LCM-MVSNet | | | 99.95 1 | 99.95 1 | 99.95 1 | 99.99 1 | 99.99 1 | 99.95 2 | 99.97 2 | 99.99 1 | 100.00 1 | 99.98 8 | 99.78 6 | 100.00 1 | 99.92 1 | 100.00 1 | 99.87 9 |
|
mvs_tets | | | 99.90 2 | 99.90 2 | 99.90 4 | 99.96 4 | 99.79 34 | 99.72 19 | 99.88 15 | 99.92 6 | 99.98 3 | 99.93 13 | 99.94 1 | 99.98 6 | 99.77 12 | 100.00 1 | 99.92 3 |
|
jajsoiax | | | 99.89 3 | 99.89 3 | 99.89 7 | 99.96 4 | 99.78 37 | 99.70 22 | 99.86 19 | 99.89 11 | 99.98 3 | 99.90 21 | 99.94 1 | 99.98 6 | 99.75 13 | 100.00 1 | 99.90 4 |
|
ANet_high | | | 99.88 4 | 99.87 4 | 99.91 2 | 99.99 1 | 99.91 2 | 99.65 43 | 100.00 1 | 99.90 7 | 100.00 1 | 99.97 9 | 99.61 16 | 99.97 16 | 99.75 13 | 100.00 1 | 99.84 14 |
|
LTVRE_ROB | | 99.19 1 | 99.88 4 | 99.87 4 | 99.88 11 | 99.91 15 | 99.90 4 | 99.96 1 | 99.92 5 | 99.90 7 | 99.97 6 | 99.87 30 | 99.81 5 | 99.95 42 | 99.54 24 | 99.99 12 | 99.80 23 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs6 | | | 99.86 6 | 99.86 6 | 99.83 21 | 99.94 10 | 99.90 4 | 99.83 6 | 99.91 8 | 99.85 19 | 99.94 11 | 99.95 11 | 99.73 8 | 99.90 119 | 99.65 16 | 99.97 29 | 99.69 50 |
|
UniMVSNet_ETH3D | | | 99.85 7 | 99.83 7 | 99.90 4 | 99.89 21 | 99.91 2 | 99.89 4 | 99.71 90 | 99.93 4 | 99.95 10 | 99.89 25 | 99.71 9 | 99.96 33 | 99.51 28 | 99.97 29 | 99.84 14 |
|
PS-MVSNAJss | | | 99.84 8 | 99.82 8 | 99.89 7 | 99.96 4 | 99.77 39 | 99.68 31 | 99.85 23 | 99.95 3 | 99.98 3 | 99.92 16 | 99.28 40 | 99.98 6 | 99.75 13 | 100.00 1 | 99.94 2 |
|
test_djsdf | | | 99.84 8 | 99.81 9 | 99.91 2 | 99.94 10 | 99.84 16 | 99.77 11 | 99.80 46 | 99.73 36 | 99.97 6 | 99.92 16 | 99.77 7 | 99.98 6 | 99.43 35 | 100.00 1 | 99.90 4 |
|
v7n | | | 99.82 10 | 99.80 10 | 99.88 11 | 99.96 4 | 99.84 16 | 99.82 8 | 99.82 36 | 99.84 21 | 99.94 11 | 99.91 19 | 99.13 57 | 99.96 33 | 99.83 9 | 99.99 12 | 99.83 18 |
|
pm-mvs1 | | | 99.79 12 | 99.79 11 | 99.78 37 | 99.91 15 | 99.83 20 | 99.76 13 | 99.87 17 | 99.73 36 | 99.89 26 | 99.87 30 | 99.63 14 | 99.87 160 | 99.54 24 | 99.92 72 | 99.63 92 |
|
anonymousdsp | | | 99.80 11 | 99.77 12 | 99.90 4 | 99.96 4 | 99.88 6 | 99.73 16 | 99.85 23 | 99.70 43 | 99.92 18 | 99.93 13 | 99.45 21 | 99.97 16 | 99.36 44 | 100.00 1 | 99.85 13 |
|
TransMVSNet (Re) | | | 99.78 13 | 99.77 12 | 99.81 26 | 99.91 15 | 99.85 11 | 99.75 14 | 99.86 19 | 99.70 43 | 99.91 20 | 99.89 25 | 99.60 18 | 99.87 160 | 99.59 19 | 99.74 180 | 99.71 44 |
|
UA-Net | | | 99.78 13 | 99.76 14 | 99.86 16 | 99.72 106 | 99.71 59 | 99.91 3 | 99.95 4 | 99.96 2 | 99.71 96 | 99.91 19 | 99.15 52 | 99.97 16 | 99.50 30 | 100.00 1 | 99.90 4 |
|
Vis-MVSNet | | | 99.75 15 | 99.74 15 | 99.79 34 | 99.88 23 | 99.66 77 | 99.69 28 | 99.92 5 | 99.67 50 | 99.77 71 | 99.75 78 | 99.61 16 | 99.98 6 | 99.35 45 | 99.98 21 | 99.72 41 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
OurMVSNet-221017-0 | | | 99.75 15 | 99.71 16 | 99.84 19 | 99.96 4 | 99.83 20 | 99.83 6 | 99.85 23 | 99.80 29 | 99.93 14 | 99.93 13 | 98.54 132 | 99.93 66 | 99.59 19 | 99.98 21 | 99.76 35 |
|
TDRefinement | | | 99.72 17 | 99.70 17 | 99.77 39 | 99.90 19 | 99.85 11 | 99.86 5 | 99.92 5 | 99.69 46 | 99.78 66 | 99.92 16 | 99.37 29 | 99.88 147 | 98.93 104 | 99.95 47 | 99.60 115 |
|
v8 | | | 99.68 22 | 99.69 18 | 99.65 95 | 99.80 55 | 99.40 141 | 99.66 38 | 99.76 64 | 99.64 58 | 99.93 14 | 99.85 35 | 98.66 118 | 99.84 213 | 99.88 6 | 99.99 12 | 99.71 44 |
|
v10 | | | 99.69 21 | 99.69 18 | 99.66 90 | 99.81 49 | 99.39 143 | 99.66 38 | 99.75 70 | 99.60 72 | 99.92 18 | 99.87 30 | 98.75 107 | 99.86 180 | 99.90 2 | 99.99 12 | 99.73 40 |
|
XXY-MVS | | | 99.71 18 | 99.67 20 | 99.81 26 | 99.89 21 | 99.72 57 | 99.59 55 | 99.82 36 | 99.39 102 | 99.82 48 | 99.84 39 | 99.38 27 | 99.91 100 | 99.38 41 | 99.93 68 | 99.80 23 |
|
nrg030 | | | 99.70 19 | 99.66 21 | 99.82 23 | 99.76 83 | 99.84 16 | 99.61 50 | 99.70 94 | 99.93 4 | 99.78 66 | 99.68 122 | 99.10 58 | 99.78 262 | 99.45 33 | 99.96 40 | 99.83 18 |
|
FC-MVSNet-test | | | 99.70 19 | 99.65 22 | 99.86 16 | 99.88 23 | 99.86 10 | 99.72 19 | 99.78 56 | 99.90 7 | 99.82 48 | 99.83 40 | 98.45 147 | 99.87 160 | 99.51 28 | 99.97 29 | 99.86 11 |
|
DSMNet-mixed | | | 99.48 52 | 99.65 22 | 98.95 248 | 99.71 109 | 97.27 296 | 99.50 64 | 99.82 36 | 99.59 74 | 99.41 190 | 99.85 35 | 99.62 15 | 100.00 1 | 99.53 26 | 99.89 90 | 99.59 124 |
|
FMVSNet1 | | | 99.66 24 | 99.63 24 | 99.73 66 | 99.78 71 | 99.77 39 | 99.68 31 | 99.70 94 | 99.67 50 | 99.82 48 | 99.83 40 | 98.98 73 | 99.90 119 | 99.24 61 | 99.97 29 | 99.53 150 |
|
EU-MVSNet | | | 99.39 77 | 99.62 25 | 98.72 275 | 99.88 23 | 96.44 312 | 99.56 60 | 99.85 23 | 99.90 7 | 99.90 22 | 99.85 35 | 98.09 179 | 99.83 224 | 99.58 21 | 99.95 47 | 99.90 4 |
|
VPA-MVSNet | | | 99.66 24 | 99.62 25 | 99.79 34 | 99.68 127 | 99.75 47 | 99.62 46 | 99.69 100 | 99.85 19 | 99.80 58 | 99.81 49 | 98.81 92 | 99.91 100 | 99.47 32 | 99.88 98 | 99.70 47 |
|
baseline | | | 99.63 30 | 99.62 25 | 99.66 90 | 99.80 55 | 99.62 90 | 99.44 74 | 99.80 46 | 99.71 40 | 99.72 91 | 99.69 111 | 99.15 52 | 99.83 224 | 99.32 50 | 99.94 60 | 99.53 150 |
|
MIMVSNet1 | | | 99.66 24 | 99.62 25 | 99.80 29 | 99.94 10 | 99.87 7 | 99.69 28 | 99.77 59 | 99.78 32 | 99.93 14 | 99.89 25 | 97.94 191 | 99.92 84 | 99.65 16 | 99.98 21 | 99.62 104 |
|
casdiffmvs | | | 99.63 30 | 99.61 29 | 99.67 83 | 99.79 65 | 99.59 100 | 99.13 158 | 99.85 23 | 99.79 31 | 99.76 73 | 99.72 91 | 99.33 34 | 99.82 234 | 99.21 62 | 99.94 60 | 99.59 124 |
|
DTE-MVSNet | | | 99.68 22 | 99.61 29 | 99.88 11 | 99.80 55 | 99.87 7 | 99.67 35 | 99.71 90 | 99.72 39 | 99.84 41 | 99.78 64 | 98.67 116 | 99.97 16 | 99.30 54 | 99.95 47 | 99.80 23 |
|
DeepC-MVS | | 98.90 4 | 99.62 32 | 99.61 29 | 99.67 83 | 99.72 106 | 99.44 128 | 99.24 121 | 99.71 90 | 99.27 117 | 99.93 14 | 99.90 21 | 99.70 11 | 99.93 66 | 98.99 92 | 99.99 12 | 99.64 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PEN-MVS | | | 99.66 24 | 99.59 32 | 99.89 7 | 99.83 36 | 99.87 7 | 99.66 38 | 99.73 78 | 99.70 43 | 99.84 41 | 99.73 85 | 98.56 129 | 99.96 33 | 99.29 57 | 99.94 60 | 99.83 18 |
|
Gipuma | | | 99.57 37 | 99.59 32 | 99.49 155 | 99.98 3 | 99.71 59 | 99.72 19 | 99.84 29 | 99.81 26 | 99.94 11 | 99.78 64 | 98.91 82 | 99.71 286 | 98.41 134 | 99.95 47 | 99.05 280 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
FIs | | | 99.65 29 | 99.58 34 | 99.84 19 | 99.84 33 | 99.85 11 | 99.66 38 | 99.75 70 | 99.86 16 | 99.74 86 | 99.79 57 | 98.27 164 | 99.85 198 | 99.37 43 | 99.93 68 | 99.83 18 |
|
v1240 | | | 99.56 40 | 99.58 34 | 99.51 149 | 99.80 55 | 99.00 209 | 99.00 184 | 99.65 122 | 99.15 138 | 99.90 22 | 99.75 78 | 99.09 60 | 99.88 147 | 99.90 2 | 99.96 40 | 99.67 63 |
|
PS-CasMVS | | | 99.66 24 | 99.58 34 | 99.89 7 | 99.80 55 | 99.85 11 | 99.66 38 | 99.73 78 | 99.62 62 | 99.84 41 | 99.71 98 | 98.62 122 | 99.96 33 | 99.30 54 | 99.96 40 | 99.86 11 |
|
new-patchmatchnet | | | 99.35 86 | 99.57 37 | 98.71 277 | 99.82 42 | 96.62 310 | 98.55 242 | 99.75 70 | 99.50 81 | 99.88 32 | 99.87 30 | 99.31 35 | 99.88 147 | 99.43 35 | 100.00 1 | 99.62 104 |
|
Anonymous20231211 | | | 99.62 32 | 99.57 37 | 99.76 45 | 99.61 143 | 99.60 97 | 99.81 9 | 99.73 78 | 99.82 25 | 99.90 22 | 99.90 21 | 97.97 190 | 99.86 180 | 99.42 39 | 99.96 40 | 99.80 23 |
|
v1921920 | | | 99.56 40 | 99.57 37 | 99.55 139 | 99.75 93 | 99.11 198 | 99.05 175 | 99.61 137 | 99.15 138 | 99.88 32 | 99.71 98 | 99.08 63 | 99.87 160 | 99.90 2 | 99.97 29 | 99.66 73 |
|
v1192 | | | 99.57 37 | 99.57 37 | 99.57 132 | 99.77 79 | 99.22 184 | 99.04 177 | 99.60 147 | 99.18 131 | 99.87 36 | 99.72 91 | 99.08 63 | 99.85 198 | 99.89 5 | 99.98 21 | 99.66 73 |
|
testing_2 | | | 99.58 36 | 99.56 41 | 99.62 115 | 99.81 49 | 99.44 128 | 99.14 151 | 99.43 227 | 99.69 46 | 99.82 48 | 99.79 57 | 99.14 54 | 99.79 258 | 99.31 53 | 99.95 47 | 99.63 92 |
|
EG-PatchMatch MVS | | | 99.57 37 | 99.56 41 | 99.62 115 | 99.77 79 | 99.33 159 | 99.26 115 | 99.76 64 | 99.32 111 | 99.80 58 | 99.78 64 | 99.29 38 | 99.87 160 | 99.15 76 | 99.91 81 | 99.66 73 |
|
v144192 | | | 99.55 43 | 99.54 43 | 99.58 127 | 99.78 71 | 99.20 190 | 99.11 164 | 99.62 133 | 99.18 131 | 99.89 26 | 99.72 91 | 98.66 118 | 99.87 160 | 99.88 6 | 99.97 29 | 99.66 73 |
|
V42 | | | 99.56 40 | 99.54 43 | 99.63 106 | 99.79 65 | 99.46 121 | 99.39 81 | 99.59 154 | 99.24 123 | 99.86 37 | 99.70 105 | 98.55 130 | 99.82 234 | 99.79 11 | 99.95 47 | 99.60 115 |
|
test20.03 | | | 99.55 43 | 99.54 43 | 99.58 127 | 99.79 65 | 99.37 149 | 99.02 180 | 99.89 12 | 99.60 72 | 99.82 48 | 99.62 156 | 98.81 92 | 99.89 132 | 99.43 35 | 99.86 113 | 99.47 182 |
|
ACMH | | 98.42 6 | 99.59 35 | 99.54 43 | 99.72 71 | 99.86 29 | 99.62 90 | 99.56 60 | 99.79 52 | 98.77 185 | 99.80 58 | 99.85 35 | 99.64 13 | 99.85 198 | 98.70 121 | 99.89 90 | 99.70 47 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
v1144 | | | 99.54 45 | 99.53 47 | 99.59 123 | 99.79 65 | 99.28 167 | 99.10 165 | 99.61 137 | 99.20 129 | 99.84 41 | 99.73 85 | 98.67 116 | 99.84 213 | 99.86 8 | 99.98 21 | 99.64 87 |
|
WR-MVS_H | | | 99.61 34 | 99.53 47 | 99.87 14 | 99.80 55 | 99.83 20 | 99.67 35 | 99.75 70 | 99.58 75 | 99.85 38 | 99.69 111 | 98.18 175 | 99.94 53 | 99.28 59 | 99.95 47 | 99.83 18 |
|
