LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 23 | 91.50 1 | 63.30 113 | 84.80 29 | 87.77 9 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 62 | 68.08 85 | 97.05 1 | 96.93 1 |
|
PMVS | | 70.70 6 | 81.70 34 | 83.15 31 | 77.36 78 | 90.35 6 | 82.82 2 | 82.15 52 | 79.22 138 | 74.08 17 | 87.16 26 | 91.97 19 | 84.80 2 | 76.97 190 | 64.98 110 | 93.61 59 | 72.28 265 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
LPG-MVS_test | | | 83.47 16 | 84.33 11 | 80.90 36 | 87.00 41 | 70.41 58 | 82.04 54 | 86.35 16 | 69.77 47 | 87.75 15 | 91.13 33 | 81.83 3 | 86.20 22 | 77.13 31 | 95.96 5 | 86.08 67 |
|
LGP-MVS_train | | | | | 80.90 36 | 87.00 41 | 70.41 58 | | 86.35 16 | 69.77 47 | 87.75 15 | 91.13 33 | 81.83 3 | 86.20 22 | 77.13 31 | 95.96 5 | 86.08 67 |
|
SR-MVS | | | 84.51 5 | 85.27 4 | 82.25 19 | 88.52 34 | 77.71 13 | 86.81 13 | 85.25 34 | 77.42 11 | 86.15 33 | 90.24 64 | 81.69 5 | 85.94 30 | 77.77 26 | 93.58 61 | 83.09 138 |
|
ACMP | | 69.50 8 | 82.64 26 | 83.38 26 | 80.40 41 | 86.50 48 | 69.44 66 | 82.30 51 | 86.08 21 | 66.80 63 | 86.70 28 | 89.99 69 | 81.64 6 | 85.95 29 | 74.35 46 | 96.11 3 | 85.81 73 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
abl_6 | | | 84.92 3 | 85.70 3 | 82.57 15 | 86.72 46 | 79.27 7 | 87.56 5 | 86.08 21 | 77.48 9 | 88.12 13 | 91.53 27 | 81.18 7 | 84.31 67 | 78.12 24 | 94.47 34 | 84.15 116 |
|
ACMM | | 69.25 9 | 82.11 31 | 83.31 27 | 78.49 64 | 88.17 38 | 73.96 34 | 83.11 46 | 84.52 55 | 66.40 67 | 87.45 20 | 89.16 87 | 81.02 8 | 80.52 132 | 74.27 47 | 95.73 7 | 80.98 181 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 66.64 10 | 81.20 37 | 82.48 39 | 77.35 79 | 81.16 123 | 62.39 117 | 80.51 62 | 87.80 7 | 73.02 22 | 87.57 18 | 91.08 35 | 80.28 9 | 82.44 96 | 64.82 111 | 96.10 4 | 87.21 55 |
|
APD-MVS_3200maxsize | | | 83.57 13 | 84.33 11 | 81.31 31 | 82.83 100 | 73.53 40 | 85.50 24 | 87.45 12 | 74.11 16 | 86.45 30 | 90.52 50 | 80.02 10 | 84.48 63 | 77.73 27 | 94.34 44 | 85.93 71 |
|
COLMAP_ROB | | 72.78 3 | 83.75 11 | 84.11 14 | 82.68 12 | 82.97 98 | 74.39 32 | 87.18 7 | 88.18 6 | 78.98 5 | 86.11 35 | 91.47 29 | 79.70 11 | 85.76 38 | 66.91 100 | 95.46 11 | 87.89 46 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 32 | 81.19 5 | 88.84 2 | 90.72 1 | 78.27 7 | 87.95 14 | 92.53 13 | 79.37 12 | 84.79 59 | 74.51 45 | 96.15 2 | 92.88 7 |
|
HPM-MVS | | | 84.12 8 | 84.63 8 | 82.60 13 | 88.21 37 | 74.40 31 | 85.24 25 | 87.21 13 | 70.69 42 | 85.14 48 | 90.42 54 | 78.99 13 | 86.62 13 | 80.83 6 | 94.93 23 | 86.79 61 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
ACMMP | | | 84.22 6 | 84.84 7 | 82.35 18 | 89.23 23 | 76.66 22 | 87.65 4 | 85.89 24 | 71.03 39 | 85.85 37 | 90.58 46 | 78.77 14 | 85.78 37 | 79.37 16 | 95.17 16 | 84.62 98 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MSP-MVS | | | 81.15 39 | 83.12 32 | 75.24 101 | 86.16 52 | 60.78 131 | 83.77 37 | 80.58 119 | 72.48 28 | 85.83 38 | 90.41 55 | 78.57 15 | 85.69 40 | 75.86 36 | 94.39 38 | 79.24 207 |
|
test0726 | | | | | | 86.16 52 | 60.78 131 | 83.81 36 | 85.10 37 | 72.48 28 | 85.27 47 | 89.96 70 | 78.57 15 | | | | |
|
HPM-MVS_fast | | | 84.59 4 | 85.10 5 | 83.06 4 | 88.60 33 | 75.83 23 | 86.27 21 | 86.89 15 | 73.69 19 | 86.17 32 | 91.70 24 | 78.23 17 | 85.20 52 | 79.45 13 | 94.91 24 | 88.15 44 |
|
APDe-MVS | | | 82.88 24 | 84.14 13 | 79.08 55 | 84.80 74 | 66.72 85 | 86.54 17 | 85.11 36 | 72.00 35 | 86.65 29 | 91.75 23 | 78.20 18 | 87.04 9 | 77.93 25 | 94.32 45 | 83.47 128 |
|
UniMVSNet_ETH3D | | | 76.74 80 | 79.02 64 | 69.92 178 | 89.27 20 | 43.81 247 | 74.47 139 | 71.70 215 | 72.33 31 | 85.50 44 | 93.65 3 | 77.98 19 | 76.88 193 | 54.60 190 | 91.64 86 | 89.08 30 |
|
test_241102_TWO | | | | | | | | | 84.80 43 | 72.61 26 | 84.93 50 | 89.70 74 | 77.73 20 | 85.89 35 | 75.29 39 | 94.22 50 | 83.25 135 |
|
SED-MVS | | | 81.78 33 | 83.48 24 | 76.67 81 | 86.12 54 | 61.06 126 | 83.62 39 | 84.72 47 | 72.61 26 | 87.38 22 | 89.70 74 | 77.48 21 | 85.89 35 | 75.29 39 | 94.39 38 | 83.08 139 |
|
test_241102_ONE | | | | | | 86.12 54 | 61.06 126 | | 84.72 47 | 72.64 25 | 87.38 22 | 89.47 77 | 77.48 21 | 85.74 39 | | | |
|
CP-MVS | | | 84.12 8 | 84.55 9 | 82.80 10 | 89.42 18 | 79.74 6 | 88.19 3 | 84.43 56 | 71.96 36 | 84.70 55 | 90.56 47 | 77.12 23 | 86.18 24 | 79.24 18 | 95.36 12 | 82.49 156 |
|
HFP-MVS | | | 83.39 17 | 84.03 15 | 81.48 25 | 89.25 21 | 75.69 24 | 87.01 11 | 84.27 60 | 70.23 43 | 84.47 58 | 90.43 52 | 76.79 24 | 85.94 30 | 79.58 11 | 94.23 48 | 82.82 147 |
|
#test# | | | 82.40 28 | 82.71 37 | 81.48 25 | 89.25 21 | 75.69 24 | 84.47 31 | 84.27 60 | 64.45 87 | 84.47 58 | 90.43 52 | 76.79 24 | 85.94 30 | 76.01 33 | 94.23 48 | 82.82 147 |
|
mPP-MVS | | | 84.01 10 | 84.39 10 | 82.88 6 | 90.65 4 | 81.38 4 | 87.08 9 | 82.79 83 | 72.41 30 | 85.11 49 | 90.85 40 | 76.65 26 | 84.89 56 | 79.30 17 | 94.63 31 | 82.35 159 |
|
DPE-MVS | | | 82.00 32 | 83.02 33 | 78.95 58 | 85.36 65 | 67.25 81 | 82.91 47 | 84.98 39 | 73.52 20 | 85.43 45 | 90.03 68 | 76.37 27 | 86.97 11 | 74.56 44 | 94.02 53 | 82.62 152 |
|
MP-MVS-pluss | | | 82.54 27 | 83.46 25 | 79.76 45 | 88.88 31 | 68.44 74 | 81.57 57 | 86.33 18 | 63.17 102 | 85.38 46 | 91.26 32 | 76.33 28 | 84.67 61 | 83.30 1 | 94.96 22 | 86.17 66 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
OPM-MVS | | | 80.99 43 | 81.63 47 | 79.07 56 | 86.86 45 | 69.39 67 | 79.41 78 | 84.00 70 | 65.64 71 | 85.54 43 | 89.28 80 | 76.32 29 | 83.47 78 | 74.03 48 | 93.57 62 | 84.35 111 |
|
ACMH | | 63.62 14 | 77.50 76 | 80.11 56 | 69.68 179 | 79.61 135 | 56.28 161 | 78.81 84 | 83.62 73 | 63.41 100 | 87.14 27 | 90.23 65 | 76.11 30 | 73.32 225 | 67.58 92 | 94.44 36 | 79.44 205 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
mvs_tets | | | 78.93 62 | 78.67 69 | 79.72 47 | 84.81 73 | 73.93 35 | 80.65 61 | 76.50 177 | 51.98 208 | 87.40 21 | 91.86 21 | 76.09 31 | 78.53 161 | 68.58 80 | 90.20 117 | 86.69 63 |
|
APD-MVS | | | 81.13 40 | 81.73 44 | 79.36 53 | 84.47 79 | 70.53 57 | 83.85 35 | 83.70 72 | 69.43 49 | 83.67 69 | 88.96 93 | 75.89 32 | 86.41 16 | 72.62 57 | 92.95 68 | 81.14 176 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PGM-MVS | | | 83.07 21 | 83.25 30 | 82.54 16 | 89.57 14 | 77.21 20 | 82.04 54 | 85.40 31 | 67.96 56 | 84.91 53 | 90.88 38 | 75.59 33 | 86.57 14 | 78.16 23 | 94.71 29 | 83.82 120 |
|
test_0728_THIRD | | | | | | | | | | 74.03 18 | 85.83 38 | 90.41 55 | 75.58 34 | 85.69 40 | 77.43 30 | 94.74 28 | 84.31 112 |
|
SteuartSystems-ACMMP | | | 83.07 21 | 83.64 21 | 81.35 29 | 85.14 68 | 71.00 52 | 85.53 23 | 84.78 44 | 70.91 40 | 85.64 40 | 90.41 55 | 75.55 35 | 87.69 3 | 79.75 8 | 95.08 19 | 85.36 81 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP_NAP | | | 82.33 29 | 83.28 28 | 79.46 51 | 89.28 19 | 69.09 72 | 83.62 39 | 84.98 39 | 64.77 84 | 83.97 66 | 91.02 36 | 75.53 36 | 85.93 33 | 82.00 2 | 94.36 42 | 83.35 133 |
|
region2R | | | 83.54 14 | 83.86 18 | 82.58 14 | 89.82 10 | 77.53 16 | 87.06 10 | 84.23 64 | 70.19 45 | 83.86 67 | 90.72 44 | 75.20 37 | 86.27 21 | 79.41 15 | 94.25 47 | 83.95 119 |
|
ACMMPR | | | 83.62 12 | 83.93 16 | 82.69 11 | 89.78 11 | 77.51 18 | 87.01 11 | 84.19 65 | 70.23 43 | 84.49 57 | 90.67 45 | 75.15 38 | 86.37 18 | 79.58 11 | 94.26 46 | 84.18 115 |
|
test_0402 | | | 78.17 73 | 79.48 62 | 74.24 111 | 83.50 90 | 59.15 147 | 72.52 153 | 74.60 195 | 75.34 13 | 88.69 12 | 91.81 22 | 75.06 39 | 82.37 98 | 65.10 108 | 88.68 142 | 81.20 174 |
|
PS-CasMVS | | | 80.41 49 | 82.86 36 | 73.07 130 | 89.93 7 | 39.21 282 | 77.15 106 | 81.28 105 | 79.74 4 | 90.87 3 | 92.73 11 | 75.03 40 | 84.93 55 | 63.83 120 | 95.19 15 | 95.07 3 |
|
testtj | | | 81.19 38 | 81.70 45 | 79.67 49 | 83.95 87 | 69.77 63 | 83.58 42 | 84.63 52 | 72.13 32 | 82.85 78 | 88.36 101 | 75.00 41 | 86.79 12 | 71.99 65 | 92.84 69 | 82.44 157 |
|
PEN-MVS | | | 80.46 48 | 82.91 34 | 73.11 129 | 89.83 9 | 39.02 285 | 77.06 108 | 82.61 86 | 80.04 3 | 90.60 5 | 92.85 9 | 74.93 42 | 85.21 51 | 63.15 124 | 95.15 17 | 95.09 2 |
|
ZNCC-MVS | | | 83.12 20 | 83.68 20 | 81.45 27 | 89.14 25 | 73.28 42 | 86.32 20 | 85.97 23 | 67.39 58 | 84.02 65 | 90.39 58 | 74.73 43 | 86.46 15 | 80.73 7 | 94.43 37 | 84.60 101 |
|
zzz-MVS | | | 83.01 23 | 83.63 22 | 81.13 33 | 91.16 2 | 78.16 11 | 82.72 50 | 80.63 116 | 72.08 33 | 84.93 50 | 90.79 41 | 74.65 44 | 84.42 64 | 80.98 4 | 94.75 26 | 80.82 184 |
|
MTAPA | | | 83.19 18 | 83.87 17 | 81.13 33 | 91.16 2 | 78.16 11 | 84.87 27 | 80.63 116 | 72.08 33 | 84.93 50 | 90.79 41 | 74.65 44 | 84.42 64 | 80.98 4 | 94.75 26 | 80.82 184 |
|
9.14 | | | | 80.22 55 | | 80.68 125 | | 80.35 67 | 87.69 10 | 59.90 123 | 83.00 74 | 88.20 104 | 74.57 46 | 81.75 108 | 73.75 50 | 93.78 55 | |
|
MP-MVS | | | 83.19 18 | 83.54 23 | 82.14 20 | 90.54 5 | 79.00 8 | 86.42 19 | 83.59 74 | 71.31 37 | 81.26 94 | 90.96 37 | 74.57 46 | 84.69 60 | 78.41 22 | 94.78 25 | 82.74 150 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DTE-MVSNet | | | 80.35 50 | 82.89 35 | 72.74 141 | 89.84 8 | 37.34 300 | 77.16 105 | 81.81 95 | 80.45 2 | 90.92 2 | 92.95 7 | 74.57 46 | 86.12 27 | 63.65 121 | 94.68 30 | 94.76 6 |
