This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 397.01 1298.92 498.78 1495.22 3798.61 16896.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 497.41 997.28 4698.46 2594.62 5698.84 13094.64 1799.53 3498.99 53
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3196.95 1395.46 12499.23 493.45 7299.57 1395.34 1299.89 299.63 9
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6494.15 4898.93 399.07 588.07 17799.57 1395.86 999.69 1599.46 18
UniMVSNet_ETH3D97.13 697.72 395.35 8299.51 287.38 12797.70 697.54 10598.16 298.94 299.33 297.84 499.08 9290.73 11999.73 1499.59 12
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 992.35 7895.95 10496.41 12996.71 899.42 2893.99 3199.36 5599.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet93.91 12493.68 13094.59 11698.08 7585.55 16897.44 894.03 25294.22 4794.94 14796.19 14782.07 24399.57 1387.28 19898.89 11098.65 91
LS3D96.11 4895.83 6196.95 3794.75 24594.20 1797.34 997.98 6797.31 1095.32 12996.77 10593.08 8599.20 7991.79 10098.16 18997.44 191
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3593.11 6696.48 7697.36 7096.92 699.34 5994.31 2399.38 5498.92 67
MVSFormer92.18 17392.23 16492.04 20794.74 24780.06 23397.15 1197.37 11588.98 16188.83 28592.79 26877.02 28099.60 896.41 496.75 25296.46 229
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11588.98 16198.26 2198.86 1093.35 7799.60 896.41 499.45 4299.66 6
IS-MVSNet94.49 10594.35 11194.92 10098.25 6686.46 14997.13 1394.31 24796.24 2396.28 8996.36 13782.88 23299.35 5588.19 17999.52 3698.96 60
Anonymous2023121196.60 2597.13 1295.00 9897.46 11786.35 15497.11 1498.24 2797.58 798.72 898.97 793.15 8399.15 8393.18 6499.74 1399.50 16
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10087.68 19098.45 1898.77 1594.20 6599.50 1996.70 399.40 5299.53 14
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3292.26 8196.33 8296.84 10395.10 4299.40 4093.47 4899.33 5999.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9196.90 1798.41 1392.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6398.92 67
v7n96.82 1097.31 1095.33 8498.54 4186.81 14096.83 1898.07 5196.59 1998.46 1798.43 2792.91 8999.52 1796.25 699.76 1199.65 8
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 4892.67 7195.08 14296.39 13494.77 5399.42 2893.17 6599.44 4498.58 104
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1796.69 1696.86 6297.56 5595.48 2598.77 14790.11 13999.44 4498.31 121
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H96.60 2597.05 1495.24 9099.02 1186.44 15096.78 2198.08 4897.42 898.48 1697.86 4491.76 11599.63 694.23 2699.84 399.66 6
pmmvs696.80 1397.36 995.15 9499.12 787.82 12396.68 2297.86 7896.10 2598.14 2399.28 397.94 398.21 20591.38 11399.69 1599.42 19
3Dnovator92.54 394.80 9594.90 8994.47 12395.47 22587.06 13396.63 2397.28 12991.82 10094.34 16797.41 6490.60 14698.65 16692.47 8498.11 19597.70 175
PS-CasMVS96.69 2097.43 594.49 12299.13 584.09 18596.61 2497.97 7097.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3597.44 6396.51 999.40 4094.06 3099.23 7598.85 75
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10087.57 19398.80 798.90 996.50 1099.59 1296.15 799.47 3899.40 21
PEN-MVS96.69 2097.39 894.61 11199.16 384.50 17696.54 2798.05 5598.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
DTE-MVSNet96.74 1797.43 594.67 10999.13 584.68 17596.51 2897.94 7698.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16596.49 12394.56 5799.39 4593.57 4099.05 9398.93 63
X-MVStestdata90.70 20088.45 24097.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16526.89 35894.56 5799.39 4593.57 4099.05 9398.93 63
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9192.59 7295.47 12296.68 11494.50 5999.42 2893.10 6899.26 7198.99 53
QAPM92.88 15292.77 15193.22 16695.82 20783.31 19396.45 3197.35 12283.91 24493.75 18196.77 10589.25 16598.88 12284.56 23497.02 24197.49 188
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11386.96 20298.71 1098.72 1795.36 3199.56 1695.92 899.45 4299.32 26
Gipumacopyleft95.31 7595.80 6393.81 14797.99 8790.91 6996.42 3497.95 7396.69 1691.78 23998.85 1291.77 11495.49 31391.72 10399.08 8995.02 277
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSP-MVS95.34 7294.63 10297.48 1498.67 2794.05 2196.41 3598.18 3291.26 11795.12 13895.15 19386.60 20699.50 1993.43 5396.81 24998.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 8994.85 5199.42 2893.49 4498.84 11798.00 143
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 8995.40 2793.49 4498.84 11798.00 143
TSAR-MVS + MP.94.96 8594.75 9595.57 7798.86 2088.69 10196.37 3696.81 16085.23 22694.75 15597.12 8491.85 11399.40 4093.45 4998.33 16898.62 99
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMH88.36 1296.59 2797.43 594.07 13498.56 3685.33 17096.33 3998.30 2094.66 3998.72 898.30 3097.51 598.00 22294.87 1499.59 2698.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7192.26 8195.28 13296.57 12195.02 4699.41 3593.63 3999.11 8898.94 62
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2495.51 3496.99 5897.05 8895.63 2199.39 4593.31 5898.88 11298.75 84
CP-MVSNet96.19 4696.80 1794.38 12898.99 1383.82 18996.31 4197.53 10797.60 698.34 1997.52 5891.98 11199.63 693.08 7099.81 999.70 3
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6792.35 7895.63 11696.47 12495.37 2899.27 7293.78 3599.14 8498.48 110
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7192.35 7895.57 11996.61 11994.93 5099.41 3593.78 3599.15 8399.00 51
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14590.79 7296.30 4397.82 8496.13 2494.74 15697.23 7891.33 12599.16 8293.25 6298.30 17398.46 112
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9596.23 4696.87 15893.73 5697.87 2698.49 2490.73 14399.05 9786.43 21199.60 2499.10 44
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5195.17 3696.82 6496.73 11195.09 4399.43 2792.99 7398.71 13498.50 108
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9092.73 6893.48 18896.72 11294.23 6499.42 2891.99 9499.29 6499.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 3891.74 10595.34 12896.36 13795.68 1999.44 2394.41 2199.28 6998.97 59
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5495.76 3196.89 6096.85 10094.85 5199.42 2893.35 5798.81 12598.53 106
GBi-Net93.21 14292.96 14693.97 13795.40 22784.29 17895.99 5196.56 17488.63 16895.10 13998.53 2181.31 25098.98 10886.74 20298.38 16198.65 91
test193.21 14292.96 14693.97 13795.40 22784.29 17895.99 5196.56 17488.63 16895.10 13998.53 2181.31 25098.98 10886.74 20298.38 16198.65 91
FMVSNet194.84 9295.13 8493.97 13797.60 10884.29 17895.99 5196.56 17492.38 7597.03 5598.53 2190.12 15498.98 10888.78 17099.16 8298.65 91
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10792.42 7493.41 18997.78 4591.21 13197.77 24291.06 11597.06 23998.80 79
SixPastTwentyTwo94.91 8695.21 8193.98 13698.52 4483.19 19695.93 5594.84 23394.86 3898.49 1598.74 1681.45 24899.60 894.69 1699.39 5399.15 37
ambc92.98 17096.88 14083.01 20095.92 5696.38 18496.41 7797.48 6188.26 17397.80 23889.96 14498.93 10998.12 135
FC-MVSNet-test95.32 7395.88 5793.62 15098.49 5381.77 21095.90 5798.32 1793.93 5397.53 3797.56 5588.48 17099.40 4092.91 7599.83 699.68 4
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9794.46 4496.29 8696.94 9393.56 7099.37 5294.29 2499.42 4698.99 53
CPTT-MVS94.74 9694.12 11996.60 4498.15 7193.01 4295.84 5997.66 9589.21 16093.28 19595.46 18288.89 16798.98 10889.80 14698.82 12397.80 168
ab-mvs92.40 16792.62 15791.74 21397.02 13481.65 21295.84 5995.50 21886.95 20392.95 20997.56 5590.70 14497.50 25579.63 28197.43 23096.06 245
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10795.77 6198.29 2392.68 6998.03 2597.91 4295.13 4098.95 11593.85 3399.49 3799.36 24
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6493.34 6496.64 7196.57 12194.99 4899.36 5493.48 4799.34 5798.82 77
Skip Steuart: Steuart Systems R&D Blog.
