This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2899.86 2299.89 1199.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2399.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
wuyk23d97.58 29599.13 12192.93 35599.69 12499.49 12999.52 7399.77 6397.97 27299.96 899.79 6599.84 399.94 5795.85 32099.82 14779.36 371
cdsmvs_eth3d_5k24.88 34333.17 3450.00 3590.00 3820.00 3830.00 37099.62 1400.00 3770.00 37899.13 30399.82 40.00 3780.00 3760.00 3760.00 374
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3299.81 599.95 4599.54 2899.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4399.97 699.92 1799.77 799.98 799.43 41100.00 199.90 4
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2499.94 1199.95 1299.73 899.90 13399.65 1699.97 3399.69 55
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2699.71 999.96 3599.51 3399.97 3399.84 14
XVG-OURS99.21 13499.06 14599.65 10499.82 4699.62 10297.87 32499.74 8098.36 24199.66 12099.68 12999.71 999.90 13396.84 27499.88 10399.43 215
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3599.64 9698.25 28699.73 8398.39 23899.63 13099.43 24499.70 1199.90 13397.34 24098.64 33799.44 209
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 11099.44 14399.24 13699.71 9599.27 13099.93 1499.90 2299.70 1199.93 7198.99 10499.99 1299.64 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH98.42 699.59 3899.54 4599.72 7999.86 3199.62 10299.56 7099.79 5598.77 20299.80 6299.85 4199.64 1399.85 21798.70 13499.89 9599.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GeoE99.69 2199.66 2299.78 3799.76 8699.76 5199.60 6399.82 3999.46 10499.75 8399.56 20299.63 1499.95 4599.43 4199.88 10399.62 111
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4399.89 2699.87 3299.63 1499.87 17899.54 2899.92 7799.63 100
DSMNet-mixed99.48 5499.65 2498.95 26499.71 11397.27 31699.50 7599.82 3999.59 8599.41 20599.85 4199.62 16100.00 199.53 3099.89 9599.59 135
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2599.66 8999.69 3499.92 799.67 6199.77 7599.75 8599.61 1799.98 799.35 5499.98 2499.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 50100.00 199.90 7100.00 199.97 1099.61 1799.97 1799.75 13100.00 199.84 14
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 5299.91 2099.89 2699.60 1999.87 17899.59 2199.74 18999.71 48
PMMVS299.48 5499.45 5799.57 14199.76 8698.99 22498.09 30099.90 1498.95 17799.78 7099.58 19199.57 2099.93 7199.48 3699.95 5299.79 30
DROMVSNet99.69 2199.69 1899.68 8999.71 11399.91 299.76 1399.96 499.86 1999.51 18099.39 25399.57 2099.93 7199.64 1899.86 11999.20 264
SD-MVS99.01 18099.30 9098.15 31399.50 20599.40 15598.94 21499.61 14799.22 14299.75 8399.82 5499.54 2295.51 37597.48 23399.87 11299.54 160
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 2099.85 2699.70 5299.92 1899.93 1499.45 2399.97 1799.36 53100.00 199.85 13
ETV-MVS99.18 14399.18 11299.16 24499.34 26599.28 18199.12 17799.79 5599.48 9598.93 27898.55 35699.40 2499.93 7198.51 14499.52 26798.28 346
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27199.59 15698.23 27898.47 26899.66 11899.61 7799.68 11198.94 33499.39 2599.97 1799.18 8099.55 25798.51 335
xiu_mvs_v1_base99.23 12099.34 7998.91 27199.59 15698.23 27898.47 26899.66 11899.61 7799.68 11198.94 33499.39 2599.97 1799.18 8099.55 25798.51 335
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27199.59 15698.23 27898.47 26899.66 11899.61 7799.68 11198.94 33499.39 2599.97 1799.18 8099.55 25798.51 335
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5899.69 8299.13 17399.65 12998.99 17199.64 12699.72 9899.39 2599.86 19898.23 16399.81 15599.60 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v2_base99.02 17699.11 12898.77 28899.37 25198.09 28998.13 29599.51 21599.47 10099.42 19798.54 35799.38 2999.97 1798.83 12199.33 29698.24 348
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6899.59 6599.82 3999.39 11599.82 5299.84 4699.38 2999.91 11399.38 5099.93 7399.80 24
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4699.63 10099.16 16399.73 8397.56 29299.64 12699.69 11899.37 3199.89 15096.66 28499.87 11299.69 55
LGP-MVS_train99.74 6399.82 4699.63 10099.73 8397.56 29299.64 12699.69 11899.37 3199.89 15096.66 28499.87 11299.69 55
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5599.78 7099.92 1799.37 3199.88 16598.93 11699.95 5299.60 126
testgi99.29 10899.26 10299.37 20699.75 9798.81 24398.84 22499.89 1598.38 23999.75 8399.04 31799.36 3499.86 19899.08 9899.25 30599.45 204
Fast-Effi-MVS+99.02 17698.87 18999.46 17499.38 24899.50 12899.04 19299.79 5597.17 31498.62 31098.74 34999.34 3599.95 4598.32 15699.41 28498.92 311
casdiffmvs99.63 3299.61 3199.67 9299.79 6899.59 11399.13 17399.85 2699.79 3899.76 7799.72 9899.33 3699.82 25599.21 7399.94 6599.59 135
new-patchmatchnet99.35 9299.57 4098.71 29399.82 4696.62 33098.55 25999.75 7599.50 9399.88 3299.87 3299.31 3799.88 16599.43 41100.00 199.62 111
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3999.81 3199.52 7399.70 10098.35 24699.51 18099.50 22399.31 3799.88 16598.18 17099.84 12899.69 55
EG-PatchMatch MVS99.57 3999.56 4499.62 12599.77 8299.33 17399.26 12899.76 6899.32 12499.80 6299.78 7199.29 3999.87 17899.15 8799.91 8699.66 78
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 29099.75 5597.25 35199.47 23098.72 20799.66 12099.70 11299.29 3999.63 34598.07 17999.81 15599.62 111
pcd_1.5k_mvsjas16.61 34422.14 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 199.28 410.00 3780.00 3760.00 3760.00 374
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4499.68 3799.85 2699.95 399.98 399.92 1799.28 4199.98 799.75 13100.00 199.94 2
PS-MVSNAJ99.00 18299.08 13998.76 28999.37 25198.10 28898.00 31099.51 21599.47 10099.41 20598.50 35999.28 4199.97 1798.83 12199.34 29498.20 352
TSAR-MVS + MP.99.34 9799.24 10699.63 11699.82 4699.37 16399.26 12899.35 26798.77 20299.57 15499.70 11299.27 4499.88 16597.71 21299.75 18199.65 86
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3199.76 5199.32 10899.77 6399.53 8999.77 7599.76 8199.26 4599.78 28297.77 20499.88 10399.60 126
CS-MVS-test99.43 6699.40 6899.53 15499.51 19899.84 1999.60 6399.94 699.52 9199.10 26498.89 33999.24 4699.90 13399.11 9599.66 22798.84 319
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5399.75 5599.61 5899.67 11497.72 28699.35 21699.25 28799.23 4799.92 9197.21 25499.82 14799.67 68
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS99.40 7799.43 6299.29 22399.44 23199.72 6899.36 10099.91 1099.71 4799.28 23398.83 34399.22 4899.86 19899.40 4899.77 17598.29 345
DELS-MVS99.34 9799.30 9099.48 16999.51 19899.36 16698.12 29699.53 20399.36 11999.41 20599.61 17499.22 4899.87 17899.21 7399.68 21699.20 264
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
pmmvs-eth3d99.48 5499.47 5399.51 15999.77 8299.41 15498.81 23199.66 11899.42 11499.75 8399.66 13999.20 5099.76 29298.98 10699.99 1299.36 232
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3999.70 7899.38 9399.78 6099.53 8999.67 11699.78 7199.19 5199.86 19897.32 24199.87 11299.55 152
