This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 299.85 1
test_part198.39 298.94 296.75 4299.23 390.73 7398.63 399.28 299.01 299.60 299.55 298.75 299.68 396.41 499.97 199.84 2
LTVRE_ROB93.87 197.93 398.16 397.26 2698.81 2493.86 3099.07 298.98 497.01 1398.92 598.78 1595.22 3898.61 16796.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D97.13 797.72 495.35 8399.51 287.38 12797.70 797.54 10598.16 398.94 399.33 397.84 599.08 9290.73 11999.73 1499.59 13
TDRefinement97.68 497.60 597.93 299.02 1295.95 598.61 498.81 597.41 1097.28 4698.46 2694.62 5798.84 12994.64 1899.53 3498.99 53
PS-CasMVS96.69 2197.43 694.49 12299.13 684.09 18596.61 2597.97 7097.91 698.64 1498.13 3295.24 3799.65 493.39 5599.84 499.72 3
DTE-MVSNet96.74 1897.43 694.67 10999.13 684.68 17596.51 2997.94 7698.14 498.67 1398.32 2995.04 4599.69 293.27 6199.82 899.62 11
ACMH88.36 1296.59 2897.43 694.07 13498.56 3785.33 17096.33 4098.30 2194.66 3998.72 998.30 3097.51 698.00 22094.87 1599.59 2698.86 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS96.69 2197.39 994.61 11199.16 484.50 17696.54 2898.05 5598.06 598.64 1498.25 3195.01 4899.65 492.95 7499.83 699.68 5
pmmvs696.80 1497.36 1095.15 9499.12 887.82 12396.68 2397.86 7896.10 2698.14 2399.28 497.94 498.21 20391.38 11399.69 1599.42 19
v7n96.82 1197.31 1195.33 8598.54 4286.81 14096.83 1998.07 5196.59 2098.46 1898.43 2892.91 9099.52 1896.25 799.76 1199.65 9
UA-Net97.35 597.24 1297.69 598.22 6893.87 2998.42 598.19 3296.95 1495.46 12499.23 593.45 7399.57 1495.34 1399.89 399.63 10
Anonymous2023121196.60 2697.13 1395.00 9897.46 11786.35 15497.11 1598.24 2897.58 898.72 998.97 893.15 8499.15 8393.18 6499.74 1399.50 17
abl_697.31 697.12 1497.86 398.54 4295.32 796.61 2598.35 1795.81 3197.55 3597.44 6396.51 1099.40 4094.06 3199.23 7498.85 76
WR-MVS_H96.60 2697.05 1595.24 9099.02 1286.44 15096.78 2298.08 4897.42 998.48 1797.86 4591.76 11699.63 794.23 2799.84 499.66 7
HPM-MVS_fast97.01 896.89 1697.39 2299.12 893.92 2797.16 1198.17 3693.11 6696.48 7697.36 7096.92 799.34 5994.31 2499.38 5498.92 67
ACMH+88.43 1196.48 3196.82 1795.47 8198.54 4289.06 9495.65 6698.61 796.10 2698.16 2297.52 5896.90 898.62 16690.30 13199.60 2498.72 89
CP-MVSNet96.19 4796.80 1894.38 12898.99 1483.82 18996.31 4297.53 10797.60 798.34 2097.52 5891.98 11299.63 793.08 7099.81 999.70 4
OurMVSNet-221017-096.80 1496.75 1996.96 3699.03 1191.85 5797.98 698.01 6494.15 4898.93 499.07 688.07 17899.57 1495.86 1099.69 1599.46 18
mvs_tets96.83 1096.71 2097.17 2798.83 2292.51 4896.58 2797.61 10087.57 19298.80 898.90 1096.50 1199.59 1396.15 899.47 3899.40 21
RE-MVS-def96.66 2198.07 7795.27 896.37 3798.12 4295.66 3397.00 5797.03 8995.40 2893.49 4598.84 11698.00 143
APD-MVS_3200maxsize96.82 1196.65 2297.32 2597.95 8993.82 3296.31 4298.25 2595.51 3596.99 5997.05 8895.63 2299.39 4593.31 5898.88 11198.75 85
APDe-MVS96.46 3396.64 2395.93 6197.68 10489.38 9196.90 1898.41 1492.52 7397.43 4197.92 4195.11 4299.50 2094.45 2099.30 6298.92 67
HPM-MVScopyleft96.81 1396.62 2497.36 2498.89 1993.53 3797.51 898.44 1092.35 7895.95 10496.41 12996.71 999.42 2893.99 3299.36 5599.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
COLMAP_ROBcopyleft91.06 596.75 1796.62 2497.13 2898.38 5894.31 1596.79 2198.32 1896.69 1796.86 6297.56 5595.48 2698.77 14690.11 13999.44 4498.31 121
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS-dyc-post96.84 996.60 2697.56 1098.07 7795.27 896.37 3798.12 4295.66 3397.00 5797.03 8994.85 5299.42 2893.49 4598.84 11698.00 143
nrg03096.32 4296.55 2795.62 7697.83 9388.55 10795.77 6298.29 2492.68 6998.03 2597.91 4395.13 4198.95 11493.85 3499.49 3799.36 24
test117296.79 1696.52 2897.60 998.03 8294.87 1096.07 5198.06 5495.76 3296.89 6196.85 10094.85 5299.42 2893.35 5798.81 12498.53 106
test_djsdf96.62 2496.49 2997.01 3398.55 4091.77 5997.15 1297.37 11588.98 16098.26 2198.86 1193.35 7899.60 996.41 499.45 4299.66 7
SR-MVS96.70 2096.42 3097.54 1198.05 7994.69 1196.13 4898.07 5195.17 3696.82 6496.73 11195.09 4499.43 2792.99 7398.71 13398.50 108
anonymousdsp96.74 1896.42 3097.68 798.00 8594.03 2496.97 1697.61 10087.68 18998.45 1998.77 1694.20 6699.50 2096.70 399.40 5299.53 15
jajsoiax96.59 2896.42 3097.12 2998.76 2792.49 4996.44 3497.42 11386.96 20198.71 1198.72 1895.36 3299.56 1795.92 999.45 4299.32 26
SED-MVS96.00 5396.41 3394.76 10698.51 4686.97 13695.21 7998.10 4591.95 8897.63 3197.25 7696.48 1299.35 5593.29 5999.29 6397.95 151
MTAPA96.65 2396.38 3497.47 1598.95 1694.05 2195.88 5997.62 9794.46 4496.29 8696.94 9393.56 7199.37 5294.29 2599.42 4698.99 53
ACMMPcopyleft96.61 2596.34 3597.43 1998.61 3393.88 2896.95 1798.18 3392.26 8196.33 8296.84 10395.10 4399.40 4093.47 4999.33 5899.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SteuartSystems-ACMMP96.40 3996.30 3696.71 4398.63 3091.96 5595.70 6398.01 6493.34 6496.64 7196.57 12194.99 4999.36 5493.48 4899.34 5698.82 78
Skip Steuart: Steuart Systems R&D Blog.