|
XVG-OURS-SEG-HR | | | 79.62 55 | 79.99 57 | 78.49 64 | 86.46 49 | 74.79 30 | 77.15 106 | 85.39 32 | 66.73 64 | 80.39 106 | 88.85 95 | 74.43 49 | 78.33 171 | 74.73 43 | 85.79 178 | 82.35 159 |
|
SD-MVS | | | 80.28 52 | 81.55 48 | 76.47 86 | 83.57 89 | 67.83 78 | 83.39 45 | 85.35 33 | 64.42 88 | 86.14 34 | 87.07 117 | 74.02 50 | 80.97 122 | 77.70 28 | 92.32 80 | 80.62 190 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
XVS | | | 83.51 15 | 83.73 19 | 82.85 8 | 89.43 16 | 77.61 14 | 86.80 14 | 84.66 50 | 72.71 23 | 82.87 76 | 90.39 58 | 73.86 51 | 86.31 19 | 78.84 20 | 94.03 51 | 84.64 96 |
|
X-MVStestdata | | | 76.81 79 | 74.79 97 | 82.85 8 | 89.43 16 | 77.61 14 | 86.80 14 | 84.66 50 | 72.71 23 | 82.87 76 | 9.95 347 | 73.86 51 | 86.31 19 | 78.84 20 | 94.03 51 | 84.64 96 |
|
jajsoiax | | | 78.51 67 | 78.16 73 | 79.59 50 | 84.65 76 | 73.83 37 | 80.42 64 | 76.12 179 | 51.33 216 | 87.19 25 | 91.51 28 | 73.79 53 | 78.44 165 | 68.27 83 | 90.13 122 | 86.49 64 |
|
xxxxxxxxxxxxxcwj | | | 80.31 51 | 80.94 50 | 78.42 66 | 87.00 41 | 67.23 82 | 79.24 79 | 88.61 4 | 56.65 156 | 84.29 61 | 89.18 84 | 73.73 54 | 83.22 83 | 76.01 33 | 93.77 56 | 84.81 92 |
|
SF-MVS | | | 80.72 45 | 81.80 42 | 77.48 76 | 82.03 111 | 64.40 105 | 83.41 44 | 88.46 5 | 65.28 78 | 84.29 61 | 89.18 84 | 73.73 54 | 83.22 83 | 76.01 33 | 93.77 56 | 84.81 92 |
|
GST-MVS | | | 82.79 25 | 83.27 29 | 81.34 30 | 88.99 27 | 73.29 41 | 85.94 22 | 85.13 35 | 68.58 54 | 84.14 64 | 90.21 66 | 73.37 56 | 86.41 16 | 79.09 19 | 93.98 54 | 84.30 114 |
|
wuyk23d | | | 61.97 239 | 66.25 204 | 49.12 306 | 58.19 330 | 60.77 133 | 66.32 237 | 52.97 310 | 55.93 162 | 90.62 4 | 86.91 120 | 73.07 57 | 35.98 344 | 20.63 345 | 91.63 87 | 50.62 335 |
|
TranMVSNet+NR-MVSNet | | | 76.13 83 | 77.66 76 | 71.56 155 | 84.61 77 | 42.57 261 | 70.98 178 | 78.29 156 | 68.67 53 | 83.04 73 | 89.26 81 | 72.99 58 | 80.75 128 | 55.58 183 | 95.47 10 | 91.35 11 |
|
pmmvs6 | | | 71.82 143 | 73.66 114 | 66.31 223 | 75.94 184 | 42.01 263 | 66.99 229 | 72.53 209 | 63.45 99 | 76.43 162 | 92.78 10 | 72.95 59 | 69.69 259 | 51.41 210 | 90.46 114 | 87.22 54 |
|
DeepC-MVS | | 72.44 4 | 81.00 42 | 80.83 52 | 81.50 24 | 86.70 47 | 70.03 62 | 82.06 53 | 87.00 14 | 59.89 124 | 80.91 100 | 90.53 48 | 72.19 60 | 88.56 1 | 73.67 51 | 94.52 33 | 85.92 72 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
canonicalmvs | | | 72.29 139 | 73.38 119 | 69.04 187 | 74.23 210 | 47.37 223 | 73.93 143 | 83.18 77 | 54.36 182 | 76.61 156 | 81.64 202 | 72.03 61 | 75.34 209 | 57.12 165 | 87.28 161 | 84.40 109 |
|
SMA-MVS | | | 82.12 30 | 82.68 38 | 80.43 40 | 88.90 30 | 69.52 64 | 85.12 26 | 84.76 45 | 63.53 97 | 84.23 63 | 91.47 29 | 72.02 62 | 87.16 7 | 79.74 10 | 94.36 42 | 84.61 99 |
|
CPTT-MVS | | | 81.51 36 | 81.76 43 | 80.76 38 | 89.20 24 | 78.75 9 | 86.48 18 | 82.03 92 | 68.80 50 | 80.92 99 | 88.52 97 | 72.00 63 | 82.39 97 | 74.80 41 | 93.04 67 | 81.14 176 |
|
ETH3D cwj APD-0.16 | | | 78.38 71 | 78.72 68 | 77.38 77 | 80.09 131 | 66.16 90 | 79.08 82 | 86.13 20 | 57.55 146 | 80.93 98 | 87.76 112 | 71.98 64 | 82.73 93 | 72.11 64 | 92.83 70 | 83.25 135 |
|
ETH3D-3000-0.1 | | | 79.14 60 | 79.80 59 | 77.16 80 | 80.67 126 | 64.57 102 | 80.26 68 | 87.60 11 | 60.74 118 | 82.47 81 | 88.03 109 | 71.73 65 | 81.81 106 | 73.12 53 | 93.61 59 | 85.09 86 |
|
DP-MVS | | | 78.44 70 | 79.29 63 | 75.90 92 | 81.86 114 | 65.33 95 | 79.05 83 | 84.63 52 | 74.83 15 | 80.41 105 | 86.27 144 | 71.68 66 | 83.45 79 | 62.45 128 | 92.40 78 | 78.92 211 |
|
nrg030 | | | 74.87 101 | 75.99 89 | 71.52 156 | 74.90 196 | 49.88 199 | 74.10 142 | 82.58 87 | 54.55 180 | 83.50 71 | 89.21 83 | 71.51 67 | 75.74 205 | 61.24 134 | 92.34 79 | 88.94 35 |
|
OMC-MVS | | | 79.41 58 | 78.79 66 | 81.28 32 | 80.62 127 | 70.71 56 | 80.91 60 | 84.76 45 | 62.54 106 | 81.77 86 | 86.65 134 | 71.46 68 | 83.53 77 | 67.95 90 | 92.44 77 | 89.60 22 |
|
anonymousdsp | | | 78.60 65 | 77.80 75 | 81.00 35 | 78.01 158 | 74.34 33 | 80.09 71 | 76.12 179 | 50.51 223 | 89.19 9 | 90.88 38 | 71.45 69 | 77.78 182 | 73.38 52 | 90.60 113 | 90.90 16 |
|
LTVRE_ROB | | 75.46 1 | 84.22 6 | 84.98 6 | 81.94 21 | 84.82 72 | 75.40 26 | 91.60 1 | 87.80 7 | 73.52 20 | 88.90 10 | 93.06 6 | 71.39 70 | 81.53 110 | 81.53 3 | 92.15 81 | 88.91 36 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
RPSCF | | | 75.76 86 | 74.37 103 | 79.93 44 | 74.81 198 | 77.53 16 | 77.53 100 | 79.30 137 | 59.44 127 | 78.88 120 | 89.80 73 | 71.26 71 | 73.09 227 | 57.45 162 | 80.89 238 | 89.17 29 |
|
MVS_111021_HR | | | 72.98 128 | 72.97 130 | 72.99 132 | 80.82 124 | 65.47 94 | 68.81 201 | 72.77 206 | 57.67 143 | 75.76 166 | 82.38 193 | 71.01 72 | 77.17 188 | 61.38 133 | 86.15 174 | 76.32 232 |
|
AdaColmap | | | 74.22 106 | 74.56 99 | 73.20 127 | 81.95 112 | 60.97 128 | 79.43 76 | 80.90 114 | 65.57 72 | 72.54 207 | 81.76 200 | 70.98 73 | 85.26 48 | 47.88 238 | 90.00 123 | 73.37 253 |
|
Regformer-2 | | | 75.32 91 | 74.47 101 | 77.88 72 | 74.22 211 | 66.65 86 | 72.77 151 | 77.54 166 | 68.47 55 | 80.44 104 | 72.08 290 | 70.60 74 | 80.97 122 | 70.08 73 | 84.02 205 | 86.01 70 |
|
AllTest | | | 77.66 74 | 77.43 77 | 78.35 67 | 79.19 144 | 70.81 53 | 78.60 87 | 88.64 2 | 65.37 76 | 80.09 109 | 88.17 105 | 70.33 75 | 78.43 166 | 55.60 180 | 90.90 107 | 85.81 73 |
|
TestCases | | | | | 78.35 67 | 79.19 144 | 70.81 53 | | 88.64 2 | 65.37 76 | 80.09 109 | 88.17 105 | 70.33 75 | 78.43 166 | 55.60 180 | 90.90 107 | 85.81 73 |
|
ITE_SJBPF | | | | | 80.35 42 | 76.94 171 | 73.60 38 | | 80.48 120 | 66.87 61 | 83.64 70 | 86.18 147 | 70.25 77 | 79.90 144 | 61.12 137 | 88.95 140 | 87.56 51 |
|
CDPH-MVS | | | 77.33 77 | 77.06 82 | 78.14 70 | 84.21 84 | 63.98 108 | 76.07 118 | 83.45 75 | 54.20 183 | 77.68 137 | 87.18 113 | 69.98 78 | 85.37 45 | 68.01 87 | 92.72 75 | 85.08 88 |
|
Effi-MVS+ | | | 72.10 140 | 72.28 138 | 71.58 154 | 74.21 214 | 50.33 192 | 74.72 136 | 82.73 84 | 62.62 105 | 70.77 228 | 76.83 253 | 69.96 79 | 80.97 122 | 60.20 142 | 78.43 263 | 83.45 130 |
|
UA-Net | | | 81.56 35 | 82.28 40 | 79.40 52 | 88.91 29 | 69.16 70 | 84.67 30 | 80.01 130 | 75.34 13 | 79.80 111 | 94.91 2 | 69.79 80 | 80.25 137 | 72.63 56 | 94.46 35 | 88.78 40 |
|
CLD-MVS | | | 72.88 130 | 72.36 136 | 74.43 107 | 77.03 169 | 54.30 173 | 68.77 204 | 83.43 76 | 52.12 205 | 76.79 153 | 74.44 272 | 69.54 81 | 83.91 70 | 55.88 178 | 93.25 66 | 85.09 86 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Regformer-1 | | | 74.28 105 | 73.63 115 | 76.21 90 | 74.22 211 | 64.12 107 | 72.77 151 | 75.46 186 | 66.86 62 | 79.27 116 | 72.08 290 | 69.29 82 | 78.74 157 | 68.73 79 | 84.02 205 | 85.77 78 |
|
LS3D | | | 80.99 43 | 80.85 51 | 81.41 28 | 78.37 153 | 71.37 48 | 87.45 6 | 85.87 25 | 77.48 9 | 81.98 84 | 89.95 71 | 69.14 83 | 85.26 48 | 66.15 101 | 91.24 96 | 87.61 50 |
|
XVG-ACMP-BASELINE | | | 80.54 46 | 81.06 49 | 78.98 57 | 87.01 40 | 72.91 43 | 80.23 70 | 85.56 26 | 66.56 66 | 85.64 40 | 89.57 76 | 69.12 84 | 80.55 131 | 72.51 58 | 93.37 63 | 83.48 127 |
|
Regformer-4 | | | 74.64 103 | 73.67 113 | 77.55 74 | 74.74 200 | 64.49 104 | 72.91 148 | 75.42 187 | 67.45 57 | 80.24 108 | 72.07 292 | 68.98 85 | 80.19 141 | 70.29 71 | 80.91 236 | 87.98 45 |
|
MVS_111021_LR | | | 72.10 140 | 71.82 144 | 72.95 134 | 79.53 137 | 73.90 36 | 70.45 184 | 66.64 248 | 56.87 151 | 76.81 152 | 81.76 200 | 68.78 86 | 71.76 245 | 61.81 129 | 83.74 209 | 73.18 255 |
|
Fast-Effi-MVS+ | | | 68.81 177 | 68.30 183 | 70.35 168 | 74.66 205 | 48.61 206 | 66.06 239 | 78.32 154 | 50.62 222 | 71.48 222 | 75.54 260 | 68.75 87 | 79.59 148 | 50.55 217 | 78.73 260 | 82.86 146 |
|
ETH3 D test6400 | | | 75.73 87 | 76.00 88 | 74.92 102 | 81.75 115 | 56.93 158 | 78.31 91 | 84.60 54 | 52.83 199 | 77.15 141 | 85.14 164 | 68.59 88 | 84.03 69 | 65.44 107 | 90.20 117 | 83.82 120 |
|
DeepPCF-MVS | | 71.07 5 | 78.48 69 | 77.14 81 | 82.52 17 | 84.39 83 | 77.04 21 | 76.35 113 | 84.05 68 | 56.66 155 | 80.27 107 | 85.31 162 | 68.56 89 | 87.03 10 | 67.39 95 | 91.26 95 | 83.50 126 |
|
CP-MVSNet | | | 79.48 57 | 81.65 46 | 72.98 133 | 89.66 13 | 39.06 284 | 76.76 109 | 80.46 121 | 78.91 6 | 90.32 6 | 91.70 24 | 68.49 90 | 84.89 56 | 63.40 123 | 95.12 18 | 95.01 4 |
|
LCM-MVSNet-Re | | | 69.10 174 | 71.57 149 | 61.70 258 | 70.37 252 | 34.30 319 | 61.45 282 | 79.62 132 | 56.81 152 | 89.59 7 | 88.16 107 | 68.44 91 | 72.94 228 | 42.30 265 | 87.33 159 | 77.85 224 |
|
CNVR-MVS | | | 78.49 68 | 78.59 70 | 78.16 69 | 85.86 61 | 67.40 80 | 78.12 96 | 81.50 99 | 63.92 92 | 77.51 138 | 86.56 138 | 68.43 92 | 84.82 58 | 73.83 49 | 91.61 88 | 82.26 162 |
|
segment_acmp | | | | | | | | | | | | | 68.30 93 | | | | |
|
cdsmvs_eth3d_5k | | | 17.71 320 | 23.62 322 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 70.17 235 | 0.00 352 | 0.00 353 | 74.25 275 | 68.16 94 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
WR-MVS_H | | | 80.22 53 | 82.17 41 | 74.39 108 | 89.46 15 | 42.69 259 | 78.24 93 | 82.24 89 | 78.21 8 | 89.57 8 | 92.10 18 | 68.05 95 | 85.59 43 | 66.04 103 | 95.62 9 | 94.88 5 |
|
