This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
jajsoiax99.89 399.89 399.89 899.96 499.78 3999.70 2399.86 2099.89 1299.98 499.90 2299.94 199.98 699.75 13100.00 199.90 5
mvs_tets99.90 299.90 299.90 599.96 499.79 3699.72 2099.88 1699.92 799.98 499.93 1499.94 199.98 699.77 12100.00 199.92 3
wuyk23d97.58 28599.13 11792.93 33999.69 12199.49 12099.52 6399.77 6197.97 25999.96 999.79 5999.84 399.94 5495.85 30299.82 14079.36 353
cdsmvs_eth3d_5k24.88 32833.17 3300.00 3420.00 3630.00 3640.00 35499.62 1350.00 3590.00 36099.13 28999.82 40.00 3600.00 3580.00 3580.00 356
LTVRE_ROB99.19 199.88 599.87 599.88 1299.91 1599.90 599.96 199.92 599.90 899.97 799.87 3199.81 599.95 4399.54 2699.99 1399.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 10
test_djsdf99.84 999.81 1099.91 399.94 1099.84 1899.77 1299.80 4799.73 3899.97 799.92 1799.77 799.98 699.43 37100.00 199.90 5
pmmvs699.86 799.86 799.83 2299.94 1099.90 599.83 799.91 899.85 2099.94 1299.95 1299.73 899.90 12399.65 1799.97 3099.69 51
UniMVSNet_ETH3D99.85 899.83 899.90 599.89 2299.91 399.89 599.71 9299.93 599.95 1199.89 2699.71 999.96 3499.51 3099.97 3099.84 15
XVG-OURS99.21 13099.06 14199.65 9999.82 4499.62 9597.87 31399.74 7798.36 22999.66 11399.68 12499.71 999.90 12396.84 25999.88 9999.43 204
XVG-OURS-SEG-HR99.16 14498.99 16699.66 9499.84 3499.64 8998.25 27599.73 8098.39 22699.63 12399.43 23399.70 1199.90 12397.34 22598.64 32499.44 198
DeepC-MVS98.90 499.62 3499.61 3099.67 8799.72 10899.44 13499.24 12599.71 9299.27 11999.93 1599.90 2299.70 1199.93 6798.99 9499.99 1399.64 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH98.42 699.59 3799.54 4599.72 7599.86 3099.62 9599.56 6199.79 5398.77 19099.80 6099.85 3699.64 1399.85 20398.70 12399.89 9199.70 48
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs199.79 1399.79 1299.78 3899.91 1599.83 2299.76 1499.87 1899.73 3899.89 2799.87 3199.63 1499.87 16599.54 2699.92 7399.63 93
DSMNet-mixed99.48 5499.65 2398.95 25399.71 11197.27 30399.50 6599.82 3799.59 7699.41 19599.85 3699.62 15100.00 199.53 2899.89 9199.59 125
Vis-MVSNetpermissive99.75 1699.74 1699.79 3599.88 2499.66 8299.69 2999.92 599.67 5299.77 7399.75 8099.61 1699.98 699.35 4799.98 2299.72 42
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ANet_high99.88 599.87 599.91 399.99 199.91 399.65 44100.00 199.90 8100.00 199.97 999.61 1699.97 1799.75 13100.00 199.84 15
TransMVSNet (Re)99.78 1499.77 1399.81 2799.91 1599.85 1399.75 1599.86 2099.70 4599.91 2199.89 2699.60 1899.87 16599.59 2199.74 18199.71 45
PMMVS299.48 5499.45 5799.57 13699.76 8598.99 21698.09 28999.90 1198.95 16599.78 6899.58 18499.57 1999.93 6799.48 3399.95 4899.79 30
SD-MVS99.01 17799.30 8798.15 30299.50 19599.40 14798.94 20499.61 14299.22 13099.75 8099.82 4899.54 2095.51 35797.48 21899.87 10799.54 149
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_part199.89 399.88 499.94 299.91 1599.92 299.92 399.90 1199.98 299.99 399.97 999.50 2199.98 699.73 16100.00 199.92 3
anonymousdsp99.80 1299.77 1399.90 599.96 499.88 899.73 1799.85 2499.70 4599.92 1999.93 1499.45 2299.97 1799.36 46100.00 199.85 14
ETV-MVS99.18 13999.18 10899.16 23599.34 25499.28 17399.12 16799.79 5399.48 8598.93 26398.55 33799.40 2399.93 6798.51 13399.52 25498.28 328
xiu_mvs_v1_base_debu99.23 11699.34 7698.91 26099.59 14998.23 26598.47 25799.66 11399.61 6899.68 10598.94 31799.39 2499.97 1799.18 7199.55 24498.51 319
xiu_mvs_v1_base99.23 11699.34 7698.91 26099.59 14998.23 26598.47 25799.66 11399.61 6899.68 10598.94 31799.39 2499.97 1799.18 7199.55 24498.51 319
xiu_mvs_v1_base_debi99.23 11699.34 7698.91 26099.59 14998.23 26598.47 25799.66 11399.61 6899.68 10598.94 31799.39 2499.97 1799.18 7199.55 24498.51 319
ACMM98.09 1199.46 6199.38 6899.72 7599.80 5799.69 7599.13 16399.65 12498.99 15999.64 11999.72 9399.39 2499.86 18598.23 15299.81 14899.60 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v2_base99.02 17399.11 12498.77 27799.37 24098.09 27698.13 28499.51 20699.47 9099.42 18798.54 33899.38 2899.97 1798.83 11199.33 28498.24 330
XXY-MVS99.71 1999.67 2199.81 2799.89 2299.72 6299.59 5699.82 3799.39 10499.82 5099.84 4199.38 2899.91 10399.38 4399.93 6999.80 24
LPG-MVS_test99.22 12599.05 14599.74 6199.82 4499.63 9399.16 15299.73 8097.56 27999.64 11999.69 11399.37 3099.89 13796.66 26999.87 10799.69 51
LGP-MVS_train99.74 6199.82 4499.63 9399.73 8097.56 27999.64 11999.69 11399.37 3099.89 13796.66 26999.87 10799.69 51
TDRefinement99.72 1899.70 1899.77 4099.90 2099.85 1399.86 699.92 599.69 4899.78 6899.92 1799.37 3099.88 15298.93 10699.95 4899.60 116
testgi99.29 10499.26 9999.37 19799.75 9598.81 23498.84 21499.89 1398.38 22799.75 8099.04 30399.36 3399.86 18599.08 8899.25 29399.45 193
Fast-Effi-MVS+99.02 17398.87 18699.46 16799.38 23799.50 11999.04 18299.79 5397.17 29898.62 29398.74 33099.34 3499.95 4398.32 14499.41 27198.92 296
casdiffmvs99.63 3199.61 3099.67 8799.79 6799.59 10699.13 16399.85 2499.79 3399.76 7599.72 9399.33 3599.82 24099.21 6499.94 6199.59 125
new-patchmatchnet99.35 8899.57 3998.71 28299.82 4496.62 31798.55 24899.75 7299.50 8399.88 3399.87 3199.31 3699.88 15299.43 37100.00 199.62 105
HPM-MVS_fast99.43 6599.30 8799.80 3099.83 3899.81 2999.52 6399.70 9698.35 23499.51 17199.50 21399.31 3699.88 15298.18 15999.84 12199.69 51
CS-MVS99.09 16199.03 15399.25 22399.45 21999.49 12099.41 7899.82 3799.10 14998.03 32598.48 34199.30 3899.89 13798.30 14699.41 27198.35 325
EG-PatchMatch MVS99.57 3999.56 4399.62 11999.77 8199.33 16599.26 11799.76 6699.32 11399.80 6099.78 6699.29 3999.87 16599.15 7899.91 8299.66 74
DeepPCF-MVS98.42 699.18 13999.02 15599.67 8799.22 27899.75 4997.25 34099.47 22098.72 19599.66 11399.70 10799.29 3999.63 33098.07 16899.81 14899.62 105
pcd_1.5k_mvsjas16.61 32922.14 3320.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 199.28 410.00 3600.00 3580.00 3580.00 356
PS-MVSNAJss99.84 999.82 999.89 899.96 499.77 4199.68 3299.85 2499.95 499.98 499.92 1799.28 4199.98 699.75 13100.00 199.94 2
PS-MVSNAJ99.00 17999.08 13598.76 27899.37 24098.10 27598.00 29999.51 20699.47 9099.41 19598.50 34099.28 4199.97 1798.83 11199.34 28298.20 334
TSAR-MVS + MP.99.34 9399.24 10299.63 11099.82 4499.37 15599.26 11799.35 25798.77 19099.57 14699.70 10799.27 4499.88 15297.71 19899.75 17399.65 82
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMH+98.40 899.50 5099.43 6299.71 7999.86 3099.76 4799.32 9899.77 6199.53 8099.77 7399.76 7699.26 4599.78 26897.77 19399.88 9999.60 116
