This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2591.50 163.30 12484.80 3487.77 1086.18 196.26 196.06 190.32 184.49 7068.08 9397.05 196.93 1
TDRefinement86.32 286.33 286.29 188.64 3381.19 588.84 490.72 178.27 987.95 1592.53 1379.37 1384.79 6774.51 5196.15 292.88 7
abl_684.92 385.70 382.57 1786.72 4979.27 887.56 786.08 2877.48 1388.12 1491.53 2881.18 884.31 7678.12 2494.47 3784.15 123
RE-MVS-def85.50 486.19 5579.18 987.23 986.27 2377.51 1187.65 1990.73 4681.38 778.11 2594.46 3884.89 92
test117284.85 485.39 583.21 388.34 3880.50 685.12 3085.22 4381.06 387.20 2890.28 7079.20 1485.58 4878.04 2794.08 5683.55 135
SR-MVS84.51 785.27 682.25 2188.52 3577.71 1786.81 1785.25 4277.42 1586.15 3790.24 7181.69 585.94 3377.77 2993.58 6783.09 151
SR-MVS-dyc-post84.75 585.26 783.21 386.19 5579.18 987.23 986.27 2377.51 1187.65 1990.73 4679.20 1485.58 4878.11 2594.46 3884.89 92
HPM-MVS_fast84.59 685.10 883.06 688.60 3475.83 2786.27 2586.89 1873.69 2586.17 3691.70 2478.23 2085.20 5879.45 1394.91 2588.15 45
LTVRE_ROB75.46 184.22 884.98 981.94 2384.82 7875.40 3091.60 387.80 873.52 2688.90 1193.06 671.39 7581.53 12181.53 392.15 8988.91 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMPcopyleft84.22 884.84 1082.35 2089.23 2376.66 2687.65 685.89 3171.03 4585.85 4190.58 5078.77 1785.78 4179.37 1695.17 1784.62 104
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft84.12 1084.63 1182.60 1588.21 3974.40 3685.24 2987.21 1670.69 4885.14 5490.42 5878.99 1686.62 1480.83 694.93 2486.79 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS84.12 1084.55 1282.80 1289.42 1879.74 788.19 584.43 6571.96 4284.70 6290.56 5177.12 2686.18 2779.24 1895.36 1382.49 171
mPP-MVS84.01 1284.39 1382.88 890.65 481.38 487.08 1382.79 9272.41 3685.11 5590.85 4276.65 3084.89 6479.30 1794.63 3482.35 174
APD-MVS_3200maxsize83.57 1584.33 1481.31 3382.83 11373.53 4585.50 2887.45 1474.11 2186.45 3490.52 5480.02 1184.48 7177.73 3094.34 4985.93 73
LPG-MVS_test83.47 1884.33 1480.90 3887.00 4370.41 6682.04 6086.35 2069.77 5387.75 1691.13 3581.83 386.20 2577.13 3795.96 586.08 69
APDe-MVS82.88 2684.14 1679.08 5784.80 8066.72 9686.54 2185.11 4572.00 4186.65 3391.75 2378.20 2187.04 977.93 2894.32 5083.47 140
COLMAP_ROBcopyleft72.78 383.75 1384.11 1782.68 1482.97 11074.39 3787.18 1188.18 778.98 786.11 3991.47 3079.70 1285.76 4266.91 10895.46 1187.89 47
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HFP-MVS83.39 1984.03 1881.48 2789.25 2175.69 2887.01 1584.27 6970.23 4984.47 6590.43 5676.79 2785.94 3379.58 1194.23 5382.82 161
ACMMPR83.62 1483.93 1982.69 1389.78 1177.51 2287.01 1584.19 7470.23 4984.49 6490.67 4975.15 4386.37 1979.58 1194.26 5184.18 122
MTAPA83.19 2083.87 2081.13 3591.16 278.16 1484.87 3280.63 12872.08 3984.93 5690.79 4374.65 4984.42 7380.98 494.75 2980.82 199
region2R83.54 1683.86 2182.58 1689.82 1077.53 2087.06 1484.23 7370.19 5183.86 7390.72 4875.20 4286.27 2279.41 1594.25 5283.95 126
XVS83.51 1783.73 2282.85 1089.43 1677.61 1886.80 1884.66 5872.71 2982.87 8290.39 6273.86 5686.31 2078.84 2094.03 5784.64 102
ZNCC-MVS83.12 2283.68 2381.45 2989.14 2673.28 4786.32 2485.97 3067.39 6484.02 7190.39 6274.73 4886.46 1680.73 794.43 4284.60 107
SteuartSystems-ACMMP83.07 2383.64 2481.35 3185.14 7471.00 6085.53 2784.78 5270.91 4685.64 4490.41 5975.55 4087.69 379.75 895.08 2085.36 82
Skip Steuart: Steuart Systems R&D Blog.
zzz-MVS83.01 2583.63 2581.13 3591.16 278.16 1482.72 5680.63 12872.08 3984.93 5690.79 4374.65 4984.42 7380.98 494.75 2980.82 199
MP-MVScopyleft83.19 2083.54 2682.14 2290.54 579.00 1186.42 2383.59 8371.31 4381.26 10290.96 3974.57 5184.69 6878.41 2294.78 2882.74 165
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SED-MVS81.78 3583.48 2776.67 8986.12 5961.06 13883.62 4584.72 5572.61 3287.38 2589.70 8177.48 2485.89 3975.29 4594.39 4383.08 152
MP-MVS-pluss82.54 2983.46 2879.76 4788.88 3268.44 8381.57 6386.33 2263.17 11085.38 5191.26 3476.33 3284.67 6983.30 194.96 2386.17 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMP69.50 882.64 2883.38 2980.40 4386.50 5169.44 7482.30 5786.08 2866.80 6986.70 3289.99 7681.64 685.95 3274.35 5296.11 385.81 75
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM69.25 982.11 3383.31 3078.49 6888.17 4073.96 3983.11 5284.52 6466.40 7487.45 2389.16 9481.02 980.52 14474.27 5395.73 780.98 195
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMP_NAP82.33 3183.28 3179.46 5389.28 1969.09 8183.62 4584.98 4864.77 9183.97 7291.02 3875.53 4185.93 3682.00 294.36 4783.35 145
GST-MVS82.79 2783.27 3281.34 3288.99 2873.29 4685.94 2685.13 4468.58 6084.14 7090.21 7373.37 6186.41 1779.09 1993.98 6084.30 121
PGM-MVS83.07 2383.25 3382.54 1889.57 1477.21 2482.04 6085.40 3967.96 6284.91 6090.88 4075.59 3886.57 1578.16 2394.71 3283.82 127
PMVScopyleft70.70 681.70 3683.15 3477.36 8390.35 682.82 282.15 5879.22 15174.08 2287.16 3091.97 1984.80 276.97 20564.98 11993.61 6572.28 286
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVScopyleft81.15 4283.12 3575.24 11186.16 5760.78 14483.77 4380.58 13172.48 3485.83 4290.41 5978.57 1885.69 4475.86 4294.39 4379.24 223
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft82.00 3483.02 3678.95 6285.36 7167.25 9082.91 5384.98 4873.52 2685.43 5090.03 7576.37 3186.97 1174.56 5094.02 5982.62 167
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PEN-MVS80.46 5182.91 3773.11 14089.83 939.02 30377.06 11682.61 9580.04 590.60 692.85 974.93 4785.21 5763.15 14095.15 1895.09 2
DTE-MVSNet80.35 5382.89 3872.74 15289.84 837.34 31877.16 11381.81 10480.45 490.92 392.95 774.57 5186.12 3063.65 13294.68 3394.76 6
PS-CasMVS80.41 5282.86 3973.07 14189.93 739.21 30077.15 11481.28 11479.74 690.87 492.73 1175.03 4584.93 6363.83 13195.19 1695.07 3
DVP-MVS++81.24 3982.74 4076.76 8883.14 10360.90 14291.64 185.49 3574.03 2384.93 5690.38 6466.82 11385.90 3777.43 3390.78 12083.49 137
#test#82.40 3082.71 4181.48 2789.25 2175.69 2884.47 3684.27 6964.45 9484.47 6590.43 5676.79 2785.94 3376.01 3994.23 5382.82 161
SMA-MVScopyleft82.12 3282.68 4280.43 4288.90 3169.52 7285.12 3084.76 5363.53 10484.23 6991.47 3072.02 6787.16 779.74 1094.36 4784.61 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMH+66.64 1081.20 4082.48 4377.35 8481.16 13662.39 12880.51 6887.80 873.02 2887.57 2191.08 3780.28 1082.44 10764.82 12096.10 487.21 56
UA-Net81.56 3782.28 4479.40 5488.91 3069.16 7984.67 3580.01 14275.34 1779.80 11994.91 269.79 8780.25 14972.63 6394.46 3888.78 41
WR-MVS_H80.22 5682.17 4574.39 11889.46 1542.69 27678.24 10182.24 9878.21 1089.57 992.10 1868.05 10285.59 4766.04 11195.62 994.88 5
SF-MVS80.72 4881.80 4677.48 8082.03 12464.40 11683.41 5088.46 665.28 8584.29 6789.18 9173.73 5983.22 9476.01 3993.77 6284.81 98
CPTT-MVS81.51 3881.76 4780.76 4089.20 2478.75 1286.48 2282.03 10168.80 5680.92 10788.52 10672.00 6882.39 10874.80 4793.04 7381.14 190
APD-MVScopyleft81.13 4381.73 4879.36 5584.47 8570.53 6583.85 4183.70 8169.43 5583.67 7588.96 10075.89 3686.41 1772.62 6492.95 7481.14 190
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testtj81.19 4181.70 4979.67 5183.95 9369.77 7183.58 4884.63 6072.13 3882.85 8488.36 11175.00 4686.79 1271.99 7292.84 7682.44 172
CP-MVSNet79.48 6081.65 5072.98 14489.66 1339.06 30276.76 11880.46 13378.91 890.32 791.70 2468.49 9784.89 6463.40 13795.12 1995.01 4
