LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 25 | 91.50 1 | 63.30 120 | 84.80 32 | 87.77 9 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 66 | 68.08 89 | 97.05 1 | 96.93 1 |
|
PMVS |  | 70.70 6 | 81.70 36 | 83.15 34 | 77.36 81 | 90.35 6 | 82.82 2 | 82.15 55 | 79.22 146 | 74.08 20 | 87.16 29 | 91.97 19 | 84.80 2 | 76.97 201 | 64.98 116 | 93.61 63 | 72.28 278 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
LPG-MVS_test | | | 83.47 18 | 84.33 14 | 80.90 38 | 87.00 42 | 70.41 64 | 82.04 57 | 86.35 18 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 23 | 77.13 34 | 95.96 5 | 86.08 68 |
|
LGP-MVS_train | | | | | 80.90 38 | 87.00 42 | 70.41 64 | | 86.35 18 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 23 | 77.13 34 | 95.96 5 | 86.08 68 |
|
SR-MVS | | | 84.51 7 | 85.27 6 | 82.25 21 | 88.52 34 | 77.71 16 | 86.81 15 | 85.25 38 | 77.42 14 | 86.15 36 | 90.24 68 | 81.69 5 | 85.94 31 | 77.77 29 | 93.58 65 | 83.09 144 |
|
ACMP | | 69.50 8 | 82.64 28 | 83.38 29 | 80.40 43 | 86.50 49 | 69.44 72 | 82.30 54 | 86.08 26 | 66.80 66 | 86.70 31 | 89.99 73 | 81.64 6 | 85.95 30 | 74.35 49 | 96.11 3 | 85.81 74 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
RE-MVS-def | | | | 85.50 4 | | 86.19 53 | 79.18 9 | 87.23 7 | 86.27 21 | 77.51 10 | 87.65 18 | 90.73 45 | 81.38 7 | | 78.11 25 | 94.46 36 | 84.89 92 |
|
abl_6 | | | 84.92 3 | 85.70 3 | 82.57 17 | 86.72 47 | 79.27 8 | 87.56 5 | 86.08 26 | 77.48 12 | 88.12 13 | 91.53 27 | 81.18 8 | 84.31 71 | 78.12 24 | 94.47 35 | 84.15 120 |
|
ACMM | | 69.25 9 | 82.11 33 | 83.31 30 | 78.49 66 | 88.17 39 | 73.96 37 | 83.11 49 | 84.52 61 | 66.40 71 | 87.45 22 | 89.16 91 | 81.02 9 | 80.52 140 | 74.27 50 | 95.73 7 | 80.98 187 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 66.64 10 | 81.20 39 | 82.48 42 | 77.35 82 | 81.16 130 | 62.39 124 | 80.51 65 | 87.80 7 | 73.02 25 | 87.57 20 | 91.08 36 | 80.28 10 | 82.44 103 | 64.82 117 | 96.10 4 | 87.21 56 |
|
APD-MVS_3200maxsize | | | 83.57 15 | 84.33 14 | 81.31 33 | 82.83 107 | 73.53 43 | 85.50 26 | 87.45 12 | 74.11 19 | 86.45 33 | 90.52 53 | 80.02 11 | 84.48 67 | 77.73 30 | 94.34 47 | 85.93 72 |
|
COLMAP_ROB |  | 72.78 3 | 83.75 13 | 84.11 17 | 82.68 14 | 82.97 104 | 74.39 35 | 87.18 9 | 88.18 6 | 78.98 6 | 86.11 38 | 91.47 29 | 79.70 12 | 85.76 39 | 66.91 105 | 95.46 11 | 87.89 47 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 32 | 81.19 5 | 88.84 2 | 90.72 1 | 78.27 8 | 87.95 14 | 92.53 13 | 79.37 13 | 84.79 62 | 74.51 48 | 96.15 2 | 92.88 7 |
|
test1172 | | | 84.85 4 | 85.39 5 | 83.21 3 | 88.34 37 | 80.50 6 | 85.12 28 | 85.22 39 | 81.06 2 | 87.20 27 | 90.28 67 | 79.20 14 | 85.58 45 | 78.04 27 | 94.08 54 | 83.55 130 |
|
SR-MVS-dyc-post | | | 84.75 5 | 85.26 7 | 83.21 3 | 86.19 53 | 79.18 9 | 87.23 7 | 86.27 21 | 77.51 10 | 87.65 18 | 90.73 45 | 79.20 14 | 85.58 45 | 78.11 25 | 94.46 36 | 84.89 92 |
|
HPM-MVS |  | | 84.12 10 | 84.63 11 | 82.60 15 | 88.21 38 | 74.40 34 | 85.24 27 | 87.21 14 | 70.69 45 | 85.14 52 | 90.42 57 | 78.99 16 | 86.62 14 | 80.83 6 | 94.93 24 | 86.79 62 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
ACMMP |  | | 84.22 8 | 84.84 10 | 82.35 20 | 89.23 23 | 76.66 25 | 87.65 4 | 85.89 29 | 71.03 42 | 85.85 40 | 90.58 49 | 78.77 17 | 85.78 38 | 79.37 16 | 95.17 17 | 84.62 102 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DVP-MVS | | | 81.15 41 | 83.12 35 | 75.24 106 | 86.16 55 | 60.78 138 | 83.77 40 | 80.58 126 | 72.48 31 | 85.83 41 | 90.41 58 | 78.57 18 | 85.69 41 | 75.86 39 | 94.39 41 | 79.24 215 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 86.16 55 | 60.78 138 | 83.81 39 | 85.10 42 | 72.48 31 | 85.27 51 | 89.96 74 | 78.57 18 | | | | |
|
HPM-MVS_fast | | | 84.59 6 | 85.10 8 | 83.06 6 | 88.60 33 | 75.83 26 | 86.27 23 | 86.89 17 | 73.69 22 | 86.17 35 | 91.70 24 | 78.23 20 | 85.20 55 | 79.45 13 | 94.91 25 | 88.15 45 |
|
APDe-MVS | | | 82.88 26 | 84.14 16 | 79.08 57 | 84.80 77 | 66.72 92 | 86.54 19 | 85.11 41 | 72.00 38 | 86.65 32 | 91.75 23 | 78.20 21 | 87.04 9 | 77.93 28 | 94.32 48 | 83.47 133 |
|
UniMVSNet_ETH3D | | | 76.74 83 | 79.02 67 | 69.92 185 | 89.27 20 | 43.81 258 | 74.47 144 | 71.70 223 | 72.33 34 | 85.50 47 | 93.65 3 | 77.98 22 | 76.88 204 | 54.60 201 | 91.64 92 | 89.08 31 |
|
test_241102_TWO | | | | | | | | | 84.80 47 | 72.61 29 | 84.93 54 | 89.70 78 | 77.73 23 | 85.89 36 | 75.29 42 | 94.22 53 | 83.25 140 |
|
SED-MVS | | | 81.78 35 | 83.48 27 | 76.67 86 | 86.12 57 | 61.06 133 | 83.62 42 | 84.72 51 | 72.61 29 | 87.38 24 | 89.70 78 | 77.48 24 | 85.89 36 | 75.29 42 | 94.39 41 | 83.08 145 |
|
test_241102_ONE | | | | | | 86.12 57 | 61.06 133 | | 84.72 51 | 72.64 28 | 87.38 24 | 89.47 81 | 77.48 24 | 85.74 40 | | | |
|
CP-MVS | | | 84.12 10 | 84.55 12 | 82.80 12 | 89.42 18 | 79.74 7 | 88.19 3 | 84.43 62 | 71.96 39 | 84.70 59 | 90.56 50 | 77.12 26 | 86.18 25 | 79.24 18 | 95.36 13 | 82.49 163 |
|
HFP-MVS | | | 83.39 19 | 84.03 18 | 81.48 27 | 89.25 21 | 75.69 27 | 87.01 13 | 84.27 66 | 70.23 46 | 84.47 62 | 90.43 55 | 76.79 27 | 85.94 31 | 79.58 11 | 94.23 51 | 82.82 153 |
|
#test# | | | 82.40 30 | 82.71 40 | 81.48 27 | 89.25 21 | 75.69 27 | 84.47 34 | 84.27 66 | 64.45 91 | 84.47 62 | 90.43 55 | 76.79 27 | 85.94 31 | 76.01 36 | 94.23 51 | 82.82 153 |
|
mPP-MVS | | | 84.01 12 | 84.39 13 | 82.88 8 | 90.65 4 | 81.38 4 | 87.08 11 | 82.79 89 | 72.41 33 | 85.11 53 | 90.85 41 | 76.65 29 | 84.89 59 | 79.30 17 | 94.63 32 | 82.35 166 |
|
DPE-MVS |  | | 82.00 34 | 83.02 36 | 78.95 60 | 85.36 68 | 67.25 88 | 82.91 50 | 84.98 44 | 73.52 23 | 85.43 48 | 90.03 72 | 76.37 30 | 86.97 11 | 74.56 47 | 94.02 57 | 82.62 159 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 82.54 29 | 83.46 28 | 79.76 47 | 88.88 31 | 68.44 81 | 81.57 60 | 86.33 20 | 63.17 106 | 85.38 49 | 91.26 33 | 76.33 31 | 84.67 64 | 83.30 1 | 94.96 23 | 86.17 67 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
OPM-MVS | | | 80.99 45 | 81.63 50 | 79.07 58 | 86.86 46 | 69.39 73 | 79.41 81 | 84.00 76 | 65.64 75 | 85.54 46 | 89.28 84 | 76.32 32 | 83.47 84 | 74.03 51 | 93.57 66 | 84.35 115 |
|
ACMH | | 63.62 14 | 77.50 78 | 80.11 59 | 69.68 186 | 79.61 142 | 56.28 168 | 78.81 87 | 83.62 79 | 63.41 104 | 87.14 30 | 90.23 69 | 76.11 33 | 73.32 236 | 67.58 97 | 94.44 39 | 79.44 213 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
mvs_tets | | | 78.93 64 | 78.67 72 | 79.72 49 | 84.81 76 | 73.93 38 | 80.65 64 | 76.50 184 | 51.98 218 | 87.40 23 | 91.86 21 | 76.09 34 | 78.53 171 | 68.58 84 | 90.20 125 | 86.69 64 |
|
APD-MVS |  | | 81.13 42 | 81.73 47 | 79.36 55 | 84.47 82 | 70.53 63 | 83.85 38 | 83.70 78 | 69.43 52 | 83.67 72 | 88.96 97 | 75.89 35 | 86.41 17 | 72.62 61 | 92.95 72 | 81.14 182 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ZD-MVS | | | | | | 83.91 91 | 69.36 74 | | 81.09 117 | 58.91 139 | 82.73 83 | 89.11 92 | 75.77 36 | 86.63 13 | 72.73 59 | 92.93 73 | |
|
PGM-MVS | | | 83.07 23 | 83.25 33 | 82.54 18 | 89.57 14 | 77.21 23 | 82.04 57 | 85.40 35 | 67.96 59 | 84.91 57 | 90.88 39 | 75.59 37 | 86.57 15 | 78.16 23 | 94.71 30 | 83.82 124 |
|
test_0728_THIRD | | | | | | | | | | 74.03 21 | 85.83 41 | 90.41 58 | 75.58 38 | 85.69 41 | 77.43 33 | 94.74 29 | 84.31 116 |
|
SteuartSystems-ACMMP | | | 83.07 23 | 83.64 24 | 81.35 31 | 85.14 71 | 71.00 58 | 85.53 25 | 84.78 48 | 70.91 43 | 85.64 43 | 90.41 58 | 75.55 39 | 87.69 3 | 79.75 8 | 95.08 20 | 85.36 81 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP_NAP | | | 82.33 31 | 83.28 31 | 79.46 53 | 89.28 19 | 69.09 79 | 83.62 42 | 84.98 44 | 64.77 88 | 83.97 69 | 91.02 37 | 75.53 40 | 85.93 34 | 82.00 2 | 94.36 45 | 83.35 138 |
|
region2R | | | 83.54 16 | 83.86 21 | 82.58 16 | 89.82 10 | 77.53 19 | 87.06 12 | 84.23 70 | 70.19 48 | 83.86 70 | 90.72 47 | 75.20 41 | 86.27 22 | 79.41 15 | 94.25 50 | 83.95 123 |
|
ACMMPR | | | 83.62 14 | 83.93 19 | 82.69 13 | 89.78 11 | 77.51 21 | 87.01 13 | 84.19 71 | 70.23 46 | 84.49 61 | 90.67 48 | 75.15 42 | 86.37 19 | 79.58 11 | 94.26 49 | 84.18 119 |
|
test_0402 | | | 78.17 75 | 79.48 65 | 74.24 117 | 83.50 95 | 59.15 154 | 72.52 157 | 74.60 203 | 75.34 16 | 88.69 12 | 91.81 22 | 75.06 43 | 82.37 105 | 65.10 114 | 88.68 152 | 81.20 180 |
|
PS-CasMVS | | | 80.41 51 | 82.86 39 | 73.07 136 | 89.93 7 | 39.21 294 | 77.15 111 | 81.28 111 | 79.74 5 | 90.87 3 | 92.73 11 | 75.03 44 | 84.93 58 | 63.83 126 | 95.19 16 | 95.07 3 |
|
testtj | | | 81.19 40 | 81.70 48 | 79.67 51 | 83.95 90 | 69.77 69 | 83.58 45 | 84.63 57 | 72.13 35 | 82.85 81 | 88.36 105 | 75.00 45 | 86.79 12 | 71.99 69 | 92.84 74 | 82.44 164 |
|
PEN-MVS | | | 80.46 50 | 82.91 37 | 73.11 135 | 89.83 9 | 39.02 297 | 77.06 113 | 82.61 92 | 80.04 4 | 90.60 5 | 92.85 9 | 74.93 46 | 85.21 54 | 63.15 134 | 95.15 18 | 95.09 2 |
|
ZNCC-MVS | | | 83.12 22 | 83.68 23 | 81.45 29 | 89.14 25 | 73.28 45 | 86.32 22 | 85.97 28 | 67.39 61 | 84.02 68 | 90.39 61 | 74.73 47 | 86.46 16 | 80.73 7 | 94.43 40 | 84.60 105 |
|
zzz-MVS | | | 83.01 25 | 83.63 25 | 81.13 35 | 91.16 2 | 78.16 14 | 82.72 53 | 80.63 123 | 72.08 36 | 84.93 54 | 90.79 42 | 74.65 48 | 84.42 68 | 80.98 4 | 94.75 27 | 80.82 191 |
|
MTAPA | | | 83.19 20 | 83.87 20 | 81.13 35 | 91.16 2 | 78.16 14 | 84.87 30 | 80.63 123 | 72.08 36 | 84.93 54 | 90.79 42 | 74.65 48 | 84.42 68 | 80.98 4 | 94.75 27 | 80.82 191 |
|
9.14 | | | | 80.22 58 | | 80.68 132 | | 80.35 70 | 87.69 10 | 59.90 128 | 83.00 77 | 88.20 108 | 74.57 50 | 81.75 115 | 73.75 53 | 93.78 59 | |
|
