This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2498.81 2393.86 2799.07 298.98 397.01 1298.92 498.78 1495.22 3698.61 16296.85 299.77 999.31 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 497.41 997.28 4598.46 2594.62 5398.84 12494.64 1799.53 3398.99 52
UA-Net97.35 497.24 1197.69 598.22 6793.87 2698.42 498.19 3196.95 1395.46 12099.23 493.45 6999.57 1395.34 1299.89 299.63 9
OurMVSNet-221017-096.80 1296.75 1896.96 3499.03 1091.85 5497.98 598.01 6094.15 4498.93 399.07 588.07 17399.57 1395.86 999.69 1499.46 17
UniMVSNet_ETH3D97.13 697.72 395.35 8099.51 287.38 12297.70 697.54 10198.16 298.94 299.33 297.84 499.08 8790.73 11599.73 1399.59 12
HPM-MVScopyleft96.81 1196.62 2297.36 2298.89 1893.53 3497.51 798.44 992.35 7495.95 10096.41 12596.71 899.42 2793.99 3199.36 5499.13 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet93.91 12193.68 12694.59 11398.08 7585.55 16397.44 894.03 24794.22 4394.94 14396.19 14382.07 23899.57 1387.28 19198.89 10898.65 90
LS3D96.11 4695.83 5896.95 3594.75 23894.20 1497.34 997.98 6397.31 1095.32 12596.77 10193.08 8299.20 7491.79 9598.16 18397.44 186
HPM-MVS_fast97.01 796.89 1597.39 2099.12 793.92 2497.16 1098.17 3593.11 6296.48 7297.36 6996.92 699.34 5494.31 2399.38 5398.92 66
MVSFormer92.18 17092.23 16092.04 20294.74 23980.06 22797.15 1197.37 11088.98 15688.83 27692.79 26177.02 27599.60 896.41 496.75 24596.46 222
test_djsdf96.62 2196.49 2597.01 3198.55 3991.77 5697.15 1197.37 11088.98 15698.26 2098.86 1093.35 7499.60 896.41 499.45 4199.66 6
IS-MVSNet94.49 10394.35 10794.92 9798.25 6686.46 14497.13 1394.31 24296.24 2396.28 8596.36 13382.88 22799.35 5088.19 17299.52 3598.96 59
Anonymous2023121196.60 2397.13 1295.00 9597.46 11386.35 14997.11 1498.24 2797.58 798.72 898.97 793.15 8099.15 7893.18 6099.74 1299.50 16
anonymousdsp96.74 1596.42 2697.68 798.00 8194.03 2196.97 1597.61 9687.68 18598.45 1898.77 1594.20 6299.50 1996.70 399.40 5199.53 14
ACMMPcopyleft96.61 2296.34 3197.43 1798.61 3293.88 2596.95 1698.18 3292.26 7796.33 7896.84 9995.10 4199.40 3693.47 4699.33 5799.02 49
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVS96.46 3096.64 2195.93 5897.68 10089.38 8696.90 1798.41 1392.52 6997.43 4097.92 4095.11 4099.50 1994.45 1999.30 6198.92 66
v7n96.82 997.31 1095.33 8298.54 4186.81 13596.83 1898.07 4896.59 1998.46 1798.43 2792.91 8699.52 1796.25 699.76 1099.65 8
CP-MVS96.44 3396.08 4597.54 998.29 6294.62 1096.80 1998.08 4592.67 6795.08 13896.39 13094.77 5099.42 2793.17 6199.44 4398.58 103
COLMAP_ROBcopyleft91.06 596.75 1496.62 2297.13 2698.38 5794.31 1296.79 2098.32 1796.69 1696.86 5897.56 5495.48 2598.77 14190.11 13599.44 4398.31 119
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H96.60 2397.05 1495.24 8799.02 1186.44 14596.78 2198.08 4597.42 898.48 1697.86 4491.76 11199.63 694.23 2699.84 399.66 6
pmmvs696.80 1297.36 995.15 9199.12 787.82 11896.68 2297.86 7496.10 2598.14 2299.28 397.94 398.21 19891.38 10999.69 1499.42 18
3Dnovator92.54 394.80 9394.90 8694.47 12095.47 21987.06 12896.63 2397.28 12491.82 9694.34 16297.41 6390.60 14398.65 16092.47 8098.11 18997.70 171
PS-CasMVS96.69 1897.43 594.49 11999.13 584.09 18096.61 2497.97 6697.91 598.64 1398.13 3195.24 3599.65 393.39 5299.84 399.72 2
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3497.44 6296.51 999.40 3694.06 3099.23 7398.85 75
mvs_tets96.83 896.71 1997.17 2598.83 2192.51 4596.58 2697.61 9687.57 18898.80 798.90 996.50 1099.59 1296.15 799.47 3799.40 20
PEN-MVS96.69 1897.39 894.61 10899.16 384.50 17196.54 2798.05 5198.06 498.64 1398.25 3095.01 4699.65 392.95 7099.83 599.68 4
DTE-MVSNet96.74 1597.43 594.67 10699.13 584.68 17096.51 2897.94 7298.14 398.67 1298.32 2895.04 4399.69 293.27 5799.82 799.62 10
XVS96.49 2796.18 3897.44 1598.56 3693.99 2296.50 2997.95 6994.58 3694.38 16096.49 11994.56 5499.39 4193.57 4099.05 9098.93 62
X-MVStestdata90.70 19788.45 23497.44 1598.56 3693.99 2296.50 2997.95 6994.58 3694.38 16026.89 34894.56 5499.39 4193.57 4099.05 9098.93 62
mPP-MVS96.46 3096.05 4797.69 598.62 3094.65 996.45 3197.74 8792.59 6895.47 11896.68 11094.50 5699.42 2793.10 6499.26 6998.99 52
QAPM92.88 14992.77 14793.22 16295.82 20183.31 18896.45 3197.35 11783.91 23793.75 17596.77 10189.25 16198.88 11684.56 22797.02 23497.49 183
jajsoiax96.59 2596.42 2697.12 2798.76 2692.49 4696.44 3397.42 10886.96 19798.71 1098.72 1795.36 3099.56 1695.92 899.45 4199.32 25
Gipumacopyleft95.31 7395.80 6093.81 14397.99 8490.91 6696.42 3497.95 6996.69 1691.78 23298.85 1291.77 11095.49 30491.72 9899.08 8695.02 270
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DVP-MVS95.34 7094.63 9897.48 1298.67 2794.05 1896.41 3598.18 3291.26 11395.12 13495.15 18886.60 20299.50 1993.43 5196.81 24298.89 68
TSAR-MVS + MP.94.96 8394.75 9295.57 7598.86 2088.69 9696.37 3696.81 15585.23 22194.75 15097.12 8391.85 10999.40 3693.45 4798.33 16298.62 98
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMH88.36 1296.59 2597.43 594.07 13198.56 3685.33 16596.33 3798.30 2094.66 3598.72 898.30 2997.51 598.00 21594.87 1499.59 2598.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 3596.09 4497.38 2198.62 3093.81 3196.32 3897.96 6792.26 7795.28 12896.57 11795.02 4599.41 3293.63 3999.11 8598.94 61
APD-MVS_3200maxsize96.82 996.65 2097.32 2397.95 8593.82 2996.31 3998.25 2495.51 3196.99 5697.05 8795.63 2199.39 4193.31 5498.88 11098.75 84
CP-MVSNet96.19 4496.80 1794.38 12598.99 1383.82 18496.31 3997.53 10297.60 698.34 1997.52 5791.98 10799.63 693.08 6699.81 899.70 3
HFP-MVS96.39 3796.17 4097.04 2998.51 4593.37 3596.30 4197.98 6392.35 7495.63 11296.47 12095.37 2799.27 6793.78 3599.14 8198.48 108
ACMMPR96.46 3096.14 4197.41 1998.60 3393.82 2996.30 4197.96 6792.35 7495.57 11596.61 11594.93 4999.41 3293.78 3599.15 8099.00 50
3Dnovator+92.74 295.86 5495.77 6196.13 5096.81 14090.79 6996.30 4197.82 8096.13 2494.74 15197.23 7791.33 12199.16 7793.25 5898.30 16798.46 110
MIMVSNet195.52 6395.45 6895.72 7099.14 489.02 9096.23 4496.87 15393.73 5297.87 2598.49 2490.73 14099.05 9286.43 20499.60 2399.10 43
SR-MVS96.70 1796.42 2697.54 998.05 7694.69 896.13 4598.07 4895.17 3296.82 6096.73 10795.09 4299.43 2692.99 6998.71 12998.50 106
MP-MVScopyleft96.14 4595.68 6397.51 1198.81 2394.06 1696.10 4697.78 8692.73 6493.48 18296.72 10894.23 6199.42 2791.99 8999.29 6299.05 47
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.42 3496.20 3797.07 2898.80 2592.79 4396.08 4798.16 3891.74 10195.34 12496.36 13395.68 1999.44 2394.41 2199.28 6798.97 58
GBi-Net93.21 13992.96 14293.97 13495.40 22184.29 17395.99 4896.56 16988.63 16395.10 13598.53 2181.31 24598.98 10286.74 19598.38 15598.65 90
test193.21 13992.96 14293.97 13495.40 22184.29 17395.99 4896.56 16988.63 16395.10 13598.53 2181.31 24598.98 10286.74 19598.38 15598.65 90
FMVSNet194.84 9095.13 8193.97 13497.60 10484.29 17395.99 4896.56 16992.38 7197.03 5598.53 2190.12 15098.98 10288.78 16499.16 7998.65 90
RPSCF95.58 6294.89 8797.62 897.58 10596.30 495.97 5197.53 10292.42 7093.41 18397.78 4591.21 12797.77 23591.06 11197.06 23298.80 79
SixPastTwentyTwo94.91 8495.21 7893.98 13398.52 4483.19 19195.93 5294.84 22894.86 3498.49 1598.74 1681.45 24399.60 894.69 1699.39 5299.15 36
ambc92.98 16796.88 13583.01 19595.92 5396.38 17996.41 7397.48 6088.26 16997.80 23189.96 14098.93 10798.12 133
FC-MVSNet-test95.32 7195.88 5493.62 14698.49 5381.77 20495.90 5498.32 1793.93 4997.53 3697.56 5488.48 16699.40 3692.91 7199.83 599.68 4
MTAPA96.65 2096.38 3097.47 1398.95 1594.05 1895.88 5597.62 9394.46 4096.29 8296.94 9093.56 6799.37 4794.29 2499.42 4598.99 52
CPTT-MVS94.74 9494.12 11596.60 4298.15 7193.01 3995.84 5697.66 9189.21 15593.28 18995.46 17788.89 16398.98 10289.80 14298.82 11997.80 164
ab-mvs92.40 16492.62 15391.74 20897.02 12981.65 20695.84 5695.50 21386.95 19892.95 20297.56 5490.70 14197.50 24979.63 27397.43 22396.06 238
nrg03096.32 3996.55 2495.62 7397.83 8988.55 10295.77 5898.29 2392.68 6598.03 2497.91 4295.13 3998.95 10993.85 3399.49 3699.36 23
SteuartSystems-ACMMP96.40 3696.30 3296.71 4098.63 2991.96 5295.70 5998.01 6093.34 6096.64 6796.57 11794.99 4799.36 4993.48 4599.34 5598.82 77
Skip Steuart: Steuart Systems R&D Blog.