OPM-MVS80.99 4681.63 5179.07 5886.86 4869.39 7579.41 8584.00 7965.64 7885.54 4889.28 8776.32 3383.47 8974.03 5493.57 6884.35 118
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SD-MVS80.28 5581.55 5276.47 9483.57 9767.83 8783.39 5185.35 4164.42 9586.14 3887.07 12774.02 5580.97 13477.70 3192.32 8780.62 206
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVG-ACMP-BASELINE80.54 4981.06 5378.98 6187.01 4272.91 4880.23 7785.56 3466.56 7385.64 4489.57 8369.12 9180.55 14372.51 6593.37 6983.48 139
xxxxxxxxxxxxxcwj80.31 5480.94 5478.42 7087.00 4367.23 9179.24 8688.61 556.65 16684.29 6789.18 9173.73 5983.22 9476.01 3993.77 6284.81 98
LS3D80.99 4680.85 5581.41 3078.37 16971.37 5687.45 885.87 3277.48 1381.98 9189.95 7869.14 9085.26 5466.15 10991.24 10487.61 51
DeepC-MVS72.44 481.00 4580.83 5681.50 2686.70 5070.03 7082.06 5987.00 1759.89 13380.91 10890.53 5272.19 6588.56 173.67 5794.52 3685.92 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+73.19 281.08 4480.48 5782.87 981.41 13372.03 5084.38 3786.23 2677.28 1680.65 11090.18 7459.80 17787.58 473.06 6091.34 10289.01 33
v7n79.37 6280.41 5876.28 9678.67 16855.81 17879.22 8882.51 9770.72 4787.54 2292.44 1468.00 10481.34 12272.84 6191.72 9191.69 10
9.1480.22 5980.68 13880.35 7387.69 1159.90 13283.00 8088.20 11474.57 5181.75 11973.75 5693.78 61
ACMH63.62 1477.50 7980.11 6069.68 19179.61 14856.28 17578.81 9183.62 8263.41 10887.14 3190.23 7276.11 3473.32 24467.58 10094.44 4179.44 221
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR79.62 5879.99 6178.49 6886.46 5274.79 3477.15 11485.39 4066.73 7080.39 11488.85 10274.43 5478.33 18574.73 4985.79 19882.35 174
XVG-OURS79.51 5979.82 6278.58 6786.11 6274.96 3376.33 12484.95 5066.89 6682.75 8588.99 9966.82 11378.37 18374.80 4790.76 12382.40 173
ETH3D-3000-0.179.14 6379.80 6377.16 8780.67 13964.57 11380.26 7587.60 1260.74 12782.47 8888.03 11971.73 7081.81 11773.12 5993.61 6585.09 87
HPM-MVS++copyleft79.89 5779.80 6380.18 4589.02 2778.44 1383.49 4980.18 13964.71 9378.11 13988.39 10965.46 12883.14 9677.64 3291.20 10578.94 226
MSP-MVS80.49 5079.67 6582.96 789.70 1277.46 2387.16 1285.10 4664.94 9081.05 10488.38 11057.10 20587.10 879.75 883.87 22884.31 119
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_040278.17 7679.48 6674.24 12183.50 9859.15 16072.52 16174.60 20875.34 1788.69 1391.81 2275.06 4482.37 10965.10 11788.68 16081.20 188
DP-MVS78.44 7379.29 6775.90 10181.86 12765.33 10679.05 9084.63 6074.83 2080.41 11386.27 15571.68 7183.45 9062.45 14492.40 8578.92 227
UniMVSNet_ETH3D76.74 8579.02 6869.92 19089.27 2043.81 26474.47 14871.70 22872.33 3785.50 4993.65 377.98 2276.88 20854.60 20691.64 9489.08 31
TSAR-MVS + MP.79.05 6478.81 6979.74 4888.94 2967.52 8886.61 2081.38 11251.71 22677.15 15191.42 3365.49 12787.20 679.44 1487.17 18584.51 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OMC-MVS79.41 6178.79 7081.28 3480.62 14070.71 6480.91 6684.76 5362.54 11481.77 9486.65 14471.46 7383.53 8867.95 9892.44 8489.60 23
HQP_MVS78.77 6778.78 7178.72 6485.18 7265.18 10882.74 5485.49 3565.45 8078.23 13689.11 9560.83 16886.15 2871.09 7490.94 11284.82 96
ETH3D cwj APD-0.1678.38 7478.72 7277.38 8280.09 14466.16 10179.08 8986.13 2757.55 15680.93 10687.76 12271.98 6982.73 10472.11 7192.83 7783.25 147
mvs_tets78.93 6578.67 7379.72 4984.81 7973.93 4080.65 6776.50 18951.98 22487.40 2491.86 2176.09 3578.53 17568.58 8890.20 12986.69 64
CNVR-MVS78.49 7178.59 7478.16 7385.86 6667.40 8978.12 10481.50 10863.92 9977.51 14886.56 14868.43 9984.82 6673.83 5591.61 9682.26 177
OurMVSNet-221017-078.57 6978.53 7578.67 6580.48 14164.16 11780.24 7682.06 10061.89 11888.77 1293.32 457.15 20382.60 10670.08 8092.80 7889.25 27
test_djsdf78.88 6678.27 7680.70 4181.42 13271.24 5883.98 3975.72 19552.27 21987.37 2792.25 1668.04 10380.56 14172.28 6891.15 10790.32 20
test_part176.97 8378.21 7773.25 13777.87 17745.76 25278.27 10087.26 1566.69 7185.31 5291.43 3255.95 21484.24 7865.71 11395.43 1289.75 22
jajsoiax78.51 7078.16 7879.59 5284.65 8273.83 4280.42 7076.12 19151.33 23287.19 2991.51 2973.79 5878.44 17968.27 9190.13 13486.49 66
NCCC78.25 7578.04 7978.89 6385.61 6869.45 7379.80 8280.99 12365.77 7775.55 18186.25 15767.42 10785.42 5070.10 7990.88 11881.81 183
anonymousdsp78.60 6877.80 8081.00 3778.01 17574.34 3880.09 7876.12 19150.51 24189.19 1090.88 4071.45 7477.78 19773.38 5890.60 12590.90 16
TranMVSNet+NR-MVSNet76.13 8877.66 8171.56 16684.61 8342.57 27870.98 18678.29 16968.67 5983.04 7989.26 8872.99 6380.75 14055.58 19995.47 1091.35 11
AllTest77.66 7777.43 8278.35 7179.19 15770.81 6178.60 9488.64 365.37 8380.09 11788.17 11570.33 8178.43 18055.60 19690.90 11685.81 75
DROMVSNet77.08 8277.39 8376.14 9976.86 19356.87 17380.32 7487.52 1363.45 10674.66 19584.52 18269.87 8684.94 6269.76 8489.59 14586.60 65
PS-MVSNAJss77.54 7877.35 8478.13 7584.88 7766.37 9978.55 9579.59 14753.48 20986.29 3592.43 1562.39 15080.25 14967.90 9990.61 12487.77 48
Anonymous2023121175.54 9477.19 8570.59 17577.67 18245.70 25474.73 14480.19 13868.80 5682.95 8192.91 866.26 12076.76 21158.41 17592.77 7989.30 26
test_prior376.71 8677.19 8575.27 10982.15 12259.85 15375.57 13184.33 6758.92 14176.53 17086.78 13567.83 10583.39 9169.81 8292.76 8082.58 168
DeepPCF-MVS71.07 578.48 7277.14 8782.52 1984.39 8977.04 2576.35 12284.05 7756.66 16580.27 11585.31 17568.56 9687.03 1067.39 10391.26 10383.50 136
CDPH-MVS77.33 8077.06 8878.14 7484.21 9063.98 11976.07 12783.45 8454.20 19777.68 14787.18 12369.98 8485.37 5168.01 9592.72 8285.08 89
train_agg76.38 8776.55 8975.86 10285.47 6969.32 7776.42 12078.69 16054.00 20276.97 15486.74 13866.60 11681.10 12872.50 6691.56 9777.15 247
agg_prior175.89 8976.41 9074.31 12084.44 8766.02 10276.12 12678.62 16354.40 19176.95 15686.85 13266.44 11980.34 14672.45 6791.42 10076.57 251
SixPastTwentyTwo75.77 9076.34 9174.06 12481.69 13054.84 18376.47 11975.49 19764.10 9887.73 1892.24 1750.45 23981.30 12467.41 10291.46 9986.04 71
DeepC-MVS_fast69.89 777.17 8176.33 9279.70 5083.90 9567.94 8580.06 8083.75 8056.73 16474.88 18985.32 17465.54 12687.79 265.61 11591.14 10883.35 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v1075.69 9376.20 9374.16 12274.44 22848.69 21975.84 13082.93 9159.02 14085.92 4089.17 9358.56 18882.74 10370.73 7689.14 15591.05 13
ETH3 D test640075.73 9276.00 9474.92 11281.75 12856.93 17178.31 9884.60 6252.83 21577.15 15185.14 17768.59 9584.03 7965.44 11690.20 12983.82 127
nrg03074.87 10675.99 9571.52 16774.90 21549.88 21574.10 15282.58 9654.55 19083.50 7789.21 9071.51 7275.74 22061.24 15092.34 8688.94 36
MSLP-MVS++74.48 10975.78 9670.59 17584.66 8162.40 12778.65 9384.24 7260.55 12977.71 14681.98 21263.12 14377.64 19962.95 14188.14 16371.73 291
UniMVSNet_NR-MVSNet74.90 10575.65 9772.64 15583.04 10845.79 25069.26 20678.81 15766.66 7281.74 9686.88 13163.26 14281.07 13056.21 19194.98 2191.05 13
v875.07 10175.64 9873.35 13373.42 24047.46 23775.20 13581.45 11060.05 13185.64 4489.26 8858.08 19581.80 11869.71 8587.97 16890.79 17
DU-MVS74.91 10475.57 9972.93 14683.50 9845.79 25069.47 20380.14 14065.22 8681.74 9687.08 12561.82 15681.07 13056.21 19194.98 2191.93 8
UniMVSNet (Re)75.00 10275.48 10073.56 13183.14 10347.92 23070.41 19481.04 12263.67 10279.54 12186.37 15362.83 14481.82 11657.10 18295.25 1590.94 15
