This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2899.86 2299.89 1199.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2399.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
wuyk23d97.58 29599.13 12192.93 35499.69 12399.49 12899.52 7299.77 6397.97 27299.96 899.79 6499.84 399.94 5795.85 31999.82 14679.36 370
cdsmvs_eth3d_5k24.88 34233.17 3440.00 3580.00 3810.00 3820.00 36999.62 1400.00 3760.00 37799.13 30299.82 40.00 3770.00 3750.00 3750.00 373
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3299.81 599.95 4599.54 2899.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4399.97 699.92 1799.77 799.98 799.43 41100.00 199.90 4
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2499.94 1199.95 1299.73 899.90 13299.65 1699.97 3399.69 55
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2699.71 999.96 3599.51 3399.97 3399.84 14
XVG-OURS99.21 13499.06 14599.65 10499.82 4599.62 10197.87 32399.74 8098.36 24199.66 12099.68 12899.71 999.90 13296.84 27399.88 10399.43 215
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3499.64 9598.25 28599.73 8398.39 23899.63 13099.43 24399.70 1199.90 13297.34 23998.64 33699.44 209
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 10999.44 14299.24 13599.71 9599.27 13099.93 1499.90 2299.70 1199.93 7198.99 10499.99 1299.64 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH98.42 699.59 3899.54 4599.72 7999.86 3099.62 10199.56 7099.79 5598.77 20299.80 6299.85 4199.64 1399.85 21698.70 13499.89 9599.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GeoE99.69 2199.66 2299.78 3799.76 8599.76 5099.60 6399.82 3999.46 10499.75 8399.56 20199.63 1499.95 4599.43 4199.88 10399.62 111
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4399.89 2699.87 3299.63 1499.87 17799.54 2899.92 7799.63 100
DSMNet-mixed99.48 5499.65 2498.95 26399.71 11297.27 31599.50 7499.82 3999.59 8599.41 20599.85 4199.62 16100.00 199.53 3099.89 9599.59 135
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8899.69 3499.92 799.67 6199.77 7599.75 8499.61 1799.98 799.35 5499.98 2499.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 50100.00 199.90 7100.00 199.97 1099.61 1799.97 1799.75 13100.00 199.84 14
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 5299.91 2099.89 2699.60 1999.87 17799.59 2199.74 18899.71 48
PMMVS299.48 5499.45 5799.57 14099.76 8598.99 22398.09 29999.90 1498.95 17799.78 7099.58 19099.57 2099.93 7199.48 3699.95 5299.79 30
DROMVSNet99.69 2199.69 1899.68 8999.71 11299.91 299.76 1399.96 499.86 1999.51 18099.39 25299.57 2099.93 7199.64 1899.86 11999.20 263
SD-MVS99.01 18099.30 9098.15 31299.50 20499.40 15498.94 21399.61 14799.22 14299.75 8399.82 5399.54 2295.51 37497.48 23299.87 11299.54 160
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 2099.85 2699.70 5299.92 1899.93 1499.45 2399.97 1799.36 53100.00 199.85 13
ETV-MVS99.18 14399.18 11299.16 24399.34 26499.28 18099.12 17699.79 5599.48 9598.93 27898.55 35599.40 2499.93 7198.51 14499.52 26698.28 345
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
xiu_mvs_v1_base99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5799.69 8199.13 17299.65 12998.99 17199.64 12699.72 9799.39 2599.86 19798.23 16399.81 15499.60 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v2_base99.02 17699.11 12898.77 28799.37 25098.09 28898.13 29499.51 21499.47 10099.42 19798.54 35699.38 2999.97 1798.83 12199.33 29598.24 347
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6799.59 6599.82 3999.39 11599.82 5299.84 4699.38 2999.91 11299.38 5099.93 7399.80 24
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4599.63 9999.16 16299.73 8397.56 29299.64 12699.69 11799.37 3199.89 14996.66 28399.87 11299.69 55
LGP-MVS_train99.74 6399.82 4599.63 9999.73 8397.56 29299.64 12699.69 11799.37 3199.89 14996.66 28399.87 11299.69 55
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5599.78 7099.92 1799.37 3199.88 16498.93 11699.95 5299.60 126
testgi99.29 10899.26 10299.37 20599.75 9698.81 24298.84 22399.89 1598.38 23999.75 8399.04 31699.36 3499.86 19799.08 9899.25 30499.45 204
Fast-Effi-MVS+99.02 17698.87 18999.46 17399.38 24799.50 12799.04 19199.79 5597.17 31498.62 31098.74 34899.34 3599.95 4598.32 15699.41 28398.92 310
casdiffmvs99.63 3299.61 3199.67 9299.79 6799.59 11299.13 17299.85 2699.79 3899.76 7799.72 9799.33 3699.82 25499.21 7399.94 6599.59 135
new-patchmatchnet99.35 9299.57 4098.71 29299.82 4596.62 32998.55 25899.75 7599.50 9399.88 3299.87 3299.31 3799.88 16499.43 41100.00 199.62 111
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3899.81 3199.52 7299.70 10098.35 24699.51 18099.50 22299.31 3799.88 16498.18 17099.84 12799.69 55
EG-PatchMatch MVS99.57 3999.56 4499.62 12499.77 8199.33 17299.26 12799.76 6899.32 12499.80 6299.78 7099.29 3999.87 17799.15 8799.91 8699.66 78
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 28999.75 5497.25 35099.47 22998.72 20799.66 12099.70 11199.29 3999.63 34498.07 17999.81 15499.62 111
pcd_1.5k_mvsjas16.61 34322.14 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 199.28 410.00 3770.00 3750.00 3750.00 373
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4399.68 3799.85 2699.95 399.98 399.92 1799.28 4199.98 799.75 13100.00 199.94 2
PS-MVSNAJ99.00 18299.08 13998.76 28899.37 25098.10 28798.00 30999.51 21499.47 10099.41 20598.50 35899.28 4199.97 1798.83 12199.34 29398.20 351
TSAR-MVS + MP.99.34 9799.24 10699.63 11599.82 4599.37 16299.26 12799.35 26698.77 20299.57 15499.70 11199.27 4499.88 16497.71 21299.75 18099.65 86
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3099.76 5099.32 10799.77 6399.53 8999.77 7599.76 8099.26 4599.78 28197.77 20499.88 10399.60 126
CS-MVS-test99.43 6699.40 6899.53 15399.51 19799.84 1999.60 6399.94 699.52 9199.10 26498.89 33899.24 4699.90 13299.11 9599.66 22698.84 318
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5299.75 5499.61 5899.67 11497.72 28699.35 21699.25 28699.23 4799.92 9197.21 25399.82 14699.67 68
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS99.40 7799.43 6299.29 22299.44 23099.72 6799.36 9999.91 1099.71 4799.28 23398.83 34299.22 4899.86 19799.40 4899.77 17498.29 344
DELS-MVS99.34 9799.30 9099.48 16899.51 19799.36 16598.12 29599.53 20399.36 11999.41 20599.61 17399.22 4899.87 17799.21 7399.68 21599.20 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
pmmvs-eth3d99.48 5499.47 5399.51 15899.77 8199.41 15398.81 23099.66 11899.42 11499.75 8399.66 13899.20 5099.76 29198.98 10699.99 1299.36 232
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3899.70 7799.38 9299.78 6099.53 8999.67 11699.78 7099.19 5199.86 19797.32 24099.87 11299.55 152
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + GP.99.12 15699.04 15599.38 20299.34 26499.16 20698.15 29199.29 28098.18 26199.63 13099.62 16499.18 5299.68 32598.20 16699.74 18899.30 244
MVS_111021_HR99.12 15699.02 15899.40 19599.50 20499.11 21197.92 32099.71 9598.76 20599.08 26699.47 23599.17 5399.54 35497.85 19999.76 17799.54 160
