This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 697.72 395.35 8099.51 287.38 12297.70 697.54 10198.16 298.94 299.33 297.84 499.08 8790.73 11599.73 1399.59 12
PEN-MVS96.69 1897.39 894.61 10899.16 384.50 17196.54 2798.05 5198.06 498.64 1398.25 3095.01 4699.65 392.95 7099.83 599.68 4
MIMVSNet195.52 6395.45 6895.72 7099.14 489.02 9096.23 4496.87 15393.73 5297.87 2598.49 2490.73 14099.05 9286.43 20499.60 2399.10 43
PS-CasMVS96.69 1897.43 594.49 11999.13 584.09 18096.61 2497.97 6697.91 598.64 1398.13 3195.24 3599.65 393.39 5299.84 399.72 2
DTE-MVSNet96.74 1597.43 594.67 10699.13 584.68 17096.51 2897.94 7298.14 398.67 1298.32 2895.04 4399.69 293.27 5799.82 799.62 10
pmmvs696.80 1297.36 995.15 9199.12 787.82 11896.68 2297.86 7496.10 2598.14 2299.28 397.94 398.21 19891.38 10999.69 1499.42 18
HPM-MVS_fast97.01 796.89 1597.39 2099.12 793.92 2497.16 1098.17 3593.11 6296.48 7297.36 6996.92 699.34 5494.31 2399.38 5398.92 66
MP-MVS-pluss96.08 4795.92 5396.57 4399.06 991.21 6193.25 13698.32 1787.89 17996.86 5897.38 6595.55 2499.39 4195.47 1099.47 3799.11 40
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OurMVSNet-221017-096.80 1296.75 1896.96 3499.03 1091.85 5497.98 598.01 6094.15 4498.93 399.07 588.07 17399.57 1395.86 999.69 1499.46 17
WR-MVS_H96.60 2397.05 1495.24 8799.02 1186.44 14596.78 2198.08 4597.42 898.48 1697.86 4491.76 11199.63 694.23 2699.84 399.66 6
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 497.41 997.28 4598.46 2594.62 5398.84 12494.64 1799.53 3398.99 52
CP-MVSNet96.19 4496.80 1794.38 12598.99 1383.82 18496.31 3997.53 10297.60 698.34 1997.52 5791.98 10799.63 693.08 6699.81 899.70 3
PMVScopyleft87.21 1494.97 8295.33 7393.91 13898.97 1497.16 295.54 6695.85 19996.47 2093.40 18597.46 6195.31 3295.47 30586.18 20898.78 12489.11 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
zzz-MVS96.47 2996.14 4197.47 1398.95 1594.05 1893.69 12697.62 9394.46 4096.29 8296.94 9093.56 6799.37 4794.29 2499.42 4598.99 52
MTAPA96.65 2096.38 3097.47 1398.95 1594.05 1895.88 5597.62 9394.46 4096.29 8296.94 9093.56 6799.37 4794.29 2499.42 4598.99 52
ACMMP_NAP96.21 4396.12 4396.49 4798.90 1791.42 5994.57 10198.03 5690.42 13496.37 7597.35 7095.68 1999.25 6994.44 2099.34 5598.80 79
HPM-MVScopyleft96.81 1196.62 2297.36 2298.89 1893.53 3497.51 798.44 992.35 7495.95 10096.41 12596.71 899.42 2793.99 3199.36 5499.13 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDDNet94.03 11894.27 11293.31 15898.87 1982.36 19995.51 6791.78 28597.19 1196.32 7998.60 1884.24 21998.75 14287.09 19298.83 11898.81 78
TSAR-MVS + MP.94.96 8394.75 9295.57 7598.86 2088.69 9696.37 3696.81 15585.23 22194.75 15097.12 8391.85 10999.40 3693.45 4798.33 16298.62 98
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvs_tets96.83 896.71 1997.17 2598.83 2192.51 4596.58 2697.61 9687.57 18898.80 798.90 996.50 1099.59 1296.15 799.47 3799.40 20
PS-MVSNAJss96.01 4996.04 4895.89 6198.82 2288.51 10495.57 6597.88 7388.72 16298.81 698.86 1090.77 13699.60 895.43 1199.53 3399.57 13
MP-MVScopyleft96.14 4595.68 6397.51 1198.81 2394.06 1696.10 4697.78 8692.73 6493.48 18296.72 10894.23 6199.42 2791.99 8999.29 6299.05 47
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LTVRE_ROB93.87 197.93 298.16 297.26 2498.81 2393.86 2799.07 298.98 397.01 1298.92 498.78 1495.22 3698.61 16296.85 299.77 999.31 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ZNCC-MVS96.42 3496.20 3797.07 2898.80 2592.79 4396.08 4798.16 3891.74 10195.34 12496.36 13395.68 1999.44 2394.41 2199.28 6798.97 58
jajsoiax96.59 2596.42 2697.12 2798.76 2692.49 4696.44 3397.42 10886.96 19798.71 1098.72 1795.36 3099.56 1695.92 899.45 4199.32 25
DVP-MVS95.34 7094.63 9897.48 1298.67 2794.05 1896.41 3598.18 3291.26 11395.12 13495.15 18886.60 20299.50 1993.43 5196.81 24298.89 68
GST-MVS96.24 4295.99 5097.00 3298.65 2892.71 4495.69 6198.01 6092.08 8295.74 10896.28 13895.22 3699.42 2793.17 6199.06 8798.88 70
SteuartSystems-ACMMP96.40 3696.30 3296.71 4098.63 2991.96 5295.70 5998.01 6093.34 6096.64 6796.57 11794.99 4799.36 4993.48 4599.34 5598.82 77
Skip Steuart: Steuart Systems R&D Blog.
region2R96.41 3596.09 4497.38 2198.62 3093.81 3196.32 3897.96 6792.26 7795.28 12896.57 11795.02 4599.41 3293.63 3999.11 8598.94 61
mPP-MVS96.46 3096.05 4797.69 598.62 3094.65 996.45 3197.74 8792.59 6895.47 11896.68 11094.50 5699.42 2793.10 6499.26 6998.99 52
ACMMPcopyleft96.61 2296.34 3197.43 1798.61 3293.88 2596.95 1698.18 3292.26 7796.33 7896.84 9995.10 4199.40 3693.47 4699.33 5799.02 49
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VPNet93.08 14293.76 12291.03 23098.60 3375.83 29291.51 20495.62 20491.84 9395.74 10897.10 8489.31 16098.32 18985.07 22199.06 8798.93 62
ACMMPR96.46 3096.14 4197.41 1998.60 3393.82 2996.30 4197.96 6792.35 7495.57 11596.61 11594.93 4999.41 3293.78 3599.15 8099.00 50
PGM-MVS96.32 3995.94 5197.43 1798.59 3593.84 2895.33 7198.30 2091.40 11095.76 10696.87 9695.26 3499.45 2292.77 7299.21 7599.00 50
XVS96.49 2796.18 3897.44 1598.56 3693.99 2296.50 2997.95 6994.58 3694.38 16096.49 11994.56 5499.39 4193.57 4099.05 9098.93 62
X-MVStestdata90.70 19788.45 23497.44 1598.56 3693.99 2296.50 2997.95 6994.58 3694.38 16026.89 34894.56 5499.39 4193.57 4099.05 9098.93 62
ACMH88.36 1296.59 2597.43 594.07 13198.56 3685.33 16596.33 3798.30 2094.66 3598.72 898.30 2997.51 598.00 21594.87 1499.59 2598.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_0728_SECOND94.88 9898.55 3986.72 13795.20 7798.22 2999.38 4693.44 4999.31 5998.53 105
test_djsdf96.62 2196.49 2597.01 3198.55 3991.77 5697.15 1197.37 11088.98 15698.26 2098.86 1093.35 7499.60 896.41 499.45 4199.66 6
v7n96.82 997.31 1095.33 8298.54 4186.81 13596.83 1898.07 4896.59 1998.46 1798.43 2792.91 8699.52 1796.25 699.76 1099.65 8
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3497.44 6296.51 999.40 3694.06 3099.23 7398.85 75
ACMH+88.43 1196.48 2896.82 1695.47 7898.54 4189.06 8995.65 6298.61 696.10 2598.16 2197.52 5796.90 798.62 16190.30 12799.60 2398.72 88
SixPastTwentyTwo94.91 8495.21 7893.98 13398.52 4483.19 19195.93 5294.84 22894.86 3498.49 1598.74 1681.45 24399.60 894.69 1699.39 5299.15 36
SED-MVS96.00 5096.41 2994.76 10398.51 4586.97 13195.21 7598.10 4291.95 8497.63 3097.25 7596.48 1199.35 5093.29 5599.29 6297.95 147
IU-MVS98.51 4586.66 14096.83 15472.74 31195.83 10493.00 6899.29 6298.64 94
test_241102_ONE98.51 4586.97 13198.10 4291.85 9097.63 3097.03 8896.48 1198.95 109
MSP-MVS95.82 5596.18 3894.72 10598.51 4586.69 13895.20 7797.00 13991.85 9097.40 4397.35 7095.58 2299.34 5493.44 4999.31 5998.13 132