test_djsdf | | | 78.88 63 | 78.27 72 | 80.70 39 | 81.42 119 | 71.24 50 | 83.98 33 | 75.72 183 | 52.27 203 | 87.37 24 | 92.25 16 | 68.04 96 | 80.56 129 | 72.28 61 | 91.15 98 | 90.32 20 |
|
v7n | | | 79.37 59 | 80.41 54 | 76.28 88 | 78.67 152 | 55.81 164 | 79.22 81 | 82.51 88 | 70.72 41 | 87.54 19 | 92.44 14 | 68.00 97 | 81.34 111 | 72.84 55 | 91.72 83 | 91.69 10 |
|
test_prior3 | | | 76.71 81 | 77.19 79 | 75.27 99 | 82.15 109 | 59.85 140 | 75.57 122 | 84.33 58 | 58.92 132 | 76.53 159 | 86.78 125 | 67.83 98 | 83.39 80 | 69.81 75 | 92.76 73 | 82.58 153 |
|
test_prior2 | | | | | | | | 75.57 122 | | 58.92 132 | 76.53 159 | 86.78 125 | 67.83 98 | | 69.81 75 | 92.76 73 | |
|
NCCC | | | 78.25 72 | 78.04 74 | 78.89 59 | 85.61 62 | 69.45 65 | 79.80 75 | 80.99 113 | 65.77 70 | 75.55 169 | 86.25 146 | 67.42 100 | 85.42 44 | 70.10 72 | 90.88 109 | 81.81 169 |
|
baseline | | | 73.10 121 | 73.96 109 | 70.51 166 | 71.46 240 | 46.39 233 | 72.08 157 | 84.40 57 | 55.95 161 | 76.62 155 | 86.46 141 | 67.20 101 | 78.03 178 | 64.22 115 | 87.27 162 | 87.11 58 |
|
casdiffmvs | | | 73.06 123 | 73.84 110 | 70.72 162 | 71.32 241 | 46.71 229 | 70.93 179 | 84.26 62 | 55.62 164 | 77.46 139 | 87.10 114 | 67.09 102 | 77.81 180 | 63.95 117 | 86.83 168 | 87.64 49 |
|
Regformer-3 | | | 72.86 131 | 72.28 138 | 74.62 104 | 74.74 200 | 60.18 137 | 72.91 148 | 71.76 214 | 64.74 85 | 78.42 126 | 72.07 292 | 67.00 103 | 76.28 200 | 67.97 89 | 80.91 236 | 87.39 52 |
|
TAPA-MVS | | 65.27 12 | 75.16 94 | 74.29 105 | 77.77 73 | 74.86 197 | 68.08 75 | 77.89 97 | 84.04 69 | 55.15 169 | 76.19 165 | 83.39 180 | 66.91 104 | 80.11 142 | 60.04 147 | 90.14 121 | 85.13 85 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TEST9 | | | | | | 85.47 63 | 69.32 68 | 76.42 111 | 78.69 147 | 53.73 192 | 76.97 143 | 86.74 128 | 66.84 105 | 81.10 117 | | | |
|
OPU-MVS | | | | | 78.65 62 | 83.44 93 | 66.85 84 | 83.62 39 | | | | 86.12 151 | 66.82 106 | 86.01 28 | 61.72 130 | 89.79 129 | 83.08 139 |
|
XVG-OURS | | | 79.51 56 | 79.82 58 | 78.58 63 | 86.11 57 | 74.96 29 | 76.33 115 | 84.95 41 | 66.89 60 | 82.75 79 | 88.99 92 | 66.82 106 | 78.37 169 | 74.80 41 | 90.76 111 | 82.40 158 |
|
train_agg | | | 76.38 82 | 76.55 83 | 75.86 93 | 85.47 63 | 69.32 68 | 76.42 111 | 78.69 147 | 54.00 187 | 76.97 143 | 86.74 128 | 66.60 108 | 81.10 117 | 72.50 59 | 91.56 89 | 77.15 227 |
|
test_8 | | | | | | 85.09 69 | 67.89 77 | 76.26 116 | 78.66 149 | 54.00 187 | 76.89 148 | 86.72 130 | 66.60 108 | 80.89 127 | | | |
|
agg_prior1 | | | 75.89 84 | 76.41 84 | 74.31 110 | 84.44 81 | 66.02 91 | 76.12 117 | 78.62 150 | 54.40 181 | 76.95 145 | 86.85 122 | 66.44 110 | 80.34 134 | 72.45 60 | 91.42 92 | 76.57 231 |
|
Anonymous20231211 | | | 75.54 89 | 77.19 79 | 70.59 164 | 77.67 164 | 45.70 238 | 74.73 135 | 80.19 126 | 68.80 50 | 82.95 75 | 92.91 8 | 66.26 111 | 76.76 196 | 58.41 158 | 92.77 72 | 89.30 25 |
|
EI-MVSNet-Vis-set | | | 72.78 132 | 71.87 142 | 75.54 96 | 74.77 199 | 59.02 148 | 72.24 155 | 71.56 218 | 63.92 92 | 78.59 122 | 71.59 298 | 66.22 112 | 78.60 159 | 67.58 92 | 80.32 244 | 89.00 33 |
|
EI-MVSNet-UG-set | | | 72.63 135 | 71.68 146 | 75.47 97 | 74.67 203 | 58.64 153 | 72.02 158 | 71.50 219 | 63.53 97 | 78.58 124 | 71.39 301 | 65.98 113 | 78.53 161 | 67.30 98 | 80.18 246 | 89.23 27 |
|
Anonymous20240529 | | | 72.56 136 | 73.79 112 | 68.86 194 | 76.89 174 | 45.21 240 | 68.80 203 | 77.25 172 | 67.16 59 | 76.89 148 | 90.44 51 | 65.95 114 | 74.19 222 | 50.75 214 | 90.00 123 | 87.18 57 |
|
ETV-MVS | | | 72.72 133 | 72.16 141 | 74.38 109 | 76.90 173 | 55.95 162 | 73.34 146 | 84.67 49 | 62.04 109 | 72.19 212 | 70.81 302 | 65.90 115 | 85.24 50 | 58.64 155 | 84.96 192 | 81.95 167 |
|
TransMVSNet (Re) | | | 69.62 164 | 71.63 147 | 63.57 242 | 76.51 176 | 35.93 308 | 65.75 245 | 71.29 223 | 61.05 115 | 75.02 174 | 89.90 72 | 65.88 116 | 70.41 257 | 49.79 221 | 89.48 133 | 84.38 110 |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 78 | 76.33 86 | 79.70 48 | 83.90 88 | 67.94 76 | 80.06 73 | 83.75 71 | 56.73 154 | 74.88 177 | 85.32 161 | 65.54 117 | 87.79 2 | 65.61 106 | 91.14 99 | 83.35 133 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + MP. | | | 79.05 61 | 78.81 65 | 79.74 46 | 88.94 28 | 67.52 79 | 86.61 16 | 81.38 103 | 51.71 210 | 77.15 141 | 91.42 31 | 65.49 118 | 87.20 6 | 79.44 14 | 87.17 165 | 84.51 106 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HPM-MVS++ | | | 79.89 54 | 79.80 59 | 80.18 43 | 89.02 26 | 78.44 10 | 83.49 43 | 80.18 127 | 64.71 86 | 78.11 131 | 88.39 99 | 65.46 119 | 83.14 85 | 77.64 29 | 91.20 97 | 78.94 210 |
|
Fast-Effi-MVS+-dtu | | | 70.00 159 | 68.74 179 | 73.77 117 | 73.47 220 | 64.53 103 | 71.36 171 | 78.14 158 | 55.81 163 | 68.84 248 | 74.71 269 | 65.36 120 | 75.75 204 | 52.00 206 | 79.00 257 | 81.03 178 |
|
MCST-MVS | | | 73.42 116 | 73.34 121 | 73.63 120 | 81.28 121 | 59.17 146 | 74.80 133 | 83.13 79 | 45.50 257 | 72.84 203 | 83.78 178 | 65.15 121 | 80.99 121 | 64.54 112 | 89.09 139 | 80.73 188 |
|
PCF-MVS | | 63.80 13 | 72.70 134 | 71.69 145 | 75.72 94 | 78.10 156 | 60.01 139 | 73.04 147 | 81.50 99 | 45.34 261 | 79.66 112 | 84.35 171 | 65.15 121 | 82.65 94 | 48.70 230 | 89.38 135 | 84.50 107 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test12 | | | | | 76.51 84 | 82.28 107 | 60.94 129 | | 81.64 98 | | 73.60 193 | | 64.88 123 | 85.19 53 | | 90.42 115 | 83.38 131 |
|
Effi-MVS+-dtu | | | 75.43 90 | 72.28 138 | 84.91 2 | 77.05 167 | 83.58 1 | 78.47 89 | 77.70 164 | 57.68 141 | 74.89 176 | 78.13 244 | 64.80 124 | 84.26 68 | 56.46 172 | 85.32 185 | 86.88 60 |
|
mvs-test1 | | | 73.81 110 | 70.69 159 | 83.18 3 | 77.05 167 | 81.39 3 | 75.39 124 | 77.70 164 | 57.68 141 | 71.19 225 | 74.72 268 | 64.80 124 | 83.66 74 | 56.46 172 | 81.19 234 | 84.50 107 |
|
VPA-MVSNet | | | 68.71 179 | 70.37 161 | 63.72 241 | 76.13 181 | 38.06 294 | 64.10 262 | 71.48 220 | 56.60 158 | 74.10 189 | 88.31 102 | 64.78 126 | 69.72 258 | 47.69 240 | 90.15 120 | 83.37 132 |
|
F-COLMAP | | | 75.29 92 | 73.99 108 | 79.18 54 | 81.73 116 | 71.90 45 | 81.86 56 | 82.98 80 | 59.86 125 | 72.27 209 | 84.00 175 | 64.56 127 | 83.07 88 | 51.48 209 | 87.19 164 | 82.56 155 |
|
CS-MVS | | | 71.24 147 | 70.57 160 | 73.26 126 | 74.93 193 | 52.00 184 | 73.59 144 | 85.55 27 | 55.58 165 | 68.88 245 | 70.17 309 | 64.37 128 | 85.62 42 | 57.19 164 | 84.83 194 | 82.17 163 |
|
DP-MVS Recon | | | 73.57 114 | 72.69 132 | 76.23 89 | 82.85 99 | 63.39 111 | 74.32 140 | 82.96 81 | 57.75 140 | 70.35 232 | 81.98 196 | 64.34 129 | 84.41 66 | 49.69 222 | 89.95 125 | 80.89 182 |
|
114514_t | | | 73.40 117 | 73.33 122 | 73.64 119 | 84.15 86 | 57.11 157 | 78.20 94 | 80.02 129 | 43.76 271 | 72.55 206 | 86.07 154 | 64.00 130 | 83.35 82 | 60.14 145 | 91.03 102 | 80.45 193 |
|
pm-mvs1 | | | 68.40 182 | 69.85 165 | 64.04 239 | 73.10 229 | 39.94 279 | 64.61 258 | 70.50 232 | 55.52 166 | 73.97 191 | 89.33 79 | 63.91 131 | 68.38 266 | 49.68 223 | 88.02 146 | 83.81 122 |
|
UniMVSNet_NR-MVSNet | | | 74.90 100 | 75.65 91 | 72.64 144 | 83.04 96 | 45.79 235 | 69.26 196 | 78.81 144 | 66.66 65 | 81.74 88 | 86.88 121 | 63.26 132 | 81.07 119 | 56.21 175 | 94.98 20 | 91.05 13 |
|
MSLP-MVS++ | | | 74.48 104 | 75.78 90 | 70.59 164 | 84.66 75 | 62.40 116 | 78.65 86 | 84.24 63 | 60.55 120 | 77.71 136 | 81.98 196 | 63.12 133 | 77.64 184 | 62.95 125 | 88.14 144 | 71.73 270 |
|
UniMVSNet (Re) | | | 75.00 97 | 75.48 94 | 73.56 121 | 83.14 95 | 47.92 215 | 70.41 185 | 81.04 112 | 63.67 95 | 79.54 113 | 86.37 143 | 62.83 134 | 81.82 105 | 57.10 166 | 95.25 14 | 90.94 15 |
|
MIMVSNet1 | | | 66.57 202 | 69.23 170 | 58.59 281 | 81.26 122 | 37.73 297 | 64.06 263 | 57.62 286 | 57.02 149 | 78.40 127 | 90.75 43 | 62.65 135 | 58.10 308 | 41.77 270 | 89.58 132 | 79.95 199 |
|
xiu_mvs_v2_base | | | 64.43 219 | 63.96 218 | 65.85 227 | 77.72 163 | 51.32 188 | 63.63 268 | 72.31 212 | 45.06 265 | 61.70 282 | 69.66 311 | 62.56 136 | 73.93 224 | 49.06 227 | 73.91 289 | 72.31 264 |
|
Test By Simon | | | | | | | | | | | | | 62.56 136 | | | | |
|
Vis-MVSNet | | | 74.85 102 | 74.56 99 | 75.72 94 | 81.63 118 | 64.64 101 | 76.35 113 | 79.06 140 | 62.85 104 | 73.33 198 | 88.41 98 | 62.54 138 | 79.59 148 | 63.94 119 | 82.92 215 | 82.94 143 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
NR-MVSNet | | | 73.62 113 | 74.05 107 | 72.33 150 | 83.50 90 | 43.71 248 | 65.65 246 | 77.32 170 | 64.32 89 | 75.59 168 | 87.08 115 | 62.45 139 | 81.34 111 | 54.90 186 | 95.63 8 | 91.93 8 |
|
pcd_1.5k_mvsjas | | | 5.20 323 | 6.93 325 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 62.39 140 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
PS-MVSNAJss | | | 77.54 75 | 77.35 78 | 78.13 71 | 84.88 71 | 66.37 88 | 78.55 88 | 79.59 135 | 53.48 194 | 86.29 31 | 92.43 15 | 62.39 140 | 80.25 137 | 67.90 91 | 90.61 112 | 87.77 47 |
|
PS-MVSNAJ | | | 64.27 222 | 63.73 221 | 65.90 226 | 77.82 161 | 51.42 187 | 63.33 271 | 72.33 211 | 45.09 264 | 61.60 283 | 68.04 322 | 62.39 140 | 73.95 223 | 49.07 226 | 73.87 290 | 72.34 263 |
|