OpenMVScopyleft89.45 892.27 16992.13 16392.68 18094.53 24884.10 17995.70 5997.03 13782.44 25191.14 24296.42 12488.47 16798.38 18585.95 20997.47 22295.55 260
GST-MVS96.24 4295.99 5097.00 3298.65 2892.71 4495.69 6198.01 6092.08 8295.74 10896.28 13895.22 3699.42 2793.17 6199.06 8798.88 70
ACMH+88.43 1196.48 2896.82 1695.47 7898.54 4189.06 8995.65 6298.61 696.10 2598.16 2197.52 5796.90 798.62 16190.30 12799.60 2398.72 88
canonicalmvs94.59 9994.69 9494.30 12695.60 21687.03 13095.59 6398.24 2791.56 10795.21 13392.04 27894.95 4898.66 15891.45 10797.57 21997.20 199
SF-MVS95.88 5395.88 5495.87 6298.12 7289.65 8095.58 6498.56 791.84 9396.36 7696.68 11094.37 5999.32 6092.41 8199.05 9098.64 94
PS-MVSNAJss96.01 4996.04 4895.89 6198.82 2288.51 10495.57 6597.88 7388.72 16298.81 698.86 1090.77 13699.60 895.43 1199.53 3399.57 13
PMVScopyleft87.21 1494.97 8295.33 7393.91 13898.97 1497.16 295.54 6695.85 19996.47 2093.40 18597.46 6195.31 3295.47 30586.18 20898.78 12489.11 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VDDNet94.03 11894.27 11293.31 15898.87 1982.36 19995.51 6791.78 28597.19 1196.32 7998.60 1884.24 21998.75 14287.09 19298.83 11898.81 78
pm-mvs195.43 6695.94 5193.93 13798.38 5785.08 16795.46 6897.12 13491.84 9397.28 4598.46 2595.30 3397.71 24090.17 13399.42 4598.99 52
Vis-MVSNetpermissive95.50 6495.48 6795.56 7698.11 7389.40 8595.35 6998.22 2992.36 7394.11 16498.07 3292.02 10399.44 2393.38 5397.67 21597.85 159
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test072698.51 4586.69 13895.34 7098.18 3291.85 9097.63 3097.37 6695.58 22
FIs94.90 8595.35 7193.55 14998.28 6381.76 20595.33 7198.14 3993.05 6397.07 5097.18 8087.65 18099.29 6391.72 9899.69 1499.61 11
PGM-MVS96.32 3995.94 5197.43 1798.59 3593.84 2895.33 7198.30 2091.40 11095.76 10696.87 9695.26 3499.45 2292.77 7299.21 7599.00 50
LPG-MVS_test96.38 3896.23 3596.84 3898.36 6092.13 4995.33 7198.25 2491.78 9797.07 5097.22 7896.38 1399.28 6592.07 8799.59 2599.11 40
AllTest94.88 8794.51 10296.00 5398.02 7992.17 4795.26 7498.43 1090.48 13195.04 14096.74 10592.54 9597.86 22685.11 21998.98 9997.98 143
SED-MVS96.00 5096.41 2994.76 10398.51 4586.97 13195.21 7598.10 4291.95 8497.63 3097.25 7596.48 1199.35 5093.29 5599.29 6297.95 147
OPU-MVS95.15 9196.84 13789.43 8395.21 7595.66 16693.12 8198.06 20986.28 20798.61 13697.95 147
MSP-MVS95.82 5596.18 3894.72 10598.51 4586.69 13895.20 7797.00 13991.85 9097.40 4397.35 7095.58 2299.34 5493.44 4999.31 5998.13 132
test_0728_SECOND94.88 9898.55 3986.72 13795.20 7798.22 2999.38 4693.44 4999.31 5998.53 105
Anonymous2024052995.50 6495.83 5894.50 11797.33 11985.93 15795.19 7996.77 15996.64 1897.61 3398.05 3393.23 7798.79 13388.60 16899.04 9598.78 81
#test#95.89 5195.51 6697.04 2998.51 4593.37 3595.14 8097.98 6389.34 15195.63 11296.47 12095.37 2799.27 6791.99 8999.14 8198.48 108
SMA-MVS95.77 5695.54 6596.47 4898.27 6491.19 6295.09 8197.79 8586.48 20197.42 4297.51 5994.47 5899.29 6393.55 4299.29 6298.93 62
NR-MVSNet95.28 7495.28 7695.26 8697.75 9287.21 12695.08 8297.37 11093.92 5097.65 2995.90 15390.10 15399.33 5990.11 13599.66 1999.26 28
TransMVSNet (Re)95.27 7696.04 4892.97 16898.37 5981.92 20395.07 8396.76 16093.97 4897.77 2698.57 1995.72 1897.90 22088.89 16299.23 7399.08 44
UGNet93.08 14292.50 15694.79 10293.87 26387.99 11495.07 8394.26 24490.64 12887.33 30097.67 5086.89 19798.49 17688.10 17598.71 12997.91 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051789.81 22188.90 22892.55 18797.00 13079.73 23895.03 8583.65 33689.88 14395.30 12694.79 20953.64 34599.39 4191.99 8998.79 12398.54 104
LFMVS91.33 18791.16 18891.82 20596.27 17179.36 24395.01 8685.61 32496.04 2894.82 14897.06 8672.03 29398.46 18284.96 22298.70 13197.65 175
CSCG94.69 9694.75 9294.52 11697.55 10787.87 11695.01 8697.57 9992.68 6596.20 9093.44 24891.92 10898.78 13789.11 15999.24 7296.92 206
GG-mvs-BLEND83.24 32185.06 34871.03 32094.99 8865.55 35174.09 34675.51 34544.57 35394.46 31859.57 34387.54 33384.24 339
EU-MVSNet87.39 26586.71 26789.44 26593.40 26876.11 28794.93 8990.00 29357.17 34595.71 11097.37 6664.77 31897.68 24292.67 7794.37 29194.52 281
MTMP94.82 9054.62 353
PHI-MVS94.34 10893.80 12095.95 5595.65 21291.67 5894.82 9097.86 7487.86 18093.04 19994.16 22791.58 11598.78 13790.27 12998.96 10597.41 187
testtj94.81 9294.42 10396.01 5297.23 12190.51 7094.77 9297.85 7791.29 11294.92 14595.66 16691.71 11299.40 3688.07 17698.25 17398.11 134
gg-mvs-nofinetune82.10 30281.02 30585.34 30987.46 33971.04 31994.74 9367.56 35096.44 2179.43 34198.99 645.24 35296.15 29467.18 33592.17 31788.85 333
ACMM88.83 996.30 4196.07 4696.97 3398.39 5692.95 4194.74 9398.03 5690.82 12397.15 4896.85 9796.25 1599.00 10193.10 6499.33 5798.95 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS95.19 7795.73 6293.55 14996.62 14888.88 9594.67 9598.05 5191.26 11397.25 4796.40 12695.42 2694.36 32192.72 7699.19 7697.40 190
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
API-MVS91.52 18291.61 17491.26 22294.16 25486.26 15294.66 9694.82 22991.17 11692.13 22691.08 29190.03 15697.06 26879.09 28097.35 22690.45 330
v1094.68 9795.27 7792.90 17396.57 15180.15 22394.65 9797.57 9990.68 12797.43 4098.00 3688.18 17099.15 7894.84 1599.55 3299.41 19
v894.65 9895.29 7592.74 17896.65 14579.77 23794.59 9897.17 13091.86 8997.47 3997.93 3988.16 17199.08 8794.32 2299.47 3799.38 21
APD-MVScopyleft95.00 8194.69 9495.93 5897.38 11690.88 6794.59 9897.81 8189.22 15495.46 12096.17 14593.42 7299.34 5489.30 15198.87 11397.56 181
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPA-MVSNet95.14 7895.67 6493.58 14897.76 9183.15 19294.58 10097.58 9893.39 5997.05 5498.04 3493.25 7698.51 17589.75 14599.59 2599.08 44
ACMMP_NAP96.21 4396.12 4396.49 4798.90 1791.42 5994.57 10198.03 5690.42 13496.37 7597.35 7095.68 1999.25 6994.44 2099.34 5598.80 79
HQP_MVS94.26 11293.93 11795.23 8897.71 9688.12 11094.56 10297.81 8191.74 10193.31 18695.59 16886.93 19498.95 10989.26 15598.51 14698.60 101
plane_prior294.56 10291.74 101
tfpnnormal94.27 11194.87 8892.48 18997.71 9680.88 21894.55 10495.41 21593.70 5396.67 6697.72 4891.40 11998.18 20287.45 18799.18 7898.36 115
XVG-ACMP-BASELINE95.68 5995.34 7296.69 4198.40 5593.04 3894.54 10598.05 5190.45 13396.31 8096.76 10392.91 8698.72 14791.19 11099.42 4598.32 117