test072698.51 4586.69 13895.34 7098.18 3291.85 9097.63 3097.37 6695.58 22
HFP-MVS96.39 3796.17 4097.04 2998.51 4593.37 3596.30 4197.98 6392.35 7495.63 11296.47 12095.37 2799.27 6793.78 3599.14 8198.48 108
#test#95.89 5195.51 6697.04 2998.51 4593.37 3595.14 8097.98 6389.34 15195.63 11296.47 12095.37 2799.27 6791.99 8999.14 8198.48 108
Baseline_NR-MVSNet94.47 10495.09 8392.60 18598.50 5280.82 21992.08 17896.68 16393.82 5196.29 8298.56 2090.10 15397.75 23890.10 13799.66 1999.24 30
OPM-MVS95.61 6195.45 6896.08 5198.49 5391.00 6492.65 15397.33 11890.05 13996.77 6396.85 9795.04 4398.56 17092.77 7299.06 8798.70 89
FC-MVSNet-test95.32 7195.88 5493.62 14698.49 5381.77 20495.90 5498.32 1793.93 4997.53 3697.56 5488.48 16699.40 3692.91 7199.83 599.68 4
XVG-ACMP-BASELINE95.68 5995.34 7296.69 4198.40 5593.04 3894.54 10598.05 5190.45 13396.31 8096.76 10392.91 8698.72 14791.19 11099.42 4598.32 117
ACMM88.83 996.30 4196.07 4696.97 3398.39 5692.95 4194.74 9398.03 5690.82 12397.15 4896.85 9796.25 1599.00 10193.10 6499.33 5798.95 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs195.43 6695.94 5193.93 13798.38 5785.08 16795.46 6897.12 13491.84 9397.28 4598.46 2595.30 3397.71 24090.17 13399.42 4598.99 52
COLMAP_ROBcopyleft91.06 596.75 1496.62 2297.13 2698.38 5794.31 1296.79 2098.32 1796.69 1696.86 5897.56 5495.48 2598.77 14190.11 13599.44 4398.31 119
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TransMVSNet (Re)95.27 7696.04 4892.97 16898.37 5981.92 20395.07 8396.76 16093.97 4897.77 2698.57 1995.72 1897.90 22088.89 16299.23 7399.08 44
LPG-MVS_test96.38 3896.23 3596.84 3898.36 6092.13 4995.33 7198.25 2491.78 9797.07 5097.22 7896.38 1399.28 6592.07 8799.59 2599.11 40
LGP-MVS_train96.84 3898.36 6092.13 4998.25 2491.78 9797.07 5097.22 7896.38 1399.28 6592.07 8799.59 2599.11 40
CP-MVS96.44 3396.08 4597.54 998.29 6294.62 1096.80 1998.08 4592.67 6795.08 13896.39 13094.77 5099.42 2793.17 6199.44 4398.58 103
FIs94.90 8595.35 7193.55 14998.28 6381.76 20595.33 7198.14 3993.05 6397.07 5097.18 8087.65 18099.29 6391.72 9899.69 1499.61 11
SMA-MVS95.77 5695.54 6596.47 4898.27 6491.19 6295.09 8197.79 8586.48 20197.42 4297.51 5994.47 5899.29 6393.55 4299.29 6298.93 62
TranMVSNet+NR-MVSNet96.07 4896.26 3495.50 7798.26 6587.69 11993.75 12497.86 7495.96 2997.48 3897.14 8295.33 3199.44 2390.79 11499.76 1099.38 21
IS-MVSNet94.49 10394.35 10794.92 9798.25 6686.46 14497.13 1394.31 24296.24 2396.28 8596.36 13382.88 22799.35 5088.19 17299.52 3598.96 59
UA-Net97.35 497.24 1197.69 598.22 6793.87 2698.42 498.19 3196.95 1395.46 12099.23 493.45 6999.57 1395.34 1299.89 299.63 9
test_part298.21 6889.41 8496.72 64
test_040295.73 5796.22 3694.26 12798.19 6985.77 16093.24 13797.24 12696.88 1597.69 2897.77 4794.12 6399.13 8191.54 10699.29 6297.88 155
ACMP88.15 1395.71 5895.43 7096.54 4498.17 7091.73 5794.24 11198.08 4589.46 14996.61 6996.47 12095.85 1799.12 8390.45 11999.56 3198.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CPTT-MVS94.74 9494.12 11596.60 4298.15 7193.01 3995.84 5697.66 9189.21 15593.28 18995.46 17788.89 16398.98 10289.80 14298.82 11997.80 164
SF-MVS95.88 5395.88 5495.87 6298.12 7289.65 8095.58 6498.56 791.84 9396.36 7696.68 11094.37 5999.32 6092.41 8199.05 9098.64 94
Vis-MVSNetpermissive95.50 6495.48 6795.56 7698.11 7389.40 8595.35 6998.22 2992.36 7394.11 16498.07 3292.02 10399.44 2393.38 5397.67 21597.85 159
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVG-OURS-SEG-HR95.38 6895.00 8496.51 4598.10 7494.07 1592.46 16098.13 4190.69 12693.75 17596.25 14198.03 297.02 26992.08 8695.55 26598.45 111
EPP-MVSNet93.91 12193.68 12694.59 11398.08 7585.55 16397.44 894.03 24794.22 4394.94 14396.19 14382.07 23899.57 1387.28 19198.89 10898.65 90
SR-MVS96.70 1796.42 2697.54 998.05 7694.69 896.13 4598.07 4895.17 3296.82 6096.73 10795.09 4299.43 2692.99 6998.71 12998.50 106
K. test v393.37 13193.27 13993.66 14598.05 7682.62 19794.35 10886.62 31396.05 2797.51 3798.85 1276.59 27999.65 393.21 5998.20 18198.73 87
lessismore_v093.87 14198.05 7683.77 18580.32 34597.13 4997.91 4277.49 26999.11 8492.62 7898.08 19298.74 85
AllTest94.88 8794.51 10296.00 5398.02 7992.17 4795.26 7498.43 1090.48 13195.04 14096.74 10592.54 9597.86 22685.11 21998.98 9997.98 143
TestCases96.00 5398.02 7992.17 4798.43 1090.48 13195.04 14096.74 10592.54 9597.86 22685.11 21998.98 9997.98 143
anonymousdsp96.74 1596.42 2697.68 798.00 8194.03 2196.97 1597.61 9687.68 18598.45 1898.77 1594.20 6299.50 1996.70 399.40 5199.53 14
XVG-OURS94.72 9594.12 11596.50 4698.00 8194.23 1391.48 20598.17 3590.72 12595.30 12696.47 12087.94 17796.98 27091.41 10897.61 21898.30 120
114514_t90.51 20189.80 21292.63 18398.00 8182.24 20093.40 13497.29 12265.84 33689.40 27194.80 20886.99 19298.75 14283.88 23298.61 13696.89 208
Gipumacopyleft95.31 7395.80 6093.81 14397.99 8490.91 6696.42 3497.95 6996.69 1691.78 23298.85 1291.77 11095.49 30491.72 9899.08 8695.02 270
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVS_3200maxsize96.82 996.65 2097.32 2397.95 8593.82 2996.31 3998.25 2495.51 3196.99 5697.05 8795.63 2199.39 4193.31 5498.88 11098.75 84
DPE-MVS95.89 5195.88 5495.92 6097.93 8689.83 7793.46 13298.30 2092.37 7297.75 2796.95 8995.14 3899.51 1891.74 9799.28 6798.41 114
HPM-MVS++copyleft95.02 8094.39 10496.91 3697.88 8793.58 3394.09 11596.99 14191.05 11892.40 21695.22 18791.03 13499.25 6992.11 8498.69 13297.90 153
EG-PatchMatch MVS94.54 10294.67 9694.14 12997.87 8886.50 14192.00 18396.74 16188.16 17496.93 5797.61 5293.04 8497.90 22091.60 10398.12 18898.03 139
nrg03096.32 3996.55 2495.62 7397.83 8988.55 10295.77 5898.29 2392.68 6598.03 2497.91 4295.13 3998.95 10993.85 3399.49 3699.36 23
UniMVSNet (Re)95.32 7195.15 8095.80 6597.79 9088.91 9292.91 14498.07 4893.46 5896.31 8095.97 15290.14 14999.34 5492.11 8499.64 2199.16 35
VPA-MVSNet95.14 7895.67 6493.58 14897.76 9183.15 19294.58 10097.58 9893.39 5997.05 5498.04 3493.25 7698.51 17589.75 14599.59 2599.08 44
DU-MVS95.28 7495.12 8295.75 6997.75 9288.59 10092.58 15497.81 8193.99 4696.80 6195.90 15390.10 15399.41 3291.60 10399.58 2999.26 28
NR-MVSNet95.28 7495.28 7695.26 8697.75 9287.21 12695.08 8297.37 11093.92 5097.65 2995.90 15390.10 15399.33 5990.11 13599.66 1999.26 28
XXY-MVS92.58 15993.16 14190.84 23997.75 9279.84 23391.87 19296.22 18785.94 21195.53 11797.68 4992.69 9194.48 31783.21 23797.51 22098.21 126
PVSNet_Blended_VisFu91.63 17991.20 18692.94 17197.73 9583.95 18392.14 17697.46 10678.85 28092.35 21994.98 19884.16 22099.08 8786.36 20596.77 24495.79 250