EI-MVSNet-UG-set | | | 99.48 52 | 99.50 49 | 99.42 174 | 99.57 160 | 98.65 239 | 99.24 121 | 99.46 219 | 99.68 48 | 99.80 58 | 99.66 132 | 98.99 72 | 99.89 132 | 99.19 67 | 99.90 82 | 99.72 41 |
|
EI-MVSNet-Vis-set | | | 99.47 58 | 99.49 50 | 99.42 174 | 99.57 160 | 98.66 237 | 99.24 121 | 99.46 219 | 99.67 50 | 99.79 63 | 99.65 137 | 98.97 75 | 99.89 132 | 99.15 76 | 99.89 90 | 99.71 44 |
|
pmmvs-eth3d | | | 99.48 52 | 99.47 51 | 99.51 149 | 99.77 79 | 99.41 140 | 98.81 216 | 99.66 111 | 99.42 101 | 99.75 78 | 99.66 132 | 99.20 47 | 99.76 272 | 98.98 94 | 99.99 12 | 99.36 216 |
|
v2v482 | | | 99.50 48 | 99.47 51 | 99.58 127 | 99.78 71 | 99.25 175 | 99.14 151 | 99.58 163 | 99.25 121 | 99.81 55 | 99.62 156 | 98.24 166 | 99.84 213 | 99.83 9 | 99.97 29 | 99.64 87 |
|
TranMVSNet+NR-MVSNet | | | 99.54 45 | 99.47 51 | 99.76 45 | 99.58 150 | 99.64 84 | 99.30 103 | 99.63 130 | 99.61 66 | 99.71 96 | 99.56 190 | 98.76 105 | 99.96 33 | 99.14 82 | 99.92 72 | 99.68 56 |
|
IterMVS-LS | | | 99.41 70 | 99.47 51 | 99.25 219 | 99.81 49 | 98.09 269 | 98.85 208 | 99.76 64 | 99.62 62 | 99.83 46 | 99.64 139 | 98.54 132 | 99.97 16 | 99.15 76 | 99.99 12 | 99.68 56 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PMMVS2 | | | 99.48 52 | 99.45 55 | 99.57 132 | 99.76 83 | 98.99 210 | 98.09 283 | 99.90 11 | 98.95 160 | 99.78 66 | 99.58 180 | 99.57 19 | 99.93 66 | 99.48 31 | 99.95 47 | 99.79 29 |
|
TAMVS | | | 99.49 50 | 99.45 55 | 99.63 106 | 99.48 201 | 99.42 136 | 99.45 71 | 99.57 165 | 99.66 54 | 99.78 66 | 99.83 40 | 97.85 199 | 99.86 180 | 99.44 34 | 99.96 40 | 99.61 111 |
|
Regformer-4 | | | 99.45 61 | 99.44 57 | 99.50 152 | 99.52 180 | 98.94 216 | 99.17 141 | 99.53 189 | 99.64 58 | 99.76 73 | 99.60 172 | 98.96 78 | 99.90 119 | 98.91 105 | 99.84 120 | 99.67 63 |
|
EI-MVSNet | | | 99.38 79 | 99.44 57 | 99.21 225 | 99.58 150 | 98.09 269 | 99.26 115 | 99.46 219 | 99.62 62 | 99.75 78 | 99.67 128 | 98.54 132 | 99.85 198 | 99.15 76 | 99.92 72 | 99.68 56 |
|
MVSFormer | | | 99.41 70 | 99.44 57 | 99.31 207 | 99.57 160 | 98.40 250 | 99.77 11 | 99.80 46 | 99.73 36 | 99.63 121 | 99.30 257 | 98.02 185 | 99.98 6 | 99.43 35 | 99.69 201 | 99.55 140 |
|
CP-MVSNet | | | 99.54 45 | 99.43 60 | 99.87 14 | 99.76 83 | 99.82 24 | 99.57 58 | 99.61 137 | 99.54 76 | 99.80 58 | 99.64 139 | 97.79 203 | 99.95 42 | 99.21 62 | 99.94 60 | 99.84 14 |
|
ACMH+ | | 98.40 8 | 99.50 48 | 99.43 60 | 99.71 75 | 99.86 29 | 99.76 45 | 99.32 96 | 99.77 59 | 99.53 78 | 99.77 71 | 99.76 74 | 99.26 44 | 99.78 262 | 97.77 190 | 99.88 98 | 99.60 115 |
|
v148 | | | 99.40 73 | 99.41 62 | 99.39 186 | 99.76 83 | 98.94 216 | 99.09 169 | 99.59 154 | 99.17 134 | 99.81 55 | 99.61 165 | 98.41 150 | 99.69 294 | 99.32 50 | 99.94 60 | 99.53 150 |
|
Regformer-3 | | | 99.41 70 | 99.41 62 | 99.40 183 | 99.52 180 | 98.70 234 | 99.17 141 | 99.44 224 | 99.62 62 | 99.75 78 | 99.60 172 | 98.90 85 | 99.85 198 | 98.89 106 | 99.84 120 | 99.65 81 |
|
mvs_anonymous | | | 99.28 103 | 99.39 64 | 98.94 249 | 99.19 277 | 97.81 281 | 99.02 180 | 99.55 175 | 99.78 32 | 99.85 38 | 99.80 51 | 98.24 166 | 99.86 180 | 99.57 22 | 99.50 252 | 99.15 257 |
|
DP-MVS | | | 99.48 52 | 99.39 64 | 99.74 59 | 99.57 160 | 99.62 90 | 99.29 110 | 99.61 137 | 99.87 14 | 99.74 86 | 99.76 74 | 98.69 112 | 99.87 160 | 98.20 153 | 99.80 152 | 99.75 38 |
|
tfpnnormal | | | 99.43 63 | 99.38 66 | 99.60 121 | 99.87 27 | 99.75 47 | 99.59 55 | 99.78 56 | 99.71 40 | 99.90 22 | 99.69 111 | 98.85 90 | 99.90 119 | 97.25 231 | 99.78 163 | 99.15 257 |
|
PVSNet_Blended_VisFu | | | 99.40 73 | 99.38 66 | 99.44 169 | 99.90 19 | 98.66 237 | 98.94 199 | 99.91 8 | 97.97 253 | 99.79 63 | 99.73 85 | 99.05 68 | 99.97 16 | 99.15 76 | 99.99 12 | 99.68 56 |
|
ACMM | | 98.09 11 | 99.46 59 | 99.38 66 | 99.72 71 | 99.80 55 | 99.69 70 | 99.13 158 | 99.65 122 | 98.99 155 | 99.64 117 | 99.72 91 | 99.39 23 | 99.86 180 | 98.23 150 | 99.81 147 | 99.60 115 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
VPNet | | | 99.46 59 | 99.37 69 | 99.71 75 | 99.82 42 | 99.59 100 | 99.48 68 | 99.70 94 | 99.81 26 | 99.69 101 | 99.58 180 | 97.66 215 | 99.86 180 | 99.17 72 | 99.44 259 | 99.67 63 |
|
Baseline_NR-MVSNet | | | 99.49 50 | 99.37 69 | 99.82 23 | 99.91 15 | 99.84 16 | 98.83 211 | 99.86 19 | 99.68 48 | 99.65 115 | 99.88 28 | 97.67 211 | 99.87 160 | 99.03 89 | 99.86 113 | 99.76 35 |
|
COLMAP_ROB | | 98.06 12 | 99.45 61 | 99.37 69 | 99.70 79 | 99.83 36 | 99.70 66 | 99.38 83 | 99.78 56 | 99.53 78 | 99.67 107 | 99.78 64 | 99.19 48 | 99.86 180 | 97.32 223 | 99.87 106 | 99.55 140 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
APDe-MVS | | | 99.48 52 | 99.36 72 | 99.85 18 | 99.55 171 | 99.81 27 | 99.50 64 | 99.69 100 | 98.99 155 | 99.75 78 | 99.71 98 | 98.79 99 | 99.93 66 | 98.46 133 | 99.85 116 | 99.80 23 |
|
3Dnovator | | 99.15 2 | 99.43 63 | 99.36 72 | 99.65 95 | 99.39 228 | 99.42 136 | 99.70 22 | 99.56 170 | 99.23 125 | 99.35 201 | 99.80 51 | 99.17 50 | 99.95 42 | 98.21 152 | 99.84 120 | 99.59 124 |
|
Anonymous20240529 | | | 99.42 66 | 99.34 74 | 99.65 95 | 99.53 175 | 99.60 97 | 99.63 45 | 99.39 240 | 99.47 88 | 99.76 73 | 99.78 64 | 98.13 177 | 99.86 180 | 98.70 121 | 99.68 204 | 99.49 173 |
|
xiu_mvs_v1_base_debu | | | 99.23 113 | 99.34 74 | 98.91 255 | 99.59 147 | 98.23 258 | 98.47 251 | 99.66 111 | 99.61 66 | 99.68 103 | 98.94 310 | 99.39 23 | 99.97 16 | 99.18 69 | 99.55 240 | 98.51 313 |
|
xiu_mvs_v1_base | | | 99.23 113 | 99.34 74 | 98.91 255 | 99.59 147 | 98.23 258 | 98.47 251 | 99.66 111 | 99.61 66 | 99.68 103 | 98.94 310 | 99.39 23 | 99.97 16 | 99.18 69 | 99.55 240 | 98.51 313 |
|
xiu_mvs_v1_base_debi | | | 99.23 113 | 99.34 74 | 98.91 255 | 99.59 147 | 98.23 258 | 98.47 251 | 99.66 111 | 99.61 66 | 99.68 103 | 98.94 310 | 99.39 23 | 99.97 16 | 99.18 69 | 99.55 240 | 98.51 313 |
|
UGNet | | | 99.38 79 | 99.34 74 | 99.49 155 | 98.90 308 | 98.90 224 | 99.70 22 | 99.35 251 | 99.86 16 | 98.57 292 | 99.81 49 | 98.50 142 | 99.93 66 | 99.38 41 | 99.98 21 | 99.66 73 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
diffmvs | | | 99.34 91 | 99.32 79 | 99.39 186 | 99.67 132 | 98.77 231 | 98.57 240 | 99.81 45 | 99.61 66 | 99.48 170 | 99.41 230 | 98.47 143 | 99.86 180 | 98.97 96 | 99.90 82 | 99.53 150 |
|
Anonymous20231206 | | | 99.35 86 | 99.31 80 | 99.47 160 | 99.74 99 | 99.06 208 | 99.28 111 | 99.74 75 | 99.23 125 | 99.72 91 | 99.53 200 | 97.63 217 | 99.88 147 | 99.11 84 | 99.84 120 | 99.48 177 |
|
MVS_Test | | | 99.28 103 | 99.31 80 | 99.19 228 | 99.35 238 | 98.79 230 | 99.36 89 | 99.49 209 | 99.17 134 | 99.21 228 | 99.67 128 | 98.78 101 | 99.66 314 | 99.09 85 | 99.66 215 | 99.10 267 |
|
NR-MVSNet | | | 99.40 73 | 99.31 80 | 99.68 81 | 99.43 219 | 99.55 109 | 99.73 16 | 99.50 204 | 99.46 92 | 99.88 32 | 99.36 243 | 97.54 219 | 99.87 160 | 98.97 96 | 99.87 106 | 99.63 92 |
|
GBi-Net | | | 99.42 66 | 99.31 80 | 99.73 66 | 99.49 195 | 99.77 39 | 99.68 31 | 99.70 94 | 99.44 94 | 99.62 128 | 99.83 40 | 97.21 234 | 99.90 119 | 98.96 98 | 99.90 82 | 99.53 150 |
|
test1 | | | 99.42 66 | 99.31 80 | 99.73 66 | 99.49 195 | 99.77 39 | 99.68 31 | 99.70 94 | 99.44 94 | 99.62 128 | 99.83 40 | 97.21 234 | 99.90 119 | 98.96 98 | 99.90 82 | 99.53 150 |
|
SD-MVS | | | 99.01 173 | 99.30 85 | 98.15 297 | 99.50 190 | 99.40 141 | 98.94 199 | 99.61 137 | 99.22 128 | 99.75 78 | 99.82 46 | 99.54 20 | 95.51 351 | 97.48 215 | 99.87 106 | 99.54 147 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HPM-MVS_fast | | | 99.43 63 | 99.30 85 | 99.80 29 | 99.83 36 | 99.81 27 | 99.52 62 | 99.70 94 | 98.35 229 | 99.51 167 | 99.50 208 | 99.31 35 | 99.88 147 | 98.18 157 | 99.84 120 | 99.69 50 |
|
SixPastTwentyTwo | | | 99.42 66 | 99.30 85 | 99.76 45 | 99.92 14 | 99.67 75 | 99.70 22 | 99.14 287 | 99.65 56 | 99.89 26 | 99.90 21 | 96.20 263 | 99.94 53 | 99.42 39 | 99.92 72 | 99.67 63 |
|
CHOSEN 1792x2688 | | | 99.39 77 | 99.30 85 | 99.65 95 | 99.88 23 | 99.25 175 | 98.78 223 | 99.88 15 | 98.66 193 | 99.96 8 | 99.79 57 | 97.45 222 | 99.93 66 | 99.34 46 | 99.99 12 | 99.78 30 |
|
DELS-MVS | | | 99.34 91 | 99.30 85 | 99.48 158 | 99.51 184 | 99.36 152 | 98.12 279 | 99.53 189 | 99.36 106 | 99.41 190 | 99.61 165 | 99.22 46 | 99.87 160 | 99.21 62 | 99.68 204 | 99.20 247 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PM-MVS | | | 99.36 84 | 99.29 90 | 99.58 127 | 99.83 36 | 99.66 77 | 98.95 197 | 99.86 19 | 98.85 174 | 99.81 55 | 99.73 85 | 98.40 152 | 99.92 84 | 98.36 137 | 99.83 130 | 99.17 253 |
|
CSCG | | | 99.37 81 | 99.29 90 | 99.60 121 | 99.71 109 | 99.46 121 | 99.43 76 | 99.85 23 | 98.79 182 | 99.41 190 | 99.60 172 | 98.92 80 | 99.92 84 | 98.02 167 | 99.92 72 | 99.43 199 |
|
SED-MVS | | | 99.40 73 | 99.28 92 | 99.77 39 | 99.69 119 | 99.82 24 | 99.20 131 | 99.54 180 | 99.13 140 | 99.82 48 | 99.63 147 | 98.91 82 | 99.92 84 | 97.85 185 | 99.70 198 | 99.58 129 |
|
FMVSNet2 | | | 99.35 86 | 99.28 92 | 99.55 139 | 99.49 195 | 99.35 156 | 99.45 71 | 99.57 165 | 99.44 94 | 99.70 98 | 99.74 81 | 97.21 234 | 99.87 160 | 99.03 89 | 99.94 60 | 99.44 193 |
|
ab-mvs | | | 99.33 95 | 99.28 92 | 99.47 160 | 99.57 160 | 99.39 143 | 99.78 10 | 99.43 227 | 98.87 172 | 99.57 144 | 99.82 46 | 98.06 182 | 99.87 160 | 98.69 123 | 99.73 187 | 99.15 257 |
|