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24499.42 14999.70 2899.56 18299.23 13899.35 21699.80 5899.17 5399.95 4598.21 16599.84 12799.59 135
UA-Net99.78 1399.76 1499.86 1699.72 10999.71 7099.91 399.95 599.96 299.71 10399.91 2099.15 5599.97 1799.50 35100.00 199.90 4
baseline99.63 3299.62 2799.66 9999.80 5799.62 10199.44 8499.80 4999.71 4799.72 9899.69 11799.15 5599.83 24499.32 6099.94 6599.53 165
OPM-MVS99.26 11599.13 12199.63 11599.70 12099.61 10798.58 25299.48 22598.50 22799.52 17599.63 15599.14 5799.76 29197.89 19299.77 17499.51 177
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+99.06 16798.97 17399.34 21099.31 27198.98 22498.31 28099.91 1098.81 19698.79 29798.94 33399.14 5799.84 23398.79 12598.74 33299.20 263
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2799.94 1199.91 2099.13 5999.96 3599.83 999.99 1299.83 18
nrg03099.70 1999.66 2299.82 2399.76 8599.84 1999.61 5899.70 10099.93 499.78 7099.68 12899.10 6099.78 28199.45 3999.96 4599.83 18
MSDG99.08 16598.98 17299.37 20599.60 15199.13 20997.54 33699.74 8098.84 19499.53 17399.55 20899.10 6099.79 27897.07 26199.86 11999.18 268
PC_three_145297.56 29299.68 11199.41 24599.09 6297.09 37296.66 28399.60 24599.62 111
v124099.56 4299.58 3799.51 15899.80 5799.00 22299.00 19899.65 12999.15 15599.90 2299.75 8499.09 6299.88 16499.90 299.96 4599.67 68
abl_699.36 9099.23 10899.75 5799.71 11299.74 6099.33 10499.76 6899.07 16499.65 12499.63 15599.09 6299.92 9197.13 25899.76 17799.58 140
MVS_111021_LR99.13 15499.03 15799.42 18599.58 16099.32 17497.91 32299.73 8398.68 20999.31 22799.48 23099.09 6299.66 33497.70 21499.77 17499.29 247
v192192099.56 4299.57 4099.55 14799.75 9699.11 21199.05 18999.61 14799.15 15599.88 3299.71 10499.08 6699.87 17799.90 299.97 3399.66 78
v119299.57 3999.57 4099.57 14099.77 8199.22 19799.04 19199.60 15999.18 14599.87 3999.72 9799.08 6699.85 21699.89 599.98 2499.66 78
test_040299.22 12999.14 11899.45 17799.79 6799.43 14699.28 12299.68 10999.54 8799.40 21099.56 20199.07 6899.82 25496.01 31199.96 4599.11 282
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7399.55 12198.88 21699.66 11897.11 31899.47 18699.60 18299.07 6899.89 14996.18 30699.85 12399.58 140
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS98.76 21498.57 21999.33 21299.57 17098.97 22697.53 33899.55 18896.41 33099.27 23599.13 30299.07 6899.78 28196.73 27999.89 9599.23 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_Blended_VisFu99.40 7799.38 7199.44 17999.90 1998.66 25298.94 21399.91 1097.97 27299.79 6799.73 9199.05 7199.97 1799.15 8799.99 1299.68 61
canonicalmvs99.02 17699.00 16499.09 25199.10 31298.70 24899.61 5899.66 11899.63 7298.64 30997.65 36999.04 7299.54 35498.79 12598.92 32199.04 298
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2899.66 8899.18 15199.60 15998.55 22199.57 15499.67 13499.03 7399.94 5797.01 26299.80 15999.69 55
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++99.38 8499.25 10499.77 4099.03 32099.77 4399.74 1799.61 14799.18 14599.76 7799.61 17399.00 7499.92 9197.72 21099.60 24599.62 111
OPU-MVS99.29 22299.12 30699.44 14299.20 14599.40 24899.00 7498.84 36996.54 28999.60 24599.58 140
EI-MVSNet-UG-set99.48 5499.50 5199.42 18599.57 17098.65 25599.24 13599.46 23399.68 5799.80 6299.66 13898.99 7699.89 14999.19 7899.90 8799.72 45
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18399.25 28599.69 8199.05 18999.82 3999.50 9398.97 27499.05 31398.98 7799.98 798.20 16699.24 30698.62 326
FMVSNet199.66 2699.63 2699.73 7399.78 7399.77 4399.68 3799.70 10099.67 6199.82 5299.83 4798.98 7799.90 13299.24 7099.97 3399.53 165
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18599.57 17098.66 25299.24 13599.46 23399.67 6199.79 6799.65 14398.97 7999.89 14999.15 8799.89 9599.71 48
PHI-MVS99.11 16098.95 17799.59 13199.13 30499.59 11299.17 15699.65 12997.88 27899.25 23799.46 23898.97 7999.80 27597.26 24799.82 14699.37 229
TinyColmap98.97 18698.93 17899.07 25599.46 22598.19 28097.75 32799.75 7598.79 19999.54 16899.70 11198.97 7999.62 34596.63 28699.83 13799.41 219
Regformer-499.45 6399.44 5999.50 16199.52 19298.94 23099.17 15699.53 20399.64 6999.76 7799.60 18298.96 8299.90 13298.91 11799.84 12799.67 68
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22599.73 6399.13 17299.52 21197.40 30399.57 15499.64 14598.93 8399.83 24497.61 22499.79 16499.63 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11599.82 4599.58 11598.83 22599.72 9298.36 24199.60 14699.71 10498.92 8499.91 11297.08 26099.84 12799.40 221
CSCG99.37 8799.29 9599.60 12999.71 11299.46 13599.43 8699.85 2698.79 19999.41 20599.60 18298.92 8499.92 9198.02 18099.92 7799.43 215
SED-MVS99.40 7799.28 9799.77 4099.69 12399.82 2899.20 14599.54 19499.13 15799.82 5299.63 15598.91 8699.92 9197.85 19999.70 20799.58 140
test_241102_ONE99.69 12399.82 2899.54 19499.12 16099.82 5299.49 22798.91 8699.52 358
Gipumacopyleft99.57 3999.59 3499.49 16499.98 399.71 7099.72 2399.84 3299.81 3399.94 1199.78 7098.91 8699.71 30698.41 14899.95 5299.05 297
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Regformer-399.41 7499.41 6699.40 19599.52 19298.70 24899.17 15699.44 23899.62 7399.75 8399.60 18298.90 8999.85 21698.89 11899.84 12799.65 86
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14499.28 28099.22 19798.99 20399.40 25299.08 16299.58 15199.64 14598.90 8999.83 24497.44 23499.75 18099.63 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ITE_SJBPF99.38 20299.63 14499.44 14299.73 8398.56 21999.33 22199.53 21398.88 9199.68 32596.01 31199.65 23099.02 303
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15199.53 18799.25 18898.29 28199.76 6899.07 16499.42 19799.61 17398.86 9299.87 17796.45 29599.68 21599.49 188
SF-MVS99.10 16498.93 17899.62 12499.58 16099.51 12699.13 17299.65 12997.97 27299.42 19799.61 17398.86 9299.87 17796.45 29599.68 21599.49 188
tfpnnormal99.43 6699.38 7199.60 12999.87 2899.75 5499.59 6599.78 6099.71 4799.90 2299.69 11798.85 9499.90 13297.25 25099.78 17099.15 274
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8599.73 6399.28 12299.56 18298.19 26099.14 25899.29 27798.84 9599.92 9197.53 23099.80 15999.64 95
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3899.83 2498.61 24899.63 13796.84 32499.44 19199.58 19098.81 9699.91 11297.70 21499.82 14699.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13299.75 5499.62 5399.69 10699.85 2499.80 6299.81 5698.81 9699.91 11299.47 3799.88 10399.70 51
test20.0399.55 4599.54 4599.58 13599.79 6799.37 16299.02 19499.89 1599.60 8399.82 5299.62 16498.81 9699.89 14999.43 4199.86 11999.47 198
PGM-MVS99.20 13699.01 16199.77 4099.75 9699.71 7099.16 16299.72 9297.99 27099.42 19799.60 18298.81 9699.93 7196.91 26799.74 18899.66 78
HFP-MVS99.25 11699.08 13999.76 4799.73 10599.70 7799.31 11199.59 16698.36 24199.36 21499.37 25598.80 10099.91 11297.43 23599.75 18099.68 61