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + GP.99.12 15699.04 15599.38 20399.34 26599.16 20798.15 29299.29 28198.18 26199.63 13099.62 16599.18 5299.68 32698.20 16699.74 18999.30 244
MVS_111021_HR99.12 15699.02 15899.40 19699.50 20599.11 21297.92 32199.71 9598.76 20599.08 26699.47 23699.17 5399.54 35597.85 19999.76 17899.54 160
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24599.42 15099.70 2899.56 18299.23 13899.35 21699.80 5999.17 5399.95 4598.21 16599.84 12899.59 135
EGC-MVSNET89.05 34085.52 34399.64 11199.89 2199.78 4199.56 7099.52 21124.19 37449.96 37599.83 4799.15 5599.92 9197.71 21299.85 12399.21 260
UA-Net99.78 1399.76 1499.86 1699.72 11099.71 7199.91 399.95 599.96 299.71 10399.91 2099.15 5599.97 1799.50 35100.00 199.90 4
baseline99.63 3299.62 2799.66 9999.80 5899.62 10299.44 8599.80 4999.71 4799.72 9899.69 11899.15 5599.83 24599.32 6099.94 6599.53 165
OPM-MVS99.26 11599.13 12199.63 11699.70 12199.61 10898.58 25399.48 22698.50 22799.52 17599.63 15699.14 5899.76 29297.89 19299.77 17599.51 177
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+99.06 16798.97 17399.34 21199.31 27298.98 22598.31 28199.91 1098.81 19698.79 29798.94 33499.14 5899.84 23498.79 12598.74 33399.20 264
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2799.94 1199.91 2099.13 6099.96 3599.83 999.99 1299.83 18
nrg03099.70 1999.66 2299.82 2399.76 8699.84 1999.61 5899.70 10099.93 499.78 7099.68 12999.10 6199.78 28299.45 3999.96 4599.83 18
MSDG99.08 16598.98 17299.37 20699.60 15299.13 21097.54 33799.74 8098.84 19499.53 17399.55 20999.10 6199.79 27997.07 26299.86 11999.18 269
PC_three_145297.56 29299.68 11199.41 24699.09 6397.09 37396.66 28499.60 24699.62 111
v124099.56 4299.58 3799.51 15999.80 5899.00 22399.00 19999.65 12999.15 15599.90 2299.75 8599.09 6399.88 16599.90 299.96 4599.67 68
abl_699.36 9099.23 10899.75 5799.71 11399.74 6199.33 10599.76 6899.07 16499.65 12499.63 15699.09 6399.92 9197.13 25999.76 17899.58 140
MVS_111021_LR99.13 15499.03 15799.42 18699.58 16199.32 17597.91 32399.73 8398.68 20999.31 22799.48 23199.09 6399.66 33597.70 21599.77 17599.29 247
v192192099.56 4299.57 4099.55 14899.75 9799.11 21299.05 19099.61 14799.15 15599.88 3299.71 10599.08 6799.87 17899.90 299.97 3399.66 78
v119299.57 3999.57 4099.57 14199.77 8299.22 19899.04 19299.60 15999.18 14599.87 3999.72 9899.08 6799.85 21799.89 599.98 2499.66 78
test_040299.22 12999.14 11899.45 17899.79 6899.43 14799.28 12399.68 10999.54 8799.40 21099.56 20299.07 6999.82 25596.01 31299.96 4599.11 283
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7499.55 12298.88 21799.66 11897.11 31899.47 18699.60 18399.07 6999.89 15096.18 30799.85 12399.58 140
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS98.76 21498.57 21999.33 21399.57 17198.97 22797.53 33999.55 18896.41 33099.27 23599.13 30399.07 6999.78 28296.73 28099.89 9599.23 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_Blended_VisFu99.40 7799.38 7199.44 18099.90 1998.66 25398.94 21499.91 1097.97 27299.79 6799.73 9299.05 7299.97 1799.15 8799.99 1299.68 61
canonicalmvs99.02 17699.00 16499.09 25299.10 31398.70 24999.61 5899.66 11899.63 7298.64 30997.65 37099.04 7399.54 35598.79 12598.92 32299.04 299
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2999.66 8999.18 15299.60 15998.55 22199.57 15499.67 13599.03 7499.94 5797.01 26399.80 16099.69 55
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++99.38 8499.25 10499.77 4099.03 32199.77 4499.74 1799.61 14799.18 14599.76 7799.61 17499.00 7599.92 9197.72 21099.60 24699.62 111
OPU-MVS99.29 22399.12 30799.44 14399.20 14699.40 24999.00 7598.84 37096.54 29099.60 24699.58 140
EI-MVSNet-UG-set99.48 5499.50 5199.42 18699.57 17198.65 25699.24 13699.46 23499.68 5799.80 6299.66 13998.99 7799.89 15099.19 7899.90 8799.72 45
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18499.25 28699.69 8299.05 19099.82 3999.50 9398.97 27499.05 31498.98 7899.98 798.20 16699.24 30798.62 327
FMVSNet199.66 2699.63 2699.73 7399.78 7499.77 4499.68 3799.70 10099.67 6199.82 5299.83 4798.98 7899.90 13399.24 7099.97 3399.53 165
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18699.57 17198.66 25399.24 13699.46 23499.67 6199.79 6799.65 14498.97 8099.89 15099.15 8799.89 9599.71 48
PHI-MVS99.11 16098.95 17799.59 13299.13 30599.59 11399.17 15799.65 12997.88 27899.25 23799.46 23998.97 8099.80 27697.26 24899.82 14799.37 229
TinyColmap98.97 18698.93 17899.07 25699.46 22698.19 28197.75 32899.75 7598.79 19999.54 16899.70 11298.97 8099.62 34696.63 28799.83 13899.41 219
Regformer-499.45 6399.44 5999.50 16299.52 19398.94 23199.17 15799.53 20399.64 6999.76 7799.60 18398.96 8399.90 13398.91 11799.84 12899.67 68
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22699.73 6499.13 17399.52 21197.40 30399.57 15499.64 14698.93 8499.83 24597.61 22599.79 16599.63 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11699.82 4699.58 11698.83 22699.72 9298.36 24199.60 14699.71 10598.92 8599.91 11397.08 26199.84 12899.40 221
CSCG99.37 8799.29 9599.60 13099.71 11399.46 13699.43 8799.85 2698.79 19999.41 20599.60 18398.92 8599.92 9198.02 18099.92 7799.43 215
SED-MVS99.40 7799.28 9799.77 4099.69 12499.82 2899.20 14699.54 19499.13 15799.82 5299.63 15698.91 8799.92 9197.85 19999.70 20899.58 140
test_241102_ONE99.69 12499.82 2899.54 19499.12 16099.82 5299.49 22898.91 8799.52 359
Gipumacopyleft99.57 3999.59 3499.49 16599.98 399.71 7199.72 2399.84 3299.81 3399.94 1199.78 7198.91 8799.71 30798.41 14899.95 5299.05 298
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Regformer-399.41 7499.41 6699.40 19699.52 19398.70 24999.17 15799.44 23999.62 7399.75 8399.60 18398.90 9099.85 21798.89 11899.84 12899.65 86
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14599.28 28199.22 19898.99 20499.40 25399.08 16299.58 15199.64 14698.90 9099.83 24597.44 23599.75 18199.63 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ITE_SJBPF99.38 20399.63 14599.44 14399.73 8398.56 21999.33 22199.53 21498.88 9299.68 32696.01 31299.65 23199.02 304
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15299.53 18899.25 18998.29 28299.76 6899.07 16499.42 19799.61 17498.86 9399.87 17896.45 29699.68 21699.49 188
SF-MVS99.10 16498.93 17899.62 12599.58 16199.51 12799.13 17399.65 12997.97 27299.42 19799.61 17498.86 9399.87 17896.45 29699.68 21699.49 188
tfpnnormal99.43 6699.38 7199.60 13099.87 2999.75 5599.59 6599.78 6099.71 4799.90 2299.69 11898.85 9599.90 13397.25 25199.78 17199.15 275
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8699.73 6499.28 12399.56 18298.19 26099.14 25899.29 27898.84 9699.92 9197.53 23199.80 16099.64 95
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3999.83 2498.61 24999.63 13796.84 32499.44 19199.58 19198.81 9799.91 11397.70 21599.82 14799.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13399.75 5599.62 5399.69 10699.85 2499.80 6299.81 5798.81 9799.91 11399.47 3799.88 10399.70 51