MP-MVS |  | | 83.19 20 | 83.54 26 | 82.14 22 | 90.54 5 | 79.00 11 | 86.42 21 | 83.59 80 | 71.31 40 | 81.26 98 | 90.96 38 | 74.57 50 | 84.69 63 | 78.41 22 | 94.78 26 | 82.74 157 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DTE-MVSNet | | | 80.35 52 | 82.89 38 | 72.74 147 | 89.84 8 | 37.34 312 | 77.16 110 | 81.81 101 | 80.45 3 | 90.92 2 | 92.95 7 | 74.57 50 | 86.12 28 | 63.65 127 | 94.68 31 | 94.76 6 |
|
XVG-OURS-SEG-HR | | | 79.62 57 | 79.99 60 | 78.49 66 | 86.46 50 | 74.79 33 | 77.15 111 | 85.39 36 | 66.73 67 | 80.39 110 | 88.85 99 | 74.43 53 | 78.33 181 | 74.73 46 | 85.79 190 | 82.35 166 |
|
SD-MVS | | | 80.28 54 | 81.55 51 | 76.47 91 | 83.57 94 | 67.83 85 | 83.39 48 | 85.35 37 | 64.42 92 | 86.14 37 | 87.07 121 | 74.02 54 | 80.97 130 | 77.70 31 | 92.32 85 | 80.62 198 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
XVS | | | 83.51 17 | 83.73 22 | 82.85 10 | 89.43 16 | 77.61 17 | 86.80 16 | 84.66 55 | 72.71 26 | 82.87 79 | 90.39 61 | 73.86 55 | 86.31 20 | 78.84 20 | 94.03 55 | 84.64 100 |
|
X-MVStestdata | | | 76.81 82 | 74.79 102 | 82.85 10 | 89.43 16 | 77.61 17 | 86.80 16 | 84.66 55 | 72.71 26 | 82.87 79 | 9.95 364 | 73.86 55 | 86.31 20 | 78.84 20 | 94.03 55 | 84.64 100 |
|
jajsoiax | | | 78.51 69 | 78.16 77 | 79.59 52 | 84.65 79 | 73.83 40 | 80.42 67 | 76.12 186 | 51.33 226 | 87.19 28 | 91.51 28 | 73.79 57 | 78.44 175 | 68.27 87 | 90.13 130 | 86.49 65 |
|
xxxxxxxxxxxxxcwj | | | 80.31 53 | 80.94 53 | 78.42 68 | 87.00 42 | 67.23 89 | 79.24 82 | 88.61 4 | 56.65 162 | 84.29 64 | 89.18 88 | 73.73 58 | 83.22 90 | 76.01 36 | 93.77 60 | 84.81 96 |
|
SF-MVS | | | 80.72 47 | 81.80 45 | 77.48 78 | 82.03 118 | 64.40 112 | 83.41 47 | 88.46 5 | 65.28 82 | 84.29 64 | 89.18 88 | 73.73 58 | 83.22 90 | 76.01 36 | 93.77 60 | 84.81 96 |
|
GST-MVS | | | 82.79 27 | 83.27 32 | 81.34 32 | 88.99 27 | 73.29 44 | 85.94 24 | 85.13 40 | 68.58 57 | 84.14 67 | 90.21 70 | 73.37 60 | 86.41 17 | 79.09 19 | 93.98 58 | 84.30 118 |
|
wuyk23d | | | 61.97 252 | 66.25 214 | 49.12 320 | 58.19 344 | 60.77 140 | 66.32 247 | 52.97 326 | 55.93 169 | 90.62 4 | 86.91 124 | 73.07 61 | 35.98 359 | 20.63 361 | 91.63 93 | 50.62 350 |
|
TranMVSNet+NR-MVSNet | | | 76.13 86 | 77.66 80 | 71.56 161 | 84.61 80 | 42.57 272 | 70.98 182 | 78.29 164 | 68.67 56 | 83.04 76 | 89.26 85 | 72.99 62 | 80.75 136 | 55.58 194 | 95.47 10 | 91.35 11 |
|
pmmvs6 | | | 71.82 149 | 73.66 120 | 66.31 233 | 75.94 193 | 42.01 275 | 66.99 239 | 72.53 217 | 63.45 103 | 76.43 169 | 92.78 10 | 72.95 63 | 69.69 270 | 51.41 222 | 90.46 122 | 87.22 55 |
|
DeepC-MVS | | 72.44 4 | 81.00 44 | 80.83 55 | 81.50 26 | 86.70 48 | 70.03 68 | 82.06 56 | 87.00 16 | 59.89 129 | 80.91 104 | 90.53 51 | 72.19 64 | 88.56 1 | 73.67 54 | 94.52 34 | 85.92 73 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
canonicalmvs | | | 72.29 146 | 73.38 125 | 69.04 195 | 74.23 219 | 47.37 231 | 73.93 149 | 83.18 83 | 54.36 188 | 76.61 163 | 81.64 211 | 72.03 65 | 75.34 220 | 57.12 176 | 87.28 173 | 84.40 113 |
|
SMA-MVS |  | | 82.12 32 | 82.68 41 | 80.43 42 | 88.90 30 | 69.52 70 | 85.12 28 | 84.76 49 | 63.53 101 | 84.23 66 | 91.47 29 | 72.02 66 | 87.16 7 | 79.74 10 | 94.36 45 | 84.61 103 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CPTT-MVS | | | 81.51 38 | 81.76 46 | 80.76 40 | 89.20 24 | 78.75 12 | 86.48 20 | 82.03 98 | 68.80 53 | 80.92 103 | 88.52 101 | 72.00 67 | 82.39 104 | 74.80 44 | 93.04 71 | 81.14 182 |
|
ETH3D cwj APD-0.16 | | | 78.38 73 | 78.72 71 | 77.38 80 | 80.09 138 | 66.16 97 | 79.08 85 | 86.13 25 | 57.55 152 | 80.93 102 | 87.76 116 | 71.98 68 | 82.73 100 | 72.11 68 | 92.83 75 | 83.25 140 |
|
ETH3D-3000-0.1 | | | 79.14 62 | 79.80 62 | 77.16 85 | 80.67 133 | 64.57 109 | 80.26 71 | 87.60 11 | 60.74 122 | 82.47 85 | 88.03 113 | 71.73 69 | 81.81 113 | 73.12 56 | 93.61 63 | 85.09 86 |
|
DP-MVS | | | 78.44 72 | 79.29 66 | 75.90 97 | 81.86 121 | 65.33 102 | 79.05 86 | 84.63 57 | 74.83 18 | 80.41 109 | 86.27 148 | 71.68 70 | 83.45 85 | 62.45 138 | 92.40 83 | 78.92 219 |
|
nrg030 | | | 74.87 105 | 75.99 93 | 71.52 162 | 74.90 205 | 49.88 208 | 74.10 148 | 82.58 93 | 54.55 186 | 83.50 74 | 89.21 87 | 71.51 71 | 75.74 216 | 61.24 144 | 92.34 84 | 88.94 36 |
|
OMC-MVS | | | 79.41 60 | 78.79 69 | 81.28 34 | 80.62 134 | 70.71 62 | 80.91 63 | 84.76 49 | 62.54 110 | 81.77 90 | 86.65 138 | 71.46 72 | 83.53 83 | 67.95 94 | 92.44 82 | 89.60 23 |
|
anonymousdsp | | | 78.60 67 | 77.80 79 | 81.00 37 | 78.01 166 | 74.34 36 | 80.09 74 | 76.12 186 | 50.51 235 | 89.19 9 | 90.88 39 | 71.45 73 | 77.78 193 | 73.38 55 | 90.60 121 | 90.90 16 |
|
LTVRE_ROB | | 75.46 1 | 84.22 8 | 84.98 9 | 81.94 23 | 84.82 75 | 75.40 29 | 91.60 1 | 87.80 7 | 73.52 23 | 88.90 10 | 93.06 6 | 71.39 74 | 81.53 117 | 81.53 3 | 92.15 87 | 88.91 37 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
RPSCF | | | 75.76 89 | 74.37 108 | 79.93 46 | 74.81 207 | 77.53 19 | 77.53 105 | 79.30 145 | 59.44 132 | 78.88 124 | 89.80 77 | 71.26 75 | 73.09 238 | 57.45 174 | 80.89 252 | 89.17 30 |
|
MVS_111021_HR | | | 72.98 134 | 72.97 136 | 72.99 138 | 80.82 131 | 65.47 101 | 68.81 210 | 72.77 214 | 57.67 149 | 75.76 174 | 82.38 202 | 71.01 76 | 77.17 199 | 61.38 143 | 86.15 186 | 76.32 244 |
|
AdaColmap |  | | 74.22 110 | 74.56 104 | 73.20 133 | 81.95 119 | 60.97 135 | 79.43 79 | 80.90 121 | 65.57 76 | 72.54 216 | 81.76 209 | 70.98 77 | 85.26 51 | 47.88 251 | 90.00 131 | 73.37 266 |
|
GeoE | | | 73.14 125 | 73.77 118 | 71.26 165 | 78.09 164 | 52.64 192 | 74.32 145 | 79.56 143 | 56.32 165 | 76.35 171 | 83.36 191 | 70.76 78 | 77.96 189 | 63.32 133 | 81.84 239 | 83.18 143 |
|
Regformer-2 | | | 75.32 94 | 74.47 106 | 77.88 74 | 74.22 220 | 66.65 93 | 72.77 155 | 77.54 173 | 68.47 58 | 80.44 108 | 72.08 305 | 70.60 79 | 80.97 130 | 70.08 77 | 84.02 218 | 86.01 71 |
|
AllTest | | | 77.66 76 | 77.43 81 | 78.35 69 | 79.19 151 | 70.81 59 | 78.60 90 | 88.64 2 | 65.37 80 | 80.09 113 | 88.17 109 | 70.33 80 | 78.43 176 | 55.60 191 | 90.90 114 | 85.81 74 |
|
TestCases | | | | | 78.35 69 | 79.19 151 | 70.81 59 | | 88.64 2 | 65.37 80 | 80.09 113 | 88.17 109 | 70.33 80 | 78.43 176 | 55.60 191 | 90.90 114 | 85.81 74 |
|
ITE_SJBPF | | | | | 80.35 44 | 76.94 180 | 73.60 41 | | 80.48 127 | 66.87 64 | 83.64 73 | 86.18 151 | 70.25 82 | 79.90 152 | 61.12 147 | 88.95 150 | 87.56 52 |
|
CDPH-MVS | | | 77.33 79 | 77.06 86 | 78.14 72 | 84.21 87 | 63.98 115 | 76.07 123 | 83.45 81 | 54.20 191 | 77.68 143 | 87.18 117 | 69.98 83 | 85.37 48 | 68.01 91 | 92.72 80 | 85.08 88 |
|
Effi-MVS+ | | | 72.10 147 | 72.28 143 | 71.58 160 | 74.21 223 | 50.33 201 | 74.72 141 | 82.73 90 | 62.62 109 | 70.77 240 | 76.83 265 | 69.96 84 | 80.97 130 | 60.20 153 | 78.43 277 | 83.45 135 |
|
UA-Net | | | 81.56 37 | 82.28 43 | 79.40 54 | 88.91 29 | 69.16 77 | 84.67 33 | 80.01 137 | 75.34 16 | 79.80 115 | 94.91 2 | 69.79 85 | 80.25 145 | 72.63 60 | 94.46 36 | 88.78 41 |
|
CLD-MVS | | | 72.88 136 | 72.36 142 | 74.43 112 | 77.03 178 | 54.30 180 | 68.77 213 | 83.43 82 | 52.12 215 | 76.79 160 | 74.44 286 | 69.54 86 | 83.91 75 | 55.88 189 | 93.25 70 | 85.09 86 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Regformer-1 | | | 74.28 109 | 73.63 121 | 76.21 95 | 74.22 220 | 64.12 114 | 72.77 155 | 75.46 193 | 66.86 65 | 79.27 120 | 72.08 305 | 69.29 87 | 78.74 167 | 68.73 83 | 84.02 218 | 85.77 79 |
|
LS3D | | | 80.99 45 | 80.85 54 | 81.41 30 | 78.37 160 | 71.37 54 | 87.45 6 | 85.87 30 | 77.48 12 | 81.98 88 | 89.95 75 | 69.14 88 | 85.26 51 | 66.15 106 | 91.24 102 | 87.61 51 |
|
XVG-ACMP-BASELINE | | | 80.54 48 | 81.06 52 | 78.98 59 | 87.01 41 | 72.91 46 | 80.23 73 | 85.56 31 | 66.56 70 | 85.64 43 | 89.57 80 | 69.12 89 | 80.55 139 | 72.51 62 | 93.37 67 | 83.48 132 |
|
Regformer-4 | | | 74.64 107 | 73.67 119 | 77.55 76 | 74.74 209 | 64.49 111 | 72.91 153 | 75.42 194 | 67.45 60 | 80.24 112 | 72.07 307 | 68.98 90 | 80.19 149 | 70.29 75 | 80.91 250 | 87.98 46 |
|
MVS_111021_LR | | | 72.10 147 | 71.82 149 | 72.95 140 | 79.53 144 | 73.90 39 | 70.45 189 | 66.64 261 | 56.87 157 | 76.81 159 | 81.76 209 | 68.78 91 | 71.76 256 | 61.81 139 | 83.74 222 | 73.18 268 |
|
Fast-Effi-MVS+ | | | 68.81 185 | 68.30 191 | 70.35 174 | 74.66 214 | 48.61 214 | 66.06 249 | 78.32 162 | 50.62 234 | 71.48 234 | 75.54 273 | 68.75 92 | 79.59 156 | 50.55 230 | 78.73 274 | 82.86 152 |
|
ETH3 D test6400 | | | 75.73 90 | 76.00 92 | 74.92 107 | 81.75 122 | 56.93 165 | 78.31 94 | 84.60 59 | 52.83 208 | 77.15 147 | 85.14 170 | 68.59 93 | 84.03 74 | 65.44 113 | 90.20 125 | 83.82 124 |
|
DeepPCF-MVS | | 71.07 5 | 78.48 71 | 77.14 85 | 82.52 19 | 84.39 86 | 77.04 24 | 76.35 118 | 84.05 74 | 56.66 161 | 80.27 111 | 85.31 168 | 68.56 94 | 87.03 10 | 67.39 100 | 91.26 101 | 83.50 131 |
|
CP-MVSNet | | | 79.48 59 | 81.65 49 | 72.98 139 | 89.66 13 | 39.06 296 | 76.76 114 | 80.46 128 | 78.91 7 | 90.32 6 | 91.70 24 | 68.49 95 | 84.89 59 | 63.40 132 | 95.12 19 | 95.01 4 |
|
LCM-MVSNet-Re | | | 69.10 182 | 71.57 155 | 61.70 269 | 70.37 264 | 34.30 332 | 61.45 293 | 79.62 139 | 56.81 158 | 89.59 7 | 88.16 111 | 68.44 96 | 72.94 239 | 42.30 278 | 87.33 171 | 77.85 236 |
|
CNVR-MVS | | | 78.49 70 | 78.59 73 | 78.16 71 | 85.86 64 | 67.40 87 | 78.12 101 | 81.50 105 | 63.92 96 | 77.51 144 | 86.56 142 | 68.43 97 | 84.82 61 | 73.83 52 | 91.61 94 | 82.26 169 |
|
segment_acmp | | | | | | | | | | | | | 68.30 98 | | | | |
|
cdsmvs_eth3d_5k | | | 17.71 335 | 23.62 337 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 70.17 246 | 0.00 369 | 0.00 370 | 74.25 290 | 68.16 99 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
WR-MVS_H | | | 80.22 55 | 82.17 44 | 74.39 113 | 89.46 15 | 42.69 270 | 78.24 98 | 82.24 95 | 78.21 9 | 89.57 8 | 92.10 18 | 68.05 100 | 85.59 44 | 66.04 108 | 95.62 9 | 94.88 5 |