tfpnnormal94.27 11194.87 8892.48 18997.71 9680.88 21894.55 10495.41 21593.70 5396.67 6697.72 4891.40 11998.18 20287.45 18799.18 7898.36 115
HQP_MVS94.26 11293.93 11795.23 8897.71 9688.12 11094.56 10297.81 8191.74 10193.31 18695.59 16886.93 19498.95 10989.26 15598.51 14698.60 101
plane_prior797.71 9688.68 97
UniMVSNet_NR-MVSNet95.35 6995.21 7895.76 6897.69 9988.59 10092.26 17297.84 7894.91 3396.80 6195.78 16290.42 14599.41 3291.60 10399.58 2999.29 27
APDe-MVS96.46 3096.64 2195.93 5897.68 10089.38 8696.90 1798.41 1392.52 6997.43 4097.92 4095.11 4099.50 1994.45 1999.30 6198.92 66
DeepC-MVS91.39 495.43 6695.33 7395.71 7197.67 10190.17 7193.86 12298.02 5887.35 19096.22 8897.99 3794.48 5799.05 9292.73 7599.68 1797.93 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Vis-MVSNet (Re-imp)90.42 20490.16 20691.20 22697.66 10277.32 27294.33 10987.66 30791.20 11592.99 20095.13 19075.40 28298.28 19177.86 28599.19 7697.99 142
ETH3D-3000-0.194.86 8894.55 10095.81 6397.61 10389.72 7894.05 11698.37 1488.09 17595.06 13995.85 15592.58 9399.10 8690.33 12698.99 9898.62 98
FMVSNet194.84 9095.13 8193.97 13497.60 10484.29 17395.99 4896.56 16992.38 7197.03 5598.53 2190.12 15098.98 10288.78 16499.16 7998.65 90
RPSCF95.58 6294.89 8797.62 897.58 10596.30 495.97 5197.53 10292.42 7093.41 18397.78 4591.21 12797.77 23591.06 11197.06 23298.80 79
WR-MVS93.49 12893.72 12392.80 17797.57 10680.03 22990.14 24195.68 20393.70 5396.62 6895.39 18387.21 18899.04 9587.50 18699.64 2199.33 24
CSCG94.69 9694.75 9294.52 11697.55 10787.87 11695.01 8697.57 9992.68 6596.20 9093.44 24891.92 10898.78 13789.11 15999.24 7296.92 206
MCST-MVS92.91 14892.51 15594.10 13097.52 10885.72 16191.36 20997.13 13380.33 26292.91 20394.24 22391.23 12698.72 14789.99 13997.93 20297.86 157
F-COLMAP92.28 16891.06 18995.95 5597.52 10891.90 5393.53 13097.18 12983.98 23688.70 28494.04 23088.41 16898.55 17280.17 26795.99 25797.39 191
9.1494.81 8997.49 11094.11 11498.37 1487.56 18995.38 12296.03 14994.66 5299.08 8790.70 11698.97 103
VDD-MVS94.37 10594.37 10694.40 12497.49 11086.07 15593.97 12093.28 25894.49 3996.24 8697.78 4587.99 17698.79 13388.92 16199.14 8198.34 116
testgi90.38 20691.34 18387.50 29597.49 11071.54 31889.43 26095.16 22088.38 17094.54 15694.68 21292.88 8893.09 33171.60 32297.85 20697.88 155
xxxxxxxxxxxxxcwj95.03 7994.93 8595.33 8297.46 11388.05 11292.04 18098.42 1287.63 18696.36 7696.68 11094.37 5999.32 6092.41 8199.05 9098.64 94
save fliter97.46 11388.05 11292.04 18097.08 13587.63 186
Anonymous2023121196.60 2397.13 1295.00 9597.46 11386.35 14997.11 1498.24 2797.58 798.72 898.97 793.15 8099.15 7893.18 6099.74 1299.50 16
plane_prior197.38 116
APD-MVScopyleft95.00 8194.69 9495.93 5897.38 11690.88 6794.59 9897.81 8189.22 15495.46 12096.17 14593.42 7299.34 5489.30 15198.87 11397.56 181
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF95.95 5597.34 11893.36 3796.55 17291.93 8694.82 14895.39 18391.99 10697.08 26785.53 21297.96 20097.41 187
Anonymous2024052995.50 6495.83 5894.50 11797.33 11985.93 15795.19 7996.77 15996.64 1897.61 3398.05 3393.23 7798.79 13388.60 16899.04 9598.78 81
OMC-MVS94.22 11493.69 12595.81 6397.25 12091.27 6092.27 17197.40 10987.10 19694.56 15595.42 18093.74 6598.11 20786.62 19998.85 11498.06 135
testtj94.81 9294.42 10396.01 5297.23 12190.51 7094.77 9297.85 7791.29 11294.92 14595.66 16691.71 11299.40 3688.07 17698.25 17398.11 134
plane_prior697.21 12288.23 10886.93 194
DP-MVS Recon92.31 16791.88 16893.60 14797.18 12386.87 13491.10 21497.37 11084.92 23092.08 22794.08 22988.59 16598.20 19983.50 23498.14 18595.73 252
新几何193.17 16397.16 12487.29 12394.43 23967.95 33091.29 23794.94 20086.97 19398.23 19781.06 26197.75 20893.98 294
DP-MVS95.62 6095.84 5794.97 9697.16 12488.62 9994.54 10597.64 9296.94 1496.58 7097.32 7393.07 8398.72 14790.45 11998.84 11597.57 179
112190.26 21189.23 21893.34 15697.15 12687.40 12191.94 18694.39 24067.88 33191.02 24394.91 20186.91 19698.59 16681.17 25997.71 21294.02 293
CHOSEN 1792x268887.19 27185.92 27891.00 23397.13 12779.41 24284.51 32595.60 20564.14 33990.07 25894.81 20578.26 26597.14 26673.34 31195.38 27296.46 222
HyFIR lowres test87.19 27185.51 28092.24 19397.12 12880.51 22085.03 31996.06 19266.11 33591.66 23392.98 25870.12 29699.14 8075.29 30495.23 27597.07 200
ab-mvs92.40 16492.62 15391.74 20897.02 12981.65 20695.84 5695.50 21386.95 19892.95 20297.56 5490.70 14197.50 24979.63 27397.43 22396.06 238
tttt051789.81 22188.90 22892.55 18797.00 13079.73 23895.03 8583.65 33689.88 14395.30 12694.79 20953.64 34599.39 4191.99 8998.79 12398.54 104
test22296.95 13185.27 16688.83 27493.61 25265.09 33890.74 24794.85 20484.62 21897.36 22593.91 295
CDPH-MVS92.67 15691.83 16995.18 9096.94 13288.46 10590.70 22397.07 13677.38 28792.34 22195.08 19392.67 9298.88 11685.74 21098.57 13898.20 127
CNVR-MVS94.58 10094.29 10995.46 7996.94 13289.35 8791.81 19896.80 15689.66 14693.90 17395.44 17992.80 9098.72 14792.74 7498.52 14498.32 117
原ACMM192.87 17496.91 13484.22 17697.01 13876.84 29289.64 26994.46 21688.00 17598.70 15481.53 25498.01 19895.70 254
ambc92.98 16796.88 13583.01 19595.92 5396.38 17996.41 7397.48 6088.26 16997.80 23189.96 14098.93 10798.12 133
testdata91.03 23096.87 13682.01 20194.28 24371.55 31592.46 21395.42 18085.65 21297.38 26082.64 24297.27 22793.70 301
OPU-MVS95.15 9196.84 13789.43 8395.21 7595.66 16693.12 8198.06 20986.28 20798.61 13697.95 147
ETH3D cwj APD-0.1693.99 12093.38 13595.80 6596.82 13889.92 7492.72 14998.02 5884.73 23393.65 17995.54 17591.68 11399.22 7288.78 16498.49 14998.26 123
NP-MVS96.82 13887.10 12793.40 249
3Dnovator+92.74 295.86 5495.77 6196.13 5096.81 14090.79 6996.30 4197.82 8096.13 2494.74 15197.23 7791.33 12199.16 7793.25 5898.30 16798.46 110
Test_1112_low_res87.50 26386.58 26890.25 25196.80 14177.75 26687.53 29196.25 18369.73 32586.47 30493.61 24475.67 28197.88 22279.95 26993.20 30595.11 268
testing_294.03 11894.38 10593.00 16696.79 14281.41 21192.87 14696.96 14285.88 21397.06 5397.92 4091.18 13198.71 15391.72 9899.04 9598.87 71
PAPM_NR91.03 19190.81 19491.68 21196.73 14381.10 21593.72 12596.35 18088.19 17388.77 28292.12 27785.09 21597.25 26282.40 24693.90 29796.68 214
1112_ss88.42 24587.41 25391.45 21696.69 14480.99 21689.72 25496.72 16273.37 30787.00 30290.69 29877.38 27198.20 19981.38 25593.72 30095.15 266
v894.65 9895.29 7592.74 17896.65 14579.77 23794.59 9897.17 13091.86 8997.47 3997.93 3988.16 17199.08 8794.32 2299.47 3799.38 21