DP-MVS95.62 6095.84 5794.97 9697.16 12488.62 9994.54 10597.64 9296.94 1496.58 7097.32 7393.07 8398.72 14790.45 11998.84 11597.57 179
MIMVSNet87.13 27386.54 27088.89 27596.05 18676.11 28794.39 10788.51 29881.37 25688.27 28996.75 10472.38 29095.52 30265.71 33895.47 26895.03 269
K. test v393.37 13193.27 13993.66 14598.05 7682.62 19794.35 10886.62 31396.05 2797.51 3798.85 1276.59 27999.65 393.21 5998.20 18198.73 87
Vis-MVSNet (Re-imp)90.42 20490.16 20691.20 22697.66 10277.32 27294.33 10987.66 30791.20 11592.99 20095.13 19075.40 28298.28 19177.86 28599.19 7697.99 142
ANet_high94.83 9196.28 3390.47 24596.65 14573.16 30994.33 10998.74 596.39 2298.09 2398.93 893.37 7398.70 15490.38 12299.68 1799.53 14
ACMP88.15 1395.71 5895.43 7096.54 4498.17 7091.73 5794.24 11198.08 4589.46 14996.61 6996.47 12095.85 1799.12 8390.45 11999.56 3198.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS90.32 21088.87 22994.66 10794.82 23491.85 5494.22 11294.75 23280.91 25787.52 29888.07 32186.63 20197.87 22576.67 29696.21 25594.25 287
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FMVSNet292.78 15292.73 15192.95 17095.40 22181.98 20294.18 11395.53 21288.63 16396.05 9797.37 6681.31 24598.81 13187.38 19098.67 13398.06 135
9.1494.81 8997.49 11094.11 11498.37 1487.56 18995.38 12296.03 14994.66 5299.08 8790.70 11698.97 103
HPM-MVS++copyleft95.02 8094.39 10496.91 3697.88 8793.58 3394.09 11596.99 14191.05 11892.40 21695.22 18791.03 13499.25 6992.11 8498.69 13297.90 153
ETH3D-3000-0.194.86 8894.55 10095.81 6397.61 10389.72 7894.05 11698.37 1488.09 17595.06 13995.85 15592.58 9399.10 8690.33 12698.99 9898.62 98
HY-MVS82.50 1886.81 27785.93 27789.47 26493.63 26677.93 26394.02 11791.58 28775.68 29483.64 32193.64 24277.40 27097.42 25571.70 32192.07 31893.05 310
Effi-MVS+-dtu93.90 12292.60 15497.77 494.74 23996.67 394.00 11895.41 21589.94 14091.93 23092.13 27690.12 15098.97 10687.68 18397.48 22197.67 174
Effi-MVS+92.79 15192.74 14992.94 17195.10 22883.30 18994.00 11897.53 10291.36 11189.35 27290.65 30094.01 6498.66 15887.40 18995.30 27396.88 209
VDD-MVS94.37 10594.37 10694.40 12497.49 11086.07 15593.97 12093.28 25894.49 3996.24 8697.78 4587.99 17698.79 13388.92 16199.14 8198.34 116
EPNet89.80 22288.25 23894.45 12283.91 35086.18 15393.87 12187.07 31191.16 11780.64 33894.72 21078.83 25898.89 11585.17 21498.89 10898.28 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS91.39 495.43 6695.33 7395.71 7197.67 10190.17 7193.86 12298.02 5887.35 19096.22 8897.99 3794.48 5799.05 9292.73 7599.68 1797.93 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LCM-MVSNet-Re94.20 11594.58 9993.04 16495.91 19783.13 19393.79 12399.19 292.00 8398.84 598.04 3493.64 6699.02 9881.28 25698.54 14296.96 205
TranMVSNet+NR-MVSNet96.07 4896.26 3495.50 7798.26 6587.69 11993.75 12497.86 7495.96 2997.48 3897.14 8295.33 3199.44 2390.79 11499.76 1099.38 21
PAPM_NR91.03 19190.81 19491.68 21196.73 14381.10 21593.72 12596.35 18088.19 17388.77 28292.12 27785.09 21597.25 26282.40 24693.90 29796.68 214
zzz-MVS96.47 2996.14 4197.47 1398.95 1594.05 1893.69 12697.62 9394.46 4096.29 8296.94 9093.56 6799.37 4794.29 2499.42 4598.99 52
baseline94.26 11294.80 9092.64 18196.08 18480.99 21693.69 12698.04 5590.80 12494.89 14696.32 13593.19 7898.48 18091.68 10198.51 14698.43 112
MVS_030490.96 19290.15 20893.37 15593.17 27287.06 12893.62 12892.43 27689.60 14882.25 32995.50 17682.56 23497.83 22984.41 22997.83 20795.22 264
CS-MVS92.54 16292.31 15993.23 16195.89 19984.07 18193.58 12998.48 888.60 16690.41 25386.23 33292.00 10499.35 5087.54 18598.06 19396.26 230
F-COLMAP92.28 16891.06 18995.95 5597.52 10891.90 5393.53 13097.18 12983.98 23688.70 28494.04 23088.41 16898.55 17280.17 26795.99 25797.39 191
FMVSNet587.82 25586.56 26991.62 21292.31 28679.81 23693.49 13194.81 23183.26 24091.36 23696.93 9252.77 34797.49 25176.07 30098.03 19797.55 182
DPE-MVS95.89 5195.88 5495.92 6097.93 8689.83 7793.46 13298.30 2092.37 7297.75 2796.95 8995.14 3899.51 1891.74 9799.28 6798.41 114
alignmvs93.26 13692.85 14594.50 11795.70 20887.45 12093.45 13395.76 20191.58 10695.25 13092.42 27281.96 24098.72 14791.61 10297.87 20597.33 195
114514_t90.51 20189.80 21292.63 18398.00 8182.24 20093.40 13497.29 12265.84 33689.40 27194.80 20886.99 19298.75 14283.88 23298.61 13696.89 208
DeepC-MVS_fast89.96 793.73 12493.44 13394.60 11296.14 18187.90 11593.36 13597.14 13185.53 21893.90 17395.45 17891.30 12398.59 16689.51 14898.62 13597.31 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss96.08 4795.92 5396.57 4399.06 991.21 6193.25 13698.32 1787.89 17996.86 5897.38 6595.55 2499.39 4195.47 1099.47 3799.11 40
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_040295.73 5796.22 3694.26 12798.19 6985.77 16093.24 13797.24 12696.88 1597.69 2897.77 4794.12 6399.13 8191.54 10699.29 6297.88 155
MSLP-MVS++93.25 13893.88 11891.37 21896.34 16582.81 19693.11 13897.74 8789.37 15094.08 16695.29 18690.40 14896.35 29290.35 12498.25 17394.96 271
baseline187.62 26087.31 25488.54 28194.71 24374.27 30393.10 13988.20 30286.20 20692.18 22593.04 25673.21 28895.52 30279.32 27785.82 33595.83 248
plane_prior88.12 11093.01 14088.98 15698.06 193
thres100view90087.35 26686.89 26388.72 27896.14 18173.09 31093.00 14185.31 32792.13 8193.26 19190.96 29363.42 32498.28 19171.27 32496.54 24994.79 274
Patchmtry90.11 21489.92 21190.66 24190.35 31777.00 27692.96 14292.81 26590.25 13794.74 15196.93 9267.11 30397.52 24885.17 21498.98 9997.46 184
LF4IMVS92.72 15492.02 16594.84 10095.65 21291.99 5192.92 14396.60 16785.08 22792.44 21493.62 24386.80 19896.35 29286.81 19498.25 17396.18 234
UniMVSNet (Re)95.32 7195.15 8095.80 6597.79 9088.91 9292.91 14498.07 4893.46 5896.31 8095.97 15290.14 14999.34 5492.11 8499.64 2199.16 35
TAPA-MVS88.58 1092.49 16391.75 17394.73 10496.50 15489.69 7992.91 14497.68 9078.02 28592.79 20594.10 22890.85 13597.96 21984.76 22598.16 18396.54 215
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testing_294.03 11894.38 10593.00 16696.79 14281.41 21192.87 14696.96 14285.88 21397.06 5397.92 4091.18 13198.71 15391.72 9899.04 9598.87 71
