.25 27499.69 7499.05 17999.82 3699.50 8398.97 26099.05 30198.98 7299.98 698.20 15699.24 29598.62 312
DeepC-MVS_fast98.47 599.23 11499.12 11999.56 13999.28 26999.22 18998.99 19399.40 24399.08 15099.58 14399.64 14098.90 8499.83 23197.44 22199.75 17399.63 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post99.27 10799.11 12299.73 6999.54 17399.74 5499.26 11799.62 13599.16 13899.52 16799.64 14098.41 15199.91 10497.27 23299.61 23299.54 149
ACMMP_NAP99.28 10399.11 12299.79 3499.75 9399.81 2898.95 20199.53 19598.27 24399.53 16599.73 8698.75 10699.87 16697.70 20199.83 13199.68 58
xiu_mvs_v2_base99.02 17199.11 12298.77 27899.37 24098.09 27798.13 28399.51 20699.47 9099.42 18898.54 34199.38 2799.97 1698.83 11199.33 28498.24 333
pmmvs599.19 13399.11 12299.42 17799.76 8398.88 23098.55 24799.73 7998.82 18399.72 9399.62 15996.56 25599.82 24199.32 5399.95 4899.56 139
XVS99.27 10799.11 12299.75 5599.71 10999.71 6399.37 8899.61 14299.29 11598.76 28799.47 22598.47 14399.88 15397.62 20999.73 18899.67 65
VDD-MVS99.20 13099.11 12299.44 17299.43 22398.98 21699.50 6598.32 33099.80 3199.56 15399.69 11296.99 24899.85 20498.99 9499.73 18899.50 172
jason99.16 14299.11 12299.32 20899.75 9398.44 25598.26 27399.39 24698.70 19699.74 8799.30 26298.54 13299.97 1698.48 13499.82 14099.55 142
jason: jason.
LS3D99.24 11399.11 12299.61 12298.38 34599.79 3599.57 5999.68 10499.61 6899.15 24399.71 9998.70 11099.91 10497.54 21599.68 20699.13 269
XVG-ACMP-BASELINE99.23 11499.10 13099.63 11099.82 4399.58 10898.83 21599.72 8898.36 22999.60 13899.71 9998.92 7999.91 10497.08 24799.84 12199.40 210
our_test_398.85 20099.09 13198.13 30499.66 13494.90 33897.72 31799.58 16999.07 15299.64 11999.62 15998.19 17699.93 6798.41 13799.95 4899.55 142
MSLP-MVS++99.05 16599.09 13198.91 26199.21 28098.36 26298.82 21999.47 22198.85 17998.90 27099.56 19498.78 10099.09 35498.57 13099.68 20699.26 239
MVP-Stereo99.16 14299.08 13399.43 17599.48 20599.07 21199.08 17699.55 18198.63 20199.31 21699.68 12398.19 17699.78 26898.18 16099.58 23899.45 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HFP-MVS99.25 11099.08 13399.76 4599.73 10299.70 7099.31 10299.59 16098.36 22999.36 20599.37 24398.80 9599.91 10497.43 22299.75 17399.68 58
PS-MVSNAJ99.00 17799.08 13398.76 27999.37 24098.10 27698.00 29899.51 20699.47 9099.41 19698.50 34399.28 4099.97 1698.83 11199.34 28298.20 337
ACMMPcopyleft99.25 11099.08 13399.74 6199.79 6599.68 7799.50 6599.65 12498.07 25499.52 16799.69 11298.57 12799.92 8697.18 24299.79 15899.63 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AllTest99.21 12899.07 13799.63 11099.78 7199.64 8899.12 16699.83 3198.63 20199.63 12399.72 9298.68 11299.75 28296.38 28499.83 13199.51 166
HPM-MVScopyleft99.25 11099.07 13799.78 3799.81 5099.75 4899.61 5199.67 10997.72 27499.35 20799.25 27499.23 4599.92 8697.21 24099.82 14099.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs499.13 14899.06 13999.36 20099.57 16199.10 20798.01 29699.25 28098.78 18999.58 14399.44 23298.24 16999.76 27898.74 12099.93 6999.22 247
VNet99.18 13799.06 13999.56 13999.24 27699.36 15799.33 9599.31 26699.67 5299.47 17799.57 19196.48 25899.84 22099.15 7899.30 28799.47 187
ACMMPR99.23 11499.06 13999.76 4599.74 9999.69 7499.31 10299.59 16098.36 22999.35 20799.38 24298.61 12399.93 6797.43 22299.75 17399.67 65
XVG-OURS99.21 12899.06 13999.65 9999.82 4399.62 9497.87 31299.74 7698.36 22999.66 11399.68 12399.71 999.90 12496.84 26099.88 9999.43 204
test117299.23 11499.05 14399.74 6199.52 18399.75 4899.20 13599.61 14298.97 16199.48 17599.58 18398.41 15199.91 10497.15 24499.55 24499.57 136
CANet99.11 15499.05 14399.28 21698.83 32598.56 24798.71 23599.41 23699.25 12399.23 22899.22 28197.66 21999.94 5499.19 6999.97 2999.33 227
region2R99.23 11499.05 14399.77 3999.76 8399.70 7099.31 10299.59 16098.41 22399.32 21499.36 24898.73 10999.93 6797.29 22999.74 18199.67 65
MDA-MVSNet-bldmvs99.06 16299.05 14399.07 24699.80 5597.83 28898.89 20599.72 8899.29 11599.63 12399.70 10696.47 25999.89 13898.17 16299.82 14099.50 172
LPG-MVS_test99.22 12399.05 14399.74 6199.82 4399.63 9299.16 15299.73 7997.56 28099.64 11999.69 11299.37 2999.89 13896.66 27099.87 10799.69 52
CP-MVS99.23 11499.05 14399.75 5599.66 13499.66 8199.38 8499.62 13598.38 22799.06 25699.27 26998.79 9899.94 5497.51 21899.82 14099.66 75
ZNCC-MVS99.22 12399.04 14999.77 3999.76 8399.73 5799.28 11399.56 17698.19 24899.14 24599.29 26598.84 9099.92 8697.53 21799.80 15399.64 89
TSAR-MVS + GP.99.12 15099.04 14999.38 19499.34 25499.16 19898.15 28099.29 27198.18 24999.63 12399.62 15999.18 4999.68 31298.20 15699.74 18199.30 233