test20.0399.55 4599.54 4599.58 13699.79 6899.37 16399.02 19599.89 1599.60 8399.82 5299.62 16598.81 9799.89 15099.43 4199.86 11999.47 198
PGM-MVS99.20 13699.01 16199.77 4099.75 9799.71 7199.16 16399.72 9297.99 27099.42 19799.60 18398.81 9799.93 7196.91 26899.74 18999.66 78
HFP-MVS99.25 11699.08 13999.76 4799.73 10699.70 7899.31 11299.59 16698.36 24199.36 21499.37 25698.80 10199.91 11397.43 23699.75 18199.68 61
#test#99.12 15698.90 18699.76 4799.73 10699.70 7899.10 18099.59 16697.60 29199.36 21499.37 25698.80 10199.91 11396.84 27499.75 18199.68 61
Regformer-299.34 9799.27 10099.53 15499.41 24099.10 21698.99 20499.53 20399.47 10099.66 12099.52 21698.80 10199.89 15098.31 15799.74 18999.60 126
APDe-MVS99.48 5499.36 7799.85 1899.55 18299.81 3199.50 7599.69 10698.99 17199.75 8399.71 10598.79 10499.93 7198.46 14699.85 12399.80 24
CP-MVS99.23 12099.05 14999.75 5799.66 13999.66 8999.38 9399.62 14098.38 23999.06 27099.27 28298.79 10499.94 5797.51 23299.82 14799.66 78
Regformer-199.32 10399.27 10099.47 17199.41 24098.95 23098.99 20499.48 22699.48 9599.66 12099.52 21698.78 10699.87 17898.36 15199.74 18999.60 126
MSLP-MVS++99.05 17099.09 13798.91 27199.21 29298.36 27498.82 23099.47 23098.85 19198.90 28499.56 20298.78 10699.09 36898.57 14199.68 21699.26 250
MVS_Test99.28 10999.31 8599.19 24199.35 25598.79 24599.36 10099.49 22499.17 14999.21 24799.67 13598.78 10699.66 33599.09 9799.66 22799.10 285
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25599.47 13299.62 5399.50 21999.44 10799.12 26199.78 7198.77 10999.94 5797.87 19699.72 20299.62 111
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18899.75 5599.27 12699.61 14799.19 14499.57 15499.64 14698.76 11099.90 13397.29 24399.62 23699.56 149
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 16199.64 9699.30 11599.63 13799.61 7799.71 10399.56 20298.76 11099.96 3599.14 9399.92 7799.68 61
EIA-MVS99.12 15699.01 16199.45 17899.36 25399.62 10299.34 10399.79 5598.41 23598.84 29198.89 33998.75 11299.84 23498.15 17499.51 26898.89 313
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9799.81 3198.95 21299.53 20398.27 25599.53 17399.73 9298.75 11299.87 17897.70 21599.83 13899.68 61
v1099.69 2199.69 1899.66 9999.81 5399.39 15799.66 4599.75 7599.60 8399.92 1899.87 3298.75 11299.86 19899.90 299.99 1299.73 44
region2R99.23 12099.05 14999.77 4099.76 8699.70 7899.31 11299.59 16698.41 23599.32 22399.36 26198.73 11599.93 7197.29 24399.74 18999.67 68
LS3D99.24 11999.11 12899.61 12898.38 36099.79 3899.57 6899.68 10999.61 7799.15 25699.71 10598.70 11699.91 11397.54 22999.68 21699.13 282
DP-MVS99.48 5499.39 6999.74 6399.57 17199.62 10299.29 12299.61 14799.87 1799.74 9299.76 8198.69 11799.87 17898.20 16699.80 16099.75 42
AllTest99.21 13499.07 14399.63 11699.78 7499.64 9699.12 17799.83 3498.63 21399.63 13099.72 9898.68 11899.75 29696.38 29999.83 13899.51 177
TestCases99.63 11699.78 7499.64 9699.83 3498.63 21399.63 13099.72 9898.68 11899.75 29696.38 29999.83 13899.51 177
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 27099.76 5199.34 10399.97 298.93 18199.91 2099.79 6598.68 11899.93 7196.80 27699.56 25399.30 244
v114499.54 4799.53 4999.59 13299.79 6899.28 18199.10 18099.61 14799.20 14399.84 4599.73 9298.67 12199.84 23499.86 899.98 2499.64 95
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5899.87 1099.67 4199.71 9599.72 4699.84 4599.78 7198.67 12199.97 1799.30 6399.95 5299.80 24
v14419299.55 4599.54 4599.58 13699.78 7499.20 20499.11 17999.62 14099.18 14599.89 2699.72 9898.66 12399.87 17899.88 699.97 3399.66 78
v899.68 2499.69 1899.65 10499.80 5899.40 15599.66 4599.76 6899.64 6999.93 1499.85 4198.66 12399.84 23499.88 699.99 1299.71 48
GST-MVS99.16 14898.96 17599.75 5799.73 10699.73 6499.20 14699.55 18898.22 25799.32 22399.35 26698.65 12599.91 11396.86 27199.74 18999.62 111
ppachtmachnet_test98.89 20099.12 12598.20 31299.66 13995.24 34797.63 33399.68 10999.08 16299.78 7099.62 16598.65 12599.88 16598.02 18099.96 4599.48 193
PS-CasMVS99.66 2699.58 3799.89 799.80 5899.85 1499.66 4599.73 8399.62 7399.84 4599.71 10598.62 12799.96 3599.30 6399.96 4599.86 11
LF4IMVS99.01 18098.92 18299.27 22899.71 11399.28 18198.59 25299.77 6398.32 25299.39 21199.41 24698.62 12799.84 23496.62 28899.84 12898.69 325
ACMMPR99.23 12099.06 14599.76 4799.74 10399.69 8299.31 11299.59 16698.36 24199.35 21699.38 25598.61 12999.93 7197.43 23699.75 18199.67 68
API-MVS98.38 25898.39 23798.35 30598.83 34099.26 18599.14 16799.18 30398.59 21798.66 30898.78 34798.61 12999.57 35494.14 34999.56 25396.21 368
test_one_060199.63 14599.76 5199.55 18899.23 13899.31 22799.61 17498.59 131
OMC-MVS98.90 19798.72 20399.44 18099.39 24599.42 15098.58 25399.64 13597.31 30899.44 19199.62 16598.59 13199.69 31596.17 30899.79 16599.22 258
test_0728_THIRD99.18 14599.62 13899.61 17498.58 13399.91 11397.72 21099.80 16099.77 35
RE-MVS-def99.13 12199.54 18399.74 6199.26 12899.62 14099.16 15199.52 17599.64 14698.57 13497.27 24699.61 24399.54 160
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6899.68 8599.50 7599.65 12998.07 26699.52 17599.69 11898.57 13499.92 9197.18 25699.79 16599.63 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS99.66 2699.59 3499.89 799.83 3999.87 1099.66 4599.73 8399.70 5299.84 4599.73 9298.56 13699.96 3599.29 6699.94 6599.83 18
V4299.56 4299.54 4599.63 11699.79 6899.46 13699.39 9199.59 16699.24 13699.86 4099.70 11298.55 13799.82 25599.79 1199.95 5299.60 126
QAPM98.40 25797.99 27099.65 10499.39 24599.47 13299.67 4199.52 21191.70 36398.78 29999.80 5998.55 13799.95 4594.71 34399.75 18199.53 165
EI-MVSNet99.38 8499.44 5999.21 23899.58 16198.09 28999.26 12899.46 23499.62 7399.75 8399.67 13598.54 13999.85 21799.15 8799.92 7799.68 61
jason99.16 14899.11 12899.32 21799.75 9798.44 26798.26 28599.39 25698.70 20899.74 9299.30 27598.54 13999.97 1798.48 14599.82 14799.55 152
jason: jason.
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3699.93 1499.93 1498.54 13999.93 7199.59 2199.98 2499.76 39
IterMVS-LS99.41 7499.47 5399.25 23399.81 5398.09 28998.85 22399.76 6899.62 7399.83 5099.64 14698.54 13999.97 1799.15 8799.99 1299.68 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
9.1498.64 21099.45 22998.81 23199.60 15997.52 29799.28 23399.56 20298.53 14399.83 24595.36 33499.64 233
mPP-MVS99.19 13999.00 16499.76 4799.76 8699.68 8599.38 9399.54 19498.34 25099.01 27299.50 22398.53 14399.93 7197.18 25699.78 17199.66 78
CNVR-MVS98.99 18598.80 19999.56 14599.25 28699.43 14798.54 26299.27 28598.58 21898.80 29699.43 24498.53 14399.70 30997.22 25399.59 25099.54 160
PVSNet_BlendedMVS99.03 17499.01 16199.09 25299.54 18397.99 29398.58 25399.82 3997.62 29099.34 21999.71 10598.52 14699.77 29097.98 18599.97 3399.52 175
PVSNet_Blended98.70 22298.59 21599.02 26099.54 18397.99 29397.58 33699.82 3995.70 34299.34 21998.98 32798.52 14699.77 29097.98 18599.83 13899.30 244
MCST-MVS99.02 17698.81 19799.65 10499.58 16199.49 12998.58 25399.07 31098.40 23799.04 27199.25 28798.51 14899.80 27697.31 24299.51 26899.65 86