|
test_djsdf | | | 78.88 65 | 78.27 75 | 80.70 41 | 81.42 126 | 71.24 56 | 83.98 36 | 75.72 190 | 52.27 213 | 87.37 26 | 92.25 16 | 68.04 101 | 80.56 137 | 72.28 65 | 91.15 105 | 90.32 20 |
|
v7n | | | 79.37 61 | 80.41 57 | 76.28 93 | 78.67 159 | 55.81 171 | 79.22 84 | 82.51 94 | 70.72 44 | 87.54 21 | 92.44 14 | 68.00 102 | 81.34 118 | 72.84 58 | 91.72 89 | 91.69 10 |
|
test_prior3 | | | 76.71 84 | 77.19 83 | 75.27 104 | 82.15 116 | 59.85 147 | 75.57 127 | 84.33 64 | 58.92 137 | 76.53 166 | 86.78 129 | 67.83 103 | 83.39 87 | 69.81 79 | 92.76 78 | 82.58 160 |
|
test_prior2 | | | | | | | | 75.57 127 | | 58.92 137 | 76.53 166 | 86.78 129 | 67.83 103 | | 69.81 79 | 92.76 78 | |
|
DROMVSNet | | | 75.22 97 | 75.51 98 | 74.34 115 | 75.38 197 | 53.32 189 | 78.27 96 | 87.07 15 | 60.17 126 | 72.14 223 | 82.58 199 | 67.65 105 | 84.67 64 | 67.83 96 | 88.49 153 | 85.04 90 |
|
NCCC | | | 78.25 74 | 78.04 78 | 78.89 61 | 85.61 65 | 69.45 71 | 79.80 78 | 80.99 120 | 65.77 74 | 75.55 177 | 86.25 150 | 67.42 106 | 85.42 47 | 70.10 76 | 90.88 116 | 81.81 175 |
|
baseline | | | 73.10 126 | 73.96 114 | 70.51 172 | 71.46 252 | 46.39 241 | 72.08 161 | 84.40 63 | 55.95 168 | 76.62 162 | 86.46 145 | 67.20 107 | 78.03 188 | 64.22 121 | 87.27 174 | 87.11 59 |
|
casdiffmvs | | | 73.06 129 | 73.84 115 | 70.72 168 | 71.32 253 | 46.71 237 | 70.93 183 | 84.26 68 | 55.62 171 | 77.46 145 | 87.10 118 | 67.09 108 | 77.81 191 | 63.95 123 | 86.83 180 | 87.64 50 |
|
Regformer-3 | | | 72.86 137 | 72.28 143 | 74.62 109 | 74.74 209 | 60.18 144 | 72.91 153 | 71.76 222 | 64.74 89 | 78.42 130 | 72.07 307 | 67.00 109 | 76.28 211 | 67.97 93 | 80.91 250 | 87.39 53 |
|
TAPA-MVS | | 65.27 12 | 75.16 98 | 74.29 110 | 77.77 75 | 74.86 206 | 68.08 82 | 77.89 102 | 84.04 75 | 55.15 175 | 76.19 173 | 83.39 187 | 66.91 110 | 80.11 150 | 60.04 158 | 90.14 129 | 85.13 85 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TEST9 | | | | | | 85.47 66 | 69.32 75 | 76.42 116 | 78.69 155 | 53.73 200 | 76.97 150 | 86.74 132 | 66.84 111 | 81.10 124 | | | |
|
OPU-MVS | | | | | 78.65 64 | 83.44 98 | 66.85 91 | 83.62 42 | | | | 86.12 155 | 66.82 112 | 86.01 29 | 61.72 141 | 89.79 137 | 83.08 145 |
|
XVG-OURS | | | 79.51 58 | 79.82 61 | 78.58 65 | 86.11 60 | 74.96 32 | 76.33 120 | 84.95 46 | 66.89 63 | 82.75 82 | 88.99 96 | 66.82 112 | 78.37 179 | 74.80 44 | 90.76 119 | 82.40 165 |
|
train_agg | | | 76.38 85 | 76.55 87 | 75.86 98 | 85.47 66 | 69.32 75 | 76.42 116 | 78.69 155 | 54.00 195 | 76.97 150 | 86.74 132 | 66.60 114 | 81.10 124 | 72.50 63 | 91.56 95 | 77.15 239 |
|
test_8 | | | | | | 85.09 72 | 67.89 84 | 76.26 121 | 78.66 157 | 54.00 195 | 76.89 155 | 86.72 134 | 66.60 114 | 80.89 135 | | | |
|
agg_prior1 | | | 75.89 87 | 76.41 88 | 74.31 116 | 84.44 84 | 66.02 98 | 76.12 122 | 78.62 158 | 54.40 187 | 76.95 152 | 86.85 126 | 66.44 116 | 80.34 142 | 72.45 64 | 91.42 98 | 76.57 243 |
|
Anonymous20231211 | | | 75.54 92 | 77.19 83 | 70.59 170 | 77.67 173 | 45.70 248 | 74.73 140 | 80.19 133 | 68.80 53 | 82.95 78 | 92.91 8 | 66.26 117 | 76.76 207 | 58.41 170 | 92.77 77 | 89.30 26 |
|
EI-MVSNet-Vis-set | | | 72.78 138 | 71.87 147 | 75.54 101 | 74.77 208 | 59.02 155 | 72.24 159 | 71.56 226 | 63.92 96 | 78.59 126 | 71.59 313 | 66.22 118 | 78.60 169 | 67.58 97 | 80.32 258 | 89.00 34 |
|
EI-MVSNet-UG-set | | | 72.63 141 | 71.68 151 | 75.47 102 | 74.67 212 | 58.64 160 | 72.02 162 | 71.50 227 | 63.53 101 | 78.58 128 | 71.39 316 | 65.98 119 | 78.53 171 | 67.30 103 | 80.18 260 | 89.23 28 |
|
Anonymous20240529 | | | 72.56 142 | 73.79 117 | 68.86 202 | 76.89 183 | 45.21 250 | 68.80 212 | 77.25 179 | 67.16 62 | 76.89 155 | 90.44 54 | 65.95 120 | 74.19 233 | 50.75 227 | 90.00 131 | 87.18 58 |
|
ETV-MVS | | | 72.72 139 | 72.16 146 | 74.38 114 | 76.90 182 | 55.95 169 | 73.34 151 | 84.67 54 | 62.04 113 | 72.19 222 | 70.81 317 | 65.90 121 | 85.24 53 | 58.64 167 | 84.96 204 | 81.95 173 |
|
TransMVSNet (Re) | | | 69.62 170 | 71.63 152 | 63.57 252 | 76.51 185 | 35.93 320 | 65.75 255 | 71.29 233 | 61.05 119 | 75.02 182 | 89.90 76 | 65.88 122 | 70.41 268 | 49.79 234 | 89.48 141 | 84.38 114 |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 80 | 76.33 90 | 79.70 50 | 83.90 92 | 67.94 83 | 80.06 76 | 83.75 77 | 56.73 160 | 74.88 185 | 85.32 167 | 65.54 123 | 87.79 2 | 65.61 112 | 91.14 106 | 83.35 138 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + MP. | | | 79.05 63 | 78.81 68 | 79.74 48 | 88.94 28 | 67.52 86 | 86.61 18 | 81.38 109 | 51.71 220 | 77.15 147 | 91.42 32 | 65.49 124 | 87.20 6 | 79.44 14 | 87.17 177 | 84.51 110 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HPM-MVS++ |  | | 79.89 56 | 79.80 62 | 80.18 45 | 89.02 26 | 78.44 13 | 83.49 46 | 80.18 134 | 64.71 90 | 78.11 135 | 88.39 103 | 65.46 125 | 83.14 92 | 77.64 32 | 91.20 103 | 78.94 218 |
|
Fast-Effi-MVS+-dtu | | | 70.00 165 | 68.74 187 | 73.77 123 | 73.47 229 | 64.53 110 | 71.36 175 | 78.14 166 | 55.81 170 | 68.84 259 | 74.71 282 | 65.36 126 | 75.75 215 | 52.00 218 | 79.00 271 | 81.03 184 |
|
MCST-MVS | | | 73.42 120 | 73.34 127 | 73.63 126 | 81.28 128 | 59.17 153 | 74.80 138 | 83.13 85 | 45.50 271 | 72.84 211 | 83.78 184 | 65.15 127 | 80.99 128 | 64.54 118 | 89.09 149 | 80.73 196 |
|
PCF-MVS | | 63.80 13 | 72.70 140 | 71.69 150 | 75.72 99 | 78.10 163 | 60.01 146 | 73.04 152 | 81.50 105 | 45.34 275 | 79.66 116 | 84.35 177 | 65.15 127 | 82.65 101 | 48.70 243 | 89.38 143 | 84.50 111 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test12 | | | | | 76.51 89 | 82.28 114 | 60.94 136 | | 81.64 104 | | 73.60 201 | | 64.88 129 | 85.19 56 | | 90.42 123 | 83.38 136 |
|
Effi-MVS+-dtu | | | 75.43 93 | 72.28 143 | 84.91 2 | 77.05 176 | 83.58 1 | 78.47 92 | 77.70 171 | 57.68 147 | 74.89 184 | 78.13 255 | 64.80 130 | 84.26 72 | 56.46 183 | 85.32 197 | 86.88 61 |
|
mvs-test1 | | | 73.81 114 | 70.69 165 | 83.18 5 | 77.05 176 | 81.39 3 | 75.39 129 | 77.70 171 | 57.68 147 | 71.19 237 | 74.72 281 | 64.80 130 | 83.66 79 | 56.46 183 | 81.19 248 | 84.50 111 |
|
VPA-MVSNet | | | 68.71 187 | 70.37 167 | 63.72 251 | 76.13 190 | 38.06 306 | 64.10 272 | 71.48 228 | 56.60 164 | 74.10 197 | 88.31 106 | 64.78 132 | 69.72 269 | 47.69 253 | 90.15 128 | 83.37 137 |
|
F-COLMAP | | | 75.29 95 | 73.99 113 | 79.18 56 | 81.73 123 | 71.90 49 | 81.86 59 | 82.98 86 | 59.86 130 | 72.27 219 | 84.00 181 | 64.56 133 | 83.07 95 | 51.48 221 | 87.19 176 | 82.56 162 |
|
DP-MVS Recon | | | 73.57 118 | 72.69 138 | 76.23 94 | 82.85 106 | 63.39 118 | 74.32 145 | 82.96 87 | 57.75 146 | 70.35 244 | 81.98 205 | 64.34 134 | 84.41 70 | 49.69 235 | 89.95 133 | 80.89 189 |
|
114514_t | | | 73.40 121 | 73.33 128 | 73.64 125 | 84.15 89 | 57.11 164 | 78.20 99 | 80.02 136 | 43.76 285 | 72.55 215 | 86.07 158 | 64.00 135 | 83.35 89 | 60.14 156 | 91.03 109 | 80.45 201 |
|
pm-mvs1 | | | 68.40 190 | 69.85 171 | 64.04 249 | 73.10 238 | 39.94 291 | 64.61 268 | 70.50 243 | 55.52 172 | 73.97 199 | 89.33 83 | 63.91 136 | 68.38 278 | 49.68 236 | 88.02 158 | 83.81 126 |
|
UniMVSNet_NR-MVSNet | | | 74.90 104 | 75.65 95 | 72.64 150 | 83.04 102 | 45.79 244 | 69.26 203 | 78.81 152 | 66.66 69 | 81.74 92 | 86.88 125 | 63.26 137 | 81.07 126 | 56.21 186 | 94.98 21 | 91.05 13 |
|
MSLP-MVS++ | | | 74.48 108 | 75.78 94 | 70.59 170 | 84.66 78 | 62.40 123 | 78.65 89 | 84.24 69 | 60.55 124 | 77.71 142 | 81.98 205 | 63.12 138 | 77.64 195 | 62.95 135 | 88.14 155 | 71.73 283 |
|
UniMVSNet (Re) | | | 75.00 101 | 75.48 99 | 73.56 127 | 83.14 100 | 47.92 223 | 70.41 190 | 81.04 119 | 63.67 99 | 79.54 117 | 86.37 147 | 62.83 139 | 81.82 112 | 57.10 177 | 95.25 15 | 90.94 15 |
|
MIMVSNet1 | | | 66.57 211 | 69.23 177 | 58.59 292 | 81.26 129 | 37.73 309 | 64.06 273 | 57.62 302 | 57.02 155 | 78.40 131 | 90.75 44 | 62.65 140 | 58.10 322 | 41.77 283 | 89.58 140 | 79.95 207 |
|
xiu_mvs_v2_base | | | 64.43 230 | 63.96 231 | 65.85 237 | 77.72 172 | 51.32 197 | 63.63 279 | 72.31 220 | 45.06 279 | 61.70 298 | 69.66 327 | 62.56 141 | 73.93 235 | 49.06 240 | 73.91 305 | 72.31 277 |
|
Test By Simon | | | | | | | | | | | | | 62.56 141 | | | | |
|
Vis-MVSNet |  | | 74.85 106 | 74.56 104 | 75.72 99 | 81.63 125 | 64.64 108 | 76.35 118 | 79.06 148 | 62.85 108 | 73.33 206 | 88.41 102 | 62.54 143 | 79.59 156 | 63.94 125 | 82.92 228 | 82.94 149 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
NR-MVSNet | | | 73.62 117 | 74.05 112 | 72.33 156 | 83.50 95 | 43.71 259 | 65.65 256 | 77.32 177 | 64.32 93 | 75.59 176 | 87.08 119 | 62.45 144 | 81.34 118 | 54.90 197 | 95.63 8 | 91.93 8 |
|
pcd_1.5k_mvsjas | | | 5.20 338 | 6.93 341 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 62.39 145 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
PS-MVSNAJss | | | 77.54 77 | 77.35 82 | 78.13 73 | 84.88 74 | 66.37 95 | 78.55 91 | 79.59 142 | 53.48 202 | 86.29 34 | 92.43 15 | 62.39 145 | 80.25 145 | 67.90 95 | 90.61 120 | 87.77 48 |
|
PS-MVSNAJ | | | 64.27 233 | 63.73 234 | 65.90 236 | 77.82 170 | 51.42 196 | 63.33 282 | 72.33 219 | 45.09 278 | 61.60 299 | 68.04 338 | 62.39 145 | 73.95 234 | 49.07 239 | 73.87 306 | 72.34 276 |
|
PHI-MVS | | | 74.92 102 | 74.36 109 | 76.61 87 | 76.40 186 | 62.32 125 | 80.38 68 | 83.15 84 | 54.16 193 | 73.23 208 | 80.75 218 | 62.19 148 | 83.86 76 | 68.02 90 | 90.92 113 | 83.65 129 |
|
MVS_Test | | | 69.84 168 | 70.71 164 | 67.24 222 | 67.49 287 | 43.25 266 | 69.87 194 | 81.22 114 | 52.69 210 | 71.57 231 | 86.68 135 | 62.09 149 | 74.51 230 | 66.05 107 | 78.74 273 | 83.96 122 |
|