MVS_111021_HR93.63 12693.42 13494.26 12796.65 14586.96 13389.30 26596.23 18588.36 17193.57 18194.60 21393.45 6997.77 23590.23 13198.38 15598.03 139
ANet_high94.83 9196.28 3390.47 24596.65 14573.16 30994.33 10998.74 596.39 2298.09 2398.93 893.37 7398.70 15490.38 12299.68 1799.53 14
SD-MVS95.19 7795.73 6293.55 14996.62 14888.88 9594.67 9598.05 5191.26 11397.25 4796.40 12695.42 2694.36 32192.72 7699.19 7697.40 190
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3 D test640091.91 17491.25 18593.89 13996.59 14984.41 17292.10 17797.72 8978.52 28191.82 23193.78 24188.70 16499.13 8183.61 23398.39 15398.14 130
PM-MVS93.33 13292.67 15295.33 8296.58 15094.06 1692.26 17292.18 27885.92 21296.22 8896.61 11585.64 21395.99 29790.35 12498.23 17695.93 243
v1094.68 9795.27 7792.90 17396.57 15180.15 22394.65 9797.57 9990.68 12797.43 4098.00 3688.18 17099.15 7894.84 1599.55 3299.41 19
Anonymous20240521192.58 15992.50 15692.83 17696.55 15283.22 19092.43 16291.64 28694.10 4595.59 11496.64 11381.88 24297.50 24985.12 21898.52 14497.77 166
PLCcopyleft85.34 1590.40 20588.92 22694.85 9996.53 15390.02 7291.58 20396.48 17580.16 26386.14 30692.18 27485.73 21098.25 19676.87 29594.61 28896.30 228
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS88.58 1092.49 16391.75 17394.73 10496.50 15489.69 7992.91 14497.68 9078.02 28592.79 20594.10 22890.85 13597.96 21984.76 22598.16 18396.54 215
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
NCCC94.08 11793.54 13195.70 7296.49 15589.90 7692.39 16496.91 14990.64 12892.33 22294.60 21390.58 14498.96 10790.21 13297.70 21398.23 124
TAMVS90.16 21389.05 22293.49 15496.49 15586.37 14790.34 23492.55 27380.84 26092.99 20094.57 21581.94 24198.20 19973.51 31098.21 17995.90 246
TEST996.45 15789.46 8190.60 22596.92 14779.09 27690.49 25094.39 21991.31 12298.88 116
train_agg92.71 15591.83 16995.35 8096.45 15789.46 8190.60 22596.92 14779.37 27190.49 25094.39 21991.20 12898.88 11688.66 16798.43 15197.72 170
test_896.37 15989.14 8890.51 22896.89 15079.37 27190.42 25294.36 22191.20 12898.82 126
CLD-MVS91.82 17591.41 18193.04 16496.37 15983.65 18686.82 30597.29 12284.65 23492.27 22389.67 31092.20 10097.85 22883.95 23199.47 3797.62 177
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC96.36 16191.37 20687.16 19388.81 278
ACMP_Plane96.36 16191.37 20687.16 19388.81 278
HQP-MVS92.09 17191.49 17993.88 14096.36 16184.89 16891.37 20697.31 11987.16 19388.81 27893.40 24984.76 21698.60 16486.55 20197.73 20998.14 130
v2v48293.29 13393.63 12792.29 19196.35 16478.82 25391.77 20096.28 18188.45 16895.70 11196.26 14086.02 20898.90 11393.02 6798.81 12199.14 37
MSLP-MVS++93.25 13893.88 11891.37 21896.34 16582.81 19693.11 13897.74 8789.37 15094.08 16695.29 18690.40 14896.35 29290.35 12498.25 17394.96 271
thisisatest053088.69 24287.52 25292.20 19496.33 16679.36 24392.81 14784.01 33586.44 20293.67 17892.68 26553.62 34699.25 6989.65 14798.45 15098.00 141
FPMVS84.50 28883.28 29188.16 28896.32 16794.49 1185.76 31485.47 32583.09 24485.20 31094.26 22263.79 32386.58 34563.72 34091.88 32183.40 340
Anonymous2023120688.77 24088.29 23790.20 25596.31 16878.81 25489.56 25893.49 25674.26 30292.38 21795.58 17182.21 23595.43 30772.07 31898.75 12896.34 226
MVP-Stereo90.07 21788.92 22693.54 15196.31 16886.49 14290.93 21795.59 20879.80 26491.48 23495.59 16880.79 24997.39 25878.57 28391.19 32396.76 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v114493.50 12793.81 11992.57 18696.28 17079.61 24091.86 19696.96 14286.95 19895.91 10396.32 13587.65 18098.96 10793.51 4398.88 11099.13 38
LFMVS91.33 18791.16 18891.82 20596.27 17179.36 24395.01 8685.61 32496.04 2894.82 14897.06 8672.03 29398.46 18284.96 22298.70 13197.65 175
VNet92.67 15692.96 14291.79 20696.27 17180.15 22391.95 18494.98 22392.19 8094.52 15796.07 14787.43 18497.39 25884.83 22398.38 15597.83 160
IterMVS-LS93.78 12394.28 11092.27 19296.27 17179.21 24891.87 19296.78 15791.77 9996.57 7197.07 8587.15 18998.74 14591.99 8999.03 9798.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14892.87 15093.29 13691.62 21296.25 17477.72 26791.28 21095.05 22189.69 14595.93 10296.04 14887.34 18598.38 18590.05 13897.99 19998.78 81
MVS_111021_LR93.66 12593.28 13894.80 10196.25 17490.95 6590.21 23795.43 21487.91 17793.74 17794.40 21892.88 8896.38 29090.39 12198.28 16897.07 200
agg_prior192.60 15891.76 17295.10 9396.20 17688.89 9390.37 23296.88 15179.67 26890.21 25494.41 21791.30 12398.78 13788.46 16998.37 16097.64 176
agg_prior96.20 17688.89 9396.88 15190.21 25498.78 137
旧先验196.20 17684.17 17894.82 22995.57 17289.57 15897.89 20496.32 227
CNLPA91.72 17791.20 18693.26 16096.17 17991.02 6391.14 21295.55 21190.16 13890.87 24493.56 24686.31 20494.40 32079.92 27297.12 23194.37 284
v119293.49 12893.78 12192.62 18496.16 18079.62 23991.83 19797.22 12886.07 20996.10 9696.38 13187.22 18799.02 9894.14 2998.88 11099.22 31
thres100view90087.35 26686.89 26388.72 27896.14 18173.09 31093.00 14185.31 32792.13 8193.26 19190.96 29363.42 32498.28 19171.27 32496.54 24994.79 274
DeepC-MVS_fast89.96 793.73 12493.44 13394.60 11296.14 18187.90 11593.36 13597.14 13185.53 21893.90 17395.45 17891.30 12398.59 16689.51 14898.62 13597.31 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS89.35 22688.40 23592.18 19796.13 18384.20 17786.96 30096.15 19175.40 29887.36 29991.55 28683.30 22398.01 21482.17 24996.62 24894.32 286
baseline94.26 11294.80 9092.64 18196.08 18480.99 21693.69 12698.04 5590.80 12494.89 14696.32 13593.19 7898.48 18091.68 10198.51 14698.43 112
PCF-MVS84.52 1789.12 23187.71 24993.34 15696.06 18585.84 15986.58 31297.31 11968.46 32993.61 18093.89 23787.51 18398.52 17467.85 33398.11 18995.66 256
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14419293.20 14193.54 13192.16 19896.05 18678.26 26091.95 18497.14 13184.98 22995.96 9996.11 14687.08 19199.04 9593.79 3498.84 11599.17 34
thres600view787.66 25887.10 26189.36 26896.05 18673.17 30892.72 14985.31 32791.89 8893.29 18890.97 29263.42 32498.39 18373.23 31296.99 23996.51 217
casdiffmvs94.32 10994.80 9092.85 17596.05 18681.44 21092.35 16798.05 5191.53 10895.75 10796.80 10093.35 7498.49 17691.01 11298.32 16498.64 94
MIMVSNet87.13 27386.54 27088.89 27596.05 18676.11 28794.39 10788.51 29881.37 25688.27 28996.75 10472.38 29095.52 30265.71 33895.47 26895.03 269
v192192093.26 13693.61 12892.19 19596.04 19078.31 25991.88 19197.24 12685.17 22396.19 9296.19 14386.76 19999.05 9294.18 2898.84 11599.22 31
v124093.29 13393.71 12492.06 20196.01 19177.89 26591.81 19897.37 11085.12 22596.69 6596.40 12686.67 20099.07 9194.51 1898.76 12699.22 31