#test#99.12 15698.90 18699.76 4799.73 10599.70 7799.10 17999.59 16697.60 29199.36 21499.37 25598.80 10099.91 11296.84 27399.75 18099.68 61
Regformer-299.34 9799.27 10099.53 15399.41 23999.10 21598.99 20399.53 20399.47 10099.66 12099.52 21598.80 10099.89 14998.31 15799.74 18899.60 126
APDe-MVS99.48 5499.36 7799.85 1899.55 18199.81 3199.50 7499.69 10698.99 17199.75 8399.71 10498.79 10399.93 7198.46 14699.85 12399.80 24
CP-MVS99.23 12099.05 14999.75 5799.66 13899.66 8899.38 9299.62 14098.38 23999.06 27099.27 28198.79 10399.94 5797.51 23199.82 14699.66 78
Regformer-199.32 10399.27 10099.47 17099.41 23998.95 22998.99 20399.48 22599.48 9599.66 12099.52 21598.78 10599.87 17798.36 15199.74 18899.60 126
MSLP-MVS++99.05 17099.09 13798.91 27099.21 29198.36 27398.82 22999.47 22998.85 19198.90 28499.56 20198.78 10599.09 36798.57 14199.68 21599.26 250
MVS_Test99.28 10999.31 8599.19 24099.35 25498.79 24499.36 9999.49 22399.17 14999.21 24799.67 13498.78 10599.66 33499.09 9799.66 22699.10 284
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25499.47 13199.62 5399.50 21899.44 10799.12 26199.78 7098.77 10899.94 5797.87 19699.72 20199.62 111
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18799.75 5499.27 12599.61 14799.19 14499.57 15499.64 14598.76 10999.90 13297.29 24299.62 23599.56 149
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 16099.64 9599.30 11499.63 13799.61 7799.71 10399.56 20198.76 10999.96 3599.14 9399.92 7799.68 61
EIA-MVS99.12 15699.01 16199.45 17799.36 25299.62 10199.34 10299.79 5598.41 23598.84 29198.89 33898.75 11199.84 23398.15 17499.51 26798.89 312
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9699.81 3198.95 21199.53 20398.27 25599.53 17399.73 9198.75 11199.87 17797.70 21499.83 13799.68 61
v1099.69 2199.69 1899.66 9999.81 5299.39 15699.66 4599.75 7599.60 8399.92 1899.87 3298.75 11199.86 19799.90 299.99 1299.73 44
region2R99.23 12099.05 14999.77 4099.76 8599.70 7799.31 11199.59 16698.41 23599.32 22399.36 26098.73 11499.93 7197.29 24299.74 18899.67 68
LS3D99.24 11999.11 12899.61 12798.38 35999.79 3899.57 6899.68 10999.61 7799.15 25699.71 10498.70 11599.91 11297.54 22899.68 21599.13 281
DP-MVS99.48 5499.39 6999.74 6399.57 17099.62 10199.29 12199.61 14799.87 1799.74 9299.76 8098.69 11699.87 17798.20 16699.80 15999.75 42
AllTest99.21 13499.07 14399.63 11599.78 7399.64 9599.12 17699.83 3498.63 21399.63 13099.72 9798.68 11799.75 29596.38 29899.83 13799.51 177
TestCases99.63 11599.78 7399.64 9599.83 3498.63 21399.63 13099.72 9798.68 11799.75 29596.38 29899.83 13799.51 177
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 26999.76 5099.34 10299.97 298.93 18199.91 2099.79 6498.68 11799.93 7196.80 27599.56 25299.30 244
v114499.54 4799.53 4999.59 13199.79 6799.28 18099.10 17999.61 14799.20 14399.84 4599.73 9198.67 12099.84 23399.86 899.98 2499.64 95
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5799.87 1099.67 4199.71 9599.72 4699.84 4599.78 7098.67 12099.97 1799.30 6399.95 5299.80 24
v14419299.55 4599.54 4599.58 13599.78 7399.20 20399.11 17899.62 14099.18 14599.89 2699.72 9798.66 12299.87 17799.88 699.97 3399.66 78
v899.68 2499.69 1899.65 10499.80 5799.40 15499.66 4599.76 6899.64 6999.93 1499.85 4198.66 12299.84 23399.88 699.99 1299.71 48
GST-MVS99.16 14898.96 17599.75 5799.73 10599.73 6399.20 14599.55 18898.22 25799.32 22399.35 26598.65 12499.91 11296.86 27099.74 18899.62 111
ppachtmachnet_test98.89 20099.12 12598.20 31199.66 13895.24 34697.63 33299.68 10999.08 16299.78 7099.62 16498.65 12499.88 16498.02 18099.96 4599.48 193
PS-CasMVS99.66 2699.58 3799.89 799.80 5799.85 1499.66 4599.73 8399.62 7399.84 4599.71 10498.62 12699.96 3599.30 6399.96 4599.86 11
LF4IMVS99.01 18098.92 18299.27 22799.71 11299.28 18098.59 25199.77 6398.32 25299.39 21199.41 24598.62 12699.84 23396.62 28799.84 12798.69 324
ACMMPR99.23 12099.06 14599.76 4799.74 10299.69 8199.31 11199.59 16698.36 24199.35 21699.38 25498.61 12899.93 7197.43 23599.75 18099.67 68
API-MVS98.38 25898.39 23798.35 30498.83 33999.26 18499.14 16699.18 30298.59 21798.66 30898.78 34698.61 12899.57 35394.14 34899.56 25296.21 367
test_one_060199.63 14499.76 5099.55 18899.23 13899.31 22799.61 17398.59 130
OMC-MVS98.90 19798.72 20399.44 17999.39 24499.42 14998.58 25299.64 13597.31 30899.44 19199.62 16498.59 13099.69 31496.17 30799.79 16499.22 258
test_0728_THIRD99.18 14599.62 13899.61 17398.58 13299.91 11297.72 21099.80 15999.77 35
RE-MVS-def99.13 12199.54 18299.74 6099.26 12799.62 14099.16 15199.52 17599.64 14598.57 13397.27 24599.61 24299.54 160
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6799.68 8499.50 7499.65 12998.07 26699.52 17599.69 11798.57 13399.92 9197.18 25599.79 16499.63 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS99.66 2699.59 3499.89 799.83 3899.87 1099.66 4599.73 8399.70 5299.84 4599.73 9198.56 13599.96 3599.29 6699.94 6599.83 18
V4299.56 4299.54 4599.63 11599.79 6799.46 13599.39 9099.59 16699.24 13699.86 4099.70 11198.55 13699.82 25499.79 1199.95 5299.60 126
QAPM98.40 25797.99 27099.65 10499.39 24499.47 13199.67 4199.52 21191.70 36398.78 29999.80 5898.55 13699.95 4594.71 34299.75 18099.53 165
EI-MVSNet99.38 8499.44 5999.21 23799.58 16098.09 28899.26 12799.46 23399.62 7399.75 8399.67 13498.54 13899.85 21699.15 8799.92 7799.68 61
jason99.16 14899.11 12899.32 21699.75 9698.44 26698.26 28499.39 25598.70 20899.74 9299.30 27498.54 13899.97 1798.48 14599.82 14699.55 152
jason: jason.
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3699.93 1499.93 1498.54 13899.93 7199.59 2199.98 2499.76 39
IterMVS-LS99.41 7499.47 5399.25 23299.81 5298.09 28898.85 22299.76 6899.62 7399.83 5099.64 14598.54 13899.97 1799.15 8799.99 1299.68 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
9.1498.64 21099.45 22898.81 23099.60 15997.52 29799.28 23399.56 20198.53 14299.83 24495.36 33399.64 232
mPP-MVS99.19 13999.00 16499.76 4799.76 8599.68 8499.38 9299.54 19498.34 25099.01 27299.50 22298.53 14299.93 7197.18 25599.78 17099.66 78
CNVR-MVS98.99 18598.80 19999.56 14499.25 28599.43 14698.54 26199.27 28498.58 21898.80 29699.43 24398.53 14299.70 30897.22 25299.59 24999.54 160
PVSNet_BlendedMVS99.03 17499.01 16199.09 25199.54 18297.99 29298.58 25299.82 3997.62 29099.34 21999.71 10498.52 14599.77 28997.98 18599.97 3399.52 175
PVSNet_Blended98.70 22298.59 21599.02 25999.54 18297.99 29297.58 33599.82 3995.70 34299.34 21998.98 32698.52 14599.77 28997.98 18599.83 13799.30 244
MCST-MVS99.02 17698.81 19799.65 10499.58 16099.49 12898.58 25299.07 30998.40 23799.04 27199.25 28698.51 14799.80 27597.31 24199.51 26799.65 86
UGNet99.38 8499.34 7999.49 16498.90 33098.90 23899.70 2899.35 26699.86 1998.57 31599.81 5698.50 14899.93 7199.38 5099.98 2499.66 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVS99.27 11399.11 12899.75 5799.71 11299.71 7099.37 9699.61 14799.29 12698.76 30199.47 23598.47 14999.88 16497.62 22299.73 19599.67 68
X-MVStestdata96.09 32794.87 33799.75 5799.71 11299.71 7099.37 9699.61 14799.29 12698.76 30161.30 37998.47 14999.88 16497.62 22299.73 19599.67 68