Regformer-1 | | | 99.32 97 | 99.27 95 | 99.47 160 | 99.41 224 | 98.95 215 | 98.99 189 | 99.48 211 | 99.48 83 | 99.66 111 | 99.52 202 | 98.78 101 | 99.87 160 | 98.36 137 | 99.74 180 | 99.60 115 |
|
Regformer-2 | | | 99.34 91 | 99.27 95 | 99.53 145 | 99.41 224 | 99.10 202 | 98.99 189 | 99.53 189 | 99.47 88 | 99.66 111 | 99.52 202 | 98.80 96 | 99.89 132 | 98.31 143 | 99.74 180 | 99.60 115 |
|
testgi | | | 99.29 102 | 99.26 97 | 99.37 193 | 99.75 93 | 98.81 228 | 98.84 209 | 99.89 12 | 98.38 222 | 99.75 78 | 99.04 297 | 99.36 32 | 99.86 180 | 99.08 86 | 99.25 287 | 99.45 188 |
|
UniMVSNet (Re) | | | 99.37 81 | 99.26 97 | 99.68 81 | 99.51 184 | 99.58 103 | 98.98 193 | 99.60 147 | 99.43 99 | 99.70 98 | 99.36 243 | 97.70 206 | 99.88 147 | 99.20 65 | 99.87 106 | 99.59 124 |
|
UniMVSNet_NR-MVSNet | | | 99.37 81 | 99.25 99 | 99.72 71 | 99.47 206 | 99.56 106 | 98.97 195 | 99.61 137 | 99.43 99 | 99.67 107 | 99.28 262 | 97.85 199 | 99.95 42 | 99.17 72 | 99.81 147 | 99.65 81 |
|
TSAR-MVS + MP. | | | 99.34 91 | 99.24 100 | 99.63 106 | 99.82 42 | 99.37 149 | 99.26 115 | 99.35 251 | 98.77 185 | 99.57 144 | 99.70 105 | 99.27 43 | 99.88 147 | 97.71 195 | 99.75 172 | 99.65 81 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
3Dnovator+ | | 98.92 3 | 99.35 86 | 99.24 100 | 99.67 83 | 99.35 238 | 99.47 117 | 99.62 46 | 99.50 204 | 99.44 94 | 99.12 242 | 99.78 64 | 98.77 104 | 99.94 53 | 97.87 182 | 99.72 192 | 99.62 104 |
|
abl_6 | | | 99.36 84 | 99.23 102 | 99.75 54 | 99.71 109 | 99.74 52 | 99.33 93 | 99.76 64 | 99.07 148 | 99.65 115 | 99.63 147 | 99.09 60 | 99.92 84 | 97.13 238 | 99.76 169 | 99.58 129 |
|
DU-MVS | | | 99.33 95 | 99.21 103 | 99.71 75 | 99.43 219 | 99.56 106 | 98.83 211 | 99.53 189 | 99.38 103 | 99.67 107 | 99.36 243 | 97.67 211 | 99.95 42 | 99.17 72 | 99.81 147 | 99.63 92 |
|
MTAPA | | | 99.35 86 | 99.20 104 | 99.80 29 | 99.81 49 | 99.81 27 | 99.33 93 | 99.53 189 | 99.27 117 | 99.42 182 | 99.63 147 | 98.21 170 | 99.95 42 | 97.83 188 | 99.79 157 | 99.65 81 |
|
D2MVS | | | 99.22 121 | 99.19 105 | 99.29 210 | 99.69 119 | 98.74 232 | 98.81 216 | 99.41 230 | 98.55 204 | 99.68 103 | 99.69 111 | 98.13 177 | 99.87 160 | 98.82 111 | 99.98 21 | 99.24 237 |
|
ETV-MVS | | | 99.18 135 | 99.18 106 | 99.16 231 | 99.34 248 | 99.28 167 | 99.12 162 | 99.79 52 | 99.48 83 | 98.93 257 | 98.55 330 | 99.40 22 | 99.93 66 | 98.51 131 | 99.52 249 | 98.28 322 |
|
MSP-MVS | | | 99.32 97 | 99.17 107 | 99.77 39 | 99.69 119 | 99.80 32 | 99.14 151 | 99.31 260 | 99.16 136 | 99.62 128 | 99.61 165 | 98.35 156 | 99.91 100 | 97.88 179 | 99.72 192 | 99.61 111 |
|
IterMVS-SCA-FT | | | 99.00 175 | 99.16 108 | 98.51 282 | 99.75 93 | 95.90 320 | 98.07 286 | 99.84 29 | 99.84 21 | 99.89 26 | 99.73 85 | 96.01 267 | 99.99 4 | 99.33 48 | 100.00 1 | 99.63 92 |
|
APD-MVS_3200maxsize | | | 99.31 99 | 99.16 108 | 99.74 59 | 99.53 175 | 99.75 47 | 99.27 114 | 99.61 137 | 99.19 130 | 99.57 144 | 99.64 139 | 98.76 105 | 99.90 119 | 97.29 225 | 99.62 223 | 99.56 137 |
|
IterMVS | | | 98.97 179 | 99.16 108 | 98.42 286 | 99.74 99 | 95.64 323 | 98.06 288 | 99.83 31 | 99.83 24 | 99.85 38 | 99.74 81 | 96.10 266 | 99.99 4 | 99.27 60 | 100.00 1 | 99.63 92 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
LCM-MVSNet-Re | | | 99.28 103 | 99.15 111 | 99.67 83 | 99.33 253 | 99.76 45 | 99.34 91 | 99.97 2 | 98.93 164 | 99.91 20 | 99.79 57 | 98.68 113 | 99.93 66 | 96.80 255 | 99.56 236 | 99.30 228 |
|
zzz-MVS | | | 99.30 100 | 99.14 112 | 99.80 29 | 99.81 49 | 99.81 27 | 98.73 228 | 99.53 189 | 99.27 117 | 99.42 182 | 99.63 147 | 98.21 170 | 99.95 42 | 97.83 188 | 99.79 157 | 99.65 81 |
|
SteuartSystems-ACMMP | | | 99.30 100 | 99.14 112 | 99.76 45 | 99.87 27 | 99.66 77 | 99.18 136 | 99.60 147 | 98.55 204 | 99.57 144 | 99.67 128 | 99.03 70 | 99.94 53 | 97.01 242 | 99.80 152 | 99.69 50 |
Skip Steuart: Steuart Systems R&D Blog. |
test_0402 | | | 99.22 121 | 99.14 112 | 99.45 167 | 99.79 65 | 99.43 133 | 99.28 111 | 99.68 103 | 99.54 76 | 99.40 195 | 99.56 190 | 99.07 65 | 99.82 234 | 96.01 288 | 99.96 40 | 99.11 265 |
|
OPM-MVS | | | 99.26 108 | 99.13 115 | 99.63 106 | 99.70 116 | 99.61 96 | 98.58 236 | 99.48 211 | 98.50 210 | 99.52 164 | 99.63 147 | 99.14 54 | 99.76 272 | 97.89 178 | 99.77 167 | 99.51 162 |
|
CDS-MVSNet | | | 99.22 121 | 99.13 115 | 99.50 152 | 99.35 238 | 99.11 198 | 98.96 196 | 99.54 180 | 99.46 92 | 99.61 134 | 99.70 105 | 96.31 260 | 99.83 224 | 99.34 46 | 99.88 98 | 99.55 140 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
wuyk23d | | | 97.58 280 | 99.13 115 | 92.93 334 | 99.69 119 | 99.49 114 | 99.52 62 | 99.77 59 | 97.97 253 | 99.96 8 | 99.79 57 | 99.84 3 | 99.94 53 | 95.85 296 | 99.82 139 | 79.36 347 |
|
ppachtmachnet_test | | | 98.89 193 | 99.12 118 | 98.20 296 | 99.66 133 | 95.24 327 | 97.63 316 | 99.68 103 | 99.08 146 | 99.78 66 | 99.62 156 | 98.65 120 | 99.88 147 | 98.02 167 | 99.96 40 | 99.48 177 |
|
Fast-Effi-MVS+-dtu | | | 99.20 128 | 99.12 118 | 99.43 172 | 99.25 267 | 99.69 70 | 99.05 175 | 99.82 36 | 99.50 81 | 98.97 253 | 99.05 294 | 98.98 73 | 99.98 6 | 98.20 153 | 99.24 289 | 98.62 305 |
|
DeepC-MVS_fast | | 98.47 5 | 99.23 113 | 99.12 118 | 99.56 136 | 99.28 263 | 99.22 184 | 98.99 189 | 99.40 237 | 99.08 146 | 99.58 141 | 99.64 139 | 98.90 85 | 99.83 224 | 97.44 217 | 99.75 172 | 99.63 92 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMMP_NAP | | | 99.28 103 | 99.11 121 | 99.79 34 | 99.75 93 | 99.81 27 | 98.95 197 | 99.53 189 | 98.27 238 | 99.53 162 | 99.73 85 | 98.75 107 | 99.87 160 | 97.70 197 | 99.83 130 | 99.68 56 |
|
xiu_mvs_v2_base | | | 99.02 169 | 99.11 121 | 98.77 272 | 99.37 234 | 98.09 269 | 98.13 278 | 99.51 201 | 99.47 88 | 99.42 182 | 98.54 331 | 99.38 27 | 99.97 16 | 98.83 109 | 99.33 278 | 98.24 324 |
|
pmmvs5 | | | 99.19 131 | 99.11 121 | 99.42 174 | 99.76 83 | 98.88 225 | 98.55 242 | 99.73 78 | 98.82 178 | 99.72 91 | 99.62 156 | 96.56 250 | 99.82 234 | 99.32 50 | 99.95 47 | 99.56 137 |
|
XVS | | | 99.27 107 | 99.11 121 | 99.75 54 | 99.71 109 | 99.71 59 | 99.37 87 | 99.61 137 | 99.29 113 | 98.76 278 | 99.47 220 | 98.47 143 | 99.88 147 | 97.62 205 | 99.73 187 | 99.67 63 |
|
VDD-MVS | | | 99.20 128 | 99.11 121 | 99.44 169 | 99.43 219 | 98.98 211 | 99.50 64 | 98.32 322 | 99.80 29 | 99.56 151 | 99.69 111 | 96.99 244 | 99.85 198 | 98.99 92 | 99.73 187 | 99.50 168 |
|
jason | | | 99.16 140 | 99.11 121 | 99.32 204 | 99.75 93 | 98.44 247 | 98.26 268 | 99.39 240 | 98.70 191 | 99.74 86 | 99.30 257 | 98.54 132 | 99.97 16 | 98.48 132 | 99.82 139 | 99.55 140 |
jason: jason. |
LS3D | | | 99.24 112 | 99.11 121 | 99.61 119 | 98.38 337 | 99.79 34 | 99.57 58 | 99.68 103 | 99.61 66 | 99.15 237 | 99.71 98 | 98.70 111 | 99.91 100 | 97.54 211 | 99.68 204 | 99.13 264 |
|
XVG-ACMP-BASELINE | | | 99.23 113 | 99.10 128 | 99.63 106 | 99.82 42 | 99.58 103 | 98.83 211 | 99.72 87 | 98.36 224 | 99.60 136 | 99.71 98 | 98.92 80 | 99.91 100 | 97.08 240 | 99.84 120 | 99.40 205 |
|
our_test_3 | | | 98.85 198 | 99.09 129 | 98.13 298 | 99.66 133 | 94.90 330 | 97.72 312 | 99.58 163 | 99.07 148 | 99.64 117 | 99.62 156 | 98.19 173 | 99.93 66 | 98.41 134 | 99.95 47 | 99.55 140 |
|
MSLP-MVS++ | | | 99.05 163 | 99.09 129 | 98.91 255 | 99.21 272 | 98.36 254 | 98.82 215 | 99.47 215 | 98.85 174 | 98.90 263 | 99.56 190 | 98.78 101 | 99.09 345 | 98.57 128 | 99.68 204 | 99.26 234 |
|
MVP-Stereo | | | 99.16 140 | 99.08 131 | 99.43 172 | 99.48 201 | 99.07 206 | 99.08 172 | 99.55 175 | 98.63 196 | 99.31 210 | 99.68 122 | 98.19 173 | 99.78 262 | 98.18 157 | 99.58 234 | 99.45 188 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
HFP-MVS | | | 99.25 109 | 99.08 131 | 99.76 45 | 99.73 102 | 99.70 66 | 99.31 100 | 99.59 154 | 98.36 224 | 99.36 199 | 99.37 238 | 98.80 96 | 99.91 100 | 97.43 218 | 99.75 172 | 99.68 56 |
|
PS-MVSNAJ | | | 99.00 175 | 99.08 131 | 98.76 273 | 99.37 234 | 98.10 268 | 98.00 293 | 99.51 201 | 99.47 88 | 99.41 190 | 98.50 333 | 99.28 40 | 99.97 16 | 98.83 109 | 99.34 276 | 98.20 328 |
|
ACMMP | | | 99.25 109 | 99.08 131 | 99.74 59 | 99.79 65 | 99.68 73 | 99.50 64 | 99.65 122 | 98.07 247 | 99.52 164 | 99.69 111 | 98.57 128 | 99.92 84 | 97.18 236 | 99.79 157 | 99.63 92 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
AllTest | | | 99.21 126 | 99.07 135 | 99.63 106 | 99.78 71 | 99.64 84 | 99.12 162 | 99.83 31 | 98.63 196 | 99.63 121 | 99.72 91 | 98.68 113 | 99.75 276 | 96.38 277 | 99.83 130 | 99.51 162 |
|
HPM-MVS | | | 99.25 109 | 99.07 135 | 99.78 37 | 99.81 49 | 99.75 47 | 99.61 50 | 99.67 107 | 97.72 267 | 99.35 201 | 99.25 268 | 99.23 45 | 99.92 84 | 97.21 234 | 99.82 139 | 99.67 63 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
pmmvs4 | | | 99.13 146 | 99.06 137 | 99.36 196 | 99.57 160 | 99.10 202 | 98.01 291 | 99.25 274 | 98.78 184 | 99.58 141 | 99.44 227 | 98.24 166 | 99.76 272 | 98.74 118 | 99.93 68 | 99.22 242 |
|
VNet | | | 99.18 135 | 99.06 137 | 99.56 136 | 99.24 269 | 99.36 152 | 99.33 93 | 99.31 260 | 99.67 50 | 99.47 171 | 99.57 187 | 96.48 253 | 99.84 213 | 99.15 76 | 99.30 281 | 99.47 182 |
|
ACMMPR | | | 99.23 113 | 99.06 137 | 99.76 45 | 99.74 99 | 99.69 70 | 99.31 100 | 99.59 154 | 98.36 224 | 99.35 201 | 99.38 237 | 98.61 124 | 99.93 66 | 97.43 218 | 99.75 172 | 99.67 63 |
