This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
mvs_tets99.90 299.90 299.90 499.96 499.79 3499.72 1999.88 1599.92 699.98 399.93 1399.94 199.98 699.77 12100.00 199.92 3
jajsoiax99.89 399.89 399.89 799.96 499.78 3799.70 2299.86 1999.89 1199.98 399.90 2199.94 199.98 699.75 13100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 43100.00 199.90 7100.00 199.97 999.61 1699.97 1699.75 13100.00 199.84 14
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 599.90 799.97 699.87 3099.81 599.95 4299.54 2499.99 1299.80 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 899.85 1999.94 1199.95 1199.73 899.90 11999.65 1699.97 2999.69 50
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9099.93 499.95 1099.89 2599.71 999.96 3399.51 2899.97 2999.84 14
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 3999.68 3199.85 2399.95 399.98 399.92 1699.28 4099.98 699.75 13100.00 199.94 2
test_djsdf99.84 899.81 999.91 299.94 1099.84 1699.77 1199.80 4699.73 3699.97 699.92 1699.77 799.98 699.43 35100.00 199.90 4
v7n99.82 1099.80 1099.88 1199.96 499.84 1699.82 899.82 3699.84 2199.94 1199.91 1999.13 5799.96 3399.83 999.99 1299.83 18
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2099.76 1399.87 1799.73 3699.89 2699.87 3099.63 1499.87 16099.54 2499.92 7299.63 92
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 699.73 1699.85 2399.70 4399.92 1899.93 1399.45 2199.97 1699.36 44100.00 199.85 13
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1199.75 1499.86 1999.70 4399.91 2099.89 2599.60 1899.87 16099.59 1999.74 18099.71 44
UA-Net99.78 1399.76 1499.86 1699.72 10699.71 5999.91 399.95 499.96 299.71 9699.91 1999.15 5299.97 1699.50 30100.00 199.90 4
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2399.66 7799.69 2899.92 599.67 5099.77 7199.75 7899.61 1699.98 699.35 4599.98 2199.72 41
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2099.83 699.85 2399.80 2999.93 1499.93 1398.54 13299.93 6699.59 1999.98 2199.76 35
TDRefinement99.72 1799.70 1799.77 3999.90 1999.85 1199.86 599.92 599.69 4699.78 6699.92 1699.37 2999.88 14798.93 10499.95 4799.60 115
v899.68 2299.69 1899.65 9599.80 5599.40 14199.66 3899.76 6499.64 5899.93 1499.85 3598.66 11899.84 21399.88 699.99 1299.71 44
v1099.69 2199.69 1899.66 9099.81 4999.39 14399.66 3899.75 7099.60 7299.92 1899.87 3098.75 10799.86 18099.90 299.99 1299.73 40
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 5799.59 5599.82 3699.39 10299.82 4899.84 3999.38 2799.91 10099.38 4199.93 6899.80 23
nrg03099.70 1999.66 2199.82 2399.76 8399.84 1699.61 5099.70 9499.93 499.78 6699.68 12299.10 5899.78 26299.45 3399.96 4099.83 18
FC-MVSNet-test99.70 1999.65 2299.86 1699.88 2399.86 1099.72 1999.78 5699.90 799.82 4899.83 4098.45 14799.87 16099.51 2899.97 2999.86 11
DSMNet-mixed99.48 5299.65 2298.95 24899.71 10997.27 29699.50 6499.82 3699.59 7499.41 19099.85 3599.62 15100.00 199.53 2699.89 9099.59 124
FMVSNet199.66 2499.63 2499.73 6699.78 7199.77 3999.68 3199.70 9499.67 5099.82 4899.83 4098.98 7399.90 11999.24 6199.97 2999.53 150
EU-MVSNet99.39 7799.62 2598.72 27599.88 2396.44 31299.56 6099.85 2399.90 799.90 2299.85 3598.09 17999.83 22499.58 2199.95 4799.90 4
VPA-MVSNet99.66 2499.62 2599.79 3499.68 12799.75 4799.62 4699.69 10099.85 1999.80 5899.81 4998.81 9299.91 10099.47 3299.88 9899.70 47
baseline99.63 3099.62 2599.66 9099.80 5599.62 9099.44 7499.80 4699.71 4099.72 9199.69 11199.15 5299.83 22499.32 5099.94 6099.53 150
MIMVSNet199.66 2499.62 2599.80 2999.94 1099.87 799.69 2899.77 5999.78 3299.93 1499.89 2597.94 19199.92 8499.65 1699.98 2199.62 104
casdiffmvs99.63 3099.61 2999.67 8399.79 6599.59 10099.13 15899.85 2399.79 3199.76 7399.72 9199.33 3499.82 23499.21 6299.94 6099.59 124
DTE-MVSNet99.68 2299.61 2999.88 1199.80 5599.87 799.67 3599.71 9099.72 3999.84 4199.78 6498.67 11699.97 1699.30 5499.95 4799.80 23
DeepC-MVS98.90 499.62 3299.61 2999.67 8399.72 10699.44 12899.24 12199.71 9099.27 11799.93 1499.90 2199.70 1199.93 6698.99 9299.99 1299.64 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PEN-MVS99.66 2499.59 3299.89 799.83 3699.87 799.66 3899.73 7899.70 4399.84 4199.73 8598.56 12999.96 3399.29 5799.94 6099.83 18
Gipumacopyleft99.57 3799.59 3299.49 15599.98 399.71 5999.72 1999.84 2999.81 2699.94 1199.78 6498.91 8299.71 28698.41 13499.95 4799.05 280
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FIs99.65 2999.58 3499.84 1999.84 3399.85 1199.66 3899.75 7099.86 1699.74 8699.79 5798.27 16499.85 19899.37 4399.93 6899.83 18
v124099.56 4099.58 3499.51 14999.80 5599.00 20999.00 18499.65 12299.15 13899.90 2299.75 7899.09 6099.88 14799.90 299.96 4099.67 63
PS-CasMVS99.66 2499.58 3499.89 799.80 5599.85 1199.66 3899.73 7899.62 6299.84 4199.71 9898.62 12299.96 3399.30 5499.96 4099.86 11
new-patchmatchnet99.35 8699.57 3798.71 27799.82 4296.62 31098.55 24299.75 7099.50 8199.88 3299.87 3099.31 3599.88 14799.43 35100.00 199.62 104
Anonymous2023121199.62 3299.57 3799.76 4599.61 14399.60 9799.81 999.73 7899.82 2599.90 2299.90 2197.97 19099.86 18099.42 3999.96 4099.80 23
v192192099.56 4099.57 3799.55 13999.75 9399.11 19899.05 17599.61 13799.15 13899.88 3299.71 9899.08 6399.87 16099.90 299.97 2999.66 73
v119299.57 3799.57 3799.57 13299.77 7999.22 18499.04 17799.60 14799.18 13199.87 3699.72 9199.08 6399.85 19899.89 599.98 2199.66 73
testing_299.58 3699.56 4199.62 11599.81 4999.44 12899.14 15199.43 22799.69 4699.82 4899.79 5799.14 5499.79 25899.31 5399.95 4799.63 92
EG-PatchMatch MVS99.57 3799.56 4199.62 11599.77 7999.33 15999.26 11599.76 6499.32 11199.80 5899.78 6499.29 3899.87 16099.15 7699.91 8199.66 73
v14419299.55 4399.54 4399.58 12799.78 7199.20 19099.11 16499.62 13399.18 13199.89 2699.72 9198.66 11899.87 16099.88 699.97 2999.66 73
V4299.56 4099.54 4399.63 10699.79 6599.46 12199.39 8199.59 15499.24 12399.86 3799.70 10598.55 13099.82 23499.79 1199.95 4799.60 115
test20.0399.55 4399.54 4399.58 12799.79 6599.37 14999.02 18099.89 1299.60 7299.82 4899.62 15698.81 9299.89 13299.43 3599.86 11399.47 182
