LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
UA-Net | | | 97.35 4 | 97.24 11 | 97.69 5 | 98.22 67 | 93.87 29 | 98.42 4 | 98.19 31 | 96.95 13 | 95.46 124 | 99.23 4 | 93.45 72 | 99.57 13 | 95.34 12 | 99.89 2 | 99.63 9 |
|
test_part1 | | | 94.39 107 | 94.55 104 | 93.92 141 | 96.14 185 | 82.86 201 | 95.54 69 | 98.09 47 | 95.36 35 | 98.27 20 | 98.36 28 | 75.91 286 | 99.44 23 | 93.41 54 | 99.84 3 | 99.47 17 |
|
PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 122 | 99.13 5 | 84.09 185 | 96.61 24 | 97.97 70 | 97.91 5 | 98.64 13 | 98.13 32 | 95.24 36 | 99.65 3 | 93.39 55 | 99.84 3 | 99.72 2 |
|
WR-MVS_H | | | 96.60 25 | 97.05 14 | 95.24 90 | 99.02 11 | 86.44 150 | 96.78 21 | 98.08 48 | 97.42 8 | 98.48 16 | 97.86 44 | 91.76 115 | 99.63 6 | 94.23 26 | 99.84 3 | 99.66 6 |
|
FC-MVSNet-test | | | 95.32 73 | 95.88 57 | 93.62 150 | 98.49 53 | 81.77 210 | 95.90 57 | 98.32 17 | 93.93 53 | 97.53 37 | 97.56 55 | 88.48 170 | 99.40 40 | 92.91 75 | 99.83 6 | 99.68 4 |
|
PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 111 | 99.16 3 | 84.50 176 | 96.54 27 | 98.05 55 | 98.06 4 | 98.64 13 | 98.25 31 | 95.01 47 | 99.65 3 | 92.95 74 | 99.83 6 | 99.68 4 |
|
DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 109 | 99.13 5 | 84.68 175 | 96.51 28 | 97.94 76 | 98.14 3 | 98.67 12 | 98.32 29 | 95.04 44 | 99.69 2 | 93.27 61 | 99.82 8 | 99.62 10 |
|
CP-MVSNet | | | 96.19 46 | 96.80 17 | 94.38 128 | 98.99 13 | 83.82 189 | 96.31 41 | 97.53 107 | 97.60 6 | 98.34 19 | 97.52 58 | 91.98 111 | 99.63 6 | 93.08 70 | 99.81 9 | 99.70 3 |
|
LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 23 | 93.86 30 | 99.07 2 | 98.98 3 | 97.01 12 | 98.92 4 | 98.78 14 | 95.22 37 | 98.61 168 | 96.85 2 | 99.77 10 | 99.31 27 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v7n | | | 96.82 10 | 97.31 10 | 95.33 84 | 98.54 41 | 86.81 140 | 96.83 18 | 98.07 51 | 96.59 19 | 98.46 17 | 98.43 27 | 92.91 89 | 99.52 17 | 96.25 6 | 99.76 11 | 99.65 8 |
|
TranMVSNet+NR-MVSNet | | | 96.07 50 | 96.26 37 | 95.50 79 | 98.26 65 | 87.69 124 | 93.75 129 | 97.86 78 | 95.96 29 | 97.48 39 | 97.14 83 | 95.33 32 | 99.44 23 | 90.79 118 | 99.76 11 | 99.38 22 |
|
Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 98 | 97.46 117 | 86.35 154 | 97.11 14 | 98.24 27 | 97.58 7 | 98.72 8 | 98.97 7 | 93.15 83 | 99.15 83 | 93.18 64 | 99.74 13 | 99.50 16 |
|
UniMVSNet_ETH3D | | | 97.13 6 | 97.72 3 | 95.35 82 | 99.51 2 | 87.38 127 | 97.70 6 | 97.54 105 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 92 | 90.73 119 | 99.73 14 | 99.59 12 |
|
pmmvs6 | | | 96.80 13 | 97.36 9 | 95.15 94 | 99.12 7 | 87.82 123 | 96.68 22 | 97.86 78 | 96.10 25 | 98.14 23 | 99.28 3 | 97.94 3 | 98.21 205 | 91.38 113 | 99.69 15 | 99.42 19 |
|
FIs | | | 94.90 87 | 95.35 74 | 93.55 153 | 98.28 63 | 81.76 211 | 95.33 75 | 98.14 39 | 93.05 67 | 97.07 51 | 97.18 81 | 87.65 184 | 99.29 68 | 91.72 103 | 99.69 15 | 99.61 11 |
|
OurMVSNet-221017-0 | | | 96.80 13 | 96.75 18 | 96.96 36 | 99.03 10 | 91.85 57 | 97.98 5 | 98.01 64 | 94.15 48 | 98.93 3 | 99.07 5 | 88.07 177 | 99.57 13 | 95.86 9 | 99.69 15 | 99.46 18 |
|
ANet_high | | | 94.83 93 | 96.28 36 | 90.47 251 | 96.65 149 | 73.16 317 | 94.33 114 | 98.74 5 | 96.39 22 | 98.09 24 | 98.93 8 | 93.37 76 | 98.70 159 | 90.38 126 | 99.68 18 | 99.53 14 |
|
DeepC-MVS | | 91.39 4 | 95.43 68 | 95.33 76 | 95.71 73 | 97.67 104 | 90.17 76 | 93.86 127 | 98.02 62 | 87.35 195 | 96.22 92 | 97.99 38 | 94.48 60 | 99.05 97 | 92.73 79 | 99.68 18 | 97.93 153 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
NR-MVSNet | | | 95.28 76 | 95.28 79 | 95.26 89 | 97.75 95 | 87.21 131 | 95.08 86 | 97.37 115 | 93.92 54 | 97.65 30 | 95.90 157 | 90.10 157 | 99.33 64 | 90.11 139 | 99.66 20 | 99.26 29 |
|
Baseline_NR-MVSNet | | | 94.47 106 | 95.09 86 | 92.60 188 | 98.50 52 | 80.82 225 | 92.08 183 | 96.68 168 | 93.82 55 | 96.29 86 | 98.56 20 | 90.10 157 | 97.75 245 | 90.10 141 | 99.66 20 | 99.24 31 |
|
UniMVSNet (Re) | | | 95.32 73 | 95.15 83 | 95.80 67 | 97.79 93 | 88.91 97 | 92.91 149 | 98.07 51 | 93.46 62 | 96.31 84 | 95.97 156 | 90.14 153 | 99.34 59 | 92.11 89 | 99.64 22 | 99.16 36 |
|
WR-MVS | | | 93.49 131 | 93.72 127 | 92.80 180 | 97.57 110 | 80.03 235 | 90.14 246 | 95.68 208 | 93.70 57 | 96.62 72 | 95.39 188 | 87.21 192 | 99.04 100 | 87.50 193 | 99.64 22 | 99.33 25 |
|
MIMVSNet1 | | | 95.52 65 | 95.45 71 | 95.72 72 | 99.14 4 | 89.02 95 | 96.23 46 | 96.87 158 | 93.73 56 | 97.87 26 | 98.49 24 | 90.73 143 | 99.05 97 | 86.43 211 | 99.60 24 | 99.10 44 |
|
ACMH+ | | 88.43 11 | 96.48 30 | 96.82 16 | 95.47 80 | 98.54 41 | 89.06 94 | 95.65 65 | 98.61 6 | 96.10 25 | 98.16 22 | 97.52 58 | 96.90 7 | 98.62 167 | 90.30 131 | 99.60 24 | 98.72 89 |
|
VPA-MVSNet | | | 95.14 80 | 95.67 67 | 93.58 152 | 97.76 94 | 83.15 197 | 94.58 105 | 97.58 102 | 93.39 63 | 97.05 54 | 98.04 35 | 93.25 79 | 98.51 181 | 89.75 149 | 99.59 26 | 99.08 45 |
|
LPG-MVS_test | | | 96.38 40 | 96.23 38 | 96.84 40 | 98.36 60 | 92.13 52 | 95.33 75 | 98.25 24 | 91.78 101 | 97.07 51 | 97.22 79 | 96.38 13 | 99.28 70 | 92.07 92 | 99.59 26 | 99.11 41 |
|
LGP-MVS_train | | | | | 96.84 40 | 98.36 60 | 92.13 52 | | 98.25 24 | 91.78 101 | 97.07 51 | 97.22 79 | 96.38 13 | 99.28 70 | 92.07 92 | 99.59 26 | 99.11 41 |
|
ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 134 | 98.56 36 | 85.33 170 | 96.33 39 | 98.30 20 | 94.66 39 | 98.72 8 | 98.30 30 | 97.51 5 | 98.00 222 | 94.87 14 | 99.59 26 | 98.86 72 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet_NR-MVSNet | | | 95.35 71 | 95.21 81 | 95.76 70 | 97.69 102 | 88.59 105 | 92.26 177 | 97.84 82 | 94.91 37 | 96.80 65 | 95.78 167 | 90.42 148 | 99.41 35 | 91.60 107 | 99.58 30 | 99.29 28 |
|
DU-MVS | | | 95.28 76 | 95.12 85 | 95.75 71 | 97.75 95 | 88.59 105 | 92.58 158 | 97.81 85 | 93.99 50 | 96.80 65 | 95.90 157 | 90.10 157 | 99.41 35 | 91.60 107 | 99.58 30 | 99.26 29 |
|
ACMP | | 88.15 13 | 95.71 60 | 95.43 73 | 96.54 46 | 98.17 70 | 91.73 60 | 94.24 116 | 98.08 48 | 89.46 154 | 96.61 73 | 96.47 124 | 95.85 17 | 99.12 88 | 90.45 123 | 99.56 32 | 98.77 83 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
v10 | | | 94.68 99 | 95.27 80 | 92.90 176 | 96.57 155 | 80.15 229 | 94.65 102 | 97.57 103 | 90.68 131 | 97.43 41 | 98.00 37 | 88.18 174 | 99.15 83 | 94.84 15 | 99.55 33 | 99.41 20 |
|
PS-MVSNAJss | | | 96.01 51 | 96.04 51 | 95.89 63 | 98.82 22 | 88.51 109 | 95.57 68 | 97.88 77 | 88.72 167 | 98.81 6 | 98.86 10 | 90.77 139 | 99.60 8 | 95.43 11 | 99.53 34 | 99.57 13 |
|
TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 11 | 95.95 5 | 98.61 3 | 98.81 4 | 97.41 9 | 97.28 46 | 98.46 25 | 94.62 56 | 98.84 130 | 94.64 17 | 99.53 34 | 98.99 53 |
|
IS-MVSNet | | | 94.49 105 | 94.35 111 | 94.92 100 | 98.25 66 | 86.46 149 | 97.13 13 | 94.31 247 | 96.24 23 | 96.28 89 | 96.36 137 | 82.88 232 | 99.35 55 | 88.19 179 | 99.52 36 | 98.96 60 |
|
nrg030 | | | 96.32 41 | 96.55 26 | 95.62 75 | 97.83 92 | 88.55 107 | 95.77 61 | 98.29 23 | 92.68 69 | 98.03 25 | 97.91 42 | 95.13 40 | 98.95 115 | 93.85 33 | 99.49 37 | 99.36 24 |
|
MP-MVS-pluss | | | 96.08 49 | 95.92 56 | 96.57 45 | 99.06 9 | 91.21 64 | 93.25 141 | 98.32 17 | 87.89 184 | 96.86 62 | 97.38 66 | 95.55 24 | 99.39 45 | 95.47 10 | 99.47 38 | 99.11 41 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
mvs_tets | | | 96.83 9 | 96.71 19 | 97.17 27 | 98.83 21 | 92.51 48 | 96.58 26 | 97.61 100 | 87.57 193 | 98.80 7 | 98.90 9 | 96.50 10 | 99.59 12 | 96.15 7 | 99.47 38 | 99.40 21 |
|
v8 | | | 94.65 100 | 95.29 78 | 92.74 181 | 96.65 149 | 79.77 243 | 94.59 103 | 97.17 135 | 91.86 93 | 97.47 40 | 97.93 40 | 88.16 175 | 99.08 92 | 94.32 22 | 99.47 38 | 99.38 22 |
|
CLD-MVS | | | 91.82 178 | 91.41 185 | 93.04 168 | 96.37 163 | 83.65 191 | 86.82 310 | 97.29 127 | 84.65 240 | 92.27 230 | 89.67 318 | 92.20 104 | 97.85 235 | 83.95 238 | 99.47 38 | 97.62 181 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 26 | 92.49 49 | 96.44 33 | 97.42 113 | 86.96 202 | 98.71 10 | 98.72 17 | 95.36 31 | 99.56 16 | 95.92 8 | 99.45 42 | 99.32 26 |
|
test_djsdf | | | 96.62 23 | 96.49 28 | 97.01 33 | 98.55 39 | 91.77 59 | 97.15 11 | 97.37 115 | 88.98 161 | 98.26 21 | 98.86 10 | 93.35 77 | 99.60 8 | 96.41 4 | 99.45 42 | 99.66 6 |
|
CP-MVS | | | 96.44 35 | 96.08 48 | 97.54 11 | 98.29 62 | 94.62 13 | 96.80 19 | 98.08 48 | 92.67 71 | 95.08 142 | 96.39 134 | 94.77 53 | 99.42 28 | 93.17 65 | 99.44 44 | 98.58 104 |
|
COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 23 | 97.13 28 | 98.38 57 | 94.31 15 | 96.79 20 | 98.32 17 | 96.69 16 | 96.86 62 | 97.56 55 | 95.48 25 | 98.77 147 | 90.11 139 | 99.44 44 | 98.31 121 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test_0728_THIRD | | | | | | | | | | 93.26 65 | 97.40 44 | 97.35 71 | 94.69 54 | 99.34 59 | 93.88 32 | 99.42 46 | 98.89 69 |
|
zzz-MVS | | | 96.47 31 | 96.14 44 | 97.47 15 | 98.95 15 | 94.05 21 | 93.69 131 | 97.62 97 | 94.46 44 | 96.29 86 | 96.94 93 | 93.56 70 | 99.37 52 | 94.29 24 | 99.42 46 | 98.99 53 |
|
MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 15 | 94.05 21 | 95.88 58 | 97.62 97 | 94.46 44 | 96.29 86 | 96.94 93 | 93.56 70 | 99.37 52 | 94.29 24 | 99.42 46 | 98.99 53 |
|
pm-mvs1 | | | 95.43 68 | 95.94 54 | 93.93 140 | 98.38 57 | 85.08 172 | 95.46 72 | 97.12 139 | 91.84 97 | 97.28 46 | 98.46 25 | 95.30 34 | 97.71 247 | 90.17 137 | 99.42 46 | 98.99 53 |
|