|
XVG-OURS | | | 99.21 126 | 99.06 137 | 99.65 95 | 99.82 42 | 99.62 90 | 97.87 307 | 99.74 75 | 98.36 224 | 99.66 111 | 99.68 122 | 99.71 9 | 99.90 119 | 96.84 253 | 99.88 98 | 99.43 199 |
|
CANet | | | 99.11 152 | 99.05 141 | 99.28 212 | 98.83 317 | 98.56 241 | 98.71 230 | 99.41 230 | 99.25 121 | 99.23 222 | 99.22 275 | 97.66 215 | 99.94 53 | 99.19 67 | 99.97 29 | 99.33 222 |
|
region2R | | | 99.23 113 | 99.05 141 | 99.77 39 | 99.76 83 | 99.70 66 | 99.31 100 | 99.59 154 | 98.41 218 | 99.32 208 | 99.36 243 | 98.73 110 | 99.93 66 | 97.29 225 | 99.74 180 | 99.67 63 |
|
MDA-MVSNet-bldmvs | | | 99.06 160 | 99.05 141 | 99.07 240 | 99.80 55 | 97.83 280 | 98.89 201 | 99.72 87 | 99.29 113 | 99.63 121 | 99.70 105 | 96.47 254 | 99.89 132 | 98.17 159 | 99.82 139 | 99.50 168 |
|
LPG-MVS_test | | | 99.22 121 | 99.05 141 | 99.74 59 | 99.82 42 | 99.63 88 | 99.16 147 | 99.73 78 | 97.56 273 | 99.64 117 | 99.69 111 | 99.37 29 | 99.89 132 | 96.66 263 | 99.87 106 | 99.69 50 |
|
CP-MVS | | | 99.23 113 | 99.05 141 | 99.75 54 | 99.66 133 | 99.66 77 | 99.38 83 | 99.62 133 | 98.38 222 | 99.06 249 | 99.27 264 | 98.79 99 | 99.94 53 | 97.51 214 | 99.82 139 | 99.66 73 |
|
ZNCC-MVS | | | 99.22 121 | 99.04 146 | 99.77 39 | 99.76 83 | 99.73 53 | 99.28 111 | 99.56 170 | 98.19 243 | 99.14 239 | 99.29 260 | 98.84 91 | 99.92 84 | 97.53 213 | 99.80 152 | 99.64 87 |
|
TSAR-MVS + GP. | | | 99.12 148 | 99.04 146 | 99.38 190 | 99.34 248 | 99.16 193 | 98.15 275 | 99.29 265 | 98.18 244 | 99.63 121 | 99.62 156 | 99.18 49 | 99.68 305 | 98.20 153 | 99.74 180 | 99.30 228 |
|
CS-MVS | | | 99.09 157 | 99.03 148 | 99.25 219 | 99.45 214 | 99.49 114 | 99.41 77 | 99.82 36 | 99.10 145 | 98.03 319 | 98.48 334 | 99.30 37 | 99.89 132 | 98.30 144 | 99.41 265 | 98.35 319 |
|
MVS_111021_LR | | | 99.13 146 | 99.03 148 | 99.42 174 | 99.58 150 | 99.32 161 | 97.91 306 | 99.73 78 | 98.68 192 | 99.31 210 | 99.48 215 | 99.09 60 | 99.66 314 | 97.70 197 | 99.77 167 | 99.29 231 |
|
RPSCF | | | 99.18 135 | 99.02 150 | 99.64 102 | 99.83 36 | 99.85 11 | 99.44 74 | 99.82 36 | 98.33 234 | 99.50 168 | 99.78 64 | 97.90 194 | 99.65 321 | 96.78 256 | 99.83 130 | 99.44 193 |
|
MVS_111021_HR | | | 99.12 148 | 99.02 150 | 99.40 183 | 99.50 190 | 99.11 198 | 97.92 304 | 99.71 90 | 98.76 188 | 99.08 245 | 99.47 220 | 99.17 50 | 99.54 334 | 97.85 185 | 99.76 169 | 99.54 147 |
|
DeepPCF-MVS | | 98.42 6 | 99.18 135 | 99.02 150 | 99.67 83 | 99.22 271 | 99.75 47 | 97.25 334 | 99.47 215 | 98.72 190 | 99.66 111 | 99.70 105 | 99.29 38 | 99.63 324 | 98.07 166 | 99.81 147 | 99.62 104 |
|
EIA-MVS | | | 99.12 148 | 99.01 153 | 99.45 167 | 99.36 236 | 99.62 90 | 99.34 91 | 99.79 52 | 98.41 218 | 98.84 268 | 98.89 315 | 98.75 107 | 99.84 213 | 98.15 161 | 99.51 250 | 98.89 292 |
|
PGM-MVS | | | 99.20 128 | 99.01 153 | 99.77 39 | 99.75 93 | 99.71 59 | 99.16 147 | 99.72 87 | 97.99 251 | 99.42 182 | 99.60 172 | 98.81 92 | 99.93 66 | 96.91 247 | 99.74 180 | 99.66 73 |
|
PVSNet_BlendedMVS | | | 99.03 167 | 99.01 153 | 99.09 236 | 99.54 172 | 97.99 273 | 98.58 236 | 99.82 36 | 97.62 271 | 99.34 204 | 99.71 98 | 98.52 139 | 99.77 270 | 97.98 172 | 99.97 29 | 99.52 160 |
|
SR-MVS | | | 99.19 131 | 99.00 156 | 99.74 59 | 99.51 184 | 99.72 57 | 99.18 136 | 99.60 147 | 98.85 174 | 99.47 171 | 99.58 180 | 98.38 153 | 99.92 84 | 96.92 246 | 99.54 245 | 99.57 135 |
|
SMA-MVS | | | 99.19 131 | 99.00 156 | 99.73 66 | 99.46 211 | 99.73 53 | 99.13 158 | 99.52 198 | 97.40 283 | 99.57 144 | 99.64 139 | 98.93 79 | 99.83 224 | 97.61 207 | 99.79 157 | 99.63 92 |
|
canonicalmvs | | | 99.02 169 | 99.00 156 | 99.09 236 | 99.10 293 | 98.70 234 | 99.61 50 | 99.66 111 | 99.63 61 | 98.64 286 | 97.65 345 | 99.04 69 | 99.54 334 | 98.79 113 | 98.92 303 | 99.04 281 |
|
mPP-MVS | | | 99.19 131 | 99.00 156 | 99.76 45 | 99.76 83 | 99.68 73 | 99.38 83 | 99.54 180 | 98.34 233 | 99.01 251 | 99.50 208 | 98.53 136 | 99.93 66 | 97.18 236 | 99.78 163 | 99.66 73 |
|
EPP-MVSNet | | | 99.17 139 | 99.00 156 | 99.66 90 | 99.80 55 | 99.43 133 | 99.70 22 | 99.24 277 | 99.48 83 | 99.56 151 | 99.77 71 | 94.89 276 | 99.93 66 | 98.72 120 | 99.89 90 | 99.63 92 |
|
YYNet1 | | | 98.95 185 | 98.99 161 | 98.84 265 | 99.64 137 | 97.14 300 | 98.22 271 | 99.32 256 | 98.92 166 | 99.59 139 | 99.66 132 | 97.40 224 | 99.83 224 | 98.27 147 | 99.90 82 | 99.55 140 |
|
MDA-MVSNet_test_wron | | | 98.95 185 | 98.99 161 | 98.85 263 | 99.64 137 | 97.16 299 | 98.23 270 | 99.33 254 | 98.93 164 | 99.56 151 | 99.66 132 | 97.39 226 | 99.83 224 | 98.29 145 | 99.88 98 | 99.55 140 |
|
XVG-OURS-SEG-HR | | | 99.16 140 | 98.99 161 | 99.66 90 | 99.84 33 | 99.64 84 | 98.25 269 | 99.73 78 | 98.39 221 | 99.63 121 | 99.43 228 | 99.70 11 | 99.90 119 | 97.34 222 | 98.64 318 | 99.44 193 |
|
MSDG | | | 99.08 158 | 98.98 164 | 99.37 193 | 99.60 145 | 99.13 196 | 97.54 320 | 99.74 75 | 98.84 177 | 99.53 162 | 99.55 196 | 99.10 58 | 99.79 258 | 97.07 241 | 99.86 113 | 99.18 251 |
|
Effi-MVS+ | | | 99.06 160 | 98.97 165 | 99.34 198 | 99.31 255 | 98.98 211 | 98.31 264 | 99.91 8 | 98.81 179 | 98.79 274 | 98.94 310 | 99.14 54 | 99.84 213 | 98.79 113 | 98.74 314 | 99.20 247 |
|
MS-PatchMatch | | | 99.00 175 | 98.97 165 | 99.09 236 | 99.11 292 | 98.19 261 | 98.76 225 | 99.33 254 | 98.49 212 | 99.44 176 | 99.58 180 | 98.21 170 | 99.69 294 | 98.20 153 | 99.62 223 | 99.39 208 |
|
xxxxxxxxxxxxxcwj | | | 99.11 152 | 98.96 167 | 99.54 143 | 99.53 175 | 99.25 175 | 98.29 265 | 99.76 64 | 99.07 148 | 99.42 182 | 99.61 165 | 98.86 88 | 99.87 160 | 96.45 274 | 99.68 204 | 99.49 173 |
|
GST-MVS | | | 99.16 140 | 98.96 167 | 99.75 54 | 99.73 102 | 99.73 53 | 99.20 131 | 99.55 175 | 98.22 240 | 99.32 208 | 99.35 248 | 98.65 120 | 99.91 100 | 96.86 250 | 99.74 180 | 99.62 104 |
|
PHI-MVS | | | 99.11 152 | 98.95 169 | 99.59 123 | 99.13 285 | 99.59 100 | 99.17 141 | 99.65 122 | 97.88 259 | 99.25 218 | 99.46 223 | 98.97 75 | 99.80 255 | 97.26 228 | 99.82 139 | 99.37 213 |
|
SF-MVS | | | 99.10 156 | 98.93 170 | 99.62 115 | 99.58 150 | 99.51 112 | 99.13 158 | 99.65 122 | 97.97 253 | 99.42 182 | 99.61 165 | 98.86 88 | 99.87 160 | 96.45 274 | 99.68 204 | 99.49 173 |
|
WR-MVS | | | 99.11 152 | 98.93 170 | 99.66 90 | 99.30 259 | 99.42 136 | 98.42 257 | 99.37 247 | 99.04 153 | 99.57 144 | 99.20 279 | 96.89 246 | 99.86 180 | 98.66 125 | 99.87 106 | 99.70 47 |
|
USDC | | | 98.96 182 | 98.93 170 | 99.05 242 | 99.54 172 | 97.99 273 | 97.07 337 | 99.80 46 | 98.21 241 | 99.75 78 | 99.77 71 | 98.43 148 | 99.64 323 | 97.90 177 | 99.88 98 | 99.51 162 |
|
TinyColmap | | | 98.97 179 | 98.93 170 | 99.07 240 | 99.46 211 | 98.19 261 | 97.75 311 | 99.75 70 | 98.79 182 | 99.54 158 | 99.70 105 | 98.97 75 | 99.62 325 | 96.63 265 | 99.83 130 | 99.41 203 |
|
DPE-MVS | | | 99.14 144 | 98.92 174 | 99.82 23 | 99.57 160 | 99.77 39 | 98.74 226 | 99.60 147 | 98.55 204 | 99.76 73 | 99.69 111 | 98.23 169 | 99.92 84 | 96.39 276 | 99.75 172 | 99.76 35 |
|
Effi-MVS+-dtu | | | 99.07 159 | 98.92 174 | 99.52 146 | 98.89 311 | 99.78 37 | 99.15 149 | 99.66 111 | 99.34 107 | 98.92 260 | 99.24 273 | 97.69 208 | 99.98 6 | 98.11 163 | 99.28 283 | 98.81 299 |
|
MP-MVS-pluss | | | 99.14 144 | 98.92 174 | 99.80 29 | 99.83 36 | 99.83 20 | 98.61 232 | 99.63 130 | 96.84 302 | 99.44 176 | 99.58 180 | 98.81 92 | 99.91 100 | 97.70 197 | 99.82 139 | 99.67 63 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
LF4IMVS | | | 99.01 173 | 98.92 174 | 99.27 214 | 99.71 109 | 99.28 167 | 98.59 235 | 99.77 59 | 98.32 235 | 99.39 196 | 99.41 230 | 98.62 122 | 99.84 213 | 96.62 266 | 99.84 120 | 98.69 303 |
|
#test# | | | 99.12 148 | 98.90 178 | 99.76 45 | 99.73 102 | 99.70 66 | 99.10 165 | 99.59 154 | 97.60 272 | 99.36 199 | 99.37 238 | 98.80 96 | 99.91 100 | 96.84 253 | 99.75 172 | 99.68 56 |
|
new_pmnet | | | 98.88 194 | 98.89 179 | 98.84 265 | 99.70 116 | 97.62 287 | 98.15 275 | 99.50 204 | 97.98 252 | 99.62 128 | 99.54 198 | 98.15 176 | 99.94 53 | 97.55 210 | 99.84 120 | 98.95 287 |
|
CVMVSNet | | | 98.61 219 | 98.88 180 | 97.80 306 | 99.58 150 | 93.60 335 | 99.26 115 | 99.64 128 | 99.66 54 | 99.72 91 | 99.67 128 | 93.26 291 | 99.93 66 | 99.30 54 | 99.81 147 | 99.87 9 |
|
Fast-Effi-MVS+ | | | 99.02 169 | 98.87 181 | 99.46 163 | 99.38 231 | 99.50 113 | 99.04 177 | 99.79 52 | 97.17 292 | 98.62 287 | 98.74 323 | 99.34 33 | 99.95 42 | 98.32 142 | 99.41 265 | 98.92 290 |
|
lupinMVS | | | 98.96 182 | 98.87 181 | 99.24 222 | 99.57 160 | 98.40 250 | 98.12 279 | 99.18 283 | 98.28 237 | 99.63 121 | 99.13 284 | 98.02 185 | 99.97 16 | 98.22 151 | 99.69 201 | 99.35 219 |
|
CANet_DTU | | | 98.91 188 | 98.85 183 | 99.09 236 | 98.79 323 | 98.13 264 | 98.18 272 | 99.31 260 | 99.48 83 | 98.86 266 | 99.51 205 | 96.56 250 | 99.95 42 | 99.05 88 | 99.95 47 | 99.19 249 |
|
IS-MVSNet | | | 99.03 167 | 98.85 183 | 99.55 139 | 99.80 55 | 99.25 175 | 99.73 16 | 99.15 286 | 99.37 104 | 99.61 134 | 99.71 98 | 94.73 279 | 99.81 250 | 97.70 197 | 99.88 98 | 99.58 129 |
|
1112_ss | | | 99.05 163 | 98.84 185 | 99.67 83 | 99.66 133 | 99.29 165 | 98.52 247 | 99.82 36 | 97.65 270 | 99.43 180 | 99.16 282 | 96.42 256 | 99.91 100 | 99.07 87 | 99.84 120 | 99.80 23 |
|