ACMH98.42 699.59 3599.54 4399.72 7199.86 2999.62 9099.56 6099.79 5298.77 18599.80 5899.85 3599.64 1399.85 19898.70 12199.89 9099.70 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114499.54 4599.53 4799.59 12399.79 6599.28 16799.10 16599.61 13799.20 12999.84 4199.73 8598.67 11699.84 21399.86 899.98 2199.64 87
WR-MVS_H99.61 3499.53 4799.87 1499.80 5599.83 2099.67 3599.75 7099.58 7599.85 3899.69 11198.18 17599.94 5399.28 5999.95 4799.83 18
EI-MVSNet-UG-set99.48 5299.50 4999.42 17499.57 16098.65 23999.24 12199.46 21999.68 4899.80 5899.66 13298.99 7299.89 13299.19 6799.90 8299.72 41
EI-MVSNet-Vis-set99.47 5899.49 5099.42 17499.57 16098.66 23799.24 12199.46 21999.67 5099.79 6399.65 13798.97 7599.89 13299.15 7699.89 9099.71 44
pmmvs-eth3d99.48 5299.47 5199.51 14999.77 7999.41 14098.81 21699.66 11199.42 10199.75 7899.66 13299.20 4799.76 27298.98 9499.99 1299.36 216
v2v48299.50 4899.47 5199.58 12799.78 7199.25 17599.14 15199.58 16399.25 12199.81 5599.62 15698.24 16699.84 21399.83 999.97 2999.64 87
TranMVSNet+NR-MVSNet99.54 4599.47 5199.76 4599.58 15099.64 8499.30 10399.63 13099.61 6699.71 9699.56 19098.76 10599.96 3399.14 8299.92 7299.68 56
IterMVS-LS99.41 7099.47 5199.25 21999.81 4998.09 26998.85 20899.76 6499.62 6299.83 4699.64 13998.54 13299.97 1699.15 7699.99 1299.68 56
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMMVS299.48 5299.45 5599.57 13299.76 8398.99 21098.09 28399.90 1198.95 16099.78 6699.58 18099.57 1999.93 6699.48 3199.95 4799.79 29
TAMVS99.49 5099.45 5599.63 10699.48 20199.42 13699.45 7199.57 16599.66 5499.78 6699.83 4097.85 19999.86 18099.44 3499.96 4099.61 111
Regformer-499.45 6199.44 5799.50 15299.52 18098.94 21699.17 14199.53 18999.64 5899.76 7399.60 17298.96 7899.90 11998.91 10599.84 12099.67 63
EI-MVSNet99.38 7999.44 5799.21 22599.58 15098.09 26999.26 11599.46 21999.62 6299.75 7899.67 12898.54 13299.85 19899.15 7699.92 7299.68 56
MVSFormer99.41 7099.44 5799.31 20799.57 16098.40 25099.77 1199.80 4699.73 3699.63 12199.30 25798.02 18599.98 699.43 3599.69 20199.55 140
CP-MVSNet99.54 4599.43 6099.87 1499.76 8399.82 2499.57 5899.61 13799.54 7699.80 5899.64 13997.79 20399.95 4299.21 6299.94 6099.84 14
ACMH+98.40 899.50 4899.43 6099.71 7599.86 2999.76 4599.32 9699.77 5999.53 7899.77 7199.76 7499.26 4499.78 26297.77 19099.88 9899.60 115
v14899.40 7399.41 6299.39 18699.76 8398.94 21699.09 16999.59 15499.17 13499.81 5599.61 16598.41 15099.69 29499.32 5099.94 6099.53 150
Regformer-399.41 7099.41 6299.40 18399.52 18098.70 23499.17 14199.44 22499.62 6299.75 7899.60 17298.90 8599.85 19898.89 10699.84 12099.65 81
mvs_anonymous99.28 10399.39 6498.94 24999.19 27797.81 28199.02 18099.55 17599.78 3299.85 3899.80 5198.24 16699.86 18099.57 2299.50 25299.15 257
DP-MVS99.48 5299.39 6499.74 5999.57 16099.62 9099.29 11099.61 13799.87 1499.74 8699.76 7498.69 11299.87 16098.20 15399.80 15299.75 38
tfpnnormal99.43 6399.38 6699.60 12199.87 2799.75 4799.59 5599.78 5699.71 4099.90 2299.69 11198.85 9099.90 11997.25 23199.78 16399.15 257
PVSNet_Blended_VisFu99.40 7399.38 6699.44 16999.90 1998.66 23798.94 19999.91 897.97 25399.79 6399.73 8599.05 6899.97 1699.15 7699.99 1299.68 56
ACMM98.09 1199.46 5999.38 6699.72 7199.80 5599.69 7099.13 15899.65 12298.99 15599.64 11799.72 9199.39 2399.86 18098.23 15099.81 14799.60 115
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 5999.37 6999.71 7599.82 4299.59 10099.48 6899.70 9499.81 2699.69 10199.58 18097.66 21599.86 18099.17 7299.44 25999.67 63
Baseline_NR-MVSNet99.49 5099.37 6999.82 2399.91 1599.84 1698.83 21199.86 1999.68 4899.65 11599.88 2897.67 21199.87 16099.03 8999.86 11399.76 35
COLMAP_ROBcopyleft98.06 1299.45 6199.37 6999.70 7999.83 3699.70 6699.38 8399.78 5699.53 7899.67 10799.78 6499.19 4899.86 18097.32 22399.87 10699.55 140
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVS99.48 5299.36 7299.85 1899.55 17199.81 2799.50 6499.69 10098.99 15599.75 7899.71 9898.79 9999.93 6698.46 13399.85 11699.80 23
3Dnovator99.15 299.43 6399.36 7299.65 9599.39 22899.42 13699.70 2299.56 17099.23 12599.35 20199.80 5199.17 5099.95 4298.21 15299.84 12099.59 124
Anonymous2024052999.42 6699.34 7499.65 9599.53 17599.60 9799.63 4599.39 24099.47 8899.76 7399.78 6498.13 17799.86 18098.70 12199.68 20499.49 173
xiu_mvs_v1_base_debu99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
xiu_mvs_v1_base99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
xiu_mvs_v1_base_debi99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
UGNet99.38 7999.34 7499.49 15598.90 30898.90 22499.70 2299.35 25199.86 1698.57 29299.81 4998.50 14299.93 6699.38 4199.98 2199.66 73
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
diffmvs99.34 9199.32 7999.39 18699.67 13298.77 23198.57 24099.81 4599.61 6699.48 17099.41 23098.47 14399.86 18098.97 9699.90 8299.53 150
Anonymous2023120699.35 8699.31 8099.47 16099.74 9999.06 20899.28 11199.74 7599.23 12599.72 9199.53 20097.63 21799.88 14799.11 8499.84 12099.48 177
MVS_Test99.28 10399.31 8099.19 22899.35 23898.79 23099.36 8999.49 20999.17 13499.21 22899.67 12898.78 10199.66 31499.09 8599.66 21599.10 267
NR-MVSNet99.40 7399.31 8099.68 8199.43 21999.55 10999.73 1699.50 20499.46 9299.88 3299.36 24397.54 21999.87 16098.97 9699.87 10699.63 92
GBi-Net99.42 6699.31 8099.73 6699.49 19599.77 3999.68 3199.70 9499.44 9499.62 12899.83 4097.21 23499.90 11998.96 9899.90 8299.53 150
test199.42 6699.31 8099.73 6699.49 19599.77 3999.68 3199.70 9499.44 9499.62 12899.83 4097.21 23499.90 11998.96 9899.90 8299.53 150
SD-MVS99.01 17399.30 8598.15 29799.50 19099.40 14198.94 19999.61 13799.22 12899.75 7899.82 4699.54 2095.51 35197.48 21599.87 10699.54 147
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.43 6399.30 8599.80 2999.83 3699.81 2799.52 6299.70 9498.35 22999.51 16799.50 20899.31 3599.88 14798.18 15799.84 12099.69 50