XVG-ACMP-BASELINE | | | 95.68 61 | 95.34 75 | 96.69 43 | 98.40 55 | 93.04 41 | 94.54 110 | 98.05 55 | 90.45 137 | 96.31 84 | 96.76 107 | 92.91 89 | 98.72 153 | 91.19 114 | 99.42 46 | 98.32 119 |
|
wuyk23d | | | 87.83 260 | 90.79 199 | 78.96 337 | 90.46 324 | 88.63 103 | 92.72 153 | 90.67 300 | 91.65 109 | 98.68 11 | 97.64 52 | 96.06 16 | 77.53 357 | 59.84 352 | 99.41 51 | 70.73 354 |
|
anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 7 | 98.00 84 | 94.03 24 | 96.97 15 | 97.61 100 | 87.68 190 | 98.45 18 | 98.77 15 | 94.20 65 | 99.50 19 | 96.70 3 | 99.40 52 | 99.53 14 |
|
SixPastTwentyTwo | | | 94.91 86 | 95.21 81 | 93.98 136 | 98.52 44 | 83.19 196 | 95.93 55 | 94.84 233 | 94.86 38 | 98.49 15 | 98.74 16 | 81.45 248 | 99.60 8 | 94.69 16 | 99.39 53 | 99.15 37 |
|
HPM-MVS_fast | | | 97.01 7 | 96.89 15 | 97.39 22 | 99.12 7 | 93.92 27 | 97.16 10 | 98.17 35 | 93.11 66 | 96.48 76 | 97.36 70 | 96.92 6 | 99.34 59 | 94.31 23 | 99.38 54 | 98.92 67 |
|
HPM-MVS |  | | 96.81 12 | 96.62 23 | 97.36 24 | 98.89 18 | 93.53 37 | 97.51 7 | 98.44 9 | 92.35 78 | 95.95 104 | 96.41 129 | 96.71 8 | 99.42 28 | 93.99 31 | 99.36 55 | 99.13 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
DIV-MVS_2432*1600 | | | 94.10 120 | 94.73 97 | 92.19 199 | 97.66 105 | 79.49 248 | 94.86 94 | 97.12 139 | 89.59 153 | 96.87 61 | 97.65 51 | 90.40 151 | 98.34 195 | 89.08 164 | 99.35 56 | 98.75 84 |
|
ACMMP_NAP | | | 96.21 45 | 96.12 46 | 96.49 49 | 98.90 17 | 91.42 62 | 94.57 106 | 98.03 60 | 90.42 138 | 96.37 79 | 97.35 71 | 95.68 19 | 99.25 74 | 94.44 20 | 99.34 57 | 98.80 79 |
|
SteuartSystems-ACMMP | | | 96.40 38 | 96.30 35 | 96.71 42 | 98.63 29 | 91.96 55 | 95.70 62 | 98.01 64 | 93.34 64 | 96.64 71 | 96.57 121 | 94.99 48 | 99.36 54 | 93.48 47 | 99.34 57 | 98.82 77 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 19 | 98.61 32 | 93.88 28 | 96.95 16 | 98.18 32 | 92.26 81 | 96.33 82 | 96.84 103 | 95.10 42 | 99.40 40 | 93.47 48 | 99.33 59 | 99.02 50 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ACMM | | 88.83 9 | 96.30 43 | 96.07 49 | 96.97 35 | 98.39 56 | 92.95 44 | 94.74 98 | 98.03 60 | 90.82 127 | 97.15 49 | 96.85 100 | 96.25 15 | 99.00 107 | 93.10 68 | 99.33 59 | 98.95 61 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DVP-MVS | | | 95.82 57 | 96.18 41 | 94.72 108 | 98.51 45 | 86.69 143 | 95.20 81 | 97.00 145 | 91.85 94 | 97.40 44 | 97.35 71 | 95.58 22 | 99.34 59 | 93.44 51 | 99.31 61 | 98.13 134 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 94.88 101 | 98.55 39 | 86.72 142 | 95.20 81 | 98.22 29 | | | | | 99.38 51 | 93.44 51 | 99.31 61 | 98.53 106 |
|
APDe-MVS | | | 96.46 32 | 96.64 22 | 95.93 60 | 97.68 103 | 89.38 91 | 96.90 17 | 98.41 13 | 92.52 73 | 97.43 41 | 97.92 41 | 95.11 41 | 99.50 19 | 94.45 19 | 99.30 63 | 98.92 67 |
|
SED-MVS | | | 96.00 52 | 96.41 32 | 94.76 106 | 98.51 45 | 86.97 136 | 95.21 79 | 98.10 44 | 91.95 88 | 97.63 31 | 97.25 76 | 96.48 11 | 99.35 55 | 93.29 59 | 99.29 64 | 97.95 151 |
|
IU-MVS | | | | | | 98.51 45 | 86.66 145 | | 96.83 159 | 72.74 321 | 95.83 108 | | | | 93.00 72 | 99.29 64 | 98.64 95 |
|
SMA-MVS |  | | 95.77 58 | 95.54 68 | 96.47 50 | 98.27 64 | 91.19 65 | 95.09 85 | 97.79 89 | 86.48 206 | 97.42 43 | 97.51 60 | 94.47 61 | 99.29 68 | 93.55 42 | 99.29 64 | 98.93 63 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MP-MVS |  | | 96.14 47 | 95.68 66 | 97.51 13 | 98.81 23 | 94.06 19 | 96.10 48 | 97.78 90 | 92.73 68 | 93.48 188 | 96.72 112 | 94.23 64 | 99.42 28 | 91.99 94 | 99.29 64 | 99.05 48 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
test_0402 | | | 95.73 59 | 96.22 39 | 94.26 130 | 98.19 69 | 85.77 165 | 93.24 142 | 97.24 131 | 96.88 15 | 97.69 29 | 97.77 47 | 94.12 66 | 99.13 86 | 91.54 110 | 99.29 64 | 97.88 159 |
|
ZNCC-MVS | | | 96.42 36 | 96.20 40 | 97.07 30 | 98.80 25 | 92.79 46 | 96.08 49 | 98.16 38 | 91.74 105 | 95.34 128 | 96.36 137 | 95.68 19 | 99.44 23 | 94.41 21 | 99.28 69 | 98.97 59 |
|
DPE-MVS | | | 95.89 53 | 95.88 57 | 95.92 62 | 97.93 89 | 89.83 82 | 93.46 137 | 98.30 20 | 92.37 76 | 97.75 28 | 96.95 92 | 95.14 39 | 99.51 18 | 91.74 102 | 99.28 69 | 98.41 116 |
|
mPP-MVS | | | 96.46 32 | 96.05 50 | 97.69 5 | 98.62 30 | 94.65 12 | 96.45 31 | 97.74 91 | 92.59 72 | 95.47 122 | 96.68 114 | 94.50 59 | 99.42 28 | 93.10 68 | 99.26 71 | 98.99 53 |
|
test_241102_TWO | | | | | | | | | 98.10 44 | 91.95 88 | 97.54 36 | 97.25 76 | 95.37 28 | 99.35 55 | 93.29 59 | 99.25 72 | 98.49 109 |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 72 | |
|
CSCG | | | 94.69 98 | 94.75 95 | 94.52 119 | 97.55 111 | 87.87 121 | 95.01 90 | 97.57 103 | 92.68 69 | 96.20 94 | 93.44 254 | 91.92 112 | 98.78 143 | 89.11 163 | 99.24 74 | 96.92 212 |
|
TransMVSNet (Re) | | | 95.27 78 | 96.04 51 | 92.97 171 | 98.37 59 | 81.92 209 | 95.07 87 | 96.76 165 | 93.97 52 | 97.77 27 | 98.57 19 | 95.72 18 | 97.90 227 | 88.89 168 | 99.23 75 | 99.08 45 |
|
abl_6 | | | 97.31 5 | 97.12 13 | 97.86 3 | 98.54 41 | 95.32 7 | 96.61 24 | 98.35 16 | 95.81 30 | 97.55 35 | 97.44 63 | 96.51 9 | 99.40 40 | 94.06 30 | 99.23 75 | 98.85 75 |
|
bset_n11_16_dypcd | | | 89.99 224 | 89.15 227 | 92.53 191 | 94.75 245 | 81.34 217 | 84.19 334 | 87.56 316 | 85.13 230 | 93.77 180 | 92.46 275 | 72.82 295 | 99.01 105 | 92.46 85 | 99.21 77 | 97.23 203 |
|
PGM-MVS | | | 96.32 41 | 95.94 54 | 97.43 19 | 98.59 35 | 93.84 31 | 95.33 75 | 98.30 20 | 91.40 114 | 95.76 110 | 96.87 99 | 95.26 35 | 99.45 22 | 92.77 76 | 99.21 77 | 99.00 51 |
|
SD-MVS | | | 95.19 79 | 95.73 65 | 93.55 153 | 96.62 152 | 88.88 100 | 94.67 100 | 98.05 55 | 91.26 117 | 97.25 48 | 96.40 130 | 95.42 26 | 94.36 330 | 92.72 80 | 99.19 79 | 97.40 195 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
Vis-MVSNet (Re-imp) | | | 90.42 207 | 90.16 210 | 91.20 231 | 97.66 105 | 77.32 280 | 94.33 114 | 87.66 315 | 91.20 119 | 92.99 207 | 95.13 195 | 75.40 288 | 98.28 198 | 77.86 293 | 99.19 79 | 97.99 146 |
|
tfpnnormal | | | 94.27 114 | 94.87 91 | 92.48 193 | 97.71 99 | 80.88 224 | 94.55 109 | 95.41 220 | 93.70 57 | 96.67 70 | 97.72 48 | 91.40 123 | 98.18 209 | 87.45 194 | 99.18 81 | 98.36 117 |
|
FMVSNet1 | | | 94.84 92 | 95.13 84 | 93.97 137 | 97.60 108 | 84.29 178 | 95.99 51 | 96.56 174 | 92.38 75 | 97.03 55 | 98.53 21 | 90.12 154 | 98.98 108 | 88.78 170 | 99.16 82 | 98.65 91 |
|
ACMMPR | | | 96.46 32 | 96.14 44 | 97.41 21 | 98.60 33 | 93.82 32 | 96.30 43 | 97.96 71 | 92.35 78 | 95.57 119 | 96.61 119 | 94.93 50 | 99.41 35 | 93.78 35 | 99.15 83 | 99.00 51 |
|
HFP-MVS | | | 96.39 39 | 96.17 43 | 97.04 31 | 98.51 45 | 93.37 38 | 96.30 43 | 97.98 67 | 92.35 78 | 95.63 116 | 96.47 124 | 95.37 28 | 99.27 72 | 93.78 35 | 99.14 84 | 98.48 110 |
|
#test# | | | 95.89 53 | 95.51 69 | 97.04 31 | 98.51 45 | 93.37 38 | 95.14 84 | 97.98 67 | 89.34 156 | 95.63 116 | 96.47 124 | 95.37 28 | 99.27 72 | 91.99 94 | 99.14 84 | 98.48 110 |
|
VDD-MVS | | | 94.37 108 | 94.37 110 | 94.40 127 | 97.49 114 | 86.07 160 | 93.97 125 | 93.28 263 | 94.49 43 | 96.24 90 | 97.78 45 | 87.99 180 | 98.79 139 | 88.92 166 | 99.14 84 | 98.34 118 |
|
RRT_MVS | | | 91.36 189 | 90.05 214 | 95.29 88 | 89.21 337 | 88.15 114 | 92.51 163 | 94.89 231 | 86.73 205 | 95.54 120 | 95.68 170 | 61.82 339 | 99.30 67 | 94.91 13 | 99.13 87 | 98.43 114 |
|
region2R | | | 96.41 37 | 96.09 47 | 97.38 23 | 98.62 30 | 93.81 34 | 96.32 40 | 97.96 71 | 92.26 81 | 95.28 132 | 96.57 121 | 95.02 46 | 99.41 35 | 93.63 39 | 99.11 88 | 98.94 62 |
|
Gipuma |  | | 95.31 75 | 95.80 63 | 93.81 147 | 97.99 87 | 90.91 69 | 96.42 34 | 97.95 73 | 96.69 16 | 91.78 239 | 98.85 12 | 91.77 114 | 95.49 313 | 91.72 103 | 99.08 89 | 95.02 277 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
GST-MVS | | | 96.24 44 | 95.99 53 | 97.00 34 | 98.65 28 | 92.71 47 | 95.69 64 | 98.01 64 | 92.08 86 | 95.74 112 | 96.28 142 | 95.22 37 | 99.42 28 | 93.17 65 | 99.06 90 | 98.88 71 |
|
OPM-MVS | | | 95.61 63 | 95.45 71 | 96.08 53 | 98.49 53 | 91.00 67 | 92.65 157 | 97.33 123 | 90.05 143 | 96.77 67 | 96.85 100 | 95.04 44 | 98.56 176 | 92.77 76 | 99.06 90 | 98.70 90 |
|
VPNet | | | 93.08 145 | 93.76 126 | 91.03 235 | 98.60 33 | 75.83 300 | 91.51 209 | 95.62 209 | 91.84 97 | 95.74 112 | 97.10 85 | 89.31 164 | 98.32 196 | 85.07 228 | 99.06 90 | 98.93 63 |
|
xxxxxxxxxxxxxcwj | | | 95.03 81 | 94.93 88 | 95.33 84 | 97.46 117 | 88.05 117 | 92.04 185 | 98.42 12 | 87.63 191 | 96.36 80 | 96.68 114 | 94.37 62 | 99.32 65 | 92.41 86 | 99.05 93 | 98.64 95 |
|
SF-MVS | | | 95.88 55 | 95.88 57 | 95.87 64 | 98.12 72 | 89.65 85 | 95.58 67 | 98.56 7 | 91.84 97 | 96.36 80 | 96.68 114 | 94.37 62 | 99.32 65 | 92.41 86 | 99.05 93 | 98.64 95 |
|
XVS | | | 96.49 29 | 96.18 41 | 97.44 17 | 98.56 36 | 93.99 25 | 96.50 29 | 97.95 73 | 94.58 40 | 94.38 165 | 96.49 123 | 94.56 57 | 99.39 45 | 93.57 40 | 99.05 93 | 98.93 63 |
|
X-MVStestdata | | | 90.70 200 | 88.45 240 | 97.44 17 | 98.56 36 | 93.99 25 | 96.50 29 | 97.95 73 | 94.58 40 | 94.38 165 | 26.89 358 | 94.56 57 | 99.39 45 | 93.57 40 | 99.05 93 | 98.93 63 |
|
test20.03 | | | 90.80 197 | 90.85 197 | 90.63 248 | 95.63 220 | 79.24 253 | 89.81 258 | 92.87 269 | 89.90 146 | 94.39 164 | 96.40 130 | 85.77 213 | 95.27 321 | 73.86 319 | 99.05 93 | 97.39 196 |
|
Anonymous20240529 | | | 95.50 66 | 95.83 61 | 94.50 120 | 97.33 123 | 85.93 162 | 95.19 83 | 96.77 164 | 96.64 18 | 97.61 34 | 98.05 34 | 93.23 80 | 98.79 139 | 88.60 175 | 99.04 98 | 98.78 81 |