ACMP | | 97.51 14 | 99.05 163 | 98.84 185 | 99.67 83 | 99.78 71 | 99.55 109 | 98.88 202 | 99.66 111 | 97.11 296 | 99.47 171 | 99.60 172 | 99.07 65 | 99.89 132 | 96.18 283 | 99.85 116 | 99.58 129 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MP-MVS | | | 99.06 160 | 98.83 187 | 99.76 45 | 99.76 83 | 99.71 59 | 99.32 96 | 99.50 204 | 98.35 229 | 98.97 253 | 99.48 215 | 98.37 154 | 99.92 84 | 95.95 294 | 99.75 172 | 99.63 92 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
VDDNet | | | 98.97 179 | 98.82 188 | 99.42 174 | 99.71 109 | 98.81 228 | 99.62 46 | 98.68 306 | 99.81 26 | 99.38 197 | 99.80 51 | 94.25 283 | 99.85 198 | 98.79 113 | 99.32 279 | 99.59 124 |
|
MCST-MVS | | | 99.02 169 | 98.81 189 | 99.65 95 | 99.58 150 | 99.49 114 | 98.58 236 | 99.07 290 | 98.40 220 | 99.04 250 | 99.25 268 | 98.51 141 | 99.80 255 | 97.31 224 | 99.51 250 | 99.65 81 |
|
PMVS | | 92.94 21 | 98.82 201 | 98.81 189 | 98.85 263 | 99.84 33 | 97.99 273 | 99.20 131 | 99.47 215 | 99.71 40 | 99.42 182 | 99.82 46 | 98.09 179 | 99.47 339 | 93.88 329 | 99.85 116 | 99.07 278 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CNVR-MVS | | | 98.99 178 | 98.80 191 | 99.56 136 | 99.25 267 | 99.43 133 | 98.54 245 | 99.27 269 | 98.58 201 | 98.80 273 | 99.43 228 | 98.53 136 | 99.70 288 | 97.22 233 | 99.59 233 | 99.54 147 |
|
DVP-MVS | | | 99.04 166 | 98.79 192 | 99.81 26 | 99.78 71 | 99.73 53 | 99.35 90 | 99.57 165 | 98.54 207 | 99.54 158 | 98.99 300 | 96.81 247 | 99.93 66 | 96.97 244 | 99.53 247 | 99.77 31 |
|
sss | | | 98.90 190 | 98.77 193 | 99.27 214 | 99.48 201 | 98.44 247 | 98.72 229 | 99.32 256 | 97.94 257 | 99.37 198 | 99.35 248 | 96.31 260 | 99.91 100 | 98.85 108 | 99.63 222 | 99.47 182 |
|
Test_1112_low_res | | | 98.95 185 | 98.73 194 | 99.63 106 | 99.68 127 | 99.15 195 | 98.09 283 | 99.80 46 | 97.14 294 | 99.46 174 | 99.40 232 | 96.11 265 | 99.89 132 | 99.01 91 | 99.84 120 | 99.84 14 |
|
OMC-MVS | | | 98.90 190 | 98.72 195 | 99.44 169 | 99.39 228 | 99.42 136 | 98.58 236 | 99.64 128 | 97.31 288 | 99.44 176 | 99.62 156 | 98.59 126 | 99.69 294 | 96.17 284 | 99.79 157 | 99.22 242 |
|
eth_miper_zixun_eth | | | 98.68 215 | 98.71 196 | 98.60 279 | 99.10 293 | 96.84 307 | 97.52 324 | 99.54 180 | 98.94 161 | 99.58 141 | 99.48 215 | 96.25 262 | 99.76 272 | 98.01 170 | 99.93 68 | 99.21 244 |
|
cl_fuxian | | | 98.72 213 | 98.71 196 | 98.72 275 | 99.12 287 | 97.22 298 | 97.68 315 | 99.56 170 | 98.90 168 | 99.54 158 | 99.48 215 | 96.37 259 | 99.73 280 | 97.88 179 | 99.88 98 | 99.21 244 |
|
MVS_0304 | | | 98.88 194 | 98.71 196 | 99.39 186 | 98.85 315 | 98.91 223 | 99.45 71 | 99.30 263 | 98.56 202 | 97.26 337 | 99.68 122 | 96.18 264 | 99.96 33 | 99.17 72 | 99.94 60 | 99.29 231 |
|
mvs-test1 | | | 98.83 199 | 98.70 199 | 99.22 224 | 98.89 311 | 99.65 82 | 98.88 202 | 99.66 111 | 99.34 107 | 98.29 303 | 98.94 310 | 97.69 208 | 99.96 33 | 98.11 163 | 98.54 322 | 98.04 332 |
|
HPM-MVS++ | | | 98.96 182 | 98.70 199 | 99.74 59 | 99.52 180 | 99.71 59 | 98.86 206 | 99.19 282 | 98.47 214 | 98.59 290 | 99.06 293 | 98.08 181 | 99.91 100 | 96.94 245 | 99.60 231 | 99.60 115 |
|
HQP_MVS | | | 98.90 190 | 98.68 201 | 99.55 139 | 99.58 150 | 99.24 180 | 98.80 219 | 99.54 180 | 98.94 161 | 99.14 239 | 99.25 268 | 97.24 232 | 99.82 234 | 95.84 297 | 99.78 163 | 99.60 115 |
|
9.14 | | | | 98.64 202 | | 99.45 214 | | 98.81 216 | 99.60 147 | 97.52 277 | 99.28 215 | 99.56 190 | 98.53 136 | 99.83 224 | 95.36 310 | 99.64 220 | |
|
HyFIR lowres test | | | 98.91 188 | 98.64 202 | 99.73 66 | 99.85 32 | 99.47 117 | 98.07 286 | 99.83 31 | 98.64 195 | 99.89 26 | 99.60 172 | 92.57 297 | 100.00 1 | 99.33 48 | 99.97 29 | 99.72 41 |
|
FMVSNet3 | | | 98.80 203 | 98.63 204 | 99.32 204 | 99.13 285 | 98.72 233 | 99.10 165 | 99.48 211 | 99.23 125 | 99.62 128 | 99.64 139 | 92.57 297 | 99.86 180 | 98.96 98 | 99.90 82 | 99.39 208 |
|
miper_lstm_enhance | | | 98.65 217 | 98.60 205 | 98.82 270 | 99.20 275 | 97.33 295 | 97.78 310 | 99.66 111 | 99.01 154 | 99.59 139 | 99.50 208 | 94.62 280 | 99.85 198 | 98.12 162 | 99.90 82 | 99.26 234 |
|
K. test v3 | | | 98.87 196 | 98.60 205 | 99.69 80 | 99.93 13 | 99.46 121 | 99.74 15 | 94.97 345 | 99.78 32 | 99.88 32 | 99.88 28 | 93.66 289 | 99.97 16 | 99.61 18 | 99.95 47 | 99.64 87 |
|
miper_ehance_all_eth | | | 98.59 222 | 98.59 207 | 98.59 280 | 98.98 304 | 97.07 301 | 97.49 325 | 99.52 198 | 98.50 210 | 99.52 164 | 99.37 238 | 96.41 258 | 99.71 286 | 97.86 183 | 99.62 223 | 99.00 285 |
|
APD-MVS | | | 98.87 196 | 98.59 207 | 99.71 75 | 99.50 190 | 99.62 90 | 99.01 182 | 99.57 165 | 96.80 304 | 99.54 158 | 99.63 147 | 98.29 162 | 99.91 100 | 95.24 311 | 99.71 196 | 99.61 111 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PVSNet_Blended | | | 98.70 214 | 98.59 207 | 99.02 244 | 99.54 172 | 97.99 273 | 97.58 319 | 99.82 36 | 95.70 319 | 99.34 204 | 98.98 303 | 98.52 139 | 99.77 270 | 97.98 172 | 99.83 130 | 99.30 228 |
|
Vis-MVSNet (Re-imp) | | | 98.77 205 | 98.58 210 | 99.34 198 | 99.78 71 | 98.88 225 | 99.61 50 | 99.56 170 | 99.11 144 | 99.24 221 | 99.56 190 | 93.00 295 | 99.78 262 | 97.43 218 | 99.89 90 | 99.35 219 |
|
NCCC | | | 98.82 201 | 98.57 211 | 99.58 127 | 99.21 272 | 99.31 162 | 98.61 232 | 99.25 274 | 98.65 194 | 98.43 300 | 99.26 266 | 97.86 198 | 99.81 250 | 96.55 267 | 99.27 286 | 99.61 111 |
|
UnsupCasMVSNet_eth | | | 98.83 199 | 98.57 211 | 99.59 123 | 99.68 127 | 99.45 126 | 98.99 189 | 99.67 107 | 99.48 83 | 99.55 156 | 99.36 243 | 94.92 275 | 99.86 180 | 98.95 102 | 96.57 342 | 99.45 188 |
|
CLD-MVS | | | 98.76 207 | 98.57 211 | 99.33 200 | 99.57 160 | 98.97 213 | 97.53 322 | 99.55 175 | 96.41 308 | 99.27 216 | 99.13 284 | 99.07 65 | 99.78 262 | 96.73 259 | 99.89 90 | 99.23 240 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
RRT_MVS | | | 98.75 208 | 98.54 214 | 99.41 181 | 98.14 346 | 98.61 240 | 98.98 193 | 99.66 111 | 99.31 112 | 99.84 41 | 99.75 78 | 91.98 301 | 99.98 6 | 99.20 65 | 99.95 47 | 99.62 104 |
|
Patchmtry | | | 98.78 204 | 98.54 214 | 99.49 155 | 98.89 311 | 99.19 191 | 99.32 96 | 99.67 107 | 99.65 56 | 99.72 91 | 99.79 57 | 91.87 304 | 99.95 42 | 98.00 171 | 99.97 29 | 99.33 222 |
|
N_pmnet | | | 98.73 212 | 98.53 216 | 99.35 197 | 99.72 106 | 98.67 236 | 98.34 260 | 94.65 346 | 98.35 229 | 99.79 63 | 99.68 122 | 98.03 183 | 99.93 66 | 98.28 146 | 99.92 72 | 99.44 193 |
|
ETH3D-3000-0.1 | | | 98.77 205 | 98.50 217 | 99.59 123 | 99.47 206 | 99.53 111 | 98.77 224 | 99.60 147 | 97.33 287 | 99.23 222 | 99.50 208 | 97.91 193 | 99.83 224 | 95.02 315 | 99.67 211 | 99.41 203 |
|
PatchMatch-RL | | | 98.68 215 | 98.47 218 | 99.30 209 | 99.44 217 | 99.28 167 | 98.14 277 | 99.54 180 | 97.12 295 | 99.11 243 | 99.25 268 | 97.80 202 | 99.70 288 | 96.51 270 | 99.30 281 | 98.93 289 |
|
Anonymous202405211 | | | 98.75 208 | 98.46 219 | 99.63 106 | 99.34 248 | 99.66 77 | 99.47 70 | 97.65 331 | 99.28 116 | 99.56 151 | 99.50 208 | 93.15 292 | 99.84 213 | 98.62 126 | 99.58 234 | 99.40 205 |
|
F-COLMAP | | | 98.74 210 | 98.45 220 | 99.62 115 | 99.57 160 | 99.47 117 | 98.84 209 | 99.65 122 | 96.31 310 | 98.93 257 | 99.19 281 | 97.68 210 | 99.87 160 | 96.52 269 | 99.37 273 | 99.53 150 |
|
RPMNet | | | 98.53 231 | 98.44 221 | 98.83 267 | 99.05 298 | 98.12 265 | 99.30 103 | 98.78 302 | 99.86 16 | 99.16 235 | 99.74 81 | 92.53 299 | 99.91 100 | 98.75 117 | 98.77 310 | 98.44 316 |
|
CPTT-MVS | | | 98.74 210 | 98.44 221 | 99.64 102 | 99.61 143 | 99.38 146 | 99.18 136 | 99.55 175 | 96.49 307 | 99.27 216 | 99.37 238 | 97.11 240 | 99.92 84 | 95.74 301 | 99.67 211 | 99.62 104 |
|
PVSNet | | 97.47 15 | 98.42 242 | 98.44 221 | 98.35 289 | 99.46 211 | 96.26 314 | 96.70 342 | 99.34 253 | 97.68 269 | 99.00 252 | 99.13 284 | 97.40 224 | 99.72 282 | 97.59 209 | 99.68 204 | 99.08 273 |
|
cl-mvsnet1 | | | 98.54 229 | 98.42 224 | 98.92 253 | 99.03 301 | 97.80 282 | 97.46 326 | 99.59 154 | 98.90 168 | 99.60 136 | 99.46 223 | 93.87 285 | 99.78 262 | 97.97 174 | 99.89 90 | 99.18 251 |
|
cl-mvsnet_ | | | 98.54 229 | 98.41 225 | 98.92 253 | 99.03 301 | 97.80 282 | 97.46 326 | 99.59 154 | 98.90 168 | 99.60 136 | 99.46 223 | 93.85 286 | 99.78 262 | 97.97 174 | 99.89 90 | 99.17 253 |
|
CHOSEN 280x420 | | | 98.41 243 | 98.41 225 | 98.40 287 | 99.34 248 | 95.89 321 | 96.94 339 | 99.44 224 | 98.80 181 | 99.25 218 | 99.52 202 | 93.51 290 | 99.98 6 | 98.94 103 | 99.98 21 | 99.32 225 |
|
API-MVS | | | 98.38 246 | 98.39 227 | 98.35 289 | 98.83 317 | 99.26 171 | 99.14 151 | 99.18 283 | 98.59 200 | 98.66 285 | 98.78 321 | 98.61 124 | 99.57 333 | 94.14 325 | 99.56 236 | 96.21 344 |
|
MG-MVS | | | 98.52 232 | 98.39 227 | 98.94 249 | 99.15 282 | 97.39 294 | 98.18 272 | 99.21 281 | 98.89 171 | 99.23 222 | 99.63 147 | 97.37 228 | 99.74 278 | 94.22 324 | 99.61 230 | 99.69 50 |
|
WTY-MVS | | | 98.59 222 | 98.37 229 | 99.26 216 | 99.43 219 | 98.40 250 | 98.74 226 | 99.13 289 | 98.10 246 | 99.21 228 | 99.24 273 | 94.82 277 | 99.90 119 | 97.86 183 | 98.77 310 | 99.49 173 |
|
SCA | | | 98.11 262 | 98.36 230 | 97.36 317 | 99.20 275 | 92.99 338 | 98.17 274 | 98.49 316 | 98.24 239 | 99.10 244 | 99.57 187 | 96.01 267 | 99.94 53 | 96.86 250 | 99.62 223 | 99.14 261 |
|
