This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UA-Net97.35 497.24 1197.69 598.22 6793.87 2698.42 498.19 3196.95 1395.46 12099.23 493.45 6999.57 1395.34 1299.89 299.63 9
PS-CasMVS96.69 1897.43 594.49 11999.13 584.09 18096.61 2497.97 6697.91 598.64 1398.13 3195.24 3599.65 393.39 5299.84 399.72 2
WR-MVS_H96.60 2397.05 1495.24 8799.02 1186.44 14596.78 2198.08 4597.42 898.48 1697.86 4491.76 11199.63 694.23 2699.84 399.66 6
FC-MVSNet-test95.32 7195.88 5493.62 14698.49 5381.77 20495.90 5498.32 1793.93 4997.53 3697.56 5488.48 16699.40 3692.91 7199.83 599.68 4
PEN-MVS96.69 1897.39 894.61 10899.16 384.50 17196.54 2798.05 5198.06 498.64 1398.25 3095.01 4699.65 392.95 7099.83 599.68 4
DTE-MVSNet96.74 1597.43 594.67 10699.13 584.68 17096.51 2897.94 7298.14 398.67 1298.32 2895.04 4399.69 293.27 5799.82 799.62 10
CP-MVSNet96.19 4496.80 1794.38 12598.99 1383.82 18496.31 3997.53 10297.60 698.34 1997.52 5791.98 10799.63 693.08 6699.81 899.70 3
LTVRE_ROB93.87 197.93 298.16 297.26 2498.81 2393.86 2799.07 298.98 397.01 1298.92 498.78 1495.22 3698.61 16296.85 299.77 999.31 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n96.82 997.31 1095.33 8298.54 4186.81 13596.83 1898.07 4896.59 1998.46 1798.43 2792.91 8699.52 1796.25 699.76 1099.65 8
TranMVSNet+NR-MVSNet96.07 4896.26 3495.50 7798.26 6587.69 11993.75 12497.86 7495.96 2997.48 3897.14 8295.33 3199.44 2390.79 11499.76 1099.38 21
Anonymous2023121196.60 2397.13 1295.00 9597.46 11386.35 14997.11 1498.24 2797.58 798.72 898.97 793.15 8099.15 7893.18 6099.74 1299.50 16
UniMVSNet_ETH3D97.13 697.72 395.35 8099.51 287.38 12297.70 697.54 10198.16 298.94 299.33 297.84 499.08 8790.73 11599.73 1399.59 12
pmmvs696.80 1297.36 995.15 9199.12 787.82 11896.68 2297.86 7496.10 2598.14 2299.28 397.94 398.21 19891.38 10999.69 1499.42 18
FIs94.90 8595.35 7193.55 14998.28 6381.76 20595.33 7198.14 3993.05 6397.07 5097.18 8087.65 18099.29 6391.72 9899.69 1499.61 11
OurMVSNet-221017-096.80 1296.75 1896.96 3499.03 1091.85 5497.98 598.01 6094.15 4498.93 399.07 588.07 17399.57 1395.86 999.69 1499.46 17
ANet_high94.83 9196.28 3390.47 24596.65 14573.16 30994.33 10998.74 596.39 2298.09 2398.93 893.37 7398.70 15490.38 12299.68 1799.53 14
DeepC-MVS91.39 495.43 6695.33 7395.71 7197.67 10190.17 7193.86 12298.02 5887.35 19096.22 8897.99 3794.48 5799.05 9292.73 7599.68 1797.93 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NR-MVSNet95.28 7495.28 7695.26 8697.75 9287.21 12695.08 8297.37 11093.92 5097.65 2995.90 15390.10 15399.33 5990.11 13599.66 1999.26 28
Baseline_NR-MVSNet94.47 10495.09 8392.60 18598.50 5280.82 21992.08 17896.68 16393.82 5196.29 8298.56 2090.10 15397.75 23890.10 13799.66 1999.24 30
UniMVSNet (Re)95.32 7195.15 8095.80 6597.79 9088.91 9292.91 14498.07 4893.46 5896.31 8095.97 15290.14 14999.34 5492.11 8499.64 2199.16 35
WR-MVS93.49 12893.72 12392.80 17797.57 10680.03 22990.14 24195.68 20393.70 5396.62 6895.39 18387.21 18899.04 9587.50 18699.64 2199.33 24
MIMVSNet195.52 6395.45 6895.72 7099.14 489.02 9096.23 4496.87 15393.73 5297.87 2598.49 2490.73 14099.05 9286.43 20499.60 2399.10 43