|
IterMVS-LS | | | 93.78 126 | 94.28 114 | 92.27 196 | 96.27 175 | 79.21 255 | 91.87 197 | 96.78 162 | 91.77 103 | 96.57 75 | 97.07 86 | 87.15 193 | 98.74 151 | 91.99 94 | 99.03 99 | 98.86 72 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ETH3D-3000-0.1 | | | 94.86 90 | 94.55 104 | 95.81 65 | 97.61 107 | 89.72 83 | 94.05 121 | 98.37 14 | 88.09 180 | 95.06 143 | 95.85 159 | 92.58 97 | 99.10 91 | 90.33 130 | 98.99 100 | 98.62 99 |
|
cl-mvsnet_ | | | 90.65 202 | 90.56 204 | 90.91 242 | 91.85 304 | 76.98 286 | 86.75 311 | 95.36 223 | 85.53 223 | 94.06 173 | 94.89 207 | 77.36 278 | 97.98 225 | 90.27 133 | 98.98 101 | 97.76 171 |
|
AllTest | | | 94.88 89 | 94.51 107 | 96.00 55 | 98.02 82 | 92.17 50 | 95.26 78 | 98.43 10 | 90.48 135 | 95.04 144 | 96.74 109 | 92.54 99 | 97.86 233 | 85.11 226 | 98.98 101 | 97.98 147 |
|
TestCases | | | | | 96.00 55 | 98.02 82 | 92.17 50 | | 98.43 10 | 90.48 135 | 95.04 144 | 96.74 109 | 92.54 99 | 97.86 233 | 85.11 226 | 98.98 101 | 97.98 147 |
|
Patchmtry | | | 90.11 218 | 89.92 216 | 90.66 247 | 90.35 325 | 77.00 284 | 92.96 147 | 92.81 270 | 90.25 141 | 94.74 156 | 96.93 95 | 67.11 310 | 97.52 254 | 85.17 221 | 98.98 101 | 97.46 189 |
|
cl-mvsnet1 | | | 90.65 202 | 90.56 204 | 90.91 242 | 91.85 304 | 76.99 285 | 86.75 311 | 95.36 223 | 85.52 225 | 94.06 173 | 94.89 207 | 77.37 277 | 97.99 224 | 90.28 132 | 98.97 105 | 97.76 171 |
|
9.14 | | | | 94.81 92 | | 97.49 114 | | 94.11 119 | 98.37 14 | 87.56 194 | 95.38 126 | 96.03 153 | 94.66 55 | 99.08 92 | 90.70 120 | 98.97 105 | |
|
D2MVS | | | 89.93 225 | 89.60 223 | 90.92 240 | 94.03 267 | 78.40 265 | 88.69 283 | 94.85 232 | 78.96 288 | 93.08 203 | 95.09 197 | 74.57 289 | 96.94 277 | 88.19 179 | 98.96 107 | 97.41 192 |
|
PHI-MVS | | | 94.34 111 | 93.80 124 | 95.95 57 | 95.65 218 | 91.67 61 | 94.82 95 | 97.86 78 | 87.86 185 | 93.04 206 | 94.16 232 | 91.58 119 | 98.78 143 | 90.27 133 | 98.96 107 | 97.41 192 |
|
ambc | | | | | 92.98 170 | 96.88 140 | 83.01 200 | 95.92 56 | 96.38 184 | | 96.41 77 | 97.48 61 | 88.26 173 | 97.80 238 | 89.96 144 | 98.93 109 | 98.12 135 |
|
EPNet | | | 89.80 229 | 88.25 245 | 94.45 125 | 83.91 358 | 86.18 158 | 93.87 126 | 87.07 320 | 91.16 121 | 80.64 348 | 94.72 215 | 78.83 263 | 98.89 121 | 85.17 221 | 98.89 110 | 98.28 123 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPP-MVSNet | | | 93.91 124 | 93.68 130 | 94.59 116 | 98.08 75 | 85.55 168 | 97.44 8 | 94.03 252 | 94.22 47 | 94.94 147 | 96.19 147 | 82.07 243 | 99.57 13 | 87.28 198 | 98.89 110 | 98.65 91 |
|
v1192 | | | 93.49 131 | 93.78 125 | 92.62 187 | 96.16 184 | 79.62 245 | 91.83 202 | 97.22 133 | 86.07 214 | 96.10 100 | 96.38 135 | 87.22 191 | 99.02 103 | 94.14 29 | 98.88 112 | 99.22 32 |
|
v1144 | | | 93.50 130 | 93.81 123 | 92.57 189 | 96.28 174 | 79.61 246 | 91.86 201 | 96.96 148 | 86.95 203 | 95.91 107 | 96.32 139 | 87.65 184 | 98.96 113 | 93.51 43 | 98.88 112 | 99.13 39 |
|
APD-MVS_3200maxsize | | | 96.82 10 | 96.65 21 | 97.32 25 | 97.95 88 | 93.82 32 | 96.31 41 | 98.25 24 | 95.51 34 | 96.99 58 | 97.05 88 | 95.63 21 | 99.39 45 | 93.31 58 | 98.88 112 | 98.75 84 |
|
APD-MVS |  | | 95.00 83 | 94.69 98 | 95.93 60 | 97.38 120 | 90.88 70 | 94.59 103 | 97.81 85 | 89.22 159 | 95.46 124 | 96.17 149 | 93.42 75 | 99.34 59 | 89.30 155 | 98.87 115 | 97.56 185 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
OMC-MVS | | | 94.22 117 | 93.69 129 | 95.81 65 | 97.25 124 | 91.27 63 | 92.27 176 | 97.40 114 | 87.10 201 | 94.56 160 | 95.42 185 | 93.74 68 | 98.11 214 | 86.62 206 | 98.85 116 | 98.06 137 |
|
SR-MVS-dyc-post | | | 96.84 8 | 96.60 25 | 97.56 10 | 98.07 76 | 95.27 8 | 96.37 36 | 98.12 41 | 95.66 32 | 97.00 56 | 97.03 89 | 94.85 51 | 99.42 28 | 93.49 44 | 98.84 117 | 98.00 143 |
|
RE-MVS-def | | | | 96.66 20 | | 98.07 76 | 95.27 8 | 96.37 36 | 98.12 41 | 95.66 32 | 97.00 56 | 97.03 89 | 95.40 27 | | 93.49 44 | 98.84 117 | 98.00 143 |
|
v144192 | | | 93.20 144 | 93.54 135 | 92.16 203 | 96.05 192 | 78.26 267 | 91.95 189 | 97.14 136 | 84.98 235 | 95.96 103 | 96.11 150 | 87.08 195 | 99.04 100 | 93.79 34 | 98.84 117 | 99.17 35 |
|
v1921920 | | | 93.26 139 | 93.61 132 | 92.19 199 | 96.04 196 | 78.31 266 | 91.88 196 | 97.24 131 | 85.17 228 | 96.19 96 | 96.19 147 | 86.76 203 | 99.05 97 | 94.18 28 | 98.84 117 | 99.22 32 |
|
DP-MVS | | | 95.62 62 | 95.84 60 | 94.97 99 | 97.16 129 | 88.62 104 | 94.54 110 | 97.64 96 | 96.94 14 | 96.58 74 | 97.32 74 | 93.07 86 | 98.72 153 | 90.45 123 | 98.84 117 | 97.57 183 |
|
VDDNet | | | 94.03 122 | 94.27 116 | 93.31 162 | 98.87 19 | 82.36 205 | 95.51 71 | 91.78 292 | 97.19 11 | 96.32 83 | 98.60 18 | 84.24 223 | 98.75 148 | 87.09 199 | 98.83 122 | 98.81 78 |
|
CPTT-MVS | | | 94.74 96 | 94.12 119 | 96.60 44 | 98.15 71 | 93.01 42 | 95.84 59 | 97.66 95 | 89.21 160 | 93.28 195 | 95.46 182 | 88.89 167 | 98.98 108 | 89.80 146 | 98.82 123 | 97.80 168 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 123 | |
|
test1172 | | | 96.79 15 | 96.52 27 | 97.60 9 | 98.03 81 | 94.87 10 | 96.07 50 | 98.06 54 | 95.76 31 | 96.89 60 | 96.85 100 | 94.85 51 | 99.42 28 | 93.35 57 | 98.81 125 | 98.53 106 |
|
v2v482 | | | 93.29 136 | 93.63 131 | 92.29 195 | 96.35 168 | 78.82 260 | 91.77 205 | 96.28 186 | 88.45 173 | 95.70 115 | 96.26 144 | 86.02 212 | 98.90 119 | 93.02 71 | 98.81 125 | 99.14 38 |
|
USDC | | | 89.02 238 | 89.08 228 | 88.84 282 | 95.07 236 | 74.50 308 | 88.97 276 | 96.39 183 | 73.21 318 | 93.27 196 | 96.28 142 | 82.16 242 | 96.39 295 | 77.55 297 | 98.80 127 | 95.62 266 |
|
tttt0517 | | | 89.81 228 | 88.90 234 | 92.55 190 | 97.00 135 | 79.73 244 | 95.03 89 | 83.65 345 | 89.88 147 | 95.30 130 | 94.79 214 | 53.64 353 | 99.39 45 | 91.99 94 | 98.79 128 | 98.54 105 |
|
PMVS |  | 87.21 14 | 94.97 84 | 95.33 76 | 93.91 142 | 98.97 14 | 97.16 2 | 95.54 69 | 95.85 204 | 96.47 20 | 93.40 191 | 97.46 62 | 95.31 33 | 95.47 314 | 86.18 215 | 98.78 129 | 89.11 341 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
TinyColmap | | | 92.00 176 | 92.76 152 | 89.71 268 | 95.62 221 | 77.02 283 | 90.72 227 | 96.17 195 | 87.70 189 | 95.26 133 | 96.29 141 | 92.54 99 | 96.45 293 | 81.77 258 | 98.77 130 | 95.66 263 |
|
v1240 | | | 93.29 136 | 93.71 128 | 92.06 206 | 96.01 197 | 77.89 272 | 91.81 203 | 97.37 115 | 85.12 231 | 96.69 69 | 96.40 130 | 86.67 204 | 99.07 96 | 94.51 18 | 98.76 131 | 99.22 32 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 118 | 93.56 134 | 96.14 51 | 95.96 199 | 92.96 43 | 89.48 264 | 97.46 111 | 85.14 229 | 96.23 91 | 95.42 185 | 93.19 81 | 98.08 215 | 90.37 127 | 98.76 131 | 97.38 198 |
|
Anonymous20231206 | | | 88.77 246 | 88.29 244 | 90.20 261 | 96.31 172 | 78.81 261 | 89.56 263 | 93.49 261 | 74.26 312 | 92.38 224 | 95.58 176 | 82.21 240 | 95.43 316 | 72.07 328 | 98.75 133 | 96.34 233 |
|
SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 78 | 94.69 11 | 96.13 47 | 98.07 51 | 95.17 36 | 96.82 64 | 96.73 111 | 95.09 43 | 99.43 27 | 92.99 73 | 98.71 134 | 98.50 108 |
|
UGNet | | | 93.08 145 | 92.50 160 | 94.79 105 | 93.87 271 | 87.99 119 | 95.07 87 | 94.26 249 | 90.64 132 | 87.33 310 | 97.67 50 | 86.89 201 | 98.49 182 | 88.10 182 | 98.71 134 | 97.91 156 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LFMVS | | | 91.33 190 | 91.16 192 | 91.82 210 | 96.27 175 | 79.36 250 | 95.01 90 | 85.61 333 | 96.04 28 | 94.82 152 | 97.06 87 | 72.03 300 | 98.46 188 | 84.96 229 | 98.70 136 | 97.65 179 |
|
HPM-MVS++ |  | | 95.02 82 | 94.39 109 | 96.91 38 | 97.88 90 | 93.58 36 | 94.09 120 | 96.99 147 | 91.05 122 | 92.40 223 | 95.22 192 | 91.03 137 | 99.25 74 | 92.11 89 | 98.69 137 | 97.90 157 |
|
miper_lstm_enhance | | | 89.90 226 | 89.80 218 | 90.19 262 | 91.37 313 | 77.50 277 | 83.82 338 | 95.00 227 | 84.84 237 | 93.05 205 | 94.96 204 | 76.53 285 | 95.20 322 | 89.96 144 | 98.67 138 | 97.86 161 |
|
FMVSNet2 | | | 92.78 155 | 92.73 155 | 92.95 173 | 95.40 227 | 81.98 208 | 94.18 118 | 95.53 217 | 88.63 168 | 96.05 101 | 97.37 67 | 81.31 250 | 98.81 137 | 87.38 197 | 98.67 138 | 98.06 137 |
|
DeepC-MVS_fast | | 89.96 7 | 93.73 127 | 93.44 137 | 94.60 115 | 96.14 185 | 87.90 120 | 93.36 140 | 97.14 136 | 85.53 223 | 93.90 178 | 95.45 183 | 91.30 127 | 98.59 172 | 89.51 152 | 98.62 140 | 97.31 201 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OPU-MVS | | | | | 95.15 94 | 96.84 142 | 89.43 88 | 95.21 79 | | | | 95.66 171 | 93.12 84 | 98.06 216 | 86.28 214 | 98.61 141 | 97.95 151 |
|
114514_t | | | 90.51 204 | 89.80 218 | 92.63 186 | 98.00 84 | 82.24 206 | 93.40 139 | 97.29 127 | 65.84 346 | 89.40 280 | 94.80 213 | 86.99 196 | 98.75 148 | 83.88 239 | 98.61 141 | 96.89 214 |
|
CDPH-MVS | | | 92.67 159 | 91.83 173 | 95.18 93 | 96.94 137 | 88.46 110 | 90.70 228 | 97.07 142 | 77.38 297 | 92.34 228 | 95.08 198 | 92.67 96 | 98.88 122 | 85.74 217 | 98.57 143 | 98.20 129 |
|
cl_fuxian | | | 91.32 191 | 91.42 184 | 91.00 238 | 92.29 295 | 76.79 289 | 87.52 297 | 96.42 181 | 85.76 220 | 94.72 158 | 93.89 243 | 82.73 235 | 98.16 211 | 90.93 117 | 98.55 144 | 98.04 140 |
|
test_prior3 | | | 93.29 136 | 92.85 149 | 94.61 111 | 95.95 200 | 87.23 129 | 90.21 242 | 97.36 120 | 89.33 157 | 90.77 252 | 94.81 210 | 90.41 149 | 98.68 162 | 88.21 177 | 98.55 144 | 97.93 153 |
|
test_prior2 | | | | | | | | 90.21 242 | | 89.33 157 | 90.77 252 | 94.81 210 | 90.41 149 | | 88.21 177 | 98.55 144 | |
|