CS-MVS99.09 15999.03 15199.25 22399.45 21899.49 11999.41 7899.82 3699.10 14998.03 32898.48 34499.30 3799.89 13898.30 14799.41 27198.35 328
MVS_111021_LR99.13 14899.03 15199.42 17799.58 15199.32 16697.91 31199.73 7998.68 19799.31 21699.48 22099.09 5999.66 32197.70 20199.77 16899.29 236
RPSCF99.18 13799.02 15399.64 10699.83 3799.85 1299.44 7599.82 3698.33 23999.50 17399.78 6597.90 19799.65 32896.78 26399.83 13199.44 198
MVS_111021_HR99.12 15099.02 15399.40 18799.50 19499.11 20397.92 30999.71 9198.76 19399.08 25299.47 22599.17 5099.54 34197.85 18999.76 17099.54 149
DeepPCF-MVS98.42 699.18 13799.02 15399.67 8799.22 27899.75 4897.25 33999.47 22198.72 19599.66 11399.70 10699.29 3899.63 33198.07 16999.81 14899.62 105
EIA-MVS99.12 15099.01 15699.45 17099.36 24299.62 9499.34 9399.79 5298.41 22398.84 27798.89 32598.75 10699.84 22098.15 16499.51 25598.89 299
PGM-MVS99.20 13099.01 15699.77 3999.75 9399.71 6399.16 15299.72 8897.99 25899.42 18899.60 17598.81 9199.93 6796.91 25499.74 18199.66 75
PVSNet_BlendedMVS99.03 16999.01 15699.09 24299.54 17397.99 28198.58 24199.82 3697.62 27899.34 21099.71 9998.52 13999.77 27697.98 17599.97 2999.52 164
SR-MVS99.19 13399.00 15999.74 6199.51 18899.72 6199.18 14199.60 15398.85 17999.47 17799.58 18398.38 15699.92 8696.92 25399.54 25099.57 136
SMA-MVScopyleft99.19 13399.00 15999.73 6999.46 21599.73 5799.13 16299.52 20397.40 29099.57 14699.64 14098.93 7899.83 23197.61 21199.79 15899.63 94
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
canonicalmvs99.02 17199.00 15999.09 24299.10 30198.70 23999.61 5199.66 11399.63 6398.64 29597.65 35599.04 6899.54 34198.79 11598.92 31099.04 286
mPP-MVS99.19 13399.00 15999.76 4599.76 8399.68 7799.38 8499.54 18698.34 23899.01 25899.50 21398.53 13699.93 6797.18 24299.78 16499.66 75
EPP-MVSNet99.17 14199.00 15999.66 9499.80 5599.43 13899.70 2299.24 28399.48 8599.56 15399.77 7294.89 28299.93 6798.72 12299.89 9199.63 94
YYNet198.95 18798.99 16498.84 27199.64 13897.14 30898.22 27699.32 26298.92 17199.59 14199.66 13397.40 22899.83 23198.27 15099.90 8399.55 142
MDA-MVSNet_test_wron98.95 18798.99 16498.85 26999.64 13897.16 30798.23 27599.33 26098.93 16999.56 15399.66 13397.39 23099.83 23198.29 14899.88 9999.55 142
XVG-OURS-SEG-HR99.16 14298.99 16499.66 9499.84 3399.64 8898.25 27499.73 7998.39 22699.63 12399.43 23399.70 1199.90 12497.34 22698.64 32599.44 198
MSDG99.08 16098.98 16799.37 19799.60 14699.13 20197.54 32599.74 7698.84 18299.53 16599.55 20099.10 5799.79 26597.07 24899.86 11499.18 256
Effi-MVS+99.06 16298.97 16899.34 20299.31 26198.98 21698.31 26999.91 898.81 18498.79 28398.94 32099.14 5499.84 22098.79 11598.74 32199.20 252
MS-PatchMatch99.00 17798.97 16899.09 24299.11 30098.19 26998.76 22999.33 26098.49 21799.44 18299.58 18398.21 17399.69 30198.20 15699.62 22599.39 213
xxxxxxxxxxxxxcwj99.11 15498.96 17099.54 14699.53 17899.25 18098.29 27099.76 6599.07 15299.42 18899.61 16898.86 8799.87 16696.45 28199.68 20699.49 177
GST-MVS99.16 14298.96 17099.75 5599.73 10299.73 5799.20 13599.55 18198.22 24599.32 21499.35 25398.65 11999.91 10496.86 25799.74 18199.62 105
PHI-MVS99.11 15498.95 17299.59 12699.13 29399.59 10599.17 14699.65 12497.88 26699.25 22499.46 22898.97 7499.80 26297.26 23499.82 14099.37 218
SF-MVS99.10 15898.93 17399.62 11999.58 15199.51 11799.13 16299.65 12497.97 26099.42 18899.61 16898.86 8799.87 16696.45 28199.68 20699.49 177
WR-MVS99.11 15498.93 17399.66 9499.30 26599.42 14198.42 26299.37 25399.04 15799.57 14699.20 28596.89 25099.86 18698.66 12799.87 10799.70 49
USDC98.96 18498.93 17399.05 24899.54 17397.99 28197.07 34599.80 4698.21 24699.75 7999.77 7298.43 14899.64 33097.90 18199.88 9999.51 166
TinyColmap98.97 18198.93 17399.07 24699.46 21598.19 26997.75 31699.75 7198.79 18799.54 16099.70 10698.97 7499.62 33296.63 27299.83 13199.41 208
DPE-MVS99.14 14698.92 17799.82 2399.57 16199.77 4098.74 23099.60 15398.55 20999.76 7499.69 11298.23 17299.92 8696.39 28399.75 17399.76 37
Effi-MVS+-dtu99.07 16198.92 17799.52 14998.89 31999.78 3899.15 15499.66 11399.34 10998.92 26799.24 27997.69 21299.98 698.11 16699.28 28998.81 306
MP-MVS-pluss99.14 14698.92 17799.80 2999.83 3799.83 2198.61 23799.63 13296.84 31199.44 18299.58 18398.81 9199.91 10497.70 20199.82 14099.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LF4IMVS99.01 17598.92 17799.27 21899.71 10999.28 17298.59 24099.77 6098.32 24099.39 20299.41 23598.62 12199.84 22096.62 27399.84 12198.69 310
#test#99.12 15098.90 18199.76 4599.73 10299.70 7099.10 16999.59 16097.60 27999.36 20599.37 24398.80 9599.91 10496.84 26099.75 17399.68 58