thisisatest053088.69 24287.52 25292.20 19496.33 16679.36 24392.81 14784.01 33586.44 20293.67 17892.68 26553.62 34699.25 6989.65 14798.45 15098.00 141
EIA-MVS92.35 16692.03 16493.30 15995.81 20383.97 18292.80 14898.17 3587.71 18389.79 26687.56 32291.17 13299.18 7687.97 17897.27 22796.77 212
ETH3D cwj APD-0.1693.99 12093.38 13595.80 6596.82 13889.92 7492.72 14998.02 5884.73 23393.65 17995.54 17591.68 11399.22 7288.78 16498.49 14998.26 123
thres600view787.66 25887.10 26189.36 26896.05 18673.17 30892.72 14985.31 32791.89 8893.29 18890.97 29263.42 32498.39 18373.23 31296.99 23996.51 217
wuyk23d87.83 25490.79 19578.96 32990.46 31688.63 9892.72 14990.67 29191.65 10598.68 1197.64 5196.06 1677.53 34859.84 34299.41 5070.73 345
V4293.43 13093.58 12992.97 16895.34 22581.22 21392.67 15296.49 17487.25 19296.20 9096.37 13287.32 18698.85 12392.39 8398.21 17998.85 75
OPM-MVS95.61 6195.45 6896.08 5198.49 5391.00 6492.65 15397.33 11890.05 13996.77 6396.85 9795.04 4398.56 17092.77 7299.06 8798.70 89
DU-MVS95.28 7495.12 8295.75 6997.75 9288.59 10092.58 15497.81 8193.99 4696.80 6195.90 15390.10 15399.41 3291.60 10399.58 2999.26 28
FMVSNet390.78 19590.32 20592.16 19893.03 27779.92 23292.54 15594.95 22486.17 20895.10 13596.01 15069.97 29798.75 14286.74 19598.38 15597.82 162
MVS_Test92.57 16193.29 13690.40 24793.53 26775.85 29092.52 15696.96 14288.73 16192.35 21996.70 10990.77 13698.37 18892.53 7995.49 26796.99 204
CR-MVSNet87.89 25287.12 26090.22 25291.01 30878.93 25092.52 15692.81 26573.08 30989.10 27396.93 9267.11 30397.64 24388.80 16392.70 31394.08 288
RPMNet89.30 22889.00 22490.22 25291.01 30878.93 25092.52 15687.85 30691.91 8789.10 27396.89 9568.84 29897.64 24390.17 13392.70 31394.08 288
RRT_MVS91.36 18690.05 20995.29 8589.21 32988.15 10992.51 15994.89 22686.73 20095.54 11695.68 16561.82 33199.30 6294.91 1399.13 8498.43 112
XVG-OURS-SEG-HR95.38 6895.00 8496.51 4598.10 7494.07 1592.46 16098.13 4190.69 12693.75 17596.25 14198.03 297.02 26992.08 8695.55 26598.45 111
EI-MVSNet-Vis-set94.36 10694.28 11094.61 10892.55 28485.98 15692.44 16194.69 23593.70 5396.12 9595.81 15991.24 12598.86 12193.76 3898.22 17898.98 57
Anonymous20240521192.58 15992.50 15692.83 17696.55 15283.22 19092.43 16291.64 28694.10 4595.59 11496.64 11381.88 24297.50 24985.12 21898.52 14497.77 166
EI-MVSNet-UG-set94.35 10794.27 11294.59 11392.46 28585.87 15892.42 16394.69 23593.67 5796.13 9495.84 15891.20 12898.86 12193.78 3598.23 17699.03 48
Regformer-394.28 11094.23 11494.46 12192.78 28286.28 15192.39 16494.70 23493.69 5695.97 9895.56 17391.34 12098.48 18093.45 4798.14 18598.62 98
Regformer-494.90 8594.67 9695.59 7492.78 28289.02 9092.39 16495.91 19694.50 3896.41 7395.56 17392.10 10299.01 10094.23 2698.14 18598.74 85
NCCC94.08 11793.54 13195.70 7296.49 15589.90 7692.39 16496.91 14990.64 12892.33 22294.60 21390.58 14498.96 10790.21 13297.70 21398.23 124
casdiffmvs94.32 10994.80 9092.85 17596.05 18681.44 21092.35 16798.05 5191.53 10895.75 10796.80 10093.35 7498.49 17691.01 11298.32 16498.64 94
ETV-MVS92.99 14692.74 14993.72 14495.86 20086.30 15092.33 16897.84 7891.70 10492.81 20486.17 33392.22 9999.19 7588.03 17797.73 20995.66 256
EI-MVSNet92.99 14693.26 14092.19 19592.12 29279.21 24892.32 16994.67 23791.77 9995.24 13195.85 15587.14 19098.49 17691.99 8998.26 17098.86 72
CVMVSNet85.16 28484.72 28286.48 30192.12 29270.19 32392.32 16988.17 30356.15 34690.64 24995.85 15567.97 30196.69 28088.78 16490.52 32692.56 316
OMC-MVS94.22 11493.69 12595.81 6397.25 12091.27 6092.27 17197.40 10987.10 19694.56 15595.42 18093.74 6598.11 20786.62 19998.85 11498.06 135
PM-MVS93.33 13292.67 15295.33 8296.58 15094.06 1692.26 17292.18 27885.92 21296.22 8896.61 11585.64 21395.99 29790.35 12498.23 17695.93 243
UniMVSNet_NR-MVSNet95.35 6995.21 7895.76 6897.69 9988.59 10092.26 17297.84 7894.91 3396.80 6195.78 16290.42 14599.41 3291.60 10399.58 2999.29 27
AdaColmapbinary91.63 17991.36 18292.47 19095.56 21786.36 14892.24 17496.27 18288.88 16089.90 26292.69 26491.65 11498.32 18977.38 29297.64 21692.72 315
mvs-test193.07 14491.80 17196.89 3794.74 23995.83 692.17 17595.41 21589.94 14089.85 26390.59 30190.12 15098.88 11687.68 18395.66 26395.97 241
PVSNet_Blended_VisFu91.63 17991.20 18692.94 17197.73 9583.95 18392.14 17697.46 10678.85 28092.35 21994.98 19884.16 22099.08 8786.36 20596.77 24495.79 250
ETH3 D test640091.91 17491.25 18593.89 13996.59 14984.41 17292.10 17797.72 8978.52 28191.82 23193.78 24188.70 16499.13 8183.61 23398.39 15398.14 130
Baseline_NR-MVSNet94.47 10495.09 8392.60 18598.50 5280.82 21992.08 17896.68 16393.82 5196.29 8298.56 2090.10 15397.75 23890.10 13799.66 1999.24 30
Fast-Effi-MVS+-dtu92.77 15392.16 16194.58 11594.66 24588.25 10792.05 17996.65 16589.62 14790.08 25791.23 28892.56 9498.60 16486.30 20696.27 25496.90 207
xxxxxxxxxxxxxcwj95.03 7994.93 8595.33 8297.46 11388.05 11292.04 18098.42 1287.63 18696.36 7696.68 11094.37 5999.32 6092.41 8199.05 9098.64 94
save fliter97.46 11388.05 11292.04 18097.08 13587.63 186
PatchT87.51 26288.17 24285.55 30690.64 31166.91 33192.02 18286.09 31792.20 7989.05 27597.16 8164.15 32096.37 29189.21 15892.98 31193.37 307
EG-PatchMatch MVS94.54 10294.67 9694.14 12997.87 8886.50 14192.00 18396.74 16188.16 17496.93 5797.61 5293.04 8497.90 22091.60 10398.12 18898.03 139
v14419293.20 14193.54 13192.16 19896.05 18678.26 26091.95 18497.14 13184.98 22995.96 9996.11 14687.08 19199.04 9593.79 3498.84 11599.17 34
VNet92.67 15692.96 14291.79 20696.27 17180.15 22391.95 18494.98 22392.19 8094.52 15796.07 14787.43 18497.39 25884.83 22398.38 15597.83 160
131486.46 27886.33 27486.87 30091.65 30074.54 29891.94 18694.10 24674.28 30184.78 31487.33 32683.03 22695.00 31478.72 28191.16 32491.06 327
112190.26 21189.23 21893.34 15697.15 12687.40 12191.94 18694.39 24067.88 33191.02 24394.91 20186.91 19698.59 16681.17 25997.71 21294.02 293
MVS84.98 28684.30 28587.01 29891.03 30777.69 26891.94 18694.16 24559.36 34484.23 31887.50 32485.66 21196.80 27771.79 31993.05 31086.54 337
tfpn200view987.05 27486.52 27188.67 27995.77 20472.94 31191.89 18986.00 31990.84 12192.61 20989.80 30563.93 32198.28 19171.27 32496.54 24994.79 274
thres40087.20 27086.52 27189.24 27295.77 20472.94 31191.89 18986.00 31990.84 12192.61 20989.80 30563.93 32198.28 19171.27 32496.54 24996.51 217