LCM-MVSNet-Re | | | 94.20 118 | 94.58 103 | 93.04 168 | 95.91 203 | 83.13 198 | 93.79 128 | 99.19 2 | 92.00 87 | 98.84 5 | 98.04 35 | 93.64 69 | 99.02 103 | 81.28 263 | 98.54 147 | 96.96 211 |
|
Patchmatch-RL test | | | 88.81 245 | 88.52 238 | 89.69 269 | 95.33 232 | 79.94 237 | 86.22 319 | 92.71 274 | 78.46 292 | 95.80 109 | 94.18 231 | 66.25 318 | 95.33 319 | 89.22 161 | 98.53 148 | 93.78 305 |
|
Anonymous202405211 | | | 92.58 162 | 92.50 160 | 92.83 179 | 96.55 156 | 83.22 195 | 92.43 166 | 91.64 293 | 94.10 49 | 95.59 118 | 96.64 117 | 81.88 247 | 97.50 255 | 85.12 225 | 98.52 149 | 97.77 170 |
|
CNVR-MVS | | | 94.58 102 | 94.29 113 | 95.46 81 | 96.94 137 | 89.35 92 | 91.81 203 | 96.80 161 | 89.66 150 | 93.90 178 | 95.44 184 | 92.80 93 | 98.72 153 | 92.74 78 | 98.52 149 | 98.32 119 |
|
HQP_MVS | | | 94.26 115 | 93.93 121 | 95.23 91 | 97.71 99 | 88.12 115 | 94.56 107 | 97.81 85 | 91.74 105 | 93.31 192 | 95.59 173 | 86.93 198 | 98.95 115 | 89.26 159 | 98.51 151 | 98.60 102 |
|
plane_prior5 | | | | | | | | | 97.81 85 | | | | | 98.95 115 | 89.26 159 | 98.51 151 | 98.60 102 |
|
baseline | | | 94.26 115 | 94.80 93 | 92.64 184 | 96.08 190 | 80.99 222 | 93.69 131 | 98.04 59 | 90.80 128 | 94.89 150 | 96.32 139 | 93.19 81 | 98.48 186 | 91.68 105 | 98.51 151 | 98.43 114 |
|
ETH3D cwj APD-0.16 | | | 93.99 123 | 93.38 139 | 95.80 67 | 96.82 143 | 89.92 79 | 92.72 153 | 98.02 62 | 84.73 239 | 93.65 185 | 95.54 180 | 91.68 117 | 99.22 77 | 88.78 170 | 98.49 154 | 98.26 125 |
|
thisisatest0530 | | | 88.69 248 | 87.52 259 | 92.20 198 | 96.33 170 | 79.36 250 | 92.81 151 | 84.01 344 | 86.44 207 | 93.67 184 | 92.68 272 | 53.62 354 | 99.25 74 | 89.65 151 | 98.45 155 | 98.00 143 |
|
train_agg | | | 92.71 158 | 91.83 173 | 95.35 82 | 96.45 161 | 89.46 86 | 90.60 230 | 96.92 152 | 79.37 281 | 90.49 257 | 94.39 224 | 91.20 132 | 98.88 122 | 88.66 174 | 98.43 156 | 97.72 174 |
|
ZD-MVS | | | | | | 97.23 125 | 90.32 75 | | 97.54 105 | 84.40 241 | 94.78 154 | 95.79 164 | 92.76 94 | 99.39 45 | 88.72 173 | 98.40 157 | |
|
test9_res | | | | | | | | | | | | | | | 88.16 181 | 98.40 157 | 97.83 164 |
|
ETH3 D test6400 | | | 91.91 177 | 91.25 189 | 93.89 143 | 96.59 153 | 84.41 177 | 92.10 182 | 97.72 93 | 78.52 291 | 91.82 238 | 93.78 247 | 88.70 168 | 99.13 86 | 83.61 240 | 98.39 159 | 98.14 132 |
|
TSAR-MVS + GP. | | | 93.07 147 | 92.41 162 | 95.06 97 | 95.82 207 | 90.87 71 | 90.97 221 | 92.61 278 | 88.04 181 | 94.61 159 | 93.79 246 | 88.08 176 | 97.81 237 | 89.41 154 | 98.39 159 | 96.50 227 |
|
VNet | | | 92.67 159 | 92.96 146 | 91.79 211 | 96.27 175 | 80.15 229 | 91.95 189 | 94.98 228 | 92.19 84 | 94.52 162 | 96.07 151 | 87.43 188 | 97.39 264 | 84.83 230 | 98.38 161 | 97.83 164 |
|
GBi-Net | | | 93.21 142 | 92.96 146 | 93.97 137 | 95.40 227 | 84.29 178 | 95.99 51 | 96.56 174 | 88.63 168 | 95.10 139 | 98.53 21 | 81.31 250 | 98.98 108 | 86.74 202 | 98.38 161 | 98.65 91 |
|
test1 | | | 93.21 142 | 92.96 146 | 93.97 137 | 95.40 227 | 84.29 178 | 95.99 51 | 96.56 174 | 88.63 168 | 95.10 139 | 98.53 21 | 81.31 250 | 98.98 108 | 86.74 202 | 98.38 161 | 98.65 91 |
|
FMVSNet3 | | | 90.78 198 | 90.32 209 | 92.16 203 | 93.03 285 | 79.92 238 | 92.54 159 | 94.95 229 | 86.17 213 | 95.10 139 | 96.01 154 | 69.97 304 | 98.75 148 | 86.74 202 | 98.38 161 | 97.82 166 |
|
MVS_111021_HR | | | 93.63 129 | 93.42 138 | 94.26 130 | 96.65 149 | 86.96 138 | 89.30 270 | 96.23 190 | 88.36 176 | 93.57 187 | 94.60 218 | 93.45 72 | 97.77 242 | 90.23 135 | 98.38 161 | 98.03 141 |
|
agg_prior1 | | | 92.60 161 | 91.76 176 | 95.10 96 | 96.20 180 | 88.89 98 | 90.37 237 | 96.88 156 | 79.67 278 | 90.21 263 | 94.41 222 | 91.30 127 | 98.78 143 | 88.46 176 | 98.37 166 | 97.64 180 |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 200 | 98.36 167 | 97.98 147 |
|
TSAR-MVS + MP. | | | 94.96 85 | 94.75 95 | 95.57 77 | 98.86 20 | 88.69 101 | 96.37 36 | 96.81 160 | 85.23 226 | 94.75 155 | 97.12 84 | 91.85 113 | 99.40 40 | 93.45 49 | 98.33 168 | 98.62 99 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
pmmvs-eth3d | | | 91.54 184 | 90.73 201 | 93.99 135 | 95.76 212 | 87.86 122 | 90.83 224 | 93.98 255 | 78.23 294 | 94.02 176 | 96.22 146 | 82.62 238 | 96.83 282 | 86.57 207 | 98.33 168 | 97.29 202 |
|
casdiffmvs | | | 94.32 112 | 94.80 93 | 92.85 178 | 96.05 192 | 81.44 216 | 92.35 172 | 98.05 55 | 91.53 112 | 95.75 111 | 96.80 104 | 93.35 77 | 98.49 182 | 91.01 116 | 98.32 170 | 98.64 95 |
|
Regformer-1 | | | 94.55 103 | 94.33 112 | 95.19 92 | 92.83 288 | 88.54 108 | 91.87 197 | 95.84 205 | 93.99 50 | 95.95 104 | 95.04 200 | 92.00 108 | 98.79 139 | 93.14 67 | 98.31 171 | 98.23 126 |
|
Regformer-2 | | | 94.86 90 | 94.55 104 | 95.77 69 | 92.83 288 | 89.98 78 | 91.87 197 | 96.40 182 | 94.38 46 | 96.19 96 | 95.04 200 | 92.47 102 | 99.04 100 | 93.49 44 | 98.31 171 | 98.28 123 |
|
3Dnovator+ | | 92.74 2 | 95.86 56 | 95.77 64 | 96.13 52 | 96.81 145 | 90.79 72 | 96.30 43 | 97.82 84 | 96.13 24 | 94.74 156 | 97.23 78 | 91.33 125 | 99.16 82 | 93.25 62 | 98.30 173 | 98.46 112 |
|
MVS_111021_LR | | | 93.66 128 | 93.28 142 | 94.80 104 | 96.25 178 | 90.95 68 | 90.21 242 | 95.43 219 | 87.91 182 | 93.74 183 | 94.40 223 | 92.88 91 | 96.38 296 | 90.39 125 | 98.28 174 | 97.07 206 |
|
CANet | | | 92.38 168 | 91.99 170 | 93.52 157 | 93.82 273 | 83.46 192 | 91.14 217 | 97.00 145 | 89.81 148 | 86.47 314 | 94.04 235 | 87.90 182 | 99.21 78 | 89.50 153 | 98.27 175 | 97.90 157 |
|
EI-MVSNet | | | 92.99 149 | 93.26 144 | 92.19 199 | 92.12 300 | 79.21 255 | 92.32 174 | 94.67 242 | 91.77 103 | 95.24 135 | 95.85 159 | 87.14 194 | 98.49 182 | 91.99 94 | 98.26 176 | 98.86 72 |
|
RRT_test8_iter05 | | | 88.21 254 | 88.17 249 | 88.33 292 | 91.62 309 | 66.82 345 | 91.73 206 | 96.60 172 | 86.34 209 | 94.14 168 | 95.38 190 | 47.72 359 | 99.11 89 | 91.78 101 | 98.26 176 | 99.06 47 |
|
MVSTER | | | 89.32 234 | 88.75 236 | 91.03 235 | 90.10 327 | 76.62 290 | 90.85 223 | 94.67 242 | 82.27 261 | 95.24 135 | 95.79 164 | 61.09 342 | 98.49 182 | 90.49 122 | 98.26 176 | 97.97 150 |
|
testtj | | | 94.81 94 | 94.42 108 | 96.01 54 | 97.23 125 | 90.51 74 | 94.77 97 | 97.85 81 | 91.29 116 | 94.92 149 | 95.66 171 | 91.71 116 | 99.40 40 | 88.07 183 | 98.25 179 | 98.11 136 |
|
MSLP-MVS++ | | | 93.25 141 | 93.88 122 | 91.37 223 | 96.34 169 | 82.81 202 | 93.11 143 | 97.74 91 | 89.37 155 | 94.08 171 | 95.29 191 | 90.40 151 | 96.35 298 | 90.35 128 | 98.25 179 | 94.96 278 |
|
LF4IMVS | | | 92.72 157 | 92.02 169 | 94.84 103 | 95.65 218 | 91.99 54 | 92.92 148 | 96.60 172 | 85.08 233 | 92.44 221 | 93.62 249 | 86.80 202 | 96.35 298 | 86.81 201 | 98.25 179 | 96.18 241 |
|
EI-MVSNet-UG-set | | | 94.35 110 | 94.27 116 | 94.59 116 | 92.46 293 | 85.87 163 | 92.42 167 | 94.69 240 | 93.67 61 | 96.13 98 | 95.84 162 | 91.20 132 | 98.86 127 | 93.78 35 | 98.23 182 | 99.03 49 |
|
PM-MVS | | | 93.33 135 | 92.67 156 | 95.33 84 | 96.58 154 | 94.06 19 | 92.26 177 | 92.18 284 | 85.92 217 | 96.22 92 | 96.61 119 | 85.64 217 | 95.99 306 | 90.35 128 | 98.23 182 | 95.93 250 |
|
EI-MVSNet-Vis-set | | | 94.36 109 | 94.28 114 | 94.61 111 | 92.55 292 | 85.98 161 | 92.44 165 | 94.69 240 | 93.70 57 | 96.12 99 | 95.81 163 | 91.24 129 | 98.86 127 | 93.76 38 | 98.22 184 | 98.98 58 |
|
V42 | | | 93.43 133 | 93.58 133 | 92.97 171 | 95.34 231 | 81.22 219 | 92.67 156 | 96.49 179 | 87.25 197 | 96.20 94 | 96.37 136 | 87.32 190 | 98.85 129 | 92.39 88 | 98.21 185 | 98.85 75 |
|
TAMVS | | | 90.16 217 | 89.05 229 | 93.49 158 | 96.49 159 | 86.37 152 | 90.34 239 | 92.55 279 | 80.84 270 | 92.99 207 | 94.57 220 | 81.94 246 | 98.20 206 | 73.51 320 | 98.21 185 | 95.90 253 |
|
K. test v3 | | | 93.37 134 | 93.27 143 | 93.66 149 | 98.05 78 | 82.62 203 | 94.35 113 | 86.62 322 | 96.05 27 | 97.51 38 | 98.85 12 | 76.59 284 | 99.65 3 | 93.21 63 | 98.20 187 | 98.73 88 |
|
DELS-MVS | | | 92.05 175 | 92.16 165 | 91.72 214 | 94.44 257 | 80.13 231 | 87.62 291 | 97.25 130 | 87.34 196 | 92.22 231 | 93.18 261 | 89.54 163 | 98.73 152 | 89.67 150 | 98.20 187 | 96.30 235 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TAPA-MVS | | 88.58 10 | 92.49 166 | 91.75 177 | 94.73 107 | 96.50 158 | 89.69 84 | 92.91 149 | 97.68 94 | 78.02 295 | 92.79 212 | 94.10 233 | 90.85 138 | 97.96 226 | 84.76 232 | 98.16 189 | 96.54 222 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
LS3D | | | 96.11 48 | 95.83 61 | 96.95 37 | 94.75 245 | 94.20 17 | 97.34 9 | 97.98 67 | 97.31 10 | 95.32 129 | 96.77 105 | 93.08 85 | 99.20 79 | 91.79 100 | 98.16 189 | 97.44 191 |
|
Regformer-3 | | | 94.28 113 | 94.23 118 | 94.46 124 | 92.78 290 | 86.28 156 | 92.39 169 | 94.70 239 | 93.69 60 | 95.97 102 | 95.56 178 | 91.34 124 | 98.48 186 | 93.45 49 | 98.14 191 | 98.62 99 |
|
Regformer-4 | | | 94.90 87 | 94.67 100 | 95.59 76 | 92.78 290 | 89.02 95 | 92.39 169 | 95.91 201 | 94.50 42 | 96.41 77 | 95.56 178 | 92.10 106 | 99.01 105 | 94.23 26 | 98.14 191 | 98.74 86 |
|
DP-MVS Recon | | | 92.31 170 | 91.88 172 | 93.60 151 | 97.18 128 | 86.87 139 | 91.10 219 | 97.37 115 | 84.92 236 | 92.08 234 | 94.08 234 | 88.59 169 | 98.20 206 | 83.50 241 | 98.14 191 | 95.73 259 |
|
EG-PatchMatch MVS | | | 94.54 104 | 94.67 100 | 94.14 132 | 97.87 91 | 86.50 146 | 92.00 188 | 96.74 166 | 88.16 179 | 96.93 59 | 97.61 53 | 93.04 87 | 97.90 227 | 91.60 107 | 98.12 194 | 98.03 141 |
|