diffmvs99.34 9799.32 8499.39 19899.67 13798.77 24598.57 25699.81 4899.61 7799.48 18499.41 24598.47 14999.86 19798.97 10899.90 8799.53 165
ambc99.20 23999.35 25498.53 25999.17 15699.46 23399.67 11699.80 5898.46 15299.70 30897.92 19099.70 20799.38 226
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2499.86 1399.72 2399.78 6099.90 799.82 5299.83 4798.45 15399.87 17799.51 3399.97 3399.86 11
131498.00 28097.90 28398.27 31098.90 33097.45 31199.30 11499.06 31194.98 35097.21 36099.12 30698.43 15499.67 33095.58 32798.56 33997.71 359
USDC98.96 18998.93 17899.05 25799.54 18297.99 29297.07 35699.80 4998.21 25899.75 8399.77 7798.43 15499.64 34397.90 19199.88 10399.51 177
KD-MVS_self_test99.63 3299.59 3499.76 4799.84 3499.90 599.37 9699.79 5599.83 3099.88 3299.85 4198.42 15699.90 13299.60 2099.73 19599.49 188
test117299.23 12099.05 14999.74 6399.52 19299.75 5499.20 14599.61 14798.97 17399.48 18499.58 19098.41 15799.91 11297.15 25799.55 25699.57 146
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 18299.74 6099.26 12799.62 14099.16 15199.52 17599.64 14598.41 15799.91 11297.27 24599.61 24299.54 160
v14899.40 7799.41 6699.39 19899.76 8598.94 23099.09 18399.59 16699.17 14999.81 5999.61 17398.41 15799.69 31499.32 6099.94 6599.53 165
Test By Simon98.41 157
PM-MVS99.36 9099.29 9599.58 13599.83 3899.66 8898.95 21199.86 2298.85 19199.81 5999.73 9198.40 16199.92 9198.36 15199.83 13799.17 270
SR-MVS99.19 13999.00 16499.74 6399.51 19799.72 6799.18 15199.60 15998.85 19199.47 18699.58 19098.38 16299.92 9196.92 26699.54 26299.57 146
segment_acmp98.37 163
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8599.71 7099.32 10799.50 21898.35 24698.97 27499.48 23098.37 16399.92 9195.95 31799.75 18099.63 100
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12399.80 3699.14 16699.31 27599.16 15199.62 13899.61 17398.35 16599.91 11297.88 19399.72 20199.61 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 12399.80 3699.24 13599.57 17799.16 15199.73 9699.65 14398.35 165
MVS95.72 33594.63 33998.99 26098.56 35597.98 29799.30 11498.86 31872.71 37297.30 35799.08 31098.34 16799.74 29789.21 36398.33 34499.26 250
CDPH-MVS98.56 23798.20 25599.61 12799.50 20499.46 13598.32 27999.41 24595.22 34799.21 24799.10 30998.34 16799.82 25495.09 33799.66 22699.56 149
testdata99.42 18599.51 19798.93 23499.30 27896.20 33498.87 28899.40 24898.33 16999.89 14996.29 30199.28 30099.44 209
test_241102_TWO99.54 19499.13 15799.76 7799.63 15598.32 17099.92 9197.85 19999.69 21099.75 42
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20499.62 10199.01 19699.57 17796.80 32699.54 16899.63 15598.29 17199.91 11295.24 33499.71 20599.61 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.12 1098.23 27097.89 28499.26 22999.19 29699.26 18499.65 5099.69 10691.33 36498.14 33799.77 7798.28 17299.96 3595.41 33199.55 25698.58 330
FIs99.65 3199.58 3799.84 1999.84 3499.85 1499.66 4599.75 7599.86 1999.74 9299.79 6498.27 17399.85 21699.37 5299.93 7399.83 18
TAPA-MVS97.92 1398.03 27897.55 29499.46 17399.47 22099.44 14298.50 26599.62 14086.79 36799.07 26999.26 28498.26 17499.62 34597.28 24499.73 19599.31 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v2v48299.50 5099.47 5399.58 13599.78 7399.25 18899.14 16699.58 17599.25 13499.81 5999.62 16498.24 17599.84 23399.83 999.97 3399.64 95
pmmvs499.13 15499.06 14599.36 20899.57 17099.10 21598.01 30799.25 28998.78 20199.58 15199.44 24298.24 17599.76 29198.74 13199.93 7399.22 258
mvs_anonymous99.28 10999.39 6998.94 26499.19 29697.81 30099.02 19499.55 18899.78 3999.85 4299.80 5898.24 17599.86 19799.57 2599.50 26999.15 274
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 17099.77 4398.74 24199.60 15998.55 22199.76 7799.69 11798.23 17899.92 9196.39 29799.75 18099.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
zzz-MVS99.30 10699.14 11899.80 2999.81 5299.81 3198.73 24399.53 20399.27 13099.42 19799.63 15598.21 17999.95 4597.83 20299.79 16499.65 86
MTAPA99.35 9299.20 11099.80 2999.81 5299.81 3199.33 10499.53 20399.27 13099.42 19799.63 15598.21 17999.95 4597.83 20299.79 16499.65 86
MS-PatchMatch99.00 18298.97 17399.09 25199.11 31198.19 28098.76 24099.33 26998.49 22999.44 19199.58 19098.21 17999.69 31498.20 16699.62 23599.39 224
our_test_398.85 20599.09 13798.13 31399.66 13894.90 34997.72 32899.58 17599.07 16499.64 12699.62 16498.19 18299.93 7198.41 14899.95 5299.55 152
MVP-Stereo99.16 14899.08 13999.43 18399.48 21599.07 21999.08 18699.55 18898.63 21399.31 22799.68 12898.19 18299.78 28198.18 17099.58 25099.45 204
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H99.61 3799.53 4999.87 1499.80 5799.83 2499.67 4199.75 7599.58 8699.85 4299.69 11798.18 18499.94 5799.28 6899.95 5299.83 18
new_pmnet98.88 20198.89 18798.84 28099.70 12097.62 30698.15 29199.50 21897.98 27199.62 13899.54 21098.15 18599.94 5797.55 22799.84 12798.95 307
D2MVS99.22 12999.19 11199.29 22299.69 12398.74 24698.81 23099.41 24598.55 22199.68 11199.69 11798.13 18699.87 17798.82 12399.98 2499.24 253
Anonymous2024052999.42 7099.34 7999.65 10499.53 18799.60 10999.63 5299.39 25599.47 10099.76 7799.78 7098.13 18699.86 19798.70 13499.68 21599.49 188
EU-MVSNet99.39 8299.62 2798.72 29099.88 2496.44 33199.56 7099.85 2699.90 799.90 2299.85 4198.09 18899.83 24499.58 2499.95 5299.90 4
PMVScopyleft92.94 2198.82 20898.81 19798.85 27899.84 3497.99 29299.20 14599.47 22999.71 4799.42 19799.82 5398.09 18899.47 36193.88 35399.85 12399.07 295
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 19299.71 7098.86 22099.19 30198.47 23198.59 31399.06 31298.08 19099.91 11296.94 26599.60 24599.60 126
ab-mvs99.33 10199.28 9799.47 17099.57 17099.39 15699.78 1099.43 24298.87 18999.57 15499.82 5398.06 19199.87 17798.69 13699.73 19599.15 274
agg_prior198.33 26497.92 28099.57 14099.35 25499.36 16597.99 31199.39 25594.85 35497.76 35398.98 32698.03 19299.85 21695.49 32899.44 27799.51 177
N_pmnet98.73 21998.53 22599.35 20999.72 10998.67 25098.34 27694.65 36798.35 24699.79 6799.68 12898.03 19299.93 7198.28 15999.92 7799.44 209
TEST999.35 25499.35 16998.11 29799.41 24594.83 35597.92 34498.99 32398.02 19499.85 216
train_agg98.35 26297.95 27499.57 14099.35 25499.35 16998.11 29799.41 24594.90 35197.92 34498.99 32398.02 19499.85 21695.38 33299.44 27799.50 183
test_899.34 26499.31 17598.08 30199.40 25294.90 35197.87 34898.97 32998.02 19499.84 233
MVSFormer99.41 7499.44 5999.31 21999.57 17098.40 26999.77 1199.80 4999.73 4399.63 13099.30 27498.02 19499.98 799.43 4199.69 21099.55 152
lupinMVS98.96 18998.87 18999.24 23499.57 17098.40 26998.12 29599.18 30298.28 25499.63 13099.13 30298.02 19499.97 1798.22 16499.69 21099.35 235
Anonymous2023121199.62 3599.57 4099.76 4799.61 14999.60 10999.81 999.73 8399.82 3299.90 2299.90 2297.97 19999.86 19799.42 4699.96 4599.80 24
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3499.77 6399.78 3999.93 1499.89 2697.94 20099.92 9199.65 1699.98 2499.62 111