v192192093.26 13693.61 12892.19 19596.04 19078.31 25991.88 19197.24 12685.17 22396.19 9296.19 14386.76 19999.05 9294.18 2898.84 11599.22 31
Regformer-194.55 10194.33 10895.19 8992.83 28088.54 10391.87 19295.84 20093.99 4695.95 10095.04 19592.00 10498.79 13393.14 6398.31 16598.23 124
Regformer-294.86 8894.55 10095.77 6792.83 28089.98 7391.87 19296.40 17794.38 4296.19 9295.04 19592.47 9899.04 9593.49 4498.31 16598.28 121
XXY-MVS92.58 15993.16 14190.84 23997.75 9279.84 23391.87 19296.22 18785.94 21195.53 11797.68 4992.69 9194.48 31783.21 23797.51 22098.21 126
IterMVS-LS93.78 12394.28 11092.27 19296.27 17179.21 24891.87 19296.78 15791.77 9996.57 7197.07 8587.15 18998.74 14591.99 8999.03 9798.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114493.50 12793.81 11992.57 18696.28 17079.61 24091.86 19696.96 14286.95 19895.91 10396.32 13587.65 18098.96 10793.51 4398.88 11099.13 38
v119293.49 12893.78 12192.62 18496.16 18079.62 23991.83 19797.22 12886.07 20996.10 9696.38 13187.22 18799.02 9894.14 2998.88 11099.22 31
v124093.29 13393.71 12492.06 20196.01 19177.89 26591.81 19897.37 11085.12 22596.69 6596.40 12686.67 20099.07 9194.51 1898.76 12699.22 31
CNVR-MVS94.58 10094.29 10995.46 7996.94 13289.35 8791.81 19896.80 15689.66 14693.90 17395.44 17992.80 9098.72 14792.74 7498.52 14498.32 117
v2v48293.29 13393.63 12792.29 19196.35 16478.82 25391.77 20096.28 18188.45 16895.70 11196.26 14086.02 20898.90 11393.02 6798.81 12199.14 37
RRT_test8_iter0588.21 24888.17 24288.33 28691.62 30166.82 33591.73 20196.60 16786.34 20494.14 16395.38 18547.72 35199.11 8491.78 9698.26 17099.06 46
EPNet_dtu85.63 28284.37 28489.40 26786.30 34474.33 30291.64 20288.26 30084.84 23172.96 34789.85 30371.27 29597.69 24176.60 29797.62 21796.18 234
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft85.34 1590.40 20588.92 22694.85 9996.53 15390.02 7291.58 20396.48 17580.16 26386.14 30692.18 27485.73 21098.25 19676.87 29594.61 28896.30 228
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPNet93.08 14293.76 12291.03 23098.60 3375.83 29291.51 20495.62 20491.84 9395.74 10897.10 8489.31 16098.32 18985.07 22199.06 8798.93 62
XVG-OURS94.72 9594.12 11596.50 4698.00 8194.23 1391.48 20598.17 3590.72 12595.30 12696.47 12087.94 17796.98 27091.41 10897.61 21898.30 120
HQP-NCC96.36 16191.37 20687.16 19388.81 278
ACMP_Plane96.36 16191.37 20687.16 19388.81 278
HQP-MVS92.09 17191.49 17993.88 14096.36 16184.89 16891.37 20697.31 11987.16 19388.81 27893.40 24984.76 21698.60 16486.55 20197.73 20998.14 130
MCST-MVS92.91 14892.51 15594.10 13097.52 10885.72 16191.36 20997.13 13380.33 26292.91 20394.24 22391.23 12698.72 14789.99 13997.93 20297.86 157
v14892.87 15093.29 13691.62 21296.25 17477.72 26791.28 21095.05 22189.69 14595.93 10296.04 14887.34 18598.38 18590.05 13897.99 19998.78 81
tpmvs84.22 29083.97 28884.94 31187.09 34165.18 33891.21 21188.35 29982.87 24885.21 30990.96 29365.24 31696.75 27879.60 27685.25 33692.90 312
CANet92.38 16591.99 16693.52 15393.82 26583.46 18791.14 21297.00 13989.81 14486.47 30494.04 23087.90 17899.21 7389.50 14998.27 16997.90 153
CNLPA91.72 17791.20 18693.26 16096.17 17991.02 6391.14 21295.55 21190.16 13890.87 24493.56 24686.31 20494.40 32079.92 27297.12 23194.37 284
DP-MVS Recon92.31 16791.88 16893.60 14797.18 12386.87 13491.10 21497.37 11084.92 23092.08 22794.08 22988.59 16598.20 19983.50 23498.14 18595.73 252
OpenMVS_ROBcopyleft85.12 1689.52 22589.05 22290.92 23594.58 24781.21 21491.10 21493.41 25777.03 29193.41 18393.99 23483.23 22497.80 23179.93 27194.80 28393.74 300
TSAR-MVS + GP.93.07 14492.41 15895.06 9495.82 20190.87 6890.97 21692.61 27288.04 17694.61 15493.79 24088.08 17297.81 23089.41 15098.39 15396.50 220
MVP-Stereo90.07 21788.92 22693.54 15196.31 16886.49 14290.93 21795.59 20879.80 26491.48 23495.59 16880.79 24997.39 25878.57 28391.19 32396.76 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVSTER89.32 22788.75 23091.03 23090.10 31976.62 28290.85 21894.67 23782.27 25295.24 13195.79 16061.09 33498.49 17690.49 11898.26 17097.97 146
pmmvs-eth3d91.54 18190.73 19793.99 13295.76 20687.86 11790.83 21993.98 25078.23 28494.02 17196.22 14282.62 23396.83 27686.57 20098.33 16297.29 197
CANet_DTU89.85 22089.17 22091.87 20492.20 29080.02 23090.79 22095.87 19886.02 21082.53 32891.77 28180.01 25298.57 16985.66 21197.70 21397.01 203
test_prior489.91 7590.74 221
TinyColmap92.00 17392.76 14889.71 26295.62 21577.02 27590.72 22296.17 19087.70 18495.26 12996.29 13792.54 9596.45 28781.77 25198.77 12595.66 256
CDPH-MVS92.67 15691.83 16995.18 9096.94 13288.46 10590.70 22397.07 13677.38 28792.34 22195.08 19392.67 9298.88 11685.74 21098.57 13898.20 127
DSMNet-mixed82.21 30181.56 29984.16 31789.57 32570.00 32590.65 22477.66 34854.99 34783.30 32497.57 5377.89 26890.50 34066.86 33695.54 26691.97 320
TEST996.45 15789.46 8190.60 22596.92 14779.09 27690.49 25094.39 21991.31 12298.88 116
train_agg92.71 15591.83 16995.35 8096.45 15789.46 8190.60 22596.92 14779.37 27190.49 25094.39 21991.20 12898.88 11688.66 16798.43 15197.72 170
PatchmatchNetpermissive85.22 28384.64 28386.98 29989.51 32669.83 32690.52 22787.34 30978.87 27987.22 30192.74 26366.91 30596.53 28381.77 25186.88 33494.58 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_896.37 15989.14 8890.51 22896.89 15079.37 27190.42 25294.36 22191.20 12898.82 126
test_yl90.11 21489.73 21591.26 22294.09 25779.82 23490.44 22992.65 27090.90 11993.19 19493.30 25173.90 28598.03 21182.23 24796.87 24095.93 243
DCV-MVSNet90.11 21489.73 21591.26 22294.09 25779.82 23490.44 22992.65 27090.90 11993.19 19493.30 25173.90 28598.03 21182.23 24796.87 24095.93 243
tpm281.46 30480.35 31084.80 31289.90 32065.14 33990.44 22985.36 32665.82 33782.05 33292.44 27057.94 33896.69 28070.71 32788.49 33192.56 316
agg_prior192.60 15891.76 17295.10 9396.20 17688.89 9390.37 23296.88 15179.67 26890.21 25494.41 21791.30 12398.78 13788.46 16998.37 16097.64 176
CostFormer83.09 29582.21 29785.73 30589.27 32867.01 33090.35 23386.47 31470.42 32283.52 32393.23 25461.18 33396.85 27577.21 29388.26 33293.34 308
TAMVS90.16 21389.05 22293.49 15496.49 15586.37 14790.34 23492.55 27380.84 26092.99 20094.57 21581.94 24198.20 19973.51 31098.21 17995.90 246