SixPastTwentyTwo99.42 6699.30 8599.76 4599.92 1499.67 7599.70 2299.14 28799.65 5699.89 2699.90 2196.20 26399.94 5399.42 3999.92 7299.67 63
CHOSEN 1792x268899.39 7799.30 8599.65 9599.88 2399.25 17598.78 22399.88 1598.66 19399.96 899.79 5797.45 22299.93 6699.34 4699.99 1299.78 30
DELS-MVS99.34 9199.30 8599.48 15899.51 18499.36 15298.12 27999.53 18999.36 10699.41 19099.61 16599.22 4699.87 16099.21 6299.68 20499.20 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PM-MVS99.36 8499.29 9099.58 12799.83 3699.66 7798.95 19799.86 1998.85 17499.81 5599.73 8598.40 15299.92 8498.36 13799.83 13099.17 253
CSCG99.37 8199.29 9099.60 12199.71 10999.46 12199.43 7699.85 2398.79 18299.41 19099.60 17298.92 8099.92 8498.02 16799.92 7299.43 199
SED-MVS99.40 7399.28 9299.77 3999.69 11999.82 2499.20 13199.54 18099.13 14099.82 4899.63 14798.91 8299.92 8497.85 18599.70 19899.58 129
FMVSNet299.35 8699.28 9299.55 13999.49 19599.35 15699.45 7199.57 16599.44 9499.70 9899.74 8197.21 23499.87 16099.03 8999.94 6099.44 193
ab-mvs99.33 9599.28 9299.47 16099.57 16099.39 14399.78 1099.43 22798.87 17299.57 14499.82 4698.06 18299.87 16098.69 12399.73 18799.15 257
Regformer-199.32 9799.27 9599.47 16099.41 22498.95 21598.99 18999.48 21199.48 8399.66 11199.52 20298.78 10199.87 16098.36 13799.74 18099.60 115
Regformer-299.34 9199.27 9599.53 14599.41 22499.10 20298.99 18999.53 18999.47 8899.66 11199.52 20298.80 9699.89 13298.31 14399.74 18099.60 115
testgi99.29 10299.26 9799.37 19399.75 9398.81 22898.84 20999.89 1298.38 22299.75 7899.04 29799.36 3299.86 18099.08 8699.25 28799.45 188
UniMVSNet (Re)99.37 8199.26 9799.68 8199.51 18499.58 10398.98 19399.60 14799.43 9999.70 9899.36 24397.70 20699.88 14799.20 6599.87 10699.59 124
UniMVSNet_NR-MVSNet99.37 8199.25 9999.72 7199.47 20699.56 10698.97 19599.61 13799.43 9999.67 10799.28 26297.85 19999.95 4299.17 7299.81 14799.65 81
TSAR-MVS + MP.99.34 9199.24 10099.63 10699.82 4299.37 14999.26 11599.35 25198.77 18599.57 14499.70 10599.27 4399.88 14797.71 19599.75 17299.65 81
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+98.92 399.35 8699.24 10099.67 8399.35 23899.47 11799.62 4699.50 20499.44 9499.12 24299.78 6498.77 10499.94 5397.87 18299.72 19299.62 104
abl_699.36 8499.23 10299.75 5499.71 10999.74 5299.33 9399.76 6499.07 14899.65 11599.63 14799.09 6099.92 8497.13 23899.76 16999.58 129
DU-MVS99.33 9599.21 10399.71 7599.43 21999.56 10698.83 21199.53 18999.38 10399.67 10799.36 24397.67 21199.95 4299.17 7299.81 14799.63 92
MTAPA99.35 8699.20 10499.80 2999.81 4999.81 2799.33 9399.53 18999.27 11799.42 18299.63 14798.21 17099.95 4297.83 18899.79 15799.65 81
D2MVS99.22 12199.19 10599.29 21099.69 11998.74 23298.81 21699.41 23098.55 20499.68 10399.69 11198.13 17799.87 16098.82 11199.98 2199.24 237
ETV-MVS99.18 13599.18 10699.16 23199.34 24899.28 16799.12 16299.79 5299.48 8398.93 25798.55 33099.40 2299.93 6698.51 13199.52 24998.28 322
MSP-MVS99.32 9799.17 10799.77 3999.69 11999.80 3299.14 15199.31 26099.16 13699.62 12899.61 16598.35 15699.91 10097.88 17999.72 19299.61 111
IterMVS-SCA-FT99.00 17599.16 10898.51 28299.75 9395.90 32098.07 28699.84 2999.84 2199.89 2699.73 8596.01 26799.99 499.33 48100.00 199.63 92
APD-MVS_3200maxsize99.31 9999.16 10899.74 5999.53 17599.75 4799.27 11499.61 13799.19 13099.57 14499.64 13998.76 10599.90 11997.29 22599.62 22399.56 137
IterMVS98.97 17999.16 10898.42 28699.74 9995.64 32398.06 28899.83 3199.83 2499.85 3899.74 8196.10 26699.99 499.27 60100.00 199.63 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LCM-MVSNet-Re99.28 10399.15 11199.67 8399.33 25399.76 4599.34 9199.97 298.93 16499.91 2099.79 5798.68 11399.93 6696.80 25599.56 23699.30 228
zzz-MVS99.30 10099.14 11299.80 2999.81 4999.81 2798.73 22899.53 18999.27 11799.42 18299.63 14798.21 17099.95 4297.83 18899.79 15799.65 81
SteuartSystems-ACMMP99.30 10099.14 11299.76 4599.87 2799.66 7799.18 13699.60 14798.55 20499.57 14499.67 12899.03 7099.94 5397.01 24299.80 15299.69 50
Skip Steuart: Steuart Systems R&D Blog.
test_040299.22 12199.14 11299.45 16799.79 6599.43 13399.28 11199.68 10399.54 7699.40 19599.56 19099.07 6599.82 23496.01 28899.96 4099.11 265
OPM-MVS99.26 10899.13 11599.63 10699.70 11699.61 9698.58 23699.48 21198.50 21099.52 16499.63 14799.14 5499.76 27297.89 17899.77 16799.51 162
CDS-MVSNet99.22 12199.13 11599.50 15299.35 23899.11 19898.96 19699.54 18099.46 9299.61 13499.70 10596.31 26099.83 22499.34 4699.88 9899.55 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
wuyk23d97.58 28099.13 11592.93 33499.69 11999.49 11499.52 6299.77 5997.97 25399.96 899.79 5799.84 399.94 5395.85 29699.82 13979.36 347
ppachtmachnet_test98.89 19399.12 11898.20 29699.66 13395.24 32797.63 31699.68 10399.08 14699.78 6699.62 15698.65 12099.88 14798.02 16799.96 4099.48 177
Fast-Effi-MVS+-dtu99.20 12899.12 11899.43 17299.25 26799.69 7099.05 17599.82 3699.50 8198.97 25399.05 29498.98 7399.98 698.20 15399.24 28998.62 305
DeepC-MVS_fast98.47 599.23 11399.12 11899.56 13699.28 26399.22 18498.99 18999.40 23799.08 14699.58 14199.64 13998.90 8599.83 22497.44 21799.75 17299.63 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP99.28 10399.11 12199.79 3499.75 9399.81 2798.95 19799.53 18998.27 23899.53 16299.73 8598.75 10799.87 16097.70 19799.83 13099.68 56
xiu_mvs_v2_base99.02 16999.11 12198.77 27299.37 23498.09 26998.13 27899.51 20199.47 8899.42 18298.54 33199.38 2799.97 1698.83 10999.33 27898.24 324
pmmvs599.19 13199.11 12199.42 17499.76 8398.88 22598.55 24299.73 7898.82 17899.72 9199.62 15696.56 25099.82 23499.32 5099.95 4799.56 137
XVS99.27 10799.11 12199.75 5499.71 10999.71 5999.37 8799.61 13799.29 11398.76 27899.47 22098.47 14399.88 14797.62 20599.73 18799.67 63
VDD-MVS99.20 12899.11 12199.44 16999.43 21998.98 21199.50 6498.32 32299.80 2999.56 15199.69 11196.99 24499.85 19898.99 9299.73 18799.50 168
jason99.16 14099.11 12199.32 20499.75 9398.44 24798.26 26899.39 24098.70 19199.74 8699.30 25798.54 13299.97 1698.48 13299.82 13999.55 140
jason: jason.