ANet_high94.83 9496.28 3790.47 24996.65 15073.16 31494.33 11398.74 696.39 2398.09 2498.93 993.37 7798.70 15990.38 12699.68 1899.53 15
TranMVSNet+NR-MVSNet96.07 5196.26 3895.50 8098.26 6687.69 12493.75 12897.86 7895.96 3097.48 3997.14 8395.33 3399.44 2490.79 11899.76 1199.38 22
LPG-MVS_test96.38 4196.23 3996.84 4098.36 6192.13 5295.33 7598.25 2591.78 10197.07 5197.22 7996.38 1499.28 7092.07 9199.59 2699.11 41
test_040295.73 6096.22 4094.26 13098.19 7085.77 16593.24 14197.24 13196.88 1697.69 2997.77 4894.12 6799.13 8691.54 11099.29 6397.88 159
ZNCC-MVS96.42 3796.20 4197.07 3098.80 2692.79 4696.08 5098.16 3991.74 10595.34 12896.36 13795.68 2099.44 2494.41 2299.28 6898.97 59
DVP-MVS95.82 5896.18 4294.72 10898.51 4686.69 14395.20 8197.00 14491.85 9497.40 4497.35 7195.58 2399.34 5993.44 5299.31 6098.13 134
XVS96.49 3096.18 4297.44 1798.56 3793.99 2596.50 3097.95 7394.58 4094.38 16596.49 12394.56 5899.39 4593.57 4199.05 9198.93 63
HFP-MVS96.39 4096.17 4497.04 3198.51 4693.37 3896.30 4497.98 6792.35 7895.63 11696.47 12495.37 2999.27 7293.78 3699.14 8298.48 110
zzz-MVS96.47 3296.14 4597.47 1598.95 1694.05 2193.69 13097.62 9794.46 4496.29 8696.94 9393.56 7199.37 5294.29 2599.42 4698.99 53
ACMMPR96.46 3396.14 4597.41 2198.60 3493.82 3296.30 4497.96 7192.35 7895.57 11996.61 11994.93 5199.41 3593.78 3699.15 8199.00 51
ACMMP_NAP96.21 4696.12 4796.49 5098.90 1891.42 6294.57 10598.03 6090.42 13896.37 7997.35 7195.68 2099.25 7494.44 2199.34 5698.80 80
region2R96.41 3896.09 4897.38 2398.62 3193.81 3496.32 4197.96 7192.26 8195.28 13296.57 12195.02 4799.41 3593.63 4099.11 8698.94 62
CP-MVS96.44 3696.08 4997.54 1198.29 6394.62 1396.80 2098.08 4892.67 7195.08 14296.39 13494.77 5499.42 2893.17 6599.44 4498.58 104
ACMM88.83 996.30 4496.07 5096.97 3598.39 5792.95 4494.74 9798.03 6090.82 12797.15 4996.85 10096.25 1699.00 10693.10 6899.33 5898.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mPP-MVS96.46 3396.05 5197.69 598.62 3194.65 1296.45 3297.74 9192.59 7295.47 12296.68 11494.50 6099.42 2893.10 6899.26 7098.99 53
PS-MVSNAJss96.01 5296.04 5295.89 6498.82 2388.51 10995.57 6997.88 7788.72 16698.81 798.86 1190.77 14199.60 995.43 1299.53 3499.57 14
TransMVSNet (Re)95.27 7996.04 5292.97 17198.37 6081.92 20895.07 8796.76 16593.97 5297.77 2798.57 2095.72 1997.90 22588.89 16699.23 7499.08 45
GST-MVS96.24 4595.99 5497.00 3498.65 2992.71 4795.69 6598.01 6492.08 8695.74 11296.28 14295.22 3899.42 2893.17 6599.06 8898.88 71
pm-mvs195.43 6995.94 5593.93 14098.38 5885.08 17295.46 7297.12 13991.84 9797.28 4698.46 2695.30 3597.71 24590.17 13799.42 4698.99 53
PGM-MVS96.32 4295.94 5597.43 1998.59 3693.84 3195.33 7598.30 2191.40 11495.76 11096.87 9995.26 3699.45 2392.77 7699.21 7699.00 51
MP-MVS-pluss96.08 5095.92 5796.57 4699.06 1091.21 6493.25 14098.32 1887.89 18396.86 6297.38 6695.55 2599.39 4595.47 1199.47 3899.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS95.88 5695.88 5895.87 6598.12 7389.65 8595.58 6898.56 891.84 9796.36 8096.68 11494.37 6399.32 6592.41 8599.05 9198.64 95
DPE-MVS95.89 5495.88 5895.92 6397.93 9089.83 8293.46 13698.30 2192.37 7697.75 2896.95 9295.14 4099.51 1991.74 10199.28 6898.41 116
FC-MVSNet-test95.32 7495.88 5893.62 14998.49 5481.77 20995.90 5898.32 1893.93 5397.53 3797.56 5588.48 17199.40 4092.91 7599.83 699.68 5
DP-MVS95.62 6395.84 6194.97 9997.16 12988.62 10494.54 10997.64 9696.94 1596.58 7497.32 7493.07 8798.72 15290.45 12398.84 11697.57 183
Anonymous2024052995.50 6795.83 6294.50 12097.33 12385.93 16295.19 8396.77 16496.64 1997.61 3498.05 3493.23 8198.79 13888.60 17399.04 9698.78 82
LS3D96.11 4995.83 6296.95 3794.75 24394.20 1797.34 1097.98 6797.31 1195.32 12996.77 10593.08 8699.20 7991.79 9998.16 18897.44 190
Gipumacopyleft95.31 7695.80 6493.81 14697.99 8890.91 6996.42 3597.95 7396.69 1791.78 23798.85 1391.77 11595.49 30891.72 10299.08 8795.02 274
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
3Dnovator+92.74 295.86 5795.77 6596.13 5396.81 14590.79 7296.30 4497.82 8496.13 2594.74 15697.23 7891.33 12699.16 8293.25 6298.30 17298.46 112
SD-MVS95.19 8095.73 6693.55 15296.62 15388.88 10094.67 9998.05 5591.26 11797.25 4896.40 13095.42 2794.36 32592.72 8099.19 7797.40 194
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVScopyleft96.14 4895.68 6797.51 1398.81 2494.06 1996.10 4997.78 9092.73 6893.48 18796.72 11294.23 6599.42 2891.99 9399.29 6399.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VPA-MVSNet95.14 8195.67 6893.58 15197.76 9583.15 19794.58 10497.58 10293.39 6397.05 5598.04 3593.25 8098.51 18089.75 14999.59 2699.08 45
SMA-MVScopyleft95.77 5995.54 6996.47 5198.27 6591.19 6595.09 8597.79 8986.48 20597.42 4397.51 6094.47 6299.29 6893.55 4399.29 6398.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
#test#95.89 5495.51 7097.04 3198.51 4693.37 3895.14 8497.98 6789.34 15595.63 11696.47 12495.37 2999.27 7291.99 9399.14 8298.48 110
Vis-MVSNetpermissive95.50 6795.48 7195.56 7998.11 7489.40 9095.35 7398.22 3092.36 7794.11 16998.07 3392.02 10899.44 2493.38 5697.67 22097.85 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OPM-MVS95.61 6495.45 7296.08 5498.49 5491.00 6792.65 15797.33 12390.05 14396.77 6796.85 10095.04 4598.56 17592.77 7699.06 8898.70 90
MIMVSNet195.52 6695.45 7295.72 7399.14 589.02 9596.23 4796.87 15893.73 5697.87 2698.49 2590.73 14599.05 9786.43 20999.60 2499.10 44
ACMP88.15 1395.71 6195.43 7496.54 4798.17 7191.73 6094.24 11598.08 4889.46 15396.61 7396.47 12495.85 1899.12 8890.45 12399.56 3298.77 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FIs94.90 8895.35 7593.55 15298.28 6481.76 21095.33 7598.14 4093.05 6797.07 5197.18 8187.65 18599.29 6891.72 10299.69 1599.61 12
XVG-ACMP-BASELINE95.68 6295.34 7696.69 4498.40 5693.04 4194.54 10998.05 5590.45 13796.31 8496.76 10792.91 9098.72 15291.19 11499.42 4698.32 119
DeepC-MVS91.39 495.43 6995.33 7795.71 7497.67 10590.17 7693.86 12698.02 6287.35 19496.22 9297.99 3894.48 6199.05 9792.73 7999.68 1897.93 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PMVScopyleft87.21 1494.97 8595.33 7793.91 14198.97 1597.16 295.54 7095.85 20496.47 2193.40 19097.46 6295.31 3495.47 30986.18 21398.78 12889.11 336
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v894.65 10195.29 7992.74 18196.65 15079.77 24294.59 10297.17 13591.86 9397.47 4097.93 4088.16 17699.08 9294.32 2399.47 3899.38 22
NR-MVSNet95.28 7795.28 8095.26 8997.75 9687.21 13195.08 8697.37 11593.92 5497.65 3095.90 15790.10 15899.33 6490.11 13999.66 2099.26 29
v1094.68 10095.27 8192.90 17696.57 15680.15 22894.65 10197.57 10390.68 13197.43 4198.00 3788.18 17599.15 8394.84 1699.55 3399.41 20
UniMVSNet_NR-MVSNet95.35 7295.21 8295.76 7197.69 10388.59 10592.26 17697.84 8294.91 3796.80 6595.78 16790.42 15099.41 3591.60 10799.58 3099.29 28
SixPastTwentyTwo94.91 8795.21 8293.98 13698.52 4583.19 19695.93 5694.84 23394.86 3898.49 1698.74 1781.45 24899.60 994.69 1799.39 5399.15 37