PHI-MVS | | | 74.92 98 | 74.36 104 | 76.61 82 | 76.40 177 | 62.32 118 | 80.38 65 | 83.15 78 | 54.16 185 | 73.23 200 | 80.75 208 | 62.19 143 | 83.86 71 | 68.02 86 | 90.92 106 | 83.65 125 |
|
MVS_Test | | | 69.84 162 | 70.71 158 | 67.24 212 | 67.49 275 | 43.25 255 | 69.87 189 | 81.22 108 | 52.69 201 | 71.57 219 | 86.68 131 | 62.09 144 | 74.51 219 | 66.05 102 | 78.74 259 | 83.96 118 |
|
CSCG | | | 74.12 107 | 74.39 102 | 73.33 124 | 79.35 139 | 61.66 123 | 77.45 101 | 81.98 93 | 62.47 108 | 79.06 119 | 80.19 217 | 61.83 145 | 78.79 156 | 59.83 149 | 87.35 158 | 79.54 204 |
|
DU-MVS | | | 74.91 99 | 75.57 93 | 72.93 135 | 83.50 90 | 45.79 235 | 69.47 193 | 80.14 128 | 65.22 79 | 81.74 88 | 87.08 115 | 61.82 146 | 81.07 119 | 56.21 175 | 94.98 20 | 91.93 8 |
|
Baseline_NR-MVSNet | | | 70.62 154 | 73.19 123 | 62.92 251 | 76.97 170 | 34.44 318 | 68.84 199 | 70.88 230 | 60.25 121 | 79.50 114 | 90.53 48 | 61.82 146 | 69.11 262 | 54.67 189 | 95.27 13 | 85.22 82 |
|
原ACMM1 | | | | | 73.90 115 | 85.90 58 | 65.15 99 | | 81.67 97 | 50.97 219 | 74.25 187 | 86.16 149 | 61.60 148 | 83.54 76 | 56.75 167 | 91.08 101 | 73.00 256 |
|
PAPR | | | 69.20 172 | 68.66 181 | 70.82 161 | 75.15 192 | 47.77 217 | 75.31 125 | 81.11 109 | 49.62 233 | 66.33 260 | 79.27 229 | 61.53 149 | 82.96 89 | 48.12 236 | 81.50 232 | 81.74 170 |
|
API-MVS | | | 70.97 151 | 71.51 150 | 69.37 181 | 75.20 190 | 55.94 163 | 80.99 59 | 76.84 174 | 62.48 107 | 71.24 223 | 77.51 249 | 61.51 150 | 80.96 126 | 52.04 205 | 85.76 179 | 71.22 274 |
|
xiu_mvs_v1_base_debu | | | 67.87 189 | 67.07 199 | 70.26 169 | 79.13 146 | 61.90 120 | 67.34 222 | 71.25 224 | 47.98 244 | 67.70 253 | 74.19 277 | 61.31 151 | 72.62 232 | 56.51 169 | 78.26 265 | 76.27 233 |
|
xiu_mvs_v1_base | | | 67.87 189 | 67.07 199 | 70.26 169 | 79.13 146 | 61.90 120 | 67.34 222 | 71.25 224 | 47.98 244 | 67.70 253 | 74.19 277 | 61.31 151 | 72.62 232 | 56.51 169 | 78.26 265 | 76.27 233 |
|
xiu_mvs_v1_base_debi | | | 67.87 189 | 67.07 199 | 70.26 169 | 79.13 146 | 61.90 120 | 67.34 222 | 71.25 224 | 47.98 244 | 67.70 253 | 74.19 277 | 61.31 151 | 72.62 232 | 56.51 169 | 78.26 265 | 76.27 233 |
|
CNLPA | | | 73.44 115 | 73.03 128 | 74.66 103 | 78.27 154 | 75.29 27 | 75.99 119 | 78.49 152 | 65.39 75 | 75.67 167 | 83.22 188 | 61.23 154 | 66.77 280 | 53.70 200 | 85.33 184 | 81.92 168 |
|
MSDG | | | 67.47 196 | 67.48 195 | 67.46 210 | 70.70 247 | 54.69 171 | 66.90 231 | 78.17 157 | 60.88 117 | 70.41 231 | 74.76 266 | 61.22 155 | 73.18 226 | 47.38 241 | 76.87 271 | 74.49 246 |
|
CANet | | | 73.00 126 | 71.84 143 | 76.48 85 | 75.82 185 | 61.28 124 | 74.81 131 | 80.37 124 | 63.17 102 | 62.43 281 | 80.50 212 | 61.10 156 | 85.16 54 | 64.00 116 | 84.34 201 | 83.01 142 |
|
EG-PatchMatch MVS | | | 70.70 153 | 70.88 156 | 70.16 172 | 82.64 103 | 58.80 150 | 71.48 168 | 73.64 199 | 54.98 170 | 76.55 157 | 81.77 199 | 61.10 156 | 78.94 153 | 54.87 187 | 80.84 239 | 72.74 260 |
|
HQP_MVS | | | 78.77 64 | 78.78 67 | 78.72 60 | 85.18 66 | 65.18 97 | 82.74 48 | 85.49 28 | 65.45 73 | 78.23 128 | 89.11 89 | 60.83 158 | 86.15 25 | 71.09 67 | 90.94 103 | 84.82 90 |
|
plane_prior6 | | | | | | 84.18 85 | 65.31 96 | | | | | | 60.83 158 | | | | |
|
FMVSNet1 | | | 71.06 149 | 72.48 134 | 66.81 217 | 77.65 165 | 40.68 273 | 71.96 160 | 73.03 201 | 61.14 114 | 79.45 115 | 90.36 61 | 60.44 160 | 75.20 211 | 50.20 219 | 88.05 145 | 84.54 102 |
|
EIA-MVS | | | 68.59 181 | 67.16 198 | 72.90 136 | 75.18 191 | 55.64 166 | 69.39 194 | 81.29 104 | 52.44 202 | 64.53 268 | 70.69 303 | 60.33 161 | 82.30 100 | 54.27 196 | 76.31 274 | 80.75 187 |
|
BH-untuned | | | 69.39 169 | 69.46 166 | 69.18 185 | 77.96 159 | 56.88 159 | 68.47 210 | 77.53 167 | 56.77 153 | 77.79 134 | 79.63 224 | 60.30 162 | 80.20 140 | 46.04 249 | 80.65 241 | 70.47 279 |
|
PAPM_NR | | | 73.91 108 | 74.16 106 | 73.16 128 | 81.90 113 | 53.50 178 | 81.28 58 | 81.40 102 | 66.17 68 | 73.30 199 | 83.31 184 | 59.96 163 | 83.10 87 | 58.45 157 | 81.66 230 | 82.87 145 |
|
VDDNet | | | 71.60 145 | 73.13 125 | 67.02 216 | 86.29 50 | 41.11 268 | 69.97 187 | 66.50 249 | 68.72 52 | 74.74 179 | 91.70 24 | 59.90 164 | 75.81 203 | 48.58 232 | 91.72 83 | 84.15 116 |
|
VDD-MVS | | | 70.81 152 | 71.44 151 | 68.91 193 | 79.07 149 | 46.51 230 | 67.82 216 | 70.83 231 | 61.23 113 | 74.07 190 | 88.69 96 | 59.86 165 | 75.62 206 | 51.11 212 | 90.28 116 | 84.61 99 |
|
ANet_high | | | 67.08 199 | 69.94 163 | 58.51 282 | 57.55 331 | 27.09 338 | 58.43 300 | 76.80 175 | 63.56 96 | 82.40 82 | 91.93 20 | 59.82 166 | 64.98 288 | 50.10 220 | 88.86 141 | 83.46 129 |
|
3Dnovator+ | | 73.19 2 | 81.08 41 | 80.48 53 | 82.87 7 | 81.41 120 | 72.03 44 | 84.38 32 | 86.23 19 | 77.28 12 | 80.65 102 | 90.18 67 | 59.80 167 | 87.58 4 | 73.06 54 | 91.34 94 | 89.01 32 |
|
PLC | | 62.01 16 | 71.79 144 | 70.28 162 | 76.33 87 | 80.31 130 | 68.63 73 | 78.18 95 | 81.24 106 | 54.57 179 | 67.09 258 | 80.63 210 | 59.44 168 | 81.74 109 | 46.91 245 | 84.17 202 | 78.63 212 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TinyColmap | | | 67.98 188 | 69.28 168 | 64.08 237 | 67.98 270 | 46.82 227 | 70.04 186 | 75.26 189 | 53.05 196 | 77.36 140 | 86.79 124 | 59.39 169 | 72.59 235 | 45.64 251 | 88.01 147 | 72.83 258 |
|
FC-MVSNet-test | | | 73.32 119 | 74.78 98 | 68.93 192 | 79.21 143 | 36.57 302 | 71.82 166 | 79.54 136 | 57.63 145 | 82.57 80 | 90.38 60 | 59.38 170 | 78.99 152 | 57.91 161 | 94.56 32 | 91.23 12 |
|
V42 | | | 71.06 149 | 70.83 157 | 71.72 153 | 67.25 276 | 47.14 226 | 65.94 240 | 80.35 125 | 51.35 215 | 83.40 72 | 83.23 186 | 59.25 171 | 78.80 155 | 65.91 104 | 80.81 240 | 89.23 27 |
|
BH-RMVSNet | | | 68.69 180 | 68.20 188 | 70.14 173 | 76.40 177 | 53.90 177 | 64.62 257 | 73.48 200 | 58.01 137 | 73.91 192 | 81.78 198 | 59.09 172 | 78.22 173 | 48.59 231 | 77.96 268 | 78.31 216 |
|
alignmvs | | | 70.54 155 | 71.00 155 | 69.15 186 | 73.50 219 | 48.04 214 | 69.85 190 | 79.62 132 | 53.94 190 | 76.54 158 | 82.00 195 | 59.00 173 | 74.68 217 | 57.32 163 | 87.21 163 | 84.72 94 |
|
DELS-MVS | | | 68.83 176 | 68.31 182 | 70.38 167 | 70.55 251 | 48.31 208 | 63.78 267 | 82.13 90 | 54.00 187 | 68.96 244 | 75.17 264 | 58.95 174 | 80.06 143 | 58.55 156 | 82.74 217 | 82.76 149 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
VPNet | | | 65.58 207 | 67.56 193 | 59.65 276 | 79.72 134 | 30.17 332 | 60.27 291 | 62.14 269 | 54.19 184 | 71.24 223 | 86.63 135 | 58.80 175 | 67.62 271 | 44.17 258 | 90.87 110 | 81.18 175 |
|
mvs_anonymous | | | 65.08 212 | 65.49 207 | 63.83 240 | 63.79 301 | 37.60 298 | 66.52 236 | 69.82 236 | 43.44 275 | 73.46 196 | 86.08 153 | 58.79 176 | 71.75 246 | 51.90 207 | 75.63 278 | 82.15 164 |
|
v10 | | | 75.69 88 | 76.20 87 | 74.16 112 | 74.44 209 | 48.69 204 | 75.84 121 | 82.93 82 | 59.02 131 | 85.92 36 | 89.17 86 | 58.56 177 | 82.74 92 | 70.73 69 | 89.14 138 | 91.05 13 |
|
diffmvs | | | 67.42 197 | 67.50 194 | 67.20 213 | 62.26 308 | 45.21 240 | 64.87 254 | 77.04 173 | 48.21 242 | 71.74 214 | 79.70 223 | 58.40 178 | 71.17 249 | 64.99 109 | 80.27 245 | 85.22 82 |
|
FIs | | | 72.56 136 | 73.80 111 | 68.84 195 | 78.74 151 | 37.74 296 | 71.02 177 | 79.83 131 | 56.12 159 | 80.88 101 | 89.45 78 | 58.18 179 | 78.28 172 | 56.63 168 | 93.36 64 | 90.51 19 |
|
EI-MVSNet | | | 69.61 165 | 69.01 174 | 71.41 158 | 73.94 216 | 49.90 196 | 71.31 173 | 71.32 221 | 58.22 135 | 75.40 172 | 70.44 304 | 58.16 180 | 75.85 201 | 62.51 126 | 79.81 250 | 88.48 42 |
|
IterMVS-LS | | | 73.01 125 | 73.12 126 | 72.66 143 | 73.79 218 | 49.90 196 | 71.63 167 | 78.44 153 | 58.22 135 | 80.51 103 | 86.63 135 | 58.15 181 | 79.62 146 | 62.51 126 | 88.20 143 | 88.48 42 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HQP2-MVS | | | | | | | | | | | | | 58.09 182 | | | | |
|
HQP-MVS | | | 75.24 93 | 75.01 96 | 75.94 91 | 82.37 104 | 58.80 150 | 77.32 102 | 84.12 66 | 59.08 128 | 71.58 216 | 85.96 156 | 58.09 182 | 85.30 47 | 67.38 96 | 89.16 136 | 83.73 124 |
|
v8 | | | 75.07 96 | 75.64 92 | 73.35 123 | 73.42 221 | 47.46 222 | 75.20 126 | 81.45 101 | 60.05 122 | 85.64 40 | 89.26 81 | 58.08 184 | 81.80 107 | 69.71 77 | 87.97 148 | 90.79 17 |
|
v1144 | | | 73.29 120 | 73.39 118 | 73.01 131 | 74.12 215 | 48.11 212 | 72.01 159 | 81.08 111 | 53.83 191 | 81.77 86 | 84.68 166 | 58.07 185 | 81.91 104 | 68.10 84 | 86.86 167 | 88.99 34 |
|
v144192 | | | 72.99 127 | 73.06 127 | 72.77 139 | 74.58 207 | 47.48 221 | 71.90 164 | 80.44 122 | 51.57 212 | 81.46 92 | 84.11 174 | 58.04 186 | 82.12 103 | 67.98 88 | 87.47 155 | 88.70 41 |
|
ab-mvs | | | 64.11 223 | 65.13 211 | 61.05 265 | 71.99 237 | 38.03 295 | 67.59 217 | 68.79 240 | 49.08 237 | 65.32 265 | 86.26 145 | 58.02 187 | 66.85 278 | 39.33 281 | 79.79 252 | 78.27 217 |
|
testing_2 | | | 72.01 142 | 72.36 136 | 70.95 160 | 70.79 244 | 48.70 203 | 72.81 150 | 78.09 159 | 48.79 239 | 84.46 60 | 89.15 88 | 57.90 188 | 78.55 160 | 61.55 132 | 87.74 150 | 85.61 80 |
|
Gipuma | | | 69.55 166 | 72.83 131 | 59.70 275 | 63.63 303 | 53.97 175 | 80.08 72 | 75.93 181 | 64.24 90 | 73.49 195 | 88.93 94 | 57.89 189 | 62.46 295 | 59.75 150 | 91.55 90 | 62.67 321 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