new_pmnet98.88 19698.89 18298.84 27199.70 11697.62 29598.15 28099.50 21097.98 25999.62 13099.54 20298.15 17999.94 5497.55 21499.84 12198.95 294
CVMVSNet98.61 22498.88 18397.80 31299.58 15193.60 34599.26 11799.64 13099.66 5699.72 9399.67 12993.26 29799.93 6799.30 5699.81 14899.87 9
Fast-Effi-MVS+99.02 17198.87 18499.46 16699.38 23799.50 11899.04 18199.79 5297.17 30198.62 29698.74 33399.34 3399.95 4398.32 14599.41 27198.92 297
lupinMVS98.96 18498.87 18499.24 22699.57 16198.40 25898.12 28499.18 29198.28 24299.63 12399.13 29098.02 18899.97 1698.22 15499.69 20399.35 224
CANet_DTU98.91 19098.85 18699.09 24298.79 33198.13 27298.18 27799.31 26699.48 8598.86 27599.51 21096.56 25599.95 4399.05 9099.95 4899.19 254
IS-MVSNet99.03 16998.85 18699.55 14299.80 5599.25 18099.73 1699.15 29499.37 10699.61 13699.71 9994.73 28599.81 25797.70 20199.88 9999.58 130
1112_ss99.05 16598.84 18899.67 8799.66 13499.29 17098.52 25299.82 3697.65 27799.43 18699.16 28896.42 26199.91 10499.07 8999.84 12199.80 24
ACMP97.51 1499.05 16598.84 18899.67 8799.78 7199.55 11498.88 20699.66 11397.11 30599.47 17799.60 17599.07 6499.89 13896.18 29299.85 11799.58 130
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MP-MVScopyleft99.06 16298.83 19099.76 4599.76 8399.71 6399.32 9899.50 21098.35 23498.97 26099.48 22098.37 15799.92 8695.95 30399.75 17399.63 94
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VDDNet98.97 18198.82 19199.42 17799.71 10998.81 23399.62 4798.68 31499.81 2899.38 20399.80 5394.25 28999.85 20498.79 11599.32 28599.59 125
MCST-MVS99.02 17198.81 19299.65 9999.58 15199.49 11998.58 24199.07 29898.40 22599.04 25799.25 27498.51 14199.80 26297.31 22899.51 25599.65 83
PMVScopyleft92.94 2198.82 20398.81 19298.85 26999.84 3397.99 28199.20 13599.47 22199.71 4299.42 18899.82 4898.09 18299.47 34893.88 33999.85 11799.07 283
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CNVR-MVS98.99 18098.80 19499.56 13999.25 27499.43 13898.54 25099.27 27598.58 20698.80 28299.43 23398.53 13699.70 29597.22 23999.59 23799.54 149
MSP-MVS99.04 16898.79 19599.81 2699.78 7199.73 5799.35 9299.57 17198.54 21299.54 16098.99 31096.81 25299.93 6796.97 25199.53 25299.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sss98.90 19298.77 19699.27 21899.48 20598.44 25598.72 23399.32 26297.94 26499.37 20499.35 25396.31 26599.91 10498.85 11099.63 22499.47 187
Test_1112_low_res98.95 18798.73 19799.63 11099.68 12899.15 20098.09 28899.80 4697.14 30399.46 18099.40 23796.11 27099.89 13899.01 9399.84 12199.84 14
OMC-MVS98.90 19298.72 19899.44 17299.39 23499.42 14198.58 24199.64 13097.31 29599.44 18299.62 15998.59 12599.69 30196.17 29399.79 15899.22 247
eth_miper_zixun_eth98.68 21998.71 19998.60 28599.10 30196.84 31597.52 32999.54 18698.94 16699.58 14399.48 22096.25 26799.76 27898.01 17399.93 6999.21 249
cl_fuxian98.72 21598.71 19998.72 28199.12 29597.22 30697.68 32099.56 17698.90 17399.54 16099.48 22096.37 26499.73 28797.88 18399.88 9999.21 249
MVS_030498.88 19698.71 19999.39 19098.85 32398.91 22899.45 7299.30 26998.56 20797.26 34699.68 12396.18 26999.96 3399.17 7499.94 6199.29 236
mvs-test198.83 20198.70 20299.22 22898.89 31999.65 8698.88 20699.66 11399.34 10998.29 31298.94 32097.69 21299.96 3398.11 16698.54 32998.04 341
HPM-MVS++copyleft98.96 18498.70 20299.74 6199.52 18399.71 6398.86 21099.19 29098.47 21998.59 29999.06 30098.08 18499.91 10496.94 25299.60 23599.60 116
HQP_MVS98.90 19298.68 20499.55 14299.58 15199.24 18598.80 22399.54 18698.94 16699.14 24599.25 27497.24 23699.82 24195.84 30699.78 16499.60 116
9.1498.64 20599.45 21898.81 22099.60 15397.52 28499.28 22199.56 19498.53 13699.83 23195.36 31999.64 222
HyFIR lowres test98.91 19098.64 20599.73 6999.85 3299.47 12398.07 29199.83 3198.64 20099.89 2699.60 17592.57 303100.00 199.33 5199.97 2999.72 43
FMVSNet398.80 20598.63 20799.32 20899.13 29398.72 23899.10 16999.48 21799.23 12799.62 13099.64 14092.57 30399.86 18698.96 10099.90 8399.39 213
miper_lstm_enhance98.65 22198.60 20898.82 27699.20 28397.33 30397.78 31599.66 11399.01 15899.59 14199.50 21394.62 28699.85 20498.12 16599.90 8399.26 239
K. test v398.87 19898.60 20899.69 8499.93 1399.46 12799.74 1594.97 35499.78 3499.88 3299.88 2893.66 29599.97 1699.61 1899.95 4899.64 89
miper_ehance_all_eth98.59 22898.59 21098.59 28698.98 31297.07 30997.49 33099.52 20398.50 21599.52 16799.37 24396.41 26399.71 29397.86 18799.62 22599.00 292
APD-MVScopyleft98.87 19898.59 21099.71 7999.50 19499.62 9499.01 18699.57 17196.80 31399.54 16099.63 15098.29 16599.91 10495.24 32099.71 19899.61 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended98.70 21798.59 21099.02 25099.54 17397.99 28197.58 32499.82 3695.70 32999.34 21098.98 31398.52 13999.77 27697.98 17599.83 13199.30 233