IS-MVSNet75.10 10075.42 10174.15 12379.23 15548.05 22879.43 8378.04 17270.09 5279.17 12688.02 12053.04 22483.60 8558.05 17793.76 6490.79 17
HQP-MVS75.24 9875.01 10275.94 10082.37 11758.80 16377.32 11084.12 7559.08 13771.58 23285.96 16758.09 19385.30 5367.38 10489.16 15283.73 133
X-MVStestdata76.81 8474.79 10382.85 1089.43 1677.61 1886.80 1884.66 5872.71 2982.87 829.95 37173.86 5686.31 2078.84 2094.03 5784.64 102
FC-MVSNet-test73.32 12574.78 10468.93 20479.21 15636.57 32071.82 17479.54 14957.63 15582.57 8790.38 6459.38 18178.99 16657.91 17894.56 3591.23 12
Vis-MVSNetpermissive74.85 10774.56 10575.72 10381.63 13164.64 11276.35 12279.06 15362.85 11273.33 21188.41 10862.54 14879.59 16063.94 13082.92 23682.94 157
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AdaColmapbinary74.22 11174.56 10573.20 13881.95 12560.97 14079.43 8380.90 12465.57 7972.54 22181.76 21670.98 7885.26 5447.88 25690.00 13573.37 274
Regformer-275.32 9674.47 10777.88 7674.22 23066.65 9772.77 15977.54 17868.47 6180.44 11272.08 31270.60 8080.97 13470.08 8084.02 22686.01 72
CSCG74.12 11274.39 10873.33 13479.35 15261.66 13477.45 10981.98 10262.47 11679.06 12780.19 23461.83 15578.79 17059.83 16687.35 17879.54 220
RPSCF75.76 9174.37 10979.93 4674.81 21777.53 2077.53 10879.30 15059.44 13678.88 12889.80 8071.26 7673.09 24657.45 17980.89 26089.17 30
PHI-MVS74.92 10374.36 11076.61 9076.40 19662.32 12980.38 7183.15 8754.16 19973.23 21380.75 22562.19 15383.86 8168.02 9490.92 11583.65 134
TAPA-MVS65.27 1275.16 9974.29 11177.77 7774.86 21668.08 8477.89 10584.04 7855.15 17976.19 17783.39 19566.91 11180.11 15460.04 16490.14 13385.13 86
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPM_NR73.91 11374.16 11273.16 13981.90 12653.50 19381.28 6481.40 11166.17 7573.30 21283.31 20059.96 17383.10 9858.45 17481.66 25282.87 159
NR-MVSNet73.62 11974.05 11372.33 16183.50 9843.71 26565.65 26177.32 18264.32 9675.59 18087.08 12562.45 14981.34 12254.90 20295.63 891.93 8
F-COLMAP75.29 9773.99 11479.18 5681.73 12971.90 5181.86 6282.98 8959.86 13472.27 22484.00 18964.56 13883.07 9951.48 22687.19 18482.56 170
baseline73.10 12873.96 11570.51 17771.46 26146.39 24872.08 16584.40 6655.95 17276.62 16686.46 15167.20 10878.03 19264.22 12487.27 18287.11 59
casdiffmvs73.06 13173.84 11670.72 17371.32 26246.71 24470.93 18784.26 7155.62 17577.46 14987.10 12467.09 10977.81 19563.95 12886.83 18887.64 50
FIs72.56 14473.80 11768.84 20778.74 16737.74 31471.02 18579.83 14356.12 17080.88 10989.45 8558.18 19078.28 18656.63 18493.36 7090.51 19
Anonymous2024052972.56 14473.79 11868.86 20676.89 19245.21 25668.80 21577.25 18467.16 6576.89 15990.44 5565.95 12374.19 24050.75 23290.00 13587.18 58
GeoE73.14 12773.77 11971.26 17078.09 17352.64 19874.32 14979.56 14856.32 16976.35 17583.36 19970.76 7977.96 19363.32 13881.84 24783.18 150
CS-MVS-test73.63 11873.74 12073.30 13675.80 20651.70 20077.02 11786.83 1961.29 12168.47 26779.23 24765.42 12985.14 6164.04 12585.55 20083.07 154
Regformer-474.64 10873.67 12177.55 7874.74 21964.49 11572.91 15775.42 19967.45 6380.24 11672.07 31468.98 9280.19 15370.29 7880.91 25887.98 46
pmmvs671.82 15173.66 12266.31 23775.94 20342.01 28166.99 24372.53 22263.45 10676.43 17392.78 1072.95 6469.69 27851.41 22790.46 12687.22 55
Regformer-174.28 11073.63 12376.21 9874.22 23064.12 11872.77 15975.46 19866.86 6879.27 12472.08 31269.29 8978.74 17168.73 8784.02 22685.77 80
K. test v373.67 11773.61 12473.87 12679.78 14655.62 18174.69 14662.04 29666.16 7684.76 6193.23 549.47 24380.97 13465.66 11486.67 19185.02 91
v119273.40 12373.42 12573.32 13574.65 22548.67 22072.21 16481.73 10552.76 21681.85 9284.56 18157.12 20482.24 11368.58 8887.33 17989.06 32
v114473.29 12673.39 12673.01 14274.12 23448.11 22772.01 16781.08 12153.83 20681.77 9484.68 17958.07 19681.91 11568.10 9286.86 18788.99 35
canonicalmvs72.29 14873.38 12769.04 19974.23 22947.37 23873.93 15383.18 8654.36 19276.61 16781.64 21872.03 6675.34 22457.12 18187.28 18184.40 116
EPP-MVSNet73.86 11473.38 12775.31 10878.19 17153.35 19580.45 6977.32 18265.11 8876.47 17286.80 13349.47 24383.77 8253.89 21492.72 8288.81 40
MCST-MVS73.42 12273.34 12973.63 13081.28 13459.17 15974.80 14283.13 8845.50 27872.84 21683.78 19265.15 13280.99 13264.54 12189.09 15780.73 204
114514_t73.40 12373.33 13073.64 12984.15 9257.11 17078.20 10280.02 14143.76 29272.55 22086.07 16564.00 14083.35 9360.14 16291.03 11180.45 209
Baseline_NR-MVSNet70.62 16173.19 13162.92 26876.97 18834.44 33668.84 21170.88 24660.25 13079.50 12290.53 5261.82 15669.11 28254.67 20595.27 1485.22 83
v124073.06 13173.14 13272.84 14974.74 21947.27 24071.88 17381.11 11851.80 22582.28 9084.21 18656.22 21282.34 11068.82 8687.17 18588.91 37
VDDNet71.60 15373.13 13367.02 23086.29 5341.11 28669.97 19666.50 26868.72 5874.74 19191.70 2459.90 17475.81 21848.58 25091.72 9184.15 123
IterMVS-LS73.01 13373.12 13472.66 15473.79 23749.90 21271.63 17578.44 16658.22 14580.51 11186.63 14558.15 19279.62 15862.51 14288.20 16288.48 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419272.99 13573.06 13572.77 15074.58 22647.48 23671.90 17280.44 13451.57 22881.46 10084.11 18858.04 19782.12 11467.98 9687.47 17588.70 42
CNLPA73.44 12173.03 13674.66 11378.27 17075.29 3175.99 12878.49 16565.39 8275.67 17983.22 20461.23 16466.77 30053.70 21685.33 20581.92 182
v192192072.96 13772.98 13772.89 14874.67 22247.58 23571.92 17180.69 12751.70 22781.69 9883.89 19056.58 21082.25 11268.34 9087.36 17788.82 39
MVS_111021_HR72.98 13672.97 13872.99 14380.82 13765.47 10568.81 21372.77 21957.67 15375.76 17882.38 20971.01 7777.17 20361.38 14986.15 19476.32 252
Gipumacopyleft69.55 17472.83 13959.70 29263.63 32553.97 18980.08 7975.93 19364.24 9773.49 20888.93 10157.89 19962.46 31759.75 16791.55 9862.67 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DP-MVS Recon73.57 12072.69 14076.23 9782.85 11263.39 12274.32 14982.96 9057.75 15070.35 24981.98 21264.34 13984.41 7549.69 24089.95 13780.89 197
v2v48272.55 14672.58 14172.43 15872.92 25246.72 24371.41 17879.13 15255.27 17781.17 10385.25 17655.41 21581.13 12767.25 10785.46 20189.43 25
WR-MVS71.20 15572.48 14267.36 22584.98 7635.70 32864.43 27668.66 25865.05 8981.49 9986.43 15257.57 20176.48 21350.36 23693.32 7189.90 21
FMVSNet171.06 15672.48 14266.81 23177.65 18340.68 29171.96 16873.03 21461.14 12379.45 12390.36 6760.44 17075.20 22650.20 23788.05 16584.54 109
CLD-MVS72.88 13872.36 14474.43 11777.03 18754.30 18768.77 21683.43 8552.12 22176.79 16474.44 29369.54 8883.91 8055.88 19493.25 7285.09 87
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu75.43 9572.28 14584.91 277.05 18583.58 178.47 9677.70 17657.68 15174.89 18878.13 26364.80 13584.26 7756.46 18885.32 20686.88 61
Effi-MVS+72.10 14972.28 14571.58 16574.21 23350.33 20874.72 14582.73 9362.62 11370.77 24576.83 27369.96 8580.97 13460.20 15978.43 28583.45 142
Regformer-372.86 13972.28 14574.62 11474.74 21960.18 15072.91 15771.76 22764.74 9278.42 13472.07 31467.00 11076.28 21567.97 9780.91 25887.39 53
ETV-MVS72.72 14172.16 14874.38 11976.90 19155.95 17673.34 15584.67 5762.04 11772.19 22770.81 32465.90 12485.24 5658.64 17284.96 21381.95 181
EI-MVSNet-Vis-set72.78 14071.87 14975.54 10674.77 21859.02 16172.24 16371.56 23163.92 9978.59 13071.59 32066.22 12178.60 17367.58 10080.32 26689.00 34