原ACMM199.37 20599.47 22098.87 24199.27 28496.74 32798.26 32899.32 27097.93 20199.82 25495.96 31699.38 28699.43 215
ETH3D-3000-0.198.77 21298.50 22799.59 13199.47 22099.53 12398.77 23899.60 15997.33 30799.23 24199.50 22297.91 20299.83 24495.02 33899.67 22299.41 219
test_prior398.62 22898.34 24399.46 17399.35 25499.22 19797.95 31699.39 25597.87 27998.05 33999.05 31397.90 20399.69 31495.99 31399.49 27199.48 193
test_prior297.95 31697.87 27998.05 33999.05 31397.90 20395.99 31399.49 271
RPSCF99.18 14399.02 15899.64 11199.83 3899.85 1499.44 8499.82 3998.33 25199.50 18299.78 7097.90 20399.65 34196.78 27699.83 13799.44 209
PMMVS98.49 24898.29 24899.11 24998.96 32798.42 26897.54 33699.32 27197.53 29698.47 32298.15 36497.88 20699.82 25497.46 23399.24 30699.09 287
ZD-MVS99.43 23399.61 10799.43 24296.38 33199.11 26299.07 31197.86 20799.92 9194.04 35099.49 271
NCCC98.82 20898.57 21999.58 13599.21 29199.31 17598.61 24899.25 28998.65 21198.43 32399.26 28497.86 20799.81 27096.55 28899.27 30399.61 122
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 22099.56 11898.97 20999.61 14799.43 11299.67 11699.28 27997.85 20999.95 4599.17 8399.81 15499.65 86
TAMVS99.49 5299.45 5799.63 11599.48 21599.42 14999.45 8199.57 17799.66 6599.78 7099.83 4797.85 20999.86 19799.44 4099.96 4599.61 122
DP-MVS Recon98.50 24598.23 25299.31 21999.49 20999.46 13598.56 25799.63 13794.86 35398.85 29099.37 25597.81 21199.59 35196.08 30899.44 27798.88 313
PatchMatch-RL98.68 22498.47 22899.30 22199.44 23099.28 18098.14 29399.54 19497.12 31799.11 26299.25 28697.80 21299.70 30896.51 29199.30 29898.93 309
CP-MVSNet99.54 4799.43 6299.87 1499.76 8599.82 2899.57 6899.61 14799.54 8799.80 6299.64 14597.79 21399.95 4599.21 7399.94 6599.84 14
DPM-MVS98.28 26597.94 27899.32 21699.36 25299.11 21197.31 34898.78 32396.88 32198.84 29199.11 30897.77 21499.61 34994.03 35199.36 29199.23 256
114514_t98.49 24898.11 26499.64 11199.73 10599.58 11599.24 13599.76 6889.94 36699.42 19799.56 20197.76 21599.86 19797.74 20999.82 14699.47 198
tmp_tt95.75 33495.42 33296.76 34189.90 37894.42 35198.86 22097.87 34978.01 37099.30 23299.69 11797.70 21695.89 37399.29 6698.14 35199.95 1
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19799.58 11598.98 20799.60 15999.43 11299.70 10699.36 26097.70 21699.88 16499.20 7699.87 11299.59 135
Effi-MVS+-dtu99.07 16698.92 18299.52 15598.89 33399.78 4199.15 16499.66 11899.34 12098.92 28199.24 29197.69 21899.98 798.11 17699.28 30098.81 320
mvs-test198.83 20698.70 20799.22 23698.89 33399.65 9398.88 21699.66 11899.34 12098.29 32698.94 33397.69 21899.96 3598.11 17698.54 34098.04 355
F-COLMAP98.74 21798.45 23099.62 12499.57 17099.47 13198.84 22399.65 12996.31 33398.93 27899.19 29997.68 22099.87 17796.52 29099.37 29099.53 165
新几何199.52 15599.50 20499.22 19799.26 28695.66 34398.60 31299.28 27997.67 22199.89 14995.95 31799.32 29699.45 204
旧先验199.49 20999.29 17899.26 28699.39 25297.67 22199.36 29199.46 202
DU-MVS99.33 10199.21 10999.71 8399.43 23399.56 11898.83 22599.53 20399.38 11699.67 11699.36 26097.67 22199.95 4599.17 8399.81 15499.63 100
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22599.86 2299.68 5799.65 12499.88 2997.67 22199.87 17799.03 10199.86 11999.76 39
CANet99.11 16099.05 14999.28 22598.83 33998.56 25898.71 24699.41 24599.25 13499.23 24199.22 29397.66 22599.94 5799.19 7899.97 3399.33 238
VPNet99.46 6199.37 7499.71 8399.82 4599.59 11299.48 7899.70 10099.81 3399.69 10999.58 19097.66 22599.86 19799.17 8399.44 27799.67 68
Anonymous2023120699.35 9299.31 8599.47 17099.74 10299.06 22199.28 12299.74 8099.23 13899.72 9899.53 21397.63 22799.88 16499.11 9599.84 12799.48 193
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15899.04 31999.39 15698.47 26799.47 22996.70 32898.78 29999.33 26997.62 22899.86 19794.69 34399.38 28699.28 249
test1299.54 15199.29 27799.33 17299.16 30498.43 32397.54 22999.82 25499.47 27499.48 193
NR-MVSNet99.40 7799.31 8599.68 8999.43 23399.55 12199.73 2099.50 21899.46 10499.88 3299.36 26097.54 22999.87 17798.97 10899.87 11299.63 100
MAR-MVS98.24 26997.92 28099.19 24098.78 34799.65 9399.17 15699.14 30695.36 34598.04 34198.81 34597.47 23199.72 30295.47 33099.06 31298.21 349
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2499.25 18898.78 23799.88 1898.66 21099.96 899.79 6497.45 23299.93 7199.34 5599.99 1299.78 32
PAPR97.56 29697.07 30599.04 25898.80 34498.11 28697.63 33299.25 28994.56 35798.02 34298.25 36397.43 23399.68 32590.90 36298.74 33299.33 238
YYNet198.95 19298.99 16998.84 28099.64 14297.14 31998.22 28799.32 27198.92 18399.59 14999.66 13897.40 23499.83 24498.27 16099.90 8799.55 152
PVSNet97.47 1598.42 25498.44 23298.35 30499.46 22596.26 33396.70 36199.34 26897.68 28899.00 27399.13 30297.40 23499.72 30297.59 22699.68 21599.08 290
112198.56 23798.24 25199.52 15599.49 20999.24 19399.30 11499.22 29695.77 34098.52 31899.29 27797.39 23699.85 21695.79 32299.34 29399.46 202
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27899.64 14297.16 31898.23 28699.33 26998.93 18199.56 16199.66 13897.39 23699.83 24498.29 15899.88 10399.55 152
MG-MVS98.52 24398.39 23798.94 26499.15 30197.39 31398.18 28899.21 30098.89 18899.23 24199.63 15597.37 23899.74 29794.22 34799.61 24299.69 55
OpenMVS_ROBcopyleft97.31 1797.36 30296.84 31398.89 27799.29 27799.45 14098.87 21999.48 22586.54 36999.44 19199.74 8797.34 23999.86 19791.61 35899.28 30097.37 363
AdaColmapbinary98.60 23198.35 24299.38 20299.12 30699.22 19798.67 24799.42 24497.84 28398.81 29499.27 28197.32 24099.81 27095.14 33599.53 26499.10 284
test22299.51 19799.08 21897.83 32599.29 28095.21 34898.68 30799.31 27297.28 24199.38 28699.43 215
HQP_MVS98.90 19798.68 20999.55 14799.58 16099.24 19398.80 23399.54 19498.94 17899.14 25899.25 28697.24 24299.82 25495.84 32099.78 17099.60 126
plane_prior699.47 22099.26 18497.24 242
GBi-Net99.42 7099.31 8599.73 7399.49 20999.77 4399.68 3799.70 10099.44 10799.62 13899.83 4797.21 24499.90 13298.96 11099.90 8799.53 165
test199.42 7099.31 8599.73 7399.49 20999.77 4399.68 3799.70 10099.44 10799.62 13899.83 4797.21 24499.90 13298.96 11099.90 8799.53 165
FMVSNet299.35 9299.28 9799.55 14799.49 20999.35 16999.45 8199.57 17799.44 10799.70 10699.74 8797.21 24499.87 17799.03 10199.94 6599.44 209
BH-RMVSNet98.41 25598.14 26399.21 23799.21 29198.47 26398.60 25098.26 34398.35 24698.93 27899.31 27297.20 24799.66 33494.32 34599.10 31199.51 177
MVS-HIRNet97.86 28298.22 25396.76 34199.28 28091.53 36898.38 27592.60 37299.13 15799.31 22799.96 1197.18 24899.68 32598.34 15499.83 13799.07 295
PAPM_NR98.36 25998.04 26799.33 21299.48 21598.93 23498.79 23699.28 28397.54 29598.56 31698.57 35397.12 24999.69 31494.09 34998.90 32399.38 226
CPTT-MVS98.74 21798.44 23299.64 11199.61 14999.38 15999.18 15199.55 18896.49 32999.27 23599.37 25597.11 25099.92 9195.74 32499.67 22299.62 111