PCF-MVS | | 84.52 17 | 89.12 237 | 87.71 256 | 93.34 160 | 96.06 191 | 85.84 164 | 86.58 318 | 97.31 124 | 68.46 339 | 93.61 186 | 93.89 243 | 87.51 187 | 98.52 180 | 67.85 343 | 98.11 195 | 95.66 263 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
3Dnovator | | 92.54 3 | 94.80 95 | 94.90 89 | 94.47 123 | 95.47 225 | 87.06 133 | 96.63 23 | 97.28 129 | 91.82 100 | 94.34 167 | 97.41 64 | 90.60 146 | 98.65 166 | 92.47 84 | 98.11 195 | 97.70 175 |
|
PMMVS2 | | | 81.31 313 | 83.44 297 | 74.92 339 | 90.52 322 | 46.49 362 | 69.19 354 | 85.23 339 | 84.30 242 | 87.95 303 | 94.71 216 | 76.95 282 | 84.36 356 | 64.07 349 | 98.09 197 | 93.89 303 |
|
lessismore_v0 | | | | | 93.87 145 | 98.05 78 | 83.77 190 | | 80.32 354 | | 97.13 50 | 97.91 42 | 77.49 274 | 99.11 89 | 92.62 82 | 98.08 198 | 98.74 86 |
|
CS-MVS | | | 92.54 165 | 92.31 163 | 93.23 165 | 95.89 205 | 84.07 186 | 93.58 134 | 98.48 8 | 88.60 171 | 90.41 260 | 86.23 342 | 92.00 108 | 99.35 55 | 87.54 192 | 98.06 199 | 96.26 237 |
|
new-patchmatchnet | | | 88.97 241 | 90.79 199 | 83.50 328 | 94.28 261 | 55.83 360 | 85.34 323 | 93.56 259 | 86.18 212 | 95.47 122 | 95.73 168 | 83.10 230 | 96.51 291 | 85.40 220 | 98.06 199 | 98.16 130 |
|
plane_prior | | | | | | | 88.12 115 | 93.01 145 | | 88.98 161 | | | | | | 98.06 199 | |
|
PVSNet_BlendedMVS | | | 90.35 211 | 89.96 215 | 91.54 220 | 94.81 242 | 78.80 262 | 90.14 246 | 96.93 150 | 79.43 280 | 88.68 294 | 95.06 199 | 86.27 209 | 98.15 212 | 80.27 271 | 98.04 202 | 97.68 177 |
|
CL-MVSNet_2432*1600 | | | 90.04 223 | 89.90 217 | 90.47 251 | 95.24 233 | 77.81 273 | 86.60 317 | 92.62 277 | 85.64 222 | 93.25 199 | 93.92 241 | 83.84 225 | 96.06 304 | 79.93 278 | 98.03 203 | 97.53 187 |
|
FMVSNet5 | | | 87.82 261 | 86.56 276 | 91.62 217 | 92.31 294 | 79.81 242 | 93.49 136 | 94.81 236 | 83.26 247 | 91.36 243 | 96.93 95 | 52.77 355 | 97.49 257 | 76.07 308 | 98.03 203 | 97.55 186 |
|
原ACMM1 | | | | | 92.87 177 | 96.91 139 | 84.22 181 | | 97.01 144 | 76.84 302 | 89.64 278 | 94.46 221 | 88.00 179 | 98.70 159 | 81.53 261 | 98.01 205 | 95.70 261 |
|
v148 | | | 92.87 153 | 93.29 140 | 91.62 217 | 96.25 178 | 77.72 275 | 91.28 215 | 95.05 226 | 89.69 149 | 95.93 106 | 96.04 152 | 87.34 189 | 98.38 191 | 90.05 142 | 97.99 206 | 98.78 81 |
|
ITE_SJBPF | | | | | 95.95 57 | 97.34 122 | 93.36 40 | | 96.55 177 | 91.93 90 | 94.82 152 | 95.39 188 | 91.99 110 | 97.08 273 | 85.53 219 | 97.96 207 | 97.41 192 |
|
test12 | | | | | 94.43 126 | 95.95 200 | 86.75 141 | | 96.24 189 | | 89.76 276 | | 89.79 161 | 98.79 139 | | 97.95 208 | 97.75 173 |
|
MCST-MVS | | | 92.91 151 | 92.51 159 | 94.10 133 | 97.52 112 | 85.72 166 | 91.36 214 | 97.13 138 | 80.33 272 | 92.91 210 | 94.24 228 | 91.23 130 | 98.72 153 | 89.99 143 | 97.93 209 | 97.86 161 |
|
CDS-MVSNet | | | 89.55 230 | 88.22 248 | 93.53 156 | 95.37 230 | 86.49 147 | 89.26 271 | 93.59 258 | 79.76 276 | 91.15 248 | 92.31 281 | 77.12 279 | 98.38 191 | 77.51 298 | 97.92 210 | 95.71 260 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
旧先验1 | | | | | | 96.20 180 | 84.17 183 | | 94.82 234 | | | 95.57 177 | 89.57 162 | | | 97.89 211 | 96.32 234 |
|
alignmvs | | | 93.26 139 | 92.85 149 | 94.50 120 | 95.70 214 | 87.45 125 | 93.45 138 | 95.76 206 | 91.58 110 | 95.25 134 | 92.42 280 | 81.96 245 | 98.72 153 | 91.61 106 | 97.87 212 | 97.33 200 |
|
testgi | | | 90.38 209 | 91.34 187 | 87.50 301 | 97.49 114 | 71.54 326 | 89.43 265 | 95.16 225 | 88.38 175 | 94.54 161 | 94.68 217 | 92.88 91 | 93.09 340 | 71.60 332 | 97.85 213 | 97.88 159 |
|
MVS_0304 | | | 90.96 195 | 90.15 212 | 93.37 159 | 93.17 280 | 87.06 133 | 93.62 133 | 92.43 282 | 89.60 152 | 82.25 339 | 95.50 181 | 82.56 239 | 97.83 236 | 84.41 236 | 97.83 214 | 95.22 271 |
|
新几何1 | | | | | 93.17 167 | 97.16 129 | 87.29 128 | | 94.43 244 | 67.95 340 | 91.29 244 | 94.94 205 | 86.97 197 | 98.23 204 | 81.06 268 | 97.75 215 | 93.98 301 |
|
ETV-MVS | | | 92.99 149 | 92.74 153 | 93.72 148 | 95.86 206 | 86.30 155 | 92.33 173 | 97.84 82 | 91.70 108 | 92.81 211 | 86.17 343 | 92.22 103 | 99.19 80 | 88.03 184 | 97.73 216 | 95.66 263 |
|
HQP3-MVS | | | | | | | | | 97.31 124 | | | | | | | 97.73 216 | |
|
HQP-MVS | | | 92.09 174 | 91.49 183 | 93.88 144 | 96.36 165 | 84.89 173 | 91.37 211 | 97.31 124 | 87.16 198 | 88.81 287 | 93.40 255 | 84.76 220 | 98.60 170 | 86.55 208 | 97.73 216 | 98.14 132 |
|
1121 | | | 90.26 215 | 89.23 224 | 93.34 160 | 97.15 131 | 87.40 126 | 91.94 191 | 94.39 245 | 67.88 341 | 91.02 250 | 94.91 206 | 86.91 200 | 98.59 172 | 81.17 266 | 97.71 219 | 94.02 300 |
|
CANet_DTU | | | 89.85 227 | 89.17 226 | 91.87 209 | 92.20 298 | 80.02 236 | 90.79 225 | 95.87 203 | 86.02 215 | 82.53 338 | 91.77 289 | 80.01 257 | 98.57 175 | 85.66 218 | 97.70 220 | 97.01 209 |
|
NCCC | | | 94.08 121 | 93.54 135 | 95.70 74 | 96.49 159 | 89.90 81 | 92.39 169 | 96.91 154 | 90.64 132 | 92.33 229 | 94.60 218 | 90.58 147 | 98.96 113 | 90.21 136 | 97.70 220 | 98.23 126 |
|
Vis-MVSNet |  | | 95.50 66 | 95.48 70 | 95.56 78 | 98.11 73 | 89.40 90 | 95.35 73 | 98.22 29 | 92.36 77 | 94.11 169 | 98.07 33 | 92.02 107 | 99.44 23 | 93.38 56 | 97.67 222 | 97.85 163 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
AdaColmap |  | | 91.63 182 | 91.36 186 | 92.47 194 | 95.56 223 | 86.36 153 | 92.24 179 | 96.27 187 | 88.88 165 | 89.90 271 | 92.69 271 | 91.65 118 | 98.32 196 | 77.38 300 | 97.64 223 | 92.72 324 |
|
EPNet_dtu | | | 85.63 288 | 84.37 291 | 89.40 273 | 86.30 352 | 74.33 310 | 91.64 207 | 88.26 309 | 84.84 237 | 72.96 357 | 89.85 311 | 71.27 302 | 97.69 248 | 76.60 305 | 97.62 224 | 96.18 241 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
XVG-OURS | | | 94.72 97 | 94.12 119 | 96.50 48 | 98.00 84 | 94.23 16 | 91.48 210 | 98.17 35 | 90.72 129 | 95.30 130 | 96.47 124 | 87.94 181 | 96.98 276 | 91.41 112 | 97.61 225 | 98.30 122 |
|
canonicalmvs | | | 94.59 101 | 94.69 98 | 94.30 129 | 95.60 222 | 87.03 135 | 95.59 66 | 98.24 27 | 91.56 111 | 95.21 137 | 92.04 286 | 94.95 49 | 98.66 164 | 91.45 111 | 97.57 226 | 97.20 205 |
|
XXY-MVS | | | 92.58 162 | 93.16 145 | 90.84 244 | 97.75 95 | 79.84 239 | 91.87 197 | 96.22 192 | 85.94 216 | 95.53 121 | 97.68 49 | 92.69 95 | 94.48 326 | 83.21 244 | 97.51 227 | 98.21 128 |
|
Effi-MVS+-dtu | | | 93.90 125 | 92.60 158 | 97.77 4 | 94.74 247 | 96.67 3 | 94.00 123 | 95.41 220 | 89.94 144 | 91.93 237 | 92.13 284 | 90.12 154 | 98.97 112 | 87.68 190 | 97.48 228 | 97.67 178 |
|
OpenMVS |  | 89.45 8 | 92.27 172 | 92.13 167 | 92.68 183 | 94.53 256 | 84.10 184 | 95.70 62 | 97.03 143 | 82.44 260 | 91.14 249 | 96.42 128 | 88.47 171 | 98.38 191 | 85.95 216 | 97.47 229 | 95.55 267 |
|
ab-mvs | | | 92.40 167 | 92.62 157 | 91.74 213 | 97.02 134 | 81.65 212 | 95.84 59 | 95.50 218 | 86.95 203 | 92.95 209 | 97.56 55 | 90.70 144 | 97.50 255 | 79.63 281 | 97.43 230 | 96.06 245 |
|
thisisatest0515 | | | 84.72 293 | 82.99 301 | 89.90 266 | 92.96 286 | 75.33 302 | 84.36 332 | 83.42 346 | 77.37 298 | 88.27 299 | 86.65 337 | 53.94 352 | 98.72 153 | 82.56 250 | 97.40 231 | 95.67 262 |
|
test222 | | | | | | 96.95 136 | 85.27 171 | 88.83 279 | 93.61 257 | 65.09 348 | 90.74 254 | 94.85 209 | 84.62 222 | | | 97.36 232 | 93.91 302 |
|
API-MVS | | | 91.52 185 | 91.61 178 | 91.26 227 | 94.16 262 | 86.26 157 | 94.66 101 | 94.82 234 | 91.17 120 | 92.13 233 | 91.08 299 | 90.03 160 | 97.06 274 | 79.09 288 | 97.35 233 | 90.45 339 |
|
EIA-MVS | | | 92.35 169 | 92.03 168 | 93.30 163 | 95.81 209 | 83.97 187 | 92.80 152 | 98.17 35 | 87.71 188 | 89.79 275 | 87.56 332 | 91.17 135 | 99.18 81 | 87.97 185 | 97.27 234 | 96.77 218 |
|
testdata | | | | | 91.03 235 | 96.87 141 | 82.01 207 | | 94.28 248 | 71.55 325 | 92.46 220 | 95.42 185 | 85.65 216 | 97.38 266 | 82.64 249 | 97.27 234 | 93.70 308 |
|
N_pmnet | | | 88.90 243 | 87.25 263 | 93.83 146 | 94.40 259 | 93.81 34 | 84.73 327 | 87.09 319 | 79.36 283 | 93.26 197 | 92.43 279 | 79.29 261 | 91.68 345 | 77.50 299 | 97.22 236 | 96.00 247 |
|
ppachtmachnet_test | | | 88.61 249 | 88.64 237 | 88.50 288 | 91.76 306 | 70.99 329 | 84.59 330 | 92.98 267 | 79.30 285 | 92.38 224 | 93.53 253 | 79.57 259 | 97.45 259 | 86.50 210 | 97.17 237 | 97.07 206 |
|
CNLPA | | | 91.72 180 | 91.20 190 | 93.26 164 | 96.17 183 | 91.02 66 | 91.14 217 | 95.55 216 | 90.16 142 | 90.87 251 | 93.56 252 | 86.31 208 | 94.40 329 | 79.92 280 | 97.12 238 | 94.37 291 |
|
jason | | | 89.17 236 | 88.32 242 | 91.70 215 | 95.73 213 | 80.07 232 | 88.10 288 | 93.22 264 | 71.98 324 | 90.09 265 | 92.79 268 | 78.53 268 | 98.56 176 | 87.43 195 | 97.06 239 | 96.46 229 |
jason: jason. |
RPSCF | | | 95.58 64 | 94.89 90 | 97.62 8 | 97.58 109 | 96.30 4 | 95.97 54 | 97.53 107 | 92.42 74 | 93.41 189 | 97.78 45 | 91.21 131 | 97.77 242 | 91.06 115 | 97.06 239 | 98.80 79 |
|
cl-mvsnet2 | | | 89.02 238 | 88.50 239 | 90.59 249 | 89.76 329 | 76.45 292 | 86.62 316 | 94.03 252 | 82.98 254 | 92.65 215 | 92.49 274 | 72.05 299 | 97.53 253 | 88.93 165 | 97.02 241 | 97.78 169 |
|
miper_ehance_all_eth | | | 90.48 205 | 90.42 207 | 90.69 246 | 91.62 309 | 76.57 291 | 86.83 309 | 96.18 194 | 83.38 246 | 94.06 173 | 92.66 273 | 82.20 241 | 98.04 217 | 89.79 147 | 97.02 241 | 97.45 190 |
|
miper_enhance_ethall | | | 88.42 251 | 87.87 254 | 90.07 263 | 88.67 342 | 75.52 301 | 85.10 324 | 95.59 213 | 75.68 304 | 92.49 219 | 89.45 321 | 78.96 262 | 97.88 229 | 87.86 188 | 97.02 241 | 96.81 217 |
|