TSAR-MVS + GP. | | | 73.08 122 | 71.60 148 | 77.54 75 | 78.99 150 | 70.73 55 | 74.96 128 | 69.38 238 | 60.73 119 | 74.39 186 | 78.44 240 | 57.72 190 | 82.78 91 | 60.16 144 | 89.60 131 | 79.11 209 |
|
WR-MVS | | | 71.20 148 | 72.48 134 | 67.36 211 | 84.98 70 | 35.70 310 | 64.43 260 | 68.66 241 | 65.05 82 | 81.49 91 | 86.43 142 | 57.57 191 | 76.48 198 | 50.36 218 | 93.32 65 | 89.90 21 |
|
LF4IMVS | | | 67.50 194 | 67.31 197 | 68.08 204 | 58.86 326 | 61.93 119 | 71.43 169 | 75.90 182 | 44.67 266 | 72.42 208 | 80.20 216 | 57.16 192 | 70.44 255 | 58.99 154 | 86.12 175 | 71.88 268 |
|
OurMVSNet-221017-0 | | | 78.57 66 | 78.53 71 | 78.67 61 | 80.48 128 | 64.16 106 | 80.24 69 | 82.06 91 | 61.89 110 | 88.77 11 | 93.32 4 | 57.15 193 | 82.60 95 | 70.08 73 | 92.80 71 | 89.25 26 |
|
v1192 | | | 73.40 117 | 73.42 117 | 73.32 125 | 74.65 206 | 48.67 205 | 72.21 156 | 81.73 96 | 52.76 200 | 81.85 85 | 84.56 168 | 57.12 194 | 82.24 102 | 68.58 80 | 87.33 159 | 89.06 31 |
|
DVP-MVS | | | 80.49 47 | 79.67 61 | 82.96 5 | 89.70 12 | 77.46 19 | 87.16 8 | 85.10 37 | 64.94 83 | 81.05 96 | 88.38 100 | 57.10 195 | 87.10 8 | 79.75 8 | 83.87 207 | 84.31 112 |
|
tfpnnormal | | | 66.48 203 | 67.93 190 | 62.16 256 | 73.40 222 | 36.65 301 | 63.45 269 | 64.99 257 | 55.97 160 | 72.82 204 | 87.80 111 | 57.06 196 | 69.10 263 | 48.31 235 | 87.54 152 | 80.72 189 |
|
MAR-MVS | | | 67.72 192 | 66.16 205 | 72.40 148 | 74.45 208 | 64.99 100 | 74.87 129 | 77.50 168 | 48.67 240 | 65.78 264 | 68.58 321 | 57.01 197 | 77.79 181 | 46.68 247 | 81.92 224 | 74.42 247 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
XXY-MVS | | | 55.19 278 | 57.40 269 | 48.56 308 | 64.45 298 | 34.84 317 | 51.54 319 | 53.59 306 | 38.99 297 | 63.79 274 | 79.43 226 | 56.59 198 | 45.57 324 | 36.92 300 | 71.29 300 | 65.25 312 |
|
v1921920 | | | 72.96 129 | 72.98 129 | 72.89 137 | 74.67 203 | 47.58 220 | 71.92 163 | 80.69 115 | 51.70 211 | 81.69 90 | 83.89 176 | 56.58 199 | 82.25 101 | 68.34 82 | 87.36 157 | 88.82 38 |
|
VNet | | | 64.01 225 | 65.15 210 | 60.57 269 | 73.28 224 | 35.61 311 | 57.60 303 | 67.08 246 | 54.61 178 | 66.76 259 | 83.37 182 | 56.28 200 | 66.87 276 | 42.19 266 | 85.20 187 | 79.23 208 |
|
v1240 | | | 73.06 123 | 73.14 124 | 72.84 138 | 74.74 200 | 47.27 225 | 71.88 165 | 81.11 109 | 51.80 209 | 82.28 83 | 84.21 172 | 56.22 201 | 82.34 99 | 68.82 78 | 87.17 165 | 88.91 36 |
|
MG-MVS | | | 70.47 156 | 71.34 152 | 67.85 206 | 79.26 141 | 40.42 277 | 74.67 138 | 75.15 191 | 58.41 134 | 68.74 249 | 88.14 108 | 56.08 202 | 83.69 73 | 59.90 148 | 81.71 229 | 79.43 206 |
|
v2v482 | | | 72.55 138 | 72.58 133 | 72.43 147 | 72.92 232 | 46.72 228 | 71.41 170 | 79.13 139 | 55.27 167 | 81.17 95 | 85.25 163 | 55.41 203 | 81.13 116 | 67.25 99 | 85.46 180 | 89.43 24 |
|
3Dnovator | | 65.95 11 | 71.50 146 | 71.22 153 | 72.34 149 | 73.16 225 | 63.09 114 | 78.37 90 | 78.32 154 | 57.67 143 | 72.22 211 | 84.61 167 | 54.77 204 | 78.47 163 | 60.82 140 | 81.07 235 | 75.45 238 |
|
v148 | | | 69.38 170 | 69.39 167 | 69.36 182 | 69.14 262 | 44.56 243 | 68.83 200 | 72.70 207 | 54.79 174 | 78.59 122 | 84.12 173 | 54.69 205 | 76.74 197 | 59.40 152 | 82.20 221 | 86.79 61 |
|
旧先验1 | | | | | | 84.55 78 | 60.36 136 | | 63.69 262 | | | 87.05 118 | 54.65 206 | | | 83.34 212 | 69.66 287 |
|
cl_fuxian | | | 69.82 163 | 69.89 164 | 69.61 180 | 66.24 284 | 43.48 251 | 68.12 213 | 79.61 134 | 51.43 214 | 77.72 135 | 80.18 218 | 54.61 207 | 78.15 177 | 63.62 122 | 87.50 154 | 87.20 56 |
|
BH-w/o | | | 64.81 214 | 64.29 217 | 66.36 222 | 76.08 183 | 54.71 170 | 65.61 247 | 75.23 190 | 50.10 227 | 71.05 227 | 71.86 297 | 54.33 208 | 79.02 151 | 38.20 290 | 76.14 275 | 65.36 311 |
|
ambc | | | | | 70.10 174 | 77.74 162 | 50.21 194 | 74.28 141 | 77.93 163 | | 79.26 117 | 88.29 103 | 54.11 209 | 79.77 145 | 64.43 113 | 91.10 100 | 80.30 195 |
|
QAPM | | | 69.18 173 | 69.26 169 | 68.94 191 | 71.61 239 | 52.58 183 | 80.37 66 | 78.79 146 | 49.63 232 | 73.51 194 | 85.14 164 | 53.66 210 | 79.12 150 | 55.11 185 | 75.54 279 | 75.11 242 |
|
miper_ehance_all_eth | | | 68.36 183 | 68.16 189 | 68.98 189 | 65.14 294 | 43.34 253 | 67.07 228 | 78.92 143 | 49.11 236 | 76.21 164 | 77.72 246 | 53.48 211 | 77.92 179 | 61.16 136 | 84.59 197 | 85.68 79 |
|
IS-MVSNet | | | 75.10 95 | 75.42 95 | 74.15 113 | 79.23 142 | 48.05 213 | 79.43 76 | 78.04 160 | 70.09 46 | 79.17 118 | 88.02 110 | 53.04 212 | 83.60 75 | 58.05 160 | 93.76 58 | 90.79 17 |
|
1121 | | | 69.23 171 | 68.26 184 | 72.12 152 | 88.36 36 | 71.40 47 | 68.59 205 | 62.06 272 | 43.80 270 | 74.75 178 | 86.18 147 | 52.92 213 | 76.85 194 | 54.47 191 | 83.27 213 | 68.12 296 |
|
新几何1 | | | | | 69.99 176 | 88.37 35 | 71.34 49 | | 62.08 271 | 43.85 269 | 74.99 175 | 86.11 152 | 52.85 214 | 70.57 253 | 50.99 213 | 83.23 214 | 68.05 297 |
|
OpenMVS | | 62.51 15 | 68.76 178 | 68.75 178 | 68.78 196 | 70.56 250 | 53.91 176 | 78.29 92 | 77.35 169 | 48.85 238 | 70.22 234 | 83.52 179 | 52.65 215 | 76.93 191 | 55.31 184 | 81.99 223 | 75.49 237 |
|
UGNet | | | 70.20 157 | 69.05 172 | 73.65 118 | 76.24 179 | 63.64 109 | 75.87 120 | 72.53 209 | 61.48 112 | 60.93 291 | 86.14 150 | 52.37 216 | 77.12 189 | 50.67 215 | 85.21 186 | 80.17 198 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous202405211 | | | 66.02 204 | 66.89 202 | 63.43 245 | 74.22 211 | 38.14 292 | 59.00 297 | 66.13 250 | 63.33 101 | 69.76 238 | 85.95 157 | 51.88 217 | 70.50 254 | 44.23 257 | 87.52 153 | 81.64 171 |
|
PVSNet_BlendedMVS | | | 65.38 208 | 64.30 216 | 68.61 197 | 69.81 255 | 49.36 200 | 65.60 248 | 78.96 141 | 45.50 257 | 59.98 294 | 78.61 238 | 51.82 218 | 78.20 174 | 44.30 255 | 84.11 203 | 78.27 217 |
|
PVSNet_Blended | | | 62.90 233 | 61.64 236 | 66.69 220 | 69.81 255 | 49.36 200 | 61.23 285 | 78.96 141 | 42.04 282 | 59.98 294 | 68.86 319 | 51.82 218 | 78.20 174 | 44.30 255 | 77.77 270 | 72.52 261 |
|
testgi | | | 54.00 285 | 56.86 272 | 45.45 316 | 58.20 329 | 25.81 342 | 49.05 322 | 49.50 320 | 45.43 260 | 67.84 252 | 81.17 206 | 51.81 220 | 43.20 336 | 29.30 329 | 79.41 255 | 67.34 301 |
|
EPNet | | | 69.10 174 | 67.32 196 | 74.46 105 | 68.33 266 | 61.27 125 | 77.56 99 | 63.57 263 | 60.95 116 | 56.62 307 | 82.75 189 | 51.53 221 | 81.24 114 | 54.36 195 | 90.20 117 | 80.88 183 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PVSNet_Blended_VisFu | | | 70.04 158 | 68.88 175 | 73.53 122 | 82.71 101 | 63.62 110 | 74.81 131 | 81.95 94 | 48.53 241 | 67.16 257 | 79.18 232 | 51.42 222 | 78.38 168 | 54.39 194 | 79.72 253 | 78.60 213 |
|
DPM-MVS | | | 69.98 160 | 69.22 171 | 72.26 151 | 82.69 102 | 58.82 149 | 70.53 183 | 81.23 107 | 47.79 248 | 64.16 270 | 80.21 215 | 51.32 223 | 83.12 86 | 60.14 145 | 84.95 193 | 74.83 244 |
|
TR-MVS | | | 64.59 215 | 63.54 223 | 67.73 209 | 75.75 187 | 50.83 190 | 63.39 270 | 70.29 234 | 49.33 234 | 71.55 220 | 74.55 270 | 50.94 224 | 78.46 164 | 40.43 277 | 75.69 277 | 73.89 251 |
|
MVS | | | 60.62 251 | 59.97 250 | 62.58 253 | 68.13 268 | 47.28 224 | 68.59 205 | 73.96 198 | 32.19 327 | 59.94 296 | 68.86 319 | 50.48 225 | 77.64 184 | 41.85 269 | 75.74 276 | 62.83 319 |
|
SixPastTwentyTwo | | | 75.77 85 | 76.34 85 | 74.06 114 | 81.69 117 | 54.84 169 | 76.47 110 | 75.49 185 | 64.10 91 | 87.73 17 | 92.24 17 | 50.45 226 | 81.30 113 | 67.41 94 | 91.46 91 | 86.04 69 |
|
PatchMatch-RL | | | 58.68 264 | 57.72 266 | 61.57 259 | 76.21 180 | 73.59 39 | 61.83 280 | 49.00 322 | 47.30 252 | 61.08 287 | 68.97 316 | 50.16 227 | 59.01 305 | 36.06 305 | 68.84 314 | 52.10 334 |
|
eth_miper_zixun_eth | | | 69.42 168 | 68.73 180 | 71.50 157 | 67.99 269 | 46.42 231 | 67.58 218 | 78.81 144 | 50.72 221 | 78.13 130 | 80.34 214 | 50.15 228 | 80.34 134 | 60.18 143 | 84.65 195 | 87.74 48 |
|
miper_enhance_ethall | | | 65.86 205 | 65.05 215 | 68.28 203 | 61.62 311 | 42.62 260 | 64.74 255 | 77.97 161 | 42.52 280 | 73.42 197 | 72.79 287 | 49.66 229 | 77.68 183 | 58.12 159 | 84.59 197 | 84.54 102 |
|
K. test v3 | | | 73.67 112 | 73.61 116 | 73.87 116 | 79.78 133 | 55.62 167 | 74.69 137 | 62.04 274 | 66.16 69 | 84.76 54 | 93.23 5 | 49.47 230 | 80.97 122 | 65.66 105 | 86.67 171 | 85.02 89 |
|
EPP-MVSNet | | | 73.86 109 | 73.38 119 | 75.31 98 | 78.19 155 | 53.35 180 | 80.45 63 | 77.32 170 | 65.11 81 | 76.47 161 | 86.80 123 | 49.47 230 | 83.77 72 | 53.89 198 | 92.72 75 | 88.81 39 |
|
cascas | | | 64.59 215 | 62.77 230 | 70.05 175 | 75.27 189 | 50.02 195 | 61.79 281 | 71.61 216 | 42.46 281 | 63.68 275 | 68.89 318 | 49.33 232 | 80.35 133 | 47.82 239 | 84.05 204 | 79.78 202 |
|
MDA-MVSNet-bldmvs | | | 62.34 238 | 61.73 234 | 64.16 235 | 61.64 310 | 49.90 196 | 48.11 326 | 57.24 292 | 53.31 195 | 80.95 97 | 79.39 227 | 49.00 233 | 61.55 299 | 45.92 250 | 80.05 247 | 81.03 178 |
|
testdata | | | | | 64.13 236 | 85.87 60 | 63.34 112 | | 61.80 275 | 47.83 247 | 76.42 163 | 86.60 137 | 48.83 234 | 62.31 297 | 54.46 193 | 81.26 233 | 66.74 306 |
|
cl-mvsnet_ | | | 68.26 187 | 68.26 184 | 68.29 201 | 64.98 295 | 43.67 249 | 65.89 241 | 74.67 193 | 50.04 228 | 76.86 150 | 82.42 192 | 48.74 235 | 75.38 207 | 60.92 139 | 89.81 127 | 85.80 77 |