UGNet99.38 8499.34 7999.49 16598.90 33198.90 23999.70 2899.35 26799.86 1998.57 31599.81 5798.50 14999.93 7199.38 5099.98 2499.66 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVS99.27 11399.11 12899.75 5799.71 11399.71 7199.37 9799.61 14799.29 12698.76 30199.47 23698.47 15099.88 16597.62 22399.73 19699.67 68
X-MVStestdata96.09 32794.87 33799.75 5799.71 11399.71 7199.37 9799.61 14799.29 12698.76 30161.30 38098.47 15099.88 16597.62 22399.73 19699.67 68
diffmvs99.34 9799.32 8499.39 19999.67 13898.77 24698.57 25799.81 4899.61 7799.48 18499.41 24698.47 15099.86 19898.97 10899.90 8799.53 165
ambc99.20 24099.35 25598.53 26099.17 15799.46 23499.67 11699.80 5998.46 15399.70 30997.92 19099.70 20899.38 226
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2599.86 1399.72 2399.78 6099.90 799.82 5299.83 4798.45 15499.87 17899.51 3399.97 3399.86 11
131498.00 28097.90 28398.27 31198.90 33197.45 31299.30 11599.06 31294.98 35097.21 36099.12 30798.43 15599.67 33195.58 32898.56 34097.71 360
USDC98.96 18998.93 17899.05 25899.54 18397.99 29397.07 35799.80 4998.21 25899.75 8399.77 7898.43 15599.64 34497.90 19199.88 10399.51 177
KD-MVS_self_test99.63 3299.59 3499.76 4799.84 3599.90 599.37 9799.79 5599.83 3099.88 3299.85 4198.42 15799.90 13399.60 2099.73 19699.49 188
test117299.23 12099.05 14999.74 6399.52 19399.75 5599.20 14699.61 14798.97 17399.48 18499.58 19198.41 15899.91 11397.15 25899.55 25799.57 146
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 18399.74 6199.26 12899.62 14099.16 15199.52 17599.64 14698.41 15899.91 11397.27 24699.61 24399.54 160
v14899.40 7799.41 6699.39 19999.76 8698.94 23199.09 18499.59 16699.17 14999.81 5999.61 17498.41 15899.69 31599.32 6099.94 6599.53 165
Test By Simon98.41 158
PM-MVS99.36 9099.29 9599.58 13699.83 3999.66 8998.95 21299.86 2298.85 19199.81 5999.73 9298.40 16299.92 9198.36 15199.83 13899.17 271
SR-MVS99.19 13999.00 16499.74 6399.51 19899.72 6899.18 15299.60 15998.85 19199.47 18699.58 19198.38 16399.92 9196.92 26799.54 26399.57 146
segment_acmp98.37 164
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8699.71 7199.32 10899.50 21998.35 24698.97 27499.48 23198.37 16499.92 9195.95 31899.75 18199.63 100
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12499.80 3699.14 16799.31 27699.16 15199.62 13899.61 17498.35 16699.91 11397.88 19399.72 20299.61 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 12499.80 3699.24 13699.57 17799.16 15199.73 9699.65 14498.35 166
MVS95.72 33594.63 33998.99 26198.56 35697.98 29899.30 11598.86 31972.71 37297.30 35799.08 31198.34 16899.74 29889.21 36498.33 34599.26 250
CDPH-MVS98.56 23798.20 25599.61 12899.50 20599.46 13698.32 28099.41 24695.22 34799.21 24799.10 31098.34 16899.82 25595.09 33899.66 22799.56 149
testdata99.42 18699.51 19898.93 23599.30 27996.20 33498.87 28899.40 24998.33 17099.89 15096.29 30299.28 30199.44 209
test_241102_TWO99.54 19499.13 15799.76 7799.63 15698.32 17199.92 9197.85 19999.69 21199.75 42
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20599.62 10299.01 19799.57 17796.80 32699.54 16899.63 15698.29 17299.91 11395.24 33599.71 20699.61 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.12 1098.23 27097.89 28499.26 23099.19 29799.26 18599.65 5099.69 10691.33 36498.14 33799.77 7898.28 17399.96 3595.41 33299.55 25798.58 331
FIs99.65 3199.58 3799.84 1999.84 3599.85 1499.66 4599.75 7599.86 1999.74 9299.79 6598.27 17499.85 21799.37 5299.93 7399.83 18
TAPA-MVS97.92 1398.03 27897.55 29499.46 17499.47 22199.44 14398.50 26699.62 14086.79 36799.07 26999.26 28598.26 17599.62 34697.28 24599.73 19699.31 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v2v48299.50 5099.47 5399.58 13699.78 7499.25 18999.14 16799.58 17599.25 13499.81 5999.62 16598.24 17699.84 23499.83 999.97 3399.64 95
pmmvs499.13 15499.06 14599.36 20999.57 17199.10 21698.01 30899.25 29098.78 20199.58 15199.44 24398.24 17699.76 29298.74 13199.93 7399.22 258
mvs_anonymous99.28 10999.39 6998.94 26599.19 29797.81 30199.02 19599.55 18899.78 3999.85 4299.80 5998.24 17699.86 19899.57 2599.50 27099.15 275
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 17199.77 4498.74 24299.60 15998.55 22199.76 7799.69 11898.23 17999.92 9196.39 29899.75 18199.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
zzz-MVS99.30 10699.14 11899.80 2999.81 5399.81 3198.73 24499.53 20399.27 13099.42 19799.63 15698.21 18099.95 4597.83 20299.79 16599.65 86
MTAPA99.35 9299.20 11099.80 2999.81 5399.81 3199.33 10599.53 20399.27 13099.42 19799.63 15698.21 18099.95 4597.83 20299.79 16599.65 86
MS-PatchMatch99.00 18298.97 17399.09 25299.11 31298.19 28198.76 24199.33 27098.49 22999.44 19199.58 19198.21 18099.69 31598.20 16699.62 23699.39 224
our_test_398.85 20599.09 13798.13 31499.66 13994.90 35097.72 32999.58 17599.07 16499.64 12699.62 16598.19 18399.93 7198.41 14899.95 5299.55 152
MVP-Stereo99.16 14899.08 13999.43 18499.48 21699.07 22099.08 18799.55 18898.63 21399.31 22799.68 12998.19 18399.78 28298.18 17099.58 25199.45 204
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H99.61 3799.53 4999.87 1499.80 5899.83 2499.67 4199.75 7599.58 8699.85 4299.69 11898.18 18599.94 5799.28 6899.95 5299.83 18
new_pmnet98.88 20198.89 18798.84 28199.70 12197.62 30798.15 29299.50 21997.98 27199.62 13899.54 21198.15 18699.94 5797.55 22899.84 12898.95 308
D2MVS99.22 12999.19 11199.29 22399.69 12498.74 24798.81 23199.41 24698.55 22199.68 11199.69 11898.13 18799.87 17898.82 12399.98 2499.24 253
Anonymous2024052999.42 7099.34 7999.65 10499.53 18899.60 11099.63 5299.39 25699.47 10099.76 7799.78 7198.13 18799.86 19898.70 13499.68 21699.49 188
EU-MVSNet99.39 8299.62 2798.72 29199.88 2596.44 33299.56 7099.85 2699.90 799.90 2299.85 4198.09 18999.83 24599.58 2499.95 5299.90 4
PMVScopyleft92.94 2198.82 20898.81 19798.85 27999.84 3597.99 29399.20 14699.47 23099.71 4799.42 19799.82 5498.09 18999.47 36293.88 35499.85 12399.07 296
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 19399.71 7198.86 22199.19 30298.47 23198.59 31399.06 31398.08 19199.91 11396.94 26699.60 24699.60 126
ab-mvs99.33 10199.28 9799.47 17199.57 17199.39 15799.78 1099.43 24398.87 18999.57 15499.82 5498.06 19299.87 17898.69 13699.73 19699.15 275
agg_prior198.33 26497.92 28099.57 14199.35 25599.36 16697.99 31299.39 25694.85 35497.76 35398.98 32798.03 19399.85 21795.49 32999.44 27899.51 177
N_pmnet98.73 21998.53 22599.35 21099.72 11098.67 25198.34 27794.65 36898.35 24699.79 6799.68 12998.03 19399.93 7198.28 15999.92 7799.44 209
TEST999.35 25599.35 17098.11 29899.41 24694.83 35597.92 34498.99 32498.02 19599.85 217
train_agg98.35 26297.95 27499.57 14199.35 25599.35 17098.11 29899.41 24694.90 35197.92 34498.99 32498.02 19599.85 21795.38 33399.44 27899.50 183
test_899.34 26599.31 17698.08 30299.40 25394.90 35197.87 34898.97 33098.02 19599.84 234
MVSFormer99.41 7499.44 5999.31 22099.57 17198.40 27099.77 1199.80 4999.73 4399.63 13099.30 27598.02 19599.98 799.43 4199.69 21199.55 152