HPM-MVScopyleft99.25 11299.07 13999.78 3899.81 5199.75 4999.61 5199.67 10997.72 27399.35 20699.25 27399.23 4699.92 8597.21 23999.82 14099.67 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS99.34 9399.30 8799.48 16299.51 18999.36 15898.12 28599.53 19599.36 10899.41 19599.61 16999.22 4799.87 16599.21 6499.68 20699.20 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
pmmvs-eth3d99.48 5499.47 5399.51 15399.77 8199.41 14698.81 22199.66 11399.42 10399.75 8099.66 13499.20 4899.76 27898.98 9699.99 1399.36 221
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7199.70 8399.83 3899.70 7199.38 8499.78 5899.53 8099.67 10999.78 6699.19 4999.86 18597.32 22699.87 10799.55 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + GP.99.12 15299.04 15199.38 19499.34 25499.16 19998.15 28199.29 27198.18 24999.63 12399.62 16099.18 5099.68 31198.20 15599.74 18199.30 233
MVS_111021_HR99.12 15299.02 15599.40 18799.50 19599.11 20497.92 31099.71 9298.76 19399.08 25199.47 22599.17 5199.54 34097.85 18899.76 17099.54 149
3Dnovator99.15 299.43 6599.36 7499.65 9999.39 23499.42 14299.70 2399.56 17699.23 12799.35 20699.80 5399.17 5199.95 4398.21 15499.84 12199.59 125
UA-Net99.78 1499.76 1599.86 1799.72 10899.71 6499.91 499.95 499.96 399.71 9899.91 2099.15 5399.97 1799.50 32100.00 199.90 5
baseline99.63 3199.62 2699.66 9499.80 5799.62 9599.44 7599.80 4799.71 4299.72 9399.69 11399.15 5399.83 23099.32 5299.94 6199.53 154
OPM-MVS99.26 11199.13 11799.63 11099.70 11899.61 10198.58 24299.48 21698.50 21599.52 16699.63 15199.14 5599.76 27897.89 18199.77 16899.51 166
Effi-MVS+99.06 16498.97 17099.34 20299.31 26198.98 21798.31 27099.91 898.81 18498.79 28098.94 31799.14 5599.84 21998.79 11598.74 32099.20 252
testing_299.58 3899.56 4399.62 11999.81 5199.44 13499.14 15699.43 23299.69 4899.82 5099.79 5999.14 5599.79 26499.31 5599.95 4899.63 93
v7n99.82 1199.80 1199.88 1299.96 499.84 1899.82 999.82 3799.84 2299.94 1299.91 2099.13 5899.96 3499.83 999.99 1399.83 19
nrg03099.70 2099.66 2299.82 2499.76 8599.84 1899.61 5199.70 9699.93 599.78 6899.68 12499.10 5999.78 26899.45 3599.96 4199.83 19
MSDG99.08 16298.98 16999.37 19799.60 14799.13 20297.54 32699.74 7798.84 18299.53 16499.55 20199.10 5999.79 26497.07 24799.86 11499.18 256
v124099.56 4299.58 3699.51 15399.80 5799.00 21599.00 18999.65 12499.15 14299.90 2399.75 8099.09 6199.88 15299.90 299.96 4199.67 64
abl_699.36 8699.23 10499.75 5699.71 11199.74 5599.33 9599.76 6699.07 15299.65 11799.63 15199.09 6199.92 8597.13 24499.76 17099.58 130
MVS_111021_LR99.13 15099.03 15399.42 17899.58 15299.32 16797.91 31299.73 8098.68 19799.31 21599.48 22099.09 6199.66 32097.70 20099.77 16899.29 236
v192192099.56 4299.57 3999.55 14399.75 9599.11 20499.05 18099.61 14299.15 14299.88 3399.71 10099.08 6499.87 16599.90 299.97 3099.66 74
v119299.57 3999.57 3999.57 13699.77 8199.22 19099.04 18299.60 15399.18 13399.87 3899.72 9399.08 6499.85 20399.89 599.98 2299.66 74
test_040299.22 12599.14 11499.45 17199.79 6799.43 13999.28 11399.68 10599.54 7899.40 20099.56 19599.07 6699.82 24096.01 29499.96 4199.11 270
ACMP97.51 1499.05 16798.84 19099.67 8799.78 7399.55 11598.88 20799.66 11397.11 30299.47 17699.60 17699.07 6699.89 13796.18 28999.85 11799.58 130
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS98.76 21198.57 21699.33 20499.57 16298.97 21997.53 32899.55 18196.41 31499.27 22199.13 28999.07 6699.78 26896.73 26599.89 9199.23 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_Blended_VisFu99.40 7599.38 6899.44 17399.90 2098.66 24398.94 20499.91 897.97 25999.79 6599.73 8799.05 6999.97 1799.15 7899.99 1399.68 57
canonicalmvs99.02 17399.00 16199.09 24199.10 30098.70 24099.61 5199.66 11399.63 6398.64 29297.65 35299.04 7099.54 34098.79 11598.92 30999.04 286
SteuartSystems-ACMMP99.30 10299.14 11499.76 4699.87 2899.66 8299.18 14199.60 15398.55 20999.57 14699.67 13099.03 7199.94 5497.01 24899.80 15399.69 51
Skip Steuart: Steuart Systems R&D Blog.
OPU-MVS99.29 21499.12 29499.44 13499.20 13599.40 23799.00 7298.84 35396.54 27499.60 23599.58 130
EI-MVSNet-UG-set99.48 5499.50 5199.42 17899.57 16298.65 24599.24 12599.46 22499.68 5099.80 6099.66 13498.99 7399.89 13799.19 6999.90 8399.72 42
Fast-Effi-MVS+-dtu99.20 13299.12 12199.43 17699.25 27499.69 7599.05 18099.82 3799.50 8398.97 25999.05 30098.98 7499.98 698.20 15599.24 29598.62 311
FMVSNet199.66 2599.63 2599.73 6999.78 7399.77 4199.68 3299.70 9699.67 5299.82 5099.83 4298.98 7499.90 12399.24 6399.97 3099.53 154
EI-MVSNet-Vis-set99.47 6099.49 5299.42 17899.57 16298.66 24399.24 12599.46 22499.67 5299.79 6599.65 13998.97 7699.89 13799.15 7899.89 9199.71 45
PHI-MVS99.11 15698.95 17499.59 12799.13 29299.59 10699.17 14699.65 12497.88 26599.25 22399.46 22898.97 7699.80 26197.26 23399.82 14099.37 218
TinyColmap98.97 18398.93 17599.07 24599.46 21698.19 26897.75 31799.75 7298.79 18799.54 16099.70 10798.97 7699.62 33196.63 27199.83 13199.41 208
Regformer-499.45 6399.44 5999.50 15699.52 18498.94 22299.17 14699.53 19599.64 6099.76 7599.60 17698.96 7999.90 12398.91 10799.84 12199.67 64
SMA-MVScopyleft99.19 13599.00 16199.73 6999.46 21699.73 5899.13 16399.52 20397.40 28999.57 14699.64 14198.93 8099.83 23097.61 21099.79 15899.63 93
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVG-ACMP-BASELINE99.23 11699.10 13299.63 11099.82 4499.58 10998.83 21699.72 8998.36 22999.60 13899.71 10098.92 8199.91 10397.08 24699.84 12199.40 210
CSCG99.37 8399.29 9299.60 12599.71 11199.46 12799.43 7799.85 2498.79 18799.41 19599.60 17698.92 8199.92 8598.02 16999.92 7399.43 204
SED-MVS99.40 7599.28 9499.77 4099.69 12199.82 2699.20 13599.54 18699.13 14499.82 5099.63 15198.91 8399.92 8597.85 18899.70 20099.58 130
test_241102_ONE99.69 12199.82 2699.54 18699.12 14799.82 5099.49 21898.91 8399.52 342
Gipumacopyleft99.57 3999.59 3399.49 15999.98 399.71 6499.72 2099.84 3099.81 2899.94 1299.78 6698.91 8399.71 29298.41 13699.95 4899.05 285
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Regformer-399.41 7299.41 6499.40 18799.52 18498.70 24099.17 14699.44 22999.62 6499.75 8099.60 17698.90 8699.85 20398.89 10899.84 12199.65 82
DeepC-MVS_fast98.47 599.23 11699.12 12199.56 14099.28 26999.22 19098.99 19499.40 24399.08 15099.58 14399.64 14198.90 8699.83 23097.44 22099.75 17399.63 93
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ITE_SJBPF99.38 19499.63 14199.44 13499.73 8098.56 20799.33 21199.53 20598.88 8899.68 31196.01 29499.65 22099.02 289
xxxxxxxxxxxxxcwj99.11 15698.96 17299.54 14799.53 17999.25 18198.29 27199.76 6699.07 15299.42 18799.61 16998.86 8999.87 16596.45 28099.68 20699.49 177