Vis-MVSNet (Re-imp)98.77 20798.58 21399.34 20299.78 7198.88 23099.61 5199.56 17699.11 14899.24 22799.56 19493.00 30199.78 26897.43 22299.89 9199.35 224
NCCC98.82 20398.57 21499.58 13099.21 28099.31 16798.61 23799.25 28098.65 19998.43 30999.26 27297.86 20199.81 25796.55 27499.27 29299.61 112
UnsupCasMVSNet_eth98.83 20198.57 21499.59 12699.68 12899.45 13298.99 19399.67 10999.48 8599.55 15899.36 24894.92 28199.86 18698.95 10496.57 35299.45 193
CLD-MVS98.76 20998.57 21499.33 20499.57 16198.97 21897.53 32799.55 18196.41 31799.27 22299.13 29099.07 6499.78 26896.73 26699.89 9199.23 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CL-MVSNet_2432*160098.71 21698.56 21799.15 23699.22 27898.66 24297.14 34299.51 20698.09 25399.54 16099.27 26996.87 25199.74 28498.43 13698.96 30799.03 287
RRT_MVS98.75 21098.54 21899.41 18598.14 35498.61 24698.98 19799.66 11399.31 11499.84 4399.75 7991.98 30799.98 699.20 6799.95 4899.62 105
Patchmtry98.78 20698.54 21899.49 15898.89 31999.19 19699.32 9899.67 10999.65 5899.72 9399.79 5991.87 31099.95 4398.00 17499.97 2999.33 227
RPMNet98.60 22598.53 22098.83 27399.05 30698.12 27399.30 10599.62 13599.86 1699.16 24199.74 8292.53 30599.92 8698.75 11998.77 31798.44 325
N_pmnet98.73 21498.53 22099.35 20199.72 10698.67 24198.34 26594.65 35598.35 23499.79 6499.68 12398.03 18699.93 6798.28 14999.92 7399.44 198
ETH3D-3000-0.198.77 20798.50 22299.59 12699.47 21099.53 11698.77 22899.60 15397.33 29499.23 22899.50 21397.91 19699.83 23195.02 32499.67 21399.41 208
PatchMatch-RL98.68 21998.47 22399.30 21399.44 22199.28 17298.14 28299.54 18697.12 30499.11 24999.25 27497.80 20699.70 29596.51 27799.30 28798.93 296
Anonymous20240521198.75 21098.46 22499.63 11099.34 25499.66 8199.47 7197.65 33999.28 11899.56 15399.50 21393.15 29899.84 22098.62 12899.58 23899.40 210
bset_n11_16_dypcd98.69 21898.45 22599.42 17799.69 11998.52 25096.06 35396.80 34799.71 4299.73 9199.54 20295.14 28099.96 3399.39 4299.95 4899.79 30
F-COLMAP98.74 21298.45 22599.62 11999.57 16199.47 12398.84 21399.65 12496.31 32098.93 26499.19 28797.68 21499.87 16696.52 27699.37 27999.53 154
CPTT-MVS98.74 21298.44 22799.64 10699.61 14499.38 15199.18 14199.55 18196.49 31699.27 22299.37 24397.11 24499.92 8695.74 31099.67 21399.62 105
PVSNet97.47 1598.42 24798.44 22798.35 29599.46 21596.26 32296.70 35099.34 25997.68 27699.00 25999.13 29097.40 22899.72 28997.59 21399.68 20699.08 278
cl-mvsnet198.54 23598.42 22998.92 25999.03 30997.80 29097.46 33199.59 16098.90 17399.60 13899.46 22893.87 29199.78 26897.97 17799.89 9199.18 256
cl-mvsnet_98.54 23598.41 23098.92 25999.03 30997.80 29097.46 33199.59 16098.90 17399.60 13899.46 22893.85 29299.78 26897.97 17799.89 9199.17 258
CHOSEN 280x42098.41 24898.41 23098.40 29399.34 25495.89 32996.94 34799.44 23098.80 18699.25 22499.52 20793.51 29699.98 698.94 10599.98 2199.32 230
API-MVS98.38 25198.39 23298.35 29598.83 32599.26 17699.14 15699.18 29198.59 20598.66 29498.78 33198.61 12399.57 34094.14 33499.56 24096.21 353
MG-MVS98.52 23798.39 23298.94 25599.15 29097.39 30298.18 27799.21 28998.89 17699.23 22899.63 15097.37 23299.74 28494.22 33399.61 23299.69 52
WTY-MVS98.59 22898.37 23499.26 22099.43 22398.40 25898.74 23099.13 29798.10 25199.21 23499.24 27994.82 28399.90 12497.86 18798.77 31799.49 177
SCA98.11 26798.36 23597.36 32399.20 28392.99 34898.17 27998.49 32498.24 24499.10 25199.57 19196.01 27299.94 5496.86 25799.62 22599.14 266
Patchmatch-RL test98.60 22598.36 23599.33 20499.77 7999.07 21198.27 27299.87 1798.91 17299.74 8799.72 9290.57 32799.79 26598.55 13199.85 11799.11 270
AdaColmapbinary98.60 22598.35 23799.38 19499.12 29599.22 18998.67 23699.42 23597.84 27198.81 28099.27 26997.32 23499.81 25795.14 32199.53 25299.10 272
test_prior398.62 22398.34 23899.46 16699.35 24499.22 18997.95 30599.39 24697.87 26798.05 32599.05 30197.90 19799.69 30195.99 29999.49 25999.48 182
CNLPA98.57 23098.34 23899.28 21699.18 28799.10 20798.34 26599.41 23698.48 21898.52 30498.98 31397.05 24699.78 26895.59 31299.50 25798.96 293
PatchT98.45 24598.32 24098.83 27398.94 31498.29 26499.24 12598.82 30999.84 2299.08 25299.76 7591.37 31399.94 5498.82 11399.00 30698.26 332
PMMVS98.49 24198.29 24199.11 24098.96 31398.42 25797.54 32599.32 26297.53 28398.47 30898.15 35097.88 20099.82 24197.46 22099.24 29599.09 275
UnsupCasMVSNet_bld98.55 23498.27 24299.40 18799.56 17199.37 15497.97 30499.68 10497.49 28699.08 25299.35 25395.41 27999.82 24197.70 20198.19 33799.01 291