lupinMVS98.96 18998.87 18999.24 23599.57 17198.40 27098.12 29699.18 30398.28 25499.63 13099.13 30398.02 19599.97 1798.22 16499.69 21199.35 235
Anonymous2023121199.62 3599.57 4099.76 4799.61 15099.60 11099.81 999.73 8399.82 3299.90 2299.90 2297.97 20099.86 19899.42 4699.96 4599.80 24
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3499.77 6399.78 3999.93 1499.89 2697.94 20199.92 9199.65 1699.98 2499.62 111
原ACMM199.37 20699.47 22198.87 24299.27 28596.74 32798.26 32899.32 27197.93 20299.82 25595.96 31799.38 28799.43 215
ETH3D-3000-0.198.77 21298.50 22799.59 13299.47 22199.53 12498.77 23999.60 15997.33 30799.23 24199.50 22397.91 20399.83 24595.02 33999.67 22399.41 219
test_prior398.62 22898.34 24399.46 17499.35 25599.22 19897.95 31799.39 25697.87 27998.05 33999.05 31497.90 20499.69 31595.99 31499.49 27299.48 193
test_prior297.95 31797.87 27998.05 33999.05 31497.90 20495.99 31499.49 272
RPSCF99.18 14399.02 15899.64 11199.83 3999.85 1499.44 8599.82 3998.33 25199.50 18299.78 7197.90 20499.65 34296.78 27799.83 13899.44 209
PMMVS98.49 24898.29 24899.11 25098.96 32898.42 26997.54 33799.32 27297.53 29698.47 32298.15 36597.88 20799.82 25597.46 23499.24 30799.09 288
ZD-MVS99.43 23499.61 10899.43 24396.38 33199.11 26299.07 31297.86 20899.92 9194.04 35199.49 272
NCCC98.82 20898.57 21999.58 13699.21 29299.31 17698.61 24999.25 29098.65 21198.43 32399.26 28597.86 20899.81 27196.55 28999.27 30499.61 122
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 22199.56 11998.97 21099.61 14799.43 11299.67 11699.28 28097.85 21099.95 4599.17 8399.81 15599.65 86
TAMVS99.49 5299.45 5799.63 11699.48 21699.42 15099.45 8299.57 17799.66 6599.78 7099.83 4797.85 21099.86 19899.44 4099.96 4599.61 122
DP-MVS Recon98.50 24598.23 25299.31 22099.49 21099.46 13698.56 25899.63 13794.86 35398.85 29099.37 25697.81 21299.59 35296.08 30999.44 27898.88 314
PatchMatch-RL98.68 22498.47 22899.30 22299.44 23199.28 18198.14 29499.54 19497.12 31799.11 26299.25 28797.80 21399.70 30996.51 29299.30 29998.93 310
CP-MVSNet99.54 4799.43 6299.87 1499.76 8699.82 2899.57 6899.61 14799.54 8799.80 6299.64 14697.79 21499.95 4599.21 7399.94 6599.84 14
DPM-MVS98.28 26597.94 27899.32 21799.36 25399.11 21297.31 34998.78 32496.88 32198.84 29199.11 30997.77 21599.61 35094.03 35299.36 29299.23 256
114514_t98.49 24898.11 26499.64 11199.73 10699.58 11699.24 13699.76 6889.94 36699.42 19799.56 20297.76 21699.86 19897.74 20999.82 14799.47 198
tmp_tt95.75 33495.42 33296.76 34289.90 37994.42 35298.86 22197.87 35078.01 37099.30 23299.69 11897.70 21795.89 37499.29 6698.14 35299.95 1
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19899.58 11698.98 20899.60 15999.43 11299.70 10699.36 26197.70 21799.88 16599.20 7699.87 11299.59 135
Effi-MVS+-dtu99.07 16698.92 18299.52 15698.89 33499.78 4199.15 16599.66 11899.34 12098.92 28199.24 29297.69 21999.98 798.11 17699.28 30198.81 321
mvs-test198.83 20698.70 20799.22 23798.89 33499.65 9498.88 21799.66 11899.34 12098.29 32698.94 33497.69 21999.96 3598.11 17698.54 34198.04 356
F-COLMAP98.74 21798.45 23099.62 12599.57 17199.47 13298.84 22499.65 12996.31 33398.93 27899.19 30097.68 22199.87 17896.52 29199.37 29199.53 165
新几何199.52 15699.50 20599.22 19899.26 28795.66 34398.60 31299.28 28097.67 22299.89 15095.95 31899.32 29799.45 204
旧先验199.49 21099.29 17999.26 28799.39 25397.67 22299.36 29299.46 202
DU-MVS99.33 10199.21 10999.71 8399.43 23499.56 11998.83 22699.53 20399.38 11699.67 11699.36 26197.67 22299.95 4599.17 8399.81 15599.63 100
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22699.86 2299.68 5799.65 12499.88 2997.67 22299.87 17899.03 10199.86 11999.76 39
CANet99.11 16099.05 14999.28 22698.83 34098.56 25998.71 24799.41 24699.25 13499.23 24199.22 29497.66 22699.94 5799.19 7899.97 3399.33 238
VPNet99.46 6199.37 7499.71 8399.82 4699.59 11399.48 7999.70 10099.81 3399.69 10999.58 19197.66 22699.86 19899.17 8399.44 27899.67 68
Anonymous2023120699.35 9299.31 8599.47 17199.74 10399.06 22299.28 12399.74 8099.23 13899.72 9899.53 21497.63 22899.88 16599.11 9599.84 12899.48 193
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15999.04 32099.39 15798.47 26899.47 23096.70 32898.78 29999.33 27097.62 22999.86 19894.69 34499.38 28799.28 249
test1299.54 15299.29 27899.33 17399.16 30598.43 32397.54 23099.82 25599.47 27599.48 193
NR-MVSNet99.40 7799.31 8599.68 8999.43 23499.55 12299.73 2099.50 21999.46 10499.88 3299.36 26197.54 23099.87 17898.97 10899.87 11299.63 100
MAR-MVS98.24 26997.92 28099.19 24198.78 34899.65 9499.17 15799.14 30795.36 34598.04 34198.81 34697.47 23299.72 30395.47 33199.06 31398.21 350
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2599.25 18998.78 23899.88 1898.66 21099.96 899.79 6597.45 23399.93 7199.34 5599.99 1299.78 32
PAPR97.56 29697.07 30599.04 25998.80 34598.11 28797.63 33399.25 29094.56 35798.02 34298.25 36497.43 23499.68 32690.90 36398.74 33399.33 238
YYNet198.95 19298.99 16998.84 28199.64 14397.14 32098.22 28899.32 27298.92 18399.59 14999.66 13997.40 23599.83 24598.27 16099.90 8799.55 152
PVSNet97.47 1598.42 25498.44 23298.35 30599.46 22696.26 33496.70 36299.34 26997.68 28899.00 27399.13 30397.40 23599.72 30397.59 22799.68 21699.08 291
112198.56 23798.24 25199.52 15699.49 21099.24 19499.30 11599.22 29795.77 34098.52 31899.29 27897.39 23799.85 21795.79 32399.34 29499.46 202
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27999.64 14397.16 31998.23 28799.33 27098.93 18199.56 16199.66 13997.39 23799.83 24598.29 15899.88 10399.55 152
MG-MVS98.52 24398.39 23798.94 26599.15 30297.39 31498.18 28999.21 30198.89 18899.23 24199.63 15697.37 23999.74 29894.22 34899.61 24399.69 55
OpenMVS_ROBcopyleft97.31 1797.36 30296.84 31398.89 27899.29 27899.45 14198.87 22099.48 22686.54 36999.44 19199.74 8897.34 24099.86 19891.61 35999.28 30197.37 364
AdaColmapbinary98.60 23198.35 24299.38 20399.12 30799.22 19898.67 24899.42 24597.84 28398.81 29499.27 28297.32 24199.81 27195.14 33699.53 26599.10 285
test22299.51 19899.08 21997.83 32699.29 28195.21 34898.68 30799.31 27397.28 24299.38 28799.43 215
HQP_MVS98.90 19798.68 20999.55 14899.58 16199.24 19498.80 23499.54 19498.94 17899.14 25899.25 28797.24 24399.82 25595.84 32199.78 17199.60 126
plane_prior699.47 22199.26 18597.24 243
GBi-Net99.42 7099.31 8599.73 7399.49 21099.77 4499.68 3799.70 10099.44 10799.62 13899.83 4797.21 24599.90 13398.96 11099.90 8799.53 165
test199.42 7099.31 8599.73 7399.49 21099.77 4499.68 3799.70 10099.44 10799.62 13899.83 4797.21 24599.90 13398.96 11099.90 8799.53 165
FMVSNet299.35 9299.28 9799.55 14899.49 21099.35 17099.45 8299.57 17799.44 10799.70 10699.74 8897.21 24599.87 17899.03 10199.94 6599.44 209
BH-RMVSNet98.41 25598.14 26399.21 23899.21 29298.47 26498.60 25198.26 34498.35 24698.93 27899.31 27397.20 24899.66 33594.32 34699.10 31299.51 177
MVS-HIRNet97.86 28298.22 25396.76 34299.28 28191.53 36998.38 27692.60 37399.13 15799.31 22799.96 1197.18 24999.68 32698.34 15499.83 13899.07 296
PAPM_NR98.36 25998.04 26799.33 21399.48 21698.93 23598.79 23799.28 28497.54 29598.56 31698.57 35497.12 25099.69 31594.09 35098.90 32499.38 226