SF-MVS99.10 16098.93 17599.62 11999.58 15299.51 11899.13 16399.65 12497.97 25999.42 18799.61 16998.86 8999.87 16596.45 28099.68 20699.49 177
tfpnnormal99.43 6599.38 6899.60 12599.87 2899.75 4999.59 5699.78 5899.71 4299.90 2399.69 11398.85 9199.90 12397.25 23699.78 16499.15 262
ZNCC-MVS99.22 12599.04 15199.77 4099.76 8599.73 5899.28 11399.56 17698.19 24899.14 24499.29 26598.84 9299.92 8597.53 21699.80 15399.64 88
MP-MVS-pluss99.14 14898.92 17999.80 3099.83 3899.83 2298.61 23899.63 13296.84 30899.44 18199.58 18498.81 9399.91 10397.70 20099.82 14099.67 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VPA-MVSNet99.66 2599.62 2699.79 3599.68 12999.75 4999.62 4799.69 10299.85 2099.80 6099.81 5198.81 9399.91 10399.47 3499.88 9999.70 48
test20.0399.55 4599.54 4599.58 13199.79 6799.37 15599.02 18599.89 1399.60 7499.82 5099.62 16098.81 9399.89 13799.43 3799.86 11499.47 187
PGM-MVS99.20 13299.01 15899.77 4099.75 9599.71 6499.16 15299.72 8997.99 25799.42 18799.60 17698.81 9399.93 6796.91 25399.74 18199.66 74
HFP-MVS99.25 11299.08 13599.76 4699.73 10499.70 7199.31 10299.59 16098.36 22999.36 20499.37 24398.80 9799.91 10397.43 22199.75 17399.68 57
#test#99.12 15298.90 18399.76 4699.73 10499.70 7199.10 17099.59 16097.60 27899.36 20499.37 24398.80 9799.91 10396.84 25999.75 17399.68 57
Regformer-299.34 9399.27 9799.53 14999.41 23099.10 20898.99 19499.53 19599.47 9099.66 11399.52 20798.80 9799.89 13798.31 14599.74 18199.60 116
APDe-MVS99.48 5499.36 7499.85 1999.55 17399.81 2999.50 6599.69 10298.99 15999.75 8099.71 10098.79 10099.93 6798.46 13599.85 11799.80 24
CP-MVS99.23 11699.05 14599.75 5699.66 13599.66 8299.38 8499.62 13598.38 22799.06 25599.27 26998.79 10099.94 5497.51 21799.82 14099.66 74
Regformer-199.32 9999.27 9799.47 16499.41 23098.95 22198.99 19499.48 21699.48 8599.66 11399.52 20798.78 10299.87 16598.36 13999.74 18199.60 116
MSLP-MVS++99.05 16799.09 13398.91 26099.21 27998.36 26198.82 22099.47 22098.85 17998.90 26999.56 19598.78 10299.09 35198.57 13099.68 20699.26 239
MVS_Test99.28 10599.31 8299.19 23299.35 24498.79 23699.36 9199.49 21499.17 13699.21 23399.67 13098.78 10299.66 32099.09 8799.66 21799.10 272
3Dnovator+98.92 399.35 8899.24 10299.67 8799.35 24499.47 12399.62 4799.50 20999.44 9699.12 24799.78 6698.77 10599.94 5497.87 18599.72 19499.62 105
APD-MVS_3200maxsize99.31 10199.16 11099.74 6199.53 17999.75 4999.27 11699.61 14299.19 13299.57 14699.64 14198.76 10699.90 12397.29 22899.62 22599.56 139
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4699.58 15299.64 8999.30 10599.63 13299.61 6899.71 9899.56 19598.76 10699.96 3499.14 8499.92 7399.68 57
EIA-MVS99.12 15299.01 15899.45 17199.36 24299.62 9599.34 9399.79 5398.41 22398.84 27498.89 32298.75 10899.84 21998.15 16399.51 25598.89 298
ACMMP_NAP99.28 10599.11 12499.79 3599.75 9599.81 2998.95 20299.53 19598.27 24399.53 16499.73 8798.75 10899.87 16597.70 20099.83 13199.68 57
v1099.69 2299.69 1999.66 9499.81 5199.39 14999.66 3999.75 7299.60 7499.92 1999.87 3198.75 10899.86 18599.90 299.99 1399.73 41
region2R99.23 11699.05 14599.77 4099.76 8599.70 7199.31 10299.59 16098.41 22399.32 21399.36 24898.73 11199.93 6797.29 22899.74 18199.67 64
LS3D99.24 11599.11 12499.61 12398.38 34499.79 3699.57 5999.68 10599.61 6899.15 24299.71 10098.70 11299.91 10397.54 21499.68 20699.13 269
DP-MVS99.48 5499.39 6699.74 6199.57 16299.62 9599.29 11299.61 14299.87 1599.74 8899.76 7698.69 11399.87 16598.20 15599.80 15399.75 39
AllTest99.21 13099.07 13999.63 11099.78 7399.64 8999.12 16799.83 3298.63 20199.63 12399.72 9398.68 11499.75 28296.38 28399.83 13199.51 166
TestCases99.63 11099.78 7399.64 8999.83 3298.63 20199.63 12399.72 9398.68 11499.75 28296.38 28399.83 13199.51 166
LCM-MVSNet-Re99.28 10599.15 11399.67 8799.33 25999.76 4799.34 9399.97 298.93 16999.91 2199.79 5998.68 11499.93 6796.80 26199.56 24099.30 233
v114499.54 4799.53 4999.59 12799.79 6799.28 17399.10 17099.61 14299.20 13199.84 4399.73 8798.67 11799.84 21999.86 899.98 2299.64 88
DTE-MVSNet99.68 2399.61 3099.88 1299.80 5799.87 999.67 3699.71 9299.72 4199.84 4399.78 6698.67 11799.97 1799.30 5699.95 4899.80 24
v14419299.55 4599.54 4599.58 13199.78 7399.20 19699.11 16999.62 13599.18 13399.89 2799.72 9398.66 11999.87 16599.88 699.97 3099.66 74
v899.68 2399.69 1999.65 9999.80 5799.40 14799.66 3999.76 6699.64 6099.93 1599.85 3698.66 11999.84 21999.88 699.99 1399.71 45
GST-MVS99.16 14498.96 17299.75 5699.73 10499.73 5899.20 13599.55 18198.22 24599.32 21399.35 25398.65 12199.91 10396.86 25699.74 18199.62 105
ppachtmachnet_test98.89 19799.12 12198.20 30199.66 13595.24 33497.63 32299.68 10599.08 15099.78 6899.62 16098.65 12199.88 15298.02 16999.96 4199.48 182
PS-CasMVS99.66 2599.58 3699.89 899.80 5799.85 1399.66 3999.73 8099.62 6499.84 4399.71 10098.62 12399.96 3499.30 5699.96 4199.86 12
LF4IMVS99.01 17798.92 17999.27 21899.71 11199.28 17398.59 24199.77 6198.32 24099.39 20199.41 23598.62 12399.84 21996.62 27299.84 12198.69 309
ACMMPR99.23 11699.06 14199.76 4699.74 10199.69 7599.31 10299.59 16098.36 22999.35 20699.38 24298.61 12599.93 6797.43 22199.75 17399.67 64
API-MVS98.38 25098.39 23298.35 29498.83 32499.26 17799.14 15699.18 28998.59 20598.66 29198.78 32898.61 12599.57 33994.14 33199.56 24096.21 350
OMC-MVS98.90 19498.72 20099.44 17399.39 23499.42 14298.58 24299.64 13097.31 29499.44 18199.62 16098.59 12799.69 30096.17 29099.79 15899.22 247
test_0728_THIRD99.18 13399.62 13099.61 16998.58 12899.91 10397.72 19799.80 15399.77 32
RE-MVS-def99.13 11799.54 17499.74 5599.26 11799.62 13599.16 13899.52 16699.64 14198.57 12997.27 23199.61 23299.54 149
ACMMPcopyleft99.25 11299.08 13599.74 6199.79 6799.68 7899.50 6599.65 12498.07 25399.52 16699.69 11398.57 12999.92 8597.18 24199.79 15899.63 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS99.66 2599.59 3399.89 899.83 3899.87 999.66 3999.73 8099.70 4599.84 4399.73 8798.56 13199.96 3499.29 5999.94 6199.83 19
V4299.56 4299.54 4599.63 11099.79 6799.46 12799.39 8299.59 16099.24 12599.86 3999.70 10798.55 13299.82 24099.79 1199.95 4899.60 116
QAPM98.40 24997.99 26099.65 9999.39 23499.47 12399.67 3699.52 20391.70 34798.78 28299.80 5398.55 13299.95 4394.71 32599.75 17399.53 154
EI-MVSNet99.38 8199.44 5999.21 22999.58 15298.09 27699.26 11799.46 22499.62 6499.75 8099.67 13098.54 13499.85 20399.15 7899.92 7399.68 57
jason99.16 14499.11 12499.32 20899.75 9598.44 25498.26 27499.39 24698.70 19699.74 8899.30 26298.54 13499.97 1798.48 13499.82 14099.55 142
jason: jason.