CSCG | | | 74.12 111 | 74.39 107 | 73.33 130 | 79.35 146 | 61.66 130 | 77.45 106 | 81.98 99 | 62.47 112 | 79.06 123 | 80.19 227 | 61.83 150 | 78.79 166 | 59.83 160 | 87.35 170 | 79.54 212 |
|
DU-MVS | | | 74.91 103 | 75.57 97 | 72.93 141 | 83.50 95 | 45.79 244 | 69.47 200 | 80.14 135 | 65.22 83 | 81.74 92 | 87.08 119 | 61.82 151 | 81.07 126 | 56.21 186 | 94.98 21 | 91.93 8 |
|
Baseline_NR-MVSNet | | | 70.62 159 | 73.19 129 | 62.92 262 | 76.97 179 | 34.44 330 | 68.84 208 | 70.88 241 | 60.25 125 | 79.50 118 | 90.53 51 | 61.82 151 | 69.11 274 | 54.67 200 | 95.27 14 | 85.22 82 |
|
原ACMM1 | | | | | 73.90 121 | 85.90 61 | 65.15 106 | | 81.67 103 | 50.97 230 | 74.25 195 | 86.16 153 | 61.60 153 | 83.54 82 | 56.75 178 | 91.08 108 | 73.00 269 |
|
PAPR | | | 69.20 179 | 68.66 189 | 70.82 167 | 75.15 202 | 47.77 225 | 75.31 130 | 81.11 115 | 49.62 245 | 66.33 273 | 79.27 239 | 61.53 154 | 82.96 96 | 48.12 249 | 81.50 246 | 81.74 176 |
|
API-MVS | | | 70.97 156 | 71.51 156 | 69.37 189 | 75.20 200 | 55.94 170 | 80.99 62 | 76.84 181 | 62.48 111 | 71.24 235 | 77.51 261 | 61.51 155 | 80.96 134 | 52.04 217 | 85.76 191 | 71.22 287 |
|
xiu_mvs_v1_base_debu | | | 67.87 197 | 67.07 209 | 70.26 175 | 79.13 153 | 61.90 127 | 67.34 232 | 71.25 234 | 47.98 257 | 67.70 265 | 74.19 292 | 61.31 156 | 72.62 243 | 56.51 180 | 78.26 279 | 76.27 245 |
|
xiu_mvs_v1_base | | | 67.87 197 | 67.07 209 | 70.26 175 | 79.13 153 | 61.90 127 | 67.34 232 | 71.25 234 | 47.98 257 | 67.70 265 | 74.19 292 | 61.31 156 | 72.62 243 | 56.51 180 | 78.26 279 | 76.27 245 |
|
xiu_mvs_v1_base_debi | | | 67.87 197 | 67.07 209 | 70.26 175 | 79.13 153 | 61.90 127 | 67.34 232 | 71.25 234 | 47.98 257 | 67.70 265 | 74.19 292 | 61.31 156 | 72.62 243 | 56.51 180 | 78.26 279 | 76.27 245 |
|
CNLPA | | | 73.44 119 | 73.03 134 | 74.66 108 | 78.27 161 | 75.29 30 | 75.99 124 | 78.49 160 | 65.39 79 | 75.67 175 | 83.22 196 | 61.23 159 | 66.77 292 | 53.70 211 | 85.33 196 | 81.92 174 |
|
MSDG | | | 67.47 204 | 67.48 205 | 67.46 220 | 70.70 258 | 54.69 178 | 66.90 241 | 78.17 165 | 60.88 121 | 70.41 243 | 74.76 279 | 61.22 160 | 73.18 237 | 47.38 254 | 76.87 285 | 74.49 258 |
|
CANet | | | 73.00 132 | 71.84 148 | 76.48 90 | 75.82 194 | 61.28 131 | 74.81 136 | 80.37 131 | 63.17 106 | 62.43 297 | 80.50 222 | 61.10 161 | 85.16 57 | 64.00 122 | 84.34 214 | 83.01 148 |
|
EG-PatchMatch MVS | | | 70.70 158 | 70.88 162 | 70.16 178 | 82.64 110 | 58.80 157 | 71.48 172 | 73.64 207 | 54.98 176 | 76.55 164 | 81.77 208 | 61.10 161 | 78.94 163 | 54.87 198 | 80.84 253 | 72.74 273 |
|
HQP_MVS | | | 78.77 66 | 78.78 70 | 78.72 62 | 85.18 69 | 65.18 104 | 82.74 51 | 85.49 32 | 65.45 77 | 78.23 132 | 89.11 92 | 60.83 163 | 86.15 26 | 71.09 71 | 90.94 110 | 84.82 94 |
|
plane_prior6 | | | | | | 84.18 88 | 65.31 103 | | | | | | 60.83 163 | | | | |
|
FMVSNet1 | | | 71.06 154 | 72.48 140 | 66.81 227 | 77.65 174 | 40.68 285 | 71.96 164 | 73.03 209 | 61.14 118 | 79.45 119 | 90.36 64 | 60.44 165 | 75.20 222 | 50.20 232 | 88.05 157 | 84.54 106 |
|
EIA-MVS | | | 68.59 189 | 67.16 208 | 72.90 142 | 75.18 201 | 55.64 173 | 69.39 201 | 81.29 110 | 52.44 211 | 64.53 282 | 70.69 318 | 60.33 166 | 82.30 107 | 54.27 207 | 76.31 288 | 80.75 195 |
|
BH-untuned | | | 69.39 175 | 69.46 173 | 69.18 193 | 77.96 167 | 56.88 166 | 68.47 220 | 77.53 174 | 56.77 159 | 77.79 140 | 79.63 234 | 60.30 167 | 80.20 148 | 46.04 262 | 80.65 255 | 70.47 292 |
|
PAPM_NR | | | 73.91 112 | 74.16 111 | 73.16 134 | 81.90 120 | 53.50 186 | 81.28 61 | 81.40 108 | 66.17 72 | 73.30 207 | 83.31 192 | 59.96 168 | 83.10 94 | 58.45 169 | 81.66 244 | 82.87 151 |
|
VDDNet | | | 71.60 151 | 73.13 131 | 67.02 226 | 86.29 51 | 41.11 280 | 69.97 192 | 66.50 262 | 68.72 55 | 74.74 187 | 91.70 24 | 59.90 169 | 75.81 214 | 48.58 245 | 91.72 89 | 84.15 120 |
|
VDD-MVS | | | 70.81 157 | 71.44 157 | 68.91 201 | 79.07 156 | 46.51 238 | 67.82 226 | 70.83 242 | 61.23 117 | 74.07 198 | 88.69 100 | 59.86 170 | 75.62 217 | 51.11 224 | 90.28 124 | 84.61 103 |
|
ANet_high | | | 67.08 207 | 69.94 169 | 58.51 293 | 57.55 345 | 27.09 354 | 58.43 311 | 76.80 182 | 63.56 100 | 82.40 86 | 91.93 20 | 59.82 171 | 64.98 300 | 50.10 233 | 88.86 151 | 83.46 134 |
|
3Dnovator+ | | 73.19 2 | 81.08 43 | 80.48 56 | 82.87 9 | 81.41 127 | 72.03 48 | 84.38 35 | 86.23 24 | 77.28 15 | 80.65 106 | 90.18 71 | 59.80 172 | 87.58 4 | 73.06 57 | 91.34 100 | 89.01 33 |
|
PLC |  | 62.01 16 | 71.79 150 | 70.28 168 | 76.33 92 | 80.31 137 | 68.63 80 | 78.18 100 | 81.24 112 | 54.57 185 | 67.09 271 | 80.63 220 | 59.44 173 | 81.74 116 | 46.91 258 | 84.17 215 | 78.63 221 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CS-MVS | | | 69.29 177 | 69.70 172 | 68.07 213 | 70.59 259 | 42.36 274 | 69.70 198 | 84.56 60 | 53.13 204 | 67.96 263 | 76.74 266 | 59.41 174 | 83.56 81 | 60.33 152 | 84.84 206 | 78.28 228 |
|
TinyColmap | | | 67.98 196 | 69.28 175 | 64.08 247 | 67.98 282 | 46.82 235 | 70.04 191 | 75.26 197 | 53.05 205 | 77.36 146 | 86.79 128 | 59.39 175 | 72.59 246 | 45.64 264 | 88.01 159 | 72.83 271 |
|
FC-MVSNet-test | | | 73.32 123 | 74.78 103 | 68.93 200 | 79.21 150 | 36.57 314 | 71.82 170 | 79.54 144 | 57.63 151 | 82.57 84 | 90.38 63 | 59.38 176 | 78.99 162 | 57.91 173 | 94.56 33 | 91.23 12 |
|
V42 | | | 71.06 154 | 70.83 163 | 71.72 159 | 67.25 288 | 47.14 234 | 65.94 250 | 80.35 132 | 51.35 225 | 83.40 75 | 83.23 194 | 59.25 177 | 78.80 165 | 65.91 109 | 80.81 254 | 89.23 28 |
|
CS-MVS-test | | | 69.16 181 | 69.05 179 | 69.48 188 | 72.07 248 | 46.22 242 | 69.71 197 | 84.69 53 | 52.43 212 | 65.28 279 | 74.51 284 | 59.18 178 | 83.41 86 | 59.11 165 | 84.48 212 | 78.80 220 |
|
BH-RMVSNet | | | 68.69 188 | 68.20 196 | 70.14 179 | 76.40 186 | 53.90 184 | 64.62 267 | 73.48 208 | 58.01 143 | 73.91 200 | 81.78 207 | 59.09 179 | 78.22 183 | 48.59 244 | 77.96 282 | 78.31 226 |
|
alignmvs | | | 70.54 160 | 71.00 161 | 69.15 194 | 73.50 228 | 48.04 222 | 69.85 195 | 79.62 139 | 53.94 198 | 76.54 165 | 82.00 204 | 59.00 180 | 74.68 228 | 57.32 175 | 87.21 175 | 84.72 98 |
|
DELS-MVS | | | 68.83 184 | 68.31 190 | 70.38 173 | 70.55 263 | 48.31 216 | 63.78 277 | 82.13 96 | 54.00 195 | 68.96 256 | 75.17 277 | 58.95 181 | 80.06 151 | 58.55 168 | 82.74 230 | 82.76 155 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
VPNet | | | 65.58 218 | 67.56 202 | 59.65 286 | 79.72 141 | 30.17 348 | 60.27 302 | 62.14 285 | 54.19 192 | 71.24 235 | 86.63 139 | 58.80 182 | 67.62 283 | 44.17 271 | 90.87 117 | 81.18 181 |
|
mvs_anonymous | | | 65.08 223 | 65.49 219 | 63.83 250 | 63.79 314 | 37.60 310 | 66.52 246 | 69.82 247 | 43.44 289 | 73.46 204 | 86.08 157 | 58.79 183 | 71.75 257 | 51.90 219 | 75.63 292 | 82.15 170 |
|
v10 | | | 75.69 91 | 76.20 91 | 74.16 118 | 74.44 218 | 48.69 212 | 75.84 126 | 82.93 88 | 59.02 136 | 85.92 39 | 89.17 90 | 58.56 184 | 82.74 99 | 70.73 73 | 89.14 147 | 91.05 13 |
|
diffmvs | | | 67.42 205 | 67.50 204 | 67.20 223 | 62.26 321 | 45.21 250 | 64.87 264 | 77.04 180 | 48.21 255 | 71.74 225 | 79.70 233 | 58.40 185 | 71.17 260 | 64.99 115 | 80.27 259 | 85.22 82 |
|
FIs | | | 72.56 142 | 73.80 116 | 68.84 203 | 78.74 158 | 37.74 308 | 71.02 181 | 79.83 138 | 56.12 166 | 80.88 105 | 89.45 82 | 58.18 186 | 78.28 182 | 56.63 179 | 93.36 68 | 90.51 19 |
|
EI-MVSNet | | | 69.61 171 | 69.01 182 | 71.41 164 | 73.94 225 | 49.90 205 | 71.31 177 | 71.32 231 | 58.22 141 | 75.40 180 | 70.44 319 | 58.16 187 | 75.85 212 | 62.51 136 | 79.81 264 | 88.48 43 |
|
IterMVS-LS | | | 73.01 131 | 73.12 132 | 72.66 149 | 73.79 227 | 49.90 205 | 71.63 171 | 78.44 161 | 58.22 141 | 80.51 107 | 86.63 139 | 58.15 188 | 79.62 154 | 62.51 136 | 88.20 154 | 88.48 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HQP2-MVS | | | | | | | | | | | | | 58.09 189 | | | | |
|
HQP-MVS | | | 75.24 96 | 75.01 101 | 75.94 96 | 82.37 111 | 58.80 157 | 77.32 107 | 84.12 72 | 59.08 133 | 71.58 228 | 85.96 160 | 58.09 189 | 85.30 50 | 67.38 101 | 89.16 144 | 83.73 128 |
|
v8 | | | 75.07 100 | 75.64 96 | 73.35 129 | 73.42 230 | 47.46 230 | 75.20 131 | 81.45 107 | 60.05 127 | 85.64 43 | 89.26 85 | 58.08 191 | 81.80 114 | 69.71 81 | 87.97 160 | 90.79 17 |
|
v1144 | | | 73.29 124 | 73.39 124 | 73.01 137 | 74.12 224 | 48.11 220 | 72.01 163 | 81.08 118 | 53.83 199 | 81.77 90 | 84.68 172 | 58.07 192 | 81.91 111 | 68.10 88 | 86.86 179 | 88.99 35 |
|
v144192 | | | 72.99 133 | 73.06 133 | 72.77 145 | 74.58 216 | 47.48 229 | 71.90 168 | 80.44 129 | 51.57 222 | 81.46 96 | 84.11 180 | 58.04 193 | 82.12 110 | 67.98 92 | 87.47 167 | 88.70 42 |
|
ab-mvs | | | 64.11 234 | 65.13 223 | 61.05 276 | 71.99 249 | 38.03 307 | 67.59 227 | 68.79 252 | 49.08 250 | 65.32 278 | 86.26 149 | 58.02 194 | 66.85 290 | 39.33 294 | 79.79 266 | 78.27 229 |
|
Gipuma |  | | 69.55 172 | 72.83 137 | 59.70 285 | 63.63 316 | 53.97 182 | 80.08 75 | 75.93 188 | 64.24 94 | 73.49 203 | 88.93 98 | 57.89 195 | 62.46 309 | 59.75 161 | 91.55 96 | 62.67 336 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
TSAR-MVS + GP. | | | 73.08 127 | 71.60 154 | 77.54 77 | 78.99 157 | 70.73 61 | 74.96 133 | 69.38 249 | 60.73 123 | 74.39 194 | 78.44 250 | 57.72 196 | 82.78 98 | 60.16 155 | 89.60 139 | 79.11 217 |
|
WR-MVS | | | 71.20 153 | 72.48 140 | 67.36 221 | 84.98 73 | 35.70 322 | 64.43 270 | 68.66 253 | 65.05 86 | 81.49 95 | 86.43 146 | 57.57 197 | 76.48 209 | 50.36 231 | 93.32 69 | 89.90 21 |
|
LF4IMVS | | | 67.50 202 | 67.31 207 | 68.08 212 | 58.86 340 | 61.93 126 | 71.43 173 | 75.90 189 | 44.67 280 | 72.42 218 | 80.20 226 | 57.16 198 | 70.44 266 | 58.99 166 | 86.12 187 | 71.88 281 |