OpenMVScopyleft89.45 892.27 17292.13 16792.68 18394.53 25684.10 18495.70 6297.03 14382.44 26091.14 24996.42 12888.47 17198.38 19185.95 21697.47 22995.55 267
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6492.08 8695.74 11296.28 14295.22 3799.42 2893.17 6599.06 9098.88 71
ACMH+88.43 1196.48 3096.82 1695.47 8098.54 4189.06 9495.65 6598.61 696.10 2598.16 2297.52 5896.90 798.62 16790.30 13199.60 2498.72 89
canonicalmvs94.59 10194.69 9894.30 12995.60 22287.03 13595.59 6698.24 2791.56 11195.21 13792.04 28694.95 4998.66 16491.45 11197.57 22697.20 205
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8595.58 6798.56 791.84 9796.36 8096.68 11494.37 6299.32 6592.41 8699.05 9398.64 95
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 10995.57 6897.88 7788.72 16798.81 698.86 1090.77 13999.60 895.43 1199.53 3499.57 13
test_part194.39 10794.55 10493.92 14196.14 18582.86 20195.54 6998.09 4795.36 3598.27 2098.36 2875.91 28699.44 2393.41 5499.84 399.47 17
PMVScopyleft87.21 1494.97 8495.33 7693.91 14298.97 1497.16 295.54 6995.85 20496.47 2093.40 19197.46 6295.31 3395.47 31486.18 21598.78 12989.11 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VDDNet94.03 12294.27 11693.31 16298.87 1982.36 20595.51 7191.78 29297.19 1196.32 8398.60 1884.24 22398.75 14887.09 19998.83 12298.81 78
pm-mvs195.43 6895.94 5493.93 14098.38 5785.08 17295.46 7297.12 13991.84 9797.28 4698.46 2595.30 3497.71 24790.17 13799.42 4698.99 53
Vis-MVSNetpermissive95.50 6695.48 7095.56 7898.11 7389.40 9095.35 7398.22 2992.36 7794.11 16998.07 3392.02 10799.44 2393.38 5697.67 22297.85 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test072698.51 4586.69 14395.34 7498.18 3291.85 9497.63 3197.37 6795.58 22
FIs94.90 8795.35 7493.55 15398.28 6381.76 21195.33 7598.14 3993.05 6797.07 5197.18 8187.65 18499.29 6891.72 10399.69 1599.61 11
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7598.30 2091.40 11495.76 11096.87 9995.26 3599.45 2292.77 7699.21 7799.00 51
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7598.25 2491.78 10197.07 5197.22 7996.38 1399.28 7092.07 9299.59 2699.11 41
AllTest94.88 8994.51 10796.00 5598.02 8292.17 5095.26 7898.43 1090.48 13595.04 14496.74 10992.54 9997.86 23385.11 22698.98 10197.98 147
SED-MVS96.00 5296.41 3294.76 10698.51 4586.97 13695.21 7998.10 4491.95 8897.63 3197.25 7696.48 1199.35 5593.29 5999.29 6497.95 151
OPU-MVS95.15 9496.84 14289.43 8895.21 7995.66 17193.12 8498.06 21686.28 21498.61 14197.95 151
DVP-MVS95.82 5796.18 4194.72 10898.51 4586.69 14395.20 8197.00 14591.85 9497.40 4497.35 7195.58 2299.34 5993.44 5199.31 6198.13 134
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10198.55 3986.72 14295.20 8198.22 2999.38 5193.44 5199.31 6198.53 106
Anonymous2024052995.50 6695.83 6194.50 12097.33 12385.93 16295.19 8396.77 16496.64 1897.61 3498.05 3493.23 8098.79 13988.60 17599.04 9898.78 81
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8497.98 6789.34 15695.63 11696.47 12495.37 2899.27 7291.99 9499.14 8498.48 110
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8597.79 8986.48 20697.42 4397.51 6094.47 6199.29 6893.55 4299.29 6498.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NR-MVSNet95.28 7695.28 7995.26 8997.75 9587.21 13195.08 8697.37 11593.92 5497.65 3095.90 15790.10 15799.33 6490.11 13999.66 2099.26 29
TransMVSNet (Re)95.27 7896.04 5192.97 17198.37 5981.92 20995.07 8796.76 16593.97 5297.77 2798.57 1995.72 1897.90 22788.89 16899.23 7599.08 45
UGNet93.08 14592.50 16094.79 10593.87 27187.99 11995.07 8794.26 24990.64 13287.33 31097.67 5086.89 20198.49 18288.10 18298.71 13497.91 156
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051789.81 22888.90 23492.55 19097.00 13579.73 24495.03 8983.65 34589.88 14795.30 13094.79 21453.64 35399.39 4591.99 9498.79 12898.54 105
LFMVS91.33 19091.16 19291.82 21096.27 17579.36 25095.01 9085.61 33396.04 2894.82 15297.06 8772.03 30098.46 18884.96 22998.70 13697.65 179
CSCG94.69 9894.75 9594.52 11997.55 11187.87 12195.01 9097.57 10392.68 6996.20 9493.44 25491.92 11298.78 14389.11 16399.24 7496.92 212
GG-mvs-BLEND83.24 32985.06 35671.03 32894.99 9265.55 36074.09 35675.51 35544.57 36194.46 32759.57 35387.54 34384.24 348
EU-MVSNet87.39 27186.71 27489.44 27193.40 27676.11 29594.93 9390.00 30257.17 35595.71 11497.37 6764.77 32697.68 24992.67 8194.37 29994.52 288
DIV-MVS_2432*160094.10 12094.73 9792.19 19997.66 10579.49 24894.86 9497.12 13989.59 15396.87 6197.65 5190.40 15198.34 19589.08 16499.35 5698.75 84
MTMP94.82 9554.62 362
PHI-MVS94.34 11193.80 12495.95 5795.65 21891.67 6194.82 9597.86 7887.86 18593.04 20694.16 23291.58 11998.78 14390.27 13398.96 10797.41 192
testtj94.81 9494.42 10896.01 5497.23 12590.51 7494.77 9797.85 8191.29 11694.92 14995.66 17191.71 11699.40 4088.07 18398.25 17998.11 136
gg-mvs-nofinetune82.10 31081.02 31285.34 31787.46 34771.04 32794.74 9867.56 35996.44 2179.43 35198.99 645.24 36096.15 30067.18 34592.17 32788.85 342
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9898.03 6090.82 12797.15 4996.85 10096.25 1599.00 10793.10 6899.33 5998.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS95.19 7995.73 6593.55 15396.62 15288.88 10094.67 10098.05 5591.26 11797.25 4896.40 13095.42 2694.36 33092.72 8099.19 7997.40 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
API-MVS91.52 18591.61 17891.26 22794.16 26286.26 15794.66 10194.82 23491.17 12092.13 23391.08 29990.03 16097.06 27479.09 28897.35 23390.45 339
v1094.68 9995.27 8092.90 17696.57 15580.15 22994.65 10297.57 10390.68 13197.43 4198.00 3788.18 17499.15 8394.84 1599.55 3399.41 20
v894.65 10095.29 7892.74 18196.65 14979.77 24394.59 10397.17 13591.86 9397.47 4097.93 4088.16 17599.08 9294.32 2299.47 3899.38 22
APD-MVScopyleft95.00 8394.69 9895.93 6097.38 12090.88 7094.59 10397.81 8589.22 15995.46 12496.17 14993.42 7599.34 5989.30 15598.87 11597.56 185
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPA-MVSNet95.14 8095.67 6793.58 15297.76 9483.15 19794.58 10597.58 10293.39 6397.05 5498.04 3593.25 7998.51 18189.75 14999.59 2699.08 45
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10698.03 6090.42 13896.37 7997.35 7195.68 1999.25 7494.44 2099.34 5798.80 79
HQP_MVS94.26 11593.93 12195.23 9197.71 9988.12 11594.56 10797.81 8591.74 10593.31 19295.59 17386.93 19898.95 11589.26 15998.51 15198.60 102