EPMVS81.17 30880.37 30983.58 31985.58 34665.08 34090.31 23571.34 34977.31 28985.80 30891.30 28759.38 33692.70 33379.99 26882.34 34292.96 311
CMPMVSbinary68.83 2287.28 26785.67 27992.09 20088.77 33385.42 16490.31 23594.38 24170.02 32488.00 29293.30 25173.78 28794.03 32575.96 30296.54 24996.83 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_post190.21 2375.85 35265.36 31496.00 29679.61 274
test_prior393.29 13392.85 14594.61 10895.95 19487.23 12490.21 23797.36 11589.33 15290.77 24594.81 20590.41 14698.68 15688.21 17098.55 13997.93 149
test_prior290.21 23789.33 15290.77 24594.81 20590.41 14688.21 17098.55 139
MVS_111021_LR93.66 12593.28 13894.80 10196.25 17490.95 6590.21 23795.43 21487.91 17793.74 17794.40 21892.88 8896.38 29090.39 12198.28 16897.07 200
WR-MVS93.49 12893.72 12392.80 17797.57 10680.03 22990.14 24195.68 20393.70 5396.62 6895.39 18387.21 18899.04 9587.50 18699.64 2199.33 24
tpmrst82.85 29882.93 29582.64 32287.65 33558.99 34890.14 24187.90 30575.54 29683.93 31991.63 28466.79 30895.36 30881.21 25881.54 34393.57 306
PVSNet_BlendedMVS90.35 20889.96 21091.54 21594.81 23578.80 25590.14 24196.93 14579.43 27088.68 28595.06 19486.27 20598.15 20580.27 26498.04 19697.68 173
BH-untuned90.68 19890.90 19090.05 25995.98 19279.57 24190.04 24494.94 22587.91 17794.07 16793.00 25787.76 17997.78 23479.19 27995.17 27692.80 313
新几何290.02 245
旧先验290.00 24668.65 32892.71 20796.52 28485.15 216
无先验89.94 24795.75 20270.81 32198.59 16681.17 25994.81 273
xiu_mvs_v1_base_debu91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
xiu_mvs_v1_base91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
xiu_mvs_v1_base_debi91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
DWT-MVSNet_test80.74 31079.18 31585.43 30887.51 33866.87 33289.87 25186.01 31874.20 30380.86 33780.62 34348.84 34996.68 28281.54 25383.14 34192.75 314
mvs_anonymous90.37 20791.30 18487.58 29492.17 29168.00 32989.84 25294.73 23383.82 23893.22 19397.40 6487.54 18297.40 25787.94 17995.05 27897.34 194
test20.0390.80 19490.85 19390.63 24295.63 21479.24 24689.81 25392.87 26489.90 14294.39 15996.40 12685.77 20995.27 31273.86 30999.05 9097.39 191
1112_ss88.42 24587.41 25391.45 21696.69 14480.99 21689.72 25496.72 16273.37 30787.00 30290.69 29877.38 27198.20 19981.38 25593.72 30095.15 266
UnsupCasMVSNet_eth90.33 20990.34 20490.28 24994.64 24680.24 22189.69 25595.88 19785.77 21593.94 17295.69 16481.99 23992.98 33284.21 23091.30 32297.62 177
MG-MVS89.54 22489.80 21288.76 27794.88 23172.47 31589.60 25692.44 27585.82 21489.48 27095.98 15182.85 22897.74 23981.87 25095.27 27496.08 237
Patchmatch-test86.10 28086.01 27686.38 30390.63 31274.22 30489.57 25786.69 31285.73 21789.81 26592.83 25965.24 31691.04 33877.82 28895.78 26293.88 297
Anonymous2023120688.77 24088.29 23790.20 25596.31 16878.81 25489.56 25893.49 25674.26 30292.38 21795.58 17182.21 23595.43 30772.07 31898.75 12896.34 226
DeepPCF-MVS90.46 694.20 11593.56 13096.14 4995.96 19392.96 4089.48 25997.46 10685.14 22496.23 8795.42 18093.19 7898.08 20890.37 12398.76 12697.38 193
SCA87.43 26487.21 25788.10 28992.01 29571.98 31789.43 26088.11 30482.26 25388.71 28392.83 25978.65 26097.59 24579.61 27493.30 30494.75 276
testgi90.38 20691.34 18387.50 29597.49 11071.54 31889.43 26095.16 22088.38 17094.54 15694.68 21292.88 8893.09 33171.60 32297.85 20697.88 155
JIA-IIPM85.08 28583.04 29391.19 22787.56 33686.14 15489.40 26284.44 33488.98 15682.20 33097.95 3856.82 34196.15 29476.55 29883.45 33991.30 325
原ACMM289.34 263
tpm84.38 28984.08 28785.30 31090.47 31563.43 34589.34 26385.63 32377.24 29087.62 29695.03 19761.00 33597.30 26179.26 27891.09 32595.16 265
MVS_111021_HR93.63 12693.42 13494.26 12796.65 14586.96 13389.30 26596.23 18588.36 17193.57 18194.60 21393.45 6997.77 23590.23 13198.38 15598.03 139
tpm cat180.61 31279.46 31484.07 31888.78 33265.06 34189.26 26688.23 30162.27 34281.90 33489.66 31162.70 32995.29 31171.72 32080.60 34491.86 323
CDS-MVSNet89.55 22388.22 24193.53 15295.37 22486.49 14289.26 26693.59 25379.76 26691.15 24192.31 27377.12 27498.38 18577.51 29097.92 20395.71 253
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+91.28 18990.86 19292.53 18895.45 22082.53 19889.25 26896.52 17385.00 22889.91 26188.55 31892.94 8598.84 12484.72 22695.44 26996.22 232
BH-RMVSNet90.47 20390.44 20290.56 24495.21 22778.65 25789.15 26993.94 25188.21 17292.74 20694.22 22486.38 20397.88 22278.67 28295.39 27195.14 267
thres20085.85 28185.18 28187.88 29294.44 24972.52 31489.08 27086.21 31588.57 16791.44 23588.40 31964.22 31998.00 21568.35 33295.88 26193.12 309
USDC89.02 23289.08 22188.84 27695.07 22974.50 30088.97 27196.39 17873.21 30893.27 19096.28 13882.16 23796.39 28977.55 28998.80 12295.62 259
testdata188.96 27288.44 169
pmmvs587.87 25387.14 25990.07 25793.26 27176.97 27988.89 27392.18 27873.71 30688.36 28793.89 23776.86 27896.73 27980.32 26396.81 24296.51 217
test22296.95 13185.27 16688.83 27493.61 25265.09 33890.74 24794.85 20484.62 21897.36 22593.91 295
baseline283.38 29381.54 30188.90 27491.38 30472.84 31388.78 27581.22 34278.97 27779.82 34087.56 32261.73 33297.80 23174.30 30790.05 32896.05 239
diffmvs91.74 17691.93 16791.15 22893.06 27578.17 26188.77 27697.51 10586.28 20592.42 21593.96 23588.04 17497.46 25290.69 11796.67 24797.82 162
MDTV_nov1_ep1383.88 28989.42 32761.52 34688.74 27787.41 30873.99 30484.96 31394.01 23365.25 31595.53 30178.02 28493.16 306
D2MVS89.93 21889.60 21790.92 23594.03 25978.40 25888.69 27894.85 22778.96 27893.08 19695.09 19274.57 28396.94 27188.19 17298.96 10597.41 187
TR-MVS87.70 25687.17 25889.27 27094.11 25679.26 24588.69 27891.86 28481.94 25490.69 24889.79 30782.82 22997.42 25572.65 31691.98 31991.14 326
PatchMatch-RL89.18 22988.02 24692.64 18195.90 19892.87 4288.67 28091.06 28980.34 26190.03 25991.67 28383.34 22294.42 31976.35 29994.84 28290.64 329
PAPR87.65 25986.77 26690.27 25092.85 27977.38 27188.56 28196.23 18576.82 29384.98 31289.75 30986.08 20797.16 26572.33 31793.35 30396.26 230
MDTV_nov1_ep13_2view42.48 35388.45 28267.22 33383.56 32266.80 30672.86 31594.06 290
jason89.17 23088.32 23691.70 21095.73 20780.07 22688.10 28393.22 25971.98 31490.09 25692.79 26178.53 26398.56 17087.43 18897.06 23296.46 222
jason: jason.