test_part198.63 22298.26 24399.75 5599.40 23299.49 11999.67 3599.68 10499.86 1699.88 3299.86 3586.73 34799.93 6799.34 4899.97 2999.81 23
112198.56 23198.24 24499.52 14999.49 19999.24 18599.30 10599.22 28595.77 32798.52 30499.29 26597.39 23099.85 20495.79 30899.34 28299.46 191
DP-MVS Recon98.50 23898.23 24599.31 21199.49 19999.46 12798.56 24699.63 13294.86 34098.85 27699.37 24397.81 20599.59 33896.08 29499.44 26598.88 300
MVSTER98.47 24398.22 24699.24 22699.06 30598.35 26399.08 17699.46 22599.27 11999.75 7999.66 13388.61 33799.85 20499.14 8499.92 7399.52 164
MVS-HIRNet97.86 27598.22 24696.76 33199.28 26991.53 35798.38 26492.60 36099.13 14499.31 21699.96 1097.18 24299.68 31298.34 14399.83 13199.07 283
CDPH-MVS98.56 23198.20 24899.61 12299.50 19499.46 12798.32 26899.41 23695.22 33499.21 23499.10 29798.34 16199.82 24195.09 32399.66 21799.56 139
CR-MVSNet98.35 25598.20 24898.83 27399.05 30698.12 27399.30 10599.67 10997.39 29199.16 24199.79 5991.87 31099.91 10498.78 11898.77 31798.44 325
MIMVSNet98.43 24698.20 24899.11 24099.53 17898.38 26199.58 5898.61 31898.96 16499.33 21299.76 7590.92 32099.81 25797.38 22599.76 17099.15 262
LFMVS98.46 24498.19 25199.26 22099.24 27698.52 25099.62 4796.94 34699.87 1499.31 21699.58 18391.04 31899.81 25798.68 12699.42 27099.45 193
CMPMVSbinary77.52 2398.50 23898.19 25199.41 18598.33 34799.56 11199.01 18699.59 16095.44 33199.57 14699.80 5395.64 27699.46 35096.47 28099.92 7399.21 249
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testtj98.56 23198.17 25399.72 7599.45 21899.60 10298.88 20699.50 21096.88 30899.18 24099.48 22097.08 24599.92 8693.69 34099.38 27599.63 94
ETH3D cwj APD-0.1698.50 23898.16 25499.51 15299.04 30899.39 14898.47 25699.47 22196.70 31598.78 28599.33 25797.62 22299.86 18694.69 32999.38 27599.28 238
BH-RMVSNet98.41 24898.14 25599.21 22999.21 28098.47 25298.60 23998.26 33198.35 23498.93 26499.31 26097.20 24199.66 32194.32 33199.10 30099.51 166
114514_t98.49 24198.11 25699.64 10699.73 10299.58 10899.24 12599.76 6589.94 35399.42 18899.56 19497.76 20999.86 18697.74 19799.82 14099.47 187
BH-untuned98.22 26498.09 25798.58 28799.38 23797.24 30598.55 24798.98 30497.81 27299.20 23998.76 33297.01 24799.65 32894.83 32598.33 33398.86 302
tpmrst97.73 28098.07 25896.73 33398.71 33792.00 35299.10 16998.86 30698.52 21398.92 26799.54 20291.90 30899.82 24198.02 17099.03 30498.37 327
PAPM_NR98.36 25298.04 25999.33 20499.48 20598.93 22598.79 22699.28 27497.54 28298.56 30298.57 33897.12 24399.69 30194.09 33598.90 31299.38 215
HQP-MVS98.36 25298.02 26099.39 19099.31 26198.94 22197.98 30199.37 25397.45 28798.15 31998.83 32896.67 25399.70 29594.73 32699.67 21399.53 154
QAPM98.40 25097.99 26199.65 9999.39 23499.47 12399.67 3599.52 20391.70 35098.78 28599.80 5398.55 13099.95 4394.71 32899.75 17399.53 154
PLCcopyleft97.35 1698.36 25297.99 26199.48 16199.32 26099.24 18598.50 25499.51 20695.19 33698.58 30098.96 31896.95 24999.83 23195.63 31199.25 29399.37 218
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Patchmatch-test98.10 26897.98 26398.48 29099.27 27196.48 31999.40 8099.07 29898.81 18499.23 22899.57 19190.11 33199.87 16696.69 26799.64 22299.09 275
alignmvs98.28 25897.96 26499.25 22399.12 29598.93 22599.03 18398.42 32699.64 6098.72 29097.85 35390.86 32399.62 33298.88 10999.13 29899.19 254
test_yl98.25 26097.95 26599.13 23899.17 28898.47 25299.00 18898.67 31698.97 16199.22 23299.02 30891.31 31499.69 30197.26 23498.93 30899.24 242
DCV-MVSNet98.25 26097.95 26599.13 23899.17 28898.47 25299.00 18898.67 31698.97 16199.22 23299.02 30891.31 31499.69 30197.26 23498.93 30899.24 242
train_agg98.35 25597.95 26599.57 13599.35 24499.35 16198.11 28699.41 23694.90 33897.92 33198.99 31098.02 18899.85 20495.38 31899.44 26599.50 172
HY-MVS98.23 998.21 26597.95 26598.99 25199.03 30998.24 26599.61 5198.72 31396.81 31298.73 28999.51 21094.06 29099.86 18696.91 25498.20 33598.86 302
miper_enhance_ethall98.03 27197.94 26998.32 29798.27 34896.43 32196.95 34699.41 23696.37 31999.43 18698.96 31894.74 28499.69 30197.71 19999.62 22598.83 305
DPM-MVS98.28 25897.94 26999.32 20899.36 24299.11 20397.31 33798.78 31196.88 30898.84 27799.11 29697.77 20899.61 33694.03 33799.36 28099.23 245
agg_prior198.33 25797.92 27199.57 13599.35 24499.36 15797.99 30099.39 24694.85 34197.76 34098.98 31398.03 18699.85 20495.49 31499.44 26599.51 166
JIA-IIPM98.06 27097.92 27198.50 28998.59 34097.02 31098.80 22398.51 32299.88 1397.89 33399.87 3091.89 30999.90 12498.16 16397.68 34698.59 314
MAR-MVS98.24 26297.92 27199.19 23298.78 33399.65 8699.17 14699.14 29595.36 33298.04 32798.81 33097.47 22599.72 28995.47 31699.06 30198.21 335
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