Patchmatch-RL test | | | 98.60 220 | 98.36 230 | 99.33 200 | 99.77 79 | 99.07 206 | 98.27 267 | 99.87 17 | 98.91 167 | 99.74 86 | 99.72 91 | 90.57 321 | 99.79 258 | 98.55 129 | 99.85 116 | 99.11 265 |
|
AdaColmap | | | 98.60 220 | 98.35 232 | 99.38 190 | 99.12 287 | 99.22 184 | 98.67 231 | 99.42 229 | 97.84 264 | 98.81 271 | 99.27 264 | 97.32 230 | 99.81 250 | 95.14 312 | 99.53 247 | 99.10 267 |
|
test_prior3 | | | 98.62 218 | 98.34 233 | 99.46 163 | 99.35 238 | 99.22 184 | 97.95 300 | 99.39 240 | 97.87 260 | 98.05 316 | 99.05 294 | 97.90 194 | 99.69 294 | 95.99 290 | 99.49 254 | 99.48 177 |
|
CNLPA | | | 98.57 224 | 98.34 233 | 99.28 212 | 99.18 279 | 99.10 202 | 98.34 260 | 99.41 230 | 98.48 213 | 98.52 295 | 98.98 303 | 97.05 242 | 99.78 262 | 95.59 303 | 99.50 252 | 98.96 286 |
|
PatchT | | | 98.45 240 | 98.32 235 | 98.83 267 | 98.94 306 | 98.29 256 | 99.24 121 | 98.82 300 | 99.84 21 | 99.08 245 | 99.76 74 | 91.37 307 | 99.94 53 | 98.82 111 | 99.00 300 | 98.26 323 |
|
PMMVS | | | 98.49 236 | 98.29 236 | 99.11 234 | 98.96 305 | 98.42 249 | 97.54 320 | 99.32 256 | 97.53 276 | 98.47 299 | 98.15 340 | 97.88 197 | 99.82 234 | 97.46 216 | 99.24 289 | 99.09 270 |
|
UnsupCasMVSNet_bld | | | 98.55 228 | 98.27 237 | 99.40 183 | 99.56 170 | 99.37 149 | 97.97 299 | 99.68 103 | 97.49 279 | 99.08 245 | 99.35 248 | 95.41 274 | 99.82 234 | 97.70 197 | 98.19 330 | 99.01 284 |
|
1121 | | | 98.56 225 | 98.24 238 | 99.52 146 | 99.49 195 | 99.24 180 | 99.30 103 | 99.22 279 | 95.77 317 | 98.52 295 | 99.29 260 | 97.39 226 | 99.85 198 | 95.79 299 | 99.34 276 | 99.46 186 |
|
DP-MVS Recon | | | 98.50 233 | 98.23 239 | 99.31 207 | 99.49 195 | 99.46 121 | 98.56 241 | 99.63 130 | 94.86 330 | 98.85 267 | 99.37 238 | 97.81 201 | 99.59 331 | 96.08 285 | 99.44 259 | 98.88 293 |
|
MVSTER | | | 98.47 238 | 98.22 240 | 99.24 222 | 99.06 297 | 98.35 255 | 99.08 172 | 99.46 219 | 99.27 117 | 99.75 78 | 99.66 132 | 88.61 330 | 99.85 198 | 99.14 82 | 99.92 72 | 99.52 160 |
|
MVS-HIRNet | | | 97.86 270 | 98.22 240 | 96.76 323 | 99.28 263 | 91.53 347 | 98.38 259 | 92.60 351 | 99.13 140 | 99.31 210 | 99.96 10 | 97.18 238 | 99.68 305 | 98.34 140 | 99.83 130 | 99.07 278 |
|
CDPH-MVS | | | 98.56 225 | 98.20 242 | 99.61 119 | 99.50 190 | 99.46 121 | 98.32 263 | 99.41 230 | 95.22 324 | 99.21 228 | 99.10 291 | 98.34 158 | 99.82 234 | 95.09 314 | 99.66 215 | 99.56 137 |
|
CR-MVSNet | | | 98.35 250 | 98.20 242 | 98.83 267 | 99.05 298 | 98.12 265 | 99.30 103 | 99.67 107 | 97.39 284 | 99.16 235 | 99.79 57 | 91.87 304 | 99.91 100 | 98.78 116 | 98.77 310 | 98.44 316 |
|
MIMVSNet | | | 98.43 241 | 98.20 242 | 99.11 234 | 99.53 175 | 98.38 253 | 99.58 57 | 98.61 310 | 98.96 159 | 99.33 206 | 99.76 74 | 90.92 314 | 99.81 250 | 97.38 221 | 99.76 169 | 99.15 257 |
|
LFMVS | | | 98.46 239 | 98.19 245 | 99.26 216 | 99.24 269 | 98.52 243 | 99.62 46 | 96.94 338 | 99.87 14 | 99.31 210 | 99.58 180 | 91.04 312 | 99.81 250 | 98.68 124 | 99.42 264 | 99.45 188 |
|
CMPMVS | | 77.52 23 | 98.50 233 | 98.19 245 | 99.41 181 | 98.33 339 | 99.56 106 | 99.01 182 | 99.59 154 | 95.44 321 | 99.57 144 | 99.80 51 | 95.64 271 | 99.46 341 | 96.47 273 | 99.92 72 | 99.21 244 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
testtj | | | 98.56 225 | 98.17 247 | 99.72 71 | 99.45 214 | 99.60 97 | 98.88 202 | 99.50 204 | 96.88 299 | 99.18 234 | 99.48 215 | 97.08 241 | 99.92 84 | 93.69 330 | 99.38 269 | 99.63 92 |
|
ETH3D cwj APD-0.16 | | | 98.50 233 | 98.16 248 | 99.51 149 | 99.04 300 | 99.39 143 | 98.47 251 | 99.47 215 | 96.70 306 | 98.78 276 | 99.33 252 | 97.62 218 | 99.86 180 | 94.69 320 | 99.38 269 | 99.28 233 |
|
BH-RMVSNet | | | 98.41 243 | 98.14 249 | 99.21 225 | 99.21 272 | 98.47 244 | 98.60 234 | 98.26 323 | 98.35 229 | 98.93 257 | 99.31 255 | 97.20 237 | 99.66 314 | 94.32 322 | 99.10 294 | 99.51 162 |
|
114514_t | | | 98.49 236 | 98.11 250 | 99.64 102 | 99.73 102 | 99.58 103 | 99.24 121 | 99.76 64 | 89.94 343 | 99.42 182 | 99.56 190 | 97.76 205 | 99.86 180 | 97.74 193 | 99.82 139 | 99.47 182 |
|
BH-untuned | | | 98.22 259 | 98.09 251 | 98.58 281 | 99.38 231 | 97.24 297 | 98.55 242 | 98.98 295 | 97.81 265 | 99.20 233 | 98.76 322 | 97.01 243 | 99.65 321 | 94.83 316 | 98.33 326 | 98.86 295 |
|
tpmrst | | | 97.73 274 | 98.07 252 | 96.73 325 | 98.71 329 | 92.00 342 | 99.10 165 | 98.86 297 | 98.52 208 | 98.92 260 | 99.54 198 | 91.90 302 | 99.82 234 | 98.02 167 | 99.03 298 | 98.37 318 |
|
PAPM_NR | | | 98.36 247 | 98.04 253 | 99.33 200 | 99.48 201 | 98.93 220 | 98.79 222 | 99.28 268 | 97.54 275 | 98.56 293 | 98.57 328 | 97.12 239 | 99.69 294 | 94.09 326 | 98.90 305 | 99.38 210 |
|
HQP-MVS | | | 98.36 247 | 98.02 254 | 99.39 186 | 99.31 255 | 98.94 216 | 97.98 296 | 99.37 247 | 97.45 280 | 98.15 310 | 98.83 318 | 96.67 248 | 99.70 288 | 94.73 317 | 99.67 211 | 99.53 150 |
|
QAPM | | | 98.40 245 | 97.99 255 | 99.65 95 | 99.39 228 | 99.47 117 | 99.67 35 | 99.52 198 | 91.70 340 | 98.78 276 | 99.80 51 | 98.55 130 | 99.95 42 | 94.71 319 | 99.75 172 | 99.53 150 |
|
PLC | | 97.35 16 | 98.36 247 | 97.99 255 | 99.48 158 | 99.32 254 | 99.24 180 | 98.50 249 | 99.51 201 | 95.19 326 | 98.58 291 | 98.96 308 | 96.95 245 | 99.83 224 | 95.63 302 | 99.25 287 | 99.37 213 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Patchmatch-test | | | 98.10 263 | 97.98 257 | 98.48 284 | 99.27 265 | 96.48 311 | 99.40 79 | 99.07 290 | 98.81 179 | 99.23 222 | 99.57 187 | 90.11 325 | 99.87 160 | 96.69 260 | 99.64 220 | 99.09 270 |
|
alignmvs | | | 98.28 253 | 97.96 258 | 99.25 219 | 99.12 287 | 98.93 220 | 99.03 179 | 98.42 318 | 99.64 58 | 98.72 281 | 97.85 343 | 90.86 317 | 99.62 325 | 98.88 107 | 99.13 292 | 99.19 249 |
|
test_yl | | | 98.25 255 | 97.95 259 | 99.13 232 | 99.17 280 | 98.47 244 | 99.00 184 | 98.67 308 | 98.97 157 | 99.22 226 | 99.02 298 | 91.31 308 | 99.69 294 | 97.26 228 | 98.93 301 | 99.24 237 |
|
DCV-MVSNet | | | 98.25 255 | 97.95 259 | 99.13 232 | 99.17 280 | 98.47 244 | 99.00 184 | 98.67 308 | 98.97 157 | 99.22 226 | 99.02 298 | 91.31 308 | 99.69 294 | 97.26 228 | 98.93 301 | 99.24 237 |
|
train_agg | | | 98.35 250 | 97.95 259 | 99.57 132 | 99.35 238 | 99.35 156 | 98.11 281 | 99.41 230 | 94.90 328 | 97.92 322 | 98.99 300 | 98.02 185 | 99.85 198 | 95.38 309 | 99.44 259 | 99.50 168 |
|
HY-MVS | | 98.23 9 | 98.21 260 | 97.95 259 | 98.99 245 | 99.03 301 | 98.24 257 | 99.61 50 | 98.72 305 | 96.81 303 | 98.73 280 | 99.51 205 | 94.06 284 | 99.86 180 | 96.91 247 | 98.20 328 | 98.86 295 |
|
miper_enhance_ethall | | | 98.03 266 | 97.94 263 | 98.32 291 | 98.27 340 | 96.43 313 | 96.95 338 | 99.41 230 | 96.37 309 | 99.43 180 | 98.96 308 | 94.74 278 | 99.69 294 | 97.71 195 | 99.62 223 | 98.83 298 |
|
DPM-MVS | | | 98.28 253 | 97.94 263 | 99.32 204 | 99.36 236 | 99.11 198 | 97.31 332 | 98.78 302 | 96.88 299 | 98.84 268 | 99.11 290 | 97.77 204 | 99.61 329 | 94.03 327 | 99.36 274 | 99.23 240 |
|
agg_prior1 | | | 98.33 252 | 97.92 265 | 99.57 132 | 99.35 238 | 99.36 152 | 97.99 295 | 99.39 240 | 94.85 331 | 97.76 331 | 98.98 303 | 98.03 183 | 99.85 198 | 95.49 305 | 99.44 259 | 99.51 162 |
|
JIA-IIPM | | | 98.06 265 | 97.92 265 | 98.50 283 | 98.59 332 | 97.02 302 | 98.80 219 | 98.51 314 | 99.88 13 | 97.89 324 | 99.87 30 | 91.89 303 | 99.90 119 | 98.16 160 | 97.68 338 | 98.59 307 |
|
MAR-MVS | | | 98.24 257 | 97.92 265 | 99.19 228 | 98.78 325 | 99.65 82 | 99.17 141 | 99.14 287 | 95.36 322 | 98.04 318 | 98.81 320 | 97.47 221 | 99.72 282 | 95.47 307 | 99.06 295 | 98.21 326 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
1314 | | | 98.00 268 | 97.90 268 | 98.27 295 | 98.90 308 | 97.45 292 | 99.30 103 | 99.06 292 | 94.98 327 | 97.21 338 | 99.12 288 | 98.43 148 | 99.67 310 | 95.58 304 | 98.56 321 | 97.71 336 |
|
OpenMVS | | 98.12 10 | 98.23 258 | 97.89 269 | 99.26 216 | 99.19 277 | 99.26 171 | 99.65 43 | 99.69 100 | 91.33 341 | 98.14 314 | 99.77 71 | 98.28 163 | 99.96 33 | 95.41 308 | 99.55 240 | 98.58 309 |
|
pmmvs3 | | | 98.08 264 | 97.80 270 | 98.91 255 | 99.41 224 | 97.69 286 | 97.87 307 | 99.66 111 | 95.87 315 | 99.50 168 | 99.51 205 | 90.35 323 | 99.97 16 | 98.55 129 | 99.47 256 | 99.08 273 |
|
PatchmatchNet | | | 97.65 277 | 97.80 270 | 97.18 320 | 98.82 320 | 92.49 340 | 99.17 141 | 98.39 320 | 98.12 245 | 98.79 274 | 99.58 180 | 90.71 319 | 99.89 132 | 97.23 232 | 99.41 265 | 99.16 255 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPNet_dtu | | | 97.62 278 | 97.79 272 | 97.11 322 | 96.67 351 | 92.31 341 | 98.51 248 | 98.04 324 | 99.24 123 | 95.77 345 | 99.47 220 | 93.78 288 | 99.66 314 | 98.98 94 | 99.62 223 | 99.37 213 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPNet | | | 98.13 261 | 97.77 273 | 99.18 230 | 94.57 352 | 97.99 273 | 99.24 121 | 97.96 326 | 99.74 35 | 97.29 336 | 99.62 156 | 93.13 293 | 99.97 16 | 98.59 127 | 99.83 130 | 99.58 129 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MDTV_nov1_ep13 | | | | 97.73 274 | | 98.70 330 | 90.83 350 | 99.15 149 | 98.02 325 | 98.51 209 | 98.82 270 | 99.61 165 | 90.98 313 | 99.66 314 | 96.89 249 | 98.92 303 | |
|
tpmvs | | | 97.39 285 | 97.69 275 | 96.52 328 | 98.41 336 | 91.76 344 | 99.30 103 | 98.94 296 | 97.74 266 | 97.85 327 | 99.55 196 | 92.40 300 | 99.73 280 | 96.25 282 | 98.73 316 | 98.06 331 |
|