|
cl-mvsnet1 | | | 68.27 186 | 68.26 184 | 68.29 201 | 64.98 295 | 43.67 249 | 65.89 241 | 74.67 193 | 50.04 228 | 76.86 150 | 82.43 191 | 48.74 235 | 75.38 207 | 60.94 138 | 89.81 127 | 85.81 73 |
|
GBi-Net | | | 68.30 184 | 68.79 176 | 66.81 217 | 73.14 226 | 40.68 273 | 71.96 160 | 73.03 201 | 54.81 171 | 74.72 180 | 90.36 61 | 48.63 237 | 75.20 211 | 47.12 242 | 85.37 181 | 84.54 102 |
|
test1 | | | 68.30 184 | 68.79 176 | 66.81 217 | 73.14 226 | 40.68 273 | 71.96 160 | 73.03 201 | 54.81 171 | 74.72 180 | 90.36 61 | 48.63 237 | 75.20 211 | 47.12 242 | 85.37 181 | 84.54 102 |
|
FMVSNet2 | | | 67.48 195 | 68.21 187 | 65.29 228 | 73.14 226 | 38.94 286 | 68.81 201 | 71.21 227 | 54.81 171 | 76.73 154 | 86.48 140 | 48.63 237 | 74.60 218 | 47.98 237 | 86.11 176 | 82.35 159 |
|
test222 | | | | | | 87.30 39 | 69.15 71 | 67.85 215 | 59.59 281 | 41.06 286 | 73.05 202 | 85.72 159 | 48.03 240 | | | 80.65 241 | 66.92 302 |
|
OpenMVS_ROB | | 54.93 17 | 63.23 229 | 63.28 224 | 63.07 249 | 69.81 255 | 45.34 239 | 68.52 208 | 67.14 245 | 43.74 272 | 70.61 230 | 79.22 230 | 47.90 241 | 72.66 231 | 48.75 229 | 73.84 291 | 71.21 275 |
|
lessismore_v0 | | | | | 72.75 140 | 79.60 136 | 56.83 160 | | 57.37 289 | | 83.80 68 | 89.01 91 | 47.45 242 | 78.74 157 | 64.39 114 | 86.49 173 | 82.69 151 |
|
TAMVS | | | 65.31 209 | 63.75 220 | 69.97 177 | 82.23 108 | 59.76 142 | 66.78 233 | 63.37 264 | 45.20 262 | 69.79 237 | 79.37 228 | 47.42 243 | 72.17 238 | 34.48 310 | 85.15 188 | 77.99 223 |
|
PM-MVS | | | 64.49 217 | 63.61 222 | 67.14 215 | 76.68 175 | 75.15 28 | 68.49 209 | 42.85 333 | 51.17 218 | 77.85 132 | 80.51 211 | 45.76 244 | 66.31 283 | 52.83 204 | 76.35 273 | 59.96 327 |
|
MVS_0304 | | | 62.51 237 | 62.27 233 | 63.25 246 | 69.39 259 | 48.47 207 | 64.05 264 | 62.48 267 | 59.69 126 | 54.10 319 | 81.04 207 | 45.71 245 | 66.31 283 | 41.38 272 | 82.58 219 | 74.96 243 |
|
USDC | | | 62.80 234 | 63.10 227 | 61.89 257 | 65.19 291 | 43.30 254 | 67.42 221 | 74.20 197 | 35.80 312 | 72.25 210 | 84.48 169 | 45.67 246 | 71.95 243 | 37.95 292 | 84.97 189 | 70.42 281 |
|
test20.03 | | | 55.74 275 | 57.51 268 | 50.42 299 | 59.89 322 | 32.09 327 | 50.63 320 | 49.01 321 | 50.11 226 | 65.07 267 | 83.23 186 | 45.61 247 | 48.11 320 | 30.22 324 | 83.82 208 | 71.07 277 |
|
cl-mvsnet2 | | | 67.14 198 | 66.51 203 | 69.03 188 | 63.20 304 | 43.46 252 | 66.88 232 | 76.25 178 | 49.22 235 | 74.48 184 | 77.88 245 | 45.49 248 | 77.40 186 | 60.64 141 | 84.59 197 | 86.24 65 |
|
IterMVS-SCA-FT | | | 67.68 193 | 66.07 206 | 72.49 146 | 73.34 223 | 58.20 155 | 63.80 266 | 65.55 254 | 48.10 243 | 76.91 147 | 82.64 190 | 45.20 249 | 78.84 154 | 61.20 135 | 77.89 269 | 80.44 194 |
|
SCA | | | 58.57 265 | 58.04 264 | 60.17 273 | 70.17 253 | 41.07 269 | 65.19 251 | 53.38 308 | 43.34 278 | 61.00 290 | 73.48 281 | 45.20 249 | 69.38 260 | 40.34 278 | 70.31 306 | 70.05 283 |
|
1112_ss | | | 59.48 258 | 58.99 257 | 60.96 267 | 77.84 160 | 42.39 262 | 61.42 283 | 68.45 242 | 37.96 302 | 59.93 297 | 67.46 324 | 45.11 251 | 65.07 287 | 40.89 275 | 71.81 298 | 75.41 239 |
|
new-patchmatchnet | | | 52.89 288 | 55.76 280 | 44.26 321 | 59.94 321 | 6.31 352 | 37.36 343 | 50.76 317 | 41.10 285 | 64.28 269 | 79.82 221 | 44.77 252 | 48.43 319 | 36.24 303 | 87.61 151 | 78.03 221 |
|
jason | | | 64.47 218 | 62.84 229 | 69.34 184 | 76.91 172 | 59.20 143 | 67.15 226 | 65.67 251 | 35.29 313 | 65.16 266 | 76.74 254 | 44.67 253 | 70.68 251 | 54.74 188 | 79.28 256 | 78.14 219 |
jason: jason. |
IterMVS | | | 63.12 230 | 62.48 232 | 65.02 231 | 66.34 283 | 52.86 181 | 63.81 265 | 62.25 268 | 46.57 254 | 71.51 221 | 80.40 213 | 44.60 254 | 66.82 279 | 51.38 211 | 75.47 280 | 75.38 240 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PAPM | | | 61.79 242 | 60.37 248 | 66.05 224 | 76.09 182 | 41.87 264 | 69.30 195 | 76.79 176 | 40.64 290 | 53.80 320 | 79.62 225 | 44.38 255 | 82.92 90 | 29.64 328 | 73.11 293 | 73.36 254 |
|
HY-MVS | | 49.31 19 | 57.96 267 | 57.59 267 | 59.10 278 | 66.85 280 | 36.17 305 | 65.13 252 | 65.39 255 | 39.24 295 | 54.69 316 | 78.14 243 | 44.28 256 | 67.18 275 | 33.75 314 | 70.79 303 | 73.95 250 |
|
CANet_DTU | | | 64.04 224 | 63.83 219 | 64.66 232 | 68.39 263 | 42.97 257 | 73.45 145 | 74.50 196 | 52.05 207 | 54.78 314 | 75.44 263 | 43.99 257 | 70.42 256 | 53.49 202 | 78.41 264 | 80.59 191 |
|
LFMVS | | | 67.06 200 | 67.89 191 | 64.56 233 | 78.02 157 | 38.25 291 | 70.81 182 | 59.60 280 | 65.18 80 | 71.06 226 | 86.56 138 | 43.85 258 | 75.22 210 | 46.35 248 | 89.63 130 | 80.21 197 |
|
pmmvs-eth3d | | | 64.41 220 | 63.27 225 | 67.82 207 | 75.81 186 | 60.18 137 | 69.49 192 | 62.05 273 | 38.81 298 | 74.13 188 | 82.23 194 | 43.76 259 | 68.65 264 | 42.53 264 | 80.63 243 | 74.63 245 |
|
1314 | | | 59.83 256 | 58.86 258 | 62.74 252 | 65.71 288 | 44.78 242 | 68.59 205 | 72.63 208 | 33.54 325 | 61.05 289 | 67.29 327 | 43.62 260 | 71.26 248 | 49.49 224 | 67.84 318 | 72.19 266 |
|
CDS-MVSNet | | | 64.33 221 | 62.66 231 | 69.35 183 | 80.44 129 | 58.28 154 | 65.26 250 | 65.66 252 | 44.36 267 | 67.30 256 | 75.54 260 | 43.27 261 | 71.77 244 | 37.68 293 | 84.44 200 | 78.01 222 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVSFormer | | | 69.93 161 | 69.03 173 | 72.63 145 | 74.93 193 | 59.19 144 | 83.98 33 | 75.72 183 | 52.27 203 | 63.53 277 | 76.74 254 | 43.19 262 | 80.56 129 | 72.28 61 | 78.67 261 | 78.14 219 |
|
lupinMVS | | | 63.36 226 | 61.49 240 | 68.97 190 | 74.93 193 | 59.19 144 | 65.80 244 | 64.52 259 | 34.68 318 | 63.53 277 | 74.25 275 | 43.19 262 | 70.62 252 | 53.88 199 | 78.67 261 | 77.10 228 |
|
Test_1112_low_res | | | 58.78 263 | 58.69 259 | 59.04 279 | 79.41 138 | 38.13 293 | 57.62 302 | 66.98 247 | 34.74 316 | 59.62 298 | 77.56 248 | 42.92 264 | 63.65 292 | 38.66 286 | 70.73 304 | 75.35 241 |
|
test_yl | | | 65.11 210 | 65.09 213 | 65.18 229 | 70.59 248 | 40.86 270 | 63.22 274 | 72.79 204 | 57.91 138 | 68.88 245 | 79.07 235 | 42.85 265 | 74.89 215 | 45.50 252 | 84.97 189 | 79.81 200 |
|
DCV-MVSNet | | | 65.11 210 | 65.09 213 | 65.18 229 | 70.59 248 | 40.86 270 | 63.22 274 | 72.79 204 | 57.91 138 | 68.88 245 | 79.07 235 | 42.85 265 | 74.89 215 | 45.50 252 | 84.97 189 | 79.81 200 |
|
PMMVS | | | 44.69 310 | 43.95 316 | 46.92 310 | 50.05 348 | 53.47 179 | 48.08 327 | 42.40 335 | 22.36 346 | 44.01 343 | 53.05 341 | 42.60 267 | 45.49 325 | 31.69 319 | 61.36 329 | 41.79 342 |
|
Anonymous20231206 | | | 54.13 282 | 55.82 279 | 49.04 307 | 70.89 243 | 35.96 307 | 51.73 318 | 50.87 316 | 34.86 314 | 62.49 280 | 79.22 230 | 42.52 268 | 44.29 332 | 27.95 333 | 81.88 225 | 66.88 303 |
|
WTY-MVS | | | 49.39 299 | 50.31 301 | 46.62 312 | 61.22 313 | 32.00 328 | 46.61 331 | 49.77 319 | 33.87 321 | 54.12 318 | 69.55 313 | 41.96 269 | 45.40 326 | 31.28 321 | 64.42 324 | 62.47 322 |
|
UnsupCasMVSNet_eth | | | 52.26 292 | 53.29 289 | 49.16 305 | 55.08 341 | 33.67 322 | 50.03 321 | 58.79 283 | 37.67 303 | 63.43 279 | 74.75 267 | 41.82 270 | 45.83 323 | 38.59 288 | 59.42 333 | 67.98 298 |
|
UnsupCasMVSNet_bld | | | 50.01 298 | 51.03 299 | 46.95 309 | 58.61 327 | 32.64 325 | 48.31 324 | 53.27 309 | 34.27 319 | 60.47 292 | 71.53 299 | 41.40 271 | 47.07 321 | 30.68 322 | 60.78 330 | 61.13 325 |
|
ppachtmachnet_test | | | 60.26 254 | 59.61 253 | 62.20 255 | 67.70 273 | 44.33 245 | 58.18 301 | 60.96 277 | 40.75 289 | 65.80 263 | 72.57 288 | 41.23 272 | 63.92 290 | 46.87 246 | 82.42 220 | 78.33 215 |
|
baseline1 | | | 57.82 268 | 58.36 263 | 56.19 288 | 69.17 261 | 30.76 331 | 62.94 276 | 55.21 299 | 46.04 256 | 63.83 273 | 78.47 239 | 41.20 273 | 63.68 291 | 39.44 280 | 68.99 313 | 74.13 248 |
|
MIMVSNet | | | 54.39 281 | 56.12 278 | 49.20 304 | 72.57 233 | 30.91 330 | 59.98 292 | 48.43 324 | 41.66 284 | 55.94 310 | 83.86 177 | 41.19 274 | 50.42 316 | 26.05 335 | 75.38 282 | 66.27 307 |
|
CHOSEN 1792x2688 | | | 58.09 266 | 56.30 276 | 63.45 244 | 79.95 132 | 50.93 189 | 54.07 313 | 65.59 253 | 28.56 338 | 61.53 284 | 74.33 273 | 41.09 275 | 66.52 282 | 33.91 313 | 67.69 319 | 72.92 257 |
|
YYNet1 | | | 52.58 289 | 53.50 287 | 49.85 300 | 54.15 345 | 36.45 304 | 40.53 337 | 46.55 328 | 38.09 301 | 75.52 170 | 73.31 284 | 41.08 276 | 43.88 333 | 41.10 273 | 71.14 302 | 69.21 292 |
|
MDA-MVSNet_test_wron | | | 52.57 290 | 53.49 288 | 49.81 301 | 54.24 344 | 36.47 303 | 40.48 338 | 46.58 327 | 38.13 300 | 75.47 171 | 73.32 283 | 41.05 277 | 43.85 334 | 40.98 274 | 71.20 301 | 69.10 294 |
|
PVSNet_0 | | 36.71 22 | 41.12 316 | 40.78 318 | 42.14 324 | 59.97 320 | 40.13 278 | 40.97 336 | 42.24 338 | 30.81 336 | 44.86 340 | 49.41 344 | 40.70 278 | 45.12 328 | 23.15 342 | 34.96 346 | 41.16 343 |
|
Vis-MVSNet (Re-imp) | | | 62.74 235 | 63.21 226 | 61.34 263 | 72.19 235 | 31.56 329 | 67.31 225 | 53.87 304 | 53.60 193 | 69.88 236 | 83.37 182 | 40.52 279 | 70.98 250 | 41.40 271 | 86.78 170 | 81.48 173 |
|
sss | | | 47.59 304 | 48.32 303 | 45.40 317 | 56.73 335 | 33.96 320 | 45.17 334 | 48.51 323 | 32.11 331 | 52.37 323 | 65.79 329 | 40.39 280 | 41.91 340 | 31.85 318 | 61.97 328 | 60.35 326 |