OurMVSNet-221017-099.75 1699.71 1799.84 2099.96 499.83 2299.83 799.85 2499.80 3199.93 1599.93 1498.54 13499.93 6799.59 2199.98 2299.76 36
IterMVS-LS99.41 7299.47 5399.25 22399.81 5198.09 27698.85 21399.76 6699.62 6499.83 4899.64 14198.54 13499.97 1799.15 7899.99 1399.68 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
9.1498.64 20799.45 21998.81 22199.60 15397.52 28399.28 22099.56 19598.53 13899.83 23095.36 31699.64 222
mPP-MVS99.19 13599.00 16199.76 4699.76 8599.68 7899.38 8499.54 18698.34 23899.01 25799.50 21398.53 13899.93 6797.18 24199.78 16499.66 74
CNVR-MVS98.99 18298.80 19699.56 14099.25 27499.43 13998.54 25199.27 27598.58 20698.80 27999.43 23398.53 13899.70 29497.22 23899.59 23799.54 149
PVSNet_BlendedMVS99.03 17199.01 15899.09 24199.54 17497.99 28098.58 24299.82 3797.62 27799.34 20999.71 10098.52 14199.77 27697.98 17499.97 3099.52 164
PVSNet_Blended98.70 21898.59 21299.02 24999.54 17497.99 28097.58 32599.82 3795.70 32699.34 20998.98 31098.52 14199.77 27697.98 17499.83 13199.30 233
MCST-MVS99.02 17398.81 19499.65 9999.58 15299.49 12098.58 24299.07 29698.40 22599.04 25699.25 27398.51 14399.80 26197.31 22799.51 25599.65 82
UGNet99.38 8199.34 7699.49 15998.90 31598.90 23099.70 2399.35 25799.86 1798.57 29899.81 5198.50 14499.93 6799.38 4399.98 2299.66 74
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVS99.27 10999.11 12499.75 5699.71 11199.71 6499.37 8899.61 14299.29 11598.76 28499.47 22598.47 14599.88 15297.62 20899.73 18899.67 64
X-MVStestdata96.09 31794.87 32599.75 5699.71 11199.71 6499.37 8899.61 14299.29 11598.76 28461.30 36298.47 14599.88 15297.62 20899.73 18899.67 64
diffmvs99.34 9399.32 8199.39 19099.67 13498.77 23798.57 24699.81 4699.61 6899.48 17499.41 23598.47 14599.86 18598.97 9899.90 8399.53 154
ambc99.20 23199.35 24498.53 24899.17 14699.46 22499.67 10999.80 5398.46 14899.70 29497.92 17999.70 20099.38 215
FC-MVSNet-test99.70 2099.65 2399.86 1799.88 2499.86 1299.72 2099.78 5899.90 899.82 5099.83 4298.45 14999.87 16599.51 3099.97 3099.86 12
131498.00 27297.90 27398.27 30098.90 31597.45 29999.30 10599.06 29894.98 33497.21 34499.12 29398.43 15099.67 31695.58 31098.56 32797.71 342
USDC98.96 18698.93 17599.05 24799.54 17497.99 28097.07 34399.80 4798.21 24699.75 8099.77 7398.43 15099.64 32997.90 18099.88 9999.51 166
CL-MVSNet_2432*160099.63 3199.59 3399.76 4699.84 3499.90 599.37 8899.79 5399.83 2599.88 3399.85 3698.42 15299.90 12399.60 2099.73 18899.49 177
test117299.23 11699.05 14599.74 6199.52 18499.75 4999.20 13599.61 14298.97 16199.48 17499.58 18498.41 15399.91 10397.15 24399.55 24499.57 136
SR-MVS-dyc-post99.27 10999.11 12499.73 6999.54 17499.74 5599.26 11799.62 13599.16 13899.52 16699.64 14198.41 15399.91 10397.27 23199.61 23299.54 149
v14899.40 7599.41 6499.39 19099.76 8598.94 22299.09 17499.59 16099.17 13699.81 5799.61 16998.41 15399.69 30099.32 5299.94 6199.53 154
Test By Simon98.41 153
PM-MVS99.36 8699.29 9299.58 13199.83 3899.66 8298.95 20299.86 2098.85 17999.81 5799.73 8798.40 15799.92 8598.36 13999.83 13199.17 258
SR-MVS99.19 13599.00 16199.74 6199.51 18999.72 6299.18 14199.60 15398.85 17999.47 17699.58 18498.38 15899.92 8596.92 25299.54 25099.57 136
segment_acmp98.37 159
MP-MVScopyleft99.06 16498.83 19299.76 4699.76 8599.71 6499.32 9899.50 20998.35 23498.97 25999.48 22098.37 15999.92 8595.95 30099.75 17399.63 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVS99.32 9999.17 10999.77 4099.69 12199.80 3499.14 15699.31 26699.16 13899.62 13099.61 16998.35 16199.91 10397.88 18299.72 19499.61 112
test072699.69 12199.80 3499.24 12599.57 17199.16 13899.73 9299.65 13998.35 161
MVS95.72 32394.63 32798.99 25098.56 34097.98 28599.30 10598.86 30472.71 35697.30 34199.08 29798.34 16399.74 28489.21 34698.33 33299.26 239
CDPH-MVS98.56 23098.20 24799.61 12399.50 19599.46 12798.32 26999.41 23695.22 33199.21 23399.10 29698.34 16399.82 24095.09 32099.66 21799.56 139
testdata99.42 17899.51 18998.93 22699.30 26996.20 31898.87 27199.40 23798.33 16599.89 13796.29 28699.28 28999.44 198
test_241102_TWO99.54 18699.13 14499.76 7599.63 15198.32 16699.92 8597.85 18899.69 20399.75 39
APD-MVScopyleft98.87 20098.59 21299.71 7999.50 19599.62 9599.01 18799.57 17196.80 31099.54 16099.63 15198.29 16799.91 10395.24 31799.71 19899.61 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.12 1098.23 26297.89 27499.26 22099.19 28499.26 17799.65 4499.69 10291.33 34898.14 32099.77 7398.28 16899.96 3495.41 31499.55 24498.58 315
FIs99.65 3099.58 3699.84 2099.84 3499.85 1399.66 3999.75 7299.86 1799.74 8899.79 5998.27 16999.85 20399.37 4599.93 6999.83 19
TAPA-MVS97.92 1398.03 27097.55 28499.46 16799.47 21199.44 13498.50 25599.62 13586.79 35199.07 25499.26 27198.26 17099.62 33197.28 23099.73 18899.31 232
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v2v48299.50 5099.47 5399.58 13199.78 7399.25 18199.14 15699.58 16999.25 12399.81 5799.62 16098.24 17199.84 21999.83 999.97 3099.64 88
pmmvs499.13 15099.06 14199.36 20099.57 16299.10 20898.01 29799.25 28098.78 18999.58 14399.44 23298.24 17199.76 27898.74 12099.93 6999.22 247
mvs_anonymous99.28 10599.39 6698.94 25499.19 28497.81 28899.02 18599.55 18199.78 3499.85 4099.80 5398.24 17199.86 18599.57 2499.50 25799.15 262
DPE-MVS99.14 14898.92 17999.82 2499.57 16299.77 4198.74 23199.60 15398.55 20999.76 7599.69 11398.23 17499.92 8596.39 28299.75 17399.76 36
zzz-MVS99.30 10299.14 11499.80 3099.81 5199.81 2998.73 23399.53 19599.27 11999.42 18799.63 15198.21 17599.95 4397.83 19199.79 15899.65 82
MTAPA99.35 8899.20 10699.80 3099.81 5199.81 2999.33 9599.53 19599.27 11999.42 18799.63 15198.21 17599.95 4397.83 19199.79 15899.65 82
MS-PatchMatch99.00 17998.97 17099.09 24199.11 29998.19 26898.76 23099.33 26098.49 21799.44 18199.58 18498.21 17599.69 30098.20 15599.62 22599.39 213
our_test_398.85 20299.09 13398.13 30399.66 13594.90 33797.72 31899.58 16999.07 15299.64 11999.62 16098.19 17899.93 6798.41 13699.95 4899.55 142
MVP-Stereo99.16 14499.08 13599.43 17699.48 20699.07 21299.08 17799.55 18198.63 20199.31 21599.68 12498.19 17899.78 26898.18 15999.58 23899.45 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H99.61 3699.53 4999.87 1599.80 5799.83 2299.67 3699.75 7299.58 7799.85 4099.69 11398.18 18099.94 5499.28 6199.95 4899.83 19
new_pmnet98.88 19898.89 18498.84 27099.70 11897.62 29498.15 28199.50 20997.98 25899.62 13099.54 20398.15 18199.94 5497.55 21399.84 12198.95 293
D2MVS99.22 12599.19 10799.29 21499.69 12198.74 23898.81 22199.41 23698.55 20999.68 10599.69 11398.13 18299.87 16598.82 11399.98 2299.24 242
Anonymous2024052999.42 6899.34 7699.65 9999.53 17999.60 10399.63 4699.39 24699.47 9099.76 7599.78 6698.13 18299.86 18598.70 12399.68 20699.49 177
EU-MVSNet99.39 7999.62 2698.72 28099.88 2496.44 31999.56 6199.85 2499.90 899.90 2399.85 3698.09 18499.83 23099.58 2399.95 4899.90 5