UniMVSNet (Re)95.32 7495.15 8495.80 6897.79 9488.91 9792.91 14898.07 5193.46 6296.31 8495.97 15690.14 15499.34 5992.11 8899.64 2299.16 36
FMVSNet194.84 9395.13 8593.97 13797.60 10884.29 17895.99 5296.56 17492.38 7597.03 5698.53 2290.12 15598.98 10788.78 16899.16 8098.65 91
DU-MVS95.28 7795.12 8695.75 7297.75 9688.59 10592.58 15897.81 8593.99 5096.80 6595.90 15790.10 15899.41 3591.60 10799.58 3099.26 29
Baseline_NR-MVSNet94.47 10795.09 8792.60 18898.50 5380.82 22492.08 18296.68 16893.82 5596.29 8698.56 2190.10 15897.75 24390.10 14199.66 2099.24 31
XVG-OURS-SEG-HR95.38 7195.00 8896.51 4898.10 7594.07 1892.46 16498.13 4190.69 13093.75 18096.25 14598.03 397.02 27392.08 9095.55 27098.45 113
xxxxxxxxxxxxxcwj95.03 8294.93 8995.33 8597.46 11788.05 11792.04 18498.42 1387.63 19096.36 8096.68 11494.37 6399.32 6592.41 8599.05 9198.64 95
3Dnovator92.54 394.80 9694.90 9094.47 12395.47 22487.06 13396.63 2497.28 12991.82 10094.34 16797.41 6490.60 14898.65 16592.47 8498.11 19497.70 175
RPSCF95.58 6594.89 9197.62 897.58 10996.30 495.97 5597.53 10792.42 7493.41 18897.78 4691.21 13297.77 24091.06 11597.06 23798.80 80
tfpnnormal94.27 11494.87 9292.48 19297.71 10080.88 22394.55 10895.41 22093.70 5796.67 7097.72 4991.40 12498.18 20787.45 19299.18 7998.36 117
9.1494.81 9397.49 11494.11 11898.37 1587.56 19395.38 12696.03 15394.66 5699.08 9290.70 12098.97 104
casdiffmvs94.32 11294.80 9492.85 17896.05 19181.44 21592.35 17198.05 5591.53 11295.75 11196.80 10493.35 7898.49 18191.01 11698.32 16998.64 95
baseline94.26 11594.80 9492.64 18496.08 18980.99 22193.69 13098.04 5990.80 12894.89 15096.32 13993.19 8298.48 18591.68 10598.51 15098.43 114
TSAR-MVS + MP.94.96 8694.75 9695.57 7898.86 2188.69 10196.37 3796.81 16085.23 22594.75 15597.12 8491.85 11499.40 4093.45 5098.33 16798.62 99
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG94.69 9994.75 9694.52 11997.55 11187.87 12195.01 9097.57 10392.68 6996.20 9493.44 25391.92 11398.78 14289.11 16399.24 7396.92 210
canonicalmvs94.59 10294.69 9894.30 12995.60 22187.03 13595.59 6798.24 2891.56 11195.21 13792.04 28394.95 5098.66 16391.45 11197.57 22497.20 203
APD-MVScopyleft95.00 8494.69 9895.93 6197.38 12090.88 7094.59 10297.81 8589.22 15895.46 12496.17 14993.42 7699.34 5989.30 15598.87 11497.56 185
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Regformer-494.90 8894.67 10095.59 7792.78 28789.02 9592.39 16895.91 20194.50 4296.41 7795.56 17892.10 10799.01 10594.23 2798.14 19098.74 86
EG-PatchMatch MVS94.54 10594.67 10094.14 13297.87 9286.50 14692.00 18796.74 16688.16 17896.93 6097.61 5393.04 8897.90 22591.60 10798.12 19398.03 141
MSP-MVS95.34 7394.63 10297.48 1498.67 2894.05 2196.41 3698.18 3391.26 11795.12 13895.15 19386.60 20799.50 2093.43 5496.81 24798.89 69
LCM-MVSNet-Re94.20 11894.58 10393.04 16795.91 20283.13 19893.79 12799.19 392.00 8798.84 698.04 3593.64 7099.02 10381.28 26198.54 14696.96 209
ETH3D-3000-0.194.86 9194.55 10495.81 6697.61 10789.72 8394.05 12098.37 1588.09 17995.06 14395.85 15992.58 9899.10 9190.33 13098.99 9998.62 99
Regformer-294.86 9194.55 10495.77 7092.83 28589.98 7891.87 19696.40 18294.38 4696.19 9695.04 20092.47 10399.04 10093.49 4598.31 17098.28 123
AllTest94.88 9094.51 10696.00 5698.02 8392.17 5095.26 7898.43 1190.48 13595.04 14496.74 10992.54 10097.86 23185.11 22498.98 10097.98 147
testtj94.81 9594.42 10796.01 5597.23 12590.51 7494.77 9697.85 8191.29 11694.92 14995.66 17191.71 11799.40 4088.07 18198.25 17898.11 136
HPM-MVS++copyleft95.02 8394.39 10896.91 3897.88 9193.58 3694.09 11996.99 14691.05 12292.40 22195.22 19291.03 13999.25 7492.11 8898.69 13697.90 157
testing_294.03 12194.38 10993.00 16996.79 14781.41 21692.87 15096.96 14785.88 21797.06 5497.92 4191.18 13698.71 15891.72 10299.04 9698.87 72
VDD-MVS94.37 10894.37 11094.40 12797.49 11486.07 16093.97 12493.28 26394.49 4396.24 9097.78 4687.99 18198.79 13888.92 16599.14 8298.34 118
IS-MVSNet94.49 10694.35 11194.92 10098.25 6786.46 14997.13 1494.31 24796.24 2496.28 8996.36 13782.88 23299.35 5588.19 17799.52 3698.96 60
Regformer-194.55 10494.33 11295.19 9292.83 28588.54 10891.87 19695.84 20593.99 5095.95 10495.04 20092.00 10998.79 13893.14 6798.31 17098.23 126
CNVR-MVS94.58 10394.29 11395.46 8296.94 13789.35 9291.81 20296.80 16189.66 15093.90 17895.44 18492.80 9498.72 15292.74 7898.52 14898.32 119
EI-MVSNet-Vis-set94.36 10994.28 11494.61 11192.55 28985.98 16192.44 16594.69 24093.70 5796.12 9995.81 16391.24 13098.86 12693.76 3998.22 18398.98 58
IterMVS-LS93.78 12694.28 11492.27 19596.27 17679.21 25391.87 19696.78 16291.77 10396.57 7597.07 8687.15 19498.74 15091.99 9399.03 9898.86 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet-UG-set94.35 11094.27 11694.59 11692.46 29085.87 16392.42 16794.69 24093.67 6196.13 9895.84 16291.20 13398.86 12693.78 3698.23 18199.03 49
VDDNet94.03 12194.27 11693.31 16198.87 2082.36 20495.51 7191.78 29097.19 1296.32 8398.60 1984.24 22498.75 14787.09 19798.83 12198.81 79
Regformer-394.28 11394.23 11894.46 12492.78 28786.28 15692.39 16894.70 23993.69 6095.97 10295.56 17891.34 12598.48 18593.45 5098.14 19098.62 99
XVG-OURS94.72 9894.12 11996.50 4998.00 8594.23 1691.48 20998.17 3690.72 12995.30 13096.47 12487.94 18296.98 27491.41 11297.61 22398.30 122
CPTT-MVS94.74 9794.12 11996.60 4598.15 7293.01 4295.84 6097.66 9589.21 15993.28 19495.46 18288.89 16898.98 10789.80 14698.82 12297.80 168
HQP_MVS94.26 11593.93 12195.23 9197.71 10088.12 11594.56 10697.81 8591.74 10593.31 19195.59 17386.93 19998.95 11489.26 15998.51 15098.60 102
MSLP-MVS++93.25 14193.88 12291.37 22196.34 17082.81 20193.11 14297.74 9189.37 15494.08 17195.29 19190.40 15396.35 29690.35 12898.25 17894.96 275
v114493.50 13093.81 12392.57 18996.28 17579.61 24591.86 20096.96 14786.95 20295.91 10796.32 13987.65 18598.96 11293.51 4498.88 11199.13 39
PHI-MVS94.34 11193.80 12495.95 5895.65 21791.67 6194.82 9497.86 7887.86 18493.04 20494.16 23291.58 12098.78 14290.27 13398.96 10697.41 191
v119293.49 13193.78 12592.62 18796.16 18579.62 24491.83 20197.22 13386.07 21396.10 10096.38 13587.22 19299.02 10394.14 3098.88 11199.22 32
VPNet93.08 14593.76 12691.03 23398.60 3475.83 29791.51 20895.62 20991.84 9795.74 11297.10 8589.31 16598.32 19485.07 22699.06 8898.93 63
WR-MVS93.49 13193.72 12792.80 18097.57 11080.03 23490.14 24595.68 20893.70 5796.62 7295.39 18887.21 19399.04 10087.50 19199.64 2299.33 25
v124093.29 13693.71 12892.06 20496.01 19677.89 27091.81 20297.37 11585.12 22996.69 6996.40 13086.67 20599.07 9694.51 1998.76 13099.22 32
OMC-MVS94.22 11793.69 12995.81 6697.25 12491.27 6392.27 17597.40 11487.10 20094.56 16095.42 18593.74 6998.11 21286.62 20498.85 11598.06 137
EPP-MVSNet93.91 12493.68 13094.59 11698.08 7685.55 16897.44 994.03 25294.22 4794.94 14796.19 14782.07 24399.57 1487.28 19698.89 10998.65 91