|
our_test_3 | | | 56.46 271 | 56.51 274 | 56.30 287 | 67.70 273 | 39.66 281 | 55.36 310 | 52.34 313 | 40.57 291 | 63.85 272 | 69.91 310 | 40.04 281 | 58.22 307 | 43.49 262 | 75.29 284 | 71.03 278 |
|
miper_lstm_enhance | | | 61.97 239 | 61.63 237 | 62.98 250 | 60.04 319 | 45.74 237 | 47.53 328 | 70.95 228 | 44.04 268 | 73.06 201 | 78.84 237 | 39.72 282 | 60.33 301 | 55.82 179 | 84.64 196 | 82.88 144 |
|
pmmvs4 | | | 60.78 249 | 59.04 256 | 66.00 225 | 73.06 231 | 57.67 156 | 64.53 259 | 60.22 278 | 36.91 307 | 65.96 261 | 77.27 250 | 39.66 283 | 68.54 265 | 38.87 284 | 74.89 285 | 71.80 269 |
|
MVP-Stereo | | | 61.56 243 | 59.22 254 | 68.58 198 | 79.28 140 | 60.44 135 | 69.20 197 | 71.57 217 | 43.58 274 | 56.42 308 | 78.37 241 | 39.57 284 | 76.46 199 | 34.86 309 | 60.16 331 | 68.86 295 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
FPMVS | | | 59.43 259 | 60.07 249 | 57.51 285 | 77.62 166 | 71.52 46 | 62.33 278 | 50.92 315 | 57.40 147 | 69.40 239 | 80.00 219 | 39.14 285 | 61.92 298 | 37.47 296 | 66.36 320 | 39.09 344 |
|
DSMNet-mixed | | | 43.18 314 | 44.66 314 | 38.75 330 | 54.75 343 | 28.88 336 | 57.06 304 | 27.42 351 | 13.47 347 | 47.27 336 | 77.67 247 | 38.83 286 | 39.29 343 | 25.32 340 | 60.12 332 | 48.08 337 |
|
HyFIR lowres test | | | 63.01 231 | 60.47 247 | 70.61 163 | 83.04 96 | 54.10 174 | 59.93 293 | 72.24 213 | 33.67 323 | 69.00 242 | 75.63 259 | 38.69 287 | 76.93 191 | 36.60 301 | 75.45 281 | 80.81 186 |
|
MVE | | 27.91 23 | 36.69 319 | 35.64 321 | 39.84 329 | 43.37 350 | 35.85 309 | 19.49 346 | 24.61 352 | 24.68 344 | 39.05 346 | 62.63 334 | 38.67 288 | 27.10 349 | 21.04 344 | 47.25 345 | 56.56 332 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EPNet_dtu | | | 58.93 262 | 58.52 260 | 60.16 274 | 67.91 271 | 47.70 219 | 69.97 187 | 58.02 284 | 49.73 230 | 47.28 335 | 73.02 286 | 38.14 289 | 62.34 296 | 36.57 302 | 85.99 177 | 70.43 280 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
pmmvs5 | | | 52.49 291 | 52.58 292 | 52.21 297 | 54.99 342 | 32.38 326 | 55.45 309 | 53.84 305 | 32.15 329 | 55.49 313 | 74.81 265 | 38.08 290 | 57.37 309 | 34.02 312 | 74.40 287 | 66.88 303 |
|
N_pmnet | | | 52.06 293 | 51.11 298 | 54.92 290 | 59.64 324 | 71.03 51 | 37.42 342 | 61.62 276 | 33.68 322 | 57.12 303 | 72.10 289 | 37.94 291 | 31.03 346 | 29.13 332 | 71.35 299 | 62.70 320 |
|
CMPMVS | | 48.73 20 | 61.54 244 | 60.89 244 | 63.52 243 | 61.08 314 | 51.55 186 | 68.07 214 | 68.00 244 | 33.88 320 | 65.87 262 | 81.25 205 | 37.91 292 | 67.71 269 | 49.32 225 | 82.60 218 | 71.31 273 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FMVSNet3 | | | 65.00 213 | 65.16 208 | 64.52 234 | 69.47 258 | 37.56 299 | 66.63 234 | 70.38 233 | 51.55 213 | 74.72 180 | 83.27 185 | 37.89 293 | 74.44 220 | 47.12 242 | 85.37 181 | 81.57 172 |
|
GA-MVS | | | 62.91 232 | 61.66 235 | 66.66 221 | 67.09 278 | 44.49 244 | 61.18 286 | 69.36 239 | 51.33 216 | 69.33 240 | 74.47 271 | 36.83 294 | 74.94 214 | 50.60 216 | 74.72 286 | 80.57 192 |
|
MS-PatchMatch | | | 55.59 276 | 54.89 283 | 57.68 284 | 69.18 260 | 49.05 202 | 61.00 287 | 62.93 266 | 35.98 310 | 58.36 301 | 68.93 317 | 36.71 295 | 66.59 281 | 37.62 295 | 63.30 327 | 57.39 330 |
|
CVMVSNet | | | 59.21 260 | 58.44 262 | 61.51 260 | 73.94 216 | 47.76 218 | 71.31 173 | 64.56 258 | 26.91 342 | 60.34 293 | 70.44 304 | 36.24 296 | 67.65 270 | 53.57 201 | 68.66 315 | 69.12 293 |
|
PMMVS2 | | | 37.74 317 | 40.87 317 | 28.36 332 | 42.41 351 | 5.35 353 | 24.61 345 | 27.75 350 | 32.15 329 | 47.85 334 | 70.27 307 | 35.85 297 | 29.51 347 | 19.08 346 | 67.85 317 | 50.22 336 |
|
tpmrst | | | 50.15 297 | 51.38 295 | 46.45 313 | 56.05 336 | 24.77 343 | 64.40 261 | 49.98 318 | 36.14 309 | 53.32 321 | 69.59 312 | 35.16 298 | 48.69 318 | 39.24 282 | 58.51 336 | 65.89 308 |
|
D2MVS | | | 62.58 236 | 61.05 243 | 67.20 213 | 63.85 300 | 47.92 215 | 56.29 305 | 69.58 237 | 39.32 293 | 70.07 235 | 78.19 242 | 34.93 299 | 72.68 230 | 53.44 203 | 83.74 209 | 81.00 180 |
|
PVSNet | | 43.83 21 | 51.56 294 | 51.17 296 | 52.73 294 | 68.34 265 | 38.27 290 | 48.22 325 | 53.56 307 | 36.41 308 | 54.29 317 | 64.94 331 | 34.60 300 | 54.20 314 | 30.34 323 | 69.87 309 | 65.71 310 |
|
MVS-HIRNet | | | 45.53 307 | 47.29 306 | 40.24 328 | 62.29 307 | 26.82 339 | 56.02 307 | 37.41 346 | 29.74 337 | 43.69 344 | 81.27 204 | 33.96 301 | 55.48 310 | 24.46 341 | 56.79 338 | 38.43 345 |
|
baseline2 | | | 55.57 277 | 52.74 290 | 64.05 238 | 65.26 290 | 44.11 246 | 62.38 277 | 54.43 303 | 39.03 296 | 51.21 325 | 67.35 326 | 33.66 302 | 72.45 236 | 37.14 298 | 64.22 325 | 75.60 236 |
|
RPMNet | | | 61.25 245 | 61.55 239 | 60.36 271 | 66.37 281 | 48.24 210 | 70.93 179 | 54.45 302 | 54.66 177 | 61.35 285 | 86.77 127 | 33.29 303 | 63.22 293 | 55.93 177 | 70.17 307 | 69.62 288 |
|
CR-MVSNet | | | 58.96 261 | 58.49 261 | 60.36 271 | 66.37 281 | 48.24 210 | 70.93 179 | 56.40 296 | 32.87 326 | 61.35 285 | 86.66 132 | 33.19 304 | 63.22 293 | 48.50 233 | 70.17 307 | 69.62 288 |
|
Patchmtry | | | 60.91 247 | 63.01 228 | 54.62 291 | 66.10 286 | 26.27 341 | 67.47 220 | 56.40 296 | 54.05 186 | 72.04 213 | 86.66 132 | 33.19 304 | 60.17 302 | 43.69 259 | 87.45 156 | 77.42 225 |
|
RRT_MVS | | | 73.80 111 | 71.19 154 | 81.60 22 | 71.04 242 | 70.33 60 | 78.78 85 | 74.91 192 | 56.96 150 | 77.83 133 | 85.56 160 | 32.82 306 | 87.39 5 | 71.16 66 | 91.68 85 | 87.07 59 |
|
CostFormer | | | 57.35 270 | 56.14 277 | 60.97 266 | 63.76 302 | 38.43 288 | 67.50 219 | 60.22 278 | 37.14 306 | 59.12 299 | 76.34 256 | 32.78 307 | 71.99 242 | 39.12 283 | 69.27 312 | 72.47 262 |
|
tpm cat1 | | | 54.02 284 | 52.63 291 | 58.19 283 | 64.85 297 | 39.86 280 | 66.26 238 | 57.28 290 | 32.16 328 | 56.90 305 | 70.39 306 | 32.75 308 | 65.30 286 | 34.29 311 | 58.79 334 | 69.41 290 |
|
thres200 | | | 57.55 269 | 57.02 270 | 59.17 277 | 67.89 272 | 34.93 315 | 58.91 299 | 57.25 291 | 50.24 224 | 64.01 271 | 71.46 300 | 32.49 309 | 71.39 247 | 31.31 320 | 79.57 254 | 71.19 276 |
|
tfpn200view9 | | | 60.35 253 | 59.97 250 | 61.51 260 | 70.78 245 | 35.35 312 | 63.27 272 | 57.47 287 | 53.00 197 | 68.31 250 | 77.09 251 | 32.45 310 | 72.09 239 | 35.61 306 | 81.73 226 | 77.08 229 |
|
thres400 | | | 60.77 250 | 59.97 250 | 63.15 247 | 70.78 245 | 35.35 312 | 63.27 272 | 57.47 287 | 53.00 197 | 68.31 250 | 77.09 251 | 32.45 310 | 72.09 239 | 35.61 306 | 81.73 226 | 82.02 165 |
|
EU-MVSNet | | | 60.82 248 | 60.80 245 | 60.86 268 | 68.37 264 | 41.16 267 | 72.27 154 | 68.27 243 | 26.96 341 | 69.08 241 | 75.71 258 | 32.09 312 | 67.44 272 | 55.59 182 | 78.90 258 | 73.97 249 |
|
thres100view900 | | | 61.17 246 | 61.09 242 | 61.39 262 | 72.14 236 | 35.01 314 | 65.42 249 | 56.99 293 | 55.23 168 | 70.71 229 | 79.90 220 | 32.07 313 | 72.09 239 | 35.61 306 | 81.73 226 | 77.08 229 |
|
thres600view7 | | | 61.82 241 | 61.38 241 | 63.12 248 | 71.81 238 | 34.93 315 | 64.64 256 | 56.99 293 | 54.78 175 | 70.33 233 | 79.74 222 | 32.07 313 | 72.42 237 | 38.61 287 | 83.46 211 | 82.02 165 |
|
PatchmatchNet | | | 54.60 280 | 54.27 285 | 55.59 289 | 65.17 293 | 39.08 283 | 66.92 230 | 51.80 314 | 39.89 292 | 58.39 300 | 73.12 285 | 31.69 315 | 58.33 306 | 43.01 263 | 58.38 337 | 69.38 291 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
sam_mvs1 | | | | | | | | | | | | | 31.41 316 | | | | 70.05 283 |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 315 | 31.32 317 | 69.38 260 | | | |
|
ADS-MVSNet2 | | | 48.76 300 | 47.25 307 | 53.29 293 | 55.90 338 | 40.54 276 | 47.34 329 | 54.99 301 | 31.41 334 | 50.48 328 | 72.06 294 | 31.23 318 | 54.26 313 | 25.93 336 | 55.93 339 | 65.07 313 |
|
ADS-MVSNet | | | 44.62 311 | 45.58 309 | 41.73 326 | 55.90 338 | 20.83 347 | 47.34 329 | 39.94 344 | 31.41 334 | 50.48 328 | 72.06 294 | 31.23 318 | 39.31 342 | 25.93 336 | 55.93 339 | 65.07 313 |
|
sam_mvs | | | | | | | | | | | | | 31.21 320 | | | | |
|
Patchmatch-RL test | | | 59.95 255 | 59.12 255 | 62.44 254 | 72.46 234 | 54.61 172 | 59.63 294 | 47.51 326 | 41.05 287 | 74.58 183 | 74.30 274 | 31.06 321 | 65.31 285 | 51.61 208 | 79.85 249 | 67.39 299 |
|
tpmvs | | | 55.84 273 | 55.45 282 | 57.01 286 | 60.33 318 | 33.20 324 | 65.89 241 | 59.29 282 | 47.52 251 | 56.04 309 | 73.60 280 | 31.05 322 | 68.06 268 | 40.64 276 | 64.64 323 | 69.77 286 |
|
test_post | | | | | | | | | | | | 1.99 350 | 30.91 323 | 54.76 312 | | | |
|
MDTV_nov1_ep13 | | | | 54.05 286 | | 65.54 289 | 29.30 334 | 59.00 297 | 55.22 298 | 35.96 311 | 52.44 322 | 75.98 257 | 30.77 324 | 59.62 303 | 38.21 289 | 73.33 292 | |
|
test_post1 | | | | | | | | 66.63 234 | | | | 2.08 349 | 30.66 325 | 59.33 304 | 40.34 278 | | |
|
Patchmatch-test | | | 47.93 302 | 49.96 302 | 41.84 325 | 57.42 332 | 24.26 344 | 48.75 323 | 41.49 340 | 39.30 294 | 56.79 306 | 73.48 281 | 30.48 326 | 33.87 345 | 29.29 330 | 72.61 294 | 67.39 299 |
|
tpm2 | | | 56.12 272 | 54.64 284 | 60.55 270 | 66.24 284 | 36.01 306 | 68.14 212 | 56.77 295 | 33.60 324 | 58.25 302 | 75.52 262 | 30.25 327 | 74.33 221 | 33.27 315 | 69.76 311 | 71.32 272 |
|