BH-untuned90.68 19890.90 19090.05 25995.98 19279.57 24190.04 24494.94 22587.91 17794.07 16793.00 25787.76 17997.78 23479.19 27995.17 27692.80 313
DeepPCF-MVS90.46 694.20 11593.56 13096.14 4995.96 19392.96 4089.48 25997.46 10685.14 22496.23 8795.42 18093.19 7898.08 20890.37 12398.76 12697.38 193
test_prior393.29 13392.85 14594.61 10895.95 19487.23 12490.21 23797.36 11589.33 15290.77 24594.81 20590.41 14698.68 15688.21 17098.55 13997.93 149
test_prior94.61 10895.95 19487.23 12497.36 11598.68 15697.93 149
test1294.43 12395.95 19486.75 13696.24 18489.76 26789.79 15798.79 13397.95 20197.75 169
LCM-MVSNet-Re94.20 11594.58 9993.04 16495.91 19783.13 19393.79 12399.19 292.00 8398.84 598.04 3493.64 6699.02 9881.28 25698.54 14296.96 205
PatchMatch-RL89.18 22988.02 24692.64 18195.90 19892.87 4288.67 28091.06 28980.34 26190.03 25991.67 28383.34 22294.42 31976.35 29994.84 28290.64 329
CS-MVS92.54 16292.31 15993.23 16195.89 19984.07 18193.58 12998.48 888.60 16690.41 25386.23 33292.00 10499.35 5087.54 18598.06 19396.26 230
ETV-MVS92.99 14692.74 14993.72 14495.86 20086.30 15092.33 16897.84 7891.70 10492.81 20486.17 33392.22 9999.19 7588.03 17797.73 20995.66 256
TSAR-MVS + GP.93.07 14492.41 15895.06 9495.82 20190.87 6890.97 21692.61 27288.04 17694.61 15493.79 24088.08 17297.81 23089.41 15098.39 15396.50 220
QAPM92.88 14992.77 14793.22 16295.82 20183.31 18896.45 3197.35 11783.91 23793.75 17596.77 10189.25 16198.88 11684.56 22797.02 23497.49 183
EIA-MVS92.35 16692.03 16493.30 15995.81 20383.97 18292.80 14898.17 3587.71 18389.79 26687.56 32291.17 13299.18 7687.97 17897.27 22796.77 212
tfpn200view987.05 27486.52 27188.67 27995.77 20472.94 31191.89 18986.00 31990.84 12192.61 20989.80 30563.93 32198.28 19171.27 32496.54 24994.79 274
thres40087.20 27086.52 27189.24 27295.77 20472.94 31191.89 18986.00 31990.84 12192.61 20989.80 30563.93 32198.28 19171.27 32496.54 24996.51 217
pmmvs-eth3d91.54 18190.73 19793.99 13295.76 20687.86 11790.83 21993.98 25078.23 28494.02 17196.22 14282.62 23396.83 27686.57 20098.33 16297.29 197
jason89.17 23088.32 23691.70 21095.73 20780.07 22688.10 28393.22 25971.98 31490.09 25692.79 26178.53 26398.56 17087.43 18897.06 23296.46 222
jason: jason.
alignmvs93.26 13692.85 14594.50 11795.70 20887.45 12093.45 13395.76 20191.58 10695.25 13092.42 27281.96 24098.72 14791.61 10297.87 20597.33 195
xiu_mvs_v1_base_debu91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
xiu_mvs_v1_base91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
xiu_mvs_v1_base_debi91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
PHI-MVS94.34 10893.80 12095.95 5595.65 21291.67 5894.82 9097.86 7487.86 18093.04 19994.16 22791.58 11598.78 13790.27 12998.96 10597.41 187
LF4IMVS92.72 15492.02 16594.84 10095.65 21291.99 5192.92 14396.60 16785.08 22792.44 21493.62 24386.80 19896.35 29286.81 19498.25 17396.18 234
test20.0390.80 19490.85 19390.63 24295.63 21479.24 24689.81 25392.87 26489.90 14294.39 15996.40 12685.77 20995.27 31273.86 30999.05 9097.39 191
TinyColmap92.00 17392.76 14889.71 26295.62 21577.02 27590.72 22296.17 19087.70 18495.26 12996.29 13792.54 9596.45 28781.77 25198.77 12595.66 256
canonicalmvs94.59 9994.69 9494.30 12695.60 21687.03 13095.59 6398.24 2791.56 10795.21 13392.04 27894.95 4898.66 15891.45 10797.57 21997.20 199
AdaColmapbinary91.63 17991.36 18292.47 19095.56 21786.36 14892.24 17496.27 18288.88 16089.90 26292.69 26491.65 11498.32 18977.38 29297.64 21692.72 315
UnsupCasMVSNet_bld88.50 24488.03 24589.90 26095.52 21878.88 25287.39 29394.02 24979.32 27493.06 19794.02 23280.72 25094.27 32275.16 30593.08 30996.54 215
3Dnovator92.54 394.80 9394.90 8694.47 12095.47 21987.06 12896.63 2397.28 12491.82 9694.34 16297.41 6390.60 14398.65 16092.47 8098.11 18997.70 171
Fast-Effi-MVS+91.28 18990.86 19292.53 18895.45 22082.53 19889.25 26896.52 17385.00 22889.91 26188.55 31892.94 8598.84 12484.72 22695.44 26996.22 232
GBi-Net93.21 13992.96 14293.97 13495.40 22184.29 17395.99 4896.56 16988.63 16395.10 13598.53 2181.31 24598.98 10286.74 19598.38 15598.65 90
test193.21 13992.96 14293.97 13495.40 22184.29 17395.99 4896.56 16988.63 16395.10 13598.53 2181.31 24598.98 10286.74 19598.38 15598.65 90
FMVSNet292.78 15292.73 15192.95 17095.40 22181.98 20294.18 11395.53 21288.63 16396.05 9797.37 6681.31 24598.81 13187.38 19098.67 13398.06 135
CDS-MVSNet89.55 22388.22 24193.53 15295.37 22486.49 14289.26 26693.59 25379.76 26691.15 24192.31 27377.12 27498.38 18577.51 29097.92 20395.71 253
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4293.43 13093.58 12992.97 16895.34 22581.22 21392.67 15296.49 17487.25 19296.20 9096.37 13287.32 18698.85 12392.39 8398.21 17998.85 75
Patchmatch-RL test88.81 23988.52 23289.69 26395.33 22679.94 23186.22 31392.71 26978.46 28295.80 10594.18 22666.25 31195.33 31089.22 15798.53 14393.78 298
BH-RMVSNet90.47 20390.44 20290.56 24495.21 22778.65 25789.15 26993.94 25188.21 17292.74 20694.22 22486.38 20397.88 22278.67 28295.39 27195.14 267
Effi-MVS+92.79 15192.74 14992.94 17195.10 22883.30 18994.00 11897.53 10291.36 11189.35 27290.65 30094.01 6498.66 15887.40 18995.30 27396.88 209
USDC89.02 23289.08 22188.84 27695.07 22974.50 30088.97 27196.39 17873.21 30893.27 19096.28 13882.16 23796.39 28977.55 28998.80 12295.62 259
WTY-MVS86.93 27686.50 27388.24 28794.96 23074.64 29687.19 29692.07 28378.29 28388.32 28891.59 28578.06 26694.27 32274.88 30693.15 30795.80 249
PS-MVSNAJ88.86 23888.99 22588.48 28394.88 23174.71 29586.69 30895.60 20580.88 25887.83 29487.37 32590.77 13698.82 12682.52 24494.37 29191.93 321
MG-MVS89.54 22489.80 21288.76 27794.88 23172.47 31589.60 25692.44 27585.82 21489.48 27095.98 15182.85 22897.74 23981.87 25095.27 27496.08 237
xiu_mvs_v2_base89.00 23489.19 21988.46 28494.86 23374.63 29786.97 29995.60 20580.88 25887.83 29488.62 31791.04 13398.81 13182.51 24594.38 29091.93 321
MAR-MVS90.32 21088.87 22994.66 10794.82 23491.85 5494.22 11294.75 23280.91 25787.52 29888.07 32186.63 20197.87 22576.67 29696.21 25594.25 287
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_BlendedMVS90.35 20889.96 21091.54 21594.81 23578.80 25590.14 24196.93 14579.43 27088.68 28595.06 19486.27 20598.15 20580.27 26498.04 19697.68 173
PVSNet_Blended88.74 24188.16 24490.46 24694.81 23578.80 25586.64 30996.93 14574.67 29988.68 28589.18 31486.27 20598.15 20580.27 26496.00 25694.44 283
BH-w/o87.21 26987.02 26287.79 29394.77 23777.27 27387.90 28493.21 26181.74 25589.99 26088.39 32083.47 22196.93 27371.29 32392.43 31589.15 331