eth_miper_zixun_eth | | | 90.72 199 | 90.61 203 | 91.05 234 | 92.04 302 | 76.84 288 | 86.91 306 | 96.67 169 | 85.21 227 | 94.41 163 | 93.92 241 | 79.53 260 | 98.26 202 | 89.76 148 | 97.02 241 | 98.06 137 |
|
QAPM | | | 92.88 152 | 92.77 151 | 93.22 166 | 95.82 207 | 83.31 193 | 96.45 31 | 97.35 122 | 83.91 244 | 93.75 181 | 96.77 105 | 89.25 165 | 98.88 122 | 84.56 234 | 97.02 241 | 97.49 188 |
|
thres600view7 | | | 87.66 264 | 87.10 268 | 89.36 274 | 96.05 192 | 73.17 316 | 92.72 153 | 85.31 336 | 91.89 92 | 93.29 194 | 90.97 300 | 63.42 332 | 98.39 189 | 73.23 322 | 96.99 246 | 96.51 224 |
|
test_yl | | | 90.11 218 | 89.73 221 | 91.26 227 | 94.09 265 | 79.82 240 | 90.44 234 | 92.65 275 | 90.90 123 | 93.19 201 | 93.30 257 | 73.90 291 | 98.03 218 | 82.23 254 | 96.87 247 | 95.93 250 |
|
DCV-MVSNet | | | 90.11 218 | 89.73 221 | 91.26 227 | 94.09 265 | 79.82 240 | 90.44 234 | 92.65 275 | 90.90 123 | 93.19 201 | 93.30 257 | 73.90 291 | 98.03 218 | 82.23 254 | 96.87 247 | 95.93 250 |
|
MSP-MVS | | | 95.34 72 | 94.63 102 | 97.48 14 | 98.67 27 | 94.05 21 | 96.41 35 | 98.18 32 | 91.26 117 | 95.12 138 | 95.15 193 | 86.60 206 | 99.50 19 | 93.43 53 | 96.81 249 | 98.89 69 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
pmmvs5 | | | 87.87 259 | 87.14 266 | 90.07 263 | 93.26 279 | 76.97 287 | 88.89 278 | 92.18 284 | 73.71 316 | 88.36 297 | 93.89 243 | 76.86 283 | 96.73 285 | 80.32 270 | 96.81 249 | 96.51 224 |
|
PVSNet_Blended_VisFu | | | 91.63 182 | 91.20 190 | 92.94 174 | 97.73 98 | 83.95 188 | 92.14 181 | 97.46 111 | 78.85 290 | 92.35 226 | 94.98 203 | 84.16 224 | 99.08 92 | 86.36 212 | 96.77 251 | 95.79 257 |
|
MVSFormer | | | 92.18 173 | 92.23 164 | 92.04 207 | 94.74 247 | 80.06 233 | 97.15 11 | 97.37 115 | 88.98 161 | 88.83 285 | 92.79 268 | 77.02 280 | 99.60 8 | 96.41 4 | 96.75 252 | 96.46 229 |
|
lupinMVS | | | 88.34 253 | 87.31 261 | 91.45 221 | 94.74 247 | 80.06 233 | 87.23 299 | 92.27 283 | 71.10 328 | 88.83 285 | 91.15 297 | 77.02 280 | 98.53 179 | 86.67 205 | 96.75 252 | 95.76 258 |
|
diffmvs | | | 91.74 179 | 91.93 171 | 91.15 233 | 93.06 283 | 78.17 268 | 88.77 281 | 97.51 110 | 86.28 210 | 92.42 222 | 93.96 240 | 88.04 178 | 97.46 258 | 90.69 121 | 96.67 254 | 97.82 166 |
|
DPM-MVS | | | 89.35 233 | 88.40 241 | 92.18 202 | 96.13 188 | 84.20 182 | 86.96 305 | 96.15 196 | 75.40 308 | 87.36 309 | 91.55 294 | 83.30 228 | 98.01 221 | 82.17 256 | 96.62 255 | 94.32 293 |
|
thres100view900 | | | 87.35 272 | 86.89 270 | 88.72 284 | 96.14 185 | 73.09 318 | 93.00 146 | 85.31 336 | 92.13 85 | 93.26 197 | 90.96 301 | 63.42 332 | 98.28 198 | 71.27 334 | 96.54 256 | 94.79 281 |
|
tfpn200view9 | | | 87.05 280 | 86.52 278 | 88.67 285 | 95.77 210 | 72.94 319 | 91.89 194 | 86.00 328 | 90.84 125 | 92.61 216 | 89.80 313 | 63.93 329 | 98.28 198 | 71.27 334 | 96.54 256 | 94.79 281 |
|
thres400 | | | 87.20 276 | 86.52 278 | 89.24 278 | 95.77 210 | 72.94 319 | 91.89 194 | 86.00 328 | 90.84 125 | 92.61 216 | 89.80 313 | 63.93 329 | 98.28 198 | 71.27 334 | 96.54 256 | 96.51 224 |
|
CMPMVS |  | 68.83 22 | 87.28 273 | 85.67 286 | 92.09 205 | 88.77 341 | 85.42 169 | 90.31 240 | 94.38 246 | 70.02 334 | 88.00 302 | 93.30 257 | 73.78 293 | 94.03 334 | 75.96 310 | 96.54 256 | 96.83 216 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs4 | | | 88.95 242 | 87.70 257 | 92.70 182 | 94.30 260 | 85.60 167 | 87.22 300 | 92.16 286 | 74.62 310 | 89.75 277 | 94.19 230 | 77.97 272 | 96.41 294 | 82.71 248 | 96.36 260 | 96.09 243 |
|
Fast-Effi-MVS+-dtu | | | 92.77 156 | 92.16 165 | 94.58 118 | 94.66 253 | 88.25 112 | 92.05 184 | 96.65 170 | 89.62 151 | 90.08 266 | 91.23 296 | 92.56 98 | 98.60 170 | 86.30 213 | 96.27 261 | 96.90 213 |
|
MAR-MVS | | | 90.32 213 | 88.87 235 | 94.66 110 | 94.82 241 | 91.85 57 | 94.22 117 | 94.75 237 | 80.91 267 | 87.52 308 | 88.07 331 | 86.63 205 | 97.87 232 | 76.67 304 | 96.21 262 | 94.25 294 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
AUN-MVS | | | 90.05 222 | 88.30 243 | 95.32 87 | 96.09 189 | 90.52 73 | 92.42 167 | 92.05 290 | 82.08 263 | 88.45 296 | 92.86 265 | 65.76 320 | 98.69 161 | 88.91 167 | 96.07 263 | 96.75 220 |
|
PVSNet_Blended | | | 88.74 247 | 88.16 251 | 90.46 253 | 94.81 242 | 78.80 262 | 86.64 314 | 96.93 150 | 74.67 309 | 88.68 294 | 89.18 324 | 86.27 209 | 98.15 212 | 80.27 271 | 96.00 264 | 94.44 290 |
|
F-COLMAP | | | 92.28 171 | 91.06 193 | 95.95 57 | 97.52 112 | 91.90 56 | 93.53 135 | 97.18 134 | 83.98 243 | 88.70 293 | 94.04 235 | 88.41 172 | 98.55 178 | 80.17 274 | 95.99 265 | 97.39 196 |
|
xiu_mvs_v1_base_debu | | | 91.47 186 | 91.52 180 | 91.33 224 | 95.69 215 | 81.56 213 | 89.92 253 | 96.05 198 | 83.22 248 | 91.26 245 | 90.74 303 | 91.55 120 | 98.82 132 | 89.29 156 | 95.91 266 | 93.62 310 |
|
xiu_mvs_v1_base | | | 91.47 186 | 91.52 180 | 91.33 224 | 95.69 215 | 81.56 213 | 89.92 253 | 96.05 198 | 83.22 248 | 91.26 245 | 90.74 303 | 91.55 120 | 98.82 132 | 89.29 156 | 95.91 266 | 93.62 310 |
|
xiu_mvs_v1_base_debi | | | 91.47 186 | 91.52 180 | 91.33 224 | 95.69 215 | 81.56 213 | 89.92 253 | 96.05 198 | 83.22 248 | 91.26 245 | 90.74 303 | 91.55 120 | 98.82 132 | 89.29 156 | 95.91 266 | 93.62 310 |
|
thres200 | | | 85.85 287 | 85.18 288 | 87.88 298 | 94.44 257 | 72.52 322 | 89.08 275 | 86.21 324 | 88.57 172 | 91.44 242 | 88.40 329 | 64.22 327 | 98.00 222 | 68.35 342 | 95.88 269 | 93.12 316 |
|
Patchmatch-test | | | 86.10 286 | 86.01 283 | 86.38 311 | 90.63 320 | 74.22 312 | 89.57 262 | 86.69 321 | 85.73 221 | 89.81 274 | 92.83 266 | 65.24 324 | 91.04 347 | 77.82 296 | 95.78 270 | 93.88 304 |
|
mvs-test1 | | | 93.07 147 | 91.80 175 | 96.89 39 | 94.74 247 | 95.83 6 | 92.17 180 | 95.41 220 | 89.94 144 | 89.85 272 | 90.59 309 | 90.12 154 | 98.88 122 | 87.68 190 | 95.66 271 | 95.97 248 |
|
cascas | | | 87.02 281 | 86.28 282 | 89.25 277 | 91.56 311 | 76.45 292 | 84.33 333 | 96.78 162 | 71.01 329 | 86.89 313 | 85.91 344 | 81.35 249 | 96.94 277 | 83.09 245 | 95.60 272 | 94.35 292 |
|
XVG-OURS-SEG-HR | | | 95.38 70 | 95.00 87 | 96.51 47 | 98.10 74 | 94.07 18 | 92.46 164 | 98.13 40 | 90.69 130 | 93.75 181 | 96.25 145 | 98.03 2 | 97.02 275 | 92.08 91 | 95.55 273 | 98.45 113 |
|
DSMNet-mixed | | | 82.21 307 | 81.56 306 | 84.16 325 | 89.57 333 | 70.00 335 | 90.65 229 | 77.66 357 | 54.99 357 | 83.30 334 | 97.57 54 | 77.89 273 | 90.50 349 | 66.86 346 | 95.54 274 | 91.97 329 |
|
MVS_Test | | | 92.57 164 | 93.29 140 | 90.40 254 | 93.53 275 | 75.85 298 | 92.52 160 | 96.96 148 | 88.73 166 | 92.35 226 | 96.70 113 | 90.77 139 | 98.37 194 | 92.53 83 | 95.49 275 | 96.99 210 |
|
MIMVSNet | | | 87.13 279 | 86.54 277 | 88.89 281 | 96.05 192 | 76.11 295 | 94.39 112 | 88.51 307 | 81.37 266 | 88.27 299 | 96.75 108 | 72.38 297 | 95.52 311 | 65.71 348 | 95.47 276 | 95.03 276 |
|
Fast-Effi-MVS+ | | | 91.28 192 | 90.86 196 | 92.53 191 | 95.45 226 | 82.53 204 | 89.25 273 | 96.52 178 | 85.00 234 | 89.91 270 | 88.55 328 | 92.94 88 | 98.84 130 | 84.72 233 | 95.44 277 | 96.22 239 |
|
ET-MVSNet_ETH3D | | | 86.15 285 | 84.27 293 | 91.79 211 | 93.04 284 | 81.28 218 | 87.17 302 | 86.14 325 | 79.57 279 | 83.65 330 | 88.66 326 | 57.10 347 | 98.18 209 | 87.74 189 | 95.40 278 | 95.90 253 |
|
BH-RMVSNet | | | 90.47 206 | 90.44 206 | 90.56 250 | 95.21 234 | 78.65 264 | 89.15 274 | 93.94 256 | 88.21 177 | 92.74 213 | 94.22 229 | 86.38 207 | 97.88 229 | 78.67 290 | 95.39 279 | 95.14 274 |
|
CHOSEN 1792x2688 | | | 87.19 277 | 85.92 285 | 91.00 238 | 97.13 132 | 79.41 249 | 84.51 331 | 95.60 210 | 64.14 349 | 90.07 267 | 94.81 210 | 78.26 270 | 97.14 272 | 73.34 321 | 95.38 280 | 96.46 229 |
|
Effi-MVS+ | | | 92.79 154 | 92.74 153 | 92.94 174 | 95.10 235 | 83.30 194 | 94.00 123 | 97.53 107 | 91.36 115 | 89.35 281 | 90.65 308 | 94.01 67 | 98.66 164 | 87.40 196 | 95.30 281 | 96.88 215 |
|
MG-MVS | | | 89.54 231 | 89.80 218 | 88.76 283 | 94.88 238 | 72.47 323 | 89.60 261 | 92.44 281 | 85.82 218 | 89.48 279 | 95.98 155 | 82.85 233 | 97.74 246 | 81.87 257 | 95.27 282 | 96.08 244 |
|
HyFIR lowres test | | | 87.19 277 | 85.51 287 | 92.24 197 | 97.12 133 | 80.51 226 | 85.03 325 | 96.06 197 | 66.11 345 | 91.66 240 | 92.98 264 | 70.12 303 | 99.14 85 | 75.29 312 | 95.23 283 | 97.07 206 |
|
BH-untuned | | | 90.68 201 | 90.90 194 | 90.05 265 | 95.98 198 | 79.57 247 | 90.04 249 | 94.94 230 | 87.91 182 | 94.07 172 | 93.00 263 | 87.76 183 | 97.78 241 | 79.19 287 | 95.17 284 | 92.80 322 |
|
pmmvs3 | | | 80.83 317 | 78.96 325 | 86.45 308 | 87.23 348 | 77.48 278 | 84.87 326 | 82.31 348 | 63.83 350 | 85.03 321 | 89.50 320 | 49.66 356 | 93.10 339 | 73.12 324 | 95.10 285 | 88.78 344 |
|
mvs_anonymous | | | 90.37 210 | 91.30 188 | 87.58 300 | 92.17 299 | 68.00 339 | 89.84 257 | 94.73 238 | 83.82 245 | 93.22 200 | 97.40 65 | 87.54 186 | 97.40 263 | 87.94 186 | 95.05 286 | 97.34 199 |
|
IterMVS-SCA-FT | | | 91.65 181 | 91.55 179 | 91.94 208 | 93.89 270 | 79.22 254 | 87.56 294 | 93.51 260 | 91.53 112 | 95.37 127 | 96.62 118 | 78.65 265 | 98.90 119 | 91.89 99 | 94.95 287 | 97.70 175 |
|
test-LLR | | | 83.58 298 | 83.17 299 | 84.79 321 | 89.68 331 | 66.86 343 | 83.08 339 | 84.52 341 | 83.07 252 | 82.85 336 | 84.78 347 | 62.86 335 | 93.49 337 | 82.85 246 | 94.86 288 | 94.03 298 |
|
test-mter | | | 81.21 315 | 80.01 322 | 84.79 321 | 89.68 331 | 66.86 343 | 83.08 339 | 84.52 341 | 73.85 315 | 82.85 336 | 84.78 347 | 43.66 363 | 93.49 337 | 82.85 246 | 94.86 288 | 94.03 298 |
|