plane_prior294.56 10791.74 105
tfpnnormal94.27 11494.87 9192.48 19397.71 9980.88 22494.55 10995.41 22093.70 5796.67 7097.72 4891.40 12398.18 20987.45 19499.18 8198.36 117
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11098.05 5590.45 13796.31 8496.76 10792.91 8998.72 15391.19 11499.42 4698.32 119
DP-MVS95.62 6295.84 6094.97 9997.16 12988.62 10494.54 11097.64 9696.94 1496.58 7497.32 7493.07 8698.72 15390.45 12398.84 11797.57 183
MIMVSNet87.13 27986.54 27788.89 28196.05 19276.11 29594.39 11288.51 30781.37 26688.27 29996.75 10872.38 29795.52 31165.71 34895.47 27695.03 276
K. test v393.37 13493.27 14393.66 14998.05 7882.62 20394.35 11386.62 32296.05 2797.51 3898.85 1276.59 28499.65 393.21 6398.20 18798.73 88
Vis-MVSNet (Re-imp)90.42 20790.16 21091.20 23197.66 10577.32 28094.33 11487.66 31591.20 11992.99 20795.13 19575.40 28898.28 19877.86 29399.19 7997.99 146
ANet_high94.83 9396.28 3690.47 25196.65 14973.16 31794.33 11498.74 596.39 2298.09 2498.93 893.37 7698.70 15990.38 12699.68 1899.53 14
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11698.08 4889.46 15496.61 7396.47 12495.85 1799.12 8890.45 12399.56 3298.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS90.32 21388.87 23594.66 11094.82 24191.85 5794.22 11794.75 23780.91 26787.52 30888.07 33186.63 20597.87 23276.67 30496.21 26294.25 294
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FMVSNet292.78 15592.73 15592.95 17395.40 22781.98 20894.18 11895.53 21788.63 16896.05 10197.37 6781.31 25098.81 13787.38 19798.67 13898.06 137
9.1494.81 9297.49 11494.11 11998.37 1487.56 19495.38 12696.03 15394.66 5599.08 9290.70 12098.97 105
HPM-MVS++copyleft95.02 8294.39 10996.91 3897.88 9093.58 3694.09 12096.99 14791.05 12292.40 22395.22 19291.03 13799.25 7492.11 8998.69 13797.90 157
ETH3D-3000-0.194.86 9094.55 10495.81 6597.61 10789.72 8394.05 12198.37 1488.09 18095.06 14395.85 15992.58 9799.10 9190.33 13098.99 10098.62 99
HY-MVS82.50 1886.81 28385.93 28489.47 27093.63 27477.93 27094.02 12291.58 29475.68 30483.64 33193.64 24877.40 27597.42 26171.70 33192.07 32893.05 319
Effi-MVS+-dtu93.90 12592.60 15897.77 494.74 24796.67 394.00 12395.41 22089.94 14491.93 23792.13 28490.12 15498.97 11287.68 19097.48 22897.67 178
Effi-MVS+92.79 15492.74 15392.94 17495.10 23583.30 19494.00 12397.53 10791.36 11589.35 28190.65 30894.01 6798.66 16487.40 19695.30 28196.88 215
VDD-MVS94.37 10894.37 11094.40 12797.49 11486.07 16093.97 12593.28 26394.49 4396.24 9097.78 4587.99 18098.79 13988.92 16699.14 8498.34 118
EPNet89.80 22988.25 24594.45 12583.91 35886.18 15893.87 12687.07 32091.16 12180.64 34894.72 21578.83 26398.89 12185.17 22198.89 11098.28 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7693.86 12798.02 6287.35 19596.22 9297.99 3894.48 6099.05 9792.73 7999.68 1897.93 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LCM-MVSNet-Re94.20 11894.58 10393.04 16895.91 20383.13 19893.79 12899.19 292.00 8798.84 598.04 3593.64 6999.02 10381.28 26398.54 14796.96 211
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 7998.26 6587.69 12493.75 12997.86 7895.96 2997.48 3997.14 8395.33 3299.44 2390.79 11899.76 1199.38 22
PAPM_NR91.03 19490.81 19891.68 21696.73 14781.10 22193.72 13096.35 18588.19 17888.77 29192.12 28585.09 21997.25 26882.40 25393.90 30596.68 221
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13197.62 9794.46 4496.29 8696.94 9393.56 7099.37 5294.29 2499.42 4698.99 53
baseline94.26 11594.80 9392.64 18496.08 19080.99 22293.69 13198.04 5990.80 12894.89 15096.32 13993.19 8198.48 18691.68 10598.51 15198.43 114
MVS_030490.96 19590.15 21293.37 15993.17 28087.06 13393.62 13392.43 28289.60 15282.25 33995.50 18182.56 23997.83 23684.41 23697.83 21495.22 271
CS-MVS92.54 16592.31 16393.23 16595.89 20584.07 18693.58 13498.48 888.60 17190.41 26086.23 34292.00 10899.35 5587.54 19298.06 19996.26 237
F-COLMAP92.28 17191.06 19395.95 5797.52 11291.90 5693.53 13597.18 13483.98 24388.70 29394.04 23588.41 17298.55 17880.17 27495.99 26597.39 196
FMVSNet587.82 26186.56 27691.62 21792.31 29479.81 24293.49 13694.81 23683.26 24791.36 24396.93 9552.77 35597.49 25776.07 30898.03 20397.55 186
DPE-MVS95.89 5395.88 5795.92 6297.93 8989.83 8293.46 13798.30 2092.37 7697.75 2896.95 9295.14 3999.51 1891.74 10299.28 6998.41 116
alignmvs93.26 13992.85 14994.50 12095.70 21487.45 12593.45 13895.76 20691.58 11095.25 13492.42 28081.96 24598.72 15391.61 10697.87 21297.33 200
114514_t90.51 20489.80 21892.63 18698.00 8482.24 20693.40 13997.29 12765.84 34689.40 28094.80 21386.99 19698.75 14883.88 23998.61 14196.89 214
DeepC-MVS_fast89.96 793.73 12793.44 13794.60 11596.14 18587.90 12093.36 14097.14 13685.53 22393.90 17895.45 18391.30 12798.59 17289.51 15298.62 14097.31 201
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14198.32 1787.89 18496.86 6297.38 6695.55 2499.39 4595.47 1099.47 3899.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_040295.73 5996.22 3994.26 13098.19 6985.77 16593.24 14297.24 13196.88 1597.69 2997.77 4794.12 6699.13 8691.54 11099.29 6497.88 159
MSLP-MVS++93.25 14193.88 12291.37 22396.34 16982.81 20293.11 14397.74 9189.37 15594.08 17195.29 19190.40 15196.35 29890.35 12898.25 17994.96 278
baseline187.62 26687.31 26188.54 28794.71 25174.27 31193.10 14488.20 31186.20 21192.18 23293.04 26273.21 29495.52 31179.32 28585.82 34595.83 255
plane_prior88.12 11593.01 14588.98 16198.06 199
thres100view90087.35 27286.89 27088.72 28496.14 18573.09 31893.00 14685.31 33692.13 8593.26 19790.96 30163.42 33298.28 19871.27 33496.54 25694.79 281
Patchmtry90.11 21889.92 21690.66 24790.35 32577.00 28492.96 14792.81 27090.25 14194.74 15696.93 9567.11 31097.52 25485.17 22198.98 10197.46 189
LF4IMVS92.72 15792.02 16994.84 10395.65 21891.99 5492.92 14896.60 17285.08 23392.44 22193.62 24986.80 20296.35 29886.81 20198.25 17996.18 241
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9792.91 14998.07 5193.46 6296.31 8495.97 15690.14 15399.34 5992.11 8999.64 2299.16 36
TAPA-MVS88.58 1092.49 16691.75 17794.73 10796.50 15889.69 8492.91 14997.68 9478.02 29592.79 21294.10 23390.85 13897.96 22684.76 23298.16 18996.54 222
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest053088.69 24887.52 25992.20 19896.33 17079.36 25092.81 15184.01 34486.44 20793.67 18492.68 27253.62 35499.25 7489.65 15198.45 15598.00 143