CPTT-MVS98.74 21798.44 23299.64 11199.61 15099.38 16099.18 15299.55 18896.49 32999.27 23599.37 25697.11 25199.92 9195.74 32599.67 22399.62 111
testtj98.56 23798.17 26099.72 7999.45 22999.60 11098.88 21799.50 21996.88 32199.18 25399.48 23197.08 25299.92 9193.69 35599.38 28799.63 100
CNLPA98.57 23698.34 24399.28 22699.18 29999.10 21698.34 27799.41 24698.48 23098.52 31898.98 32797.05 25399.78 28295.59 32799.50 27098.96 307
BH-untuned98.22 27198.09 26598.58 29799.38 24897.24 31798.55 25998.98 31797.81 28499.20 25298.76 34897.01 25499.65 34294.83 34098.33 34598.86 316
VDD-MVS99.20 13699.11 12899.44 18099.43 23498.98 22599.50 7598.32 34399.80 3699.56 16199.69 11896.99 25599.85 21798.99 10499.73 19699.50 183
PLCcopyleft97.35 1698.36 25997.99 27099.48 16999.32 27199.24 19498.50 26699.51 21595.19 34998.58 31498.96 33296.95 25699.83 24595.63 32699.25 30599.37 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS99.11 16098.93 17899.66 9999.30 27699.42 15098.42 27499.37 26399.04 16999.57 15499.20 29896.89 25799.86 19898.66 13899.87 11299.70 51
CL-MVSNet_self_test98.71 22198.56 22299.15 24699.22 29098.66 25397.14 35499.51 21598.09 26599.54 16899.27 28296.87 25899.74 29898.43 14798.96 31999.03 300
MSP-MVS99.04 17398.79 20099.81 2699.78 7499.73 6499.35 10299.57 17798.54 22499.54 16898.99 32496.81 25999.93 7196.97 26599.53 26599.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HQP2-MVS96.67 260
HQP-MVS98.36 25998.02 26999.39 19999.31 27298.94 23197.98 31399.37 26397.45 30098.15 33398.83 34396.67 26099.70 30994.73 34199.67 22399.53 165
CANet_DTU98.91 19598.85 19199.09 25298.79 34698.13 28498.18 28999.31 27699.48 9598.86 28999.51 22096.56 26299.95 4599.05 10099.95 5299.19 267
pmmvs599.19 13999.11 12899.42 18699.76 8698.88 24098.55 25999.73 8398.82 19599.72 9899.62 16596.56 26299.82 25599.32 6099.95 5299.56 149
MVEpermissive92.54 2296.66 31796.11 32198.31 30999.68 13397.55 30997.94 31995.60 36699.37 11790.68 37498.70 35096.56 26298.61 37286.94 37299.55 25798.77 323
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
VNet99.18 14399.06 14599.56 14599.24 28899.36 16699.33 10599.31 27699.67 6199.47 18699.57 19996.48 26599.84 23499.15 8799.30 29999.47 198
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25699.80 5897.83 30098.89 21699.72 9299.29 12699.63 13099.70 11296.47 26699.89 15098.17 17299.82 14799.50 183
DeepMVS_CXcopyleft97.98 31699.69 12496.95 32399.26 28775.51 37195.74 36998.28 36396.47 26699.62 34691.23 36197.89 35797.38 363
1112_ss99.05 17098.84 19399.67 9299.66 13999.29 17998.52 26499.82 3997.65 28999.43 19599.16 30196.42 26899.91 11399.07 9999.84 12899.80 24
TR-MVS97.44 29997.15 30498.32 30798.53 35797.46 31198.47 26897.91 34996.85 32398.21 33298.51 35896.42 26899.51 36092.16 35897.29 36297.98 357
miper_ehance_all_eth98.59 23498.59 21598.59 29698.98 32797.07 32197.49 34299.52 21198.50 22799.52 17599.37 25696.41 27099.71 30797.86 19799.62 23699.00 306
Anonymous2024052199.44 6599.42 6599.49 16599.89 2198.96 22999.62 5399.76 6899.85 2499.82 5299.88 2996.39 27199.97 1799.59 2199.98 2499.55 152
c3_l98.72 22098.71 20498.72 29199.12 30797.22 31897.68 33299.56 18298.90 18599.54 16899.48 23196.37 27299.73 30197.88 19399.88 10399.21 260
sss98.90 19798.77 20199.27 22899.48 21698.44 26798.72 24599.32 27297.94 27699.37 21399.35 26696.31 27399.91 11398.85 12099.63 23599.47 198
CDS-MVSNet99.22 12999.13 12199.50 16299.35 25599.11 21298.96 21199.54 19499.46 10499.61 14499.70 11296.31 27399.83 24599.34 5599.88 10399.55 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth98.68 22498.71 20498.60 29599.10 31396.84 32797.52 34199.54 19498.94 17899.58 15199.48 23196.25 27599.76 29298.01 18399.93 7399.21 260
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8799.70 2899.14 30799.65 6799.89 2699.90 2296.20 27699.94 5799.42 4699.92 7799.67 68
MVS_030498.88 20198.71 20499.39 19998.85 33898.91 23899.45 8299.30 27998.56 21997.26 35999.68 12996.18 27799.96 3599.17 8399.94 6599.29 247
Test_1112_low_res98.95 19298.73 20299.63 11699.68 13399.15 20998.09 30099.80 4997.14 31699.46 18999.40 24996.11 27899.89 15099.01 10399.84 12899.84 14
IterMVS98.97 18699.16 11498.42 30299.74 10395.64 34398.06 30599.83 3499.83 3099.85 4299.74 8896.10 27999.99 599.27 69100.00 199.63 100
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT99.00 18299.16 11498.51 29899.75 9795.90 34098.07 30399.84 3299.84 2799.89 2699.73 9296.01 28099.99 599.33 58100.00 199.63 100
SCA98.11 27498.36 24097.36 33399.20 29592.99 36098.17 29198.49 33798.24 25699.10 26499.57 19996.01 28099.94 5796.86 27199.62 23699.14 279
ETH3 D test640097.76 28697.19 30399.50 16299.38 24899.26 18598.34 27799.49 22492.99 36098.54 31799.20 29895.92 28299.82 25591.14 36299.66 22799.40 221
PVSNet_095.53 1995.85 33395.31 33597.47 33098.78 34893.48 35895.72 36699.40 25396.18 33597.37 35697.73 36995.73 28399.58 35395.49 32981.40 37399.36 232
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19498.33 36299.56 11999.01 19799.59 16695.44 34499.57 15499.80 5995.64 28499.46 36496.47 29599.92 7799.21 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
BH-w/o97.20 30497.01 30797.76 32399.08 31695.69 34298.03 30798.52 33495.76 34197.96 34398.02 36695.62 28599.47 36292.82 35797.25 36398.12 354
cascas96.99 30896.82 31497.48 32997.57 37395.64 34396.43 36499.56 18291.75 36297.13 36297.61 37195.58 28698.63 37196.68 28299.11 31198.18 353
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19699.56 18199.37 16397.97 31699.68 10997.49 29999.08 26699.35 26695.41 28799.82 25597.70 21598.19 35099.01 305
bset_n11_16_dypcd98.69 22398.45 23099.42 18699.69 12498.52 26296.06 36596.80 36099.71 4799.73 9699.54 21195.14 28899.96 3599.39 4999.95 5299.79 30
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13299.68 13399.45 14198.99 20499.67 11499.48 9599.55 16699.36 26194.92 28999.86 19898.95 11496.57 36699.45 204
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5899.43 14799.70 2899.24 29399.48 9599.56 16199.77 7894.89 29099.93 7198.72 13399.89 9599.63 100
WTY-MVS98.59 23498.37 23999.26 23099.43 23498.40 27098.74 24299.13 30998.10 26399.21 24799.24 29294.82 29199.90 13397.86 19798.77 32999.49 188
miper_enhance_ethall98.03 27897.94 27898.32 30798.27 36396.43 33396.95 35899.41 24696.37 33299.43 19598.96 33294.74 29299.69 31597.71 21299.62 23698.83 320
IS-MVSNet99.03 17498.85 19199.55 14899.80 5899.25 18999.73 2099.15 30699.37 11799.61 14499.71 10594.73 29399.81 27197.70 21599.88 10399.58 140
miper_lstm_enhance98.65 22698.60 21398.82 28699.20 29597.33 31597.78 32799.66 11899.01 17099.59 14999.50 22394.62 29499.85 21798.12 17599.90 8799.26 250
lessismore_v099.64 11199.86 3199.38 16090.66 37599.89 2699.83 4794.56 29599.97 1799.56 2699.92 7799.57 146
PCF-MVS96.03 1896.73 31595.86 32699.33 21399.44 23199.16 20796.87 36099.44 23986.58 36898.95 27699.40 24994.38 29699.88 16587.93 36799.80 16098.95 308