testtj98.56 23798.17 26099.72 7999.45 22899.60 10998.88 21699.50 21896.88 32199.18 25399.48 23097.08 25199.92 9193.69 35499.38 28699.63 100
CNLPA98.57 23698.34 24399.28 22599.18 29899.10 21598.34 27699.41 24598.48 23098.52 31898.98 32697.05 25299.78 28195.59 32699.50 26998.96 306
BH-untuned98.22 27198.09 26598.58 29699.38 24797.24 31698.55 25898.98 31697.81 28499.20 25298.76 34797.01 25399.65 34194.83 33998.33 34498.86 315
VDD-MVS99.20 13699.11 12899.44 17999.43 23398.98 22499.50 7498.32 34299.80 3699.56 16199.69 11796.99 25499.85 21698.99 10499.73 19599.50 183
PLCcopyleft97.35 1698.36 25997.99 27099.48 16899.32 27099.24 19398.50 26599.51 21495.19 34998.58 31498.96 33196.95 25599.83 24495.63 32599.25 30499.37 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS99.11 16098.93 17899.66 9999.30 27599.42 14998.42 27399.37 26299.04 16999.57 15499.20 29796.89 25699.86 19798.66 13899.87 11299.70 51
CL-MVSNet_self_test98.71 22198.56 22299.15 24599.22 28998.66 25297.14 35399.51 21498.09 26599.54 16899.27 28196.87 25799.74 29798.43 14798.96 31899.03 299
MSP-MVS99.04 17398.79 20099.81 2699.78 7399.73 6399.35 10199.57 17798.54 22499.54 16898.99 32396.81 25899.93 7196.97 26499.53 26499.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HQP2-MVS96.67 259
HQP-MVS98.36 25998.02 26999.39 19899.31 27198.94 23097.98 31299.37 26297.45 30098.15 33398.83 34296.67 25999.70 30894.73 34099.67 22299.53 165
CANet_DTU98.91 19598.85 19199.09 25198.79 34598.13 28398.18 28899.31 27599.48 9598.86 28999.51 21996.56 26199.95 4599.05 10099.95 5299.19 266
pmmvs599.19 13999.11 12899.42 18599.76 8598.88 23998.55 25899.73 8398.82 19599.72 9899.62 16496.56 26199.82 25499.32 6099.95 5299.56 149
MVEpermissive92.54 2296.66 31796.11 32198.31 30899.68 13297.55 30897.94 31895.60 36599.37 11790.68 37498.70 34996.56 26198.61 37186.94 37199.55 25698.77 322
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
VNet99.18 14399.06 14599.56 14499.24 28799.36 16599.33 10499.31 27599.67 6199.47 18699.57 19896.48 26499.84 23399.15 8799.30 29899.47 198
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25599.80 5797.83 29998.89 21599.72 9299.29 12699.63 13099.70 11196.47 26599.89 14998.17 17299.82 14699.50 183
DeepMVS_CXcopyleft97.98 31599.69 12396.95 32299.26 28675.51 37195.74 36998.28 36296.47 26599.62 34591.23 36097.89 35697.38 362
1112_ss99.05 17098.84 19399.67 9299.66 13899.29 17898.52 26399.82 3997.65 28999.43 19599.16 30096.42 26799.91 11299.07 9999.84 12799.80 24
TR-MVS97.44 29997.15 30498.32 30698.53 35697.46 31098.47 26797.91 34896.85 32398.21 33298.51 35796.42 26799.51 35992.16 35797.29 36197.98 356
miper_ehance_all_eth98.59 23498.59 21598.59 29598.98 32697.07 32097.49 34199.52 21198.50 22799.52 17599.37 25596.41 26999.71 30697.86 19799.62 23599.00 305
Anonymous2024052199.44 6599.42 6599.49 16499.89 2198.96 22899.62 5399.76 6899.85 2499.82 5299.88 2996.39 27099.97 1799.59 2199.98 2499.55 152
c3_l98.72 22098.71 20498.72 29099.12 30697.22 31797.68 33199.56 18298.90 18599.54 16899.48 23096.37 27199.73 30097.88 19399.88 10399.21 260
sss98.90 19798.77 20199.27 22799.48 21598.44 26698.72 24499.32 27197.94 27699.37 21399.35 26596.31 27299.91 11298.85 12099.63 23499.47 198
CDS-MVSNet99.22 12999.13 12199.50 16199.35 25499.11 21198.96 21099.54 19499.46 10499.61 14499.70 11196.31 27299.83 24499.34 5599.88 10399.55 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth98.68 22498.71 20498.60 29499.10 31296.84 32697.52 34099.54 19498.94 17899.58 15199.48 23096.25 27499.76 29198.01 18399.93 7399.21 260
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8699.70 2899.14 30699.65 6799.89 2699.90 2296.20 27599.94 5799.42 4699.92 7799.67 68
MVS_030498.88 20198.71 20499.39 19898.85 33798.91 23799.45 8199.30 27898.56 21997.26 35999.68 12896.18 27699.96 3599.17 8399.94 6599.29 247
Test_1112_low_res98.95 19298.73 20299.63 11599.68 13299.15 20898.09 29999.80 4997.14 31699.46 18999.40 24896.11 27799.89 14999.01 10399.84 12799.84 14
IterMVS98.97 18699.16 11498.42 30199.74 10295.64 34298.06 30499.83 3499.83 3099.85 4299.74 8796.10 27899.99 599.27 69100.00 199.63 100
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT99.00 18299.16 11498.51 29799.75 9695.90 33998.07 30299.84 3299.84 2799.89 2699.73 9196.01 27999.99 599.33 58100.00 199.63 100
SCA98.11 27498.36 24097.36 33299.20 29492.99 35998.17 29098.49 33698.24 25699.10 26499.57 19896.01 27999.94 5796.86 27099.62 23599.14 278
ETH3 D test640097.76 28697.19 30399.50 16199.38 24799.26 18498.34 27699.49 22392.99 36098.54 31799.20 29795.92 28199.82 25491.14 36199.66 22699.40 221
PVSNet_095.53 1995.85 33395.31 33597.47 32998.78 34793.48 35795.72 36599.40 25296.18 33597.37 35697.73 36895.73 28299.58 35295.49 32881.40 37299.36 232
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19398.33 36199.56 11899.01 19699.59 16695.44 34499.57 15499.80 5895.64 28399.46 36396.47 29499.92 7799.21 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
BH-w/o97.20 30497.01 30797.76 32299.08 31595.69 34198.03 30698.52 33395.76 34197.96 34398.02 36595.62 28499.47 36192.82 35697.25 36298.12 353
cascas96.99 30896.82 31497.48 32897.57 37295.64 34296.43 36399.56 18291.75 36297.13 36297.61 37095.58 28598.63 37096.68 28199.11 31098.18 352
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19599.56 18099.37 16297.97 31599.68 10997.49 29999.08 26699.35 26595.41 28699.82 25497.70 21498.19 34999.01 304
bset_n11_16_dypcd98.69 22398.45 23099.42 18599.69 12398.52 26196.06 36496.80 35999.71 4799.73 9699.54 21095.14 28799.96 3599.39 4999.95 5299.79 30
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13199.68 13299.45 14098.99 20399.67 11499.48 9599.55 16699.36 26094.92 28899.86 19798.95 11496.57 36599.45 204
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5799.43 14699.70 2899.24 29299.48 9599.56 16199.77 7794.89 28999.93 7198.72 13399.89 9599.63 100
WTY-MVS98.59 23498.37 23999.26 22999.43 23398.40 26998.74 24199.13 30898.10 26399.21 24799.24 29194.82 29099.90 13297.86 19798.77 32899.49 188
miper_enhance_ethall98.03 27897.94 27898.32 30698.27 36296.43 33296.95 35799.41 24596.37 33299.43 19598.96 33194.74 29199.69 31497.71 21299.62 23598.83 319
IS-MVSNet99.03 17498.85 19199.55 14799.80 5799.25 18899.73 2099.15 30599.37 11799.61 14499.71 10494.73 29299.81 27097.70 21499.88 10399.58 140
miper_lstm_enhance98.65 22698.60 21398.82 28599.20 29497.33 31497.78 32699.66 11899.01 17099.59 14999.50 22294.62 29399.85 21698.12 17599.90 8799.26 250
lessismore_v099.64 11199.86 3099.38 15990.66 37499.89 2699.83 4794.56 29499.97 1799.56 2699.92 7799.57 146
PCF-MVS96.03 1896.73 31595.86 32699.33 21299.44 23099.16 20696.87 35999.44 23886.58 36898.95 27699.40 24894.38 29599.88 16487.93 36699.80 15998.95 307
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet98.97 18698.82 19699.42 18599.71 11298.81 24299.62 5398.68 32699.81 3399.38 21299.80 5894.25 29699.85 21698.79 12599.32 29699.59 135