PMVScopyleft92.94 2198.82 20598.81 19498.85 26899.84 3497.99 28099.20 13599.47 22099.71 4299.42 18799.82 4898.09 18499.47 34593.88 33699.85 11799.07 283
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HPM-MVS++copyleft98.96 18698.70 20499.74 6199.52 18499.71 6498.86 21199.19 28898.47 21998.59 29699.06 29998.08 18699.91 10396.94 25199.60 23599.60 116
ab-mvs99.33 9799.28 9499.47 16499.57 16299.39 14999.78 1199.43 23298.87 17799.57 14699.82 4898.06 18799.87 16598.69 12599.73 18899.15 262
agg_prior198.33 25697.92 27099.57 13699.35 24499.36 15897.99 30199.39 24694.85 33897.76 33798.98 31098.03 18899.85 20395.49 31199.44 26599.51 166
N_pmnet98.73 21698.53 22199.35 20199.72 10898.67 24298.34 26694.65 35298.35 23499.79 6599.68 12498.03 18899.93 6798.28 14899.92 7399.44 198
TEST999.35 24499.35 16298.11 28799.41 23694.83 33997.92 32898.99 30798.02 19099.85 203
train_agg98.35 25497.95 26499.57 13699.35 24499.35 16298.11 28799.41 23694.90 33597.92 32898.99 30798.02 19099.85 20395.38 31599.44 26599.50 172
test_899.34 25499.31 16898.08 29199.40 24394.90 33597.87 33298.97 31398.02 19099.84 219
MVSFormer99.41 7299.44 5999.31 21199.57 16298.40 25799.77 1299.80 4799.73 3899.63 12399.30 26298.02 19099.98 699.43 3799.69 20399.55 142
lupinMVS98.96 18698.87 18699.24 22699.57 16298.40 25798.12 28599.18 28998.28 24299.63 12399.13 28998.02 19099.97 1798.22 15399.69 20399.35 224
Anonymous2023121199.62 3499.57 3999.76 4699.61 14599.60 10399.81 1099.73 8099.82 2799.90 2399.90 2297.97 19599.86 18599.42 4199.96 4199.80 24
MIMVSNet199.66 2599.62 2699.80 3099.94 1099.87 999.69 2999.77 6199.78 3499.93 1599.89 2697.94 19699.92 8599.65 1799.98 2299.62 105
原ACMM199.37 19799.47 21198.87 23399.27 27596.74 31198.26 31199.32 25897.93 19799.82 24095.96 29999.38 27599.43 204
ETH3D-3000-0.198.77 20998.50 22399.59 12799.47 21199.53 11798.77 22999.60 15397.33 29399.23 22799.50 21397.91 19899.83 23095.02 32199.67 21399.41 208
test_prior398.62 22298.34 23899.46 16799.35 24499.22 19097.95 30699.39 24697.87 26698.05 32299.05 30097.90 19999.69 30095.99 29699.49 25999.48 182
test_prior297.95 30697.87 26698.05 32299.05 30097.90 19995.99 29699.49 259
RPSCF99.18 13999.02 15599.64 10699.83 3899.85 1399.44 7599.82 3798.33 23999.50 17299.78 6697.90 19999.65 32796.78 26299.83 13199.44 198
PMMVS98.49 24098.29 24199.11 23998.96 31298.42 25697.54 32699.32 26297.53 28298.47 30598.15 34797.88 20299.82 24097.46 21999.24 29599.09 275
ZD-MVS99.43 22499.61 10199.43 23296.38 31599.11 24899.07 29897.86 20399.92 8594.04 33399.49 259
NCCC98.82 20598.57 21699.58 13199.21 27999.31 16898.61 23899.25 28098.65 19998.43 30699.26 27197.86 20399.81 25696.55 27399.27 29299.61 112
UniMVSNet_NR-MVSNet99.37 8399.25 10199.72 7599.47 21199.56 11298.97 20099.61 14299.43 10199.67 10999.28 26797.85 20599.95 4399.17 7499.81 14899.65 82
TAMVS99.49 5299.45 5799.63 11099.48 20699.42 14299.45 7299.57 17199.66 5699.78 6899.83 4297.85 20599.86 18599.44 3699.96 4199.61 112
DP-MVS Recon98.50 23798.23 24499.31 21199.49 20099.46 12798.56 24799.63 13294.86 33798.85 27399.37 24397.81 20799.59 33796.08 29199.44 26598.88 299
PatchMatch-RL98.68 21998.47 22499.30 21399.44 22299.28 17398.14 28399.54 18697.12 30199.11 24899.25 27397.80 20899.70 29496.51 27699.30 28798.93 295
CP-MVSNet99.54 4799.43 6299.87 1599.76 8599.82 2699.57 5999.61 14299.54 7899.80 6099.64 14197.79 20999.95 4399.21 6499.94 6199.84 15
DPM-MVS98.28 25797.94 26899.32 20899.36 24299.11 20497.31 33898.78 30996.88 30598.84 27499.11 29597.77 21099.61 33594.03 33499.36 28099.23 245
114514_t98.49 24098.11 25599.64 10699.73 10499.58 10999.24 12599.76 6689.94 35099.42 18799.56 19597.76 21199.86 18597.74 19699.82 14099.47 187
tmp_tt95.75 32295.42 32296.76 32889.90 36094.42 33998.86 21197.87 33578.01 35499.30 21999.69 11397.70 21295.89 35699.29 5998.14 33899.95 1
UniMVSNet (Re)99.37 8399.26 9999.68 8599.51 18999.58 10998.98 19899.60 15399.43 10199.70 10099.36 24897.70 21299.88 15299.20 6799.87 10799.59 125
Effi-MVS+-dtu99.07 16398.92 17999.52 15098.89 31899.78 3999.15 15499.66 11399.34 10998.92 26699.24 27897.69 21499.98 698.11 16599.28 28998.81 305
mvs-test198.83 20398.70 20499.22 22898.89 31899.65 8798.88 20799.66 11399.34 10998.29 30998.94 31797.69 21499.96 3498.11 16598.54 32898.04 338
F-COLMAP98.74 21498.45 22699.62 11999.57 16299.47 12398.84 21499.65 12496.31 31798.93 26399.19 28697.68 21699.87 16596.52 27599.37 27999.53 154
新几何199.52 15099.50 19599.22 19099.26 27795.66 32798.60 29599.28 26797.67 21799.89 13795.95 30099.32 28599.45 193
旧先验199.49 20099.29 17199.26 27799.39 24197.67 21799.36 28099.46 191
DU-MVS99.33 9799.21 10599.71 7999.43 22499.56 11298.83 21699.53 19599.38 10599.67 10999.36 24897.67 21799.95 4399.17 7499.81 14899.63 93
Baseline_NR-MVSNet99.49 5299.37 7199.82 2499.91 1599.84 1898.83 21699.86 2099.68 5099.65 11799.88 2997.67 21799.87 16599.03 9199.86 11499.76 36
CANet99.11 15699.05 14599.28 21698.83 32498.56 24798.71 23699.41 23699.25 12399.23 22799.22 28097.66 22199.94 5499.19 6999.97 3099.33 227
VPNet99.46 6199.37 7199.71 7999.82 4499.59 10699.48 6999.70 9699.81 2899.69 10399.58 18497.66 22199.86 18599.17 7499.44 26599.67 64
Anonymous2023120699.35 8899.31 8299.47 16499.74 10199.06 21499.28 11399.74 7799.23 12799.72 9399.53 20597.63 22399.88 15299.11 8699.84 12199.48 182
ETH3D cwj APD-0.1698.50 23798.16 25399.51 15399.04 30799.39 14998.47 25799.47 22096.70 31298.78 28299.33 25797.62 22499.86 18594.69 32699.38 27599.28 238
test1299.54 14799.29 26799.33 16599.16 29198.43 30697.54 22599.82 24099.47 26299.48 182
NR-MVSNet99.40 7599.31 8299.68 8599.43 22499.55 11599.73 1799.50 20999.46 9499.88 3399.36 24897.54 22599.87 16598.97 9899.87 10799.63 93
MAR-MVS98.24 26197.92 27099.19 23298.78 33299.65 8799.17 14699.14 29395.36 32998.04 32498.81 32797.47 22799.72 28895.47 31399.06 30198.21 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268899.39 7999.30 8799.65 9999.88 2499.25 18198.78 22899.88 1698.66 19899.96 999.79 5997.45 22899.93 6799.34 4899.99 1399.78 31
PAPR97.56 28697.07 29599.04 24898.80 32998.11 27497.63 32299.25 28094.56 34198.02 32698.25 34697.43 22999.68 31190.90 34598.74 32099.33 227
YYNet198.95 18998.99 16698.84 27099.64 13997.14 30798.22 27799.32 26298.92 17199.59 14199.66 13497.40 23099.83 23098.27 14999.90 8399.55 142
PVSNet97.47 1598.42 24698.44 22798.35 29499.46 21696.26 32196.70 34899.34 25997.68 27599.00 25899.13 28997.40 23099.72 28897.59 21299.68 20699.08 278
112198.56 23098.24 24399.52 15099.49 20099.24 18699.30 10599.22 28595.77 32498.52 30199.29 26597.39 23299.85 20395.79 30599.34 28299.46 191
MDA-MVSNet_test_wron98.95 18998.99 16698.85 26899.64 13997.16 30698.23 27699.33 26098.93 16999.56 15399.66 13497.39 23299.83 23098.29 14799.88 9999.55 142
MG-MVS98.52 23698.39 23298.94 25499.15 28997.39 30198.18 27899.21 28798.89 17699.23 22799.63 15197.37 23499.74 28494.22 33099.61 23299.69 51