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet98.97 18698.82 19699.42 18699.71 11398.81 24399.62 5398.68 32799.81 3399.38 21299.80 5994.25 29799.85 21798.79 12599.32 29799.59 135
HY-MVS98.23 998.21 27297.95 27498.99 26199.03 32198.24 27799.61 5898.72 32696.81 32598.73 30399.51 22094.06 29899.86 19896.91 26898.20 34898.86 316
test_method91.72 33992.32 34289.91 35693.49 37870.18 38090.28 36999.56 18261.71 37395.39 37099.52 21693.90 29999.94 5798.76 12998.27 34799.62 111
DIV-MVS_self_test98.54 24198.42 23498.92 26999.03 32197.80 30297.46 34399.59 16698.90 18599.60 14699.46 23993.87 30099.78 28297.97 18799.89 9599.18 269
cl____98.54 24198.41 23598.92 26999.03 32197.80 30297.46 34399.59 16698.90 18599.60 14699.46 23993.85 30199.78 28297.97 18799.89 9599.17 271
EMVS96.96 31097.28 29895.99 35398.76 35091.03 37195.26 36898.61 33199.34 12098.92 28198.88 34193.79 30299.66 33592.87 35699.05 31497.30 365
EPNet_dtu97.62 29397.79 28797.11 34096.67 37492.31 36398.51 26598.04 34599.24 13695.77 36899.47 23693.78 30399.66 33598.98 10699.62 23699.37 229
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test111197.74 28798.16 26196.49 34899.60 15289.86 37799.71 2791.21 37499.89 1199.88 3299.87 3293.73 30499.90 13399.56 2699.99 1299.70 51
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13699.74 1794.97 36799.78 3999.88 3299.88 2993.66 30599.97 1799.61 1999.95 5299.64 95
ECVR-MVScopyleft97.73 28898.04 26796.78 34199.59 15690.81 37399.72 2390.43 37699.89 1199.86 4099.86 3893.60 30699.89 15099.46 3899.99 1299.65 86
CHOSEN 280x42098.41 25598.41 23598.40 30399.34 26595.89 34196.94 35999.44 23998.80 19899.25 23799.52 21693.51 30799.98 798.94 11599.98 2499.32 241
CVMVSNet98.61 22998.88 18897.80 32299.58 16193.60 35799.26 12899.64 13599.66 6599.72 9899.67 13593.26 30899.93 7199.30 6399.81 15599.87 9
Anonymous20240521198.75 21598.46 22999.63 11699.34 26599.66 8999.47 8197.65 35299.28 12999.56 16199.50 22393.15 30999.84 23498.62 13999.58 25199.40 221
EPNet98.13 27397.77 28899.18 24394.57 37797.99 29399.24 13697.96 34799.74 4297.29 35899.62 16593.13 31099.97 1798.59 14099.83 13899.58 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM95.61 33694.71 33898.31 30999.12 30796.63 32996.66 36398.46 33890.77 36596.25 36598.68 35193.01 31199.69 31581.60 37397.86 35998.62 327
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21199.78 7498.88 24099.61 5899.56 18299.11 16199.24 24099.56 20293.00 31299.78 28297.43 23699.89 9599.35 235
E-PMN97.14 30797.43 29596.27 35098.79 34691.62 36895.54 36799.01 31699.44 10798.88 28599.12 30792.78 31399.68 32694.30 34799.03 31697.50 361
FMVSNet398.80 21098.63 21299.32 21799.13 30598.72 24899.10 18099.48 22699.23 13899.62 13899.64 14692.57 31499.86 19898.96 11099.90 8799.39 224
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3499.47 13298.07 30399.83 3498.64 21299.89 2699.60 18392.57 314100.00 199.33 5899.97 3399.72 45
RPMNet98.60 23198.53 22598.83 28399.05 31898.12 28599.30 11599.62 14099.86 1999.16 25499.74 8892.53 31699.92 9198.75 13098.77 32998.44 340
h-mvs3398.61 22998.34 24399.44 18099.60 15298.67 25199.27 12699.44 23999.68 5799.32 22399.49 22892.50 317100.00 199.24 7096.51 36799.65 86
hse-mvs298.52 24398.30 24799.16 24499.29 27898.60 25898.77 23999.02 31499.68 5799.32 22399.04 31792.50 31799.85 21799.24 7097.87 35899.03 300
tpmvs97.39 30097.69 29096.52 34798.41 35991.76 36699.30 11598.94 31897.74 28597.85 34999.55 20992.40 31999.73 30196.25 30498.73 33598.06 355
RRT_MVS98.75 21598.54 22399.41 19498.14 36998.61 25798.98 20899.66 11899.31 12599.84 4599.75 8591.98 32099.98 799.20 7699.95 5299.62 111
tpmrst97.73 28898.07 26696.73 34498.71 35292.00 36499.10 18098.86 31998.52 22598.92 28199.54 21191.90 32199.82 25598.02 18099.03 31698.37 342
JIA-IIPM98.06 27797.92 28098.50 29998.59 35597.02 32298.80 23498.51 33599.88 1697.89 34699.87 3291.89 32299.90 13398.16 17397.68 36098.59 329
CR-MVSNet98.35 26298.20 25598.83 28399.05 31898.12 28599.30 11599.67 11497.39 30499.16 25499.79 6591.87 32399.91 11398.78 12898.77 32998.44 340
Patchmtry98.78 21198.54 22399.49 16598.89 33499.19 20599.32 10899.67 11499.65 6799.72 9899.79 6591.87 32399.95 4598.00 18499.97 3399.33 238
MDTV_nov1_ep13_2view91.44 37099.14 16797.37 30599.21 24791.78 32596.75 27899.03 300
PatchT98.45 25298.32 24698.83 28398.94 32998.29 27699.24 13698.82 32299.84 2799.08 26699.76 8191.37 32699.94 5798.82 12399.00 31898.26 347
test_yl98.25 26797.95 27499.13 24899.17 30098.47 26499.00 19998.67 32998.97 17399.22 24599.02 32291.31 32799.69 31597.26 24898.93 32099.24 253
DCV-MVSNet98.25 26797.95 27499.13 24899.17 30098.47 26499.00 19998.67 32998.97 17399.22 24599.02 32291.31 32799.69 31597.26 24898.93 32099.24 253
baseline197.73 28897.33 29798.96 26399.30 27697.73 30499.40 8998.42 33999.33 12399.46 18999.21 29691.18 32999.82 25598.35 15391.26 37299.32 241
tpm cat196.78 31396.98 30896.16 35298.85 33890.59 37599.08 18799.32 27292.37 36197.73 35599.46 23991.15 33099.69 31596.07 31098.80 32698.21 350
LFMVS98.46 25198.19 25899.26 23099.24 28898.52 26299.62 5396.94 35999.87 1799.31 22799.58 19191.04 33199.81 27198.68 13799.42 28399.45 204
MDTV_nov1_ep1397.73 28998.70 35390.83 37299.15 16598.02 34698.51 22698.82 29399.61 17490.98 33299.66 33596.89 27098.92 322
MIMVSNet98.43 25398.20 25599.11 25099.53 18898.38 27399.58 6798.61 33198.96 17699.33 22199.76 8190.92 33399.81 27197.38 23999.76 17899.15 275
ADS-MVSNet297.78 28597.66 29398.12 31599.14 30395.36 34599.22 14398.75 32596.97 31998.25 32999.64 14690.90 33499.94 5796.51 29299.56 25399.08 291
ADS-MVSNet97.72 29197.67 29297.86 32099.14 30394.65 35199.22 14398.86 31996.97 31998.25 32999.64 14690.90 33499.84 23496.51 29299.56 25399.08 291
alignmvs98.28 26597.96 27399.25 23399.12 30798.93 23599.03 19498.42 33999.64 6998.72 30497.85 36890.86 33699.62 34698.88 11999.13 31099.19 267
sam_mvs190.81 33799.14 279
PatchmatchNetpermissive97.65 29297.80 28597.18 33898.82 34392.49 36299.17 15798.39 34198.12 26298.79 29799.58 19190.71 33899.89 15097.23 25299.41 28499.16 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post99.62 16590.58 33999.94 57
Patchmatch-RL test98.60 23198.36 24099.33 21399.77 8299.07 22098.27 28499.87 2098.91 18499.74 9299.72 9890.57 34099.79 27998.55 14299.85 12399.11 283
sam_mvs90.52 341
pmmvs398.08 27697.80 28598.91 27199.41 24097.69 30697.87 32499.66 11895.87 33899.50 18299.51 22090.35 34299.97 1798.55 14299.47 27599.08 291
test_post52.41 38190.25 34399.86 198
Patchmatch-test98.10 27597.98 27298.48 30099.27 28396.48 33199.40 8999.07 31098.81 19699.23 24199.57 19990.11 34499.87 17896.69 28199.64 23399.09 288
test-LLR97.15 30596.95 30997.74 32598.18 36695.02 34897.38 34596.10 36198.00 26897.81 35098.58 35290.04 34599.91 11397.69 22198.78 32798.31 343
test0.0.03 197.37 30196.91 31298.74 29097.72 37097.57 30897.60 33597.36 35898.00 26899.21 24798.02 36690.04 34599.79 27998.37 15095.89 37098.86 316
GA-MVS97.99 28197.68 29198.93 26899.52 19398.04 29297.19 35399.05 31398.32 25298.81 29498.97 33089.89 34799.41 36598.33 15599.05 31499.34 237