LS3D96.11 4695.83 5896.95 3594.75 23894.20 1497.34 997.98 6397.31 1095.32 12596.77 10193.08 8299.20 7491.79 9598.16 18397.44 186
Effi-MVS+-dtu93.90 12292.60 15497.77 494.74 23996.67 394.00 11895.41 21589.94 14091.93 23092.13 27690.12 15098.97 10687.68 18397.48 22197.67 174
mvs-test193.07 14491.80 17196.89 3794.74 23995.83 692.17 17595.41 21589.94 14089.85 26390.59 30190.12 15098.88 11687.68 18395.66 26395.97 241
MVSFormer92.18 17092.23 16092.04 20294.74 23980.06 22797.15 1197.37 11088.98 15688.83 27692.79 26177.02 27599.60 896.41 496.75 24596.46 222
lupinMVS88.34 24787.31 25491.45 21694.74 23980.06 22787.23 29492.27 27771.10 31888.83 27691.15 28977.02 27598.53 17386.67 19896.75 24595.76 251
baseline187.62 26087.31 25488.54 28194.71 24374.27 30393.10 13988.20 30286.20 20692.18 22593.04 25673.21 28895.52 30279.32 27785.82 33595.83 248
MDA-MVSNet-bldmvs91.04 19090.88 19191.55 21494.68 24480.16 22285.49 31692.14 28190.41 13594.93 14495.79 16085.10 21496.93 27385.15 21694.19 29697.57 179
Fast-Effi-MVS+-dtu92.77 15392.16 16194.58 11594.66 24588.25 10792.05 17996.65 16589.62 14790.08 25791.23 28892.56 9498.60 16486.30 20696.27 25496.90 207
UnsupCasMVSNet_eth90.33 20990.34 20490.28 24994.64 24680.24 22189.69 25595.88 19785.77 21593.94 17295.69 16481.99 23992.98 33284.21 23091.30 32297.62 177
OpenMVS_ROBcopyleft85.12 1689.52 22589.05 22290.92 23594.58 24781.21 21491.10 21493.41 25777.03 29193.41 18393.99 23483.23 22497.80 23179.93 27194.80 28393.74 300
OpenMVScopyleft89.45 892.27 16992.13 16392.68 18094.53 24884.10 17995.70 5997.03 13782.44 25191.14 24296.42 12488.47 16798.38 18585.95 20997.47 22295.55 260
thres20085.85 28185.18 28187.88 29294.44 24972.52 31489.08 27086.21 31588.57 16791.44 23588.40 31964.22 31998.00 21568.35 33295.88 26193.12 309
DELS-MVS92.05 17292.16 16191.72 20994.44 24980.13 22587.62 28697.25 12587.34 19192.22 22493.18 25589.54 15998.73 14689.67 14698.20 18196.30 228
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
N_pmnet88.90 23787.25 25693.83 14294.40 25193.81 3184.73 32187.09 31079.36 27393.26 19192.43 27179.29 25691.68 33677.50 29197.22 22996.00 240
pmmvs488.95 23687.70 25092.70 17994.30 25285.60 16287.22 29592.16 28074.62 30089.75 26894.19 22577.97 26796.41 28882.71 24196.36 25396.09 236
new-patchmatchnet88.97 23590.79 19583.50 32094.28 25355.83 35085.34 31793.56 25486.18 20795.47 11895.73 16383.10 22596.51 28585.40 21398.06 19398.16 128
API-MVS91.52 18291.61 17491.26 22294.16 25486.26 15294.66 9694.82 22991.17 11692.13 22691.08 29190.03 15697.06 26879.09 28097.35 22690.45 330
MSDG90.82 19390.67 19891.26 22294.16 25483.08 19486.63 31096.19 18890.60 13091.94 22991.89 27989.16 16295.75 29980.96 26294.51 28994.95 272
TR-MVS87.70 25687.17 25889.27 27094.11 25679.26 24588.69 27891.86 28481.94 25490.69 24889.79 30782.82 22997.42 25572.65 31691.98 31991.14 326
test_yl90.11 21489.73 21591.26 22294.09 25779.82 23490.44 22992.65 27090.90 11993.19 19493.30 25173.90 28598.03 21182.23 24796.87 24095.93 243
DCV-MVSNet90.11 21489.73 21591.26 22294.09 25779.82 23490.44 22992.65 27090.90 11993.19 19493.30 25173.90 28598.03 21182.23 24796.87 24095.93 243
D2MVS89.93 21889.60 21790.92 23594.03 25978.40 25888.69 27894.85 22778.96 27893.08 19695.09 19274.57 28396.94 27188.19 17298.96 10597.41 187
sss87.23 26886.82 26488.46 28493.96 26077.94 26286.84 30392.78 26877.59 28687.61 29791.83 28078.75 25991.92 33577.84 28694.20 29595.52 261
PVSNet76.22 2082.89 29782.37 29684.48 31593.96 26064.38 34378.60 34088.61 29771.50 31684.43 31786.36 33174.27 28494.60 31669.87 33093.69 30194.46 282
IterMVS-SCA-FT91.65 17891.55 17591.94 20393.89 26279.22 24787.56 28993.51 25591.53 10895.37 12396.62 11478.65 26098.90 11391.89 9494.95 27997.70 171
UGNet93.08 14292.50 15694.79 10293.87 26387.99 11495.07 8394.26 24490.64 12887.33 30097.67 5086.89 19798.49 17688.10 17598.71 12997.91 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM81.91 30380.11 31287.31 29793.87 26372.32 31684.02 32993.22 25969.47 32676.13 34589.84 30472.15 29197.23 26353.27 34689.02 32992.37 318
CANet92.38 16591.99 16693.52 15393.82 26583.46 18791.14 21297.00 13989.81 14486.47 30494.04 23087.90 17899.21 7389.50 14998.27 16997.90 153
HY-MVS82.50 1886.81 27785.93 27789.47 26493.63 26677.93 26394.02 11791.58 28775.68 29483.64 32193.64 24277.40 27097.42 25571.70 32192.07 31893.05 310
MVS_Test92.57 16193.29 13690.40 24793.53 26775.85 29092.52 15696.96 14288.73 16192.35 21996.70 10990.77 13698.37 18892.53 7995.49 26796.99 204
EU-MVSNet87.39 26586.71 26789.44 26593.40 26876.11 28794.93 8990.00 29357.17 34595.71 11097.37 6664.77 31897.68 24292.67 7794.37 29194.52 281
MS-PatchMatch88.05 25187.75 24888.95 27393.28 26977.93 26387.88 28592.49 27475.42 29792.57 21193.59 24580.44 25194.24 32481.28 25692.75 31294.69 279
GA-MVS87.70 25686.82 26490.31 24893.27 27077.22 27484.72 32392.79 26785.11 22689.82 26490.07 30266.80 30697.76 23784.56 22794.27 29495.96 242
pmmvs587.87 25387.14 25990.07 25793.26 27176.97 27988.89 27392.18 27873.71 30688.36 28793.89 23776.86 27896.73 27980.32 26396.81 24296.51 217
MVS_030490.96 19290.15 20893.37 15593.17 27287.06 12893.62 12892.43 27689.60 14882.25 32995.50 17682.56 23497.83 22984.41 22997.83 20795.22 264
IterMVS90.18 21290.16 20690.21 25493.15 27375.98 28987.56 28992.97 26386.43 20394.09 16596.40 12678.32 26497.43 25487.87 18094.69 28697.23 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet78.83 31780.60 30873.51 33293.07 27447.37 35187.10 29878.00 34768.94 32777.53 34397.26 7471.45 29494.62 31563.28 34188.74 33078.55 344
diffmvs91.74 17691.93 16791.15 22893.06 27578.17 26188.77 27697.51 10586.28 20592.42 21593.96 23588.04 17497.46 25290.69 11796.67 24797.82 162
ET-MVSNet_ETH3D86.15 27984.27 28691.79 20693.04 27681.28 21287.17 29786.14 31679.57 26983.65 32088.66 31657.10 33998.18 20287.74 18295.40 27095.90 246
FMVSNet390.78 19590.32 20592.16 19893.03 27779.92 23292.54 15594.95 22486.17 20895.10 13596.01 15069.97 29798.75 14286.74 19598.38 15597.82 162
thisisatest051584.72 28782.99 29489.90 26092.96 27875.33 29484.36 32683.42 33777.37 28888.27 28986.65 32753.94 34498.72 14782.56 24397.40 22495.67 255
PAPR87.65 25986.77 26690.27 25092.85 27977.38 27188.56 28196.23 18576.82 29384.98 31289.75 30986.08 20797.16 26572.33 31793.35 30396.26 230
Regformer-194.55 10194.33 10895.19 8992.83 28088.54 10391.87 19295.84 20093.99 4695.95 10095.04 19592.00 10498.79 13393.14 6398.31 16598.23 124