HY-MVS98.23 998.21 27297.95 27498.99 26099.03 32098.24 27699.61 5898.72 32596.81 32598.73 30399.51 21994.06 29799.86 19796.91 26798.20 34798.86 315
test_method91.72 33992.32 34289.91 35593.49 37770.18 37990.28 36899.56 18261.71 37395.39 37099.52 21593.90 29899.94 5798.76 12998.27 34699.62 111
DIV-MVS_self_test98.54 24198.42 23498.92 26899.03 32097.80 30197.46 34299.59 16698.90 18599.60 14699.46 23893.87 29999.78 28197.97 18799.89 9599.18 268
cl____98.54 24198.41 23598.92 26899.03 32097.80 30197.46 34299.59 16698.90 18599.60 14699.46 23893.85 30099.78 28197.97 18799.89 9599.17 270
EMVS96.96 31097.28 29895.99 35298.76 34991.03 37095.26 36798.61 33099.34 12098.92 28198.88 34093.79 30199.66 33492.87 35599.05 31397.30 364
EPNet_dtu97.62 29397.79 28797.11 33996.67 37392.31 36298.51 26498.04 34499.24 13695.77 36899.47 23593.78 30299.66 33498.98 10699.62 23599.37 229
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test111197.74 28798.16 26196.49 34799.60 15189.86 37699.71 2791.21 37399.89 1199.88 3299.87 3293.73 30399.90 13299.56 2699.99 1299.70 51
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13599.74 1794.97 36699.78 3999.88 3299.88 2993.66 30499.97 1799.61 1999.95 5299.64 95
ECVR-MVScopyleft97.73 28898.04 26796.78 34099.59 15590.81 37299.72 2390.43 37599.89 1199.86 4099.86 3893.60 30599.89 14999.46 3899.99 1299.65 86
CHOSEN 280x42098.41 25598.41 23598.40 30299.34 26495.89 34096.94 35899.44 23898.80 19899.25 23799.52 21593.51 30699.98 798.94 11599.98 2499.32 241
CVMVSNet98.61 22998.88 18897.80 32199.58 16093.60 35699.26 12799.64 13599.66 6599.72 9899.67 13493.26 30799.93 7199.30 6399.81 15499.87 9
Anonymous20240521198.75 21598.46 22999.63 11599.34 26499.66 8899.47 8097.65 35199.28 12999.56 16199.50 22293.15 30899.84 23398.62 13999.58 25099.40 221
EPNet98.13 27397.77 28899.18 24294.57 37697.99 29299.24 13597.96 34699.74 4297.29 35899.62 16493.13 30999.97 1798.59 14099.83 13799.58 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM95.61 33694.71 33898.31 30899.12 30696.63 32896.66 36298.46 33790.77 36596.25 36598.68 35093.01 31099.69 31481.60 37297.86 35898.62 326
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21099.78 7398.88 23999.61 5899.56 18299.11 16199.24 24099.56 20193.00 31199.78 28197.43 23599.89 9599.35 235
E-PMN97.14 30797.43 29596.27 34998.79 34591.62 36795.54 36699.01 31599.44 10798.88 28599.12 30692.78 31299.68 32594.30 34699.03 31597.50 360
FMVSNet398.80 21098.63 21299.32 21699.13 30498.72 24799.10 17999.48 22599.23 13899.62 13899.64 14592.57 31399.86 19798.96 11099.90 8799.39 224
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3399.47 13198.07 30299.83 3498.64 21299.89 2699.60 18292.57 313100.00 199.33 5899.97 3399.72 45
RPMNet98.60 23198.53 22598.83 28299.05 31798.12 28499.30 11499.62 14099.86 1999.16 25499.74 8792.53 31599.92 9198.75 13098.77 32898.44 339
h-mvs3398.61 22998.34 24399.44 17999.60 15198.67 25099.27 12599.44 23899.68 5799.32 22399.49 22792.50 316100.00 199.24 7096.51 36699.65 86
hse-mvs298.52 24398.30 24799.16 24399.29 27798.60 25798.77 23899.02 31399.68 5799.32 22399.04 31692.50 31699.85 21699.24 7097.87 35799.03 299
tpmvs97.39 30097.69 29096.52 34698.41 35891.76 36599.30 11498.94 31797.74 28597.85 34999.55 20892.40 31899.73 30096.25 30398.73 33498.06 354
RRT_MVS98.75 21598.54 22399.41 19398.14 36898.61 25698.98 20799.66 11899.31 12599.84 4599.75 8491.98 31999.98 799.20 7699.95 5299.62 111
tpmrst97.73 28898.07 26696.73 34398.71 35192.00 36399.10 17998.86 31898.52 22598.92 28199.54 21091.90 32099.82 25498.02 18099.03 31598.37 341
JIA-IIPM98.06 27797.92 28098.50 29898.59 35497.02 32198.80 23398.51 33499.88 1697.89 34699.87 3291.89 32199.90 13298.16 17397.68 35998.59 328
CR-MVSNet98.35 26298.20 25598.83 28299.05 31798.12 28499.30 11499.67 11497.39 30499.16 25499.79 6491.87 32299.91 11298.78 12898.77 32898.44 339
Patchmtry98.78 21198.54 22399.49 16498.89 33399.19 20499.32 10799.67 11499.65 6799.72 9899.79 6491.87 32299.95 4598.00 18499.97 3399.33 238
MDTV_nov1_ep13_2view91.44 36999.14 16697.37 30599.21 24791.78 32496.75 27799.03 299
PatchT98.45 25298.32 24698.83 28298.94 32898.29 27599.24 13598.82 32199.84 2799.08 26699.76 8091.37 32599.94 5798.82 12399.00 31798.26 346
test_yl98.25 26797.95 27499.13 24799.17 29998.47 26399.00 19898.67 32898.97 17399.22 24599.02 32191.31 32699.69 31497.26 24798.93 31999.24 253
DCV-MVSNet98.25 26797.95 27499.13 24799.17 29998.47 26399.00 19898.67 32898.97 17399.22 24599.02 32191.31 32699.69 31497.26 24798.93 31999.24 253
baseline197.73 28897.33 29798.96 26299.30 27597.73 30399.40 8898.42 33899.33 12399.46 18999.21 29591.18 32899.82 25498.35 15391.26 37199.32 241
tpm cat196.78 31396.98 30896.16 35198.85 33790.59 37499.08 18699.32 27192.37 36197.73 35599.46 23891.15 32999.69 31496.07 30998.80 32598.21 349
LFMVS98.46 25198.19 25899.26 22999.24 28798.52 26199.62 5396.94 35899.87 1799.31 22799.58 19091.04 33099.81 27098.68 13799.42 28299.45 204
MDTV_nov1_ep1397.73 28998.70 35290.83 37199.15 16498.02 34598.51 22698.82 29399.61 17390.98 33199.66 33496.89 26998.92 321
MIMVSNet98.43 25398.20 25599.11 24999.53 18798.38 27299.58 6798.61 33098.96 17699.33 22199.76 8090.92 33299.81 27097.38 23899.76 17799.15 274
ADS-MVSNet297.78 28597.66 29398.12 31499.14 30295.36 34499.22 14298.75 32496.97 31998.25 32999.64 14590.90 33399.94 5796.51 29199.56 25299.08 290
ADS-MVSNet97.72 29197.67 29297.86 31999.14 30294.65 35099.22 14298.86 31896.97 31998.25 32999.64 14590.90 33399.84 23396.51 29199.56 25299.08 290
alignmvs98.28 26597.96 27399.25 23299.12 30698.93 23499.03 19398.42 33899.64 6998.72 30497.85 36790.86 33599.62 34598.88 11999.13 30999.19 266
sam_mvs190.81 33699.14 278
PatchmatchNetpermissive97.65 29297.80 28597.18 33798.82 34292.49 36199.17 15698.39 34098.12 26298.79 29799.58 19090.71 33799.89 14997.23 25199.41 28399.16 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post99.62 16490.58 33899.94 57
Patchmatch-RL test98.60 23198.36 24099.33 21299.77 8199.07 21998.27 28399.87 2098.91 18499.74 9299.72 9790.57 33999.79 27898.55 14299.85 12399.11 282
sam_mvs90.52 340
pmmvs398.08 27697.80 28598.91 27099.41 23997.69 30597.87 32399.66 11895.87 33899.50 18299.51 21990.35 34199.97 1798.55 14299.47 27499.08 290
test_post52.41 38090.25 34299.86 197
Patchmatch-test98.10 27597.98 27298.48 29999.27 28296.48 33099.40 8899.07 30998.81 19699.23 24199.57 19890.11 34399.87 17796.69 28099.64 23299.09 287
test-LLR97.15 30596.95 30997.74 32498.18 36595.02 34797.38 34496.10 36098.00 26897.81 35098.58 35190.04 34499.91 11297.69 22098.78 32698.31 342
test0.0.03 197.37 30196.91 31298.74 28997.72 36997.57 30797.60 33497.36 35798.00 26899.21 24798.02 36590.04 34499.79 27898.37 15095.89 36998.86 315
GA-MVS97.99 28197.68 29198.93 26799.52 19298.04 29197.19 35299.05 31298.32 25298.81 29498.97 32989.89 34699.41 36498.33 15599.05 31399.34 237
test_post199.14 16651.63 38189.54 34799.82 25496.86 270