EIA-MVS92.35 16992.03 16893.30 16395.81 20983.97 18792.80 15298.17 3587.71 18889.79 27587.56 33291.17 13599.18 8187.97 18597.27 23496.77 218
ETH3D cwj APD-0.1693.99 12393.38 13995.80 6796.82 14389.92 7992.72 15398.02 6284.73 23993.65 18595.54 18091.68 11799.22 7788.78 17098.49 15498.26 125
thres600view787.66 26487.10 26889.36 27496.05 19273.17 31692.72 15385.31 33691.89 9293.29 19490.97 30063.42 33298.39 18973.23 32296.99 24696.51 224
wuyk23d87.83 26090.79 19978.96 33790.46 32488.63 10392.72 15390.67 30091.65 10998.68 1197.64 5296.06 1677.53 35759.84 35299.41 5170.73 354
V4293.43 13393.58 13392.97 17195.34 23181.22 21992.67 15696.49 17987.25 19796.20 9496.37 13687.32 19098.85 12992.39 8898.21 18598.85 75
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 15797.33 12390.05 14396.77 6796.85 10095.04 4498.56 17692.77 7699.06 9098.70 90
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10592.58 15897.81 8593.99 5096.80 6595.90 15790.10 15799.41 3591.60 10799.58 3099.26 29
FMVSNet390.78 19890.32 20992.16 20393.03 28579.92 23892.54 15994.95 22986.17 21395.10 13996.01 15469.97 30498.75 14886.74 20298.38 16197.82 166
MVS_Test92.57 16493.29 14090.40 25493.53 27575.85 29892.52 16096.96 14888.73 16692.35 22696.70 11390.77 13998.37 19492.53 8395.49 27596.99 210
CR-MVSNet87.89 25887.12 26790.22 25991.01 31678.93 25792.52 16092.81 27073.08 31989.10 28296.93 9567.11 31097.64 25088.80 16992.70 32194.08 295
RPMNet90.31 21490.14 21390.81 24591.01 31678.93 25792.52 16098.12 4191.91 9189.10 28296.89 9868.84 30599.41 3590.17 13792.70 32194.08 295
RRT_MVS91.36 18990.05 21495.29 8889.21 33788.15 11492.51 16394.89 23186.73 20595.54 12095.68 17061.82 33999.30 6794.91 1399.13 8798.43 114
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16498.13 4090.69 13093.75 18196.25 14598.03 297.02 27592.08 9195.55 27398.45 113
EI-MVSNet-Vis-set94.36 10994.28 11494.61 11192.55 29285.98 16192.44 16594.69 24093.70 5796.12 9995.81 16391.24 12998.86 12793.76 3898.22 18498.98 58
Anonymous20240521192.58 16292.50 16092.83 17996.55 15683.22 19592.43 16691.64 29394.10 4995.59 11896.64 11781.88 24797.50 25585.12 22598.52 14997.77 170
AUN-MVS90.05 22288.30 24395.32 8796.09 18990.52 7392.42 16792.05 29082.08 26388.45 29692.86 26565.76 32098.69 16188.91 16796.07 26396.75 220
EI-MVSNet-UG-set94.35 11094.27 11694.59 11692.46 29385.87 16392.42 16794.69 24093.67 6196.13 9895.84 16291.20 13298.86 12793.78 3598.23 18299.03 49
Regformer-394.28 11394.23 11894.46 12492.78 29086.28 15692.39 16994.70 23993.69 6095.97 10295.56 17891.34 12498.48 18693.45 4998.14 19198.62 99
Regformer-494.90 8794.67 10095.59 7692.78 29089.02 9592.39 16995.91 20194.50 4296.41 7795.56 17892.10 10699.01 10594.23 2698.14 19198.74 86
NCCC94.08 12193.54 13595.70 7496.49 15989.90 8192.39 16996.91 15490.64 13292.33 22994.60 21890.58 14798.96 11390.21 13697.70 22098.23 126
casdiffmvs94.32 11294.80 9392.85 17896.05 19281.44 21692.35 17298.05 5591.53 11295.75 11196.80 10493.35 7798.49 18291.01 11698.32 17098.64 95
ETV-MVS92.99 14992.74 15393.72 14895.86 20686.30 15592.33 17397.84 8291.70 10892.81 21186.17 34392.22 10399.19 8088.03 18497.73 21695.66 263
EI-MVSNet92.99 14993.26 14492.19 19992.12 30079.21 25592.32 17494.67 24291.77 10395.24 13595.85 15987.14 19498.49 18291.99 9498.26 17698.86 72
CVMVSNet85.16 29084.72 28986.48 30792.12 30070.19 33192.32 17488.17 31256.15 35690.64 25695.85 15967.97 30896.69 28688.78 17090.52 33692.56 325
OMC-MVS94.22 11793.69 12995.81 6597.25 12491.27 6392.27 17697.40 11487.10 20194.56 16095.42 18593.74 6898.11 21486.62 20698.85 11698.06 137
PM-MVS93.33 13592.67 15695.33 8496.58 15494.06 1992.26 17792.18 28485.92 21796.22 9296.61 11985.64 21795.99 30690.35 12898.23 18295.93 250
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10592.26 17797.84 8294.91 3796.80 6595.78 16790.42 14899.41 3591.60 10799.58 3099.29 28
AdaColmapbinary91.63 18291.36 18692.47 19495.56 22386.36 15392.24 17996.27 18788.88 16589.90 27192.69 27191.65 11898.32 19677.38 30097.64 22392.72 324
mvs-test193.07 14791.80 17596.89 3994.74 24795.83 692.17 18095.41 22089.94 14489.85 27290.59 30990.12 15498.88 12287.68 19095.66 27195.97 248
PVSNet_Blended_VisFu91.63 18291.20 19092.94 17497.73 9883.95 18892.14 18197.46 11178.85 29092.35 22694.98 20384.16 22499.08 9286.36 21296.77 25195.79 257
ETH3 D test640091.91 17791.25 18993.89 14396.59 15384.41 17792.10 18297.72 9378.52 29191.82 23893.78 24788.70 16899.13 8683.61 24098.39 15998.14 132
Baseline_NR-MVSNet94.47 10695.09 8692.60 18898.50 5280.82 22592.08 18396.68 16893.82 5596.29 8698.56 2090.10 15797.75 24590.10 14199.66 2099.24 31
Fast-Effi-MVS+-dtu92.77 15692.16 16594.58 11894.66 25388.25 11292.05 18496.65 17089.62 15190.08 26691.23 29692.56 9898.60 17086.30 21396.27 26196.90 213
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8497.46 11788.05 11792.04 18598.42 1287.63 19196.36 8096.68 11494.37 6299.32 6592.41 8699.05 9398.64 95
save fliter97.46 11788.05 11792.04 18597.08 14187.63 191
PatchT87.51 26888.17 24985.55 31490.64 31966.91 34192.02 18786.09 32692.20 8389.05 28497.16 8264.15 32896.37 29789.21 16292.98 31993.37 314
EG-PatchMatch MVS94.54 10494.67 10094.14 13297.87 9186.50 14692.00 18896.74 16688.16 17996.93 5997.61 5393.04 8797.90 22791.60 10798.12 19498.03 141
v14419293.20 14493.54 13592.16 20396.05 19278.26 26791.95 18997.14 13684.98 23595.96 10396.11 15087.08 19599.04 10093.79 3498.84 11799.17 35
VNet92.67 15992.96 14691.79 21196.27 17580.15 22991.95 18994.98 22892.19 8494.52 16296.07 15187.43 18897.39 26484.83 23098.38 16197.83 164
131486.46 28486.33 28186.87 30691.65 30874.54 30691.94 19194.10 25174.28 31184.78 32487.33 33683.03 23195.00 32378.72 28991.16 33491.06 336
112190.26 21589.23 22493.34 16097.15 13187.40 12691.94 19194.39 24567.88 34191.02 25094.91 20686.91 20098.59 17281.17 26697.71 21994.02 300
MVS84.98 29284.30 29287.01 30491.03 31577.69 27691.94 19194.16 25059.36 35484.23 32887.50 33485.66 21596.80 28371.79 32993.05 31886.54 346
tfpn200view987.05 28086.52 27888.67 28595.77 21072.94 31991.89 19486.00 32890.84 12592.61 21689.80 31363.93 32998.28 19871.27 33496.54 25694.79 281
thres40087.20 27686.52 27889.24 27895.77 21072.94 31991.89 19486.00 32890.84 12592.61 21689.80 31363.93 32998.28 19871.27 33496.54 25696.51 224