GA-MVS | | | 97.99 269 | 97.68 276 | 98.93 252 | 99.52 180 | 98.04 272 | 97.19 336 | 99.05 293 | 98.32 235 | 98.81 271 | 98.97 306 | 89.89 328 | 99.41 342 | 98.33 141 | 99.05 296 | 99.34 221 |
|
ADS-MVSNet | | | 97.72 276 | 97.67 277 | 97.86 304 | 99.14 283 | 94.65 331 | 99.22 128 | 98.86 297 | 96.97 297 | 98.25 306 | 99.64 139 | 90.90 315 | 99.84 213 | 96.51 270 | 99.56 236 | 99.08 273 |
|
ADS-MVSNet2 | | | 97.78 272 | 97.66 278 | 98.12 299 | 99.14 283 | 95.36 325 | 99.22 128 | 98.75 304 | 96.97 297 | 98.25 306 | 99.64 139 | 90.90 315 | 99.94 53 | 96.51 270 | 99.56 236 | 99.08 273 |
|
TAPA-MVS | | 97.92 13 | 98.03 266 | 97.55 279 | 99.46 163 | 99.47 206 | 99.44 128 | 98.50 249 | 99.62 133 | 86.79 344 | 99.07 248 | 99.26 266 | 98.26 165 | 99.62 325 | 97.28 227 | 99.73 187 | 99.31 227 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
E-PMN | | | 97.14 292 | 97.43 280 | 96.27 330 | 98.79 323 | 91.62 346 | 95.54 346 | 99.01 294 | 99.44 94 | 98.88 264 | 99.12 288 | 92.78 296 | 99.68 305 | 94.30 323 | 99.03 298 | 97.50 337 |
|
baseline1 | | | 97.73 274 | 97.33 281 | 98.96 247 | 99.30 259 | 97.73 284 | 99.40 79 | 98.42 318 | 99.33 110 | 99.46 174 | 99.21 277 | 91.18 310 | 99.82 234 | 98.35 139 | 91.26 347 | 99.32 225 |
|
cl-mvsnet2 | | | 97.56 281 | 97.28 282 | 98.40 287 | 98.37 338 | 96.75 308 | 97.24 335 | 99.37 247 | 97.31 288 | 99.41 190 | 99.22 275 | 87.30 332 | 99.37 343 | 97.70 197 | 99.62 223 | 99.08 273 |
|
EMVS | | | 96.96 295 | 97.28 282 | 95.99 333 | 98.76 327 | 91.03 349 | 95.26 347 | 98.61 310 | 99.34 107 | 98.92 260 | 98.88 316 | 93.79 287 | 99.66 314 | 92.87 331 | 99.05 296 | 97.30 341 |
|
RRT_test8_iter05 | | | 97.35 288 | 97.25 284 | 97.63 311 | 98.81 321 | 93.13 337 | 99.26 115 | 99.89 12 | 99.51 80 | 99.83 46 | 99.68 122 | 79.03 354 | 99.88 147 | 99.53 26 | 99.72 192 | 99.89 8 |
|
FMVSNet5 | | | 97.80 271 | 97.25 284 | 99.42 174 | 98.83 317 | 98.97 213 | 99.38 83 | 99.80 46 | 98.87 172 | 99.25 218 | 99.69 111 | 80.60 351 | 99.91 100 | 98.96 98 | 99.90 82 | 99.38 210 |
|
tttt0517 | | | 97.62 278 | 97.20 286 | 98.90 261 | 99.76 83 | 97.40 293 | 99.48 68 | 94.36 347 | 99.06 152 | 99.70 98 | 99.49 213 | 84.55 345 | 99.94 53 | 98.73 119 | 99.65 218 | 99.36 216 |
|
ETH3 D test6400 | | | 97.76 273 | 97.19 287 | 99.50 152 | 99.38 231 | 99.26 171 | 98.34 260 | 99.49 209 | 92.99 337 | 98.54 294 | 99.20 279 | 95.92 269 | 99.82 234 | 91.14 337 | 99.66 215 | 99.40 205 |
|
TR-MVS | | | 97.44 284 | 97.15 288 | 98.32 291 | 98.53 334 | 97.46 291 | 98.47 251 | 97.91 328 | 96.85 301 | 98.21 309 | 98.51 332 | 96.42 256 | 99.51 337 | 92.16 333 | 97.29 340 | 97.98 333 |
|
dp | | | 96.86 296 | 97.07 289 | 96.24 331 | 98.68 331 | 90.30 353 | 99.19 135 | 98.38 321 | 97.35 286 | 98.23 308 | 99.59 178 | 87.23 333 | 99.82 234 | 96.27 281 | 98.73 316 | 98.59 307 |
|
PAPR | | | 97.56 281 | 97.07 289 | 99.04 243 | 98.80 322 | 98.11 267 | 97.63 316 | 99.25 274 | 94.56 334 | 98.02 320 | 98.25 339 | 97.43 223 | 99.68 305 | 90.90 338 | 98.74 314 | 99.33 222 |
|
BH-w/o | | | 97.20 289 | 97.01 291 | 97.76 307 | 99.08 296 | 95.69 322 | 98.03 290 | 98.52 313 | 95.76 318 | 97.96 321 | 98.02 341 | 95.62 272 | 99.47 339 | 92.82 332 | 97.25 341 | 98.12 330 |
|
tpm cat1 | | | 96.78 298 | 96.98 292 | 96.16 332 | 98.85 315 | 90.59 352 | 99.08 172 | 99.32 256 | 92.37 338 | 97.73 333 | 99.46 223 | 91.15 311 | 99.69 294 | 96.07 286 | 98.80 307 | 98.21 326 |
|
thisisatest0530 | | | 97.45 283 | 96.95 293 | 98.94 249 | 99.68 127 | 97.73 284 | 99.09 169 | 94.19 349 | 98.61 199 | 99.56 151 | 99.30 257 | 84.30 346 | 99.93 66 | 98.27 147 | 99.54 245 | 99.16 255 |
|
test-LLR | | | 97.15 290 | 96.95 293 | 97.74 309 | 98.18 343 | 95.02 328 | 97.38 328 | 96.10 339 | 98.00 249 | 97.81 328 | 98.58 326 | 90.04 326 | 99.91 100 | 97.69 203 | 98.78 308 | 98.31 320 |
|
tpm | | | 97.15 290 | 96.95 293 | 97.75 308 | 98.91 307 | 94.24 333 | 99.32 96 | 97.96 326 | 97.71 268 | 98.29 303 | 99.32 253 | 86.72 340 | 99.92 84 | 98.10 165 | 96.24 344 | 99.09 270 |
|
test0.0.03 1 | | | 97.37 286 | 96.91 296 | 98.74 274 | 97.72 347 | 97.57 288 | 97.60 318 | 97.36 337 | 98.00 249 | 99.21 228 | 98.02 341 | 90.04 326 | 99.79 258 | 98.37 136 | 95.89 345 | 98.86 295 |
|
OpenMVS_ROB | | 97.31 17 | 97.36 287 | 96.84 297 | 98.89 262 | 99.29 261 | 99.45 126 | 98.87 205 | 99.48 211 | 86.54 346 | 99.44 176 | 99.74 81 | 97.34 229 | 99.86 180 | 91.61 334 | 99.28 283 | 97.37 340 |
|
cascas | | | 96.99 293 | 96.82 298 | 97.48 313 | 97.57 350 | 95.64 323 | 96.43 344 | 99.56 170 | 91.75 339 | 97.13 339 | 97.61 346 | 95.58 273 | 98.63 348 | 96.68 261 | 99.11 293 | 98.18 329 |
|
CostFormer | | | 96.71 301 | 96.79 299 | 96.46 329 | 98.90 308 | 90.71 351 | 99.41 77 | 98.68 306 | 94.69 333 | 98.14 314 | 99.34 251 | 86.32 342 | 99.80 255 | 97.60 208 | 98.07 334 | 98.88 293 |
|
thisisatest0515 | | | 96.98 294 | 96.42 300 | 98.66 278 | 99.42 223 | 97.47 290 | 97.27 333 | 94.30 348 | 97.24 290 | 99.15 237 | 98.86 317 | 85.01 343 | 99.87 160 | 97.10 239 | 99.39 268 | 98.63 304 |
|
EPMVS | | | 96.53 304 | 96.32 301 | 97.17 321 | 98.18 343 | 92.97 339 | 99.39 81 | 89.95 353 | 98.21 241 | 98.61 288 | 99.59 178 | 86.69 341 | 99.72 282 | 96.99 243 | 99.23 291 | 98.81 299 |
|
baseline2 | | | 96.83 297 | 96.28 302 | 98.46 285 | 99.09 295 | 96.91 305 | 98.83 211 | 93.87 350 | 97.23 291 | 96.23 344 | 98.36 336 | 88.12 331 | 99.90 119 | 96.68 261 | 98.14 332 | 98.57 310 |
|
tpm2 | | | 96.35 307 | 96.22 303 | 96.73 325 | 98.88 314 | 91.75 345 | 99.21 130 | 98.51 314 | 93.27 336 | 97.89 324 | 99.21 277 | 84.83 344 | 99.70 288 | 96.04 287 | 98.18 331 | 98.75 302 |
|
thres600view7 | | | 96.60 303 | 96.16 304 | 97.93 302 | 99.63 139 | 96.09 318 | 99.18 136 | 97.57 332 | 98.77 185 | 98.72 281 | 97.32 349 | 87.04 335 | 99.72 282 | 88.57 340 | 98.62 319 | 97.98 333 |
|
MVE | | 92.54 22 | 96.66 302 | 96.11 305 | 98.31 293 | 99.68 127 | 97.55 289 | 97.94 302 | 95.60 344 | 99.37 104 | 90.68 350 | 98.70 324 | 96.56 250 | 98.61 349 | 86.94 347 | 99.55 240 | 98.77 301 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ET-MVSNet_ETH3D | | | 96.78 298 | 96.07 306 | 98.91 255 | 99.26 266 | 97.92 279 | 97.70 314 | 96.05 342 | 97.96 256 | 92.37 349 | 98.43 335 | 87.06 334 | 99.90 119 | 98.27 147 | 97.56 339 | 98.91 291 |
|
thres100view900 | | | 96.39 306 | 96.03 307 | 97.47 314 | 99.63 139 | 95.93 319 | 99.18 136 | 97.57 332 | 98.75 189 | 98.70 283 | 97.31 350 | 87.04 335 | 99.67 310 | 87.62 343 | 98.51 323 | 96.81 342 |
|
tfpn200view9 | | | 96.30 309 | 95.89 308 | 97.53 312 | 99.58 150 | 96.11 316 | 99.00 184 | 97.54 335 | 98.43 215 | 98.52 295 | 96.98 352 | 86.85 337 | 99.67 310 | 87.62 343 | 98.51 323 | 96.81 342 |
|
thres400 | | | 96.40 305 | 95.89 308 | 97.92 303 | 99.58 150 | 96.11 316 | 99.00 184 | 97.54 335 | 98.43 215 | 98.52 295 | 96.98 352 | 86.85 337 | 99.67 310 | 87.62 343 | 98.51 323 | 97.98 333 |
|
PCF-MVS | | 96.03 18 | 96.73 300 | 95.86 310 | 99.33 200 | 99.44 217 | 99.16 193 | 96.87 340 | 99.44 224 | 86.58 345 | 98.95 255 | 99.40 232 | 94.38 282 | 99.88 147 | 87.93 342 | 99.80 152 | 98.95 287 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
TESTMET0.1,1 | | | 96.24 310 | 95.84 311 | 97.41 316 | 98.24 341 | 93.84 334 | 97.38 328 | 95.84 343 | 98.43 215 | 97.81 328 | 98.56 329 | 79.77 352 | 99.89 132 | 97.77 190 | 98.77 310 | 98.52 312 |
|
DWT-MVSNet_test | | | 96.03 314 | 95.80 312 | 96.71 327 | 98.50 335 | 91.93 343 | 99.25 120 | 97.87 329 | 95.99 314 | 96.81 340 | 97.61 346 | 81.02 349 | 99.66 314 | 97.20 235 | 97.98 335 | 98.54 311 |
|
test-mter | | | 96.23 311 | 95.73 313 | 97.74 309 | 98.18 343 | 95.02 328 | 97.38 328 | 96.10 339 | 97.90 258 | 97.81 328 | 98.58 326 | 79.12 353 | 99.91 100 | 97.69 203 | 98.78 308 | 98.31 320 |
|
thres200 | | | 96.09 312 | 95.68 314 | 97.33 319 | 99.48 201 | 96.22 315 | 98.53 246 | 97.57 332 | 98.06 248 | 98.37 302 | 96.73 354 | 86.84 339 | 99.61 329 | 86.99 346 | 98.57 320 | 96.16 345 |
|
FPMVS | | | 96.32 308 | 95.50 315 | 98.79 271 | 99.60 145 | 98.17 263 | 98.46 256 | 98.80 301 | 97.16 293 | 96.28 341 | 99.63 147 | 82.19 347 | 99.09 345 | 88.45 341 | 98.89 306 | 99.10 267 |
|
tmp_tt | | | 95.75 317 | 95.42 316 | 96.76 323 | 89.90 353 | 94.42 332 | 98.86 206 | 97.87 329 | 78.01 347 | 99.30 214 | 99.69 111 | 97.70 206 | 95.89 350 | 99.29 57 | 98.14 332 | 99.95 1 |
|
PVSNet_0 | | 95.53 19 | 95.85 316 | 95.31 317 | 97.47 314 | 98.78 325 | 93.48 336 | 95.72 345 | 99.40 237 | 96.18 312 | 97.37 334 | 97.73 344 | 95.73 270 | 99.58 332 | 95.49 305 | 81.40 348 | 99.36 216 |
|
gg-mvs-nofinetune | | | 95.87 315 | 95.17 318 | 97.97 301 | 98.19 342 | 96.95 303 | 99.69 28 | 89.23 354 | 99.89 11 | 96.24 343 | 99.94 12 | 81.19 348 | 99.51 337 | 93.99 328 | 98.20 328 | 97.44 338 |
|
X-MVStestdata | | | 96.09 312 | 94.87 319 | 99.75 54 | 99.71 109 | 99.71 59 | 99.37 87 | 99.61 137 | 99.29 113 | 98.76 278 | 61.30 355 | 98.47 143 | 99.88 147 | 97.62 205 | 99.73 187 | 99.67 63 |
|
PAPM | | | 95.61 319 | 94.71 320 | 98.31 293 | 99.12 287 | 96.63 309 | 96.66 343 | 98.46 317 | 90.77 342 | 96.25 342 | 98.68 325 | 93.01 294 | 99.69 294 | 81.60 348 | 97.86 337 | 98.62 305 |
|