CANet73.00 13471.84 15076.48 9375.82 20461.28 13674.81 14080.37 13663.17 11062.43 30480.50 22961.10 16685.16 6064.00 12784.34 22283.01 156
MVS_111021_LR72.10 14971.82 15172.95 14579.53 15073.90 4170.45 19366.64 26756.87 16176.81 16381.76 21668.78 9371.76 26461.81 14583.74 23073.18 276
PCF-MVS63.80 1372.70 14271.69 15275.72 10378.10 17260.01 15273.04 15681.50 10845.34 28279.66 12084.35 18565.15 13282.65 10548.70 24889.38 15184.50 114
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-UG-set72.63 14371.68 15375.47 10774.67 22258.64 16672.02 16671.50 23263.53 10478.58 13271.39 32365.98 12278.53 17567.30 10680.18 26889.23 28
TransMVSNet (Re)69.62 17271.63 15463.57 25776.51 19535.93 32665.75 26071.29 23861.05 12475.02 18689.90 7965.88 12570.41 27649.79 23989.48 14784.38 117
h-mvs3373.08 12971.61 15577.48 8083.89 9672.89 4970.47 19271.12 24354.28 19377.89 14083.41 19449.04 24680.98 13363.62 13390.77 12278.58 230
TSAR-MVS + GP.73.08 12971.60 15677.54 7978.99 16470.73 6374.96 13769.38 25460.73 12874.39 19978.44 25857.72 20082.78 10260.16 16189.60 14479.11 225
LCM-MVSNet-Re69.10 18371.57 15761.70 27670.37 27334.30 33861.45 29979.62 14456.81 16289.59 888.16 11768.44 9872.94 24742.30 28687.33 17977.85 244
API-MVS70.97 15871.51 15869.37 19375.20 21055.94 17780.99 6576.84 18662.48 11571.24 24077.51 26961.51 16080.96 13852.04 22285.76 19971.22 295
VDD-MVS70.81 15971.44 15968.91 20579.07 16246.51 24567.82 22970.83 24761.23 12274.07 20388.69 10359.86 17575.62 22151.11 22990.28 12884.61 105
MG-MVS70.47 16371.34 16067.85 21979.26 15440.42 29574.67 14775.15 20458.41 14468.74 26688.14 11856.08 21383.69 8359.90 16581.71 25179.43 222
3Dnovator65.95 1171.50 15471.22 16172.34 16073.16 24463.09 12578.37 9778.32 16757.67 15372.22 22684.61 18054.77 21678.47 17760.82 15681.07 25775.45 258
RRT_MVS73.80 11671.19 16281.60 2471.04 26370.33 6878.78 9274.91 20556.96 16077.83 14385.56 17232.82 32687.39 571.16 7391.68 9387.07 60
alignmvs70.54 16271.00 16369.15 19873.50 23848.04 22969.85 19979.62 14453.94 20576.54 16982.00 21159.00 18474.68 23357.32 18087.21 18384.72 100
EG-PatchMatch MVS70.70 16070.88 16470.16 18382.64 11658.80 16371.48 17673.64 21254.98 18076.55 16881.77 21561.10 16678.94 16754.87 20380.84 26172.74 281
V4271.06 15670.83 16571.72 16467.25 29747.14 24165.94 25580.35 13751.35 23183.40 7883.23 20259.25 18278.80 16965.91 11280.81 26289.23 28
MVS_Test69.84 17070.71 16667.24 22667.49 29643.25 27269.87 19881.22 11752.69 21771.57 23586.68 14162.09 15474.51 23566.05 11078.74 28183.96 125
mvs-test173.81 11570.69 16783.18 577.05 18581.39 375.39 13377.70 17657.68 15171.19 24274.72 28964.80 13583.66 8456.46 18881.19 25684.50 114
hse-mvs272.32 14770.66 16877.31 8583.10 10771.77 5269.19 20871.45 23454.28 19377.89 14078.26 26049.04 24679.23 16263.62 13389.13 15680.92 196
VPA-MVSNet68.71 18870.37 16963.72 25576.13 20038.06 31264.10 27871.48 23356.60 16874.10 20288.31 11264.78 13769.72 27747.69 25890.15 13283.37 144
PLCcopyleft62.01 1671.79 15270.28 17076.33 9580.31 14368.63 8278.18 10381.24 11554.57 18967.09 27980.63 22759.44 17881.74 12046.91 26384.17 22378.63 228
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ANet_high67.08 20869.94 17158.51 30057.55 35427.09 36358.43 31776.80 18763.56 10382.40 8991.93 2059.82 17664.98 30850.10 23888.86 15983.46 141
c3_l69.82 17169.89 17269.61 19266.24 30543.48 26868.12 22679.61 14651.43 23077.72 14580.18 23554.61 21978.15 19163.62 13387.50 17487.20 57
pm-mvs168.40 19169.85 17364.04 25373.10 24839.94 29764.61 27470.50 24855.52 17673.97 20489.33 8663.91 14168.38 28649.68 24188.02 16683.81 129
CS-MVS69.29 17969.70 17468.07 21770.59 26842.36 28069.70 20184.56 6353.13 21167.96 27076.74 27459.41 17983.56 8660.33 15884.84 21578.28 235
BH-untuned69.39 17769.46 17569.18 19777.96 17656.88 17268.47 22377.53 17956.77 16377.79 14479.63 24160.30 17280.20 15246.04 26980.65 26370.47 300
v14869.38 17869.39 17669.36 19469.14 28344.56 25968.83 21272.70 22054.79 18478.59 13084.12 18754.69 21776.74 21259.40 16982.20 24286.79 62
TinyColmap67.98 19769.28 17764.08 25167.98 29146.82 24270.04 19575.26 20253.05 21277.36 15086.79 13459.39 18072.59 25445.64 27188.01 16772.83 279
QAPM69.18 18269.26 17868.94 20371.61 26052.58 19980.37 7278.79 15949.63 25073.51 20785.14 17753.66 22279.12 16455.11 20175.54 30175.11 262
MIMVSNet166.57 21269.23 17958.59 29981.26 13537.73 31564.06 27957.62 30857.02 15978.40 13590.75 4562.65 14558.10 33041.77 29189.58 14679.95 215
DPM-MVS69.98 16869.22 18072.26 16282.69 11558.82 16270.53 19181.23 11647.79 26764.16 29380.21 23251.32 23583.12 9760.14 16284.95 21474.83 264
UGNet70.20 16569.05 18173.65 12876.24 19863.64 12075.87 12972.53 22261.48 12060.93 31486.14 16152.37 22877.12 20450.67 23385.21 20780.17 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSFormer69.93 16969.03 18272.63 15674.93 21359.19 15783.98 3975.72 19552.27 21963.53 30076.74 27443.19 27780.56 14172.28 6878.67 28378.14 239
EI-MVSNet69.61 17369.01 18371.41 16973.94 23549.90 21271.31 18171.32 23658.22 14575.40 18470.44 32658.16 19175.85 21662.51 14279.81 27288.48 43
PVSNet_Blended_VisFu70.04 16668.88 18473.53 13282.71 11463.62 12174.81 14081.95 10348.53 26067.16 27879.18 25051.42 23478.38 18254.39 21079.72 27578.60 229
GBi-Net68.30 19368.79 18566.81 23173.14 24540.68 29171.96 16873.03 21454.81 18174.72 19290.36 6748.63 25275.20 22647.12 26085.37 20284.54 109
test168.30 19368.79 18566.81 23173.14 24540.68 29171.96 16873.03 21454.81 18174.72 19290.36 6748.63 25275.20 22647.12 26085.37 20284.54 109
OpenMVScopyleft62.51 1568.76 18768.75 18768.78 20870.56 27153.91 19078.29 9977.35 18148.85 25770.22 25183.52 19352.65 22776.93 20655.31 20081.99 24475.49 257
Fast-Effi-MVS+-dtu70.00 16768.74 18873.77 12773.47 23964.53 11471.36 17978.14 17155.81 17468.84 26574.71 29065.36 13075.75 21952.00 22379.00 27981.03 192
eth_miper_zixun_eth69.42 17668.73 18971.50 16867.99 29046.42 24667.58 23178.81 15750.72 23978.13 13880.34 23150.15 24180.34 14660.18 16084.65 21687.74 49
PAPR69.20 18168.66 19070.82 17275.15 21247.77 23275.31 13481.11 11849.62 25166.33 28179.27 24661.53 15982.96 10048.12 25481.50 25481.74 184
DELS-MVS68.83 18568.31 19170.38 17870.55 27248.31 22363.78 28382.13 9954.00 20268.96 26275.17 28558.95 18580.06 15558.55 17382.74 23882.76 163
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Fast-Effi-MVS+68.81 18668.30 19270.35 17974.66 22448.61 22166.06 25478.32 16750.62 24071.48 23875.54 28168.75 9479.59 16050.55 23578.73 28282.86 160
cl____68.26 19668.26 19368.29 21364.98 31743.67 26665.89 25674.67 20650.04 24676.86 16182.42 20848.74 25075.38 22260.92 15589.81 14085.80 79
DIV-MVS_self_test68.27 19568.26 19368.29 21364.98 31743.67 26665.89 25674.67 20650.04 24676.86 16182.43 20748.74 25075.38 22260.94 15489.81 14085.81 75
112169.23 18068.26 19372.12 16388.36 3771.40 5568.59 21862.06 29443.80 29174.75 19086.18 15852.92 22576.85 20954.47 20783.27 23468.12 317
FMVSNet267.48 20468.21 19665.29 24273.14 24538.94 30468.81 21371.21 24254.81 18176.73 16586.48 15048.63 25274.60 23447.98 25586.11 19682.35 174
BH-RMVSNet68.69 18968.20 19770.14 18476.40 19653.90 19164.62 27373.48 21358.01 14773.91 20581.78 21459.09 18378.22 18748.59 24977.96 29078.31 233
miper_ehance_all_eth68.36 19268.16 19868.98 20165.14 31643.34 27067.07 24278.92 15649.11 25576.21 17677.72 26653.48 22377.92 19461.16 15284.59 21885.68 81