LS3D99.24 11299.11 12199.61 11998.38 33799.79 3499.57 5899.68 10399.61 6699.15 23799.71 9898.70 11199.91 10097.54 21199.68 20499.13 264
XVG-ACMP-BASELINE99.23 11399.10 12899.63 10699.82 4299.58 10398.83 21199.72 8798.36 22499.60 13699.71 9898.92 8099.91 10097.08 24099.84 12099.40 205
our_test_398.85 19899.09 12998.13 29899.66 13394.90 33097.72 31299.58 16399.07 14899.64 11799.62 15698.19 17399.93 6698.41 13499.95 4799.55 140
MSLP-MVS++99.05 16399.09 12998.91 25599.21 27298.36 25498.82 21599.47 21598.85 17498.90 26399.56 19098.78 10199.09 34598.57 12899.68 20499.26 234
MVP-Stereo99.16 14099.08 13199.43 17299.48 20199.07 20699.08 17299.55 17598.63 19699.31 21099.68 12298.19 17399.78 26298.18 15799.58 23499.45 188
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HFP-MVS99.25 10999.08 13199.76 4599.73 10299.70 6699.31 10099.59 15498.36 22499.36 19999.37 23898.80 9699.91 10097.43 21899.75 17299.68 56
PS-MVSNAJ99.00 17599.08 13198.76 27399.37 23498.10 26898.00 29399.51 20199.47 8899.41 19098.50 33399.28 4099.97 1698.83 10999.34 27698.20 328
ACMMPcopyleft99.25 10999.08 13199.74 5999.79 6599.68 7399.50 6499.65 12298.07 24799.52 16499.69 11198.57 12899.92 8497.18 23699.79 15799.63 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AllTest99.21 12699.07 13599.63 10699.78 7199.64 8499.12 16299.83 3198.63 19699.63 12199.72 9198.68 11399.75 27696.38 27799.83 13099.51 162
HPM-MVScopyleft99.25 10999.07 13599.78 3799.81 4999.75 4799.61 5099.67 10797.72 26799.35 20199.25 26899.23 4599.92 8497.21 23499.82 13999.67 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs499.13 14699.06 13799.36 19699.57 16099.10 20298.01 29199.25 27498.78 18499.58 14199.44 22798.24 16699.76 27298.74 11899.93 6899.22 242
VNet99.18 13599.06 13799.56 13699.24 26999.36 15299.33 9399.31 26099.67 5099.47 17199.57 18796.48 25399.84 21399.15 7699.30 28199.47 182
ACMMPR99.23 11399.06 13799.76 4599.74 9999.69 7099.31 10099.59 15498.36 22499.35 20199.38 23798.61 12499.93 6697.43 21899.75 17299.67 63
XVG-OURS99.21 12699.06 13799.65 9599.82 4299.62 9097.87 30799.74 7598.36 22499.66 11199.68 12299.71 999.90 11996.84 25399.88 9899.43 199
CANet99.11 15299.05 14199.28 21298.83 31798.56 24198.71 23099.41 23099.25 12199.23 22299.22 27597.66 21599.94 5399.19 6799.97 2999.33 222
region2R99.23 11399.05 14199.77 3999.76 8399.70 6699.31 10099.59 15498.41 21899.32 20899.36 24398.73 11099.93 6697.29 22599.74 18099.67 63
MDA-MVSNet-bldmvs99.06 16099.05 14199.07 24099.80 5597.83 28098.89 20199.72 8799.29 11399.63 12199.70 10596.47 25499.89 13298.17 15999.82 13999.50 168
LPG-MVS_test99.22 12199.05 14199.74 5999.82 4299.63 8899.16 14799.73 7897.56 27399.64 11799.69 11199.37 2999.89 13296.66 26399.87 10699.69 50
CP-MVS99.23 11399.05 14199.75 5499.66 13399.66 7799.38 8399.62 13398.38 22299.06 24999.27 26498.79 9999.94 5397.51 21499.82 13999.66 73
ZNCC-MVS99.22 12199.04 14699.77 3999.76 8399.73 5399.28 11199.56 17098.19 24399.14 23999.29 26098.84 9199.92 8497.53 21399.80 15299.64 87
TSAR-MVS + GP.99.12 14899.04 14699.38 19099.34 24899.16 19398.15 27599.29 26598.18 24499.63 12199.62 15699.18 4999.68 30598.20 15399.74 18099.30 228
CS-MVS99.09 15799.03 14899.25 21999.45 21499.49 11499.41 7799.82 3699.10 14598.03 31998.48 33499.30 3799.89 13298.30 14499.41 26598.35 319
MVS_111021_LR99.13 14699.03 14899.42 17499.58 15099.32 16197.91 30699.73 7898.68 19299.31 21099.48 21599.09 6099.66 31497.70 19799.77 16799.29 231
RPSCF99.18 13599.02 15099.64 10299.83 3699.85 1199.44 7499.82 3698.33 23499.50 16899.78 6497.90 19499.65 32196.78 25699.83 13099.44 193
MVS_111021_HR99.12 14899.02 15099.40 18399.50 19099.11 19897.92 30499.71 9098.76 18899.08 24599.47 22099.17 5099.54 33497.85 18599.76 16999.54 147
DeepPCF-MVS98.42 699.18 13599.02 15099.67 8399.22 27199.75 4797.25 33499.47 21598.72 19099.66 11199.70 10599.29 3899.63 32498.07 16699.81 14799.62 104
EIA-MVS99.12 14899.01 15399.45 16799.36 23699.62 9099.34 9199.79 5298.41 21898.84 26898.89 31598.75 10799.84 21398.15 16199.51 25098.89 292
PGM-MVS99.20 12899.01 15399.77 3999.75 9399.71 5999.16 14799.72 8797.99 25199.42 18299.60 17298.81 9299.93 6696.91 24799.74 18099.66 73
PVSNet_BlendedMVS99.03 16799.01 15399.09 23699.54 17297.99 27398.58 23699.82 3697.62 27199.34 20499.71 9898.52 13999.77 27097.98 17299.97 2999.52 160
SR-MVS99.19 13199.00 15699.74 5999.51 18499.72 5799.18 13699.60 14798.85 17499.47 17199.58 18098.38 15399.92 8496.92 24699.54 24599.57 135
SMA-MVS99.19 13199.00 15699.73 6699.46 21199.73 5399.13 15899.52 19897.40 28399.57 14499.64 13998.93 7999.83 22497.61 20799.79 15799.63 92
canonicalmvs99.02 16999.00 15699.09 23699.10 29398.70 23499.61 5099.66 11199.63 6198.64 28697.65 34599.04 6999.54 33498.79 11398.92 30399.04 281
mPP-MVS99.19 13199.00 15699.76 4599.76 8399.68 7399.38 8399.54 18098.34 23399.01 25199.50 20898.53 13699.93 6697.18 23699.78 16399.66 73
EPP-MVSNet99.17 13999.00 15699.66 9099.80 5599.43 13399.70 2299.24 27799.48 8399.56 15199.77 7194.89 27699.93 6698.72 12099.89 9099.63 92
YYNet198.95 18598.99 16198.84 26599.64 13797.14 30098.22 27199.32 25698.92 16699.59 13999.66 13297.40 22499.83 22498.27 14799.90 8299.55 140
MDA-MVSNet_test_wron98.95 18598.99 16198.85 26399.64 13797.16 29998.23 27099.33 25498.93 16499.56 15199.66 13297.39 22699.83 22498.29 14599.88 9899.55 140
XVG-OURS-SEG-HR99.16 14098.99 16199.66 9099.84 3399.64 8498.25 26999.73 7898.39 22199.63 12199.43 22899.70 1199.90 11997.34 22298.64 31899.44 193
MSDG99.08 15898.98 16499.37 19399.60 14599.13 19697.54 32099.74 7598.84 17799.53 16299.55 19699.10 5899.79 25897.07 24199.86 11399.18 251
Effi-MVS+99.06 16098.97 16599.34 19899.31 25598.98 21198.31 26499.91 898.81 17998.79 27498.94 31099.14 5499.84 21398.79 11398.74 31499.20 247
MS-PatchMatch99.00 17598.97 16599.09 23699.11 29298.19 26198.76 22599.33 25498.49 21299.44 17699.58 18098.21 17099.69 29498.20 15399.62 22399.39 208
xxxxxxxxxxxxxcwj99.11 15298.96 16799.54 14399.53 17599.25 17598.29 26599.76 6499.07 14899.42 18299.61 16598.86 8899.87 16096.45 27499.68 20499.49 173
GST-MVS99.16 14098.96 16799.75 5499.73 10299.73 5399.20 13199.55 17598.22 24099.32 20899.35 24898.65 12099.91 10096.86 25099.74 18099.62 104
PHI-MVS99.11 15298.95 16999.59 12399.13 28599.59 10099.17 14199.65 12297.88 25999.25 21899.46 22398.97 7599.80 25597.26 22899.82 13999.37 213
SF-MVS99.10 15698.93 17099.62 11599.58 15099.51 11299.13 15899.65 12297.97 25399.42 18299.61 16598.86 8899.87 16096.45 27499.68 20499.49 173
WR-MVS99.11 15298.93 17099.66 9099.30 25999.42 13698.42 25799.37 24799.04 15399.57 14499.20 27996.89 24699.86 18098.66 12599.87 10699.70 47
USDC98.96 18298.93 17099.05 24299.54 17297.99 27397.07 33799.80 4698.21 24199.75 7899.77 7198.43 14899.64 32397.90 17799.88 9899.51 162
TinyColmap98.97 17998.93 17099.07 24099.46 21198.19 26197.75 31199.75 7098.79 18299.54 15899.70 10598.97 7599.62 32596.63 26599.83 13099.41 203