v2v48293.29 13693.63 13192.29 19496.35 16978.82 25891.77 20496.28 18688.45 17295.70 11596.26 14486.02 21398.90 11893.02 7198.81 12499.14 38
v192192093.26 13993.61 13292.19 19896.04 19578.31 26491.88 19597.24 13185.17 22796.19 9696.19 14786.76 20499.05 9794.18 2998.84 11699.22 32
V4293.43 13393.58 13392.97 17195.34 23081.22 21892.67 15696.49 17987.25 19696.20 9496.37 13687.32 19198.85 12892.39 8798.21 18498.85 76
DeepPCF-MVS90.46 694.20 11893.56 13496.14 5295.96 19892.96 4389.48 26397.46 11185.14 22896.23 9195.42 18593.19 8298.08 21390.37 12798.76 13097.38 197
v14419293.20 14493.54 13592.16 20196.05 19178.26 26591.95 18897.14 13684.98 23395.96 10396.11 15087.08 19699.04 10093.79 3598.84 11699.17 35
NCCC94.08 12093.54 13595.70 7596.49 16089.90 8192.39 16896.91 15490.64 13292.33 22794.60 21890.58 14998.96 11290.21 13697.70 21898.23 126
DeepC-MVS_fast89.96 793.73 12793.44 13794.60 11596.14 18687.90 12093.36 13997.14 13685.53 22293.90 17895.45 18391.30 12898.59 17189.51 15298.62 13997.31 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR93.63 12993.42 13894.26 13096.65 15086.96 13889.30 26996.23 19088.36 17593.57 18694.60 21893.45 7397.77 24090.23 13598.38 16098.03 141
ETH3D cwj APD-0.1693.99 12393.38 13995.80 6896.82 14389.92 7992.72 15398.02 6284.73 23793.65 18495.54 18091.68 11899.22 7788.78 16898.49 15398.26 125
v14892.87 15393.29 14091.62 21596.25 17977.72 27291.28 21495.05 22689.69 14995.93 10696.04 15287.34 19098.38 19090.05 14297.99 20498.78 82
MVS_Test92.57 16493.29 14090.40 25193.53 27275.85 29592.52 16096.96 14788.73 16592.35 22496.70 11390.77 14198.37 19392.53 8395.49 27296.99 208
MVS_111021_LR93.66 12893.28 14294.80 10496.25 17990.95 6890.21 24195.43 21987.91 18193.74 18294.40 22392.88 9296.38 29490.39 12598.28 17397.07 204
K. test v393.37 13493.27 14393.66 14898.05 7982.62 20294.35 11286.62 31796.05 2897.51 3898.85 1376.59 28499.65 493.21 6398.20 18698.73 88
EI-MVSNet92.99 14993.26 14492.19 19892.12 29779.21 25392.32 17394.67 24291.77 10395.24 13595.85 15987.14 19598.49 18191.99 9398.26 17598.86 73
XXY-MVS92.58 16293.16 14590.84 24297.75 9679.84 23891.87 19696.22 19285.94 21595.53 12197.68 5092.69 9694.48 32183.21 24297.51 22598.21 128
VNet92.67 15992.96 14691.79 20996.27 17680.15 22891.95 18894.98 22892.19 8494.52 16296.07 15187.43 18997.39 26284.83 22898.38 16097.83 164
GBi-Net93.21 14292.96 14693.97 13795.40 22684.29 17895.99 5296.56 17488.63 16795.10 13998.53 2281.31 25098.98 10786.74 20098.38 16098.65 91
test193.21 14292.96 14693.97 13795.40 22684.29 17895.99 5296.56 17488.63 16795.10 13998.53 2281.31 25098.98 10786.74 20098.38 16098.65 91
alignmvs93.26 13992.85 14994.50 12095.70 21387.45 12593.45 13795.76 20691.58 11095.25 13492.42 27781.96 24598.72 15291.61 10697.87 21097.33 199
test_prior393.29 13692.85 14994.61 11195.95 19987.23 12990.21 24197.36 12089.33 15690.77 25094.81 21090.41 15198.68 16188.21 17598.55 14397.93 153
QAPM92.88 15292.77 15193.22 16595.82 20683.31 19396.45 3297.35 12283.91 24293.75 18096.77 10589.25 16698.88 12184.56 23297.02 23997.49 187
TinyColmap92.00 17692.76 15289.71 26595.62 22077.02 28090.72 22696.17 19587.70 18895.26 13396.29 14192.54 10096.45 29181.77 25698.77 12995.66 260
ETV-MVS92.99 14992.74 15393.72 14795.86 20586.30 15592.33 17297.84 8291.70 10892.81 20986.17 33892.22 10499.19 8088.03 18297.73 21495.66 260
Effi-MVS+92.79 15492.74 15392.94 17495.10 23383.30 19494.00 12297.53 10791.36 11589.35 27790.65 30594.01 6898.66 16387.40 19495.30 27896.88 213
FMVSNet292.78 15592.73 15592.95 17395.40 22681.98 20794.18 11795.53 21788.63 16796.05 10197.37 6781.31 25098.81 13687.38 19598.67 13798.06 137
PM-MVS93.33 13592.67 15695.33 8596.58 15594.06 1992.26 17692.18 28385.92 21696.22 9296.61 11985.64 21895.99 30190.35 12898.23 18195.93 247
ab-mvs92.40 16792.62 15791.74 21197.02 13481.65 21195.84 6095.50 21886.95 20292.95 20797.56 5590.70 14697.50 25379.63 27897.43 22896.06 242
Effi-MVS+-dtu93.90 12592.60 15897.77 494.74 24496.67 394.00 12295.41 22089.94 14491.93 23592.13 28190.12 15598.97 11187.68 18897.48 22697.67 178
MCST-MVS92.91 15192.51 15994.10 13397.52 11285.72 16691.36 21397.13 13880.33 26792.91 20894.24 22891.23 13198.72 15289.99 14397.93 20797.86 161
Anonymous20240521192.58 16292.50 16092.83 17996.55 15783.22 19592.43 16691.64 29194.10 4995.59 11896.64 11781.88 24797.50 25385.12 22398.52 14897.77 170
UGNet93.08 14592.50 16094.79 10593.87 26887.99 11995.07 8794.26 24990.64 13287.33 30597.67 5186.89 20298.49 18188.10 18098.71 13397.91 156
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.93.07 14792.41 16295.06 9795.82 20690.87 7190.97 22092.61 27788.04 18094.61 15993.79 24588.08 17797.81 23589.41 15498.39 15896.50 224
CS-MVS92.54 16592.31 16393.23 16495.89 20484.07 18693.58 13398.48 988.60 17090.41 25886.23 33792.00 10999.35 5587.54 19098.06 19896.26 234
MVSFormer92.18 17392.23 16492.04 20594.74 24480.06 23297.15 1297.37 11588.98 16088.83 28192.79 26677.02 28099.60 996.41 496.75 25096.46 226
Fast-Effi-MVS+-dtu92.77 15692.16 16594.58 11894.66 25088.25 11292.05 18396.65 17089.62 15190.08 26291.23 29392.56 9998.60 16986.30 21196.27 25996.90 211
DELS-MVS92.05 17592.16 16591.72 21294.44 25480.13 23087.62 29097.25 13087.34 19592.22 22993.18 26089.54 16498.73 15189.67 15098.20 18696.30 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft89.45 892.27 17292.13 16792.68 18394.53 25384.10 18495.70 6397.03 14282.44 25691.14 24796.42 12888.47 17298.38 19085.95 21497.47 22795.55 264
EIA-MVS92.35 16992.03 16893.30 16295.81 20883.97 18792.80 15298.17 3687.71 18789.79 27187.56 32791.17 13799.18 8187.97 18397.27 23296.77 216
LF4IMVS92.72 15792.02 16994.84 10395.65 21791.99 5492.92 14796.60 17285.08 23192.44 21993.62 24886.80 20396.35 29686.81 19998.25 17896.18 238
CANet92.38 16891.99 17093.52 15693.82 27083.46 19291.14 21697.00 14489.81 14886.47 30994.04 23587.90 18399.21 7889.50 15398.27 17497.90 157
diffmvs91.74 17991.93 17191.15 23193.06 28078.17 26688.77 28097.51 11086.28 20992.42 22093.96 24088.04 17997.46 25690.69 12196.67 25297.82 166
DP-MVS Recon92.31 17091.88 17293.60 15097.18 12886.87 13991.10 21897.37 11584.92 23492.08 23294.08 23488.59 17098.20 20483.50 23998.14 19095.73 256
train_agg92.71 15891.83 17395.35 8396.45 16289.46 8690.60 22996.92 15279.37 27690.49 25594.39 22491.20 13398.88 12188.66 17298.43 15597.72 174
CDPH-MVS92.67 15991.83 17395.18 9396.94 13788.46 11090.70 22797.07 14177.38 29292.34 22695.08 19892.67 9798.88 12185.74 21598.57 14298.20 129
mvs-test193.07 14791.80 17596.89 3994.74 24495.83 692.17 17995.41 22089.94 14489.85 26890.59 30690.12 15598.88 12187.68 18895.66 26895.97 245
agg_prior192.60 16191.76 17695.10 9696.20 18188.89 9890.37 23696.88 15679.67 27390.21 25994.41 22291.30 12898.78 14288.46 17498.37 16597.64 180
TAPA-MVS88.58 1092.49 16691.75 17794.73 10796.50 15989.69 8492.91 14897.68 9478.02 29092.79 21094.10 23390.85 14097.96 22484.76 23098.16 18896.54 219