tfpnnormal66.48 21367.93 19962.16 27473.40 24136.65 31963.45 28664.99 27655.97 17172.82 21787.80 12157.06 20669.10 28348.31 25387.54 17280.72 205
LFMVS67.06 20967.89 20064.56 24778.02 17438.25 30970.81 19059.60 30265.18 8771.06 24386.56 14843.85 27375.22 22546.35 26789.63 14380.21 213
AUN-MVS70.22 16467.88 20177.22 8682.96 11171.61 5369.08 20971.39 23549.17 25471.70 23078.07 26437.62 31179.21 16361.81 14589.15 15480.82 199
tttt051769.46 17567.79 20274.46 11575.34 20852.72 19775.05 13663.27 28754.69 18678.87 12984.37 18426.63 35581.15 12663.95 12887.93 16989.51 24
VPNet65.58 21967.56 20359.65 29379.72 14730.17 35560.27 30862.14 29154.19 19871.24 24086.63 14558.80 18667.62 29144.17 27990.87 11981.18 189
KD-MVS_self_test66.38 21467.51 20462.97 26661.76 33234.39 33758.11 31975.30 20150.84 23877.12 15385.42 17356.84 20869.44 27951.07 23091.16 10685.08 89
diffmvs67.42 20667.50 20567.20 22762.26 33045.21 25664.87 27077.04 18548.21 26171.74 22979.70 24058.40 18971.17 26864.99 11880.27 26785.22 83
MSDG67.47 20567.48 20667.46 22470.70 26754.69 18566.90 24678.17 17060.88 12670.41 24874.76 28761.22 16573.18 24547.38 25976.87 29374.49 266
EPNet69.10 18367.32 20774.46 11568.33 28761.27 13777.56 10763.57 28560.95 12556.62 33082.75 20551.53 23381.24 12554.36 21190.20 12980.88 198
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LF4IMVS67.50 20367.31 20868.08 21658.86 34961.93 13071.43 17775.90 19444.67 28772.42 22380.20 23357.16 20270.44 27458.99 17186.12 19571.88 289
EIA-MVS68.59 19067.16 20972.90 14775.18 21155.64 18069.39 20481.29 11352.44 21864.53 28970.69 32560.33 17182.30 11154.27 21276.31 29680.75 203
xiu_mvs_v1_base_debu67.87 19867.07 21070.26 18079.13 15961.90 13167.34 23571.25 23947.98 26367.70 27274.19 29961.31 16172.62 25156.51 18578.26 28776.27 253
xiu_mvs_v1_base67.87 19867.07 21070.26 18079.13 15961.90 13167.34 23571.25 23947.98 26367.70 27274.19 29961.31 16172.62 25156.51 18578.26 28776.27 253
xiu_mvs_v1_base_debi67.87 19867.07 21070.26 18079.13 15961.90 13167.34 23571.25 23947.98 26367.70 27274.19 29961.31 16172.62 25156.51 18578.26 28776.27 253
Anonymous20240521166.02 21566.89 21363.43 26074.22 23038.14 31059.00 31466.13 26963.33 10969.76 25685.95 16851.88 22970.50 27344.23 27887.52 17381.64 185
cl2267.14 20766.51 21469.03 20063.20 32643.46 26966.88 24776.25 19049.22 25374.48 19777.88 26545.49 26377.40 20160.64 15784.59 21886.24 67
wuyk23d61.97 25666.25 21549.12 32758.19 35360.77 14666.32 25252.97 33455.93 17390.62 586.91 13073.07 6235.98 36720.63 36991.63 9550.62 358
MAR-MVS67.72 20166.16 21672.40 15974.45 22764.99 11174.87 13877.50 18048.67 25865.78 28568.58 34457.01 20777.79 19646.68 26681.92 24574.42 267
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous2024052163.55 24166.07 21755.99 30766.18 30744.04 26368.77 21668.80 25646.99 27272.57 21985.84 16939.87 29850.22 33953.40 22092.23 8873.71 273
IterMVS-SCA-FT67.68 20266.07 21772.49 15773.34 24258.20 16863.80 28265.55 27348.10 26276.91 15882.64 20645.20 26478.84 16861.20 15177.89 29180.44 210
bset_n11_16_dypcd66.91 21165.84 21970.12 18572.95 25153.54 19263.64 28468.65 25948.54 25972.54 22174.28 29640.58 29478.54 17463.52 13687.82 17078.29 234
mvs_anonymous65.08 22465.49 22063.83 25463.79 32337.60 31666.52 25169.82 25243.44 29673.46 20986.08 16458.79 18771.75 26551.90 22475.63 30082.15 178
ECVR-MVScopyleft64.82 22665.22 22163.60 25678.80 16531.14 35266.97 24456.47 31854.23 19569.94 25388.68 10437.23 31274.81 23245.28 27489.41 14984.86 94
test111164.62 22965.19 22262.93 26779.01 16329.91 35665.45 26454.41 32654.09 20071.47 23988.48 10737.02 31374.29 23946.83 26589.94 13884.58 108
thisisatest053067.05 21065.16 22372.73 15373.10 24850.55 20771.26 18363.91 28350.22 24374.46 19880.75 22526.81 35480.25 14959.43 16886.50 19287.37 54
FMVSNet365.00 22565.16 22364.52 24869.47 27937.56 31766.63 24970.38 24951.55 22974.72 19283.27 20137.89 31074.44 23647.12 26085.37 20281.57 186
VNet64.01 24065.15 22560.57 28773.28 24335.61 32957.60 32167.08 26554.61 18866.76 28083.37 19756.28 21166.87 29642.19 28785.20 20879.23 224
RRT_test8_iter0565.80 21765.13 22667.80 22267.02 30040.85 29067.13 24175.33 20049.73 24872.69 21881.32 21924.45 36577.37 20261.69 14886.82 18985.18 85
ab-mvs64.11 23865.13 22661.05 28371.99 25838.03 31367.59 23068.79 25749.08 25665.32 28686.26 15658.02 19866.85 29839.33 30279.79 27478.27 236
test_yl65.11 22265.09 22865.18 24370.59 26840.86 28863.22 29172.79 21757.91 14868.88 26379.07 25342.85 28074.89 23045.50 27284.97 21079.81 216
DCV-MVSNet65.11 22265.09 22865.18 24370.59 26840.86 28863.22 29172.79 21757.91 14868.88 26379.07 25342.85 28074.89 23045.50 27284.97 21079.81 216
RPMNet65.77 21865.08 23067.84 22066.37 30248.24 22570.93 18786.27 2354.66 18761.35 30886.77 13733.29 32385.67 4655.93 19370.17 33169.62 309
miper_enhance_ethall65.86 21665.05 23168.28 21561.62 33442.62 27764.74 27177.97 17342.52 30173.42 21072.79 30949.66 24277.68 19858.12 17684.59 21884.54 109
PVSNet_BlendedMVS65.38 22064.30 23268.61 20969.81 27649.36 21665.60 26378.96 15445.50 27859.98 31778.61 25651.82 23078.20 18844.30 27684.11 22478.27 236
BH-w/o64.81 22764.29 23366.36 23676.08 20254.71 18465.61 26275.23 20350.10 24571.05 24471.86 31954.33 22079.02 16538.20 31276.14 29765.36 332
xiu_mvs_v2_base64.43 23463.96 23465.85 24177.72 18151.32 20463.63 28572.31 22545.06 28661.70 30569.66 33462.56 14673.93 24349.06 24573.91 31372.31 285
CANet_DTU64.04 23963.83 23564.66 24668.39 28442.97 27473.45 15474.50 20952.05 22354.78 33775.44 28443.99 27270.42 27553.49 21878.41 28680.59 207
TAMVS65.31 22163.75 23669.97 18982.23 12159.76 15566.78 24863.37 28645.20 28369.79 25579.37 24547.42 25872.17 25734.48 33485.15 20977.99 243
PS-MVSNAJ64.27 23763.73 23765.90 24077.82 17951.42 20363.33 28872.33 22445.09 28561.60 30668.04 34562.39 15073.95 24249.07 24473.87 31472.34 284
PM-MVS64.49 23263.61 23867.14 22976.68 19475.15 3268.49 22242.85 35751.17 23577.85 14280.51 22845.76 25966.31 30352.83 22176.35 29559.96 350
TR-MVS64.59 23063.54 23967.73 22375.75 20750.83 20663.39 28770.29 25049.33 25271.55 23674.55 29150.94 23678.46 17840.43 29875.69 29973.89 271
CL-MVSNet_self_test62.44 25463.40 24059.55 29472.34 25532.38 34556.39 32364.84 27751.21 23467.46 27681.01 22450.75 23763.51 31538.47 31088.12 16482.75 164
OpenMVS_ROBcopyleft54.93 1763.23 24563.28 24163.07 26469.81 27645.34 25568.52 22167.14 26443.74 29370.61 24779.22 24847.90 25672.66 25048.75 24773.84 31571.21 296
pmmvs-eth3d64.41 23563.27 24267.82 22175.81 20560.18 15069.49 20262.05 29538.81 32174.13 20182.23 21043.76 27468.65 28442.53 28580.63 26574.63 265
Vis-MVSNet (Re-imp)62.74 25163.21 24361.34 28172.19 25631.56 34967.31 23953.87 32753.60 20869.88 25483.37 19740.52 29570.98 26941.40 29286.78 19081.48 187
USDC62.80 25063.10 24461.89 27565.19 31343.30 27167.42 23474.20 21035.80 33572.25 22584.48 18345.67 26171.95 26237.95 31484.97 21070.42 302
Patchmtry60.91 26463.01 24554.62 31066.10 30826.27 36667.47 23356.40 31954.05 20172.04 22886.66 14233.19 32460.17 32443.69 28087.45 17677.42 245
jason64.47 23362.84 24669.34 19676.91 19059.20 15667.15 24065.67 27035.29 33665.16 28776.74 27444.67 26870.68 27054.74 20479.28 27878.14 239
jason: jason.