Regformer-294.86 8894.55 10095.77 6792.83 28089.98 7391.87 19296.40 17794.38 4296.19 9295.04 19592.47 9899.04 9593.49 4498.31 16598.28 121
Regformer-394.28 11094.23 11494.46 12192.78 28286.28 15192.39 16494.70 23493.69 5695.97 9895.56 17391.34 12098.48 18093.45 4798.14 18598.62 98
Regformer-494.90 8594.67 9695.59 7492.78 28289.02 9092.39 16495.91 19694.50 3896.41 7395.56 17392.10 10299.01 10094.23 2698.14 18598.74 85
EI-MVSNet-Vis-set94.36 10694.28 11094.61 10892.55 28485.98 15692.44 16194.69 23593.70 5396.12 9595.81 15991.24 12598.86 12193.76 3898.22 17898.98 57
EI-MVSNet-UG-set94.35 10794.27 11294.59 11392.46 28585.87 15892.42 16394.69 23593.67 5796.13 9495.84 15891.20 12898.86 12193.78 3598.23 17699.03 48
FMVSNet587.82 25586.56 26991.62 21292.31 28679.81 23693.49 13194.81 23183.26 24091.36 23696.93 9252.77 34797.49 25176.07 30098.03 19797.55 182
cl_fuxian91.32 18891.42 18091.00 23392.29 28776.79 28187.52 29296.42 17685.76 21694.72 15393.89 23782.73 23098.16 20490.93 11398.55 13998.04 138
MDA-MVSNet_test_wron88.16 25088.23 24087.93 29092.22 28873.71 30580.71 33888.84 29582.52 24994.88 14795.14 18982.70 23193.61 32783.28 23693.80 29996.46 222
YYNet188.17 24988.24 23987.93 29092.21 28973.62 30680.75 33788.77 29682.51 25094.99 14295.11 19182.70 23193.70 32683.33 23593.83 29896.48 221
CANet_DTU89.85 22089.17 22091.87 20492.20 29080.02 23090.79 22095.87 19886.02 21082.53 32891.77 28180.01 25298.57 16985.66 21197.70 21397.01 203
mvs_anonymous90.37 20791.30 18487.58 29492.17 29168.00 32989.84 25294.73 23383.82 23893.22 19397.40 6487.54 18297.40 25787.94 17995.05 27897.34 194
EI-MVSNet92.99 14693.26 14092.19 19592.12 29279.21 24892.32 16994.67 23791.77 9995.24 13195.85 15587.14 19098.49 17691.99 8998.26 17098.86 72
CVMVSNet85.16 28484.72 28286.48 30192.12 29270.19 32392.32 16988.17 30356.15 34690.64 24995.85 15567.97 30196.69 28088.78 16490.52 32692.56 316
eth_miper_zixun_eth90.72 19690.61 19991.05 22992.04 29476.84 28086.91 30196.67 16485.21 22294.41 15893.92 23679.53 25598.26 19589.76 14497.02 23498.06 135
SCA87.43 26487.21 25788.10 28992.01 29571.98 31789.43 26088.11 30482.26 25388.71 28392.83 25978.65 26097.59 24579.61 27493.30 30494.75 276
cl-mvsnet_90.65 19990.56 20090.91 23791.85 29676.98 27886.75 30695.36 21885.53 21894.06 16894.89 20277.36 27397.98 21890.27 12998.98 9997.76 167
cl-mvsnet190.65 19990.56 20090.91 23791.85 29676.99 27786.75 30695.36 21885.52 22094.06 16894.89 20277.37 27297.99 21790.28 12898.97 10397.76 167
our_test_387.55 26187.59 25187.44 29691.76 29870.48 32283.83 33090.55 29279.79 26592.06 22892.17 27578.63 26295.63 30084.77 22494.73 28496.22 232
ppachtmachnet_test88.61 24388.64 23188.50 28291.76 29870.99 32184.59 32492.98 26279.30 27592.38 21793.53 24779.57 25497.45 25386.50 20397.17 23097.07 200
131486.46 27886.33 27486.87 30091.65 30074.54 29891.94 18694.10 24674.28 30184.78 31487.33 32683.03 22695.00 31478.72 28191.16 32491.06 327
miper_ehance_all_eth90.48 20290.42 20390.69 24091.62 30176.57 28386.83 30496.18 18983.38 23994.06 16892.66 26682.20 23698.04 21089.79 14397.02 23497.45 185
RRT_test8_iter0588.21 24888.17 24288.33 28691.62 30166.82 33591.73 20196.60 16786.34 20494.14 16395.38 18547.72 35199.11 8491.78 9698.26 17099.06 46
cascas87.02 27586.28 27589.25 27191.56 30376.45 28484.33 32796.78 15771.01 31986.89 30385.91 33481.35 24496.94 27183.09 23895.60 26494.35 285
baseline283.38 29381.54 30188.90 27491.38 30472.84 31388.78 27581.22 34278.97 27779.82 34087.56 32261.73 33297.80 23174.30 30790.05 32896.05 239
miper_lstm_enhance89.90 21989.80 21290.19 25691.37 30577.50 26983.82 33195.00 22284.84 23193.05 19894.96 19976.53 28095.20 31389.96 14098.67 13397.86 157
IB-MVS77.21 1983.11 29481.05 30489.29 26991.15 30675.85 29085.66 31586.00 31979.70 26782.02 33386.61 32848.26 35098.39 18377.84 28692.22 31693.63 302
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS84.98 28684.30 28587.01 29891.03 30777.69 26891.94 18694.16 24559.36 34484.23 31887.50 32485.66 21196.80 27771.79 31993.05 31086.54 337
CR-MVSNet87.89 25287.12 26090.22 25291.01 30878.93 25092.52 15692.81 26573.08 30989.10 27396.93 9267.11 30397.64 24388.80 16392.70 31394.08 288
RPMNet89.30 22889.00 22490.22 25291.01 30878.93 25092.52 15687.85 30691.91 8789.10 27396.89 9568.84 29897.64 24390.17 13392.70 31394.08 288
new_pmnet81.22 30681.01 30681.86 32490.92 31070.15 32484.03 32880.25 34670.83 32085.97 30789.78 30867.93 30284.65 34667.44 33491.90 32090.78 328
PatchT87.51 26288.17 24285.55 30690.64 31166.91 33192.02 18286.09 31792.20 7989.05 27597.16 8164.15 32096.37 29189.21 15892.98 31193.37 307
Patchmatch-test86.10 28086.01 27686.38 30390.63 31274.22 30489.57 25786.69 31285.73 21789.81 26592.83 25965.24 31691.04 33877.82 28895.78 26293.88 297
PVSNet_070.34 2174.58 31872.96 32079.47 32890.63 31266.24 33673.26 34183.40 33863.67 34178.02 34278.35 34472.53 28989.59 34256.68 34460.05 34882.57 343
PMMVS281.31 30583.44 29074.92 33190.52 31446.49 35269.19 34585.23 33084.30 23587.95 29394.71 21176.95 27784.36 34764.07 33998.09 19193.89 296
tpm84.38 28984.08 28785.30 31090.47 31563.43 34589.34 26385.63 32377.24 29087.62 29695.03 19761.00 33597.30 26179.26 27891.09 32595.16 265
wuyk23d87.83 25490.79 19578.96 32990.46 31688.63 9892.72 14990.67 29191.65 10598.68 1197.64 5196.06 1677.53 34859.84 34299.41 5070.73 345
Patchmtry90.11 21489.92 21190.66 24190.35 31777.00 27692.96 14292.81 26590.25 13794.74 15196.93 9267.11 30397.52 24885.17 21498.98 9997.46 184
CHOSEN 280x42080.04 31477.97 31986.23 30490.13 31874.53 29972.87 34389.59 29466.38 33476.29 34485.32 33656.96 34095.36 30869.49 33194.72 28588.79 334
MVSTER89.32 22788.75 23091.03 23090.10 31976.62 28290.85 21894.67 23782.27 25295.24 13195.79 16061.09 33498.49 17690.49 11898.26 17097.97 146
tpm281.46 30480.35 31084.80 31289.90 32065.14 33990.44 22985.36 32665.82 33782.05 33292.44 27057.94 33896.69 28070.71 32788.49 33192.56 316
cl-mvsnet289.02 23288.50 23390.59 24389.76 32176.45 28486.62 31194.03 24782.98 24792.65 20892.49 26772.05 29297.53 24788.93 16097.02 23497.78 165
test0.0.03 182.48 29981.47 30285.48 30789.70 32273.57 30784.73 32181.64 34183.07 24588.13 29186.61 32862.86 32789.10 34466.24 33790.29 32793.77 299
test-LLR83.58 29283.17 29284.79 31389.68 32366.86 33383.08 33284.52 33283.07 24582.85 32684.78 33762.86 32793.49 32882.85 23994.86 28094.03 291
test-mter81.21 30780.01 31384.79 31389.68 32366.86 33383.08 33284.52 33273.85 30582.85 32684.78 33743.66 35593.49 32882.85 23994.86 28094.03 291