test_post199.14 16751.63 38289.54 34899.82 25596.86 271
AUN-MVS97.82 28397.38 29699.14 24799.27 28398.53 26098.72 24599.02 31498.10 26397.18 36199.03 32189.26 34999.85 21797.94 18997.91 35699.03 300
MVSTER98.47 25098.22 25399.24 23599.06 31798.35 27599.08 18799.46 23499.27 13099.75 8399.66 13988.61 35099.85 21799.14 9399.92 7799.52 175
baseline296.83 31296.28 31898.46 30199.09 31596.91 32598.83 22693.87 37297.23 31196.23 36798.36 36188.12 35199.90 13396.68 28298.14 35298.57 332
cl2297.56 29697.28 29898.40 30398.37 36196.75 32897.24 35299.37 26397.31 30899.41 20599.22 29487.30 35299.37 36697.70 21599.62 23699.08 291
dp96.86 31197.07 30596.24 35198.68 35490.30 37699.19 15198.38 34297.35 30698.23 33199.59 18987.23 35399.82 25596.27 30398.73 33598.59 329
ET-MVSNet_ETH3D96.78 31396.07 32298.91 27199.26 28597.92 29997.70 33196.05 36497.96 27592.37 37398.43 36087.06 35499.90 13398.27 16097.56 36198.91 312
thres100view90096.39 32196.03 32397.47 33099.63 14595.93 33999.18 15297.57 35398.75 20698.70 30697.31 37587.04 35599.67 33187.62 36898.51 34296.81 366
thres600view796.60 31896.16 32097.93 31899.63 14596.09 33899.18 15297.57 35398.77 20298.72 30497.32 37487.04 35599.72 30388.57 36598.62 33897.98 357
tfpn200view996.30 32495.89 32497.53 32899.58 16196.11 33699.00 19997.54 35698.43 23298.52 31896.98 37786.85 35799.67 33187.62 36898.51 34296.81 366
thres40096.40 32095.89 32497.92 31999.58 16196.11 33699.00 19997.54 35698.43 23298.52 31896.98 37786.85 35799.67 33187.62 36898.51 34297.98 357
thres20096.09 32795.68 33097.33 33599.48 21696.22 33598.53 26397.57 35398.06 26798.37 32596.73 37986.84 35999.61 35086.99 37198.57 33996.16 369
test_part198.63 22798.26 25099.75 5799.40 24399.49 12999.67 4199.68 10999.86 1999.88 3299.86 3886.73 36099.93 7199.34 5599.97 3399.81 23
tpm97.15 30596.95 30997.75 32498.91 33094.24 35399.32 10897.96 34797.71 28798.29 32699.32 27186.72 36199.92 9198.10 17896.24 36999.09 288
EPMVS96.53 31996.32 31797.17 33998.18 36692.97 36199.39 9189.95 37798.21 25898.61 31199.59 18986.69 36299.72 30396.99 26499.23 30998.81 321
CostFormer96.71 31696.79 31596.46 34998.90 33190.71 37499.41 8898.68 32794.69 35698.14 33799.34 26986.32 36399.80 27697.60 22698.07 35498.88 314
thisisatest051596.98 30996.42 31698.66 29499.42 23997.47 31097.27 35094.30 37097.24 31099.15 25698.86 34285.01 36499.87 17897.10 26099.39 28698.63 326
tpm296.35 32296.22 31996.73 34498.88 33791.75 36799.21 14598.51 33593.27 35997.89 34699.21 29684.83 36599.70 30996.04 31198.18 35198.75 324
tttt051797.62 29397.20 30298.90 27799.76 8697.40 31399.48 7994.36 36999.06 16899.70 10699.49 22884.55 36699.94 5798.73 13299.65 23199.36 232
thisisatest053097.45 29896.95 30998.94 26599.68 13397.73 30499.09 18494.19 37198.61 21699.56 16199.30 27584.30 36799.93 7198.27 16099.54 26399.16 273
FPMVS96.32 32395.50 33198.79 28799.60 15298.17 28398.46 27398.80 32397.16 31596.28 36499.63 15682.19 36899.09 36888.45 36698.89 32599.10 285
gg-mvs-nofinetune95.87 33295.17 33697.97 31798.19 36596.95 32399.69 3489.23 37899.89 1196.24 36699.94 1381.19 36999.51 36093.99 35398.20 34897.44 362
DWT-MVSNet_test96.03 32995.80 32896.71 34698.50 35891.93 36599.25 13597.87 35095.99 33796.81 36397.61 37181.02 37099.66 33597.20 25597.98 35598.54 333
GG-mvs-BLEND97.36 33397.59 37196.87 32699.70 2888.49 37994.64 37297.26 37680.66 37199.12 36791.50 36096.50 36896.08 370
FMVSNet597.80 28497.25 30099.42 18698.83 34098.97 22799.38 9399.80 4998.87 18999.25 23799.69 11880.60 37299.91 11398.96 11099.90 8799.38 226
TESTMET0.1,196.24 32595.84 32797.41 33298.24 36493.84 35697.38 34595.84 36598.43 23297.81 35098.56 35579.77 37399.89 15097.77 20498.77 32998.52 334
KD-MVS_2432*160095.89 33095.41 33397.31 33694.96 37593.89 35497.09 35599.22 29797.23 31198.88 28599.04 31779.23 37499.54 35596.24 30596.81 36498.50 338
miper_refine_blended95.89 33095.41 33397.31 33694.96 37593.89 35497.09 35599.22 29797.23 31198.88 28599.04 31779.23 37499.54 35596.24 30596.81 36498.50 338
test-mter96.23 32695.73 32997.74 32598.18 36695.02 34897.38 34596.10 36197.90 27797.81 35098.58 35279.12 37699.91 11397.69 22198.78 32798.31 343
RRT_test8_iter0597.35 30397.25 30097.63 32798.81 34493.13 35999.26 12899.89 1599.51 9299.83 5099.68 12979.03 37799.88 16599.53 3099.72 20299.89 8
test250694.73 33894.59 34095.15 35499.59 15685.90 37999.75 1574.01 38099.89 1199.71 10399.86 3879.00 37899.90 13399.52 3299.99 1299.65 86
IB-MVS95.41 2095.30 33794.46 34197.84 32198.76 35095.33 34697.33 34896.07 36396.02 33695.37 37197.41 37376.17 37999.96 3597.54 22995.44 37198.22 349
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test12329.31 34133.05 34618.08 35725.93 38112.24 38197.53 33910.93 38211.78 37524.21 37650.08 38421.04 3808.60 37623.51 37432.43 37533.39 372
testmvs28.94 34233.33 34415.79 35826.03 3809.81 38296.77 36115.67 38111.55 37623.87 37750.74 38319.03 3818.53 37723.21 37533.07 37429.03 373
test_blank8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
sosnet8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
Regformer8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.26 35211.02 3550.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.16 3010.00 3820.00 3780.00 3760.00 3760.00 374
uanet8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.83 3999.89 899.74 1799.71 9599.69 5599.63 130
MSC_two_6792asdad99.74 6399.03 32199.53 12499.23 29499.92 9197.77 20499.69 21199.78 32
No_MVS99.74 6399.03 32199.53 12499.23 29499.92 9197.77 20499.69 21199.78 32
eth-test20.00 382
eth-test0.00 382
IU-MVS99.69 12499.77 4499.22 29797.50 29899.69 10997.75 20899.70 20899.77 35
save fliter99.53 18899.25 18998.29 28299.38 26299.07 164
test_0728_SECOND99.83 2199.70 12199.79 3899.14 16799.61 14799.92 9197.88 19399.72 20299.77 35
GSMVS99.14 279
test_part299.62 14999.67 8799.55 166
MTGPAbinary99.53 203
MTMP99.09 18498.59 333
gm-plane-assit97.59 37189.02 37893.47 35898.30 36299.84 23496.38 299
test9_res95.10 33799.44 27899.50 183
agg_prior294.58 34599.46 27799.50 183
agg_prior99.35 25599.36 16699.39 25697.76 35399.85 217
test_prior499.19 20598.00 310
test_prior99.46 17499.35 25599.22 19899.39 25699.69 31599.48 193
旧先验297.94 31995.33 34698.94 27799.88 16596.75 278
新几何298.04 306
无先验98.01 30899.23 29495.83 33999.85 21795.79 32399.44 209
原ACMM297.92 321
testdata299.89 15095.99 314
testdata197.72 32997.86 282
plane_prior799.58 16199.38 160
plane_prior599.54 19499.82 25595.84 32199.78 17199.60 126
plane_prior499.25 287
plane_prior399.31 17698.36 24199.14 258
plane_prior298.80 23498.94 178
plane_prior199.51 198
plane_prior99.24 19498.42 27497.87 27999.71 206
n20.00 383
nn0.00 383
door-mid99.83 34
test1199.29 281
door99.77 63
HQP5-MVS98.94 231
HQP-NCC99.31 27297.98 31397.45 30098.15 333
ACMP_Plane99.31 27297.98 31397.45 30098.15 333
BP-MVS94.73 341
HQP4-MVS98.15 33399.70 30999.53 165
HQP3-MVS99.37 26399.67 223
NP-MVS99.40 24399.13 21098.83 343
ACMMP++_ref99.94 65
ACMMP++99.79 165