AUN-MVS97.82 28397.38 29699.14 24699.27 28298.53 25998.72 24499.02 31398.10 26397.18 36199.03 32089.26 34899.85 21697.94 18997.91 35599.03 299
MVSTER98.47 25098.22 25399.24 23499.06 31698.35 27499.08 18699.46 23399.27 13099.75 8399.66 13888.61 34999.85 21699.14 9399.92 7799.52 175
baseline296.83 31296.28 31898.46 30099.09 31496.91 32498.83 22593.87 37197.23 31196.23 36798.36 36088.12 35099.90 13296.68 28198.14 35198.57 331
cl2297.56 29697.28 29898.40 30298.37 36096.75 32797.24 35199.37 26297.31 30899.41 20599.22 29387.30 35199.37 36597.70 21499.62 23599.08 290
dp96.86 31197.07 30596.24 35098.68 35390.30 37599.19 15098.38 34197.35 30698.23 33199.59 18887.23 35299.82 25496.27 30298.73 33498.59 328
ET-MVSNet_ETH3D96.78 31396.07 32298.91 27099.26 28497.92 29897.70 33096.05 36397.96 27592.37 37398.43 35987.06 35399.90 13298.27 16097.56 36098.91 311
thres100view90096.39 32196.03 32397.47 32999.63 14495.93 33899.18 15197.57 35298.75 20698.70 30697.31 37487.04 35499.67 33087.62 36798.51 34196.81 365
thres600view796.60 31896.16 32097.93 31799.63 14496.09 33799.18 15197.57 35298.77 20298.72 30497.32 37387.04 35499.72 30288.57 36498.62 33797.98 356
tfpn200view996.30 32495.89 32497.53 32799.58 16096.11 33599.00 19897.54 35598.43 23298.52 31896.98 37686.85 35699.67 33087.62 36798.51 34196.81 365
thres40096.40 32095.89 32497.92 31899.58 16096.11 33599.00 19897.54 35598.43 23298.52 31896.98 37686.85 35699.67 33087.62 36798.51 34197.98 356
thres20096.09 32795.68 33097.33 33499.48 21596.22 33498.53 26297.57 35298.06 26798.37 32596.73 37886.84 35899.61 34986.99 37098.57 33896.16 368
test_part198.63 22798.26 25099.75 5799.40 24299.49 12899.67 4199.68 10999.86 1999.88 3299.86 3886.73 35999.93 7199.34 5599.97 3399.81 23
tpm97.15 30596.95 30997.75 32398.91 32994.24 35299.32 10797.96 34697.71 28798.29 32699.32 27086.72 36099.92 9198.10 17896.24 36899.09 287
EPMVS96.53 31996.32 31797.17 33898.18 36592.97 36099.39 9089.95 37698.21 25898.61 31199.59 18886.69 36199.72 30296.99 26399.23 30898.81 320
CostFormer96.71 31696.79 31596.46 34898.90 33090.71 37399.41 8798.68 32694.69 35698.14 33799.34 26886.32 36299.80 27597.60 22598.07 35398.88 313
thisisatest051596.98 30996.42 31698.66 29399.42 23897.47 30997.27 34994.30 36997.24 31099.15 25698.86 34185.01 36399.87 17797.10 25999.39 28598.63 325
tpm296.35 32296.22 31996.73 34398.88 33691.75 36699.21 14498.51 33493.27 35997.89 34699.21 29584.83 36499.70 30896.04 31098.18 35098.75 323
tttt051797.62 29397.20 30298.90 27699.76 8597.40 31299.48 7894.36 36899.06 16899.70 10699.49 22784.55 36599.94 5798.73 13299.65 23099.36 232
thisisatest053097.45 29896.95 30998.94 26499.68 13297.73 30399.09 18394.19 37098.61 21699.56 16199.30 27484.30 36699.93 7198.27 16099.54 26299.16 272
FPMVS96.32 32395.50 33198.79 28699.60 15198.17 28298.46 27298.80 32297.16 31596.28 36499.63 15582.19 36799.09 36788.45 36598.89 32499.10 284
gg-mvs-nofinetune95.87 33295.17 33697.97 31698.19 36496.95 32299.69 3489.23 37799.89 1196.24 36699.94 1381.19 36899.51 35993.99 35298.20 34797.44 361
DWT-MVSNet_test96.03 32995.80 32896.71 34598.50 35791.93 36499.25 13497.87 34995.99 33796.81 36397.61 37081.02 36999.66 33497.20 25497.98 35498.54 332
GG-mvs-BLEND97.36 33297.59 37096.87 32599.70 2888.49 37894.64 37297.26 37580.66 37099.12 36691.50 35996.50 36796.08 369
FMVSNet597.80 28497.25 30099.42 18598.83 33998.97 22699.38 9299.80 4998.87 18999.25 23799.69 11780.60 37199.91 11298.96 11099.90 8799.38 226
TESTMET0.1,196.24 32595.84 32797.41 33198.24 36393.84 35597.38 34495.84 36498.43 23297.81 35098.56 35479.77 37299.89 14997.77 20498.77 32898.52 333
KD-MVS_2432*160095.89 33095.41 33397.31 33594.96 37493.89 35397.09 35499.22 29697.23 31198.88 28599.04 31679.23 37399.54 35496.24 30496.81 36398.50 337
miper_refine_blended95.89 33095.41 33397.31 33594.96 37493.89 35397.09 35499.22 29697.23 31198.88 28599.04 31679.23 37399.54 35496.24 30496.81 36398.50 337
test-mter96.23 32695.73 32997.74 32498.18 36595.02 34797.38 34496.10 36097.90 27797.81 35098.58 35179.12 37599.91 11297.69 22098.78 32698.31 342
RRT_test8_iter0597.35 30397.25 30097.63 32698.81 34393.13 35899.26 12799.89 1599.51 9299.83 5099.68 12879.03 37699.88 16499.53 3099.72 20199.89 8
test250694.73 33894.59 34095.15 35399.59 15585.90 37899.75 1574.01 37999.89 1199.71 10399.86 3879.00 37799.90 13299.52 3299.99 1299.65 86
IB-MVS95.41 2095.30 33794.46 34197.84 32098.76 34995.33 34597.33 34796.07 36296.02 33695.37 37197.41 37276.17 37899.96 3597.54 22895.44 37098.22 348
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test12329.31 34033.05 34518.08 35625.93 38012.24 38097.53 33810.93 38111.78 37424.21 37550.08 38321.04 3798.60 37523.51 37332.43 37433.39 371
testmvs28.94 34133.33 34315.79 35726.03 3799.81 38196.77 36015.67 38011.55 37523.87 37650.74 38219.03 3808.53 37623.21 37433.07 37329.03 372
test_blank8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
sosnet-low-res8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
sosnet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
Regformer8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
ab-mvs-re8.26 35111.02 3540.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37799.16 3000.00 3810.00 3770.00 3750.00 3750.00 373
uanet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
FOURS199.83 3899.89 899.74 1799.71 9599.69 5599.63 130
MSC_two_6792asdad99.74 6399.03 32099.53 12399.23 29399.92 9197.77 20499.69 21099.78 32
No_MVS99.74 6399.03 32099.53 12399.23 29399.92 9197.77 20499.69 21099.78 32
eth-test20.00 381
eth-test0.00 381
IU-MVS99.69 12399.77 4399.22 29697.50 29899.69 10997.75 20899.70 20799.77 35
save fliter99.53 18799.25 18898.29 28199.38 26199.07 164
test_0728_SECOND99.83 2199.70 12099.79 3899.14 16699.61 14799.92 9197.88 19399.72 20199.77 35
GSMVS99.14 278
test_part299.62 14899.67 8699.55 166
MTGPAbinary99.53 203
MTMP99.09 18398.59 332
gm-plane-assit97.59 37089.02 37793.47 35898.30 36199.84 23396.38 298
test9_res95.10 33699.44 27799.50 183
agg_prior294.58 34499.46 27699.50 183
agg_prior99.35 25499.36 16599.39 25597.76 35399.85 216
test_prior499.19 20498.00 309
test_prior99.46 17399.35 25499.22 19799.39 25599.69 31499.48 193
旧先验297.94 31895.33 34698.94 27799.88 16496.75 277
新几何298.04 305
无先验98.01 30799.23 29395.83 33999.85 21695.79 32299.44 209
原ACMM297.92 320
testdata299.89 14995.99 313
testdata197.72 32897.86 282
plane_prior799.58 16099.38 159
plane_prior599.54 19499.82 25495.84 32099.78 17099.60 126
plane_prior499.25 286
plane_prior399.31 17598.36 24199.14 258
plane_prior298.80 23398.94 178
plane_prior199.51 197
plane_prior99.24 19398.42 27397.87 27999.71 205
n20.00 382
nn0.00 382
door-mid99.83 34
test1199.29 280
door99.77 63
HQP5-MVS98.94 230
HQP-NCC99.31 27197.98 31297.45 30098.15 333
ACMP_Plane99.31 27197.98 31297.45 30098.15 333
BP-MVS94.73 340
HQP4-MVS98.15 33399.70 30899.53 165
HQP3-MVS99.37 26299.67 222
NP-MVS99.40 24299.13 20998.83 342
ACMMP++_ref99.94 65
ACMMP++99.79 164