|
OurMVSNet-221017-0 | | | 78.57 68 | 78.53 74 | 78.67 63 | 80.48 135 | 64.16 113 | 80.24 72 | 82.06 97 | 61.89 114 | 88.77 11 | 93.32 4 | 57.15 199 | 82.60 102 | 70.08 77 | 92.80 76 | 89.25 27 |
|
v1192 | | | 73.40 121 | 73.42 123 | 73.32 131 | 74.65 215 | 48.67 213 | 72.21 160 | 81.73 102 | 52.76 209 | 81.85 89 | 84.56 174 | 57.12 200 | 82.24 109 | 68.58 84 | 87.33 171 | 89.06 32 |
|
MSP-MVS | | | 80.49 49 | 79.67 64 | 82.96 7 | 89.70 12 | 77.46 22 | 87.16 10 | 85.10 42 | 64.94 87 | 81.05 100 | 88.38 104 | 57.10 201 | 87.10 8 | 79.75 8 | 83.87 220 | 84.31 116 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
tfpnnormal | | | 66.48 212 | 67.93 198 | 62.16 267 | 73.40 231 | 36.65 313 | 63.45 280 | 64.99 270 | 55.97 167 | 72.82 212 | 87.80 115 | 57.06 202 | 69.10 275 | 48.31 248 | 87.54 164 | 80.72 197 |
|
MAR-MVS | | | 67.72 200 | 66.16 215 | 72.40 154 | 74.45 217 | 64.99 107 | 74.87 134 | 77.50 175 | 48.67 252 | 65.78 277 | 68.58 337 | 57.01 203 | 77.79 192 | 46.68 260 | 81.92 237 | 74.42 259 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DIV-MVS_2432*1600 | | | 66.38 213 | 67.51 203 | 62.97 261 | 61.76 323 | 34.39 331 | 58.11 313 | 75.30 196 | 50.84 232 | 77.12 149 | 85.42 166 | 56.84 204 | 69.44 271 | 51.07 225 | 91.16 104 | 85.08 88 |
|
XXY-MVS | | | 55.19 290 | 57.40 282 | 48.56 322 | 64.45 311 | 34.84 329 | 51.54 332 | 53.59 321 | 38.99 313 | 63.79 290 | 79.43 236 | 56.59 205 | 45.57 339 | 36.92 314 | 71.29 316 | 65.25 325 |
|
v1921920 | | | 72.96 135 | 72.98 135 | 72.89 143 | 74.67 212 | 47.58 228 | 71.92 167 | 80.69 122 | 51.70 221 | 81.69 94 | 83.89 182 | 56.58 206 | 82.25 108 | 68.34 86 | 87.36 169 | 88.82 39 |
|
VNet | | | 64.01 236 | 65.15 222 | 60.57 280 | 73.28 233 | 35.61 323 | 57.60 315 | 67.08 259 | 54.61 184 | 66.76 272 | 83.37 189 | 56.28 207 | 66.87 288 | 42.19 279 | 85.20 199 | 79.23 216 |
|
v1240 | | | 73.06 129 | 73.14 130 | 72.84 144 | 74.74 209 | 47.27 233 | 71.88 169 | 81.11 115 | 51.80 219 | 82.28 87 | 84.21 178 | 56.22 208 | 82.34 106 | 68.82 82 | 87.17 177 | 88.91 37 |
|
MG-MVS | | | 70.47 161 | 71.34 158 | 67.85 215 | 79.26 148 | 40.42 289 | 74.67 143 | 75.15 199 | 58.41 140 | 68.74 260 | 88.14 112 | 56.08 209 | 83.69 78 | 59.90 159 | 81.71 243 | 79.43 214 |
|
test_part1 | | | 76.97 81 | 78.21 76 | 73.25 132 | 77.87 168 | 45.76 246 | 78.27 96 | 87.26 13 | 66.69 68 | 85.31 50 | 91.43 31 | 55.95 210 | 84.24 73 | 65.71 110 | 95.43 12 | 89.75 22 |
|
v2v482 | | | 72.55 144 | 72.58 139 | 72.43 153 | 72.92 242 | 46.72 236 | 71.41 174 | 79.13 147 | 55.27 173 | 81.17 99 | 85.25 169 | 55.41 211 | 81.13 123 | 67.25 104 | 85.46 192 | 89.43 25 |
|
3Dnovator | | 65.95 11 | 71.50 152 | 71.22 159 | 72.34 155 | 73.16 234 | 63.09 121 | 78.37 93 | 78.32 162 | 57.67 149 | 72.22 221 | 84.61 173 | 54.77 212 | 78.47 173 | 60.82 150 | 81.07 249 | 75.45 250 |
|
v148 | | | 69.38 176 | 69.39 174 | 69.36 190 | 69.14 274 | 44.56 253 | 68.83 209 | 72.70 215 | 54.79 180 | 78.59 126 | 84.12 179 | 54.69 213 | 76.74 208 | 59.40 163 | 82.20 234 | 86.79 62 |
|
旧先验1 | | | | | | 84.55 81 | 60.36 143 | | 63.69 278 | | | 87.05 122 | 54.65 214 | | | 83.34 225 | 69.66 300 |
|
cl_fuxian | | | 69.82 169 | 69.89 170 | 69.61 187 | 66.24 296 | 43.48 262 | 68.12 223 | 79.61 141 | 51.43 224 | 77.72 141 | 80.18 228 | 54.61 215 | 78.15 187 | 63.62 128 | 87.50 166 | 87.20 57 |
|
BH-w/o | | | 64.81 225 | 64.29 230 | 66.36 232 | 76.08 192 | 54.71 177 | 65.61 257 | 75.23 198 | 50.10 239 | 71.05 239 | 71.86 312 | 54.33 216 | 79.02 161 | 38.20 304 | 76.14 289 | 65.36 324 |
|
ambc | | | | | 70.10 181 | 77.74 171 | 50.21 203 | 74.28 147 | 77.93 170 | | 79.26 121 | 88.29 107 | 54.11 217 | 79.77 153 | 64.43 119 | 91.10 107 | 80.30 203 |
|
QAPM | | | 69.18 180 | 69.26 176 | 68.94 199 | 71.61 251 | 52.58 193 | 80.37 69 | 78.79 154 | 49.63 244 | 73.51 202 | 85.14 170 | 53.66 218 | 79.12 160 | 55.11 196 | 75.54 293 | 75.11 254 |
|
miper_ehance_all_eth | | | 68.36 191 | 68.16 197 | 68.98 197 | 65.14 307 | 43.34 264 | 67.07 238 | 78.92 151 | 49.11 249 | 76.21 172 | 77.72 258 | 53.48 219 | 77.92 190 | 61.16 146 | 84.59 209 | 85.68 80 |
|
IS-MVSNet | | | 75.10 99 | 75.42 100 | 74.15 119 | 79.23 149 | 48.05 221 | 79.43 79 | 78.04 167 | 70.09 49 | 79.17 122 | 88.02 114 | 53.04 220 | 83.60 80 | 58.05 172 | 93.76 62 | 90.79 17 |
|
1121 | | | 69.23 178 | 68.26 192 | 72.12 158 | 88.36 36 | 71.40 53 | 68.59 215 | 62.06 288 | 43.80 284 | 74.75 186 | 86.18 151 | 52.92 221 | 76.85 205 | 54.47 202 | 83.27 226 | 68.12 309 |
|
新几何1 | | | | | 69.99 183 | 88.37 35 | 71.34 55 | | 62.08 287 | 43.85 283 | 74.99 183 | 86.11 156 | 52.85 222 | 70.57 264 | 50.99 226 | 83.23 227 | 68.05 310 |
|
OpenMVS |  | 62.51 15 | 68.76 186 | 68.75 186 | 68.78 204 | 70.56 262 | 53.91 183 | 78.29 95 | 77.35 176 | 48.85 251 | 70.22 246 | 83.52 185 | 52.65 223 | 76.93 202 | 55.31 195 | 81.99 236 | 75.49 249 |
|
UGNet | | | 70.20 163 | 69.05 179 | 73.65 124 | 76.24 188 | 63.64 116 | 75.87 125 | 72.53 217 | 61.48 116 | 60.93 307 | 86.14 154 | 52.37 224 | 77.12 200 | 50.67 228 | 85.21 198 | 80.17 206 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous202405211 | | | 66.02 214 | 66.89 212 | 63.43 255 | 74.22 220 | 38.14 304 | 59.00 308 | 66.13 263 | 63.33 105 | 69.76 250 | 85.95 161 | 51.88 225 | 70.50 265 | 44.23 270 | 87.52 165 | 81.64 177 |
|
PVSNet_BlendedMVS | | | 65.38 219 | 64.30 229 | 68.61 205 | 69.81 267 | 49.36 209 | 65.60 258 | 78.96 149 | 45.50 271 | 59.98 310 | 78.61 248 | 51.82 226 | 78.20 184 | 44.30 268 | 84.11 216 | 78.27 229 |
|
PVSNet_Blended | | | 62.90 245 | 61.64 250 | 66.69 230 | 69.81 267 | 49.36 209 | 61.23 296 | 78.96 149 | 42.04 296 | 59.98 310 | 68.86 335 | 51.82 226 | 78.20 184 | 44.30 268 | 77.77 284 | 72.52 274 |
|
testgi | | | 54.00 297 | 56.86 285 | 45.45 330 | 58.20 343 | 25.81 358 | 49.05 335 | 49.50 336 | 45.43 274 | 67.84 264 | 81.17 215 | 51.81 228 | 43.20 351 | 29.30 345 | 79.41 269 | 67.34 314 |
|
EPNet | | | 69.10 182 | 67.32 206 | 74.46 110 | 68.33 278 | 61.27 132 | 77.56 104 | 63.57 279 | 60.95 120 | 56.62 323 | 82.75 197 | 51.53 229 | 81.24 121 | 54.36 206 | 90.20 125 | 80.88 190 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PVSNet_Blended_VisFu | | | 70.04 164 | 68.88 183 | 73.53 128 | 82.71 108 | 63.62 117 | 74.81 136 | 81.95 100 | 48.53 254 | 67.16 270 | 79.18 242 | 51.42 230 | 78.38 178 | 54.39 205 | 79.72 267 | 78.60 222 |
|
DPM-MVS | | | 69.98 166 | 69.22 178 | 72.26 157 | 82.69 109 | 58.82 156 | 70.53 187 | 81.23 113 | 47.79 261 | 64.16 286 | 80.21 225 | 51.32 231 | 83.12 93 | 60.14 156 | 84.95 205 | 74.83 256 |
|
TR-MVS | | | 64.59 226 | 63.54 236 | 67.73 219 | 75.75 196 | 50.83 199 | 63.39 281 | 70.29 245 | 49.33 246 | 71.55 232 | 74.55 283 | 50.94 232 | 78.46 174 | 40.43 290 | 75.69 291 | 73.89 263 |
|
CL-MVSNet_2432*1600 | | | 62.44 250 | 63.40 237 | 59.55 287 | 72.34 245 | 32.38 339 | 56.39 317 | 64.84 271 | 51.21 228 | 67.46 268 | 81.01 217 | 50.75 233 | 63.51 307 | 38.47 302 | 88.12 156 | 82.75 156 |
|
MVS | | | 60.62 263 | 59.97 263 | 62.58 264 | 68.13 280 | 47.28 232 | 68.59 215 | 73.96 206 | 32.19 343 | 59.94 312 | 68.86 335 | 50.48 234 | 77.64 195 | 41.85 282 | 75.74 290 | 62.83 334 |
|
SixPastTwentyTwo | | | 75.77 88 | 76.34 89 | 74.06 120 | 81.69 124 | 54.84 176 | 76.47 115 | 75.49 192 | 64.10 95 | 87.73 17 | 92.24 17 | 50.45 235 | 81.30 120 | 67.41 99 | 91.46 97 | 86.04 70 |
|
PatchMatch-RL | | | 58.68 276 | 57.72 279 | 61.57 270 | 76.21 189 | 73.59 42 | 61.83 291 | 49.00 338 | 47.30 265 | 61.08 303 | 68.97 332 | 50.16 236 | 59.01 319 | 36.06 321 | 68.84 330 | 52.10 349 |
|
eth_miper_zixun_eth | | | 69.42 174 | 68.73 188 | 71.50 163 | 67.99 281 | 46.42 239 | 67.58 228 | 78.81 152 | 50.72 233 | 78.13 134 | 80.34 224 | 50.15 237 | 80.34 142 | 60.18 154 | 84.65 207 | 87.74 49 |
|
miper_enhance_ethall | | | 65.86 215 | 65.05 228 | 68.28 211 | 61.62 325 | 42.62 271 | 64.74 265 | 77.97 168 | 42.52 294 | 73.42 205 | 72.79 302 | 49.66 238 | 77.68 194 | 58.12 171 | 84.59 209 | 84.54 106 |
|
K. test v3 | | | 73.67 116 | 73.61 122 | 73.87 122 | 79.78 140 | 55.62 174 | 74.69 142 | 62.04 290 | 66.16 73 | 84.76 58 | 93.23 5 | 49.47 239 | 80.97 130 | 65.66 111 | 86.67 183 | 85.02 91 |
|
EPP-MVSNet | | | 73.86 113 | 73.38 125 | 75.31 103 | 78.19 162 | 53.35 188 | 80.45 66 | 77.32 177 | 65.11 85 | 76.47 168 | 86.80 127 | 49.47 239 | 83.77 77 | 53.89 209 | 92.72 80 | 88.81 40 |
|
cascas | | | 64.59 226 | 62.77 244 | 70.05 182 | 75.27 199 | 50.02 204 | 61.79 292 | 71.61 224 | 42.46 295 | 63.68 291 | 68.89 334 | 49.33 241 | 80.35 141 | 47.82 252 | 84.05 217 | 79.78 210 |
|
hse-mvs3 | | | 73.08 127 | 71.61 153 | 77.48 78 | 83.89 93 | 72.89 47 | 70.47 188 | 71.12 238 | 54.28 189 | 77.89 136 | 83.41 186 | 49.04 242 | 80.98 129 | 63.62 128 | 90.77 118 | 78.58 223 |
|
hse-mvs2 | | | 72.32 145 | 70.66 166 | 77.31 83 | 83.10 101 | 71.77 50 | 69.19 205 | 71.45 229 | 54.28 189 | 77.89 136 | 78.26 252 | 49.04 242 | 79.23 158 | 63.62 128 | 89.13 148 | 80.92 188 |
|
MDA-MVSNet-bldmvs | | | 62.34 251 | 61.73 248 | 64.16 245 | 61.64 324 | 49.90 205 | 48.11 339 | 57.24 308 | 53.31 203 | 80.95 101 | 79.39 237 | 49.00 244 | 61.55 313 | 45.92 263 | 80.05 261 | 81.03 184 |
|
testdata | | | | | 64.13 246 | 85.87 63 | 63.34 119 | | 61.80 291 | 47.83 260 | 76.42 170 | 86.60 141 | 48.83 245 | 62.31 311 | 54.46 204 | 81.26 247 | 66.74 319 |
|
cl-mvsnet____ | | | 68.26 195 | 68.26 192 | 68.29 209 | 64.98 308 | 43.67 260 | 65.89 251 | 74.67 201 | 50.04 240 | 76.86 157 | 82.42 201 | 48.74 246 | 75.38 218 | 60.92 149 | 89.81 135 | 85.80 78 |