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
API-MVS91.52 18591.61 17891.26 22594.16 25986.26 15794.66 10094.82 23491.17 12092.13 23191.08 29690.03 16197.06 27279.09 28597.35 23190.45 334
IterMVS-SCA-FT91.65 18191.55 17991.94 20693.89 26779.22 25287.56 29393.51 26091.53 11295.37 12796.62 11878.65 26598.90 11891.89 9894.95 28497.70 175
xiu_mvs_v1_base_debu91.47 18691.52 18091.33 22295.69 21481.56 21289.92 25296.05 19883.22 24691.26 24390.74 30091.55 12198.82 13189.29 15695.91 26393.62 307
xiu_mvs_v1_base91.47 18691.52 18091.33 22295.69 21481.56 21289.92 25296.05 19883.22 24691.26 24390.74 30091.55 12198.82 13189.29 15695.91 26393.62 307
xiu_mvs_v1_base_debi91.47 18691.52 18091.33 22295.69 21481.56 21289.92 25296.05 19883.22 24691.26 24390.74 30091.55 12198.82 13189.29 15695.91 26393.62 307
HQP-MVS92.09 17491.49 18393.88 14396.36 16684.89 17391.37 21097.31 12487.16 19788.81 28393.40 25484.76 22198.60 16986.55 20697.73 21498.14 132
cl_fuxian91.32 19191.42 18491.00 23692.29 29276.79 28687.52 29696.42 18185.76 22094.72 15893.89 24282.73 23598.16 20990.93 11798.55 14398.04 140
CLD-MVS91.82 17891.41 18593.04 16796.37 16483.65 19186.82 30997.29 12784.65 23892.27 22889.67 31592.20 10597.85 23383.95 23699.47 3897.62 181
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AdaColmapbinary91.63 18291.36 18692.47 19395.56 22286.36 15392.24 17896.27 18788.88 16489.90 26792.69 26991.65 11998.32 19477.38 29797.64 22192.72 319
testgi90.38 20991.34 18787.50 29897.49 11471.54 32389.43 26495.16 22588.38 17494.54 16194.68 21792.88 9293.09 33571.60 32797.85 21197.88 159
mvs_anonymous90.37 21091.30 18887.58 29792.17 29668.00 33489.84 25694.73 23883.82 24393.22 19897.40 6587.54 18797.40 26187.94 18495.05 28397.34 198
ETH3 D test640091.91 17791.25 18993.89 14296.59 15484.41 17792.10 18197.72 9378.52 28691.82 23693.78 24688.70 16999.13 8683.61 23898.39 15898.14 132
PVSNet_Blended_VisFu91.63 18291.20 19092.94 17497.73 9983.95 18892.14 18097.46 11178.85 28592.35 22494.98 20384.16 22599.08 9286.36 21096.77 24995.79 254
CNLPA91.72 18091.20 19093.26 16396.17 18491.02 6691.14 21695.55 21690.16 14290.87 24993.56 25186.31 20994.40 32479.92 27797.12 23694.37 288
LFMVS91.33 19091.16 19291.82 20896.27 17679.36 24895.01 9085.61 32896.04 2994.82 15297.06 8772.03 29898.46 18784.96 22798.70 13597.65 179
F-COLMAP92.28 17191.06 19395.95 5897.52 11291.90 5693.53 13497.18 13483.98 24188.70 28994.04 23588.41 17398.55 17780.17 27295.99 26297.39 195
BH-untuned90.68 20190.90 19490.05 26295.98 19779.57 24690.04 24894.94 23087.91 18194.07 17293.00 26287.76 18497.78 23979.19 28495.17 28192.80 317
MDA-MVSNet-bldmvs91.04 19390.88 19591.55 21794.68 24980.16 22785.49 32092.14 28690.41 13994.93 14895.79 16485.10 21996.93 27785.15 22194.19 30197.57 183
Fast-Effi-MVS+91.28 19290.86 19692.53 19195.45 22582.53 20389.25 27296.52 17885.00 23289.91 26688.55 32392.94 8998.84 12984.72 23195.44 27496.22 236
test20.0390.80 19790.85 19790.63 24695.63 21979.24 25189.81 25792.87 26989.90 14694.39 16496.40 13085.77 21495.27 31673.86 31499.05 9197.39 195
PAPM_NR91.03 19490.81 19891.68 21496.73 14881.10 22093.72 12996.35 18588.19 17788.77 28792.12 28285.09 22097.25 26682.40 25193.90 30296.68 218
new-patchmatchnet88.97 23890.79 19983.50 32394.28 25855.83 35585.34 32193.56 25986.18 21195.47 12295.73 16883.10 23096.51 28985.40 21898.06 19898.16 130
wuyk23d87.83 25790.79 19978.96 33290.46 32188.63 10392.72 15390.67 29691.65 10998.68 1297.64 5296.06 1777.53 35259.84 34799.41 5170.73 349
pmmvs-eth3d91.54 18490.73 20193.99 13595.76 21187.86 12290.83 22393.98 25578.23 28994.02 17696.22 14682.62 23896.83 28086.57 20598.33 16797.29 201
MSDG90.82 19690.67 20291.26 22594.16 25983.08 19986.63 31496.19 19390.60 13491.94 23491.89 28489.16 16795.75 30380.96 26794.51 29494.95 276
eth_miper_zixun_eth90.72 19990.61 20391.05 23292.04 29976.84 28586.91 30596.67 16985.21 22694.41 16393.92 24179.53 26098.26 20089.76 14897.02 23998.06 137
cl-mvsnet_90.65 20290.56 20490.91 24091.85 30176.98 28386.75 31095.36 22385.53 22294.06 17394.89 20777.36 27897.98 22390.27 13398.98 10097.76 171
cl-mvsnet190.65 20290.56 20490.91 24091.85 30176.99 28286.75 31095.36 22385.52 22494.06 17394.89 20777.37 27797.99 22290.28 13298.97 10497.76 171
BH-RMVSNet90.47 20690.44 20690.56 24895.21 23278.65 26289.15 27393.94 25688.21 17692.74 21194.22 22986.38 20897.88 22778.67 28795.39 27695.14 271
miper_ehance_all_eth90.48 20590.42 20790.69 24491.62 30676.57 28886.83 30896.18 19483.38 24494.06 17392.66 27182.20 24198.04 21589.79 14797.02 23997.45 189
UnsupCasMVSNet_eth90.33 21290.34 20890.28 25394.64 25180.24 22689.69 25995.88 20285.77 21993.94 17795.69 16981.99 24492.98 33684.21 23591.30 32797.62 181
FMVSNet390.78 19890.32 20992.16 20193.03 28279.92 23792.54 15994.95 22986.17 21295.10 13996.01 15469.97 30298.75 14786.74 20098.38 16097.82 166
IterMVS90.18 21690.16 21090.21 25793.15 27875.98 29487.56 29392.97 26886.43 20794.09 17096.40 13078.32 26997.43 25887.87 18594.69 29197.23 202
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)90.42 20790.16 21091.20 22997.66 10677.32 27794.33 11387.66 31191.20 11992.99 20595.13 19575.40 28798.28 19677.86 29099.19 7797.99 146
MVS_030490.96 19590.15 21293.37 15893.17 27787.06 13393.62 13292.43 28189.60 15282.25 33495.50 18182.56 23997.83 23484.41 23497.83 21295.22 268
RPMNet90.31 21490.14 21390.81 24391.01 31378.93 25592.52 16098.12 4291.91 9189.10 27896.89 9868.84 30399.41 3590.17 13792.70 31894.08 292
RRT_MVS91.36 18990.05 21495.29 8889.21 33488.15 11492.51 16394.89 23186.73 20495.54 12095.68 17061.82 33699.30 6794.91 1499.13 8598.43 114
PVSNet_BlendedMVS90.35 21189.96 21591.54 21894.81 24078.80 26090.14 24596.93 15079.43 27588.68 29095.06 19986.27 21098.15 21080.27 26998.04 20197.68 177
Patchmtry90.11 21889.92 21690.66 24590.35 32277.00 28192.96 14692.81 27090.25 14194.74 15696.93 9567.11 30897.52 25285.17 21998.98 10097.46 188
miper_lstm_enhance89.90 22389.80 21790.19 25991.37 31077.50 27483.82 33595.00 22784.84 23593.05 20394.96 20476.53 28595.20 31789.96 14498.67 13797.86 161
114514_t90.51 20489.80 21792.63 18698.00 8582.24 20593.40 13897.29 12765.84 34189.40 27694.80 21386.99 19798.75 14783.88 23798.61 14096.89 212
MG-MVS89.54 22889.80 21788.76 28094.88 23672.47 32089.60 26092.44 28085.82 21889.48 27595.98 15582.85 23397.74 24481.87 25595.27 27996.08 241
test_yl90.11 21889.73 22091.26 22594.09 26279.82 23990.44 23392.65 27590.90 12393.19 19993.30 25673.90 29098.03 21682.23 25296.87 24595.93 247
DCV-MVSNet90.11 21889.73 22091.26 22594.09 26279.82 23990.44 23392.65 27590.90 12393.19 19993.30 25673.90 29098.03 21682.23 25296.87 24595.93 247
D2MVS89.93 22289.60 22290.92 23894.03 26478.40 26388.69 28294.85 23278.96 28393.08 20195.09 19774.57 28896.94 27588.19 17798.96 10697.41 191