cascas64.59 23062.77 24770.05 18775.27 20950.02 21161.79 29871.61 22942.46 30263.68 29868.89 34149.33 24580.35 14547.82 25784.05 22579.78 218
CDS-MVSNet64.33 23662.66 24869.35 19580.44 14258.28 16765.26 26665.66 27144.36 28867.30 27775.54 28143.27 27671.77 26337.68 31584.44 22178.01 242
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS63.12 24662.48 24965.02 24566.34 30452.86 19663.81 28162.25 29046.57 27571.51 23780.40 23044.60 26966.82 29951.38 22875.47 30275.38 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_030462.51 25362.27 25063.25 26169.39 28048.47 22264.05 28062.48 28959.69 13554.10 34281.04 22345.71 26066.31 30341.38 29382.58 24074.96 263
MDA-MVSNet-bldmvs62.34 25561.73 25164.16 24961.64 33349.90 21248.11 34557.24 31453.31 21080.95 10579.39 24449.00 24861.55 32145.92 27080.05 26981.03 192
GA-MVS62.91 24861.66 25266.66 23567.09 29944.49 26061.18 30369.36 25551.33 23269.33 25874.47 29236.83 31474.94 22950.60 23474.72 30880.57 208
PVSNet_Blended62.90 24961.64 25366.69 23469.81 27649.36 21661.23 30278.96 15442.04 30359.98 31768.86 34251.82 23078.20 18844.30 27677.77 29272.52 282
miper_lstm_enhance61.97 25661.63 25462.98 26560.04 34245.74 25347.53 34770.95 24444.04 28973.06 21478.84 25539.72 29960.33 32355.82 19584.64 21782.88 158
MVSTER63.29 24461.60 25568.36 21159.77 34646.21 24960.62 30571.32 23641.83 30475.40 18479.12 25130.25 34775.85 21656.30 19079.81 27283.03 155
lupinMVS63.36 24261.49 25668.97 20274.93 21359.19 15765.80 25964.52 28134.68 34163.53 30074.25 29743.19 27770.62 27153.88 21578.67 28377.10 248
thres600view761.82 25861.38 25763.12 26371.81 25934.93 33364.64 27256.99 31554.78 18570.33 25079.74 23932.07 33372.42 25638.61 30883.46 23282.02 179
EGC-MVSNET64.77 22861.17 25875.60 10586.90 4774.47 3584.04 3868.62 2600.60 3731.13 37591.61 2765.32 13174.15 24164.01 12688.28 16178.17 238
thres100view90061.17 26361.09 25961.39 28072.14 25735.01 33265.42 26556.99 31555.23 17870.71 24679.90 23732.07 33372.09 25835.61 33081.73 24877.08 249
D2MVS62.58 25261.05 26067.20 22763.85 32247.92 23056.29 32469.58 25339.32 31670.07 25278.19 26134.93 31972.68 24953.44 21983.74 23081.00 194
CMPMVSbinary48.73 2061.54 26160.89 26163.52 25861.08 33751.55 20268.07 22768.00 26333.88 34365.87 28381.25 22137.91 30967.71 28949.32 24382.60 23971.31 294
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test250661.23 26260.85 26262.38 27278.80 16527.88 36267.33 23837.42 37054.23 19567.55 27588.68 10417.87 37474.39 23746.33 26889.41 14984.86 94
EU-MVSNet60.82 26560.80 26360.86 28668.37 28541.16 28572.27 16268.27 26226.96 36469.08 25975.71 27932.09 33267.44 29255.59 19878.90 28073.97 269
ET-MVSNet_ETH3D63.32 24360.69 26471.20 17170.15 27555.66 17965.02 26964.32 28243.28 30068.99 26172.05 31825.46 36178.19 19054.16 21382.80 23779.74 219
HyFIR lowres test63.01 24760.47 26570.61 17483.04 10854.10 18859.93 31072.24 22633.67 34669.00 26075.63 28038.69 30476.93 20636.60 32375.45 30380.81 202
PAPM61.79 25960.37 26666.05 23876.09 20141.87 28269.30 20576.79 18840.64 31353.80 34379.62 24244.38 27082.92 10129.64 35273.11 31773.36 275
FPMVS59.43 27660.07 26757.51 30377.62 18471.52 5462.33 29550.92 33957.40 15769.40 25780.00 23639.14 30261.92 32037.47 31866.36 34439.09 367
tfpn200view960.35 27059.97 26861.51 27870.78 26535.35 33063.27 28957.47 30953.00 21368.31 26877.09 27132.45 33072.09 25835.61 33081.73 24877.08 249
MVS60.62 26859.97 26862.58 27068.13 28947.28 23968.59 21873.96 21132.19 35059.94 31968.86 34250.48 23877.64 19941.85 29075.74 29862.83 342
thres40060.77 26759.97 26863.15 26270.78 26535.35 33063.27 28957.47 30953.00 21368.31 26877.09 27132.45 33072.09 25835.61 33081.73 24882.02 179
ppachtmachnet_test60.26 27159.61 27162.20 27367.70 29444.33 26158.18 31860.96 29940.75 31265.80 28472.57 31041.23 28763.92 31246.87 26482.42 24178.33 232
MVP-Stereo61.56 26059.22 27268.58 21079.28 15360.44 14869.20 20771.57 23043.58 29556.42 33178.37 25939.57 30176.46 21434.86 33360.16 35568.86 316
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-RL test59.95 27259.12 27362.44 27172.46 25454.61 18659.63 31147.51 35041.05 31074.58 19674.30 29531.06 34165.31 30551.61 22579.85 27167.39 320
pmmvs460.78 26659.04 27466.00 23973.06 25057.67 16964.53 27560.22 30036.91 33065.96 28277.27 27039.66 30068.54 28538.87 30574.89 30771.80 290
1112_ss59.48 27558.99 27560.96 28577.84 17842.39 27961.42 30068.45 26137.96 32559.93 32067.46 34745.11 26665.07 30740.89 29671.81 32275.41 259
131459.83 27358.86 27662.74 26965.71 31044.78 25868.59 21872.63 22133.54 34861.05 31267.29 35043.62 27571.26 26749.49 24267.84 34272.19 287
Test_1112_low_res58.78 28058.69 27759.04 29779.41 15138.13 31157.62 32066.98 26634.74 33959.62 32177.56 26842.92 27963.65 31438.66 30770.73 32875.35 261
EPNet_dtu58.93 27958.52 27860.16 29167.91 29247.70 23469.97 19658.02 30649.73 24847.28 35873.02 30838.14 30662.34 31836.57 32485.99 19770.43 301
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet58.96 27858.49 27960.36 28966.37 30248.24 22570.93 18756.40 31932.87 34961.35 30886.66 14233.19 32463.22 31648.50 25170.17 33169.62 309
CVMVSNet59.21 27758.44 28061.51 27873.94 23547.76 23371.31 18164.56 28026.91 36560.34 31670.44 32636.24 31667.65 29053.57 21768.66 33969.12 314
baseline157.82 28558.36 28156.19 30669.17 28230.76 35462.94 29355.21 32246.04 27763.83 29678.47 25741.20 28863.68 31339.44 30168.99 33774.13 268
SCA58.57 28258.04 28260.17 29070.17 27441.07 28765.19 26753.38 33243.34 29961.00 31373.48 30345.20 26469.38 28040.34 29970.31 33070.05 304
thisisatest051560.48 26957.86 28368.34 21267.25 29746.42 24660.58 30662.14 29140.82 31163.58 29969.12 33726.28 35778.34 18448.83 24682.13 24380.26 212
PatchMatch-RL58.68 28157.72 28461.57 27776.21 19973.59 4461.83 29749.00 34647.30 27161.08 31068.97 33950.16 24059.01 32736.06 32968.84 33852.10 357
HY-MVS49.31 1957.96 28457.59 28559.10 29666.85 30136.17 32365.13 26865.39 27439.24 31854.69 33978.14 26244.28 27167.18 29533.75 33870.79 32773.95 270
test20.0355.74 29257.51 28650.42 32059.89 34532.09 34750.63 33949.01 34550.11 24465.07 28883.23 20245.61 26248.11 34330.22 34883.82 22971.07 298
XXY-MVS55.19 29557.40 28748.56 32964.45 32034.84 33551.54 33853.59 32938.99 32063.79 29779.43 24356.59 20945.57 34736.92 32271.29 32465.25 333
thres20057.55 28657.02 28859.17 29567.89 29334.93 33358.91 31657.25 31350.24 24264.01 29471.46 32232.49 32971.39 26631.31 34479.57 27671.19 297
IB-MVS49.67 1859.69 27456.96 28967.90 21868.19 28850.30 20961.42 30065.18 27547.57 26955.83 33467.15 35123.77 36679.60 15943.56 28279.97 27073.79 272