|
cl-mvsnet1 | | | 68.27 194 | 68.26 192 | 68.29 209 | 64.98 308 | 43.67 260 | 65.89 251 | 74.67 201 | 50.04 240 | 76.86 157 | 82.43 200 | 48.74 246 | 75.38 218 | 60.94 148 | 89.81 135 | 85.81 74 |
|
GBi-Net | | | 68.30 192 | 68.79 184 | 66.81 227 | 73.14 235 | 40.68 285 | 71.96 164 | 73.03 209 | 54.81 177 | 74.72 188 | 90.36 64 | 48.63 248 | 75.20 222 | 47.12 255 | 85.37 193 | 84.54 106 |
|
test1 | | | 68.30 192 | 68.79 184 | 66.81 227 | 73.14 235 | 40.68 285 | 71.96 164 | 73.03 209 | 54.81 177 | 74.72 188 | 90.36 64 | 48.63 248 | 75.20 222 | 47.12 255 | 85.37 193 | 84.54 106 |
|
FMVSNet2 | | | 67.48 203 | 68.21 195 | 65.29 238 | 73.14 235 | 38.94 298 | 68.81 210 | 71.21 237 | 54.81 177 | 76.73 161 | 86.48 144 | 48.63 248 | 74.60 229 | 47.98 250 | 86.11 188 | 82.35 166 |
|
test222 | | | | | | 87.30 40 | 69.15 78 | 67.85 225 | 59.59 297 | 41.06 302 | 73.05 210 | 85.72 164 | 48.03 251 | | | 80.65 255 | 66.92 315 |
|
OpenMVS_ROB |  | 54.93 17 | 63.23 241 | 63.28 238 | 63.07 259 | 69.81 267 | 45.34 249 | 68.52 218 | 67.14 258 | 43.74 286 | 70.61 242 | 79.22 240 | 47.90 252 | 72.66 242 | 48.75 242 | 73.84 307 | 71.21 288 |
|
lessismore_v0 | | | | | 72.75 146 | 79.60 143 | 56.83 167 | | 57.37 305 | | 83.80 71 | 89.01 95 | 47.45 253 | 78.74 167 | 64.39 120 | 86.49 185 | 82.69 158 |
|
TAMVS | | | 65.31 220 | 63.75 233 | 69.97 184 | 82.23 115 | 59.76 149 | 66.78 243 | 63.37 280 | 45.20 276 | 69.79 249 | 79.37 238 | 47.42 254 | 72.17 249 | 34.48 326 | 85.15 200 | 77.99 235 |
|
PM-MVS | | | 64.49 228 | 63.61 235 | 67.14 225 | 76.68 184 | 75.15 31 | 68.49 219 | 42.85 349 | 51.17 229 | 77.85 138 | 80.51 221 | 45.76 255 | 66.31 295 | 52.83 216 | 76.35 287 | 59.96 342 |
|
MVS_0304 | | | 62.51 249 | 62.27 247 | 63.25 256 | 69.39 271 | 48.47 215 | 64.05 274 | 62.48 283 | 59.69 131 | 54.10 335 | 81.04 216 | 45.71 256 | 66.31 295 | 41.38 285 | 82.58 232 | 74.96 255 |
|
USDC | | | 62.80 246 | 63.10 241 | 61.89 268 | 65.19 304 | 43.30 265 | 67.42 231 | 74.20 205 | 35.80 328 | 72.25 220 | 84.48 175 | 45.67 257 | 71.95 254 | 37.95 306 | 84.97 201 | 70.42 294 |
|
test20.03 | | | 55.74 287 | 57.51 281 | 50.42 313 | 59.89 336 | 32.09 341 | 50.63 333 | 49.01 337 | 50.11 238 | 65.07 281 | 83.23 194 | 45.61 258 | 48.11 335 | 30.22 340 | 83.82 221 | 71.07 290 |
|
cl-mvsnet2 | | | 67.14 206 | 66.51 213 | 69.03 196 | 63.20 317 | 43.46 263 | 66.88 242 | 76.25 185 | 49.22 247 | 74.48 192 | 77.88 257 | 45.49 259 | 77.40 197 | 60.64 151 | 84.59 209 | 86.24 66 |
|
IterMVS-SCA-FT | | | 67.68 201 | 66.07 216 | 72.49 152 | 73.34 232 | 58.20 162 | 63.80 276 | 65.55 267 | 48.10 256 | 76.91 154 | 82.64 198 | 45.20 260 | 78.84 164 | 61.20 145 | 77.89 283 | 80.44 202 |
|
SCA | | | 58.57 277 | 58.04 277 | 60.17 283 | 70.17 265 | 41.07 281 | 65.19 261 | 53.38 324 | 43.34 292 | 61.00 306 | 73.48 296 | 45.20 260 | 69.38 272 | 40.34 291 | 70.31 322 | 70.05 296 |
|
1112_ss | | | 59.48 270 | 58.99 270 | 60.96 278 | 77.84 169 | 42.39 273 | 61.42 294 | 68.45 255 | 37.96 318 | 59.93 313 | 67.46 340 | 45.11 262 | 65.07 299 | 40.89 288 | 71.81 314 | 75.41 251 |
|
new-patchmatchnet | | | 52.89 300 | 55.76 293 | 44.26 335 | 59.94 335 | 6.31 368 | 37.36 358 | 50.76 333 | 41.10 301 | 64.28 285 | 79.82 231 | 44.77 263 | 48.43 334 | 36.24 319 | 87.61 163 | 78.03 233 |
|
jason | | | 64.47 229 | 62.84 243 | 69.34 192 | 76.91 181 | 59.20 150 | 67.15 236 | 65.67 264 | 35.29 329 | 65.16 280 | 76.74 266 | 44.67 264 | 70.68 262 | 54.74 199 | 79.28 270 | 78.14 231 |
jason: jason. |
IterMVS | | | 63.12 242 | 62.48 246 | 65.02 241 | 66.34 295 | 52.86 190 | 63.81 275 | 62.25 284 | 46.57 268 | 71.51 233 | 80.40 223 | 44.60 265 | 66.82 291 | 51.38 223 | 75.47 294 | 75.38 252 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PAPM | | | 61.79 255 | 60.37 261 | 66.05 234 | 76.09 191 | 41.87 276 | 69.30 202 | 76.79 183 | 40.64 306 | 53.80 336 | 79.62 235 | 44.38 266 | 82.92 97 | 29.64 344 | 73.11 309 | 73.36 267 |
|
HY-MVS | | 49.31 19 | 57.96 279 | 57.59 280 | 59.10 289 | 66.85 292 | 36.17 317 | 65.13 262 | 65.39 268 | 39.24 311 | 54.69 332 | 78.14 254 | 44.28 267 | 67.18 287 | 33.75 330 | 70.79 319 | 73.95 262 |
|
CANet_DTU | | | 64.04 235 | 63.83 232 | 64.66 242 | 68.39 275 | 42.97 268 | 73.45 150 | 74.50 204 | 52.05 217 | 54.78 330 | 75.44 276 | 43.99 268 | 70.42 267 | 53.49 213 | 78.41 278 | 80.59 199 |
|
LFMVS | | | 67.06 208 | 67.89 199 | 64.56 243 | 78.02 165 | 38.25 303 | 70.81 186 | 59.60 296 | 65.18 84 | 71.06 238 | 86.56 142 | 43.85 269 | 75.22 221 | 46.35 261 | 89.63 138 | 80.21 205 |
|
pmmvs-eth3d | | | 64.41 231 | 63.27 239 | 67.82 217 | 75.81 195 | 60.18 144 | 69.49 199 | 62.05 289 | 38.81 314 | 74.13 196 | 82.23 203 | 43.76 270 | 68.65 276 | 42.53 277 | 80.63 257 | 74.63 257 |
|
1314 | | | 59.83 268 | 58.86 271 | 62.74 263 | 65.71 301 | 44.78 252 | 68.59 215 | 72.63 216 | 33.54 341 | 61.05 305 | 67.29 343 | 43.62 271 | 71.26 259 | 49.49 237 | 67.84 334 | 72.19 279 |
|
CDS-MVSNet | | | 64.33 232 | 62.66 245 | 69.35 191 | 80.44 136 | 58.28 161 | 65.26 260 | 65.66 265 | 44.36 281 | 67.30 269 | 75.54 273 | 43.27 272 | 71.77 255 | 37.68 307 | 84.44 213 | 78.01 234 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVSFormer | | | 69.93 167 | 69.03 181 | 72.63 151 | 74.93 203 | 59.19 151 | 83.98 36 | 75.72 190 | 52.27 213 | 63.53 293 | 76.74 266 | 43.19 273 | 80.56 137 | 72.28 65 | 78.67 275 | 78.14 231 |
|
lupinMVS | | | 63.36 238 | 61.49 253 | 68.97 198 | 74.93 203 | 59.19 151 | 65.80 254 | 64.52 275 | 34.68 334 | 63.53 293 | 74.25 290 | 43.19 273 | 70.62 263 | 53.88 210 | 78.67 275 | 77.10 240 |
|
Test_1112_low_res | | | 58.78 275 | 58.69 272 | 59.04 290 | 79.41 145 | 38.13 305 | 57.62 314 | 66.98 260 | 34.74 332 | 59.62 314 | 77.56 260 | 42.92 275 | 63.65 306 | 38.66 299 | 70.73 320 | 75.35 253 |
|
test_yl | | | 65.11 221 | 65.09 225 | 65.18 239 | 70.59 259 | 40.86 282 | 63.22 285 | 72.79 212 | 57.91 144 | 68.88 257 | 79.07 245 | 42.85 276 | 74.89 226 | 45.50 265 | 84.97 201 | 79.81 208 |
|
DCV-MVSNet | | | 65.11 221 | 65.09 225 | 65.18 239 | 70.59 259 | 40.86 282 | 63.22 285 | 72.79 212 | 57.91 144 | 68.88 257 | 79.07 245 | 42.85 276 | 74.89 226 | 45.50 265 | 84.97 201 | 79.81 208 |
|
PMMVS | | | 44.69 324 | 43.95 331 | 46.92 324 | 50.05 364 | 53.47 187 | 48.08 340 | 42.40 351 | 22.36 362 | 44.01 359 | 53.05 357 | 42.60 278 | 45.49 340 | 31.69 335 | 61.36 345 | 41.79 357 |
|
Anonymous20231206 | | | 54.13 294 | 55.82 292 | 49.04 321 | 70.89 255 | 35.96 319 | 51.73 331 | 50.87 332 | 34.86 330 | 62.49 296 | 79.22 240 | 42.52 279 | 44.29 347 | 27.95 349 | 81.88 238 | 66.88 316 |
|
WTY-MVS | | | 49.39 313 | 50.31 316 | 46.62 326 | 61.22 327 | 32.00 342 | 46.61 344 | 49.77 335 | 33.87 337 | 54.12 334 | 69.55 329 | 41.96 280 | 45.40 341 | 31.28 337 | 64.42 340 | 62.47 337 |
|
UnsupCasMVSNet_eth | | | 52.26 304 | 53.29 302 | 49.16 319 | 55.08 355 | 33.67 335 | 50.03 334 | 58.79 299 | 37.67 319 | 63.43 295 | 74.75 280 | 41.82 281 | 45.83 338 | 38.59 301 | 59.42 349 | 67.98 311 |
|
UnsupCasMVSNet_bld | | | 50.01 312 | 51.03 314 | 46.95 323 | 58.61 341 | 32.64 338 | 48.31 337 | 53.27 325 | 34.27 335 | 60.47 308 | 71.53 314 | 41.40 282 | 47.07 336 | 30.68 338 | 60.78 346 | 61.13 340 |
|
ppachtmachnet_test | | | 60.26 266 | 59.61 266 | 62.20 266 | 67.70 285 | 44.33 255 | 58.18 312 | 60.96 293 | 40.75 305 | 65.80 276 | 72.57 303 | 41.23 283 | 63.92 304 | 46.87 259 | 82.42 233 | 78.33 225 |
|
baseline1 | | | 57.82 280 | 58.36 276 | 56.19 299 | 69.17 273 | 30.76 347 | 62.94 287 | 55.21 315 | 46.04 270 | 63.83 289 | 78.47 249 | 41.20 284 | 63.68 305 | 39.44 293 | 68.99 329 | 74.13 260 |
|
MIMVSNet | | | 54.39 293 | 56.12 291 | 49.20 318 | 72.57 243 | 30.91 346 | 59.98 303 | 48.43 340 | 41.66 298 | 55.94 326 | 83.86 183 | 41.19 285 | 50.42 330 | 26.05 351 | 75.38 296 | 66.27 320 |
|
CHOSEN 1792x2688 | | | 58.09 278 | 56.30 289 | 63.45 254 | 79.95 139 | 50.93 198 | 54.07 326 | 65.59 266 | 28.56 354 | 61.53 300 | 74.33 287 | 41.09 286 | 66.52 294 | 33.91 329 | 67.69 335 | 72.92 270 |
|
YYNet1 | | | 52.58 301 | 53.50 300 | 49.85 314 | 54.15 359 | 36.45 316 | 40.53 352 | 46.55 344 | 38.09 317 | 75.52 178 | 73.31 299 | 41.08 287 | 43.88 348 | 41.10 286 | 71.14 318 | 69.21 305 |
|
MDA-MVSNet_test_wron | | | 52.57 302 | 53.49 301 | 49.81 315 | 54.24 358 | 36.47 315 | 40.48 353 | 46.58 343 | 38.13 316 | 75.47 179 | 73.32 298 | 41.05 288 | 43.85 349 | 40.98 287 | 71.20 317 | 69.10 307 |
|
PVSNet_0 | | 36.71 22 | 41.12 330 | 40.78 333 | 42.14 338 | 59.97 334 | 40.13 290 | 40.97 351 | 42.24 354 | 30.81 352 | 44.86 356 | 49.41 360 | 40.70 289 | 45.12 343 | 23.15 358 | 34.96 362 | 41.16 358 |
|
bset_n11_16_dypcd | | | 66.91 210 | 65.84 218 | 70.12 180 | 72.95 241 | 53.54 185 | 63.64 278 | 68.65 254 | 48.54 253 | 72.54 216 | 74.28 289 | 40.58 290 | 78.54 170 | 63.52 131 | 87.82 162 | 78.29 227 |
|
Vis-MVSNet (Re-imp) | | | 62.74 247 | 63.21 240 | 61.34 274 | 72.19 246 | 31.56 343 | 67.31 235 | 53.87 319 | 53.60 201 | 69.88 248 | 83.37 189 | 40.52 291 | 70.98 261 | 41.40 284 | 86.78 182 | 81.48 179 |
|
sss | | | 47.59 318 | 48.32 318 | 45.40 331 | 56.73 349 | 33.96 333 | 45.17 347 | 48.51 339 | 32.11 347 | 52.37 339 | 65.79 345 | 40.39 292 | 41.91 355 | 31.85 334 | 61.97 344 | 60.35 341 |
|
our_test_3 | | | 56.46 283 | 56.51 287 | 56.30 298 | 67.70 285 | 39.66 293 | 55.36 323 | 52.34 329 | 40.57 307 | 63.85 288 | 69.91 326 | 40.04 293 | 58.22 321 | 43.49 275 | 75.29 298 | 71.03 291 |
|