v192192093.26 13993.61 13292.19 19996.04 19678.31 26691.88 19697.24 13185.17 22896.19 9696.19 14786.76 20399.05 9794.18 2898.84 11799.22 32
Regformer-194.55 10394.33 11295.19 9292.83 28888.54 10891.87 19795.84 20593.99 5095.95 10495.04 20092.00 10898.79 13993.14 6798.31 17198.23 126
Regformer-294.86 9094.55 10495.77 6992.83 28889.98 7891.87 19796.40 18294.38 4696.19 9695.04 20092.47 10299.04 10093.49 4498.31 17198.28 123
XXY-MVS92.58 16293.16 14590.84 24497.75 9579.84 23991.87 19796.22 19285.94 21695.53 12197.68 4992.69 9594.48 32683.21 24497.51 22798.21 128
IterMVS-LS93.78 12694.28 11492.27 19696.27 17579.21 25591.87 19796.78 16291.77 10396.57 7597.07 8687.15 19398.74 15191.99 9499.03 9998.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114493.50 13093.81 12392.57 18996.28 17479.61 24691.86 20196.96 14886.95 20395.91 10796.32 13987.65 18498.96 11393.51 4398.88 11299.13 39
v119293.49 13193.78 12592.62 18796.16 18479.62 24591.83 20297.22 13386.07 21496.10 10096.38 13587.22 19199.02 10394.14 2998.88 11299.22 32
v124093.29 13693.71 12892.06 20696.01 19777.89 27291.81 20397.37 11585.12 23196.69 6996.40 13086.67 20499.07 9694.51 1898.76 13199.22 32
CNVR-MVS94.58 10294.29 11395.46 8196.94 13789.35 9291.81 20396.80 16189.66 15093.90 17895.44 18492.80 9398.72 15392.74 7898.52 14998.32 119
v2v48293.29 13693.63 13192.29 19596.35 16878.82 26091.77 20596.28 18688.45 17395.70 11596.26 14486.02 21298.90 11993.02 7198.81 12599.14 38
RRT_test8_iter0588.21 25488.17 24988.33 29291.62 30966.82 34591.73 20696.60 17286.34 20994.14 16895.38 19047.72 35999.11 8991.78 10198.26 17699.06 47
EPNet_dtu85.63 28884.37 29189.40 27386.30 35274.33 31091.64 20788.26 30984.84 23772.96 35789.85 31171.27 30297.69 24876.60 30597.62 22496.18 241
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft85.34 1590.40 20888.92 23294.85 10296.53 15790.02 7791.58 20896.48 18080.16 27386.14 31692.18 28285.73 21498.25 20376.87 30394.61 29696.30 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPNet93.08 14593.76 12691.03 23598.60 3375.83 30091.51 20995.62 20991.84 9795.74 11297.10 8589.31 16498.32 19685.07 22899.06 9098.93 63
XVG-OURS94.72 9794.12 11996.50 4898.00 8494.23 1691.48 21098.17 3590.72 12995.30 13096.47 12487.94 18196.98 27691.41 11297.61 22598.30 122
HQP-NCC96.36 16591.37 21187.16 19888.81 287
ACMP_Plane96.36 16591.37 21187.16 19888.81 287
HQP-MVS92.09 17491.49 18393.88 14496.36 16584.89 17391.37 21197.31 12487.16 19888.81 28793.40 25584.76 22098.60 17086.55 20897.73 21698.14 132
MCST-MVS92.91 15192.51 15994.10 13397.52 11285.72 16691.36 21497.13 13880.33 27292.91 21094.24 22891.23 13098.72 15389.99 14397.93 20997.86 161
v14892.87 15393.29 14091.62 21796.25 17877.72 27591.28 21595.05 22689.69 14995.93 10696.04 15287.34 18998.38 19190.05 14297.99 20698.78 81
tpmvs84.22 29683.97 29584.94 31987.09 34965.18 34891.21 21688.35 30882.87 25585.21 31990.96 30165.24 32496.75 28479.60 28485.25 34692.90 321
CANet92.38 16891.99 17093.52 15793.82 27383.46 19291.14 21797.00 14589.81 14886.47 31494.04 23587.90 18299.21 7889.50 15398.27 17597.90 157
CNLPA91.72 18091.20 19093.26 16496.17 18391.02 6691.14 21795.55 21690.16 14290.87 25193.56 25286.31 20894.40 32979.92 28097.12 23894.37 291
DP-MVS Recon92.31 17091.88 17293.60 15197.18 12886.87 13991.10 21997.37 11584.92 23692.08 23494.08 23488.59 16998.20 20683.50 24198.14 19195.73 259
OpenMVS_ROBcopyleft85.12 1689.52 23289.05 22990.92 24094.58 25581.21 22091.10 21993.41 26277.03 30193.41 18993.99 23983.23 22997.80 23879.93 27894.80 29193.74 307
TSAR-MVS + GP.93.07 14792.41 16295.06 9795.82 20790.87 7190.97 22192.61 27888.04 18194.61 15993.79 24688.08 17697.81 23789.41 15498.39 15996.50 227
MVP-Stereo90.07 22188.92 23293.54 15596.31 17286.49 14790.93 22295.59 21379.80 27491.48 24195.59 17380.79 25497.39 26478.57 29191.19 33396.76 219
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVSTER89.32 23488.75 23691.03 23590.10 32776.62 29090.85 22394.67 24282.27 26195.24 13595.79 16461.09 34298.49 18290.49 12298.26 17697.97 150
pmmvs-eth3d91.54 18490.73 20193.99 13595.76 21287.86 12290.83 22493.98 25578.23 29494.02 17696.22 14682.62 23896.83 28286.57 20798.33 16897.29 202
CANet_DTU89.85 22789.17 22691.87 20992.20 29880.02 23690.79 22595.87 20386.02 21582.53 33891.77 28980.01 25798.57 17585.66 21897.70 22097.01 209
test_prior489.91 8090.74 226
TinyColmap92.00 17692.76 15289.71 26895.62 22177.02 28390.72 22796.17 19587.70 18995.26 13396.29 14192.54 9996.45 29381.77 25898.77 13095.66 263
CDPH-MVS92.67 15991.83 17395.18 9396.94 13788.46 11090.70 22897.07 14277.38 29792.34 22895.08 19892.67 9698.88 12285.74 21798.57 14398.20 129
DSMNet-mixed82.21 30781.56 30684.16 32589.57 33370.00 33590.65 22977.66 35754.99 35783.30 33497.57 5477.89 27390.50 34966.86 34695.54 27491.97 329
TEST996.45 16189.46 8690.60 23096.92 15279.09 28690.49 25794.39 22491.31 12698.88 122
train_agg92.71 15891.83 17395.35 8296.45 16189.46 8690.60 23096.92 15279.37 28190.49 25794.39 22491.20 13298.88 12288.66 17498.43 15697.72 174
PatchmatchNetpermissive85.22 28984.64 29086.98 30589.51 33469.83 33690.52 23287.34 31878.87 28987.22 31192.74 27066.91 31296.53 28981.77 25886.88 34494.58 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_896.37 16389.14 9390.51 23396.89 15579.37 28190.42 25994.36 22691.20 13298.82 132
test_yl90.11 21889.73 22191.26 22794.09 26579.82 24090.44 23492.65 27590.90 12393.19 20193.30 25773.90 29198.03 21882.23 25496.87 24795.93 250
DCV-MVSNet90.11 21889.73 22191.26 22794.09 26579.82 24090.44 23492.65 27590.90 12393.19 20193.30 25773.90 29198.03 21882.23 25496.87 24795.93 250
tpm281.46 31280.35 31984.80 32089.90 32865.14 34990.44 23485.36 33565.82 34782.05 34292.44 27857.94 34696.69 28670.71 33788.49 34192.56 325
agg_prior192.60 16191.76 17695.10 9696.20 18088.89 9890.37 23796.88 15679.67 27890.21 26394.41 22291.30 12798.78 14388.46 17698.37 16697.64 180
CostFormer83.09 30182.21 30485.73 31389.27 33667.01 34090.35 23886.47 32370.42 33283.52 33393.23 26061.18 34196.85 28177.21 30188.26 34293.34 315
TAMVS90.16 21789.05 22993.49 15896.49 15986.37 15290.34 23992.55 27980.84 27092.99 20794.57 22081.94 24698.20 20673.51 32098.21 18595.90 253
EPMVS81.17 31680.37 31883.58 32785.58 35465.08 35090.31 24071.34 35877.31 29985.80 31891.30 29559.38 34492.70 34279.99 27582.34 35292.96 320