PatchMatch-RL | | | 89.18 235 | 88.02 253 | 92.64 184 | 95.90 204 | 92.87 45 | 88.67 285 | 91.06 296 | 80.34 271 | 90.03 268 | 91.67 291 | 83.34 227 | 94.42 328 | 76.35 307 | 94.84 290 | 90.64 338 |
|
OpenMVS_ROB |  | 85.12 16 | 89.52 232 | 89.05 229 | 90.92 240 | 94.58 255 | 81.21 220 | 91.10 219 | 93.41 262 | 77.03 301 | 93.41 189 | 93.99 239 | 83.23 229 | 97.80 238 | 79.93 278 | 94.80 291 | 93.74 307 |
|
our_test_3 | | | 87.55 267 | 87.59 258 | 87.44 302 | 91.76 306 | 70.48 330 | 83.83 337 | 90.55 301 | 79.79 275 | 92.06 235 | 92.17 283 | 78.63 267 | 95.63 309 | 84.77 231 | 94.73 292 | 96.22 239 |
|
CHOSEN 280x420 | | | 80.04 322 | 77.97 328 | 86.23 312 | 90.13 326 | 74.53 307 | 72.87 352 | 89.59 303 | 66.38 344 | 76.29 354 | 85.32 346 | 56.96 348 | 95.36 317 | 69.49 341 | 94.72 293 | 88.79 343 |
|
IterMVS | | | 90.18 216 | 90.16 210 | 90.21 260 | 93.15 281 | 75.98 297 | 87.56 294 | 92.97 268 | 86.43 208 | 94.09 170 | 96.40 130 | 78.32 269 | 97.43 260 | 87.87 187 | 94.69 294 | 97.23 203 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EMVS | | | 80.35 321 | 80.28 320 | 80.54 334 | 84.73 357 | 69.07 337 | 72.54 353 | 80.73 352 | 87.80 186 | 81.66 345 | 81.73 352 | 62.89 334 | 89.84 350 | 75.79 311 | 94.65 295 | 82.71 351 |
|
PLC |  | 85.34 15 | 90.40 208 | 88.92 232 | 94.85 102 | 96.53 157 | 90.02 77 | 91.58 208 | 96.48 180 | 80.16 273 | 86.14 316 | 92.18 282 | 85.73 214 | 98.25 203 | 76.87 303 | 94.61 296 | 96.30 235 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MSDG | | | 90.82 196 | 90.67 202 | 91.26 227 | 94.16 262 | 83.08 199 | 86.63 315 | 96.19 193 | 90.60 134 | 91.94 236 | 91.89 287 | 89.16 166 | 95.75 308 | 80.96 269 | 94.51 297 | 94.95 279 |
|
xiu_mvs_v2_base | | | 89.00 240 | 89.19 225 | 88.46 290 | 94.86 240 | 74.63 305 | 86.97 304 | 95.60 210 | 80.88 268 | 87.83 304 | 88.62 327 | 91.04 136 | 98.81 137 | 82.51 252 | 94.38 298 | 91.93 330 |
|
PS-MVSNAJ | | | 88.86 244 | 88.99 231 | 88.48 289 | 94.88 238 | 74.71 303 | 86.69 313 | 95.60 210 | 80.88 268 | 87.83 304 | 87.37 335 | 90.77 139 | 98.82 132 | 82.52 251 | 94.37 299 | 91.93 330 |
|
EU-MVSNet | | | 87.39 271 | 86.71 274 | 89.44 271 | 93.40 276 | 76.11 295 | 94.93 93 | 90.00 302 | 57.17 355 | 95.71 114 | 97.37 67 | 64.77 326 | 97.68 249 | 92.67 81 | 94.37 299 | 94.52 288 |
|
E-PMN | | | 80.72 319 | 80.86 314 | 80.29 335 | 85.11 355 | 68.77 338 | 72.96 351 | 81.97 349 | 87.76 187 | 83.25 335 | 83.01 351 | 62.22 338 | 89.17 352 | 77.15 302 | 94.31 301 | 82.93 350 |
|
GA-MVS | | | 87.70 262 | 86.82 271 | 90.31 255 | 93.27 278 | 77.22 282 | 84.72 329 | 92.79 272 | 85.11 232 | 89.82 273 | 90.07 310 | 66.80 313 | 97.76 244 | 84.56 234 | 94.27 302 | 95.96 249 |
|
sss | | | 87.23 274 | 86.82 271 | 88.46 290 | 93.96 268 | 77.94 269 | 86.84 308 | 92.78 273 | 77.59 296 | 87.61 307 | 91.83 288 | 78.75 264 | 91.92 344 | 77.84 294 | 94.20 303 | 95.52 268 |
|
MDA-MVSNet-bldmvs | | | 91.04 193 | 90.88 195 | 91.55 219 | 94.68 252 | 80.16 228 | 85.49 322 | 92.14 287 | 90.41 139 | 94.93 148 | 95.79 164 | 85.10 218 | 96.93 279 | 85.15 223 | 94.19 304 | 97.57 183 |
|
PAPM_NR | | | 91.03 194 | 90.81 198 | 91.68 216 | 96.73 147 | 81.10 221 | 93.72 130 | 96.35 185 | 88.19 178 | 88.77 291 | 92.12 285 | 85.09 219 | 97.25 268 | 82.40 253 | 93.90 305 | 96.68 221 |
|
YYNet1 | | | 88.17 255 | 88.24 246 | 87.93 296 | 92.21 297 | 73.62 314 | 80.75 346 | 88.77 305 | 82.51 259 | 94.99 146 | 95.11 196 | 82.70 236 | 93.70 335 | 83.33 242 | 93.83 306 | 96.48 228 |
|
MDA-MVSNet_test_wron | | | 88.16 256 | 88.23 247 | 87.93 296 | 92.22 296 | 73.71 313 | 80.71 347 | 88.84 304 | 82.52 258 | 94.88 151 | 95.14 194 | 82.70 236 | 93.61 336 | 83.28 243 | 93.80 307 | 96.46 229 |
|
1112_ss | | | 88.42 251 | 87.41 260 | 91.45 221 | 96.69 148 | 80.99 222 | 89.72 259 | 96.72 167 | 73.37 317 | 87.00 312 | 90.69 306 | 77.38 276 | 98.20 206 | 81.38 262 | 93.72 308 | 95.15 273 |
|
PVSNet | | 76.22 20 | 82.89 303 | 82.37 303 | 84.48 323 | 93.96 268 | 64.38 353 | 78.60 349 | 88.61 306 | 71.50 326 | 84.43 327 | 86.36 341 | 74.27 290 | 94.60 325 | 69.87 340 | 93.69 309 | 94.46 289 |
|
TESTMET0.1,1 | | | 79.09 324 | 78.04 327 | 82.25 331 | 87.52 345 | 64.03 354 | 83.08 339 | 80.62 353 | 70.28 333 | 80.16 349 | 83.22 350 | 44.13 362 | 90.56 348 | 79.95 276 | 93.36 310 | 92.15 328 |
|
PAPR | | | 87.65 265 | 86.77 273 | 90.27 257 | 92.85 287 | 77.38 279 | 88.56 286 | 96.23 190 | 76.82 303 | 84.98 322 | 89.75 317 | 86.08 211 | 97.16 271 | 72.33 327 | 93.35 311 | 96.26 237 |
|
SCA | | | 87.43 270 | 87.21 264 | 88.10 295 | 92.01 303 | 71.98 325 | 89.43 265 | 88.11 313 | 82.26 262 | 88.71 292 | 92.83 266 | 78.65 265 | 97.59 251 | 79.61 282 | 93.30 312 | 94.75 283 |
|
Test_1112_low_res | | | 87.50 269 | 86.58 275 | 90.25 258 | 96.80 146 | 77.75 274 | 87.53 296 | 96.25 188 | 69.73 335 | 86.47 314 | 93.61 250 | 75.67 287 | 97.88 229 | 79.95 276 | 93.20 313 | 95.11 275 |
|
MDTV_nov1_ep13 | | | | 83.88 296 | | 89.42 335 | 61.52 356 | 88.74 282 | 87.41 317 | 73.99 314 | 84.96 323 | 94.01 238 | 65.25 323 | 95.53 310 | 78.02 292 | 93.16 314 | |
|
WTY-MVS | | | 86.93 282 | 86.50 280 | 88.24 293 | 94.96 237 | 74.64 304 | 87.19 301 | 92.07 289 | 78.29 293 | 88.32 298 | 91.59 293 | 78.06 271 | 94.27 331 | 74.88 314 | 93.15 315 | 95.80 256 |
|
PMMVS | | | 83.00 302 | 81.11 310 | 88.66 286 | 83.81 359 | 86.44 150 | 82.24 343 | 85.65 331 | 61.75 353 | 82.07 341 | 85.64 345 | 79.75 258 | 91.59 346 | 75.99 309 | 93.09 316 | 87.94 345 |
|
UnsupCasMVSNet_bld | | | 88.50 250 | 88.03 252 | 89.90 266 | 95.52 224 | 78.88 259 | 87.39 298 | 94.02 254 | 79.32 284 | 93.06 204 | 94.02 237 | 80.72 255 | 94.27 331 | 75.16 313 | 93.08 317 | 96.54 222 |
|
MVS | | | 84.98 292 | 84.30 292 | 87.01 304 | 91.03 315 | 77.69 276 | 91.94 191 | 94.16 250 | 59.36 354 | 84.23 328 | 87.50 334 | 85.66 215 | 96.80 283 | 71.79 329 | 93.05 318 | 86.54 346 |
|
PatchT | | | 87.51 268 | 88.17 249 | 85.55 314 | 90.64 319 | 66.91 341 | 92.02 187 | 86.09 326 | 92.20 83 | 89.05 284 | 97.16 82 | 64.15 328 | 96.37 297 | 89.21 162 | 92.98 319 | 93.37 314 |
|
MS-PatchMatch | | | 88.05 257 | 87.75 255 | 88.95 279 | 93.28 277 | 77.93 270 | 87.88 290 | 92.49 280 | 75.42 307 | 92.57 218 | 93.59 251 | 80.44 256 | 94.24 333 | 81.28 263 | 92.75 320 | 94.69 286 |
|
CR-MVSNet | | | 87.89 258 | 87.12 267 | 90.22 259 | 91.01 316 | 78.93 257 | 92.52 160 | 92.81 270 | 73.08 319 | 89.10 282 | 96.93 95 | 67.11 310 | 97.64 250 | 88.80 169 | 92.70 321 | 94.08 295 |
|
RPMNet | | | 90.31 214 | 90.14 213 | 90.81 245 | 91.01 316 | 78.93 257 | 92.52 160 | 98.12 41 | 91.91 91 | 89.10 282 | 96.89 98 | 68.84 305 | 99.41 35 | 90.17 137 | 92.70 321 | 94.08 295 |
|
KD-MVS_2432*1600 | | | 82.17 308 | 80.75 315 | 86.42 309 | 82.04 360 | 70.09 333 | 81.75 344 | 90.80 298 | 82.56 256 | 90.37 261 | 89.30 322 | 42.90 364 | 96.11 302 | 74.47 315 | 92.55 323 | 93.06 317 |
|
miper_refine_blended | | | 82.17 308 | 80.75 315 | 86.42 309 | 82.04 360 | 70.09 333 | 81.75 344 | 90.80 298 | 82.56 256 | 90.37 261 | 89.30 322 | 42.90 364 | 96.11 302 | 74.47 315 | 92.55 323 | 93.06 317 |
|
BH-w/o | | | 87.21 275 | 87.02 269 | 87.79 299 | 94.77 244 | 77.27 281 | 87.90 289 | 93.21 266 | 81.74 265 | 89.99 269 | 88.39 330 | 83.47 226 | 96.93 279 | 71.29 333 | 92.43 325 | 89.15 340 |
|
IB-MVS | | 77.21 19 | 83.11 300 | 81.05 311 | 89.29 275 | 91.15 314 | 75.85 298 | 85.66 321 | 86.00 328 | 79.70 277 | 82.02 343 | 86.61 338 | 48.26 358 | 98.39 189 | 77.84 294 | 92.22 326 | 93.63 309 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
gg-mvs-nofinetune | | | 82.10 310 | 81.02 312 | 85.34 317 | 87.46 347 | 71.04 327 | 94.74 98 | 67.56 359 | 96.44 21 | 79.43 351 | 98.99 6 | 45.24 360 | 96.15 300 | 67.18 345 | 92.17 327 | 88.85 342 |
|
HY-MVS | | 82.50 18 | 86.81 283 | 85.93 284 | 89.47 270 | 93.63 274 | 77.93 270 | 94.02 122 | 91.58 294 | 75.68 304 | 83.64 331 | 93.64 248 | 77.40 275 | 97.42 261 | 71.70 331 | 92.07 328 | 93.05 319 |
|
TR-MVS | | | 87.70 262 | 87.17 265 | 89.27 276 | 94.11 264 | 79.26 252 | 88.69 283 | 91.86 291 | 81.94 264 | 90.69 255 | 89.79 315 | 82.82 234 | 97.42 261 | 72.65 326 | 91.98 329 | 91.14 335 |
|
new_pmnet | | | 81.22 314 | 81.01 313 | 81.86 332 | 90.92 318 | 70.15 332 | 84.03 335 | 80.25 355 | 70.83 330 | 85.97 317 | 89.78 316 | 67.93 309 | 84.65 355 | 67.44 344 | 91.90 330 | 90.78 337 |
|
FPMVS | | | 84.50 294 | 83.28 298 | 88.16 294 | 96.32 171 | 94.49 14 | 85.76 320 | 85.47 334 | 83.09 251 | 85.20 320 | 94.26 227 | 63.79 331 | 86.58 354 | 63.72 350 | 91.88 331 | 83.40 349 |
|
UnsupCasMVSNet_eth | | | 90.33 212 | 90.34 208 | 90.28 256 | 94.64 254 | 80.24 227 | 89.69 260 | 95.88 202 | 85.77 219 | 93.94 177 | 95.69 169 | 81.99 244 | 92.98 341 | 84.21 237 | 91.30 332 | 97.62 181 |
|
MVP-Stereo | | | 90.07 221 | 88.92 232 | 93.54 155 | 96.31 172 | 86.49 147 | 90.93 222 | 95.59 213 | 79.80 274 | 91.48 241 | 95.59 173 | 80.79 254 | 97.39 264 | 78.57 291 | 91.19 333 | 96.76 219 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
1314 | | | 86.46 284 | 86.33 281 | 86.87 306 | 91.65 308 | 74.54 306 | 91.94 191 | 94.10 251 | 74.28 311 | 84.78 324 | 87.33 336 | 83.03 231 | 95.00 323 | 78.72 289 | 91.16 334 | 91.06 336 |
|
tpm | | | 84.38 295 | 84.08 294 | 85.30 318 | 90.47 323 | 63.43 355 | 89.34 268 | 85.63 332 | 77.24 300 | 87.62 306 | 95.03 202 | 61.00 343 | 97.30 267 | 79.26 286 | 91.09 335 | 95.16 272 |