BH-w/o87.21 26987.02 26287.79 29394.77 23777.27 27387.90 28493.21 26181.74 25589.99 26088.39 32083.47 22196.93 27371.29 32392.43 31589.15 331
MS-PatchMatch88.05 25187.75 24888.95 27393.28 26977.93 26387.88 28592.49 27475.42 29792.57 21193.59 24580.44 25194.24 32481.28 25692.75 31294.69 279
DELS-MVS92.05 17292.16 16191.72 20994.44 24980.13 22587.62 28697.25 12587.34 19192.22 22493.18 25589.54 15998.73 14689.67 14698.20 18196.30 228
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet284.01 29182.20 29889.41 26689.04 33076.37 28687.57 28790.98 29072.71 31284.46 31592.45 26868.08 29996.48 28670.58 32883.97 33795.38 262
ADS-MVSNet82.25 30081.55 30084.34 31689.04 33065.30 33787.57 28785.13 33172.71 31284.46 31592.45 26868.08 29992.33 33470.58 32883.97 33795.38 262
IterMVS-SCA-FT91.65 17891.55 17591.94 20393.89 26279.22 24787.56 28993.51 25591.53 10895.37 12396.62 11478.65 26098.90 11391.89 9494.95 27997.70 171
IterMVS90.18 21290.16 20690.21 25493.15 27375.98 28987.56 28992.97 26386.43 20394.09 16596.40 12678.32 26497.43 25487.87 18094.69 28697.23 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res87.50 26386.58 26890.25 25196.80 14177.75 26687.53 29196.25 18369.73 32586.47 30493.61 24475.67 28197.88 22279.95 26993.20 30595.11 268
cl_fuxian91.32 18891.42 18091.00 23392.29 28776.79 28187.52 29296.42 17685.76 21694.72 15393.89 23782.73 23098.16 20490.93 11398.55 13998.04 138
UnsupCasMVSNet_bld88.50 24488.03 24589.90 26095.52 21878.88 25287.39 29394.02 24979.32 27493.06 19794.02 23280.72 25094.27 32275.16 30593.08 30996.54 215
lupinMVS88.34 24787.31 25491.45 21694.74 23980.06 22787.23 29492.27 27771.10 31888.83 27691.15 28977.02 27598.53 17386.67 19896.75 24595.76 251
pmmvs488.95 23687.70 25092.70 17994.30 25285.60 16287.22 29592.16 28074.62 30089.75 26894.19 22577.97 26796.41 28882.71 24196.36 25396.09 236
WTY-MVS86.93 27686.50 27388.24 28794.96 23074.64 29687.19 29692.07 28378.29 28388.32 28891.59 28578.06 26694.27 32274.88 30693.15 30795.80 249
ET-MVSNet_ETH3D86.15 27984.27 28691.79 20693.04 27681.28 21287.17 29786.14 31679.57 26983.65 32088.66 31657.10 33998.18 20287.74 18295.40 27095.90 246
MVS-HIRNet78.83 31780.60 30873.51 33293.07 27447.37 35187.10 29878.00 34768.94 32777.53 34397.26 7471.45 29494.62 31563.28 34188.74 33078.55 344
xiu_mvs_v2_base89.00 23489.19 21988.46 28494.86 23374.63 29786.97 29995.60 20580.88 25887.83 29488.62 31791.04 13398.81 13182.51 24594.38 29091.93 321
DPM-MVS89.35 22688.40 23592.18 19796.13 18384.20 17786.96 30096.15 19175.40 29887.36 29991.55 28683.30 22398.01 21482.17 24996.62 24894.32 286
eth_miper_zixun_eth90.72 19690.61 19991.05 22992.04 29476.84 28086.91 30196.67 16485.21 22294.41 15893.92 23679.53 25598.26 19589.76 14497.02 23498.06 135
dp79.28 31578.62 31781.24 32585.97 34556.45 34986.91 30185.26 32972.97 31081.45 33689.17 31556.01 34395.45 30673.19 31376.68 34591.82 324
sss87.23 26886.82 26488.46 28493.96 26077.94 26286.84 30392.78 26877.59 28687.61 29791.83 28078.75 25991.92 33577.84 28694.20 29595.52 261
miper_ehance_all_eth90.48 20290.42 20390.69 24091.62 30176.57 28386.83 30496.18 18983.38 23994.06 16892.66 26682.20 23698.04 21089.79 14397.02 23497.45 185
CLD-MVS91.82 17591.41 18193.04 16496.37 15983.65 18686.82 30597.29 12284.65 23492.27 22389.67 31092.20 10097.85 22883.95 23199.47 3797.62 177
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl-mvsnet_90.65 19990.56 20090.91 23791.85 29676.98 27886.75 30695.36 21885.53 21894.06 16894.89 20277.36 27397.98 21890.27 12998.98 9997.76 167
cl-mvsnet190.65 19990.56 20090.91 23791.85 29676.99 27786.75 30695.36 21885.52 22094.06 16894.89 20277.37 27297.99 21790.28 12898.97 10397.76 167
PS-MVSNAJ88.86 23888.99 22588.48 28394.88 23174.71 29586.69 30895.60 20580.88 25887.83 29487.37 32590.77 13698.82 12682.52 24494.37 29191.93 321
PVSNet_Blended88.74 24188.16 24490.46 24694.81 23578.80 25586.64 30996.93 14574.67 29988.68 28589.18 31486.27 20598.15 20580.27 26496.00 25694.44 283
MSDG90.82 19390.67 19891.26 22294.16 25483.08 19486.63 31096.19 18890.60 13091.94 22991.89 27989.16 16295.75 29980.96 26294.51 28994.95 272
cl-mvsnet289.02 23288.50 23390.59 24389.76 32176.45 28486.62 31194.03 24782.98 24792.65 20892.49 26772.05 29297.53 24788.93 16097.02 23497.78 165
PCF-MVS84.52 1789.12 23187.71 24993.34 15696.06 18585.84 15986.58 31297.31 11968.46 32993.61 18093.89 23787.51 18398.52 17467.85 33398.11 18995.66 256
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Patchmatch-RL test88.81 23988.52 23289.69 26395.33 22679.94 23186.22 31392.71 26978.46 28295.80 10594.18 22666.25 31195.33 31089.22 15798.53 14393.78 298
FPMVS84.50 28883.28 29188.16 28896.32 16794.49 1185.76 31485.47 32583.09 24485.20 31094.26 22263.79 32386.58 34563.72 34091.88 32183.40 340
IB-MVS77.21 1983.11 29481.05 30489.29 26991.15 30675.85 29085.66 31586.00 31979.70 26782.02 33386.61 32848.26 35098.39 18377.84 28692.22 31693.63 302
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs91.04 19090.88 19191.55 21494.68 24480.16 22285.49 31692.14 28190.41 13594.93 14495.79 16085.10 21496.93 27385.15 21694.19 29697.57 179
new-patchmatchnet88.97 23590.79 19583.50 32094.28 25355.83 35085.34 31793.56 25486.18 20795.47 11895.73 16383.10 22596.51 28585.40 21398.06 19398.16 128
miper_enhance_ethall88.42 24587.87 24790.07 25788.67 33475.52 29385.10 31895.59 20875.68 29492.49 21289.45 31378.96 25797.88 22287.86 18197.02 23496.81 211
HyFIR lowres test87.19 27185.51 28092.24 19397.12 12880.51 22085.03 31996.06 19266.11 33591.66 23392.98 25870.12 29699.14 8075.29 30495.23 27597.07 200
pmmvs380.83 30978.96 31686.45 30287.23 34077.48 27084.87 32082.31 33963.83 34085.03 31189.50 31249.66 34893.10 33073.12 31495.10 27788.78 335
test0.0.03 182.48 29981.47 30285.48 30789.70 32273.57 30784.73 32181.64 34183.07 24588.13 29186.61 32862.86 32789.10 34466.24 33790.29 32793.77 299
N_pmnet88.90 23787.25 25693.83 14294.40 25193.81 3184.73 32187.09 31079.36 27393.26 19192.43 27179.29 25691.68 33677.50 29197.22 22996.00 240
GA-MVS87.70 25686.82 26490.31 24893.27 27077.22 27484.72 32392.79 26785.11 22689.82 26490.07 30266.80 30697.76 23784.56 22794.27 29495.96 242
ppachtmachnet_test88.61 24388.64 23188.50 28291.76 29870.99 32184.59 32492.98 26279.30 27592.38 21793.53 24779.57 25497.45 25386.50 20397.17 23097.07 200