131498.00 27397.90 27498.27 30198.90 31697.45 30099.30 10599.06 30094.98 33797.21 34799.12 29498.43 14899.67 31795.58 31398.56 32897.71 345
OpenMVScopyleft98.12 1098.23 26397.89 27599.26 22099.19 28599.26 17699.65 4499.69 10191.33 35198.14 32399.77 7298.28 16699.96 3395.41 31799.55 24498.58 316
pmmvs398.08 26997.80 27698.91 26199.41 22997.69 29497.87 31299.66 11395.87 32599.50 17399.51 21090.35 32999.97 1698.55 13199.47 26299.08 278
PatchmatchNetpermissive97.65 28397.80 27697.18 32898.82 32892.49 35099.17 14698.39 32898.12 25098.79 28399.58 18390.71 32599.89 13897.23 23899.41 27199.16 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu97.62 28497.79 27897.11 33096.67 35992.31 35198.51 25398.04 33299.24 12595.77 35599.47 22593.78 29499.66 32198.98 9699.62 22599.37 218
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.13 26697.77 27999.18 23494.57 36297.99 28199.24 12597.96 33499.74 3797.29 34599.62 15993.13 29999.97 1698.59 12999.83 13199.58 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1397.73 28098.70 33890.83 36099.15 15498.02 33398.51 21498.82 27999.61 16890.98 31999.66 32196.89 25698.92 310
tpmvs97.39 29197.69 28196.52 33698.41 34491.76 35499.30 10598.94 30597.74 27397.85 33699.55 20092.40 30699.73 28796.25 28998.73 32398.06 340
GA-MVS97.99 27497.68 28298.93 25899.52 18398.04 28097.19 34199.05 30198.32 24098.81 28098.97 31689.89 33499.41 35198.33 14499.05 30299.34 226
ADS-MVSNet97.72 28297.67 28397.86 31099.14 29194.65 33999.22 13298.86 30696.97 30698.25 31599.64 14090.90 32199.84 22096.51 27799.56 24099.08 278
ADS-MVSNet297.78 27897.66 28498.12 30599.14 29195.36 33399.22 13298.75 31296.97 30698.25 31599.64 14090.90 32199.94 5496.51 27799.56 24099.08 278
TAPA-MVS97.92 1398.03 27197.55 28599.46 16699.47 21099.44 13498.50 25499.62 13586.79 35499.07 25599.26 27298.26 16899.62 33297.28 23199.73 18899.31 232
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
E-PMN97.14 29897.43 28696.27 33898.79 33191.62 35695.54 35599.01 30399.44 9698.88 27199.12 29492.78 30299.68 31294.30 33299.03 30497.50 346
AUN-MVS97.82 27697.38 28799.14 23799.27 27198.53 24898.72 23399.02 30298.10 25197.18 34899.03 30789.26 33699.85 20497.94 17997.91 34399.03 287
baseline197.73 28097.33 28898.96 25399.30 26597.73 29299.40 8098.42 32699.33 11299.46 18099.21 28391.18 31699.82 24198.35 14291.26 35799.32 230
cl-mvsnet297.56 28797.28 28998.40 29398.37 34696.75 31697.24 34099.37 25397.31 29599.41 19699.22 28187.30 33999.37 35297.70 20199.62 22599.08 278
EMVS96.96 30197.28 28995.99 34198.76 33591.03 35995.26 35698.61 31899.34 10998.92 26798.88 32693.79 29399.66 32192.87 34199.05 30297.30 350
RRT_test8_iter0597.35 29497.25 29197.63 31798.81 32993.13 34799.26 11799.89 1299.51 8299.83 4899.68 12379.03 36499.88 15399.53 2799.72 19499.89 8
FMVSNet597.80 27797.25 29199.42 17798.83 32598.97 21899.38 8499.80 4698.87 17799.25 22499.69 11280.60 35999.91 10498.96 10099.90 8399.38 215
tttt051797.62 28497.20 29398.90 26799.76 8397.40 30199.48 6994.36 35699.06 15699.70 10099.49 21884.55 35399.94 5498.73 12199.65 22099.36 221
ETH3 D test640097.76 27997.19 29499.50 15599.38 23799.26 17698.34 26599.49 21592.99 34798.54 30399.20 28595.92 27499.82 24191.14 34799.66 21799.40 210
TR-MVS97.44 29097.15 29598.32 29798.53 34297.46 29998.47 25697.91 33696.85 31098.21 31898.51 34296.42 26199.51 34692.16 34397.29 34897.98 342
dp96.86 30297.07 29696.24 33998.68 33990.30 36399.19 14098.38 32997.35 29398.23 31799.59 18187.23 34099.82 24196.27 28898.73 32398.59 314
PAPR97.56 28797.07 29699.04 24998.80 33098.11 27597.63 32199.25 28094.56 34498.02 32998.25 34997.43 22799.68 31290.90 34898.74 32199.33 227
BH-w/o97.20 29597.01 29897.76 31399.08 30495.69 33098.03 29598.52 32195.76 32897.96 33098.02 35195.62 27799.47 34892.82 34297.25 34998.12 339
tpm cat196.78 30496.98 29996.16 34098.85 32390.59 36299.08 17699.32 26292.37 34897.73 34299.46 22891.15 31799.69 30196.07 29598.80 31498.21 335
thisisatest053097.45 28996.95 30098.94 25599.68 12897.73 29299.09 17394.19 35898.61 20499.56 15399.30 26284.30 35499.93 6798.27 15099.54 25099.16 260
test-LLR97.15 29696.95 30097.74 31598.18 35195.02 33697.38 33396.10 34898.00 25697.81 33798.58 33690.04 33299.91 10497.69 20798.78 31598.31 329
tpm97.15 29696.95 30097.75 31498.91 31594.24 34199.32 9897.96 33497.71 27598.29 31299.32 25886.72 34899.92 8698.10 16896.24 35499.09 275
test0.0.03 197.37 29296.91 30398.74 28097.72 35597.57 29697.60 32397.36 34598.00 25699.21 23498.02 35190.04 33299.79 26598.37 13995.89 35598.86 302