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testgi54.00 30256.86 29045.45 33758.20 35225.81 36749.05 34149.50 34445.43 28167.84 27181.17 22251.81 23243.20 35929.30 35379.41 27767.34 322
gg-mvs-nofinetune55.75 29156.75 29152.72 31662.87 32728.04 36168.92 21041.36 36571.09 4450.80 35092.63 1220.74 36966.86 29729.97 35072.41 31963.25 341
our_test_356.46 28856.51 29256.30 30567.70 29439.66 29955.36 32952.34 33740.57 31463.85 29569.91 33340.04 29758.22 32943.49 28375.29 30671.03 299
PatchT53.35 30356.47 29343.99 34364.19 32117.46 37459.15 31243.10 35652.11 22254.74 33886.95 12929.97 35049.98 34043.62 28174.40 31164.53 340
CHOSEN 1792x268858.09 28356.30 29463.45 25979.95 14550.93 20554.07 33265.59 27228.56 36161.53 30774.33 29441.09 29066.52 30233.91 33767.69 34372.92 278
CostFormer57.35 28756.14 29560.97 28463.76 32438.43 30667.50 23260.22 30037.14 32959.12 32276.34 27732.78 32771.99 26139.12 30469.27 33672.47 283
MIMVSNet54.39 29856.12 29649.20 32572.57 25330.91 35359.98 30948.43 34841.66 30555.94 33383.86 19141.19 28950.42 33826.05 35975.38 30466.27 328
Anonymous2023120654.13 29955.82 29749.04 32870.89 26435.96 32551.73 33750.87 34034.86 33762.49 30379.22 24842.52 28344.29 35527.95 35781.88 24666.88 324
new-patchmatchnet52.89 30555.76 29844.26 34259.94 3446.31 37737.36 36450.76 34141.10 30864.28 29279.82 23844.77 26748.43 34236.24 32787.61 17178.03 241
FMVSNet555.08 29655.54 29953.71 31165.80 30933.50 34256.22 32552.50 33643.72 29461.06 31183.38 19625.46 36154.87 33330.11 34981.64 25372.75 280
tpmvs55.84 29055.45 30057.01 30460.33 34133.20 34365.89 25659.29 30447.52 27056.04 33273.60 30231.05 34268.06 28840.64 29764.64 34769.77 307
MS-PatchMatch55.59 29354.89 30157.68 30269.18 28149.05 21861.00 30462.93 28835.98 33358.36 32468.93 34036.71 31566.59 30137.62 31763.30 35157.39 353
tpm256.12 28954.64 30260.55 28866.24 30536.01 32468.14 22556.77 31733.60 34758.25 32575.52 28330.25 34774.33 23833.27 33969.76 33571.32 293
PatchmatchNetpermissive54.60 29754.27 30355.59 30865.17 31539.08 30166.92 24551.80 33839.89 31558.39 32373.12 30731.69 33558.33 32843.01 28458.38 36169.38 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1354.05 30465.54 31129.30 35859.00 31455.22 32135.96 33452.44 34575.98 27830.77 34459.62 32538.21 31173.33 316
YYNet152.58 30653.50 30549.85 32154.15 36836.45 32240.53 35846.55 35238.09 32475.52 18273.31 30641.08 29143.88 35641.10 29471.14 32669.21 313
MDA-MVSNet_test_wron52.57 30753.49 30649.81 32254.24 36736.47 32140.48 35946.58 35138.13 32375.47 18373.32 30541.05 29243.85 35740.98 29571.20 32569.10 315
UnsupCasMVSNet_eth52.26 30953.29 30749.16 32655.08 36433.67 34150.03 34058.79 30537.67 32663.43 30274.75 28841.82 28545.83 34638.59 30959.42 35767.98 319
baseline255.57 29452.74 30864.05 25265.26 31244.11 26262.38 29454.43 32539.03 31951.21 34867.35 34933.66 32272.45 25537.14 32064.22 34975.60 256
tpm cat154.02 30152.63 30958.19 30164.85 31939.86 29866.26 25357.28 31232.16 35156.90 32870.39 32832.75 32865.30 30634.29 33558.79 35869.41 311
pmmvs552.49 30852.58 31052.21 31854.99 36532.38 34555.45 32853.84 32832.15 35255.49 33674.81 28638.08 30757.37 33134.02 33674.40 31166.88 324
tpm50.60 31452.42 31145.14 33965.18 31426.29 36560.30 30743.50 35537.41 32757.01 32779.09 25230.20 34942.32 36032.77 34166.36 34466.81 326
JIA-IIPM54.03 30051.62 31261.25 28259.14 34855.21 18259.10 31347.72 34950.85 23750.31 35485.81 17020.10 37163.97 31136.16 32855.41 36664.55 339
KD-MVS_2432*160052.05 31151.58 31353.44 31252.11 37031.20 35044.88 35464.83 27841.53 30664.37 29070.03 33115.61 37864.20 30936.25 32574.61 30964.93 336
miper_refine_blended52.05 31151.58 31353.44 31252.11 37031.20 35044.88 35464.83 27841.53 30664.37 29070.03 33115.61 37864.20 30936.25 32574.61 30964.93 336
tpmrst50.15 31651.38 31546.45 33456.05 35924.77 36864.40 27749.98 34236.14 33253.32 34469.59 33535.16 31848.69 34139.24 30358.51 36065.89 329
PVSNet43.83 2151.56 31351.17 31652.73 31568.34 28638.27 30848.22 34453.56 33036.41 33154.29 34064.94 35434.60 32054.20 33630.34 34769.87 33365.71 331
DWT-MVSNet_test53.04 30451.12 31758.77 29861.23 33538.67 30562.16 29657.74 30738.24 32251.76 34759.07 36121.36 36867.40 29344.80 27563.76 35070.25 303
N_pmnet52.06 31051.11 31854.92 30959.64 34771.03 5937.42 36361.62 29833.68 34557.12 32672.10 31137.94 30831.03 36929.13 35671.35 32362.70 343
UnsupCasMVSNet_bld50.01 31751.03 31946.95 33058.61 35032.64 34448.31 34353.27 33334.27 34260.47 31571.53 32141.40 28647.07 34430.68 34660.78 35461.13 348
test-LLR50.43 31550.69 32049.64 32360.76 33841.87 28253.18 33445.48 35343.41 29749.41 35560.47 35929.22 35244.73 35342.09 28872.14 32062.33 346
WTY-MVS49.39 31850.31 32146.62 33361.22 33632.00 34846.61 35049.77 34333.87 34454.12 34169.55 33641.96 28445.40 34931.28 34564.42 34862.47 345
Patchmatch-test47.93 32149.96 32241.84 34657.42 35524.26 36948.75 34241.49 36439.30 31756.79 32973.48 30330.48 34633.87 36829.29 35472.61 31867.39 320
sss47.59 32348.32 32345.40 33856.73 35833.96 33945.17 35348.51 34732.11 35452.37 34665.79 35240.39 29641.91 36331.85 34261.97 35260.35 349
test0.0.03 147.72 32248.31 32445.93 33555.53 36329.39 35746.40 35141.21 36643.41 29755.81 33567.65 34629.22 35243.77 35825.73 36269.87 33364.62 338
test-mter48.56 32048.20 32549.64 32360.76 33841.87 28253.18 33445.48 35331.91 35549.41 35560.47 35918.34 37244.73 35342.09 28872.14 32062.33 346
MVS-HIRNet45.53 32647.29 32640.24 34962.29 32926.82 36456.02 32637.41 37129.74 36043.69 36781.27 22033.96 32155.48 33224.46 36556.79 36238.43 368
ADS-MVSNet248.76 31947.25 32753.29 31455.90 36140.54 29447.34 34854.99 32431.41 35750.48 35172.06 31631.23 33854.26 33525.93 36055.93 36365.07 334
EPMVS45.74 32546.53 32843.39 34454.14 36922.33 37155.02 33035.00 37334.69 34051.09 34970.20 33025.92 35942.04 36237.19 31955.50 36565.78 330
ADS-MVSNet44.62 33045.58 32941.73 34755.90 36120.83 37247.34 34839.94 36831.41 35750.48 35172.06 31631.23 33839.31 36525.93 36055.93 36365.07 334
E-PMN45.17 32745.36 33044.60 34150.07 37242.75 27538.66 36142.29 36146.39 27639.55 36851.15 36626.00 35845.37 35037.68 31576.41 29445.69 364
pmmvs346.71 32445.09 33151.55 31956.76 35748.25 22455.78 32739.53 36924.13 36850.35 35363.40 35515.90 37751.08 33729.29 35470.69 32955.33 356
TESTMET0.1,145.17 32744.93 33245.89 33656.02 36038.31 30753.18 33441.94 36327.85 36244.86 36356.47 36217.93 37341.50 36438.08 31368.06 34057.85 352
dp44.09 33244.88 33341.72 34858.53 35123.18 37054.70 33142.38 36034.80 33844.25 36565.61 35324.48 36444.80 35229.77 35149.42 36857.18 354