DPE-MVS99.14 14498.92 17499.82 2399.57 16099.77 3998.74 22699.60 14798.55 20499.76 7399.69 11198.23 16999.92 8496.39 27699.75 17299.76 35
Effi-MVS+-dtu99.07 15998.92 17499.52 14698.89 31199.78 3799.15 14999.66 11199.34 10798.92 26099.24 27397.69 20899.98 698.11 16399.28 28398.81 299
MP-MVS-pluss99.14 14498.92 17499.80 2999.83 3699.83 2098.61 23299.63 13096.84 30299.44 17699.58 18098.81 9299.91 10097.70 19799.82 13999.67 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LF4IMVS99.01 17398.92 17499.27 21499.71 10999.28 16798.59 23599.77 5998.32 23599.39 19699.41 23098.62 12299.84 21396.62 26699.84 12098.69 303
#test#99.12 14898.90 17899.76 4599.73 10299.70 6699.10 16599.59 15497.60 27299.36 19999.37 23898.80 9699.91 10096.84 25399.75 17299.68 56
new_pmnet98.88 19498.89 17998.84 26599.70 11697.62 28798.15 27599.50 20497.98 25299.62 12899.54 19898.15 17699.94 5397.55 21099.84 12098.95 287
CVMVSNet98.61 21998.88 18097.80 30699.58 15093.60 33599.26 11599.64 12899.66 5499.72 9199.67 12893.26 29199.93 6699.30 5499.81 14799.87 9
Fast-Effi-MVS+99.02 16998.87 18199.46 16399.38 23199.50 11399.04 17799.79 5297.17 29298.62 28798.74 32399.34 3399.95 4298.32 14299.41 26598.92 290
lupinMVS98.96 18298.87 18199.24 22299.57 16098.40 25098.12 27999.18 28398.28 23799.63 12199.13 28498.02 18599.97 1698.22 15199.69 20199.35 219
CANet_DTU98.91 18898.85 18399.09 23698.79 32398.13 26498.18 27299.31 26099.48 8398.86 26699.51 20596.56 25099.95 4299.05 8899.95 4799.19 249
IS-MVSNet99.03 16798.85 18399.55 13999.80 5599.25 17599.73 1699.15 28699.37 10499.61 13499.71 9894.73 27999.81 25097.70 19799.88 9899.58 129
1112_ss99.05 16398.84 18599.67 8399.66 13399.29 16598.52 24799.82 3697.65 27099.43 18099.16 28296.42 25699.91 10099.07 8799.84 12099.80 23
ACMP97.51 1499.05 16398.84 18599.67 8399.78 7199.55 10998.88 20299.66 11197.11 29699.47 17199.60 17299.07 6599.89 13296.18 28399.85 11699.58 129
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MP-MVScopyleft99.06 16098.83 18799.76 4599.76 8399.71 5999.32 9699.50 20498.35 22998.97 25399.48 21598.37 15499.92 8495.95 29499.75 17299.63 92
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VDDNet98.97 17998.82 18899.42 17499.71 10998.81 22899.62 4698.68 30699.81 2699.38 19799.80 5194.25 28399.85 19898.79 11399.32 27999.59 124
MCST-MVS99.02 16998.81 18999.65 9599.58 15099.49 11498.58 23699.07 29098.40 22099.04 25099.25 26898.51 14199.80 25597.31 22499.51 25099.65 81
PMVScopyleft92.94 2198.82 20198.81 18998.85 26399.84 3397.99 27399.20 13199.47 21599.71 4099.42 18299.82 4698.09 17999.47 33993.88 32999.85 11699.07 278
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CNVR-MVS98.99 17898.80 19199.56 13699.25 26799.43 13398.54 24599.27 26998.58 20198.80 27399.43 22898.53 13699.70 28897.22 23399.59 23399.54 147
DVP-MVS99.04 16698.79 19299.81 2699.78 7199.73 5399.35 9099.57 16598.54 20799.54 15898.99 30096.81 24799.93 6696.97 24499.53 24799.77 31
sss98.90 19098.77 19399.27 21499.48 20198.44 24798.72 22999.32 25697.94 25799.37 19899.35 24896.31 26099.91 10098.85 10899.63 22299.47 182
Test_1112_low_res98.95 18598.73 19499.63 10699.68 12799.15 19598.09 28399.80 4697.14 29499.46 17499.40 23296.11 26599.89 13299.01 9199.84 12099.84 14
OMC-MVS98.90 19098.72 19599.44 16999.39 22899.42 13698.58 23699.64 12897.31 28899.44 17699.62 15698.59 12699.69 29496.17 28499.79 15799.22 242
eth_miper_zixun_eth98.68 21598.71 19698.60 27999.10 29396.84 30797.52 32499.54 18098.94 16199.58 14199.48 21596.25 26299.76 27298.01 17099.93 6899.21 244
cl_fuxian98.72 21398.71 19698.72 27599.12 28797.22 29897.68 31599.56 17098.90 16899.54 15899.48 21596.37 25999.73 28097.88 17999.88 9899.21 244
MVS_030498.88 19498.71 19699.39 18698.85 31598.91 22399.45 7199.30 26398.56 20297.26 33799.68 12296.18 26499.96 3399.17 7299.94 6099.29 231
mvs-test198.83 19998.70 19999.22 22498.89 31199.65 8298.88 20299.66 11199.34 10798.29 30398.94 31097.69 20899.96 3398.11 16398.54 32298.04 332
HPM-MVS++copyleft98.96 18298.70 19999.74 5999.52 18099.71 5998.86 20699.19 28298.47 21498.59 29099.06 29398.08 18199.91 10096.94 24599.60 23199.60 115
HQP_MVS98.90 19098.68 20199.55 13999.58 15099.24 18098.80 21999.54 18098.94 16199.14 23999.25 26897.24 23299.82 23495.84 29799.78 16399.60 115
9.1498.64 20299.45 21498.81 21699.60 14797.52 27799.28 21599.56 19098.53 13699.83 22495.36 31099.64 220
HyFIR lowres test98.91 18898.64 20299.73 6699.85 3299.47 11798.07 28699.83 3198.64 19599.89 2699.60 17292.57 297100.00 199.33 4899.97 2999.72 41
FMVSNet398.80 20398.63 20499.32 20499.13 28598.72 23399.10 16599.48 21199.23 12599.62 12899.64 13992.57 29799.86 18098.96 9899.90 8299.39 208
miper_lstm_enhance98.65 21798.60 20598.82 27099.20 27597.33 29597.78 31099.66 11199.01 15499.59 13999.50 20894.62 28099.85 19898.12 16299.90 8299.26 234
K. test v398.87 19698.60 20599.69 8099.93 1399.46 12199.74 1594.97 34599.78 3299.88 3299.88 2893.66 28999.97 1699.61 1899.95 4799.64 87
miper_ehance_all_eth98.59 22298.59 20798.59 28098.98 30497.07 30197.49 32599.52 19898.50 21099.52 16499.37 23896.41 25899.71 28697.86 18399.62 22399.00 285
APD-MVScopyleft98.87 19698.59 20799.71 7599.50 19099.62 9099.01 18299.57 16596.80 30499.54 15899.63 14798.29 16299.91 10095.24 31199.71 19699.61 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended98.70 21498.59 20799.02 24499.54 17297.99 27397.58 31999.82 3695.70 31999.34 20498.98 30398.52 13999.77 27097.98 17299.83 13099.30 228
Vis-MVSNet (Re-imp)98.77 20598.58 21099.34 19899.78 7198.88 22599.61 5099.56 17099.11 14499.24 22199.56 19093.00 29599.78 26297.43 21899.89 9099.35 219
NCCC98.82 20198.57 21199.58 12799.21 27299.31 16298.61 23299.25 27498.65 19498.43 30099.26 26697.86 19899.81 25096.55 26799.27 28699.61 111
UnsupCasMVSNet_eth98.83 19998.57 21199.59 12399.68 12799.45 12698.99 18999.67 10799.48 8399.55 15699.36 24394.92 27599.86 18098.95 10296.57 34299.45 188
CLD-MVS98.76 20798.57 21199.33 20099.57 16098.97 21397.53 32299.55 17596.41 30899.27 21699.13 28499.07 6599.78 26296.73 25999.89 9099.23 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
RRT_MVS98.75 20898.54 21499.41 18198.14 34698.61 24098.98 19399.66 11199.31 11299.84 4199.75 7891.98 30199.98 699.20 6599.95 4799.62 104
Patchmtry98.78 20498.54 21499.49 15598.89 31199.19 19199.32 9699.67 10799.65 5699.72 9199.79 5791.87 30499.95 4298.00 17199.97 2999.33 222
N_pmnet98.73 21298.53 21699.35 19799.72 10698.67 23698.34 26094.65 34698.35 22999.79 6399.68 12298.03 18399.93 6698.28 14699.92 7299.44 193
ETH3D-3000-0.198.77 20598.50 21799.59 12399.47 20699.53 11198.77 22499.60 14797.33 28799.23 22299.50 20897.91 19399.83 22495.02 31599.67 21199.41 203
PatchMatch-RL98.68 21598.47 21899.30 20999.44 21799.28 16798.14 27799.54 18097.12 29599.11 24399.25 26897.80 20299.70 28896.51 27099.30 28198.93 289