MVS | | | 95.72 318 | 94.63 321 | 98.99 245 | 98.56 333 | 97.98 278 | 99.30 103 | 98.86 297 | 72.71 349 | 97.30 335 | 99.08 292 | 98.34 158 | 99.74 278 | 89.21 339 | 98.33 326 | 99.26 234 |
|
IB-MVS | | 95.41 20 | 95.30 320 | 94.46 322 | 97.84 305 | 98.76 327 | 95.33 326 | 97.33 331 | 96.07 341 | 96.02 313 | 95.37 347 | 97.41 348 | 76.17 355 | 99.96 33 | 97.54 211 | 95.44 346 | 98.22 325 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
testmvs | | | 28.94 322 | 33.33 323 | 15.79 336 | 26.03 354 | 9.81 356 | 96.77 341 | 15.67 356 | 11.55 351 | 23.87 352 | 50.74 358 | 19.03 357 | 8.53 353 | 23.21 350 | 33.07 349 | 29.03 349 |
|
cdsmvs_eth3d_5k | | | 24.88 323 | 33.17 324 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 99.62 133 | 0.00 352 | 0.00 353 | 99.13 284 | 99.82 4 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
test123 | | | 29.31 321 | 33.05 325 | 18.08 335 | 25.93 355 | 12.24 355 | 97.53 322 | 10.93 357 | 11.78 350 | 24.21 351 | 50.08 359 | 21.04 356 | 8.60 352 | 23.51 349 | 32.43 350 | 33.39 348 |
|
pcd_1.5k_mvsjas | | | 16.61 324 | 22.14 326 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 100.00 1 | 99.28 40 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet_test | | | 8.33 325 | 11.11 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 100.00 1 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 8.33 325 | 11.11 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 100.00 1 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 8.33 325 | 11.11 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 100.00 1 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 8.33 325 | 11.11 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 100.00 1 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 8.33 325 | 11.11 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 100.00 1 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 8.33 325 | 11.11 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 100.00 1 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
ab-mvs-re | | | 8.26 331 | 11.02 333 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 99.16 282 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
IU-MVS | | | | | | 99.69 119 | 99.77 39 | | 99.22 279 | 97.50 278 | 99.69 101 | | | | 97.75 192 | 99.70 198 | 99.77 31 |
|
OPU-MVS | | | | | 99.29 210 | 99.12 287 | 99.44 128 | 99.20 131 | | | | 99.40 232 | 99.00 71 | 98.84 347 | 96.54 268 | 99.60 231 | 99.58 129 |
|
test_241102_TWO | | | | | | | | | 99.54 180 | 99.13 140 | 99.76 73 | 99.63 147 | 98.32 161 | 99.92 84 | 97.85 185 | 99.69 201 | 99.75 38 |
|
test_241102_ONE | | | | | | 99.69 119 | 99.82 24 | | 99.54 180 | 99.12 143 | 99.82 48 | 99.49 213 | 98.91 82 | 99.52 336 | | | |
|
save fliter | | | | | | 99.53 175 | 99.25 175 | 98.29 265 | 99.38 246 | 99.07 148 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 99.18 131 | 99.62 128 | 99.61 165 | 98.58 127 | 99.91 100 | 97.72 194 | 99.80 152 | 99.77 31 |
|
test_0728_SECOND | | | | | 99.83 21 | 99.70 116 | 99.79 34 | 99.14 151 | 99.61 137 | | | | | 99.92 84 | 97.88 179 | 99.72 192 | 99.77 31 |
|
test0726 | | | | | | 99.69 119 | 99.80 32 | 99.24 121 | 99.57 165 | 99.16 136 | 99.73 90 | 99.65 137 | 98.35 156 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.14 261 |
|
test_part2 | | | | | | 99.62 142 | 99.67 75 | | | | 99.55 156 | | | | | | |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 99.53 189 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sam_mvs1 | | | | | | | | | | | | | 90.81 318 | | | | 99.14 261 |
|
sam_mvs | | | | | | | | | | | | | 90.52 322 | | | | |
|
ambc | | | | | 99.20 227 | 99.35 238 | 98.53 242 | 99.17 141 | 99.46 219 | | 99.67 107 | 99.80 51 | 98.46 146 | 99.70 288 | 97.92 176 | 99.70 198 | 99.38 210 |
|
MTGPA | | | | | | | | | 99.53 189 | | | | | | | | |
|
test_post1 | | | | | | | | 99.14 151 | | | | 51.63 357 | 89.54 329 | 99.82 234 | 96.86 250 | | |
|
test_post | | | | | | | | | | | | 52.41 356 | 90.25 324 | 99.86 180 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 99.62 156 | 90.58 320 | 99.94 53 | | | |
|
GG-mvs-BLEND | | | | | 97.36 317 | 97.59 348 | 96.87 306 | 99.70 22 | 88.49 355 | | 94.64 348 | 97.26 351 | 80.66 350 | 99.12 344 | 91.50 335 | 96.50 343 | 96.08 346 |
|
MTMP | | | | | | | | 99.09 169 | 98.59 312 | | | | | | | | |
|
gm-plane-assit | | | | | | 97.59 348 | 89.02 354 | | | 93.47 335 | | 98.30 337 | | 99.84 213 | 96.38 277 | | |
|
test9_res | | | | | | | | | | | | | | | 95.10 313 | 99.44 259 | 99.50 168 |
|
TEST9 | | | | | | 99.35 238 | 99.35 156 | 98.11 281 | 99.41 230 | 94.83 332 | 97.92 322 | 98.99 300 | 98.02 185 | 99.85 198 | | | |
|
test_8 | | | | | | 99.34 248 | 99.31 162 | 98.08 285 | 99.40 237 | 94.90 328 | 97.87 326 | 98.97 306 | 98.02 185 | 99.84 213 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 94.58 321 | 99.46 258 | 99.50 168 |
|
agg_prior | | | | | | 99.35 238 | 99.36 152 | | 99.39 240 | | 97.76 331 | | | 99.85 198 | | | |
|
TestCases | | | | | 99.63 106 | 99.78 71 | 99.64 84 | | 99.83 31 | 98.63 196 | 99.63 121 | 99.72 91 | 98.68 113 | 99.75 276 | 96.38 277 | 99.83 130 | 99.51 162 |
|
test_prior4 | | | | | | | 99.19 191 | 98.00 293 | | | | | | | | | |
|
test_prior2 | | | | | | | | 97.95 300 | | 97.87 260 | 98.05 316 | 99.05 294 | 97.90 194 | | 95.99 290 | 99.49 254 | |
|
test_prior | | | | | 99.46 163 | 99.35 238 | 99.22 184 | | 99.39 240 | | | | | 99.69 294 | | | 99.48 177 |
|
旧先验2 | | | | | | | | 97.94 302 | | 95.33 323 | 98.94 256 | | | 99.88 147 | 96.75 257 | | |
|
新几何2 | | | | | | | | 98.04 289 | | | | | | | | | |
|
新几何1 | | | | | 99.52 146 | 99.50 190 | 99.22 184 | | 99.26 271 | 95.66 320 | 98.60 289 | 99.28 262 | 97.67 211 | 99.89 132 | 95.95 294 | 99.32 279 | 99.45 188 |
|
旧先验1 | | | | | | 99.49 195 | 99.29 165 | | 99.26 271 | | | 99.39 236 | 97.67 211 | | | 99.36 274 | 99.46 186 |
|
无先验 | | | | | | | | 98.01 291 | 99.23 278 | 95.83 316 | | | | 99.85 198 | 95.79 299 | | 99.44 193 |
|
原ACMM2 | | | | | | | | 97.92 304 | | | | | | | | | |
|
原ACMM1 | | | | | 99.37 193 | 99.47 206 | 98.87 227 | | 99.27 269 | 96.74 305 | 98.26 305 | 99.32 253 | 97.93 192 | 99.82 234 | 95.96 293 | 99.38 269 | 99.43 199 |
|
test222 | | | | | | 99.51 184 | 99.08 205 | 97.83 309 | 99.29 265 | 95.21 325 | 98.68 284 | 99.31 255 | 97.28 231 | | | 99.38 269 | 99.43 199 |
|
testdata2 | | | | | | | | | | | | | | 99.89 132 | 95.99 290 | | |
|
segment_acmp | | | | | | | | | | | | | 98.37 154 | | | | |
|
testdata | | | | | 99.42 174 | 99.51 184 | 98.93 220 | | 99.30 263 | 96.20 311 | 98.87 265 | 99.40 232 | 98.33 160 | 99.89 132 | 96.29 280 | 99.28 283 | 99.44 193 |
|
testdata1 | | | | | | | | 97.72 312 | | 97.86 263 | | | | | | | |
|
test12 | | | | | 99.54 143 | 99.29 261 | 99.33 159 | | 99.16 285 | | 98.43 300 | | 97.54 219 | 99.82 234 | | 99.47 256 | 99.48 177 |
|
plane_prior7 | | | | | | 99.58 150 | 99.38 146 | | | | | | | | | | |
|
plane_prior6 | | | | | | 99.47 206 | 99.26 171 | | | | | | 97.24 232 | | | | |
|
plane_prior5 | | | | | | | | | 99.54 180 | | | | | 99.82 234 | 95.84 297 | 99.78 163 | 99.60 115 |
|
plane_prior4 | | | | | | | | | | | | 99.25 268 | | | | | |
|
plane_prior3 | | | | | | | 99.31 162 | | | 98.36 224 | 99.14 239 | | | | | | |
|
plane_prior2 | | | | | | | | 98.80 219 | | 98.94 161 | | | | | | | |
|
plane_prior1 | | | | | | 99.51 184 | | | | | | | | | | | |
|
plane_prior | | | | | | | 99.24 180 | 98.42 257 | | 97.87 260 | | | | | | 99.71 196 | |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
door-mid | | | | | | | | | 99.83 31 | | | | | | | | |
|
lessismore_v0 | | | | | 99.64 102 | 99.86 29 | 99.38 146 | | 90.66 352 | | 99.89 26 | 99.83 40 | 94.56 281 | 99.97 16 | 99.56 23 | 99.92 72 | 99.57 135 |
|
LGP-MVS_train | | | | | 99.74 59 | 99.82 42 | 99.63 88 | | 99.73 78 | 97.56 273 | 99.64 117 | 99.69 111 | 99.37 29 | 99.89 132 | 96.66 263 | 99.87 106 | 99.69 50 |
|
test11 | | | | | | | | | 99.29 265 | | | | | | | | |
|
door | | | | | | | | | 99.77 59 | | | | | | | | |
|
HQP5-MVS | | | | | | | 98.94 216 | | | | | | | | | | |
|
HQP-NCC | | | | | | 99.31 255 | | 97.98 296 | | 97.45 280 | 98.15 310 | | | | | | |
|
ACMP_Plane | | | | | | 99.31 255 | | 97.98 296 | | 97.45 280 | 98.15 310 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 94.73 317 | | |
|
HQP4-MVS | | | | | | | | | | | 98.15 310 | | | 99.70 288 | | | 99.53 150 |
|
HQP3-MVS | | | | | | | | | 99.37 247 | | | | | | | 99.67 211 | |
|
HQP2-MVS | | | | | | | | | | | | | 96.67 248 | | | | |
|
NP-MVS | | | | | | 99.40 227 | 99.13 196 | | | | | 98.83 318 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 91.44 348 | 99.14 151 | | 97.37 285 | 99.21 228 | | 91.78 306 | | 96.75 257 | | 99.03 282 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.94 60 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.79 157 | |
|
Test By Simon | | | | | | | | | | | | | 98.41 150 | | | | |
|
ITE_SJBPF | | | | | 99.38 190 | 99.63 139 | 99.44 128 | | 99.73 78 | 98.56 202 | 99.33 206 | 99.53 200 | 98.88 87 | 99.68 305 | 96.01 288 | 99.65 218 | 99.02 283 |
|
DeepMVS_CX | | | | | 97.98 300 | 99.69 119 | 96.95 303 | | 99.26 271 | 75.51 348 | 95.74 346 | 98.28 338 | 96.47 254 | 99.62 325 | 91.23 336 | 97.89 336 | 97.38 339 |
|