112190.26 21589.23 22393.34 15997.15 13187.40 12691.94 19094.39 24567.88 33691.02 24894.91 20686.91 20198.59 17181.17 26497.71 21794.02 297
xiu_mvs_v2_base89.00 23789.19 22488.46 28794.86 23874.63 30286.97 30395.60 21080.88 26387.83 29988.62 32291.04 13898.81 13682.51 25094.38 29591.93 325
CANet_DTU89.85 22489.17 22591.87 20792.20 29580.02 23590.79 22495.87 20386.02 21482.53 33391.77 28680.01 25798.57 17485.66 21697.70 21897.01 207
USDC89.02 23589.08 22688.84 27995.07 23474.50 30588.97 27596.39 18373.21 31393.27 19596.28 14282.16 24296.39 29377.55 29498.80 12695.62 263
TAMVS90.16 21789.05 22793.49 15796.49 16086.37 15290.34 23892.55 27880.84 26592.99 20594.57 22081.94 24698.20 20473.51 31598.21 18495.90 250
OpenMVS_ROBcopyleft85.12 1689.52 22989.05 22790.92 23894.58 25281.21 21991.10 21893.41 26277.03 29693.41 18893.99 23983.23 22997.80 23679.93 27694.80 28893.74 304
PS-MVSNAJ88.86 24188.99 22988.48 28694.88 23674.71 30086.69 31295.60 21080.88 26387.83 29987.37 33090.77 14198.82 13182.52 24994.37 29691.93 325
MVP-Stereo90.07 22188.92 23093.54 15496.31 17386.49 14790.93 22195.59 21379.80 26991.48 23995.59 17380.79 25497.39 26278.57 28891.19 32896.76 217
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PLCcopyleft85.34 1590.40 20888.92 23094.85 10296.53 15890.02 7791.58 20796.48 18080.16 26886.14 31192.18 27985.73 21598.25 20176.87 30094.61 29396.30 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051789.81 22588.90 23292.55 19097.00 13579.73 24395.03 8983.65 34089.88 14795.30 13094.79 21453.64 35099.39 4591.99 9398.79 12798.54 105
MAR-MVS90.32 21388.87 23394.66 11094.82 23991.85 5794.22 11694.75 23780.91 26287.52 30388.07 32686.63 20697.87 23076.67 30196.21 26094.25 291
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER89.32 23188.75 23491.03 23390.10 32476.62 28790.85 22294.67 24282.27 25795.24 13595.79 16461.09 33998.49 18190.49 12298.26 17597.97 150
ppachtmachnet_test88.61 24688.64 23588.50 28591.76 30370.99 32684.59 32892.98 26779.30 28092.38 22293.53 25279.57 25997.45 25786.50 20897.17 23597.07 204
Patchmatch-RL test88.81 24288.52 23689.69 26695.33 23179.94 23686.22 31792.71 27478.46 28795.80 10994.18 23166.25 31695.33 31489.22 16198.53 14793.78 302
cl-mvsnet289.02 23588.50 23790.59 24789.76 32676.45 28986.62 31594.03 25282.98 25292.65 21392.49 27272.05 29797.53 25188.93 16497.02 23997.78 169
X-MVStestdata90.70 20088.45 23897.44 1798.56 3793.99 2596.50 3097.95 7394.58 4094.38 16526.89 35394.56 5899.39 4593.57 4199.05 9198.93 63
DPM-MVS89.35 23088.40 23992.18 20096.13 18884.20 18286.96 30496.15 19675.40 30387.36 30491.55 29183.30 22898.01 21982.17 25496.62 25394.32 290
jason89.17 23388.32 24091.70 21395.73 21280.07 23188.10 28793.22 26471.98 31990.09 26192.79 26678.53 26898.56 17587.43 19397.06 23796.46 226
jason: jason.
Anonymous2023120688.77 24388.29 24190.20 25896.31 17378.81 25989.56 26293.49 26174.26 30792.38 22295.58 17682.21 24095.43 31172.07 32398.75 13296.34 230
EPNet89.80 22688.25 24294.45 12583.91 35586.18 15893.87 12587.07 31591.16 12180.64 34394.72 21578.83 26398.89 12085.17 21998.89 10998.28 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
YYNet188.17 25288.24 24387.93 29392.21 29473.62 31180.75 34188.77 30182.51 25594.99 14695.11 19682.70 23693.70 33083.33 24093.83 30396.48 225
MDA-MVSNet_test_wron88.16 25388.23 24487.93 29392.22 29373.71 31080.71 34288.84 30082.52 25494.88 15195.14 19482.70 23693.61 33183.28 24193.80 30496.46 226
CDS-MVSNet89.55 22788.22 24593.53 15595.37 22986.49 14789.26 27093.59 25879.76 27191.15 24692.31 27877.12 27998.38 19077.51 29597.92 20895.71 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RRT_test8_iter0588.21 25188.17 24688.33 28991.62 30666.82 34091.73 20596.60 17286.34 20894.14 16895.38 19047.72 35699.11 8991.78 10098.26 17599.06 47
PatchT87.51 26588.17 24685.55 30990.64 31666.91 33692.02 18686.09 32192.20 8389.05 28097.16 8264.15 32596.37 29589.21 16292.98 31693.37 311
PVSNet_Blended88.74 24488.16 24890.46 25094.81 24078.80 26086.64 31396.93 15074.67 30488.68 29089.18 31986.27 21098.15 21080.27 26996.00 26194.44 287
UnsupCasMVSNet_bld88.50 24788.03 24989.90 26395.52 22378.88 25787.39 29794.02 25479.32 27993.06 20294.02 23780.72 25594.27 32675.16 31093.08 31496.54 219
PatchMatch-RL89.18 23288.02 25092.64 18495.90 20392.87 4588.67 28491.06 29480.34 26690.03 26491.67 28883.34 22794.42 32376.35 30494.84 28790.64 333
miper_enhance_ethall88.42 24887.87 25190.07 26088.67 33975.52 29885.10 32295.59 21375.68 29992.49 21789.45 31878.96 26297.88 22787.86 18697.02 23996.81 215
MS-PatchMatch88.05 25487.75 25288.95 27693.28 27477.93 26887.88 28992.49 27975.42 30292.57 21693.59 25080.44 25694.24 32881.28 26192.75 31794.69 283
PCF-MVS84.52 1789.12 23487.71 25393.34 15996.06 19085.84 16486.58 31697.31 12468.46 33493.61 18593.89 24287.51 18898.52 17967.85 33898.11 19495.66 260
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
pmmvs488.95 23987.70 25492.70 18294.30 25785.60 16787.22 29992.16 28574.62 30589.75 27394.19 23077.97 27296.41 29282.71 24696.36 25896.09 240
our_test_387.55 26487.59 25587.44 29991.76 30370.48 32783.83 33490.55 29779.79 27092.06 23392.17 28078.63 26795.63 30484.77 22994.73 28996.22 236
thisisatest053088.69 24587.52 25692.20 19796.33 17179.36 24892.81 15184.01 33986.44 20693.67 18392.68 27053.62 35199.25 7489.65 15198.45 15498.00 143
1112_ss88.42 24887.41 25791.45 21996.69 14980.99 22189.72 25896.72 16773.37 31287.00 30790.69 30377.38 27698.20 20481.38 26093.72 30595.15 270
baseline187.62 26387.31 25888.54 28494.71 24874.27 30893.10 14388.20 30786.20 21092.18 23093.04 26173.21 29395.52 30679.32 28285.82 34095.83 252
lupinMVS88.34 25087.31 25891.45 21994.74 24480.06 23287.23 29892.27 28271.10 32388.83 28191.15 29477.02 28098.53 17886.67 20396.75 25095.76 255
N_pmnet88.90 24087.25 26093.83 14594.40 25693.81 3484.73 32587.09 31479.36 27893.26 19692.43 27679.29 26191.68 34077.50 29697.22 23496.00 244
SCA87.43 26787.21 26188.10 29292.01 30071.98 32289.43 26488.11 30982.26 25888.71 28892.83 26478.65 26597.59 24979.61 27993.30 30994.75 280
TR-MVS87.70 25987.17 26289.27 27394.11 26179.26 25088.69 28291.86 28981.94 25990.69 25389.79 31282.82 23497.42 25972.65 32191.98 32491.14 330
pmmvs587.87 25687.14 26390.07 26093.26 27676.97 28488.89 27792.18 28373.71 31188.36 29293.89 24276.86 28396.73 28380.32 26896.81 24796.51 221
CR-MVSNet87.89 25587.12 26490.22 25691.01 31378.93 25592.52 16092.81 27073.08 31489.10 27896.93 9567.11 30897.64 24888.80 16792.70 31894.08 292
thres600view787.66 26187.10 26589.36 27196.05 19173.17 31392.72 15385.31 33191.89 9293.29 19390.97 29763.42 32998.39 18873.23 31796.99 24496.51 221
BH-w/o87.21 27287.02 26687.79 29694.77 24277.27 27887.90 28893.21 26681.74 26089.99 26588.39 32583.47 22696.93 27771.29 32892.43 32089.15 335