DSMNet-mixed82.21 30181.56 29984.16 31789.57 32570.00 32590.65 22477.66 34854.99 34783.30 32497.57 5377.89 26890.50 34066.86 33695.54 26691.97 320
PatchmatchNetpermissive85.22 28384.64 28386.98 29989.51 32669.83 32690.52 22787.34 30978.87 27987.22 30192.74 26366.91 30596.53 28381.77 25186.88 33494.58 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.88 28989.42 32761.52 34688.74 27787.41 30873.99 30484.96 31394.01 23365.25 31595.53 30178.02 28493.16 306
CostFormer83.09 29582.21 29785.73 30589.27 32867.01 33090.35 23386.47 31470.42 32283.52 32393.23 25461.18 33396.85 27577.21 29388.26 33293.34 308
RRT_MVS91.36 18690.05 20995.29 8589.21 32988.15 10992.51 15994.89 22686.73 20095.54 11695.68 16561.82 33199.30 6294.91 1399.13 8498.43 112
ADS-MVSNet284.01 29182.20 29889.41 26689.04 33076.37 28687.57 28790.98 29072.71 31284.46 31592.45 26868.08 29996.48 28670.58 32883.97 33795.38 262
ADS-MVSNet82.25 30081.55 30084.34 31689.04 33065.30 33787.57 28785.13 33172.71 31284.46 31592.45 26868.08 29992.33 33470.58 32883.97 33795.38 262
tpm cat180.61 31279.46 31484.07 31888.78 33265.06 34189.26 26688.23 30162.27 34281.90 33489.66 31162.70 32995.29 31171.72 32080.60 34491.86 323
CMPMVSbinary68.83 2287.28 26785.67 27992.09 20088.77 33385.42 16490.31 23594.38 24170.02 32488.00 29293.30 25173.78 28794.03 32575.96 30296.54 24996.83 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall88.42 24587.87 24790.07 25788.67 33475.52 29385.10 31895.59 20875.68 29492.49 21289.45 31378.96 25797.88 22287.86 18197.02 23496.81 211
tpmrst82.85 29882.93 29582.64 32287.65 33558.99 34890.14 24187.90 30575.54 29683.93 31991.63 28466.79 30895.36 30881.21 25881.54 34393.57 306
JIA-IIPM85.08 28583.04 29391.19 22787.56 33686.14 15489.40 26284.44 33488.98 15682.20 33097.95 3856.82 34196.15 29476.55 29883.45 33991.30 325
TESTMET0.1,179.09 31678.04 31882.25 32387.52 33764.03 34483.08 33280.62 34470.28 32380.16 33983.22 34044.13 35490.56 33979.95 26993.36 30292.15 319
DWT-MVSNet_test80.74 31079.18 31585.43 30887.51 33866.87 33289.87 25186.01 31874.20 30380.86 33780.62 34348.84 34996.68 28281.54 25383.14 34192.75 314
gg-mvs-nofinetune82.10 30281.02 30585.34 30987.46 33971.04 31994.74 9367.56 35096.44 2179.43 34198.99 645.24 35296.15 29467.18 33592.17 31788.85 333
pmmvs380.83 30978.96 31686.45 30287.23 34077.48 27084.87 32082.31 33963.83 34085.03 31189.50 31249.66 34893.10 33073.12 31495.10 27788.78 335
tpmvs84.22 29083.97 28884.94 31187.09 34165.18 33891.21 21188.35 29982.87 24885.21 30990.96 29365.24 31696.75 27879.60 27685.25 33692.90 312
gm-plane-assit87.08 34259.33 34771.22 31783.58 33997.20 26473.95 308
MVEpermissive59.87 2373.86 31972.65 32177.47 33087.00 34374.35 30161.37 34760.93 35267.27 33269.69 34886.49 33081.24 24872.33 34956.45 34583.45 33985.74 338
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 28284.37 28489.40 26786.30 34474.33 30291.64 20288.26 30084.84 23172.96 34789.85 30371.27 29597.69 24176.60 29797.62 21796.18 234
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dp79.28 31578.62 31781.24 32585.97 34556.45 34986.91 30185.26 32972.97 31081.45 33689.17 31556.01 34395.45 30673.19 31376.68 34591.82 324
EPMVS81.17 30880.37 30983.58 31985.58 34665.08 34090.31 23571.34 34977.31 28985.80 30891.30 28759.38 33692.70 33379.99 26882.34 34292.96 311
E-PMN80.72 31180.86 30780.29 32785.11 34768.77 32872.96 34281.97 34087.76 18283.25 32583.01 34162.22 33089.17 34377.15 29494.31 29382.93 341
GG-mvs-BLEND83.24 32185.06 34871.03 32094.99 8865.55 35174.09 34675.51 34544.57 35394.46 31859.57 34387.54 33384.24 339
EMVS80.35 31380.28 31180.54 32684.73 34969.07 32772.54 34480.73 34387.80 18181.66 33581.73 34262.89 32689.84 34175.79 30394.65 28782.71 342
EPNet89.80 22288.25 23894.45 12283.91 35086.18 15393.87 12187.07 31191.16 11780.64 33894.72 21078.83 25898.89 11585.17 21498.89 10898.28 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS83.00 29681.11 30388.66 28083.81 35186.44 14582.24 33685.65 32261.75 34382.07 33185.64 33579.75 25391.59 33775.99 30193.09 30887.94 336
DeepMVS_CXcopyleft53.83 33370.38 35264.56 34248.52 35433.01 34865.50 34974.21 34656.19 34246.64 35038.45 34870.07 34650.30 346
tmp_tt37.97 32044.33 32218.88 33411.80 35321.54 35463.51 34645.66 3554.23 34951.34 35050.48 34759.08 33722.11 35144.50 34768.35 34713.00 347
test1239.49 32212.01 3241.91 3352.87 3541.30 35582.38 3351.34 3571.36 3502.84 3516.56 3502.45 3560.97 3522.73 3495.56 3493.47 348
testmvs9.02 32311.42 3251.81 3362.77 3551.13 35679.44 3391.90 3561.18 3512.65 3526.80 3491.95 3570.87 3532.62 3503.45 3503.44 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.35 32131.13 3230.00 3370.00 3560.00 3570.00 34895.58 2100.00 3520.00 35391.15 28993.43 710.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.56 32410.09 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35390.77 1360.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.56 32410.08 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35390.69 2980.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_TWO98.10 4291.95 8497.54 3597.25 7595.37 2799.35 5093.29 5599.25 7098.49 107
test_0728_THIRD93.26 6197.40 4397.35 7094.69 5199.34 5493.88 3299.42 4598.89 68
GSMVS94.75 276
test_part10.00 3370.00 3570.00 34898.14 390.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs166.64 30994.75 276
sam_mvs66.41 310
MTGPAbinary97.62 93
test_post190.21 2375.85 35265.36 31496.00 29679.61 274
test_post6.07 35165.74 31395.84 298
patchmatchnet-post91.71 28266.22 31297.59 245
MTMP94.82 9054.62 353
test9_res88.16 17498.40 15297.83 160
agg_prior287.06 19398.36 16197.98 143
test_prior489.91 7590.74 221
test_prior290.21 23789.33 15290.77 24594.81 20590.41 14688.21 17098.55 139
旧先验290.00 24668.65 32892.71 20796.52 28485.15 216
新几何290.02 245
无先验89.94 24795.75 20270.81 32198.59 16681.17 25994.81 273
原ACMM289.34 263
testdata298.03 21180.24 266
segment_acmp92.14 101
testdata188.96 27288.44 169
plane_prior597.81 8198.95 10989.26 15598.51 14698.60 101
plane_prior495.59 168
plane_prior388.43 10690.35 13693.31 186
plane_prior294.56 10291.74 101
plane_prior88.12 11093.01 14088.98 15698.06 193
n20.00 358
nn0.00 358
door-mid92.13 282
test1196.65 165
door91.26 288
HQP5-MVS84.89 168
BP-MVS86.55 201
HQP4-MVS88.81 27898.61 16298.15 129
HQP3-MVS97.31 11997.73 209
HQP2-MVS84.76 216
MDTV_nov1_ep13_2view42.48 35388.45 28267.22 33383.56 32266.80 30672.86 31594.06 290
ACMMP++_ref98.82 119
ACMMP++99.25 70
Test By Simon90.61 142