DSMNet-mixed43.18 33344.66 33438.75 35154.75 36628.88 36057.06 32227.42 37613.47 37047.27 35977.67 26738.83 30339.29 36625.32 36460.12 35648.08 360
EMVS44.61 33144.45 33545.10 34048.91 37443.00 27337.92 36241.10 36746.75 27438.00 37048.43 36826.42 35646.27 34537.11 32175.38 30446.03 363
PMMVS44.69 32943.95 33646.92 33150.05 37353.47 19448.08 34642.40 35922.36 36944.01 36653.05 36442.60 28245.49 34831.69 34361.36 35341.79 365
PMMVS237.74 33640.87 33728.36 35342.41 3765.35 37824.61 36627.75 37532.15 35247.85 35770.27 32935.85 31729.51 37019.08 37067.85 34150.22 359
PVSNet_036.71 2241.12 33540.78 33842.14 34559.97 34340.13 29640.97 35742.24 36230.81 35944.86 36349.41 36740.70 29345.12 35123.15 36634.96 37041.16 366
CHOSEN 280x42041.62 33439.89 33946.80 33261.81 33151.59 20133.56 36535.74 37227.48 36337.64 37153.53 36323.24 36742.09 36127.39 35858.64 35946.72 362
new_pmnet37.55 33739.80 34030.79 35256.83 35616.46 37539.35 36030.65 37425.59 36645.26 36161.60 35824.54 36328.02 37121.60 36752.80 36747.90 361
MVEpermissive27.91 2336.69 33835.64 34139.84 35043.37 37535.85 32719.49 36724.61 37724.68 36739.05 36962.63 35738.67 30527.10 37221.04 36847.25 36956.56 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k17.71 34023.62 3420.00 3590.00 3820.00 3830.00 37070.17 2510.00 3770.00 37874.25 29768.16 1010.00 3780.00 3760.00 3760.00 374
test_method19.26 33919.12 34319.71 3549.09 3781.91 3807.79 36953.44 3311.42 37210.27 37435.80 36917.42 37525.11 37312.44 37124.38 37232.10 369
tmp_tt11.98 34114.73 3443.72 3562.28 3794.62 37919.44 36814.50 3790.47 37421.55 3729.58 37225.78 3604.57 37511.61 37227.37 3711.96 371
ab-mvs-re5.62 3427.50 3450.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37867.46 3470.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas5.20 3436.93 3460.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37762.39 1500.00 3780.00 3760.00 3760.00 374
test1234.43 3445.78 3470.39 3580.97 3800.28 38146.33 3520.45 3810.31 3750.62 3761.50 3750.61 3810.11 3770.56 3740.63 3740.77 373
testmvs4.06 3455.28 3480.41 3570.64 3810.16 38242.54 3560.31 3820.26 3760.50 3771.40 3760.77 3800.17 3760.56 3740.55 3750.90 372
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS189.19 2577.84 1691.64 189.11 284.05 291.57 2
MSC_two_6792asdad79.02 5983.14 10367.03 9380.75 12586.24 2377.27 3594.85 2683.78 130
PC_three_145246.98 27381.83 9386.28 15466.55 11884.47 7263.31 13990.78 12083.49 137
No_MVS79.02 5983.14 10367.03 9380.75 12586.24 2377.27 3594.85 2683.78 130
test_one_060185.84 6761.45 13585.63 3375.27 1985.62 4790.38 6476.72 29
eth-test20.00 382
eth-test0.00 382
ZD-MVS83.91 9469.36 7681.09 12058.91 14382.73 8689.11 9575.77 3786.63 1372.73 6292.93 75
IU-MVS86.12 5960.90 14280.38 13545.49 28081.31 10175.64 4494.39 4384.65 101
OPU-MVS78.65 6683.44 10166.85 9583.62 4586.12 16266.82 11386.01 3161.72 14789.79 14283.08 152
test_241102_TWO84.80 5172.61 3284.93 5689.70 8177.73 2385.89 3975.29 4594.22 5583.25 147
test_241102_ONE86.12 5961.06 13884.72 5572.64 3187.38 2589.47 8477.48 2485.74 43
save fliter87.00 4367.23 9179.24 8677.94 17456.65 166
test_0728_THIRD74.03 2385.83 4290.41 5975.58 3985.69 4477.43 3394.74 3184.31 119
test_0728_SECOND76.57 9186.20 5460.57 14783.77 4385.49 3585.90 3775.86 4294.39 4383.25 147
test072686.16 5760.78 14483.81 4285.10 4672.48 3485.27 5389.96 7778.57 18
GSMVS70.05 304
test_part285.90 6366.44 9884.61 63
sam_mvs131.41 33670.05 304
sam_mvs31.21 340
ambc70.10 18677.74 18050.21 21074.28 15177.93 17579.26 12588.29 11354.11 22179.77 15764.43 12291.10 10980.30 211
MTGPAbinary80.63 128
test_post166.63 2492.08 37330.66 34559.33 32640.34 299
test_post1.99 37430.91 34354.76 334
patchmatchnet-post68.99 33831.32 33769.38 280
GG-mvs-BLEND52.24 31760.64 34029.21 35969.73 20042.41 35845.47 36052.33 36520.43 37068.16 28725.52 36365.42 34659.36 351
MTMP84.83 3319.26 378
gm-plane-assit62.51 32833.91 34037.25 32862.71 35672.74 24838.70 306
test9_res72.12 7091.37 10177.40 246
TEST985.47 6969.32 7776.42 12078.69 16053.73 20776.97 15486.74 13866.84 11281.10 128
test_885.09 7567.89 8676.26 12578.66 16254.00 20276.89 15986.72 14066.60 11680.89 139
agg_prior270.70 7790.93 11478.55 231
agg_prior84.44 8766.02 10278.62 16376.95 15680.34 146
TestCases78.35 7179.19 15770.81 6188.64 365.37 8380.09 11788.17 11570.33 8178.43 18055.60 19690.90 11685.81 75
test_prior470.14 6977.57 106
test_prior275.57 13158.92 14176.53 17086.78 13567.83 10569.81 8292.76 80
test_prior75.27 10982.15 12259.85 15384.33 6783.39 9182.58 168
旧先验271.17 18445.11 28478.54 13361.28 32259.19 170
新几何271.33 180
新几何169.99 18888.37 3671.34 5762.08 29343.85 29074.99 18786.11 16352.85 22670.57 27250.99 23183.23 23568.05 318
旧先验184.55 8460.36 14963.69 28487.05 12854.65 21883.34 23369.66 308
无先验74.82 13970.94 24547.75 26876.85 20954.47 20772.09 288
原ACMM274.78 143
原ACMM173.90 12585.90 6365.15 11081.67 10650.97 23674.25 20086.16 16061.60 15883.54 8756.75 18391.08 11073.00 277
test22287.30 4169.15 8067.85 22859.59 30341.06 30973.05 21585.72 17148.03 25580.65 26366.92 323
testdata267.30 29448.34 252
segment_acmp68.30 100
testdata64.13 25085.87 6563.34 12361.80 29747.83 26676.42 17486.60 14748.83 24962.31 31954.46 20981.26 25566.74 327
testdata168.34 22457.24 158
test1276.51 9282.28 12060.94 14181.64 10773.60 20664.88 13485.19 5990.42 12783.38 143
plane_prior785.18 7266.21 100
plane_prior684.18 9165.31 10760.83 168
plane_prior585.49 3586.15 2871.09 7490.94 11284.82 96
plane_prior489.11 95
plane_prior365.67 10463.82 10178.23 136
plane_prior282.74 5465.45 80
plane_prior184.46 86
plane_prior65.18 10880.06 8061.88 11989.91 139
n20.00 383
nn0.00 383
door-mid55.02 323
lessismore_v072.75 15179.60 14956.83 17457.37 31183.80 7489.01 9847.45 25778.74 17164.39 12386.49 19382.69 166
LGP-MVS_train80.90 3887.00 4370.41 6686.35 2069.77 5387.75 1691.13 3581.83 386.20 2577.13 3795.96 586.08 69
test1182.71 94
door52.91 335
HQP5-MVS58.80 163
HQP-NCC82.37 11777.32 11059.08 13771.58 232
ACMP_Plane82.37 11777.32 11059.08 13771.58 232
BP-MVS67.38 104
HQP4-MVS71.59 23185.31 5283.74 132
HQP3-MVS84.12 7589.16 152
HQP2-MVS58.09 193
NP-MVS83.34 10263.07 12685.97 166
MDTV_nov1_ep13_2view18.41 37353.74 33331.57 35644.89 36229.90 35132.93 34071.48 292
ACMMP++_ref89.47 148
ACMMP++91.96 90
Test By Simon62.56 146
ITE_SJBPF80.35 4476.94 18973.60 4380.48 13266.87 6783.64 7686.18 15870.25 8379.90 15661.12 15388.95 15887.56 52
DeepMVS_CXcopyleft11.83 35515.51 37713.86 37611.25 3805.76 37120.85 37326.46 37017.06 3769.22 3749.69 37313.82 37312.42 370