OpenMVS_ROBcopyleft97.31 1797.36 29296.84 30398.89 26799.29 26799.45 13298.87 21099.48 21686.54 35399.44 18199.74 8397.34 23599.86 18591.61 34199.28 28997.37 346
AdaColmapbinary98.60 22498.35 23799.38 19499.12 29499.22 19098.67 23799.42 23597.84 27098.81 27799.27 26997.32 23699.81 25695.14 31899.53 25299.10 272
test22299.51 18999.08 21197.83 31599.29 27195.21 33298.68 29099.31 26097.28 23799.38 27599.43 204
HQP_MVS98.90 19498.68 20699.55 14399.58 15299.24 18698.80 22499.54 18698.94 16699.14 24499.25 27397.24 23899.82 24095.84 30399.78 16499.60 116
plane_prior699.47 21199.26 17797.24 238
GBi-Net99.42 6899.31 8299.73 6999.49 20099.77 4199.68 3299.70 9699.44 9699.62 13099.83 4297.21 24099.90 12398.96 10099.90 8399.53 154
test199.42 6899.31 8299.73 6999.49 20099.77 4199.68 3299.70 9699.44 9699.62 13099.83 4297.21 24099.90 12398.96 10099.90 8399.53 154
FMVSNet299.35 8899.28 9499.55 14399.49 20099.35 16299.45 7299.57 17199.44 9699.70 10099.74 8397.21 24099.87 16599.03 9199.94 6199.44 198
BH-RMVSNet98.41 24798.14 25499.21 22999.21 27998.47 25198.60 24098.26 32998.35 23498.93 26399.31 26097.20 24399.66 32094.32 32899.10 30099.51 166
MVS-HIRNet97.86 27498.22 24596.76 32899.28 26991.53 35498.38 26592.60 35799.13 14499.31 21599.96 1197.18 24499.68 31198.34 14299.83 13199.07 283
PAPM_NR98.36 25198.04 25899.33 20499.48 20698.93 22698.79 22799.28 27497.54 28198.56 29998.57 33597.12 24599.69 30094.09 33298.90 31199.38 215
CPTT-MVS98.74 21498.44 22799.64 10699.61 14599.38 15299.18 14199.55 18196.49 31399.27 22199.37 24397.11 24699.92 8595.74 30799.67 21399.62 105
testtj98.56 23098.17 25299.72 7599.45 21999.60 10398.88 20799.50 20996.88 30599.18 23999.48 22097.08 24799.92 8593.69 33799.38 27599.63 93
CNLPA98.57 22998.34 23899.28 21699.18 28699.10 20898.34 26699.41 23698.48 21898.52 30198.98 31097.05 24899.78 26895.59 30999.50 25798.96 292
BH-untuned98.22 26398.09 25698.58 28699.38 23797.24 30498.55 24898.98 30297.81 27199.20 23898.76 32997.01 24999.65 32794.83 32298.33 33298.86 301
VDD-MVS99.20 13299.11 12499.44 17399.43 22498.98 21799.50 6598.32 32899.80 3199.56 15399.69 11396.99 25099.85 20398.99 9499.73 18899.50 172
PLCcopyleft97.35 1698.36 25197.99 26099.48 16299.32 26099.24 18698.50 25599.51 20695.19 33398.58 29798.96 31596.95 25199.83 23095.63 30899.25 29399.37 218
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS99.11 15698.93 17599.66 9499.30 26599.42 14298.42 26399.37 25399.04 15799.57 14699.20 28496.89 25299.86 18598.66 12799.87 10799.70 48
MSP-MVS99.04 17098.79 19799.81 2799.78 7399.73 5899.35 9299.57 17198.54 21299.54 16098.99 30796.81 25399.93 6796.97 25099.53 25299.77 32
HQP2-MVS96.67 254
HQP-MVS98.36 25198.02 25999.39 19099.31 26198.94 22297.98 30299.37 25397.45 28698.15 31698.83 32596.67 25499.70 29494.73 32399.67 21399.53 154
CANet_DTU98.91 19298.85 18899.09 24198.79 33098.13 27198.18 27899.31 26699.48 8598.86 27299.51 21096.56 25699.95 4399.05 9099.95 4899.19 254
pmmvs599.19 13599.11 12499.42 17899.76 8598.88 23198.55 24899.73 8098.82 18399.72 9399.62 16096.56 25699.82 24099.32 5299.95 4899.56 139
MVEpermissive92.54 2296.66 30796.11 31198.31 29899.68 12997.55 29697.94 30895.60 35099.37 10690.68 35798.70 33196.56 25698.61 35586.94 35499.55 24498.77 307
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
VNet99.18 13999.06 14199.56 14099.24 27699.36 15899.33 9599.31 26699.67 5299.47 17699.57 19296.48 25999.84 21999.15 7899.30 28799.47 187
MDA-MVSNet-bldmvs99.06 16499.05 14599.07 24599.80 5797.83 28798.89 20699.72 8999.29 11599.63 12399.70 10796.47 26099.89 13798.17 16199.82 14099.50 172
DeepMVS_CXcopyleft97.98 30599.69 12196.95 31099.26 27775.51 35595.74 35398.28 34596.47 26099.62 33191.23 34397.89 34397.38 345
1112_ss99.05 16798.84 19099.67 8799.66 13599.29 17198.52 25399.82 3797.65 27699.43 18599.16 28796.42 26299.91 10399.07 8999.84 12199.80 24
TR-MVS97.44 28997.15 29498.32 29698.53 34197.46 29898.47 25797.91 33496.85 30798.21 31598.51 33996.42 26299.51 34392.16 34097.29 34797.98 339
miper_ehance_all_eth98.59 22798.59 21298.59 28598.98 31197.07 30897.49 33199.52 20398.50 21599.52 16699.37 24396.41 26499.71 29297.86 18699.62 22599.00 291
cl_fuxian98.72 21798.71 20198.72 28099.12 29497.22 30597.68 32199.56 17698.90 17399.54 16099.48 22096.37 26599.73 28697.88 18299.88 9999.21 249
sss98.90 19498.77 19899.27 21899.48 20698.44 25498.72 23499.32 26297.94 26399.37 20399.35 25396.31 26699.91 10398.85 11099.63 22499.47 187
CDS-MVSNet99.22 12599.13 11799.50 15699.35 24499.11 20498.96 20199.54 18699.46 9499.61 13699.70 10796.31 26699.83 23099.34 4899.88 9999.55 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth98.68 21998.71 20198.60 28499.10 30096.84 31497.52 33099.54 18698.94 16699.58 14399.48 22096.25 26899.76 27898.01 17299.93 6999.21 249
SixPastTwentyTwo99.42 6899.30 8799.76 4699.92 1499.67 8099.70 2399.14 29399.65 5899.89 2799.90 2296.20 26999.94 5499.42 4199.92 7399.67 64
MVS_030498.88 19898.71 20199.39 19098.85 32298.91 22999.45 7299.30 26998.56 20797.26 34399.68 12496.18 27099.96 3499.17 7499.94 6199.29 236
Test_1112_low_res98.95 18998.73 19999.63 11099.68 12999.15 20198.09 28999.80 4797.14 30099.46 17999.40 23796.11 27199.89 13799.01 9399.84 12199.84 15
IterMVS98.97 18399.16 11098.42 29199.74 10195.64 33098.06 29499.83 3299.83 2599.85 4099.74 8396.10 27299.99 499.27 62100.00 199.63 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT99.00 17999.16 11098.51 28799.75 9595.90 32798.07 29299.84 3099.84 2299.89 2799.73 8796.01 27399.99 499.33 50100.00 199.63 93
SCA98.11 26698.36 23597.36 32299.20 28292.99 34598.17 28098.49 32298.24 24499.10 25099.57 19296.01 27399.94 5496.86 25699.62 22599.14 266
ETH3 D test640097.76 27897.19 29399.50 15699.38 23799.26 17798.34 26699.49 21492.99 34498.54 30099.20 28495.92 27599.82 24091.14 34499.66 21799.40 210
PVSNet_095.53 1995.85 32195.31 32397.47 31998.78 33293.48 34395.72 35199.40 24396.18 31997.37 34097.73 35195.73 27699.58 33895.49 31181.40 35599.36 221
CMPMVSbinary77.52 2398.50 23798.19 25099.41 18598.33 34699.56 11299.01 18799.59 16095.44 32899.57 14699.80 5395.64 27799.46 34796.47 27999.92 7399.21 249
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
BH-w/o97.20 29497.01 29797.76 31299.08 30395.69 32998.03 29698.52 31995.76 32597.96 32798.02 34895.62 27899.47 34592.82 33997.25 34898.12 336
cascas96.99 29896.82 30497.48 31897.57 35795.64 33096.43 35099.56 17691.75 34697.13 34697.61 35395.58 27998.63 35496.68 26799.11 29998.18 335
UnsupCasMVSNet_bld98.55 23398.27 24299.40 18799.56 17299.37 15597.97 30599.68 10597.49 28599.08 25199.35 25395.41 28099.82 24097.70 20098.19 33699.01 290
UnsupCasMVSNet_eth98.83 20398.57 21699.59 12799.68 12999.45 13298.99 19499.67 10999.48 8599.55 15899.36 24894.92 28199.86 18598.95 10496.57 34999.45 193
EPP-MVSNet99.17 14399.00 16199.66 9499.80 5799.43 13999.70 2399.24 28399.48 8599.56 15399.77 7394.89 28299.93 6798.72 12299.89 9199.63 93