Anonymous20240521198.75 20898.46 21999.63 10699.34 24899.66 7799.47 7097.65 33199.28 11699.56 15199.50 20893.15 29299.84 21398.62 12699.58 23499.40 205
F-COLMAP98.74 21098.45 22099.62 11599.57 16099.47 11798.84 20999.65 12296.31 31098.93 25799.19 28197.68 21099.87 16096.52 26999.37 27399.53 150
RPMNet98.53 23198.44 22198.83 26799.05 29898.12 26599.30 10398.78 30299.86 1699.16 23599.74 8192.53 29999.91 10098.75 11798.77 31098.44 316
CPTT-MVS98.74 21098.44 22199.64 10299.61 14399.38 14699.18 13699.55 17596.49 30799.27 21699.37 23897.11 24099.92 8495.74 30199.67 21199.62 104
PVSNet97.47 1598.42 24298.44 22198.35 28999.46 21196.26 31496.70 34299.34 25397.68 26999.00 25299.13 28497.40 22499.72 28297.59 20999.68 20499.08 273
cl-mvsnet198.54 22998.42 22498.92 25399.03 30197.80 28297.46 32699.59 15498.90 16899.60 13699.46 22393.87 28599.78 26297.97 17499.89 9099.18 251
cl-mvsnet_98.54 22998.41 22598.92 25399.03 30197.80 28297.46 32699.59 15498.90 16899.60 13699.46 22393.85 28699.78 26297.97 17499.89 9099.17 253
CHOSEN 280x42098.41 24398.41 22598.40 28799.34 24895.89 32196.94 33999.44 22498.80 18199.25 21899.52 20293.51 29099.98 698.94 10399.98 2199.32 225
API-MVS98.38 24698.39 22798.35 28998.83 31799.26 17199.14 15199.18 28398.59 20098.66 28598.78 32198.61 12499.57 33394.14 32599.56 23696.21 344
MG-MVS98.52 23298.39 22798.94 24999.15 28297.39 29498.18 27299.21 28198.89 17199.23 22299.63 14797.37 22899.74 27894.22 32499.61 23099.69 50
WTY-MVS98.59 22298.37 22999.26 21699.43 21998.40 25098.74 22699.13 28998.10 24699.21 22899.24 27394.82 27799.90 11997.86 18398.77 31099.49 173
SCA98.11 26298.36 23097.36 31799.20 27592.99 33898.17 27498.49 31698.24 23999.10 24499.57 18796.01 26799.94 5396.86 25099.62 22399.14 261
Patchmatch-RL test98.60 22098.36 23099.33 20099.77 7999.07 20698.27 26799.87 1798.91 16799.74 8699.72 9190.57 32199.79 25898.55 12999.85 11699.11 265
AdaColmapbinary98.60 22098.35 23299.38 19099.12 28799.22 18498.67 23199.42 22997.84 26498.81 27199.27 26497.32 23099.81 25095.14 31299.53 24799.10 267
test_prior398.62 21898.34 23399.46 16399.35 23899.22 18497.95 30099.39 24097.87 26098.05 31699.05 29497.90 19499.69 29495.99 29099.49 25499.48 177
CNLPA98.57 22498.34 23399.28 21299.18 27999.10 20298.34 26099.41 23098.48 21398.52 29598.98 30397.05 24299.78 26295.59 30399.50 25298.96 286
PatchT98.45 24098.32 23598.83 26798.94 30698.29 25699.24 12198.82 30099.84 2199.08 24599.76 7491.37 30799.94 5398.82 11199.00 30098.26 323
PMMVS98.49 23698.29 23699.11 23498.96 30598.42 24997.54 32099.32 25697.53 27698.47 29998.15 34097.88 19799.82 23497.46 21699.24 28999.09 270
UnsupCasMVSNet_bld98.55 22898.27 23799.40 18399.56 17099.37 14997.97 29999.68 10397.49 27999.08 24599.35 24895.41 27499.82 23497.70 19798.19 33099.01 284
112198.56 22598.24 23899.52 14699.49 19599.24 18099.30 10399.22 27995.77 31798.52 29599.29 26097.39 22699.85 19895.79 29999.34 27699.46 186
DP-MVS Recon98.50 23398.23 23999.31 20799.49 19599.46 12198.56 24199.63 13094.86 33098.85 26799.37 23897.81 20199.59 33196.08 28599.44 25998.88 293
MVSTER98.47 23898.22 24099.24 22299.06 29798.35 25599.08 17299.46 21999.27 11799.75 7899.66 13288.61 33099.85 19899.14 8299.92 7299.52 160
MVS-HIRNet97.86 27098.22 24096.76 32399.28 26391.53 34798.38 25992.60 35199.13 14099.31 21099.96 1097.18 23899.68 30598.34 14099.83 13099.07 278
CDPH-MVS98.56 22598.20 24299.61 11999.50 19099.46 12198.32 26399.41 23095.22 32499.21 22899.10 29198.34 15899.82 23495.09 31499.66 21599.56 137
CR-MVSNet98.35 25098.20 24298.83 26799.05 29898.12 26599.30 10399.67 10797.39 28499.16 23599.79 5791.87 30499.91 10098.78 11698.77 31098.44 316
MIMVSNet98.43 24198.20 24299.11 23499.53 17598.38 25399.58 5798.61 31098.96 15999.33 20699.76 7490.92 31499.81 25097.38 22199.76 16999.15 257
LFMVS98.46 23998.19 24599.26 21699.24 26998.52 24399.62 4696.94 33899.87 1499.31 21099.58 18091.04 31299.81 25098.68 12499.42 26499.45 188
CMPMVSbinary77.52 2398.50 23398.19 24599.41 18198.33 33999.56 10699.01 18299.59 15495.44 32199.57 14499.80 5195.64 27199.46 34196.47 27399.92 7299.21 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testtj98.56 22598.17 24799.72 7199.45 21499.60 9798.88 20299.50 20496.88 29999.18 23499.48 21597.08 24199.92 8493.69 33099.38 26999.63 92
ETH3D cwj APD-0.1698.50 23398.16 24899.51 14999.04 30099.39 14398.47 25199.47 21596.70 30698.78 27699.33 25297.62 21899.86 18094.69 32099.38 26999.28 233
BH-RMVSNet98.41 24398.14 24999.21 22599.21 27298.47 24498.60 23498.26 32398.35 22998.93 25799.31 25597.20 23799.66 31494.32 32299.10 29499.51 162
114514_t98.49 23698.11 25099.64 10299.73 10299.58 10399.24 12199.76 6489.94 34399.42 18299.56 19097.76 20599.86 18097.74 19399.82 13999.47 182
BH-untuned98.22 25998.09 25198.58 28199.38 23197.24 29798.55 24298.98 29597.81 26599.20 23398.76 32297.01 24399.65 32194.83 31698.33 32698.86 295
tpmrst97.73 27498.07 25296.73 32598.71 32992.00 34299.10 16598.86 29798.52 20898.92 26099.54 19891.90 30299.82 23498.02 16799.03 29898.37 318
PAPM_NR98.36 24798.04 25399.33 20099.48 20198.93 22098.79 22299.28 26897.54 27598.56 29398.57 32897.12 23999.69 29494.09 32698.90 30599.38 210
HQP-MVS98.36 24798.02 25499.39 18699.31 25598.94 21697.98 29699.37 24797.45 28098.15 31098.83 31896.67 24899.70 28894.73 31799.67 21199.53 150
QAPM98.40 24597.99 25599.65 9599.39 22899.47 11799.67 3599.52 19891.70 34098.78 27699.80 5198.55 13099.95 4294.71 31999.75 17299.53 150
PLCcopyleft97.35 1698.36 24797.99 25599.48 15899.32 25499.24 18098.50 24999.51 20195.19 32698.58 29198.96 30896.95 24599.83 22495.63 30299.25 28799.37 213
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Patchmatch-test98.10 26397.98 25798.48 28499.27 26596.48 31199.40 7999.07 29098.81 17999.23 22299.57 18790.11 32599.87 16096.69 26099.64 22099.09 270
alignmvs98.28 25397.96 25899.25 21999.12 28798.93 22099.03 17998.42 31899.64 5898.72 28197.85 34390.86 31799.62 32598.88 10799.13 29299.19 249
test_yl98.25 25597.95 25999.13 23299.17 28098.47 24499.00 18498.67 30898.97 15799.22 22699.02 29891.31 30899.69 29497.26 22898.93 30199.24 237
DCV-MVSNet98.25 25597.95 25999.13 23299.17 28098.47 24499.00 18498.67 30898.97 15799.22 22699.02 29891.31 30899.69 29497.26 22898.93 30199.24 237
train_agg98.35 25097.95 25999.57 13299.35 23899.35 15698.11 28199.41 23094.90 32897.92 32298.99 30098.02 18599.85 19895.38 30999.44 25999.50 168
HY-MVS98.23 998.21 26097.95 25998.99 24599.03 30198.24 25799.61 5098.72 30596.81 30398.73 28099.51 20594.06 28499.86 18096.91 24798.20 32898.86 295
miper_enhance_ethall98.03 26697.94 26398.32 29198.27 34096.43 31396.95 33899.41 23096.37 30999.43 18098.96 30894.74 27899.69 29497.71 19599.62 22398.83 298
DPM-MVS98.28 25397.94 26399.32 20499.36 23699.11 19897.31 33298.78 30296.88 29998.84 26899.11 29097.77 20499.61 32994.03 32799.36 27499.23 240