CMPMVSbinary68.83 2287.28 27385.67 28692.09 20588.77 34185.42 16990.31 24094.38 24670.02 33488.00 30293.30 25773.78 29394.03 33475.96 31096.54 25696.83 216
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_post190.21 2425.85 36265.36 32296.00 30579.61 282
test_prior393.29 13692.85 14994.61 11195.95 20087.23 12990.21 24297.36 12089.33 15790.77 25294.81 21090.41 14998.68 16288.21 17798.55 14497.93 153
test_prior290.21 24289.33 15790.77 25294.81 21090.41 14988.21 17798.55 144
MVS_111021_LR93.66 12893.28 14294.80 10496.25 17890.95 6890.21 24295.43 21987.91 18293.74 18394.40 22392.88 9196.38 29690.39 12598.28 17497.07 206
WR-MVS93.49 13193.72 12792.80 18097.57 11080.03 23590.14 24695.68 20893.70 5796.62 7295.39 18887.21 19299.04 10087.50 19399.64 2299.33 25
tpmrst82.85 30482.93 30282.64 33087.65 34358.99 35890.14 24687.90 31475.54 30683.93 32991.63 29266.79 31595.36 31781.21 26581.54 35393.57 313
PVSNet_BlendedMVS90.35 21189.96 21591.54 22094.81 24278.80 26290.14 24696.93 15079.43 28088.68 29495.06 19986.27 20998.15 21280.27 27198.04 20297.68 177
BH-untuned90.68 20190.90 19490.05 26595.98 19879.57 24790.04 24994.94 23087.91 18294.07 17293.00 26387.76 18397.78 24179.19 28795.17 28492.80 322
新几何290.02 250
旧先验290.00 25168.65 33892.71 21496.52 29085.15 223
无先验89.94 25295.75 20770.81 33198.59 17281.17 26694.81 280
xiu_mvs_v1_base_debu91.47 18691.52 18091.33 22495.69 21581.56 21389.92 25396.05 19883.22 24891.26 24590.74 30391.55 12098.82 13289.29 15695.91 26693.62 310
xiu_mvs_v1_base91.47 18691.52 18091.33 22495.69 21581.56 21389.92 25396.05 19883.22 24891.26 24590.74 30391.55 12098.82 13289.29 15695.91 26693.62 310
xiu_mvs_v1_base_debi91.47 18691.52 18091.33 22495.69 21581.56 21389.92 25396.05 19883.22 24891.26 24590.74 30391.55 12098.82 13289.29 15695.91 26693.62 310
DWT-MVSNet_test80.74 31879.18 32485.43 31687.51 34666.87 34289.87 25686.01 32774.20 31380.86 34780.62 35348.84 35796.68 28881.54 26083.14 35192.75 323
mvs_anonymous90.37 21091.30 18887.58 30092.17 29968.00 33989.84 25794.73 23883.82 24593.22 20097.40 6587.54 18697.40 26387.94 18695.05 28697.34 199
test20.0390.80 19790.85 19790.63 24895.63 22079.24 25389.81 25892.87 26989.90 14694.39 16496.40 13085.77 21395.27 32173.86 31999.05 9397.39 196
1112_ss88.42 25187.41 26091.45 22196.69 14880.99 22289.72 25996.72 16773.37 31787.00 31290.69 30677.38 27698.20 20681.38 26293.72 30895.15 273
UnsupCasMVSNet_eth90.33 21290.34 20890.28 25694.64 25480.24 22789.69 26095.88 20285.77 21993.94 17795.69 16981.99 24492.98 34184.21 23791.30 33297.62 181
MG-MVS89.54 23189.80 21888.76 28394.88 23872.47 32389.60 26192.44 28185.82 21889.48 27995.98 15582.85 23397.74 24681.87 25795.27 28296.08 244
Patchmatch-test86.10 28686.01 28386.38 31190.63 32074.22 31289.57 26286.69 32185.73 22189.81 27492.83 26665.24 32491.04 34777.82 29695.78 27093.88 304
Anonymous2023120688.77 24688.29 24490.20 26196.31 17278.81 26189.56 26393.49 26174.26 31292.38 22495.58 17682.21 24095.43 31672.07 32898.75 13396.34 233
DeepPCF-MVS90.46 694.20 11893.56 13496.14 5195.96 19992.96 4389.48 26497.46 11185.14 22996.23 9195.42 18593.19 8198.08 21590.37 12798.76 13197.38 198
SCA87.43 27087.21 26488.10 29592.01 30371.98 32589.43 26588.11 31382.26 26288.71 29292.83 26678.65 26597.59 25179.61 28293.30 31294.75 283
testgi90.38 20991.34 18787.50 30197.49 11471.54 32689.43 26595.16 22588.38 17594.54 16194.68 21792.88 9193.09 34071.60 33297.85 21397.88 159
JIA-IIPM85.08 29183.04 30091.19 23287.56 34486.14 15989.40 26784.44 34388.98 16182.20 34097.95 3956.82 34996.15 30076.55 30683.45 34991.30 334
原ACMM289.34 268
tpm84.38 29584.08 29485.30 31890.47 32363.43 35589.34 26885.63 33277.24 30087.62 30695.03 20261.00 34397.30 26779.26 28691.09 33595.16 272
MVS_111021_HR93.63 12993.42 13894.26 13096.65 14986.96 13889.30 27096.23 19088.36 17693.57 18794.60 21893.45 7297.77 24290.23 13598.38 16198.03 141
tpm cat180.61 32079.46 32384.07 32688.78 34065.06 35189.26 27188.23 31062.27 35281.90 34489.66 31962.70 33795.29 32071.72 33080.60 35491.86 332
CDS-MVSNet89.55 23088.22 24893.53 15695.37 23086.49 14789.26 27193.59 25879.76 27691.15 24892.31 28177.12 27998.38 19177.51 29897.92 21095.71 260
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+91.28 19290.86 19692.53 19195.45 22682.53 20489.25 27396.52 17885.00 23489.91 27088.55 32892.94 8898.84 13084.72 23395.44 27796.22 239
BH-RMVSNet90.47 20690.44 20690.56 25095.21 23478.65 26489.15 27493.94 25688.21 17792.74 21394.22 22986.38 20797.88 22978.67 29095.39 27995.14 274
thres20085.85 28785.18 28887.88 29894.44 25772.52 32289.08 27586.21 32488.57 17291.44 24288.40 32964.22 32798.00 22268.35 34295.88 26993.12 316
USDC89.02 23889.08 22888.84 28295.07 23674.50 30888.97 27696.39 18373.21 31893.27 19696.28 14282.16 24296.39 29577.55 29798.80 12795.62 266
testdata188.96 27788.44 174
pmmvs587.87 25987.14 26690.07 26393.26 27976.97 28788.89 27892.18 28473.71 31688.36 29793.89 24376.86 28396.73 28580.32 27096.81 24996.51 224
test22296.95 13685.27 17188.83 27993.61 25765.09 34890.74 25494.85 20984.62 22297.36 23293.91 302
baseline283.38 29981.54 30888.90 28091.38 31272.84 32188.78 28081.22 35178.97 28779.82 35087.56 33261.73 34097.80 23874.30 31790.05 33896.05 246
diffmvs91.74 17991.93 17191.15 23393.06 28378.17 26888.77 28197.51 11086.28 21092.42 22293.96 24088.04 17897.46 25890.69 12196.67 25497.82 166
MDTV_nov1_ep1383.88 29689.42 33561.52 35688.74 28287.41 31773.99 31484.96 32394.01 23865.25 32395.53 31078.02 29293.16 314
D2MVS89.93 22589.60 22390.92 24094.03 26778.40 26588.69 28394.85 23278.96 28893.08 20395.09 19774.57 28996.94 27788.19 17998.96 10797.41 192
TR-MVS87.70 26287.17 26589.27 27694.11 26479.26 25288.69 28391.86 29181.94 26490.69 25589.79 31582.82 23497.42 26172.65 32691.98 32991.14 335
PatchMatch-RL89.18 23588.02 25392.64 18495.90 20492.87 4588.67 28591.06 29680.34 27190.03 26891.67 29183.34 22794.42 32876.35 30794.84 29090.64 338
PAPR87.65 26586.77 27390.27 25792.85 28777.38 27988.56 28696.23 19076.82 30384.98 32289.75 31786.08 21197.16 27172.33 32793.35 31196.26 237
MDTV_nov1_ep13_2view42.48 36388.45 28767.22 34383.56 33266.80 31372.86 32594.06 297
jason89.17 23688.32 24291.70 21595.73 21380.07 23288.10 28893.22 26471.98 32490.09 26592.79 26878.53 26898.56 17687.43 19597.06 23996.46 229
jason: jason.