WTY-MVS98.59 22798.37 23499.26 22099.43 22498.40 25798.74 23199.13 29598.10 25199.21 23399.24 27894.82 28399.90 12397.86 18698.77 31699.49 177
miper_enhance_ethall98.03 27097.94 26898.32 29698.27 34796.43 32096.95 34499.41 23696.37 31699.43 18598.96 31594.74 28499.69 30097.71 19899.62 22598.83 304
IS-MVSNet99.03 17198.85 18899.55 14399.80 5799.25 18199.73 1799.15 29299.37 10699.61 13699.71 10094.73 28599.81 25697.70 20099.88 9999.58 130
miper_lstm_enhance98.65 22198.60 21098.82 27599.20 28297.33 30297.78 31699.66 11399.01 15899.59 14199.50 21394.62 28699.85 20398.12 16499.90 8399.26 239
lessismore_v099.64 10699.86 3099.38 15290.66 35899.89 2799.83 4294.56 28799.97 1799.56 2599.92 7399.57 136
PCF-MVS96.03 1896.73 30595.86 31699.33 20499.44 22299.16 19996.87 34699.44 22986.58 35298.95 26199.40 23794.38 28899.88 15287.93 34999.80 15398.95 293
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet98.97 18398.82 19399.42 17899.71 11198.81 23499.62 4798.68 31299.81 2899.38 20299.80 5394.25 28999.85 20398.79 11599.32 28599.59 125
HY-MVS98.23 998.21 26497.95 26498.99 25099.03 30898.24 26499.61 5198.72 31196.81 30998.73 28699.51 21094.06 29099.86 18596.91 25398.20 33498.86 301
cl-mvsnet198.54 23498.42 22998.92 25899.03 30897.80 28997.46 33299.59 16098.90 17399.60 13899.46 22893.87 29199.78 26897.97 17699.89 9199.18 256
cl-mvsnet_98.54 23498.41 23098.92 25899.03 30897.80 28997.46 33299.59 16098.90 17399.60 13899.46 22893.85 29299.78 26897.97 17699.89 9199.17 258
EMVS96.96 30097.28 28895.99 33898.76 33491.03 35695.26 35398.61 31699.34 10998.92 26698.88 32393.79 29399.66 32092.87 33899.05 30297.30 347
EPNet_dtu97.62 28397.79 27797.11 32796.67 35892.31 34898.51 25498.04 33099.24 12595.77 35299.47 22593.78 29499.66 32098.98 9699.62 22599.37 218
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
K. test v398.87 20098.60 21099.69 8499.93 1399.46 12799.74 1694.97 35199.78 3499.88 3399.88 2993.66 29599.97 1799.61 1999.95 4899.64 88
CHOSEN 280x42098.41 24798.41 23098.40 29299.34 25495.89 32896.94 34599.44 22998.80 18699.25 22399.52 20793.51 29699.98 698.94 10599.98 2299.32 230
CVMVSNet98.61 22398.88 18597.80 31199.58 15293.60 34299.26 11799.64 13099.66 5699.72 9399.67 13093.26 29799.93 6799.30 5699.81 14899.87 10
Anonymous20240521198.75 21298.46 22599.63 11099.34 25499.66 8299.47 7197.65 33799.28 11899.56 15399.50 21393.15 29899.84 21998.62 12899.58 23899.40 210
EPNet98.13 26597.77 27899.18 23494.57 35997.99 28099.24 12597.96 33299.74 3797.29 34299.62 16093.13 29999.97 1798.59 12999.83 13199.58 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM95.61 32494.71 32698.31 29899.12 29496.63 31696.66 34998.46 32390.77 34996.25 34998.68 33293.01 30099.69 30081.60 35597.86 34498.62 311
Vis-MVSNet (Re-imp)98.77 20998.58 21599.34 20299.78 7398.88 23199.61 5199.56 17699.11 14899.24 22699.56 19593.00 30199.78 26897.43 22199.89 9199.35 224
E-PMN97.14 29797.43 28596.27 33598.79 33091.62 35395.54 35299.01 30199.44 9698.88 27099.12 29392.78 30299.68 31194.30 32999.03 30497.50 343
FMVSNet398.80 20798.63 20999.32 20899.13 29298.72 23999.10 17099.48 21699.23 12799.62 13099.64 14192.57 30399.86 18598.96 10099.90 8399.39 213
HyFIR lowres test98.91 19298.64 20799.73 6999.85 3399.47 12398.07 29299.83 3298.64 20099.89 2799.60 17692.57 303100.00 199.33 5099.97 3099.72 42
RPMNet98.60 22498.53 22198.83 27299.05 30598.12 27299.30 10599.62 13599.86 1799.16 24099.74 8392.53 30599.92 8598.75 11998.77 31698.44 322
tpmvs97.39 29097.69 28096.52 33398.41 34391.76 35199.30 10598.94 30397.74 27297.85 33399.55 20192.40 30699.73 28696.25 28898.73 32298.06 337
RRT_MVS98.75 21298.54 21999.41 18598.14 35398.61 24698.98 19899.66 11399.31 11499.84 4399.75 8091.98 30799.98 699.20 6799.95 4899.62 105
tpmrst97.73 27998.07 25796.73 33098.71 33692.00 34999.10 17098.86 30498.52 21398.92 26699.54 20391.90 30899.82 24098.02 16999.03 30498.37 324
JIA-IIPM98.06 26997.92 27098.50 28898.59 33997.02 30998.80 22498.51 32099.88 1497.89 33099.87 3191.89 30999.90 12398.16 16297.68 34598.59 313
CR-MVSNet98.35 25498.20 24798.83 27299.05 30598.12 27299.30 10599.67 10997.39 29099.16 24099.79 5991.87 31099.91 10398.78 11898.77 31698.44 322
Patchmtry98.78 20898.54 21999.49 15998.89 31899.19 19799.32 9899.67 10999.65 5899.72 9399.79 5991.87 31099.95 4398.00 17399.97 3099.33 227
MDTV_nov1_ep13_2view91.44 35599.14 15697.37 29199.21 23391.78 31296.75 26399.03 287
PatchT98.45 24498.32 24098.83 27298.94 31398.29 26399.24 12598.82 30799.84 2299.08 25199.76 7691.37 31399.94 5498.82 11399.00 30698.26 329
test_yl98.25 25997.95 26499.13 23799.17 28798.47 25199.00 18998.67 31498.97 16199.22 23199.02 30591.31 31499.69 30097.26 23398.93 30799.24 242
DCV-MVSNet98.25 25997.95 26499.13 23799.17 28798.47 25199.00 18998.67 31498.97 16199.22 23199.02 30591.31 31499.69 30097.26 23398.93 30799.24 242
baseline197.73 27997.33 28798.96 25299.30 26597.73 29199.40 8098.42 32499.33 11299.46 17999.21 28291.18 31699.82 24098.35 14191.26 35499.32 230
tpm cat196.78 30396.98 29896.16 33798.85 32290.59 35999.08 17799.32 26292.37 34597.73 33999.46 22891.15 31799.69 30096.07 29298.80 31398.21 332
LFMVS98.46 24398.19 25099.26 22099.24 27698.52 25099.62 4796.94 34499.87 1599.31 21599.58 18491.04 31899.81 25698.68 12699.42 27099.45 193
MDTV_nov1_ep1397.73 27998.70 33790.83 35799.15 15498.02 33198.51 21498.82 27699.61 16990.98 31999.66 32096.89 25598.92 309
MIMVSNet98.43 24598.20 24799.11 23999.53 17998.38 26099.58 5898.61 31698.96 16499.33 21199.76 7690.92 32099.81 25697.38 22499.76 17099.15 262
ADS-MVSNet297.78 27797.66 28398.12 30499.14 29095.36 33299.22 13298.75 31096.97 30398.25 31299.64 14190.90 32199.94 5496.51 27699.56 24099.08 278
ADS-MVSNet97.72 28197.67 28297.86 30999.14 29094.65 33899.22 13298.86 30496.97 30398.25 31299.64 14190.90 32199.84 21996.51 27699.56 24099.08 278
alignmvs98.28 25797.96 26399.25 22399.12 29498.93 22699.03 18498.42 32499.64 6098.72 28797.85 35090.86 32399.62 33198.88 10999.13 29899.19 254
sam_mvs190.81 32499.14 266
PatchmatchNetpermissive97.65 28297.80 27597.18 32598.82 32792.49 34799.17 14698.39 32698.12 25098.79 28099.58 18490.71 32599.89 13797.23 23799.41 27199.16 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post99.62 16090.58 32699.94 54
Patchmatch-RL test98.60 22498.36 23599.33 20499.77 8199.07 21298.27 27399.87 1898.91 17299.74 8899.72 9390.57 32799.79 26498.55 13199.85 11799.11 270
sam_mvs90.52 328
pmmvs398.08 26897.80 27598.91 26099.41 23097.69 29397.87 31399.66 11395.87 32299.50 17299.51 21090.35 32999.97 1798.55 13199.47 26299.08 278
test_post52.41 36390.25 33099.86 185
Patchmatch-test98.10 26797.98 26298.48 28999.27 27196.48 31899.40 8099.07 29698.81 18499.23 22799.57 19290.11 33199.87 16596.69 26699.64 22299.09 275
test-LLR97.15 29596.95 29997.74 31498.18 35095.02 33597.38 33496.10 34598.00 25597.81 33498.58 33390.04 33299.91 10397.69 20698.78 31498.31 326