CHOSEN 1792x268887.19 27185.92 27891.00 23397.13 12779.41 24284.51 32595.60 20564.14 33990.07 25894.81 20578.26 26597.14 26673.34 31195.38 27296.46 222
thisisatest051584.72 28782.99 29489.90 26092.96 27875.33 29484.36 32683.42 33777.37 28888.27 28986.65 32753.94 34498.72 14782.56 24397.40 22495.67 255
cascas87.02 27586.28 27589.25 27191.56 30376.45 28484.33 32796.78 15771.01 31986.89 30385.91 33481.35 24496.94 27183.09 23895.60 26494.35 285
new_pmnet81.22 30681.01 30681.86 32490.92 31070.15 32484.03 32880.25 34670.83 32085.97 30789.78 30867.93 30284.65 34667.44 33491.90 32090.78 328
PAPM81.91 30380.11 31287.31 29793.87 26372.32 31684.02 32993.22 25969.47 32676.13 34589.84 30472.15 29197.23 26353.27 34689.02 32992.37 318
our_test_387.55 26187.59 25187.44 29691.76 29870.48 32283.83 33090.55 29279.79 26592.06 22892.17 27578.63 26295.63 30084.77 22494.73 28496.22 232
miper_lstm_enhance89.90 21989.80 21290.19 25691.37 30577.50 26983.82 33195.00 22284.84 23193.05 19894.96 19976.53 28095.20 31389.96 14098.67 13397.86 157
test-LLR83.58 29283.17 29284.79 31389.68 32366.86 33383.08 33284.52 33283.07 24582.85 32684.78 33762.86 32793.49 32882.85 23994.86 28094.03 291
TESTMET0.1,179.09 31678.04 31882.25 32387.52 33764.03 34483.08 33280.62 34470.28 32380.16 33983.22 34044.13 35490.56 33979.95 26993.36 30292.15 319
test-mter81.21 30780.01 31384.79 31389.68 32366.86 33383.08 33284.52 33273.85 30582.85 32684.78 33743.66 35593.49 32882.85 23994.86 28094.03 291
test1239.49 32212.01 3241.91 3352.87 3541.30 35582.38 3351.34 3571.36 3502.84 3516.56 3502.45 3560.97 3522.73 3495.56 3493.47 348
PMMVS83.00 29681.11 30388.66 28083.81 35186.44 14582.24 33685.65 32261.75 34382.07 33185.64 33579.75 25391.59 33775.99 30193.09 30887.94 336
YYNet188.17 24988.24 23987.93 29092.21 28973.62 30680.75 33788.77 29682.51 25094.99 14295.11 19182.70 23193.70 32683.33 23593.83 29896.48 221
MDA-MVSNet_test_wron88.16 25088.23 24087.93 29092.22 28873.71 30580.71 33888.84 29582.52 24994.88 14795.14 18982.70 23193.61 32783.28 23693.80 29996.46 222
testmvs9.02 32311.42 3251.81 3362.77 3551.13 35679.44 3391.90 3561.18 3512.65 3526.80 3491.95 3570.87 3532.62 3503.45 3503.44 349
PVSNet76.22 2082.89 29782.37 29684.48 31593.96 26064.38 34378.60 34088.61 29771.50 31684.43 31786.36 33174.27 28494.60 31669.87 33093.69 30194.46 282
PVSNet_070.34 2174.58 31872.96 32079.47 32890.63 31266.24 33673.26 34183.40 33863.67 34178.02 34278.35 34472.53 28989.59 34256.68 34460.05 34882.57 343
E-PMN80.72 31180.86 30780.29 32785.11 34768.77 32872.96 34281.97 34087.76 18283.25 32583.01 34162.22 33089.17 34377.15 29494.31 29382.93 341
CHOSEN 280x42080.04 31477.97 31986.23 30490.13 31874.53 29972.87 34389.59 29466.38 33476.29 34485.32 33656.96 34095.36 30869.49 33194.72 28588.79 334
EMVS80.35 31380.28 31180.54 32684.73 34969.07 32772.54 34480.73 34387.80 18181.66 33581.73 34262.89 32689.84 34175.79 30394.65 28782.71 342
PMMVS281.31 30583.44 29074.92 33190.52 31446.49 35269.19 34585.23 33084.30 23587.95 29394.71 21176.95 27784.36 34764.07 33998.09 19193.89 296
tmp_tt37.97 32044.33 32218.88 33411.80 35321.54 35463.51 34645.66 3554.23 34951.34 35050.48 34759.08 33722.11 35144.50 34768.35 34713.00 347
MVEpermissive59.87 2373.86 31972.65 32177.47 33087.00 34374.35 30161.37 34760.93 35267.27 33269.69 34886.49 33081.24 24872.33 34956.45 34583.45 33985.74 338
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34898.14 390.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.35 32131.13 3230.00 3370.00 3560.00 3570.00 34895.58 2100.00 3520.00 35391.15 28993.43 710.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.56 32410.09 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35390.77 1360.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.56 32410.08 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35390.69 2980.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS98.51 4586.66 14096.83 15472.74 31195.83 10493.00 6899.29 6298.64 94
test_241102_TWO98.10 4291.95 8497.54 3597.25 7595.37 2799.35 5093.29 5599.25 7098.49 107
test_241102_ONE98.51 4586.97 13198.10 4291.85 9097.63 3097.03 8896.48 1198.95 109
test_0728_THIRD93.26 6197.40 4397.35 7094.69 5199.34 5493.88 3299.42 4598.89 68
GSMVS94.75 276
test_part298.21 6889.41 8496.72 64
sam_mvs166.64 30994.75 276
sam_mvs66.41 310
MTGPAbinary97.62 93
test_post6.07 35165.74 31395.84 298
patchmatchnet-post91.71 28266.22 31297.59 245
gm-plane-assit87.08 34259.33 34771.22 31783.58 33997.20 26473.95 308
test9_res88.16 17498.40 15297.83 160
agg_prior287.06 19398.36 16197.98 143
agg_prior96.20 17688.89 9396.88 15190.21 25498.78 137
TestCases96.00 5398.02 7992.17 4798.43 1090.48 13195.04 14096.74 10592.54 9597.86 22685.11 21998.98 9997.98 143
test_prior94.61 10895.95 19487.23 12497.36 11598.68 15697.93 149
新几何193.17 16397.16 12487.29 12394.43 23967.95 33091.29 23794.94 20086.97 19398.23 19781.06 26197.75 20893.98 294
旧先验196.20 17684.17 17894.82 22995.57 17289.57 15897.89 20496.32 227
原ACMM192.87 17496.91 13484.22 17697.01 13876.84 29289.64 26994.46 21688.00 17598.70 15481.53 25498.01 19895.70 254
testdata298.03 21180.24 266
segment_acmp92.14 101
testdata91.03 23096.87 13682.01 20194.28 24371.55 31592.46 21395.42 18085.65 21297.38 26082.64 24297.27 22793.70 301
test1294.43 12395.95 19486.75 13696.24 18489.76 26789.79 15798.79 13397.95 20197.75 169
plane_prior797.71 9688.68 97
plane_prior697.21 12288.23 10886.93 194
plane_prior597.81 8198.95 10989.26 15598.51 14698.60 101
plane_prior495.59 168
plane_prior388.43 10690.35 13693.31 186
plane_prior197.38 116
n20.00 358
nn0.00 358
door-mid92.13 282
lessismore_v093.87 14198.05 7683.77 18580.32 34597.13 4997.91 4277.49 26999.11 8492.62 7898.08 19298.74 85
LGP-MVS_train96.84 3898.36 6092.13 4998.25 2491.78 9797.07 5097.22 7896.38 1399.28 6592.07 8799.59 2599.11 40
test1196.65 165
door91.26 288
HQP5-MVS84.89 168
BP-MVS86.55 201
HQP4-MVS88.81 27898.61 16298.15 129
HQP3-MVS97.31 11997.73 209
HQP2-MVS84.76 216
NP-MVS96.82 13887.10 12793.40 249
ACMMP++_ref98.82 119
ACMMP++99.25 70
Test By Simon90.61 142
ITE_SJBPF95.95 5597.34 11893.36 3796.55 17291.93 8694.82 14895.39 18391.99 10697.08 26785.53 21297.96 20097.41 187
DeepMVS_CXcopyleft53.83 33370.38 35264.56 34248.52 35433.01 34865.50 34974.21 34656.19 34246.64 35038.45 34870.07 34650.30 346