|
CVMVSNet | | | 85.16 290 | 84.72 289 | 86.48 307 | 92.12 300 | 70.19 331 | 92.32 174 | 88.17 312 | 56.15 356 | 90.64 256 | 95.85 159 | 67.97 308 | 96.69 286 | 88.78 170 | 90.52 336 | 92.56 325 |
|
test0.0.03 1 | | | 82.48 305 | 81.47 309 | 85.48 315 | 89.70 330 | 73.57 315 | 84.73 327 | 81.64 350 | 83.07 252 | 88.13 301 | 86.61 338 | 62.86 335 | 89.10 353 | 66.24 347 | 90.29 337 | 93.77 306 |
|
baseline2 | | | 83.38 299 | 81.54 308 | 88.90 280 | 91.38 312 | 72.84 321 | 88.78 280 | 81.22 351 | 78.97 287 | 79.82 350 | 87.56 332 | 61.73 340 | 97.80 238 | 74.30 317 | 90.05 338 | 96.05 246 |
|
PAPM | | | 81.91 311 | 80.11 321 | 87.31 303 | 93.87 271 | 72.32 324 | 84.02 336 | 93.22 264 | 69.47 336 | 76.13 355 | 89.84 312 | 72.15 298 | 97.23 269 | 53.27 356 | 89.02 339 | 92.37 327 |
|
MVS-HIRNet | | | 78.83 325 | 80.60 317 | 73.51 340 | 93.07 282 | 47.37 361 | 87.10 303 | 78.00 356 | 68.94 337 | 77.53 353 | 97.26 75 | 71.45 301 | 94.62 324 | 63.28 351 | 88.74 340 | 78.55 353 |
|
tpm2 | | | 81.46 312 | 80.35 319 | 84.80 320 | 89.90 328 | 65.14 349 | 90.44 234 | 85.36 335 | 65.82 347 | 82.05 342 | 92.44 278 | 57.94 346 | 96.69 286 | 70.71 337 | 88.49 341 | 92.56 325 |
|
CostFormer | | | 83.09 301 | 82.21 304 | 85.73 313 | 89.27 336 | 67.01 340 | 90.35 238 | 86.47 323 | 70.42 332 | 83.52 333 | 93.23 260 | 61.18 341 | 96.85 281 | 77.21 301 | 88.26 342 | 93.34 315 |
|
GG-mvs-BLEND | | | | | 83.24 329 | 85.06 356 | 71.03 328 | 94.99 92 | 65.55 360 | | 74.09 356 | 75.51 355 | 44.57 361 | 94.46 327 | 59.57 353 | 87.54 343 | 84.24 348 |
|
PatchmatchNet |  | | 85.22 289 | 84.64 290 | 86.98 305 | 89.51 334 | 69.83 336 | 90.52 232 | 87.34 318 | 78.87 289 | 87.22 311 | 92.74 270 | 66.91 312 | 96.53 289 | 81.77 258 | 86.88 344 | 94.58 287 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
baseline1 | | | 87.62 266 | 87.31 261 | 88.54 287 | 94.71 251 | 74.27 311 | 93.10 144 | 88.20 311 | 86.20 211 | 92.18 232 | 93.04 262 | 73.21 294 | 95.52 311 | 79.32 285 | 85.82 345 | 95.83 255 |
|
tpmvs | | | 84.22 296 | 83.97 295 | 84.94 319 | 87.09 349 | 65.18 348 | 91.21 216 | 88.35 308 | 82.87 255 | 85.21 319 | 90.96 301 | 65.24 324 | 96.75 284 | 79.60 284 | 85.25 346 | 92.90 321 |
|
ADS-MVSNet2 | | | 84.01 297 | 82.20 305 | 89.41 272 | 89.04 338 | 76.37 294 | 87.57 292 | 90.98 297 | 72.71 322 | 84.46 325 | 92.45 276 | 68.08 306 | 96.48 292 | 70.58 338 | 83.97 347 | 95.38 269 |
|
ADS-MVSNet | | | 82.25 306 | 81.55 307 | 84.34 324 | 89.04 338 | 65.30 347 | 87.57 292 | 85.13 340 | 72.71 322 | 84.46 325 | 92.45 276 | 68.08 306 | 92.33 343 | 70.58 338 | 83.97 347 | 95.38 269 |
|
JIA-IIPM | | | 85.08 291 | 83.04 300 | 91.19 232 | 87.56 344 | 86.14 159 | 89.40 267 | 84.44 343 | 88.98 161 | 82.20 340 | 97.95 39 | 56.82 349 | 96.15 300 | 76.55 306 | 83.45 349 | 91.30 334 |
|
MVE |  | 59.87 23 | 73.86 327 | 72.65 330 | 77.47 338 | 87.00 351 | 74.35 309 | 61.37 356 | 60.93 361 | 67.27 342 | 69.69 358 | 86.49 340 | 81.24 253 | 72.33 358 | 56.45 355 | 83.45 349 | 85.74 347 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DWT-MVSNet_test | | | 80.74 318 | 79.18 324 | 85.43 316 | 87.51 346 | 66.87 342 | 89.87 256 | 86.01 327 | 74.20 313 | 80.86 347 | 80.62 353 | 48.84 357 | 96.68 288 | 81.54 260 | 83.14 351 | 92.75 323 |
|
EPMVS | | | 81.17 316 | 80.37 318 | 83.58 327 | 85.58 354 | 65.08 350 | 90.31 240 | 71.34 358 | 77.31 299 | 85.80 318 | 91.30 295 | 59.38 344 | 92.70 342 | 79.99 275 | 82.34 352 | 92.96 320 |
|
tpmrst | | | 82.85 304 | 82.93 302 | 82.64 330 | 87.65 343 | 58.99 358 | 90.14 246 | 87.90 314 | 75.54 306 | 83.93 329 | 91.63 292 | 66.79 315 | 95.36 317 | 81.21 265 | 81.54 353 | 93.57 313 |
|
tpm cat1 | | | 80.61 320 | 79.46 323 | 84.07 326 | 88.78 340 | 65.06 351 | 89.26 271 | 88.23 310 | 62.27 352 | 81.90 344 | 89.66 319 | 62.70 337 | 95.29 320 | 71.72 330 | 80.60 354 | 91.86 332 |
|
dp | | | 79.28 323 | 78.62 326 | 81.24 333 | 85.97 353 | 56.45 359 | 86.91 306 | 85.26 338 | 72.97 320 | 81.45 346 | 89.17 325 | 56.01 351 | 95.45 315 | 73.19 323 | 76.68 355 | 91.82 333 |
|
DeepMVS_CX |  | | | | 53.83 341 | 70.38 362 | 64.56 352 | | 48.52 363 | 33.01 358 | 65.50 359 | 74.21 356 | 56.19 350 | 46.64 359 | 38.45 358 | 70.07 356 | 50.30 355 |
|
tmp_tt | | | 37.97 328 | 44.33 331 | 18.88 342 | 11.80 363 | 21.54 364 | 63.51 355 | 45.66 364 | 4.23 359 | 51.34 360 | 50.48 357 | 59.08 345 | 22.11 360 | 44.50 357 | 68.35 357 | 13.00 356 |
|
PVSNet_0 | | 70.34 21 | 74.58 326 | 72.96 329 | 79.47 336 | 90.63 320 | 66.24 346 | 73.26 350 | 83.40 347 | 63.67 351 | 78.02 352 | 78.35 354 | 72.53 296 | 89.59 351 | 56.68 354 | 60.05 358 | 82.57 352 |
|
test123 | | | 9.49 330 | 12.01 333 | 1.91 343 | 2.87 364 | 1.30 365 | 82.38 342 | 1.34 366 | 1.36 360 | 2.84 361 | 6.56 360 | 2.45 366 | 0.97 361 | 2.73 359 | 5.56 359 | 3.47 357 |
|
testmvs | | | 9.02 331 | 11.42 334 | 1.81 344 | 2.77 365 | 1.13 366 | 79.44 348 | 1.90 365 | 1.18 361 | 2.65 362 | 6.80 359 | 1.95 367 | 0.87 362 | 2.62 360 | 3.45 360 | 3.44 358 |
|
uanet_test | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
cdsmvs_eth3d_5k | | | 23.35 329 | 31.13 332 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 95.58 215 | 0.00 362 | 0.00 363 | 91.15 297 | 93.43 74 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
pcd_1.5k_mvsjas | | | 7.56 332 | 10.09 335 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 90.77 139 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet-low-res | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uncertanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
Regformer | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
ab-mvs-re | | | 7.56 332 | 10.08 336 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 90.69 306 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
test_241102_ONE | | | | | | 98.51 45 | 86.97 136 | | 98.10 44 | 91.85 94 | 97.63 31 | 97.03 89 | 96.48 11 | 98.95 115 | | | |
|
save fliter | | | | | | 97.46 117 | 88.05 117 | 92.04 185 | 97.08 141 | 87.63 191 | | | | | | | |
|
test0726 | | | | | | 98.51 45 | 86.69 143 | 95.34 74 | 98.18 32 | 91.85 94 | 97.63 31 | 97.37 67 | 95.58 22 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 283 |
|
test_part2 | | | | | | 98.21 68 | 89.41 89 | | | | 96.72 68 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 316 | | | | 94.75 283 |
|
sam_mvs | | | | | | | | | | | | | 66.41 317 | | | | |
|
MTGPA |  | | | | | | | | 97.62 97 | | | | | | | | |
|
test_post1 | | | | | | | | 90.21 242 | | | | 5.85 362 | 65.36 322 | 96.00 305 | 79.61 282 | | |
|
test_post | | | | | | | | | | | | 6.07 361 | 65.74 321 | 95.84 307 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 290 | 66.22 319 | 97.59 251 | | | |
|
MTMP | | | | | | | | 94.82 95 | 54.62 362 | | | | | | | | |
|
gm-plane-assit | | | | | | 87.08 350 | 59.33 357 | | | 71.22 327 | | 83.58 349 | | 97.20 270 | 73.95 318 | | |
|
TEST9 | | | | | | 96.45 161 | 89.46 86 | 90.60 230 | 96.92 152 | 79.09 286 | 90.49 257 | 94.39 224 | 91.31 126 | 98.88 122 | | | |
|
test_8 | | | | | | 96.37 163 | 89.14 93 | 90.51 233 | 96.89 155 | 79.37 281 | 90.42 259 | 94.36 226 | 91.20 132 | 98.82 132 | | | |
|
agg_prior | | | | | | 96.20 180 | 88.89 98 | | 96.88 156 | | 90.21 263 | | | 98.78 143 | | | |
|
test_prior4 | | | | | | | 89.91 80 | 90.74 226 | | | | | | | | | |
|
test_prior | | | | | 94.61 111 | 95.95 200 | 87.23 129 | | 97.36 120 | | | | | 98.68 162 | | | 97.93 153 |
|
旧先验2 | | | | | | | | 90.00 251 | | 68.65 338 | 92.71 214 | | | 96.52 290 | 85.15 223 | | |
|
新几何2 | | | | | | | | 90.02 250 | | | | | | | | | |
|
无先验 | | | | | | | | 89.94 252 | 95.75 207 | 70.81 331 | | | | 98.59 172 | 81.17 266 | | 94.81 280 |
|
原ACMM2 | | | | | | | | 89.34 268 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.03 218 | 80.24 273 | | |
|
segment_acmp | | | | | | | | | | | | | 92.14 105 | | | | |
|
testdata1 | | | | | | | | 88.96 277 | | 88.44 174 | | | | | | | |
|
plane_prior7 | | | | | | 97.71 99 | 88.68 102 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.21 127 | 88.23 113 | | | | | | 86.93 198 | | | | |
|
plane_prior4 | | | | | | | | | | | | 95.59 173 | | | | | |
|
plane_prior3 | | | | | | | 88.43 111 | | | 90.35 140 | 93.31 192 | | | | | | |
|
plane_prior2 | | | | | | | | 94.56 107 | | 91.74 105 | | | | | | | |
|
plane_prior1 | | | | | | 97.38 120 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 367 | | | | | | | | |
|
nn | | | | | | | | | 0.00 367 | | | | | | | | |
|
door-mid | | | | | | | | | 92.13 288 | | | | | | | | |
|
test11 | | | | | | | | | 96.65 170 | | | | | | | | |
|
door | | | | | | | | | 91.26 295 | | | | | | | | |
|
HQP5-MVS | | | | | | | 84.89 173 | | | | | | | | | | |
|
HQP-NCC | | | | | | 96.36 165 | | 91.37 211 | | 87.16 198 | 88.81 287 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 165 | | 91.37 211 | | 87.16 198 | 88.81 287 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 208 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 287 | | | 98.61 168 | | | 98.15 131 |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 220 | | | | |
|
NP-MVS | | | | | | 96.82 143 | 87.10 132 | | | | | 93.40 255 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 363 | 88.45 287 | | 67.22 343 | 83.56 332 | | 66.80 313 | | 72.86 325 | | 94.06 297 |
|
Test By Simon | | | | | | | | | | | | | 90.61 145 | | | | |
|