agg_prior198.33 25297.92 26599.57 13299.35 23899.36 15297.99 29599.39 24094.85 33197.76 33198.98 30398.03 18399.85 19895.49 30599.44 25999.51 162
JIA-IIPM98.06 26597.92 26598.50 28398.59 33297.02 30298.80 21998.51 31499.88 1397.89 32499.87 3091.89 30399.90 11998.16 16097.68 33898.59 307
MAR-MVS98.24 25797.92 26599.19 22898.78 32599.65 8299.17 14199.14 28795.36 32298.04 31898.81 32097.47 22199.72 28295.47 30799.06 29598.21 326
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
131498.00 26897.90 26898.27 29598.90 30897.45 29299.30 10399.06 29294.98 32797.21 33899.12 28898.43 14899.67 31095.58 30498.56 32197.71 336
OpenMVScopyleft98.12 1098.23 25897.89 26999.26 21699.19 27799.26 17199.65 4399.69 10091.33 34198.14 31499.77 7198.28 16399.96 3395.41 30899.55 24098.58 309
pmmvs398.08 26497.80 27098.91 25599.41 22497.69 28697.87 30799.66 11195.87 31599.50 16899.51 20590.35 32399.97 1698.55 12999.47 25699.08 273
PatchmatchNetpermissive97.65 27797.80 27097.18 32098.82 32092.49 34099.17 14198.39 32098.12 24598.79 27499.58 18090.71 31999.89 13297.23 23299.41 26599.16 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu97.62 27897.79 27297.11 32296.67 35192.31 34198.51 24898.04 32499.24 12395.77 34599.47 22093.78 28899.66 31498.98 9499.62 22399.37 213
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.13 26197.77 27399.18 23094.57 35297.99 27399.24 12197.96 32699.74 3597.29 33699.62 15693.13 29399.97 1698.59 12799.83 13099.58 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1397.73 27498.70 33090.83 35099.15 14998.02 32598.51 20998.82 27099.61 16590.98 31399.66 31496.89 24998.92 303
tpmvs97.39 28597.69 27596.52 32898.41 33691.76 34499.30 10398.94 29697.74 26697.85 32799.55 19692.40 30099.73 28096.25 28298.73 31698.06 331
GA-MVS97.99 26997.68 27698.93 25299.52 18098.04 27297.19 33699.05 29398.32 23598.81 27198.97 30689.89 32899.41 34298.33 14199.05 29699.34 221
ADS-MVSNet97.72 27697.67 27797.86 30499.14 28394.65 33199.22 12898.86 29796.97 29798.25 30699.64 13990.90 31599.84 21396.51 27099.56 23699.08 273
ADS-MVSNet297.78 27297.66 27898.12 29999.14 28395.36 32599.22 12898.75 30496.97 29798.25 30699.64 13990.90 31599.94 5396.51 27099.56 23699.08 273
TAPA-MVS97.92 1398.03 26697.55 27999.46 16399.47 20699.44 12898.50 24999.62 13386.79 34499.07 24899.26 26698.26 16599.62 32597.28 22799.73 18799.31 227
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
E-PMN97.14 29297.43 28096.27 33098.79 32391.62 34695.54 34699.01 29499.44 9498.88 26499.12 28892.78 29699.68 30594.30 32399.03 29897.50 337
baseline197.73 27497.33 28198.96 24799.30 25997.73 28499.40 7998.42 31899.33 11099.46 17499.21 27791.18 31099.82 23498.35 13991.26 34799.32 225
cl-mvsnet297.56 28197.28 28298.40 28798.37 33896.75 30897.24 33599.37 24797.31 28899.41 19099.22 27587.30 33299.37 34397.70 19799.62 22399.08 273
EMVS96.96 29597.28 28295.99 33398.76 32791.03 34995.26 34798.61 31099.34 10798.92 26098.88 31693.79 28799.66 31492.87 33199.05 29697.30 341
RRT_test8_iter0597.35 28897.25 28497.63 31198.81 32193.13 33799.26 11599.89 1299.51 8099.83 4699.68 12279.03 35499.88 14799.53 2699.72 19299.89 8
FMVSNet597.80 27197.25 28499.42 17498.83 31798.97 21399.38 8399.80 4698.87 17299.25 21899.69 11180.60 35199.91 10098.96 9899.90 8299.38 210
tttt051797.62 27897.20 28698.90 26199.76 8397.40 29399.48 6894.36 34799.06 15299.70 9899.49 21384.55 34599.94 5398.73 11999.65 21899.36 216
ETH3 D test640097.76 27397.19 28799.50 15299.38 23199.26 17198.34 26099.49 20992.99 33798.54 29499.20 27995.92 26999.82 23491.14 33799.66 21599.40 205
TR-MVS97.44 28497.15 28898.32 29198.53 33497.46 29198.47 25197.91 32896.85 30198.21 30998.51 33296.42 25699.51 33792.16 33397.29 34097.98 333
dp96.86 29697.07 28996.24 33198.68 33190.30 35399.19 13598.38 32197.35 28698.23 30899.59 17887.23 33399.82 23496.27 28198.73 31698.59 307
PAPR97.56 28197.07 28999.04 24398.80 32298.11 26797.63 31699.25 27494.56 33498.02 32098.25 33997.43 22399.68 30590.90 33898.74 31499.33 222
BH-w/o97.20 28997.01 29197.76 30799.08 29695.69 32298.03 29098.52 31395.76 31897.96 32198.02 34195.62 27299.47 33992.82 33297.25 34198.12 330
tpm cat196.78 29896.98 29296.16 33298.85 31590.59 35299.08 17299.32 25692.37 33897.73 33399.46 22391.15 31199.69 29496.07 28698.80 30798.21 326
thisisatest053097.45 28396.95 29398.94 24999.68 12797.73 28499.09 16994.19 34998.61 19999.56 15199.30 25784.30 34699.93 6698.27 14799.54 24599.16 255
test-LLR97.15 29096.95 29397.74 30998.18 34395.02 32897.38 32896.10 33998.00 24997.81 32898.58 32690.04 32699.91 10097.69 20398.78 30898.31 320
tpm97.15 29096.95 29397.75 30898.91 30794.24 33399.32 9697.96 32697.71 26898.29 30399.32 25386.72 34099.92 8498.10 16596.24 34499.09 270
test0.0.03 197.37 28696.91 29698.74 27497.72 34797.57 28897.60 31897.36 33798.00 24999.21 22898.02 34190.04 32699.79 25898.37 13695.89 34598.86 295
OpenMVS_ROBcopyleft97.31 1797.36 28796.84 29798.89 26299.29 26199.45 12698.87 20599.48 21186.54 34699.44 17699.74 8197.34 22999.86 18091.61 33499.28 28397.37 340
cascas96.99 29396.82 29897.48 31397.57 35095.64 32396.43 34499.56 17091.75 33997.13 33997.61 34695.58 27398.63 34896.68 26199.11 29398.18 329
CostFormer96.71 30196.79 29996.46 32998.90 30890.71 35199.41 7798.68 30694.69 33398.14 31499.34 25186.32 34299.80 25597.60 20898.07 33498.88 293
thisisatest051596.98 29496.42 30098.66 27899.42 22397.47 29097.27 33394.30 34897.24 29099.15 23798.86 31785.01 34399.87 16097.10 23999.39 26898.63 304
EPMVS96.53 30496.32 30197.17 32198.18 34392.97 33999.39 8189.95 35398.21 24198.61 28899.59 17886.69 34199.72 28296.99 24399.23 29198.81 299
baseline296.83 29796.28 30298.46 28599.09 29596.91 30598.83 21193.87 35097.23 29196.23 34498.36 33688.12 33199.90 11996.68 26198.14 33298.57 310
tpm296.35 30796.22 30396.73 32598.88 31491.75 34599.21 13098.51 31493.27 33697.89 32499.21 27784.83 34499.70 28896.04 28798.18 33198.75 302
thres600view796.60 30396.16 30497.93 30299.63 13996.09 31899.18 13697.57 33298.77 18598.72 28197.32 34987.04 33599.72 28288.57 34098.62 31997.98 333
MVEpermissive92.54 2296.66 30296.11 30598.31 29399.68 12797.55 28997.94 30295.60 34499.37 10490.68 35098.70 32496.56 25098.61 34986.94 34799.55 24098.77 301
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ET-MVSNet_ETH3D96.78 29896.07 30698.91 25599.26 26697.92 27997.70 31496.05 34297.96 25692.37 34998.43 33587.06 33499.90 11998.27 14797.56 33998.91 291
thres100view90096.39 30696.03 30797.47 31499.63 13995.93 31999.18 13697.57 33298.75 18998.70 28397.31 35087.04 33599.67 31087.62 34398.51 32396.81 342
tfpn200view996.30 30995.89 30897.53 31299.58 15096.11 31699.00 18497.54 33598.43 21598.52 29596.98 35286.85 33799.67 31087.62 34398.51 32396.81 342
thres40096.40 30595.89 30897.92 30399.58 15096.11 31699.00 18497.54 33598.43 21598.52 29596.98 35286.85 33799.67 31087.62 34398.51 32397.98 333