OpenMVS_ROBcopyleft97.31 1797.36 29396.84 30498.89 26899.29 26799.45 13298.87 20999.48 21786.54 35699.44 18299.74 8297.34 23399.86 18691.61 34499.28 28997.37 349
cascas96.99 29996.82 30597.48 31997.57 35895.64 33196.43 35299.56 17691.75 34997.13 34997.61 35695.58 27898.63 35796.68 26899.11 29998.18 338
CostFormer96.71 30796.79 30696.46 33798.90 31690.71 36199.41 7898.68 31494.69 34398.14 32399.34 25686.32 35099.80 26297.60 21298.07 34198.88 300
thisisatest051596.98 30096.42 30798.66 28499.42 22897.47 29897.27 33894.30 35797.24 29799.15 24398.86 32785.01 35199.87 16697.10 24699.39 27498.63 311
EPMVS96.53 31096.32 30897.17 32998.18 35192.97 34999.39 8289.95 36298.21 24698.61 29799.59 18186.69 34999.72 28996.99 25099.23 29798.81 306
baseline296.83 30396.28 30998.46 29199.09 30396.91 31398.83 21593.87 35997.23 29896.23 35498.36 34688.12 33899.90 12496.68 26898.14 33998.57 317
tpm296.35 31396.22 31096.73 33398.88 32291.75 35599.21 13498.51 32293.27 34697.89 33399.21 28384.83 35299.70 29596.04 29698.18 33898.75 309
thres600view796.60 30996.16 31197.93 30899.63 14096.09 32699.18 14197.57 34098.77 19098.72 29097.32 35987.04 34299.72 28988.57 35098.62 32697.98 342
MVEpermissive92.54 2296.66 30896.11 31298.31 29999.68 12897.55 29797.94 30795.60 35399.37 10690.68 36098.70 33496.56 25598.61 35886.94 35799.55 24498.77 308
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ET-MVSNet_ETH3D96.78 30496.07 31398.91 26199.26 27397.92 28797.70 31996.05 35197.96 26392.37 35998.43 34587.06 34199.90 12498.27 15097.56 34798.91 298
thres100view90096.39 31296.03 31497.47 32099.63 14095.93 32799.18 14197.57 34098.75 19498.70 29297.31 36087.04 34299.67 31787.62 35398.51 33096.81 351
tfpn200view996.30 31595.89 31597.53 31899.58 15196.11 32499.00 18897.54 34398.43 22098.52 30496.98 36286.85 34499.67 31787.62 35398.51 33096.81 351
thres40096.40 31195.89 31597.92 30999.58 15196.11 32499.00 18897.54 34398.43 22098.52 30496.98 36286.85 34499.67 31787.62 35398.51 33097.98 342
PCF-MVS96.03 1896.73 30695.86 31799.33 20499.44 22199.16 19896.87 34899.44 23086.58 35598.95 26299.40 23794.38 28899.88 15387.93 35299.80 15398.95 294
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TESTMET0.1,196.24 31695.84 31897.41 32298.24 34993.84 34497.38 33395.84 35298.43 22097.81 33798.56 33979.77 36099.89 13897.77 19498.77 31798.52 319
DWT-MVSNet_test96.03 32095.80 31996.71 33598.50 34391.93 35399.25 12497.87 33795.99 32496.81 35097.61 35681.02 35799.66 32197.20 24197.98 34298.54 318
test-mter96.23 31795.73 32097.74 31598.18 35195.02 33697.38 33396.10 34897.90 26597.81 33798.58 33679.12 36399.91 10497.69 20798.78 31598.31 329
thres20096.09 31895.68 32197.33 32599.48 20596.22 32398.53 25197.57 34098.06 25598.37 31196.73 36486.84 34699.61 33686.99 35698.57 32796.16 354
FPMVS96.32 31495.50 32298.79 27799.60 14698.17 27198.46 26198.80 31097.16 30296.28 35199.63 15082.19 35599.09 35488.45 35198.89 31399.10 272
tmp_tt95.75 32595.42 32396.76 33189.90 36394.42 34098.86 21097.87 33778.01 35799.30 22099.69 11297.70 21095.89 35999.29 5998.14 33999.95 1
KD-MVS_2432*160095.89 32195.41 32497.31 32694.96 36093.89 34297.09 34399.22 28597.23 29898.88 27199.04 30479.23 36199.54 34196.24 29096.81 35098.50 323
miper_refine_blended95.89 32195.41 32497.31 32694.96 36093.89 34297.09 34399.22 28597.23 29898.88 27199.04 30479.23 36199.54 34196.24 29096.81 35098.50 323
PVSNet_095.53 1995.85 32495.31 32697.47 32098.78 33393.48 34695.72 35499.40 24396.18 32297.37 34397.73 35495.73 27599.58 33995.49 31481.40 35899.36 221
gg-mvs-nofinetune95.87 32395.17 32797.97 30798.19 35096.95 31199.69 2889.23 36399.89 1196.24 35399.94 1281.19 35699.51 34693.99 33898.20 33597.44 347
X-MVStestdata96.09 31894.87 32899.75 5599.71 10999.71 6399.37 8899.61 14299.29 11598.76 28761.30 36598.47 14399.88 15397.62 20999.73 18899.67 65
PAPM95.61 32794.71 32998.31 29999.12 29596.63 31796.66 35198.46 32590.77 35296.25 35298.68 33593.01 30099.69 30181.60 35897.86 34598.62 312
MVS95.72 32694.63 33098.99 25198.56 34197.98 28699.30 10598.86 30672.71 35997.30 34499.08 29898.34 16199.74 28489.21 34998.33 33399.26 239
IB-MVS95.41 2095.30 32894.46 33197.84 31198.76 33595.33 33497.33 33696.07 35096.02 32395.37 35797.41 35876.17 36599.96 3397.54 21595.44 35698.22 334
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testmvs28.94 33033.33 33215.79 34426.03 3649.81 36696.77 34915.67 36511.55 36123.87 36250.74 36819.03 3678.53 36223.21 36033.07 35929.03 358
cdsmvs_eth3d_5k24.88 33133.17 3330.00 3450.00 3660.00 3670.00 35799.62 1350.00 3620.00 36399.13 29099.82 40.00 3630.00 3610.00 3610.00 359