Anonymous20240521 | | | 63.55 237 | 66.07 216 | 55.99 300 | 66.18 298 | 44.04 257 | 68.77 213 | 68.80 251 | 46.99 266 | 72.57 214 | 85.84 162 | 39.87 294 | 50.22 331 | 53.40 215 | 92.23 86 | 73.71 265 |
|
miper_lstm_enhance | | | 61.97 252 | 61.63 251 | 62.98 260 | 60.04 333 | 45.74 247 | 47.53 341 | 70.95 239 | 44.04 282 | 73.06 209 | 78.84 247 | 39.72 295 | 60.33 315 | 55.82 190 | 84.64 208 | 82.88 150 |
|
pmmvs4 | | | 60.78 261 | 59.04 269 | 66.00 235 | 73.06 240 | 57.67 163 | 64.53 269 | 60.22 294 | 36.91 323 | 65.96 274 | 77.27 262 | 39.66 296 | 68.54 277 | 38.87 297 | 74.89 299 | 71.80 282 |
|
MVP-Stereo | | | 61.56 256 | 59.22 267 | 68.58 206 | 79.28 147 | 60.44 142 | 69.20 204 | 71.57 225 | 43.58 288 | 56.42 324 | 78.37 251 | 39.57 297 | 76.46 210 | 34.86 325 | 60.16 347 | 68.86 308 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
FPMVS | | | 59.43 271 | 60.07 262 | 57.51 296 | 77.62 175 | 71.52 52 | 62.33 289 | 50.92 331 | 57.40 153 | 69.40 251 | 80.00 229 | 39.14 298 | 61.92 312 | 37.47 310 | 66.36 336 | 39.09 359 |
|
DSMNet-mixed | | | 43.18 328 | 44.66 329 | 38.75 344 | 54.75 357 | 28.88 352 | 57.06 316 | 27.42 367 | 13.47 363 | 47.27 352 | 77.67 259 | 38.83 299 | 39.29 358 | 25.32 356 | 60.12 348 | 48.08 352 |
|
HyFIR lowres test | | | 63.01 243 | 60.47 260 | 70.61 169 | 83.04 102 | 54.10 181 | 59.93 304 | 72.24 221 | 33.67 339 | 69.00 254 | 75.63 272 | 38.69 300 | 76.93 202 | 36.60 315 | 75.45 295 | 80.81 194 |
|
MVE |  | 27.91 23 | 36.69 333 | 35.64 336 | 39.84 343 | 43.37 366 | 35.85 321 | 19.49 361 | 24.61 368 | 24.68 360 | 39.05 362 | 62.63 350 | 38.67 301 | 27.10 364 | 21.04 360 | 47.25 361 | 56.56 347 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EPNet_dtu | | | 58.93 274 | 58.52 273 | 60.16 284 | 67.91 283 | 47.70 227 | 69.97 192 | 58.02 300 | 49.73 242 | 47.28 351 | 73.02 301 | 38.14 302 | 62.34 310 | 36.57 316 | 85.99 189 | 70.43 293 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
pmmvs5 | | | 52.49 303 | 52.58 305 | 52.21 311 | 54.99 356 | 32.38 339 | 55.45 322 | 53.84 320 | 32.15 345 | 55.49 329 | 74.81 278 | 38.08 303 | 57.37 323 | 34.02 328 | 74.40 303 | 66.88 316 |
|
N_pmnet | | | 52.06 305 | 51.11 313 | 54.92 302 | 59.64 338 | 71.03 57 | 37.42 357 | 61.62 292 | 33.68 338 | 57.12 319 | 72.10 304 | 37.94 304 | 31.03 361 | 29.13 348 | 71.35 315 | 62.70 335 |
|
CMPMVS |  | 48.73 20 | 61.54 257 | 60.89 257 | 63.52 253 | 61.08 328 | 51.55 195 | 68.07 224 | 68.00 257 | 33.88 336 | 65.87 275 | 81.25 214 | 37.91 305 | 67.71 281 | 49.32 238 | 82.60 231 | 71.31 286 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FMVSNet3 | | | 65.00 224 | 65.16 220 | 64.52 244 | 69.47 270 | 37.56 311 | 66.63 244 | 70.38 244 | 51.55 223 | 74.72 188 | 83.27 193 | 37.89 306 | 74.44 231 | 47.12 255 | 85.37 193 | 81.57 178 |
|
AUN-MVS | | | 70.22 162 | 67.88 200 | 77.22 84 | 82.96 105 | 71.61 51 | 69.08 206 | 71.39 230 | 49.17 248 | 71.70 226 | 78.07 256 | 37.62 307 | 79.21 159 | 61.81 139 | 89.15 146 | 80.82 191 |
|
GA-MVS | | | 62.91 244 | 61.66 249 | 66.66 231 | 67.09 290 | 44.49 254 | 61.18 297 | 69.36 250 | 51.33 226 | 69.33 252 | 74.47 285 | 36.83 308 | 74.94 225 | 50.60 229 | 74.72 300 | 80.57 200 |
|
MS-PatchMatch | | | 55.59 288 | 54.89 296 | 57.68 295 | 69.18 272 | 49.05 211 | 61.00 298 | 62.93 282 | 35.98 326 | 58.36 317 | 68.93 333 | 36.71 309 | 66.59 293 | 37.62 309 | 63.30 343 | 57.39 345 |
|
CVMVSNet | | | 59.21 272 | 58.44 275 | 61.51 271 | 73.94 225 | 47.76 226 | 71.31 177 | 64.56 274 | 26.91 358 | 60.34 309 | 70.44 319 | 36.24 310 | 67.65 282 | 53.57 212 | 68.66 331 | 69.12 306 |
|
PMMVS2 | | | 37.74 331 | 40.87 332 | 28.36 346 | 42.41 367 | 5.35 369 | 24.61 360 | 27.75 366 | 32.15 345 | 47.85 350 | 70.27 322 | 35.85 311 | 29.51 362 | 19.08 362 | 67.85 333 | 50.22 351 |
|
tpmrst | | | 50.15 311 | 51.38 310 | 46.45 327 | 56.05 350 | 24.77 359 | 64.40 271 | 49.98 334 | 36.14 325 | 53.32 337 | 69.59 328 | 35.16 312 | 48.69 333 | 39.24 295 | 58.51 352 | 65.89 321 |
|
D2MVS | | | 62.58 248 | 61.05 256 | 67.20 223 | 63.85 313 | 47.92 223 | 56.29 318 | 69.58 248 | 39.32 309 | 70.07 247 | 78.19 253 | 34.93 313 | 72.68 241 | 53.44 214 | 83.74 222 | 81.00 186 |
|
PVSNet | | 43.83 21 | 51.56 308 | 51.17 311 | 52.73 308 | 68.34 277 | 38.27 302 | 48.22 338 | 53.56 322 | 36.41 324 | 54.29 333 | 64.94 347 | 34.60 314 | 54.20 328 | 30.34 339 | 69.87 325 | 65.71 323 |
|
MVS-HIRNet | | | 45.53 321 | 47.29 321 | 40.24 342 | 62.29 320 | 26.82 355 | 56.02 320 | 37.41 362 | 29.74 353 | 43.69 360 | 81.27 213 | 33.96 315 | 55.48 324 | 24.46 357 | 56.79 354 | 38.43 360 |
|
baseline2 | | | 55.57 289 | 52.74 303 | 64.05 248 | 65.26 303 | 44.11 256 | 62.38 288 | 54.43 318 | 39.03 312 | 51.21 341 | 67.35 342 | 33.66 316 | 72.45 247 | 37.14 312 | 64.22 341 | 75.60 248 |
|
RPMNet | | | 65.77 217 | 65.08 227 | 67.84 216 | 66.37 293 | 48.24 218 | 70.93 183 | 86.27 21 | 54.66 183 | 61.35 301 | 86.77 131 | 33.29 317 | 85.67 43 | 55.93 188 | 70.17 323 | 69.62 301 |
|
CR-MVSNet | | | 58.96 273 | 58.49 274 | 60.36 282 | 66.37 293 | 48.24 218 | 70.93 183 | 56.40 312 | 32.87 342 | 61.35 301 | 86.66 136 | 33.19 318 | 63.22 308 | 48.50 246 | 70.17 323 | 69.62 301 |
|
Patchmtry | | | 60.91 259 | 63.01 242 | 54.62 303 | 66.10 299 | 26.27 357 | 67.47 230 | 56.40 312 | 54.05 194 | 72.04 224 | 86.66 136 | 33.19 318 | 60.17 316 | 43.69 272 | 87.45 168 | 77.42 237 |
|
RRT_MVS | | | 73.80 115 | 71.19 160 | 81.60 24 | 71.04 254 | 70.33 66 | 78.78 88 | 74.91 200 | 56.96 156 | 77.83 139 | 85.56 165 | 32.82 320 | 87.39 5 | 71.16 70 | 91.68 91 | 87.07 60 |
|
CostFormer | | | 57.35 282 | 56.14 290 | 60.97 277 | 63.76 315 | 38.43 300 | 67.50 229 | 60.22 294 | 37.14 322 | 59.12 315 | 76.34 269 | 32.78 321 | 71.99 253 | 39.12 296 | 69.27 328 | 72.47 275 |
|
tpm cat1 | | | 54.02 296 | 52.63 304 | 58.19 294 | 64.85 310 | 39.86 292 | 66.26 248 | 57.28 306 | 32.16 344 | 56.90 321 | 70.39 321 | 32.75 322 | 65.30 298 | 34.29 327 | 58.79 350 | 69.41 303 |
|
thres200 | | | 57.55 281 | 57.02 283 | 59.17 288 | 67.89 284 | 34.93 327 | 58.91 310 | 57.25 307 | 50.24 236 | 64.01 287 | 71.46 315 | 32.49 323 | 71.39 258 | 31.31 336 | 79.57 268 | 71.19 289 |
|
tfpn200view9 | | | 60.35 265 | 59.97 263 | 61.51 271 | 70.78 256 | 35.35 324 | 63.27 283 | 57.47 303 | 53.00 206 | 68.31 261 | 77.09 263 | 32.45 324 | 72.09 250 | 35.61 322 | 81.73 240 | 77.08 241 |
|
thres400 | | | 60.77 262 | 59.97 263 | 63.15 257 | 70.78 256 | 35.35 324 | 63.27 283 | 57.47 303 | 53.00 206 | 68.31 261 | 77.09 263 | 32.45 324 | 72.09 250 | 35.61 322 | 81.73 240 | 82.02 171 |
|
EU-MVSNet | | | 60.82 260 | 60.80 258 | 60.86 279 | 68.37 276 | 41.16 279 | 72.27 158 | 68.27 256 | 26.96 357 | 69.08 253 | 75.71 271 | 32.09 326 | 67.44 284 | 55.59 193 | 78.90 272 | 73.97 261 |
|
thres100view900 | | | 61.17 258 | 61.09 255 | 61.39 273 | 72.14 247 | 35.01 326 | 65.42 259 | 56.99 309 | 55.23 174 | 70.71 241 | 79.90 230 | 32.07 327 | 72.09 250 | 35.61 322 | 81.73 240 | 77.08 241 |
|
thres600view7 | | | 61.82 254 | 61.38 254 | 63.12 258 | 71.81 250 | 34.93 327 | 64.64 266 | 56.99 309 | 54.78 181 | 70.33 245 | 79.74 232 | 32.07 327 | 72.42 248 | 38.61 300 | 83.46 224 | 82.02 171 |
|
PatchmatchNet |  | | 54.60 292 | 54.27 298 | 55.59 301 | 65.17 306 | 39.08 295 | 66.92 240 | 51.80 330 | 39.89 308 | 58.39 316 | 73.12 300 | 31.69 329 | 58.33 320 | 43.01 276 | 58.38 353 | 69.38 304 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
sam_mvs1 | | | | | | | | | | | | | 31.41 330 | | | | 70.05 296 |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 331 | 31.32 331 | 69.38 272 | | | |
|
ADS-MVSNet2 | | | 48.76 314 | 47.25 322 | 53.29 307 | 55.90 352 | 40.54 288 | 47.34 342 | 54.99 317 | 31.41 350 | 50.48 344 | 72.06 309 | 31.23 332 | 54.26 327 | 25.93 352 | 55.93 355 | 65.07 326 |
|
ADS-MVSNet | | | 44.62 325 | 45.58 324 | 41.73 340 | 55.90 352 | 20.83 363 | 47.34 342 | 39.94 360 | 31.41 350 | 50.48 344 | 72.06 309 | 31.23 332 | 39.31 357 | 25.93 352 | 55.93 355 | 65.07 326 |
|
sam_mvs | | | | | | | | | | | | | 31.21 334 | | | | |
|
Patchmatch-RL test | | | 59.95 267 | 59.12 268 | 62.44 265 | 72.46 244 | 54.61 179 | 59.63 305 | 47.51 342 | 41.05 303 | 74.58 191 | 74.30 288 | 31.06 335 | 65.31 297 | 51.61 220 | 79.85 263 | 67.39 312 |
|
tpmvs | | | 55.84 285 | 55.45 295 | 57.01 297 | 60.33 332 | 33.20 337 | 65.89 251 | 59.29 298 | 47.52 264 | 56.04 325 | 73.60 295 | 31.05 336 | 68.06 280 | 40.64 289 | 64.64 339 | 69.77 299 |
|
test_post | | | | | | | | | | | | 1.99 367 | 30.91 337 | 54.76 326 | | | |
|
MDTV_nov1_ep13 | | | | 54.05 299 | | 65.54 302 | 29.30 350 | 59.00 308 | 55.22 314 | 35.96 327 | 52.44 338 | 75.98 270 | 30.77 338 | 59.62 317 | 38.21 303 | 73.33 308 | |
|
test_post1 | | | | | | | | 66.63 244 | | | | 2.08 366 | 30.66 339 | 59.33 318 | 40.34 291 | | |
|
Patchmatch-test | | | 47.93 316 | 49.96 317 | 41.84 339 | 57.42 346 | 24.26 360 | 48.75 336 | 41.49 356 | 39.30 310 | 56.79 322 | 73.48 296 | 30.48 340 | 33.87 360 | 29.29 346 | 72.61 310 | 67.39 312 |
|
tpm2 | | | 56.12 284 | 54.64 297 | 60.55 281 | 66.24 296 | 36.01 318 | 68.14 222 | 56.77 311 | 33.60 340 | 58.25 318 | 75.52 275 | 30.25 341 | 74.33 232 | 33.27 331 | 69.76 327 | 71.32 285 |
|
MVSTER | | | 63.29 240 | 61.60 252 | 68.36 207 | 59.77 337 | 46.21 243 | 60.62 299 | 71.32 231 | 41.83 297 | 75.40 180 | 79.12 243 | 30.25 341 | 75.85 212 | 56.30 185 | 79.81 264 | 83.03 147 |
|
tpm | | | 50.60 309 | 52.42 306 | 45.14 332 | 65.18 305 | 26.29 356 | 60.30 301 | 43.50 347 | 37.41 320 | 57.01 320 | 79.09 244 | 30.20 343 | 42.32 352 | 32.77 333 | 66.36 336 | 66.81 318 |