PCF-MVS96.03 1896.73 30095.86 31099.33 20099.44 21799.16 19396.87 34099.44 22486.58 34598.95 25599.40 23294.38 28299.88 14787.93 34299.80 15298.95 287
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TESTMET0.1,196.24 31095.84 31197.41 31698.24 34193.84 33497.38 32895.84 34398.43 21597.81 32898.56 32979.77 35299.89 13297.77 19098.77 31098.52 312
DWT-MVSNet_test96.03 31495.80 31296.71 32798.50 33591.93 34399.25 12097.87 32995.99 31496.81 34097.61 34681.02 34999.66 31497.20 23597.98 33598.54 311
test-mter96.23 31195.73 31397.74 30998.18 34395.02 32897.38 32896.10 33997.90 25897.81 32898.58 32679.12 35399.91 10097.69 20398.78 30898.31 320
thres20096.09 31295.68 31497.33 31999.48 20196.22 31598.53 24697.57 33298.06 24898.37 30296.73 35486.84 33999.61 32986.99 34698.57 32096.16 345
FPMVS96.32 30895.50 31598.79 27199.60 14598.17 26398.46 25698.80 30197.16 29396.28 34199.63 14782.19 34799.09 34588.45 34198.89 30699.10 267
tmp_tt95.75 31795.42 31696.76 32389.90 35394.42 33298.86 20697.87 32978.01 34799.30 21499.69 11197.70 20695.89 35099.29 5798.14 33299.95 1
PVSNet_095.53 1995.85 31695.31 31797.47 31498.78 32593.48 33695.72 34599.40 23796.18 31297.37 33497.73 34495.73 27099.58 33295.49 30581.40 34899.36 216
gg-mvs-nofinetune95.87 31595.17 31897.97 30198.19 34296.95 30399.69 2889.23 35499.89 1196.24 34399.94 1281.19 34899.51 33793.99 32898.20 32897.44 338
X-MVStestdata96.09 31294.87 31999.75 5499.71 10999.71 5999.37 8799.61 13799.29 11398.76 27861.30 35598.47 14399.88 14797.62 20599.73 18799.67 63
PAPM95.61 31994.71 32098.31 29399.12 28796.63 30996.66 34398.46 31790.77 34296.25 34298.68 32593.01 29499.69 29481.60 34897.86 33798.62 305
MVS95.72 31894.63 32198.99 24598.56 33397.98 27899.30 10398.86 29772.71 34997.30 33599.08 29298.34 15899.74 27889.21 33998.33 32699.26 234
IB-MVS95.41 2095.30 32094.46 32297.84 30598.76 32795.33 32697.33 33196.07 34196.02 31395.37 34797.41 34876.17 35599.96 3397.54 21195.44 34698.22 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testmvs28.94 32233.33 32315.79 33626.03 3549.81 35696.77 34115.67 35611.55 35123.87 35250.74 35819.03 3578.53 35323.21 35033.07 34929.03 349
cdsmvs_eth3d_5k24.88 32333.17 3240.00 3370.00 3560.00 3570.00 34899.62 1330.00 3520.00 35399.13 28499.82 40.00 3540.00 3510.00 3510.00 350
test12329.31 32133.05 32518.08 33525.93 35512.24 35597.53 32210.93 35711.78 35024.21 35150.08 35921.04 3568.60 35223.51 34932.43 35033.39 348
pcd_1.5k_mvsjas16.61 32422.14 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 199.28 400.00 3540.00 3510.00 3510.00 350
uanet_test8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
sosnet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
Regformer8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
uanet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.26 33111.02 3330.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.16 2820.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.69 11999.77 3999.22 27997.50 27899.69 10197.75 19299.70 19899.77 31
OPU-MVS99.29 21099.12 28799.44 12899.20 13199.40 23299.00 7198.84 34796.54 26899.60 23199.58 129
test_241102_TWO99.54 18099.13 14099.76 7399.63 14798.32 16199.92 8497.85 18599.69 20199.75 38
test_241102_ONE99.69 11999.82 2499.54 18099.12 14399.82 4899.49 21398.91 8299.52 336
save fliter99.53 17599.25 17598.29 26599.38 24699.07 148
test_0728_THIRD99.18 13199.62 12899.61 16598.58 12799.91 10097.72 19499.80 15299.77 31
test_0728_SECOND99.83 2199.70 11699.79 3499.14 15199.61 13799.92 8497.88 17999.72 19299.77 31
test072699.69 11999.80 3299.24 12199.57 16599.16 13699.73 9099.65 13798.35 156
GSMVS99.14 261
test_part299.62 14299.67 7599.55 156
test_part10.00 3370.00 3570.00 34899.53 1890.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs190.81 31899.14 261
sam_mvs90.52 322
ambc99.20 22799.35 23898.53 24299.17 14199.46 21999.67 10799.80 5198.46 14699.70 28897.92 17699.70 19899.38 210
MTGPAbinary99.53 189
test_post199.14 15151.63 35789.54 32999.82 23496.86 250
test_post52.41 35690.25 32499.86 180
patchmatchnet-post99.62 15690.58 32099.94 53
GG-mvs-BLEND97.36 31797.59 34896.87 30699.70 2288.49 35594.64 34897.26 35180.66 35099.12 34491.50 33596.50 34396.08 346
MTMP99.09 16998.59 312
gm-plane-assit97.59 34889.02 35493.47 33598.30 33799.84 21396.38 277
test9_res95.10 31399.44 25999.50 168
TEST999.35 23899.35 15698.11 28199.41 23094.83 33297.92 32298.99 30098.02 18599.85 198
test_899.34 24899.31 16298.08 28599.40 23794.90 32897.87 32698.97 30698.02 18599.84 213
agg_prior294.58 32199.46 25899.50 168
agg_prior99.35 23899.36 15299.39 24097.76 33199.85 198
TestCases99.63 10699.78 7199.64 8499.83 3198.63 19699.63 12199.72 9198.68 11399.75 27696.38 27799.83 13099.51 162
test_prior499.19 19198.00 293
test_prior297.95 30097.87 26098.05 31699.05 29497.90 19495.99 29099.49 254
test_prior99.46 16399.35 23899.22 18499.39 24099.69 29499.48 177
旧先验297.94 30295.33 32398.94 25699.88 14796.75 257
新几何298.04 289
新几何199.52 14699.50 19099.22 18499.26 27195.66 32098.60 28999.28 26297.67 21199.89 13295.95 29499.32 27999.45 188
旧先验199.49 19599.29 16599.26 27199.39 23697.67 21199.36 27499.46 186
无先验98.01 29199.23 27895.83 31699.85 19895.79 29999.44 193
原ACMM297.92 304
原ACMM199.37 19399.47 20698.87 22799.27 26996.74 30598.26 30599.32 25397.93 19299.82 23495.96 29399.38 26999.43 199
test22299.51 18499.08 20597.83 30999.29 26595.21 32598.68 28499.31 25597.28 23199.38 26999.43 199
testdata299.89 13295.99 290
segment_acmp98.37 154
testdata99.42 17499.51 18498.93 22099.30 26396.20 31198.87 26599.40 23298.33 16099.89 13296.29 28099.28 28399.44 193
testdata197.72 31297.86 263
test1299.54 14399.29 26199.33 15999.16 28598.43 30097.54 21999.82 23499.47 25699.48 177
plane_prior799.58 15099.38 146
plane_prior699.47 20699.26 17197.24 232
plane_prior599.54 18099.82 23495.84 29799.78 16399.60 115
plane_prior499.25 268
plane_prior399.31 16298.36 22499.14 239
plane_prior298.80 21998.94 161
plane_prior199.51 184
plane_prior99.24 18098.42 25797.87 26099.71 196
n20.00 358
nn0.00 358
door-mid99.83 31
lessismore_v099.64 10299.86 2999.38 14690.66 35299.89 2699.83 4094.56 28199.97 1699.56 2399.92 7299.57 135
LGP-MVS_train99.74 5999.82 4299.63 8899.73 7897.56 27399.64 11799.69 11199.37 2999.89 13296.66 26399.87 10699.69 50
test1199.29 265
door99.77 59
HQP5-MVS98.94 216
HQP-NCC99.31 25597.98 29697.45 28098.15 310
ACMP_Plane99.31 25597.98 29697.45 28098.15 310
BP-MVS94.73 317
HQP4-MVS98.15 31099.70 28899.53 150
HQP3-MVS99.37 24799.67 211
HQP2-MVS96.67 248
NP-MVS99.40 22799.13 19698.83 318
MDTV_nov1_ep13_2view91.44 34899.14 15197.37 28599.21 22891.78 30696.75 25799.03 282
ACMMP++_ref99.94 60
ACMMP++99.79 157
Test By Simon98.41 150
ITE_SJBPF99.38 19099.63 13999.44 12899.73 7898.56 20299.33 20699.53 20098.88 8799.68 30596.01 28899.65 21899.02 283
DeepMVS_CXcopyleft97.98 30099.69 11996.95 30399.26 27175.51 34895.74 34698.28 33896.47 25499.62 32591.23 33697.89 33697.38 339