thres100view90087.35 26986.89 26788.72 28196.14 18673.09 31593.00 14585.31 33192.13 8593.26 19690.96 29863.42 32998.28 19671.27 32996.54 25494.79 278
GA-MVS87.70 25986.82 26890.31 25293.27 27577.22 27984.72 32792.79 27285.11 23089.82 26990.07 30766.80 31197.76 24284.56 23294.27 29995.96 246
sss87.23 27186.82 26888.46 28793.96 26577.94 26786.84 30792.78 27377.59 29187.61 30291.83 28578.75 26491.92 33977.84 29194.20 30095.52 265
PAPR87.65 26286.77 27090.27 25492.85 28477.38 27688.56 28596.23 19076.82 29884.98 31789.75 31486.08 21297.16 26972.33 32293.35 30896.26 234
EU-MVSNet87.39 26886.71 27189.44 26893.40 27376.11 29294.93 9390.00 29857.17 35095.71 11497.37 6764.77 32397.68 24792.67 8194.37 29694.52 285
Test_1112_low_res87.50 26686.58 27290.25 25596.80 14677.75 27187.53 29596.25 18869.73 33086.47 30993.61 24975.67 28697.88 22779.95 27493.20 31095.11 272
FMVSNet587.82 25886.56 27391.62 21592.31 29179.81 24193.49 13594.81 23683.26 24591.36 24196.93 9552.77 35297.49 25576.07 30598.03 20297.55 186
MIMVSNet87.13 27686.54 27488.89 27896.05 19176.11 29294.39 11188.51 30381.37 26188.27 29496.75 10872.38 29595.52 30665.71 34395.47 27395.03 273
tfpn200view987.05 27786.52 27588.67 28295.77 20972.94 31691.89 19386.00 32390.84 12592.61 21489.80 31063.93 32698.28 19671.27 32996.54 25494.79 278
thres40087.20 27386.52 27589.24 27595.77 20972.94 31691.89 19386.00 32390.84 12592.61 21489.80 31063.93 32698.28 19671.27 32996.54 25496.51 221
WTY-MVS86.93 27986.50 27788.24 29094.96 23574.64 30187.19 30092.07 28878.29 28888.32 29391.59 29078.06 27194.27 32674.88 31193.15 31295.80 253
131486.46 28186.33 27886.87 30391.65 30574.54 30391.94 19094.10 25174.28 30684.78 31987.33 33183.03 23195.00 31878.72 28691.16 32991.06 331
cascas87.02 27886.28 27989.25 27491.56 30876.45 28984.33 33196.78 16271.01 32486.89 30885.91 33981.35 24996.94 27583.09 24395.60 26994.35 289
Patchmatch-test86.10 28386.01 28086.38 30690.63 31774.22 30989.57 26186.69 31685.73 22189.81 27092.83 26465.24 32191.04 34277.82 29395.78 26793.88 301
HY-MVS82.50 1886.81 28085.93 28189.47 26793.63 27177.93 26894.02 12191.58 29275.68 29983.64 32693.64 24777.40 27597.42 25971.70 32692.07 32393.05 314
CHOSEN 1792x268887.19 27485.92 28291.00 23697.13 13279.41 24784.51 32995.60 21064.14 34490.07 26394.81 21078.26 27097.14 27073.34 31695.38 27796.46 226
CMPMVSbinary68.83 2287.28 27085.67 28392.09 20388.77 33885.42 16990.31 23994.38 24670.02 32988.00 29793.30 25673.78 29294.03 32975.96 30796.54 25496.83 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
HyFIR lowres test87.19 27485.51 28492.24 19697.12 13380.51 22585.03 32396.06 19766.11 34091.66 23892.98 26370.12 30199.14 8575.29 30995.23 28097.07 204
thres20085.85 28485.18 28587.88 29594.44 25472.52 31989.08 27486.21 31988.57 17191.44 24088.40 32464.22 32498.00 22068.35 33795.88 26693.12 313
CVMVSNet85.16 28784.72 28686.48 30492.12 29770.19 32892.32 17388.17 30856.15 35190.64 25495.85 15967.97 30696.69 28488.78 16890.52 33192.56 320
PatchmatchNetpermissive85.22 28684.64 28786.98 30289.51 33169.83 33190.52 23187.34 31378.87 28487.22 30692.74 26866.91 31096.53 28781.77 25686.88 33994.58 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu85.63 28584.37 28889.40 27086.30 34974.33 30791.64 20688.26 30584.84 23572.96 35289.85 30871.27 30097.69 24676.60 30297.62 22296.18 238
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS84.98 28984.30 28987.01 30191.03 31277.69 27391.94 19094.16 25059.36 34984.23 32387.50 32985.66 21696.80 28171.79 32493.05 31586.54 341
ET-MVSNet_ETH3D86.15 28284.27 29091.79 20993.04 28181.28 21787.17 30186.14 32079.57 27483.65 32588.66 32157.10 34498.18 20787.74 18795.40 27595.90 250
tpm84.38 29284.08 29185.30 31390.47 32063.43 35089.34 26785.63 32777.24 29587.62 30195.03 20261.00 34097.30 26579.26 28391.09 33095.16 269
tpmvs84.22 29383.97 29284.94 31487.09 34665.18 34391.21 21588.35 30482.87 25385.21 31490.96 29865.24 32196.75 28279.60 28185.25 34192.90 316
MDTV_nov1_ep1383.88 29389.42 33261.52 35188.74 28187.41 31273.99 30984.96 31894.01 23865.25 32095.53 30578.02 28993.16 311
PMMVS281.31 30883.44 29474.92 33490.52 31946.49 35769.19 34985.23 33484.30 24087.95 29894.71 21676.95 28284.36 35164.07 34498.09 19693.89 300
FPMVS84.50 29183.28 29588.16 29196.32 17294.49 1485.76 31885.47 32983.09 24985.20 31594.26 22763.79 32886.58 34963.72 34591.88 32683.40 344
test-LLR83.58 29583.17 29684.79 31689.68 32866.86 33883.08 33684.52 33683.07 25082.85 33184.78 34262.86 33293.49 33282.85 24494.86 28594.03 295
JIA-IIPM85.08 28883.04 29791.19 23087.56 34186.14 15989.40 26684.44 33888.98 16082.20 33597.95 3956.82 34696.15 29876.55 30383.45 34491.30 329
thisisatest051584.72 29082.99 29889.90 26392.96 28375.33 29984.36 33083.42 34177.37 29388.27 29486.65 33253.94 34998.72 15282.56 24897.40 22995.67 259
tpmrst82.85 30182.93 29982.64 32587.65 34058.99 35390.14 24587.90 31075.54 30183.93 32491.63 28966.79 31395.36 31281.21 26381.54 34893.57 310
PVSNet76.22 2082.89 30082.37 30084.48 31893.96 26564.38 34878.60 34488.61 30271.50 32184.43 32286.36 33674.27 28994.60 32069.87 33593.69 30694.46 286
CostFormer83.09 29882.21 30185.73 30889.27 33367.01 33590.35 23786.47 31870.42 32783.52 32893.23 25961.18 33896.85 27977.21 29888.26 33793.34 312
ADS-MVSNet284.01 29482.20 30289.41 26989.04 33576.37 29187.57 29190.98 29572.71 31784.46 32092.45 27368.08 30496.48 29070.58 33383.97 34295.38 266
DSMNet-mixed82.21 30481.56 30384.16 32089.57 33070.00 33090.65 22877.66 35254.99 35283.30 32997.57 5477.89 27390.50 34466.86 34195.54 27191.97 324
ADS-MVSNet82.25 30381.55 30484.34 31989.04 33565.30 34287.57 29185.13 33572.71 31784.46 32092.45 27368.08 30492.33 33870.58 33383.97 34295.38 266
baseline283.38 29681.54 30588.90 27791.38 30972.84 31888.78 27981.22 34678.97 28279.82 34587.56 32761.73 33797.80 23674.30 31290.05 33396.05 243
test0.0.03 182.48 30281.47 30685.48 31089.70 32773.57 31284.73 32581.64 34583.07 25088.13 29686.61 33362.86 33289.10 34866.24 34290.29 33293.77 303
PMMVS83.00 29981.11 30788.66 28383.81 35686.44 15082.24 34085.65 32661.75 34882.07 33685.64 34079.75 25891.59 34175.99 30693.09 31387.94 340
IB-MVS77.21 1983.11 29781.05 30889.29 27291.15 31175.85 29585.66 31986.00 32379.70 27282.02 33886.61 33348.26 35598.39 18877.84 29192.22 32193.63 306
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 30581.02 30985.34 31287.46 34471.04 32494.74 9767.56 35496.44 2279.43 34698.99 745.24 35796.15 29867.18 34092.17 32288.85 337
new_pmnet81.22 30981.01 31081.86 32790.92 31570.15 32984.03 33280.25 35070.83 32585.97 31289.78 31367.93 30784.65 35067.44 33991.90 32590.78 332
E-PMN80.72 31480.86 31180.29 33085.11 35268.77 33372.96 34681.97 34487.76 18683.25 33083.01 34662.22 33589.17 34777.15 29994.31 29882.93 345