MVSTER | | | 63.29 228 | 61.60 238 | 68.36 199 | 59.77 323 | 46.21 234 | 60.62 288 | 71.32 221 | 41.83 283 | 75.40 172 | 79.12 233 | 30.25 327 | 75.85 201 | 56.30 174 | 79.81 250 | 83.03 141 |
|
tpm | | | 50.60 295 | 52.42 293 | 45.14 318 | 65.18 292 | 26.29 340 | 60.30 290 | 43.50 331 | 37.41 304 | 57.01 304 | 79.09 234 | 30.20 329 | 42.32 337 | 32.77 317 | 66.36 320 | 66.81 305 |
|
PatchT | | | 53.35 286 | 56.47 275 | 43.99 322 | 64.19 299 | 17.46 349 | 59.15 295 | 43.10 332 | 52.11 206 | 54.74 315 | 86.95 119 | 29.97 330 | 49.98 317 | 43.62 260 | 74.40 287 | 64.53 317 |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 348 | 53.74 314 | | 31.57 333 | 44.89 339 | | 29.90 331 | | 32.93 316 | | 71.48 271 |
|
test-LLR | | | 50.43 296 | 50.69 300 | 49.64 302 | 60.76 315 | 41.87 264 | 53.18 315 | 45.48 329 | 43.41 276 | 49.41 332 | 60.47 336 | 29.22 332 | 44.73 330 | 42.09 267 | 72.14 296 | 62.33 323 |
|
test0.0.03 1 | | | 47.72 303 | 48.31 304 | 45.93 314 | 55.53 340 | 29.39 333 | 46.40 332 | 41.21 342 | 43.41 276 | 55.81 312 | 67.65 323 | 29.22 332 | 43.77 335 | 25.73 338 | 69.87 309 | 64.62 315 |
|
thisisatest0530 | | | 67.05 201 | 65.16 208 | 72.73 142 | 73.10 229 | 50.55 191 | 71.26 175 | 63.91 261 | 50.22 225 | 74.46 185 | 80.75 208 | 26.81 334 | 80.25 137 | 59.43 151 | 86.50 172 | 87.37 53 |
|
tttt0517 | | | 69.46 167 | 67.79 192 | 74.46 105 | 75.34 188 | 52.72 182 | 75.05 127 | 63.27 265 | 54.69 176 | 78.87 121 | 84.37 170 | 26.63 335 | 81.15 115 | 63.95 117 | 87.93 149 | 89.51 23 |
|
EMVS | | | 44.61 312 | 44.45 315 | 45.10 319 | 48.91 349 | 43.00 256 | 37.92 341 | 41.10 343 | 46.75 253 | 38.00 347 | 48.43 345 | 26.42 336 | 46.27 322 | 37.11 299 | 75.38 282 | 46.03 340 |
|
thisisatest0515 | | | 60.48 252 | 57.86 265 | 68.34 200 | 67.25 276 | 46.42 231 | 60.58 289 | 62.14 269 | 40.82 288 | 63.58 276 | 69.12 314 | 26.28 337 | 78.34 170 | 48.83 228 | 82.13 222 | 80.26 196 |
|
E-PMN | | | 45.17 308 | 45.36 310 | 44.60 320 | 50.07 347 | 42.75 258 | 38.66 340 | 42.29 337 | 46.39 255 | 39.55 345 | 51.15 343 | 26.00 338 | 45.37 327 | 37.68 293 | 76.41 272 | 45.69 341 |
|
EPMVS | | | 45.74 306 | 46.53 308 | 43.39 323 | 54.14 346 | 22.33 346 | 55.02 311 | 35.00 348 | 34.69 317 | 51.09 326 | 70.20 308 | 25.92 339 | 42.04 339 | 37.19 297 | 55.50 341 | 65.78 309 |
|
tmp_tt | | | 11.98 321 | 14.73 323 | 3.72 334 | 2.28 353 | 4.62 354 | 19.44 347 | 14.50 354 | 0.47 349 | 21.55 349 | 9.58 348 | 25.78 340 | 4.57 351 | 11.61 347 | 27.37 347 | 1.96 347 |
|
ET-MVSNet_ETH3D | | | 63.32 227 | 60.69 246 | 71.20 159 | 70.15 254 | 55.66 165 | 65.02 253 | 64.32 260 | 43.28 279 | 68.99 243 | 72.05 296 | 25.46 341 | 78.19 176 | 54.16 197 | 82.80 216 | 79.74 203 |
|
FMVSNet5 | | | 55.08 279 | 55.54 281 | 53.71 292 | 65.80 287 | 33.50 323 | 56.22 306 | 52.50 312 | 43.72 273 | 61.06 288 | 83.38 181 | 25.46 341 | 54.87 311 | 30.11 325 | 81.64 231 | 72.75 259 |
|
new_pmnet | | | 37.55 318 | 39.80 320 | 30.79 331 | 56.83 333 | 16.46 350 | 39.35 339 | 30.65 349 | 25.59 343 | 45.26 338 | 61.60 335 | 24.54 343 | 28.02 348 | 21.60 343 | 52.80 343 | 47.90 338 |
|
dp | | | 44.09 313 | 44.88 313 | 41.72 327 | 58.53 328 | 23.18 345 | 54.70 312 | 42.38 336 | 34.80 315 | 44.25 342 | 65.61 330 | 24.48 344 | 44.80 329 | 29.77 327 | 49.42 344 | 57.18 331 |
|
RRT_test8_iter05 | | | 65.80 206 | 65.13 211 | 67.80 208 | 67.02 279 | 40.85 272 | 67.13 227 | 75.33 188 | 49.73 230 | 72.69 205 | 81.32 203 | 24.45 345 | 77.37 187 | 61.69 131 | 86.82 169 | 85.18 84 |
|
IB-MVS | | 49.67 18 | 59.69 257 | 56.96 271 | 67.90 205 | 68.19 267 | 50.30 193 | 61.42 283 | 65.18 256 | 47.57 250 | 55.83 311 | 67.15 328 | 23.77 346 | 79.60 147 | 43.56 261 | 79.97 248 | 73.79 252 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CHOSEN 280x420 | | | 41.62 315 | 39.89 319 | 46.80 311 | 61.81 309 | 51.59 185 | 33.56 344 | 35.74 347 | 27.48 340 | 37.64 348 | 53.53 340 | 23.24 347 | 42.09 338 | 27.39 334 | 58.64 335 | 46.72 339 |
|
DWT-MVSNet_test | | | 53.04 287 | 51.12 297 | 58.77 280 | 61.23 312 | 38.67 287 | 62.16 279 | 57.74 285 | 38.24 299 | 51.76 324 | 59.07 338 | 21.36 348 | 67.40 273 | 44.80 254 | 63.76 326 | 70.25 282 |
|
gg-mvs-nofinetune | | | 55.75 274 | 56.75 273 | 52.72 295 | 62.87 305 | 28.04 337 | 68.92 198 | 41.36 341 | 71.09 38 | 50.80 327 | 92.63 12 | 20.74 349 | 66.86 277 | 29.97 326 | 72.41 295 | 63.25 318 |
|
GG-mvs-BLEND | | | | | 52.24 296 | 60.64 317 | 29.21 335 | 69.73 191 | 42.41 334 | | 45.47 337 | 52.33 342 | 20.43 350 | 68.16 267 | 25.52 339 | 65.42 322 | 59.36 328 |
|
JIA-IIPM | | | 54.03 283 | 51.62 294 | 61.25 264 | 59.14 325 | 55.21 168 | 59.10 296 | 47.72 325 | 50.85 220 | 50.31 331 | 85.81 158 | 20.10 351 | 63.97 289 | 36.16 304 | 55.41 342 | 64.55 316 |
|
test-mter | | | 48.56 301 | 48.20 305 | 49.64 302 | 60.76 315 | 41.87 264 | 53.18 315 | 45.48 329 | 31.91 332 | 49.41 332 | 60.47 336 | 18.34 352 | 44.73 330 | 42.09 267 | 72.14 296 | 62.33 323 |
|
TESTMET0.1,1 | | | 45.17 308 | 44.93 312 | 45.89 315 | 56.02 337 | 38.31 289 | 53.18 315 | 41.94 339 | 27.85 339 | 44.86 340 | 56.47 339 | 17.93 353 | 41.50 341 | 38.08 291 | 68.06 316 | 57.85 329 |
|
DeepMVS_CX | | | | | 11.83 333 | 15.51 352 | 13.86 351 | | 11.25 355 | 5.76 348 | 20.85 350 | 26.46 346 | 17.06 354 | 9.22 350 | 9.69 348 | 13.82 348 | 12.42 346 |
|
pmmvs3 | | | 46.71 305 | 45.09 311 | 51.55 298 | 56.76 334 | 48.25 209 | 55.78 308 | 39.53 345 | 24.13 345 | 50.35 330 | 63.40 332 | 15.90 355 | 51.08 315 | 29.29 330 | 70.69 305 | 55.33 333 |
|
testmvs | | | 4.06 325 | 5.28 327 | 0.41 335 | 0.64 355 | 0.16 356 | 42.54 335 | 0.31 357 | 0.26 351 | 0.50 352 | 1.40 352 | 0.77 356 | 0.17 352 | 0.56 349 | 0.55 350 | 0.90 348 |
|
test123 | | | 4.43 324 | 5.78 326 | 0.39 336 | 0.97 354 | 0.28 355 | 46.33 333 | 0.45 356 | 0.31 350 | 0.62 351 | 1.50 351 | 0.61 357 | 0.11 353 | 0.56 349 | 0.63 349 | 0.77 349 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 84.94 42 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
ab-mvs-re | | | 5.62 322 | 7.50 324 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 67.46 324 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
IU-MVS | | | | | | 86.12 54 | 60.90 130 | | 80.38 123 | 45.49 259 | 81.31 93 | | | | 75.64 38 | 94.39 38 | 84.65 95 |
|
save fliter | | | | | | 87.00 41 | 67.23 82 | 79.24 79 | 77.94 162 | 56.65 156 | | | | | | | |
|
test_0728_SECOND | | | | | 76.57 83 | 86.20 51 | 60.57 134 | 83.77 37 | 85.49 28 | | | | | 85.90 34 | 75.86 36 | 94.39 38 | 83.25 135 |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 283 |
|
test_part2 | | | | | | 85.90 58 | 66.44 87 | | | | 84.61 56 | | | | | | |
|
MTGPA | | | | | | | | | 80.63 116 | | | | | | | | |
|
MTMP | | | | | | | | 84.83 28 | 19.26 353 | | | | | | | | |
|
gm-plane-assit | | | | | | 62.51 306 | 33.91 321 | | | 37.25 305 | | 62.71 333 | | 72.74 229 | 38.70 285 | | |
|
test9_res | | | | | | | | | | | | | | | 72.12 63 | 91.37 93 | 77.40 226 |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 70 | 90.93 105 | 78.55 214 |
|
agg_prior | | | | | | 84.44 81 | 66.02 91 | | 78.62 150 | | 76.95 145 | | | 80.34 134 | | | |
|
test_prior4 | | | | | | | 70.14 61 | 77.57 98 | | | | | | | | | |
|
test_prior | | | | | 75.27 99 | 82.15 109 | 59.85 140 | | 84.33 58 | | | | | 83.39 80 | | | 82.58 153 |
|
旧先验2 | | | | | | | | 71.17 176 | | 45.11 263 | 78.54 125 | | | 61.28 300 | 59.19 153 | | |
|
新几何2 | | | | | | | | 71.33 172 | | | | | | | | | |
|
无先验 | | | | | | | | 74.82 130 | 70.94 229 | 47.75 249 | | | | 76.85 194 | 54.47 191 | | 72.09 267 |
|
原ACMM2 | | | | | | | | 74.78 134 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 67.30 274 | 48.34 234 | | |
|
testdata1 | | | | | | | | 68.34 211 | | 57.24 148 | | | | | | | |
|
plane_prior7 | | | | | | 85.18 66 | 66.21 89 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 85.49 28 | | | | | 86.15 25 | 71.09 67 | 90.94 103 | 84.82 90 |
|
plane_prior4 | | | | | | | | | | | | 89.11 89 | | | | | |
|
plane_prior3 | | | | | | | 65.67 93 | | | 63.82 94 | 78.23 128 | | | | | | |
|
plane_prior2 | | | | | | | | 82.74 48 | | 65.45 73 | | | | | | | |
|
plane_prior1 | | | | | | 84.46 80 | | | | | | | | | | | |
|
plane_prior | | | | | | | 65.18 97 | 80.06 73 | | 61.88 111 | | | | | | 89.91 126 | |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 300 | | | | | | | | |
|
test11 | | | | | | | | | 82.71 85 | | | | | | | | |
|
door | | | | | | | | | 52.91 311 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 150 | | | | | | | | | | |
|
HQP-NCC | | | | | | 82.37 104 | | 77.32 102 | | 59.08 128 | 71.58 216 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 104 | | 77.32 102 | | 59.08 128 | 71.58 216 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 96 | | |
|
HQP4-MVS | | | | | | | | | | | 71.59 215 | | | 85.31 46 | | | 83.74 123 |
|
HQP3-MVS | | | | | | | | | 84.12 66 | | | | | | | 89.16 136 | |
|
NP-MVS | | | | | | 83.34 94 | 63.07 115 | | | | | 85.97 155 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 134 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 82 | |
|