BH-w/o87.21 27587.02 26987.79 29994.77 24477.27 28187.90 28993.21 26681.74 26589.99 26988.39 33083.47 22696.93 27971.29 33392.43 32589.15 340
MS-PatchMatch88.05 25787.75 25588.95 27993.28 27777.93 27087.88 29092.49 28075.42 30792.57 21893.59 25180.44 25694.24 33381.28 26392.75 32094.69 286
DELS-MVS92.05 17592.16 16591.72 21494.44 25780.13 23187.62 29197.25 13087.34 19692.22 23193.18 26189.54 16398.73 15289.67 15098.20 18796.30 235
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet284.01 29782.20 30589.41 27289.04 33876.37 29487.57 29290.98 29772.71 32284.46 32592.45 27668.08 30696.48 29270.58 33883.97 34795.38 269
ADS-MVSNet82.25 30681.55 30784.34 32489.04 33865.30 34787.57 29285.13 34072.71 32284.46 32592.45 27668.08 30692.33 34370.58 33883.97 34795.38 269
IterMVS-SCA-FT91.65 18191.55 17991.94 20893.89 27079.22 25487.56 29493.51 26091.53 11295.37 12796.62 11878.65 26598.90 11991.89 9994.95 28797.70 175
IterMVS90.18 21690.16 21090.21 26093.15 28175.98 29787.56 29492.97 26886.43 20894.09 17096.40 13078.32 26997.43 26087.87 18794.69 29497.23 203
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res87.50 26986.58 27590.25 25896.80 14677.75 27487.53 29696.25 18869.73 33586.47 31493.61 25075.67 28797.88 22979.95 27693.20 31395.11 275
cl_fuxian91.32 19191.42 18491.00 23892.29 29576.79 28987.52 29796.42 18185.76 22094.72 15893.89 24382.73 23598.16 21190.93 11798.55 14498.04 140
UnsupCasMVSNet_bld88.50 25088.03 25289.90 26695.52 22478.88 25987.39 29894.02 25479.32 28493.06 20494.02 23780.72 25594.27 33175.16 31393.08 31796.54 222
lupinMVS88.34 25387.31 26191.45 22194.74 24780.06 23387.23 29992.27 28371.10 32888.83 28591.15 29777.02 28098.53 17986.67 20596.75 25295.76 258
pmmvs488.95 24287.70 25792.70 18294.30 26085.60 16787.22 30092.16 28674.62 31089.75 27794.19 23077.97 27296.41 29482.71 24896.36 26096.09 243
WTY-MVS86.93 28286.50 28088.24 29394.96 23774.64 30487.19 30192.07 28978.29 29388.32 29891.59 29378.06 27194.27 33174.88 31493.15 31595.80 256
ET-MVSNet_ETH3D86.15 28584.27 29391.79 21193.04 28481.28 21887.17 30286.14 32579.57 27983.65 33088.66 32657.10 34798.18 20987.74 18995.40 27895.90 253
MVS-HIRNet78.83 32580.60 31773.51 34093.07 28247.37 36187.10 30378.00 35668.94 33777.53 35397.26 7571.45 30194.62 32463.28 35188.74 34078.55 353
xiu_mvs_v2_base89.00 24089.19 22588.46 29094.86 24074.63 30586.97 30495.60 21080.88 26887.83 30488.62 32791.04 13698.81 13782.51 25294.38 29891.93 330
DPM-MVS89.35 23388.40 24192.18 20296.13 18884.20 18286.96 30596.15 19675.40 30887.36 30991.55 29483.30 22898.01 22182.17 25696.62 25594.32 293
eth_miper_zixun_eth90.72 19990.61 20391.05 23492.04 30276.84 28886.91 30696.67 16985.21 22794.41 16393.92 24179.53 26098.26 20289.76 14897.02 24198.06 137
dp79.28 32378.62 32681.24 33385.97 35356.45 35986.91 30685.26 33872.97 32081.45 34689.17 32556.01 35195.45 31573.19 32376.68 35591.82 333
sss87.23 27486.82 27188.46 29093.96 26877.94 26986.84 30892.78 27377.59 29687.61 30791.83 28878.75 26491.92 34477.84 29494.20 30395.52 268
miper_ehance_all_eth90.48 20590.42 20790.69 24691.62 30976.57 29186.83 30996.18 19483.38 24694.06 17392.66 27382.20 24198.04 21789.79 14797.02 24197.45 190
CLD-MVS91.82 17891.41 18593.04 16896.37 16383.65 19186.82 31097.29 12784.65 24092.27 23089.67 31892.20 10497.85 23583.95 23899.47 3897.62 181
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl-mvsnet_90.65 20290.56 20490.91 24291.85 30476.98 28686.75 31195.36 22385.53 22394.06 17394.89 20777.36 27897.98 22590.27 13398.98 10197.76 171
cl-mvsnet190.65 20290.56 20490.91 24291.85 30476.99 28586.75 31195.36 22385.52 22594.06 17394.89 20777.37 27797.99 22490.28 13298.97 10597.76 171
PS-MVSNAJ88.86 24488.99 23188.48 28994.88 23874.71 30386.69 31395.60 21080.88 26887.83 30487.37 33590.77 13998.82 13282.52 25194.37 29991.93 330
PVSNet_Blended88.74 24788.16 25190.46 25394.81 24278.80 26286.64 31496.93 15074.67 30988.68 29489.18 32486.27 20998.15 21280.27 27196.00 26494.44 290
MSDG90.82 19690.67 20291.26 22794.16 26283.08 19986.63 31596.19 19390.60 13491.94 23691.89 28789.16 16695.75 30880.96 26994.51 29794.95 279
cl-mvsnet289.02 23888.50 23990.59 24989.76 32976.45 29286.62 31694.03 25282.98 25492.65 21592.49 27472.05 29997.53 25388.93 16597.02 24197.78 169
CL-MVSNet_2432*160090.04 22389.90 21790.47 25195.24 23377.81 27386.60 31792.62 27785.64 22293.25 19993.92 24183.84 22596.06 30479.93 27898.03 20397.53 187
PCF-MVS84.52 1789.12 23787.71 25693.34 16096.06 19185.84 16486.58 31897.31 12468.46 33993.61 18693.89 24387.51 18798.52 18067.85 34398.11 19595.66 263
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Patchmatch-RL test88.81 24588.52 23889.69 26995.33 23279.94 23786.22 31992.71 27478.46 29295.80 10994.18 23166.25 31895.33 31989.22 16198.53 14893.78 305
FPMVS84.50 29483.28 29888.16 29496.32 17194.49 1485.76 32085.47 33483.09 25185.20 32094.26 22763.79 33186.58 35463.72 35091.88 33183.40 349
IB-MVS77.21 1983.11 30081.05 31189.29 27591.15 31475.85 29885.66 32186.00 32879.70 27782.02 34386.61 33848.26 35898.39 18977.84 29492.22 32693.63 309
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs91.04 19390.88 19591.55 21994.68 25280.16 22885.49 32292.14 28790.41 13994.93 14895.79 16485.10 21896.93 27985.15 22394.19 30497.57 183
new-patchmatchnet88.97 24190.79 19983.50 32894.28 26155.83 36085.34 32393.56 25986.18 21295.47 12295.73 16883.10 23096.51 29185.40 22098.06 19998.16 130
miper_enhance_ethall88.42 25187.87 25490.07 26388.67 34275.52 30185.10 32495.59 21375.68 30492.49 21989.45 32178.96 26297.88 22987.86 18897.02 24196.81 217
HyFIR lowres test87.19 27785.51 28792.24 19797.12 13380.51 22685.03 32596.06 19766.11 34591.66 24092.98 26470.12 30399.14 8575.29 31295.23 28397.07 206
pmmvs380.83 31778.96 32586.45 30887.23 34877.48 27884.87 32682.31 34863.83 35085.03 32189.50 32049.66 35693.10 33973.12 32495.10 28588.78 344
test0.0.03 182.48 30581.47 30985.48 31589.70 33073.57 31584.73 32781.64 35083.07 25288.13 30186.61 33862.86 33589.10 35366.24 34790.29 33793.77 306
N_pmnet88.90 24387.25 26393.83 14694.40 25993.81 3484.73 32787.09 31979.36 28393.26 19792.43 27979.29 26191.68 34577.50 29997.22 23696.00 247
GA-MVS87.70 26286.82 27190.31 25593.27 27877.22 28284.72 32992.79 27285.11 23289.82 27390.07 31066.80 31397.76 24484.56 23494.27 30295.96 249
ppachtmachnet_test88.61 24988.64 23788.50 28891.76 30670.99 32984.59 33092.98 26779.30 28592.38 22493.53 25379.57 25997.45 25986.50 21097.17 23797.07 206
CHOSEN 1792x268887.19 27785.92 28591.00 23897.13 13279.41 24984.51 33195.60 21064.14 34990.07 26794.81 21078.26 27097.14 27273.34 32195.38 28096.46 229