MVS-HIRNet78.83 32080.60 31273.51 33593.07 27947.37 35687.10 30278.00 35168.94 33277.53 34897.26 7571.45 29994.62 31963.28 34688.74 33578.55 348
EPMVS81.17 31180.37 31383.58 32285.58 35165.08 34590.31 23971.34 35377.31 29485.80 31391.30 29259.38 34192.70 33779.99 27382.34 34792.96 315
tpm281.46 30780.35 31484.80 31589.90 32565.14 34490.44 23385.36 33065.82 34282.05 33792.44 27557.94 34396.69 28470.71 33288.49 33692.56 320
EMVS80.35 31680.28 31580.54 32984.73 35469.07 33272.54 34880.73 34787.80 18581.66 34081.73 34762.89 33189.84 34575.79 30894.65 29282.71 346
PAPM81.91 30680.11 31687.31 30093.87 26872.32 32184.02 33393.22 26469.47 33176.13 35089.84 30972.15 29697.23 26753.27 35189.02 33492.37 322
test-mter81.21 31080.01 31784.79 31689.68 32866.86 33883.08 33684.52 33673.85 31082.85 33184.78 34243.66 36093.49 33282.85 24494.86 28594.03 295
tpm cat180.61 31579.46 31884.07 32188.78 33765.06 34689.26 27088.23 30662.27 34781.90 33989.66 31662.70 33495.29 31571.72 32580.60 34991.86 327
DWT-MVSNet_test80.74 31379.18 31985.43 31187.51 34366.87 33789.87 25586.01 32274.20 30880.86 34280.62 34848.84 35496.68 28681.54 25883.14 34692.75 318
pmmvs380.83 31278.96 32086.45 30587.23 34577.48 27584.87 32482.31 34363.83 34585.03 31689.50 31749.66 35393.10 33473.12 31995.10 28288.78 339
dp79.28 31878.62 32181.24 32885.97 35056.45 35486.91 30585.26 33372.97 31581.45 34189.17 32056.01 34895.45 31073.19 31876.68 35091.82 328
TESTMET0.1,179.09 31978.04 32282.25 32687.52 34264.03 34983.08 33680.62 34870.28 32880.16 34483.22 34544.13 35990.56 34379.95 27493.36 30792.15 323
CHOSEN 280x42080.04 31777.97 32386.23 30790.13 32374.53 30472.87 34789.59 29966.38 33976.29 34985.32 34156.96 34595.36 31269.49 33694.72 29088.79 338
PVSNet_070.34 2174.58 32172.96 32479.47 33190.63 31766.24 34173.26 34583.40 34263.67 34678.02 34778.35 34972.53 29489.59 34656.68 34960.05 35382.57 347
MVEpermissive59.87 2373.86 32272.65 32577.47 33387.00 34874.35 30661.37 35160.93 35667.27 33769.69 35386.49 33581.24 25372.33 35356.45 35083.45 34485.74 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt37.97 32344.33 32618.88 33711.80 35821.54 35963.51 35045.66 3594.23 35451.34 35550.48 35259.08 34222.11 35544.50 35268.35 35213.00 351
cdsmvs_eth3d_5k23.35 32431.13 3270.00 3400.00 3610.00 3620.00 35295.58 2150.00 3570.00 35891.15 29493.43 750.00 3580.00 3560.00 3560.00 354
test1239.49 32512.01 3281.91 3382.87 3591.30 36082.38 3391.34 3611.36 3552.84 3566.56 3552.45 3610.97 3562.73 3545.56 3543.47 352
testmvs9.02 32611.42 3291.81 3392.77 3601.13 36179.44 3431.90 3601.18 3562.65 3576.80 3541.95 3620.87 3572.62 3553.45 3553.44 353
pcd_1.5k_mvsjas7.56 32710.09 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35890.77 1410.00 3580.00 3560.00 3560.00 354
ab-mvs-re7.56 32710.08 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35890.69 3030.00 3630.00 3580.00 3560.00 3560.00 354
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ZD-MVS97.23 12590.32 7597.54 10584.40 23994.78 15495.79 16492.76 9599.39 4588.72 17198.40 156
IU-MVS98.51 4686.66 14596.83 15972.74 31695.83 10893.00 7299.29 6398.64 95
OPU-MVS95.15 9496.84 14289.43 8895.21 7995.66 17193.12 8598.06 21486.28 21298.61 14097.95 151
test_241102_TWO98.10 4591.95 8897.54 3697.25 7695.37 2999.35 5593.29 5999.25 7198.49 109
test_241102_ONE98.51 4686.97 13698.10 4591.85 9497.63 3197.03 8996.48 1298.95 114
save fliter97.46 11788.05 11792.04 18497.08 14087.63 190
test_0728_THIRD93.26 6597.40 4497.35 7194.69 5599.34 5993.88 3399.42 4698.89 69
test_0728_SECOND94.88 10198.55 4086.72 14295.20 8198.22 3099.38 5193.44 5299.31 6098.53 106
test072698.51 4686.69 14395.34 7498.18 3391.85 9497.63 3197.37 6795.58 23
GSMVS94.75 280
test_part298.21 6989.41 8996.72 68
sam_mvs166.64 31494.75 280
sam_mvs66.41 315
ambc92.98 17096.88 14083.01 20095.92 5796.38 18496.41 7797.48 6188.26 17497.80 23689.96 14498.93 10898.12 135
MTGPAbinary97.62 97
test_post190.21 2415.85 35765.36 31996.00 30079.61 279
test_post6.07 35665.74 31895.84 302
patchmatchnet-post91.71 28766.22 31797.59 249
GG-mvs-BLEND83.24 32485.06 35371.03 32594.99 9265.55 35574.09 35175.51 35044.57 35894.46 32259.57 34887.54 33884.24 343
MTMP94.82 9454.62 357
gm-plane-assit87.08 34759.33 35271.22 32283.58 34497.20 26873.95 313
test9_res88.16 17998.40 15697.83 164
TEST996.45 16289.46 8690.60 22996.92 15279.09 28190.49 25594.39 22491.31 12798.88 121
test_896.37 16489.14 9390.51 23296.89 15579.37 27690.42 25794.36 22691.20 13398.82 131
agg_prior287.06 19898.36 16697.98 147
agg_prior96.20 18188.89 9896.88 15690.21 25998.78 142
TestCases96.00 5698.02 8392.17 5098.43 1190.48 13595.04 14496.74 10992.54 10097.86 23185.11 22498.98 10097.98 147
test_prior489.91 8090.74 225
test_prior290.21 24189.33 15690.77 25094.81 21090.41 15188.21 17598.55 143
test_prior94.61 11195.95 19987.23 12997.36 12098.68 16197.93 153
旧先验290.00 25068.65 33392.71 21296.52 28885.15 221
新几何290.02 249
新几何193.17 16697.16 12987.29 12894.43 24467.95 33591.29 24294.94 20586.97 19898.23 20281.06 26697.75 21393.98 298
旧先验196.20 18184.17 18394.82 23495.57 17789.57 16397.89 20996.32 231
无先验89.94 25195.75 20770.81 32698.59 17181.17 26494.81 277
原ACMM289.34 267
原ACMM192.87 17796.91 13984.22 18197.01 14376.84 29789.64 27494.46 22188.00 18098.70 15981.53 25998.01 20395.70 258
test22296.95 13685.27 17188.83 27893.61 25765.09 34390.74 25294.85 20984.62 22397.36 23093.91 299
testdata298.03 21680.24 271
segment_acmp92.14 106
testdata91.03 23396.87 14182.01 20694.28 24871.55 32092.46 21895.42 18585.65 21797.38 26482.64 24797.27 23293.70 305
testdata188.96 27688.44 173
test1294.43 12695.95 19986.75 14196.24 18989.76 27289.79 16298.79 13897.95 20697.75 173
plane_prior797.71 10088.68 102
plane_prior697.21 12788.23 11386.93 199
plane_prior597.81 8598.95 11489.26 15998.51 15098.60 102
plane_prior495.59 173
plane_prior388.43 11190.35 14093.31 191
plane_prior294.56 10691.74 105
plane_prior197.38 120
plane_prior88.12 11593.01 14488.98 16098.06 198
n20.00 362
nn0.00 362
door-mid92.13 287
lessismore_v093.87 14498.05 7983.77 19080.32 34997.13 5097.91 4377.49 27499.11 8992.62 8298.08 19798.74 86
LGP-MVS_train96.84 4098.36 6192.13 5298.25 2591.78 10197.07 5197.22 7996.38 1499.28 7092.07 9199.59 2699.11 41
test1196.65 170
door91.26 293
HQP5-MVS84.89 173
HQP-NCC96.36 16691.37 21087.16 19788.81 283
ACMP_Plane96.36 16691.37 21087.16 19788.81 283
BP-MVS86.55 206
HQP4-MVS88.81 28398.61 16798.15 131
HQP3-MVS97.31 12497.73 214
HQP2-MVS84.76 221
NP-MVS96.82 14387.10 13293.40 254
MDTV_nov1_ep13_2view42.48 35888.45 28667.22 33883.56 32766.80 31172.86 32094.06 294
ACMMP++_ref98.82 122
ACMMP++99.25 71
Test By Simon90.61 147
ITE_SJBPF95.95 5897.34 12293.36 4096.55 17791.93 9094.82 15295.39 18891.99 11197.08 27185.53 21797.96 20597.41 191
DeepMVS_CXcopyleft53.83 33670.38 35764.56 34748.52 35833.01 35365.50 35474.21 35156.19 34746.64 35438.45 35370.07 35150.30 350