test12329.31 32933.05 33418.08 34325.93 36512.24 36597.53 32710.93 36611.78 36024.21 36150.08 36921.04 3668.60 36123.51 35932.43 36033.39 357
pcd_1.5k_mvsjas16.61 33222.14 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 199.28 400.00 3630.00 3610.00 3610.00 359
uanet_test8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
sosnet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
Regformer8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
uanet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.26 33911.02 3420.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36399.16 2880.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS99.43 22399.61 10099.43 23396.38 31899.11 24999.07 29997.86 20199.92 8694.04 33699.49 259
IU-MVS99.69 11999.77 4099.22 28597.50 28599.69 10397.75 19699.70 20099.77 33
OPU-MVS99.29 21499.12 29599.44 13499.20 13599.40 23799.00 7098.84 35696.54 27599.60 23599.58 130
test_241102_TWO99.54 18699.13 14499.76 7499.63 15098.32 16499.92 8697.85 18999.69 20399.75 40
test_241102_ONE99.69 11999.82 2599.54 18699.12 14799.82 5099.49 21898.91 8199.52 345
save fliter99.53 17899.25 18098.29 27099.38 25299.07 152
test_0728_THIRD99.18 13399.62 13099.61 16898.58 12699.91 10497.72 19899.80 15399.77 33
test_0728_SECOND99.83 2199.70 11699.79 3599.14 15699.61 14299.92 8697.88 18399.72 19499.77 33
test072699.69 11999.80 3399.24 12599.57 17199.16 13899.73 9199.65 13898.35 159
GSMVS99.14 266
test_part299.62 14399.67 7999.55 158
sam_mvs190.81 32499.14 266
sam_mvs90.52 328
ambc99.20 23199.35 24498.53 24899.17 14699.46 22599.67 10999.80 5398.46 14699.70 29597.92 18099.70 20099.38 215
MTGPAbinary99.53 195
test_post199.14 15651.63 36789.54 33599.82 24196.86 257
test_post52.41 36690.25 33099.86 186
patchmatchnet-post99.62 15990.58 32699.94 54
GG-mvs-BLEND97.36 32397.59 35696.87 31499.70 2288.49 36494.64 35897.26 36180.66 35899.12 35391.50 34596.50 35396.08 355
MTMP99.09 17398.59 320
gm-plane-assit97.59 35689.02 36493.47 34598.30 34799.84 22096.38 284
test9_res95.10 32299.44 26599.50 172
TEST999.35 24499.35 16198.11 28699.41 23694.83 34297.92 33198.99 31098.02 18899.85 204
test_899.34 25499.31 16798.08 29099.40 24394.90 33897.87 33598.97 31698.02 18899.84 220
agg_prior294.58 33099.46 26499.50 172
agg_prior99.35 24499.36 15799.39 24697.76 34099.85 204
TestCases99.63 11099.78 7199.64 8899.83 3198.63 20199.63 12399.72 9298.68 11299.75 28296.38 28499.83 13199.51 166
test_prior499.19 19698.00 298
test_prior297.95 30597.87 26798.05 32599.05 30197.90 19795.99 29999.49 259
test_prior99.46 16699.35 24499.22 18999.39 24699.69 30199.48 182
旧先验297.94 30795.33 33398.94 26399.88 15396.75 264
新几何298.04 294
新几何199.52 14999.50 19499.22 18999.26 27795.66 33098.60 29899.28 26797.67 21599.89 13895.95 30399.32 28599.45 193
旧先验199.49 19999.29 17099.26 27799.39 24197.67 21599.36 28099.46 191
无先验98.01 29699.23 28495.83 32699.85 20495.79 30899.44 198
原ACMM297.92 309
原ACMM199.37 19799.47 21098.87 23299.27 27596.74 31498.26 31499.32 25897.93 19599.82 24195.96 30299.38 27599.43 204
test22299.51 18899.08 21097.83 31499.29 27195.21 33598.68 29399.31 26097.28 23599.38 27599.43 204
testdata299.89 13895.99 299
segment_acmp98.37 157
testdata99.42 17799.51 18898.93 22599.30 26996.20 32198.87 27499.40 23798.33 16399.89 13896.29 28799.28 28999.44 198
testdata197.72 31797.86 270
test1299.54 14699.29 26799.33 16499.16 29398.43 30997.54 22399.82 24199.47 26299.48 182
plane_prior799.58 15199.38 151
plane_prior699.47 21099.26 17697.24 236
plane_prior599.54 18699.82 24195.84 30699.78 16499.60 116
plane_prior499.25 274
plane_prior399.31 16798.36 22999.14 245
plane_prior298.80 22398.94 166
plane_prior199.51 188
plane_prior99.24 18598.42 26297.87 26799.71 198
n20.00 367
nn0.00 367
door-mid99.83 31
lessismore_v099.64 10699.86 2999.38 15190.66 36199.89 2699.83 4294.56 28799.97 1699.56 2499.92 7399.57 136
LGP-MVS_train99.74 6199.82 4399.63 9299.73 7997.56 28099.64 11999.69 11299.37 2999.89 13896.66 27099.87 10799.69 52
test1199.29 271
door99.77 60
HQP5-MVS98.94 221
HQP-NCC99.31 26197.98 30197.45 28798.15 319
ACMP_Plane99.31 26197.98 30197.45 28798.15 319
BP-MVS94.73 326
HQP4-MVS98.15 31999.70 29599.53 154
HQP3-MVS99.37 25399.67 213
HQP2-MVS96.67 253
NP-MVS99.40 23299.13 20198.83 328
MDTV_nov1_ep13_2view91.44 35899.14 15697.37 29299.21 23491.78 31296.75 26499.03 287
ACMMP++_ref99.94 61
ACMMP++99.79 158
Test By Simon98.41 151
ITE_SJBPF99.38 19499.63 14099.44 13499.73 7998.56 20799.33 21299.53 20598.88 8699.68 31296.01 29799.65 22099.02 290
DeepMVS_CXcopyleft97.98 30699.69 11996.95 31199.26 27775.51 35895.74 35698.28 34896.47 25999.62 33291.23 34697.89 34497.38 348