test0.0.03 197.37 29196.91 30298.74 27997.72 35497.57 29597.60 32497.36 34398.00 25599.21 23398.02 34890.04 33299.79 26498.37 13895.89 35298.86 301
GA-MVS97.99 27397.68 28198.93 25799.52 18498.04 27997.19 34299.05 29998.32 24098.81 27798.97 31389.89 33499.41 34898.33 14399.05 30299.34 226
test_post199.14 15651.63 36489.54 33599.82 24096.86 256
AUN-MVS97.82 27597.38 28699.14 23699.27 27198.53 24898.72 23499.02 30098.10 25197.18 34599.03 30489.26 33699.85 20397.94 17897.91 34299.03 287
MVSTER98.47 24298.22 24599.24 22699.06 30498.35 26299.08 17799.46 22499.27 11999.75 8099.66 13488.61 33799.85 20399.14 8499.92 7399.52 164
baseline296.83 30296.28 30898.46 29099.09 30296.91 31298.83 21693.87 35697.23 29796.23 35198.36 34388.12 33899.90 12396.68 26798.14 33898.57 316
cl-mvsnet297.56 28697.28 28898.40 29298.37 34596.75 31597.24 34199.37 25397.31 29499.41 19599.22 28087.30 33999.37 34997.70 20099.62 22599.08 278
dp96.86 30197.07 29596.24 33698.68 33890.30 36099.19 14098.38 32797.35 29298.23 31499.59 18287.23 34099.82 24096.27 28798.73 32298.59 313
ET-MVSNet_ETH3D96.78 30396.07 31298.91 26099.26 27397.92 28697.70 32096.05 34897.96 26292.37 35698.43 34287.06 34199.90 12398.27 14997.56 34698.91 297
thres100view90096.39 31196.03 31397.47 31999.63 14195.93 32699.18 14197.57 33898.75 19498.70 28997.31 35787.04 34299.67 31687.62 35098.51 32996.81 348
thres600view796.60 30896.16 31097.93 30799.63 14196.09 32599.18 14197.57 33898.77 19098.72 28797.32 35687.04 34299.72 28888.57 34798.62 32597.98 339
tfpn200view996.30 31495.89 31497.53 31799.58 15296.11 32399.00 18997.54 34198.43 22098.52 30196.98 35986.85 34499.67 31687.62 35098.51 32996.81 348
thres40096.40 31095.89 31497.92 30899.58 15296.11 32399.00 18997.54 34198.43 22098.52 30196.98 35986.85 34499.67 31687.62 35098.51 32997.98 339
thres20096.09 31795.68 32097.33 32499.48 20696.22 32298.53 25297.57 33898.06 25498.37 30896.73 36186.84 34699.61 33586.99 35398.57 32696.16 351
tpm97.15 29596.95 29997.75 31398.91 31494.24 34099.32 9897.96 33297.71 27498.29 30999.32 25886.72 34799.92 8598.10 16796.24 35199.09 275
EPMVS96.53 30996.32 30797.17 32698.18 35092.97 34699.39 8289.95 35998.21 24698.61 29499.59 18286.69 34899.72 28896.99 24999.23 29798.81 305
CostFormer96.71 30696.79 30596.46 33498.90 31590.71 35899.41 7898.68 31294.69 34098.14 32099.34 25686.32 34999.80 26197.60 21198.07 34098.88 299
thisisatest051596.98 29996.42 30698.66 28399.42 22997.47 29797.27 33994.30 35497.24 29699.15 24298.86 32485.01 35099.87 16597.10 24599.39 27498.63 310
tpm296.35 31296.22 30996.73 33098.88 32191.75 35299.21 13498.51 32093.27 34397.89 33099.21 28284.83 35199.70 29496.04 29398.18 33798.75 308
tttt051797.62 28397.20 29298.90 26699.76 8597.40 30099.48 6994.36 35399.06 15699.70 10099.49 21884.55 35299.94 5498.73 12199.65 22099.36 221
thisisatest053097.45 28896.95 29998.94 25499.68 12997.73 29199.09 17494.19 35598.61 20499.56 15399.30 26284.30 35399.93 6798.27 14999.54 25099.16 260
FPMVS96.32 31395.50 32198.79 27699.60 14798.17 27098.46 26298.80 30897.16 29996.28 34899.63 15182.19 35499.09 35188.45 34898.89 31299.10 272
gg-mvs-nofinetune95.87 32095.17 32497.97 30698.19 34996.95 31099.69 2989.23 36099.89 1296.24 35099.94 1381.19 35599.51 34393.99 33598.20 33497.44 344
DWT-MVSNet_test96.03 31995.80 31896.71 33298.50 34291.93 35099.25 12497.87 33595.99 32196.81 34797.61 35381.02 35699.66 32097.20 24097.98 34198.54 317
GG-mvs-BLEND97.36 32297.59 35596.87 31399.70 2388.49 36194.64 35597.26 35880.66 35799.12 35091.50 34296.50 35096.08 352
FMVSNet597.80 27697.25 29099.42 17898.83 32498.97 21999.38 8499.80 4798.87 17799.25 22399.69 11380.60 35899.91 10398.96 10099.90 8399.38 215
TESTMET0.1,196.24 31595.84 31797.41 32198.24 34893.84 34197.38 33495.84 34998.43 22097.81 33498.56 33679.77 35999.89 13797.77 19398.77 31698.52 318
test-mter96.23 31695.73 31997.74 31498.18 35095.02 33597.38 33496.10 34597.90 26497.81 33498.58 33379.12 36099.91 10397.69 20698.78 31498.31 326
RRT_test8_iter0597.35 29397.25 29097.63 31698.81 32893.13 34499.26 11799.89 1399.51 8299.83 4899.68 12479.03 36199.88 15299.53 2899.72 19499.89 9
IB-MVS95.41 2095.30 32594.46 32897.84 31098.76 33495.33 33397.33 33796.07 34796.02 32095.37 35497.41 35576.17 36299.96 3497.54 21495.44 35398.22 331
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test12329.31 32633.05 33118.08 34025.93 36212.24 36297.53 32810.93 36311.78 35724.21 35850.08 36621.04 3638.60 35823.51 35632.43 35733.39 354
testmvs28.94 32733.33 32915.79 34126.03 3619.81 36396.77 34715.67 36211.55 35823.87 35950.74 36519.03 3648.53 35923.21 35733.07 35629.03 355
uanet_test8.33 33011.11 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 10.00 3650.00 3600.00 3580.00 3580.00 356
sosnet-low-res8.33 33011.11 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 10.00 3650.00 3600.00 3580.00 3580.00 356
sosnet8.33 33011.11 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 10.00 3650.00 3600.00 3580.00 3580.00 356
uncertanet8.33 33011.11 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 10.00 3650.00 3600.00 3580.00 3580.00 356
Regformer8.33 33011.11 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 10.00 3650.00 3600.00 3580.00 3580.00 356
ab-mvs-re8.26 33611.02 3390.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 36099.16 2870.00 3650.00 3600.00 3580.00 3580.00 356
uanet8.33 33011.11 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 10.00 3650.00 3600.00 3580.00 3580.00 356
IU-MVS99.69 12199.77 4199.22 28597.50 28499.69 10397.75 19599.70 20099.77 32
save fliter99.53 17999.25 18198.29 27199.38 25299.07 152
test_0728_SECOND99.83 2299.70 11899.79 3699.14 15699.61 14299.92 8597.88 18299.72 19499.77 32
GSMVS99.14 266
test_part299.62 14499.67 8099.55 158
MTGPAbinary99.53 195
MTMP99.09 17498.59 318
gm-plane-assit97.59 35589.02 36193.47 34298.30 34499.84 21996.38 283
test9_res95.10 31999.44 26599.50 172
agg_prior294.58 32799.46 26499.50 172
agg_prior99.35 24499.36 15899.39 24697.76 33799.85 203
test_prior499.19 19798.00 299
test_prior99.46 16799.35 24499.22 19099.39 24699.69 30099.48 182
旧先验297.94 30895.33 33098.94 26299.88 15296.75 263
新几何298.04 295
无先验98.01 29799.23 28495.83 32399.85 20395.79 30599.44 198
原ACMM297.92 310
testdata299.89 13795.99 296
testdata197.72 31897.86 269
plane_prior799.58 15299.38 152
plane_prior599.54 18699.82 24095.84 30399.78 16499.60 116
plane_prior499.25 273
plane_prior399.31 16898.36 22999.14 244
plane_prior298.80 22498.94 166
plane_prior199.51 189
plane_prior99.24 18698.42 26397.87 26699.71 198
n20.00 364
nn0.00 364
door-mid99.83 32
test1199.29 271
door99.77 61
HQP5-MVS98.94 222
HQP-NCC99.31 26197.98 30297.45 28698.15 316
ACMP_Plane99.31 26197.98 30297.45 28698.15 316
BP-MVS94.73 323
HQP4-MVS98.15 31699.70 29499.53 154
HQP3-MVS99.37 25399.67 213
NP-MVS99.40 23399.13 20298.83 325
ACMMP++_ref99.94 61
ACMMP++99.79 158