thisisatest051584.72 29382.99 30189.90 26692.96 28675.33 30284.36 33283.42 34677.37 29888.27 29986.65 33753.94 35298.72 15382.56 25097.40 23195.67 262
cascas87.02 28186.28 28289.25 27791.56 31176.45 29284.33 33396.78 16271.01 32986.89 31385.91 34481.35 24996.94 27783.09 24595.60 27294.35 292
bset_n11_16_dypcd89.99 22489.15 22792.53 19194.75 24581.34 21784.19 33487.56 31685.13 23093.77 18092.46 27572.82 29599.01 10592.46 8599.21 7797.23 203
new_pmnet81.22 31481.01 31381.86 33290.92 31870.15 33284.03 33580.25 35570.83 33085.97 31789.78 31667.93 30984.65 35567.44 34491.90 33090.78 337
PAPM81.91 31180.11 32187.31 30393.87 27172.32 32484.02 33693.22 26469.47 33676.13 35589.84 31272.15 29897.23 26953.27 35689.02 33992.37 327
our_test_387.55 26787.59 25887.44 30291.76 30670.48 33083.83 33790.55 30179.79 27592.06 23592.17 28378.63 26795.63 30984.77 23194.73 29296.22 239
miper_lstm_enhance89.90 22689.80 21890.19 26291.37 31377.50 27783.82 33895.00 22784.84 23793.05 20594.96 20476.53 28595.20 32289.96 14498.67 13897.86 161
test-LLR83.58 29883.17 29984.79 32189.68 33166.86 34383.08 33984.52 34183.07 25282.85 33684.78 34762.86 33593.49 33782.85 24694.86 28894.03 298
TESTMET0.1,179.09 32478.04 32782.25 33187.52 34564.03 35483.08 33980.62 35370.28 33380.16 34983.22 35044.13 36290.56 34879.95 27693.36 31092.15 328
test-mter81.21 31580.01 32284.79 32189.68 33166.86 34383.08 33984.52 34173.85 31582.85 33684.78 34743.66 36393.49 33782.85 24694.86 28894.03 298
test1239.49 33012.01 3331.91 3432.87 3641.30 36582.38 3421.34 3661.36 3602.84 3616.56 3602.45 3660.97 3612.73 3595.56 3593.47 357
PMMVS83.00 30281.11 31088.66 28683.81 35986.44 15082.24 34385.65 33161.75 35382.07 34185.64 34579.75 25891.59 34675.99 30993.09 31687.94 345
KD-MVS_2432*160082.17 30880.75 31586.42 30982.04 36070.09 33381.75 34490.80 29882.56 25690.37 26189.30 32242.90 36496.11 30274.47 31592.55 32393.06 317
miper_refine_blended82.17 30880.75 31586.42 30982.04 36070.09 33381.75 34490.80 29882.56 25690.37 26189.30 32242.90 36496.11 30274.47 31592.55 32393.06 317
YYNet188.17 25588.24 24687.93 29692.21 29773.62 31480.75 34688.77 30582.51 25994.99 14695.11 19682.70 23693.70 33583.33 24293.83 30696.48 228
MDA-MVSNet_test_wron88.16 25688.23 24787.93 29692.22 29673.71 31380.71 34788.84 30482.52 25894.88 15195.14 19482.70 23693.61 33683.28 24393.80 30796.46 229
testmvs9.02 33111.42 3341.81 3442.77 3651.13 36679.44 3481.90 3651.18 3612.65 3626.80 3591.95 3670.87 3622.62 3603.45 3603.44 358
PVSNet76.22 2082.89 30382.37 30384.48 32393.96 26864.38 35378.60 34988.61 30671.50 32684.43 32786.36 34174.27 29094.60 32569.87 34093.69 30994.46 289
PVSNet_070.34 2174.58 32672.96 32979.47 33690.63 32066.24 34673.26 35083.40 34763.67 35178.02 35278.35 35472.53 29689.59 35156.68 35460.05 35882.57 352
E-PMN80.72 31980.86 31480.29 33585.11 35568.77 33872.96 35181.97 34987.76 18783.25 33583.01 35162.22 33889.17 35277.15 30294.31 30182.93 350
CHOSEN 280x42080.04 32277.97 32886.23 31290.13 32674.53 30772.87 35289.59 30366.38 34476.29 35485.32 34656.96 34895.36 31769.49 34194.72 29388.79 343
EMVS80.35 32180.28 32080.54 33484.73 35769.07 33772.54 35380.73 35287.80 18681.66 34581.73 35262.89 33489.84 35075.79 31194.65 29582.71 351
PMMVS281.31 31383.44 29774.92 33990.52 32246.49 36269.19 35485.23 33984.30 24287.95 30394.71 21676.95 28284.36 35664.07 34998.09 19793.89 303
tmp_tt37.97 32844.33 33118.88 34211.80 36321.54 36463.51 35545.66 3644.23 35951.34 36050.48 35759.08 34522.11 36044.50 35768.35 35713.00 356
MVEpermissive59.87 2373.86 32772.65 33077.47 33887.00 35174.35 30961.37 35660.93 36167.27 34269.69 35886.49 34081.24 25372.33 35856.45 35583.45 34985.74 347
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.35 32931.13 3320.00 3450.00 3660.00 3670.00 35795.58 2150.00 3620.00 36391.15 29793.43 740.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.56 33210.09 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36390.77 1390.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re7.56 33210.08 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36390.69 3060.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS97.23 12590.32 7597.54 10584.40 24194.78 15495.79 16492.76 9499.39 4588.72 17398.40 157
IU-MVS98.51 4586.66 14596.83 15972.74 32195.83 10893.00 7299.29 6498.64 95
test_241102_TWO98.10 4491.95 8897.54 3697.25 7695.37 2899.35 5593.29 5999.25 7298.49 109
test_241102_ONE98.51 4586.97 13698.10 4491.85 9497.63 3197.03 8996.48 1198.95 115
test_0728_THIRD93.26 6597.40 4497.35 7194.69 5499.34 5993.88 3299.42 4698.89 69
GSMVS94.75 283
test_part298.21 6889.41 8996.72 68
sam_mvs166.64 31694.75 283
sam_mvs66.41 317
MTGPAbinary97.62 97
test_post6.07 36165.74 32195.84 307
patchmatchnet-post91.71 29066.22 31997.59 251
gm-plane-assit87.08 35059.33 35771.22 32783.58 34997.20 27073.95 318
test9_res88.16 18198.40 15797.83 164
agg_prior287.06 20098.36 16797.98 147
agg_prior96.20 18088.89 9896.88 15690.21 26398.78 143
TestCases96.00 5598.02 8292.17 5098.43 1090.48 13595.04 14496.74 10992.54 9997.86 23385.11 22698.98 10197.98 147
test_prior94.61 11195.95 20087.23 12997.36 12098.68 16297.93 153
新几何193.17 16797.16 12987.29 12894.43 24467.95 34091.29 24494.94 20586.97 19798.23 20481.06 26897.75 21593.98 301
旧先验196.20 18084.17 18394.82 23495.57 17789.57 16297.89 21196.32 234
原ACMM192.87 17796.91 13984.22 18197.01 14476.84 30289.64 27894.46 22188.00 17998.70 15981.53 26198.01 20595.70 261
testdata298.03 21880.24 273
segment_acmp92.14 105
testdata91.03 23596.87 14182.01 20794.28 24871.55 32592.46 22095.42 18585.65 21697.38 26682.64 24997.27 23493.70 308
test1294.43 12695.95 20086.75 14196.24 18989.76 27689.79 16198.79 13997.95 20897.75 173
plane_prior797.71 9988.68 102
plane_prior697.21 12788.23 11386.93 198
plane_prior597.81 8598.95 11589.26 15998.51 15198.60 102
plane_prior495.59 173
plane_prior388.43 11190.35 14093.31 192
plane_prior197.38 120
n20.00 367
nn0.00 367
door-mid92.13 288
lessismore_v093.87 14598.05 7883.77 19080.32 35497.13 5097.91 4277.49 27499.11 8992.62 8298.08 19898.74 86
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2491.78 10197.07 5197.22 7996.38 1399.28 7092.07 9299.59 2699.11 41
test1196.65 170
door91.26 295
HQP5-MVS84.89 173
BP-MVS86.55 208
HQP4-MVS88.81 28798.61 16898.15 131
HQP3-MVS97.31 12497.73 216
HQP2-MVS84.76 220
NP-MVS96.82 14387.10 13293.40 255
ACMMP++_ref98.82 123
ACMMP++99.25 72
Test By Simon90.61 145
ITE_SJBPF95.95 5797.34 12293.36 4096.55 17791.93 9094.82 15295.39 18891.99 11097.08 27385.53 21997.96 20797.41 192
DeepMVS_CXcopyleft53.83 34170.38 36264.56 35248.52 36333.01 35865.50 35974.21 35656.19 35046.64 35938.45 35870.07 35650.30 355