|
PatchT | | | 53.35 298 | 56.47 288 | 43.99 336 | 64.19 312 | 17.46 365 | 59.15 306 | 43.10 348 | 52.11 216 | 54.74 331 | 86.95 123 | 29.97 344 | 49.98 332 | 43.62 273 | 74.40 303 | 64.53 332 |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 364 | 53.74 327 | | 31.57 349 | 44.89 355 | | 29.90 345 | | 32.93 332 | | 71.48 284 |
|
test-LLR | | | 50.43 310 | 50.69 315 | 49.64 316 | 60.76 329 | 41.87 276 | 53.18 328 | 45.48 345 | 43.41 290 | 49.41 348 | 60.47 352 | 29.22 346 | 44.73 345 | 42.09 280 | 72.14 312 | 62.33 338 |
|
test0.0.03 1 | | | 47.72 317 | 48.31 319 | 45.93 328 | 55.53 354 | 29.39 349 | 46.40 345 | 41.21 358 | 43.41 290 | 55.81 328 | 67.65 339 | 29.22 346 | 43.77 350 | 25.73 354 | 69.87 325 | 64.62 330 |
|
thisisatest0530 | | | 67.05 209 | 65.16 220 | 72.73 148 | 73.10 238 | 50.55 200 | 71.26 179 | 63.91 277 | 50.22 237 | 74.46 193 | 80.75 218 | 26.81 348 | 80.25 145 | 59.43 162 | 86.50 184 | 87.37 54 |
|
tttt0517 | | | 69.46 173 | 67.79 201 | 74.46 110 | 75.34 198 | 52.72 191 | 75.05 132 | 63.27 281 | 54.69 182 | 78.87 125 | 84.37 176 | 26.63 349 | 81.15 122 | 63.95 123 | 87.93 161 | 89.51 24 |
|
EMVS | | | 44.61 326 | 44.45 330 | 45.10 333 | 48.91 365 | 43.00 267 | 37.92 356 | 41.10 359 | 46.75 267 | 38.00 363 | 48.43 361 | 26.42 350 | 46.27 337 | 37.11 313 | 75.38 296 | 46.03 355 |
|
thisisatest0515 | | | 60.48 264 | 57.86 278 | 68.34 208 | 67.25 288 | 46.42 239 | 60.58 300 | 62.14 285 | 40.82 304 | 63.58 292 | 69.12 330 | 26.28 351 | 78.34 180 | 48.83 241 | 82.13 235 | 80.26 204 |
|
E-PMN | | | 45.17 322 | 45.36 325 | 44.60 334 | 50.07 363 | 42.75 269 | 38.66 355 | 42.29 353 | 46.39 269 | 39.55 361 | 51.15 359 | 26.00 352 | 45.37 342 | 37.68 307 | 76.41 286 | 45.69 356 |
|
EPMVS | | | 45.74 320 | 46.53 323 | 43.39 337 | 54.14 360 | 22.33 362 | 55.02 324 | 35.00 364 | 34.69 333 | 51.09 342 | 70.20 323 | 25.92 353 | 42.04 354 | 37.19 311 | 55.50 357 | 65.78 322 |
|
tmp_tt | | | 11.98 336 | 14.73 339 | 3.72 349 | 2.28 370 | 4.62 370 | 19.44 362 | 14.50 370 | 0.47 366 | 21.55 365 | 9.58 365 | 25.78 354 | 4.57 367 | 11.61 364 | 27.37 363 | 1.96 363 |
|
ET-MVSNet_ETH3D | | | 63.32 239 | 60.69 259 | 71.20 166 | 70.15 266 | 55.66 172 | 65.02 263 | 64.32 276 | 43.28 293 | 68.99 255 | 72.05 311 | 25.46 355 | 78.19 186 | 54.16 208 | 82.80 229 | 79.74 211 |
|
FMVSNet5 | | | 55.08 291 | 55.54 294 | 53.71 304 | 65.80 300 | 33.50 336 | 56.22 319 | 52.50 328 | 43.72 287 | 61.06 304 | 83.38 188 | 25.46 355 | 54.87 325 | 30.11 341 | 81.64 245 | 72.75 272 |
|
new_pmnet | | | 37.55 332 | 39.80 335 | 30.79 345 | 56.83 347 | 16.46 366 | 39.35 354 | 30.65 365 | 25.59 359 | 45.26 354 | 61.60 351 | 24.54 357 | 28.02 363 | 21.60 359 | 52.80 359 | 47.90 353 |
|
dp | | | 44.09 327 | 44.88 328 | 41.72 341 | 58.53 342 | 23.18 361 | 54.70 325 | 42.38 352 | 34.80 331 | 44.25 358 | 65.61 346 | 24.48 358 | 44.80 344 | 29.77 343 | 49.42 360 | 57.18 346 |
|
RRT_test8_iter05 | | | 65.80 216 | 65.13 223 | 67.80 218 | 67.02 291 | 40.85 284 | 67.13 237 | 75.33 195 | 49.73 242 | 72.69 213 | 81.32 212 | 24.45 359 | 77.37 198 | 61.69 142 | 86.82 181 | 85.18 84 |
|
IB-MVS | | 49.67 18 | 59.69 269 | 56.96 284 | 67.90 214 | 68.19 279 | 50.30 202 | 61.42 294 | 65.18 269 | 47.57 263 | 55.83 327 | 67.15 344 | 23.77 360 | 79.60 155 | 43.56 274 | 79.97 262 | 73.79 264 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CHOSEN 280x420 | | | 41.62 329 | 39.89 334 | 46.80 325 | 61.81 322 | 51.59 194 | 33.56 359 | 35.74 363 | 27.48 356 | 37.64 364 | 53.53 356 | 23.24 361 | 42.09 353 | 27.39 350 | 58.64 351 | 46.72 354 |
|
DWT-MVSNet_test | | | 53.04 299 | 51.12 312 | 58.77 291 | 61.23 326 | 38.67 299 | 62.16 290 | 57.74 301 | 38.24 315 | 51.76 340 | 59.07 354 | 21.36 362 | 67.40 285 | 44.80 267 | 63.76 342 | 70.25 295 |
|
gg-mvs-nofinetune | | | 55.75 286 | 56.75 286 | 52.72 309 | 62.87 318 | 28.04 353 | 68.92 207 | 41.36 357 | 71.09 41 | 50.80 343 | 92.63 12 | 20.74 363 | 66.86 289 | 29.97 342 | 72.41 311 | 63.25 333 |
|
GG-mvs-BLEND | | | | | 52.24 310 | 60.64 331 | 29.21 351 | 69.73 196 | 42.41 350 | | 45.47 353 | 52.33 358 | 20.43 364 | 68.16 279 | 25.52 355 | 65.42 338 | 59.36 343 |
|
JIA-IIPM | | | 54.03 295 | 51.62 307 | 61.25 275 | 59.14 339 | 55.21 175 | 59.10 307 | 47.72 341 | 50.85 231 | 50.31 347 | 85.81 163 | 20.10 365 | 63.97 303 | 36.16 320 | 55.41 358 | 64.55 331 |
|
test-mter | | | 48.56 315 | 48.20 320 | 49.64 316 | 60.76 329 | 41.87 276 | 53.18 328 | 45.48 345 | 31.91 348 | 49.41 348 | 60.47 352 | 18.34 366 | 44.73 345 | 42.09 280 | 72.14 312 | 62.33 338 |
|
TESTMET0.1,1 | | | 45.17 322 | 44.93 327 | 45.89 329 | 56.02 351 | 38.31 301 | 53.18 328 | 41.94 355 | 27.85 355 | 44.86 356 | 56.47 355 | 17.93 367 | 41.50 356 | 38.08 305 | 68.06 332 | 57.85 344 |
|
test_method | | | 19.26 334 | 19.12 338 | 19.71 347 | 9.09 369 | 1.91 371 | 7.79 363 | 53.44 323 | 1.42 365 | 10.27 367 | 35.80 362 | 17.42 368 | 25.11 365 | 12.44 363 | 24.38 364 | 32.10 361 |
|
DeepMVS_CX |  | | | | 11.83 348 | 15.51 368 | 13.86 367 | | 11.25 371 | 5.76 364 | 20.85 366 | 26.46 363 | 17.06 369 | 9.22 366 | 9.69 365 | 13.82 365 | 12.42 362 |
|
pmmvs3 | | | 46.71 319 | 45.09 326 | 51.55 312 | 56.76 348 | 48.25 217 | 55.78 321 | 39.53 361 | 24.13 361 | 50.35 346 | 63.40 348 | 15.90 370 | 51.08 329 | 29.29 346 | 70.69 321 | 55.33 348 |
|
KD-MVS_2432*1600 | | | 52.05 306 | 51.58 308 | 53.44 305 | 52.11 361 | 31.20 344 | 44.88 348 | 64.83 272 | 41.53 299 | 64.37 283 | 70.03 324 | 15.61 371 | 64.20 301 | 36.25 317 | 74.61 301 | 64.93 328 |
|
miper_refine_blended | | | 52.05 306 | 51.58 308 | 53.44 305 | 52.11 361 | 31.20 344 | 44.88 348 | 64.83 272 | 41.53 299 | 64.37 283 | 70.03 324 | 15.61 371 | 64.20 301 | 36.25 317 | 74.61 301 | 64.93 328 |
|
testmvs | | | 4.06 340 | 5.28 343 | 0.41 350 | 0.64 372 | 0.16 373 | 42.54 350 | 0.31 373 | 0.26 368 | 0.50 369 | 1.40 369 | 0.77 373 | 0.17 368 | 0.56 366 | 0.55 367 | 0.90 364 |
|
test123 | | | 4.43 339 | 5.78 342 | 0.39 351 | 0.97 371 | 0.28 372 | 46.33 346 | 0.45 372 | 0.31 367 | 0.62 368 | 1.50 368 | 0.61 374 | 0.11 369 | 0.56 366 | 0.63 366 | 0.77 365 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
ab-mvs-re | | | 5.62 337 | 7.50 340 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 67.46 340 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 373 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 373 | | | | | | | | | | | |
|
IU-MVS | | | | | | 86.12 57 | 60.90 137 | | 80.38 130 | 45.49 273 | 81.31 97 | | | | 75.64 41 | 94.39 41 | 84.65 99 |
|
save fliter | | | | | | 87.00 42 | 67.23 89 | 79.24 82 | 77.94 169 | 56.65 162 | | | | | | | |
|
test_0728_SECOND | | | | | 76.57 88 | 86.20 52 | 60.57 141 | 83.77 40 | 85.49 32 | | | | | 85.90 35 | 75.86 39 | 94.39 41 | 83.25 140 |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 296 |
|
test_part2 | | | | | | 85.90 61 | 66.44 94 | | | | 84.61 60 | | | | | | |
|
MTGPA |  | | | | | | | | 80.63 123 | | | | | | | | |
|
MTMP | | | | | | | | 84.83 31 | 19.26 369 | | | | | | | | |
|
gm-plane-assit | | | | | | 62.51 319 | 33.91 334 | | | 37.25 321 | | 62.71 349 | | 72.74 240 | 38.70 298 | | |
|
test9_res | | | | | | | | | | | | | | | 72.12 67 | 91.37 99 | 77.40 238 |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 74 | 90.93 112 | 78.55 224 |
|
agg_prior | | | | | | 84.44 84 | 66.02 98 | | 78.62 158 | | 76.95 152 | | | 80.34 142 | | | |
|
test_prior4 | | | | | | | 70.14 67 | 77.57 103 | | | | | | | | | |
|
test_prior | | | | | 75.27 104 | 82.15 116 | 59.85 147 | | 84.33 64 | | | | | 83.39 87 | | | 82.58 160 |
|
旧先验2 | | | | | | | | 71.17 180 | | 45.11 277 | 78.54 129 | | | 61.28 314 | 59.19 164 | | |
|
新几何2 | | | | | | | | 71.33 176 | | | | | | | | | |
|
无先验 | | | | | | | | 74.82 135 | 70.94 240 | 47.75 262 | | | | 76.85 205 | 54.47 202 | | 72.09 280 |
|
原ACMM2 | | | | | | | | 74.78 139 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 67.30 286 | 48.34 247 | | |
|
testdata1 | | | | | | | | 68.34 221 | | 57.24 154 | | | | | | | |
|
plane_prior7 | | | | | | 85.18 69 | 66.21 96 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 85.49 32 | | | | | 86.15 26 | 71.09 71 | 90.94 110 | 84.82 94 |
|
plane_prior4 | | | | | | | | | | | | 89.11 92 | | | | | |
|
plane_prior3 | | | | | | | 65.67 100 | | | 63.82 98 | 78.23 132 | | | | | | |
|
plane_prior2 | | | | | | | | 82.74 51 | | 65.45 77 | | | | | | | |
|
plane_prior1 | | | | | | 84.46 83 | | | | | | | | | | | |
|
plane_prior | | | | | | | 65.18 104 | 80.06 76 | | 61.88 115 | | | | | | 89.91 134 | |
|
n2 | | | | | | | | | 0.00 374 | | | | | | | | |
|
nn | | | | | | | | | 0.00 374 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 316 | | | | | | | | |
|
test11 | | | | | | | | | 82.71 91 | | | | | | | | |
|
door | | | | | | | | | 52.91 327 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 157 | | | | | | | | | | |
|
HQP-NCC | | | | | | 82.37 111 | | 77.32 107 | | 59.08 133 | 71.58 228 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 111 | | 77.32 107 | | 59.08 133 | 71.58 228 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 101 | | |
|
HQP4-MVS | | | | | | | | | | | 71.59 227 | | | 85.31 49 | | | 83.74 127 |
|
HQP3-MVS | | | | | | | | | 84.12 72 | | | | | | | 89.16 144 | |
|
NP-MVS | | | | | | 83.34 99 | 63.07 122 | | | | | 85.97 159 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 142 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 88 | |
|