ACMH+88.43 1196.48 2896.82 1695.47 7898.54 4189.06 8995.65 6298.61 696.10 2598.16 2197.52 5796.90 798.62 16190.30 12799.60 2398.72 88
VPA-MVSNet95.14 7895.67 6493.58 14897.76 9183.15 19294.58 10097.58 9893.39 5997.05 5498.04 3493.25 7698.51 17589.75 14599.59 2599.08 44
LPG-MVS_test96.38 3896.23 3596.84 3898.36 6092.13 4995.33 7198.25 2491.78 9797.07 5097.22 7896.38 1399.28 6592.07 8799.59 2599.11 40
LGP-MVS_train96.84 3898.36 6092.13 4998.25 2491.78 9797.07 5097.22 7896.38 1399.28 6592.07 8799.59 2599.11 40
ACMH88.36 1296.59 2597.43 594.07 13198.56 3685.33 16596.33 3798.30 2094.66 3598.72 898.30 2997.51 598.00 21594.87 1499.59 2598.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet95.35 6995.21 7895.76 6897.69 9988.59 10092.26 17297.84 7894.91 3396.80 6195.78 16290.42 14599.41 3291.60 10399.58 2999.29 27
DU-MVS95.28 7495.12 8295.75 6997.75 9288.59 10092.58 15497.81 8193.99 4696.80 6195.90 15390.10 15399.41 3291.60 10399.58 2999.26 28
ACMP88.15 1395.71 5895.43 7096.54 4498.17 7091.73 5794.24 11198.08 4589.46 14996.61 6996.47 12095.85 1799.12 8390.45 11999.56 3198.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1094.68 9795.27 7792.90 17396.57 15180.15 22394.65 9797.57 9990.68 12797.43 4098.00 3688.18 17099.15 7894.84 1599.55 3299.41 19
PS-MVSNAJss96.01 4996.04 4895.89 6198.82 2288.51 10495.57 6597.88 7388.72 16298.81 698.86 1090.77 13699.60 895.43 1199.53 3399.57 13
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 497.41 997.28 4598.46 2594.62 5398.84 12494.64 1799.53 3398.99 52
IS-MVSNet94.49 10394.35 10794.92 9798.25 6686.46 14497.13 1394.31 24296.24 2396.28 8596.36 13382.88 22799.35 5088.19 17299.52 3598.96 59
nrg03096.32 3996.55 2495.62 7397.83 8988.55 10295.77 5898.29 2392.68 6598.03 2497.91 4295.13 3998.95 10993.85 3399.49 3699.36 23
MP-MVS-pluss96.08 4795.92 5396.57 4399.06 991.21 6193.25 13698.32 1787.89 17996.86 5897.38 6595.55 2499.39 4195.47 1099.47 3799.11 40
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_tets96.83 896.71 1997.17 2598.83 2192.51 4596.58 2697.61 9687.57 18898.80 798.90 996.50 1099.59 1296.15 799.47 3799.40 20
v894.65 9895.29 7592.74 17896.65 14579.77 23794.59 9897.17 13091.86 8997.47 3997.93 3988.16 17199.08 8794.32 2299.47 3799.38 21
CLD-MVS91.82 17591.41 18193.04 16496.37 15983.65 18686.82 30597.29 12284.65 23492.27 22389.67 31092.20 10097.85 22883.95 23199.47 3797.62 177
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
jajsoiax96.59 2596.42 2697.12 2798.76 2692.49 4696.44 3397.42 10886.96 19798.71 1098.72 1795.36 3099.56 1695.92 899.45 4199.32 25
test_djsdf96.62 2196.49 2597.01 3198.55 3991.77 5697.15 1197.37 11088.98 15698.26 2098.86 1093.35 7499.60 896.41 499.45 4199.66 6
CP-MVS96.44 3396.08 4597.54 998.29 6294.62 1096.80 1998.08 4592.67 6795.08 13896.39 13094.77 5099.42 2793.17 6199.44 4398.58 103
COLMAP_ROBcopyleft91.06 596.75 1496.62 2297.13 2698.38 5794.31 1296.79 2098.32 1796.69 1696.86 5897.56 5495.48 2598.77 14190.11 13599.44 4398.31 119
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_0728_THIRD93.26 6197.40 4397.35 7094.69 5199.34 5493.88 3299.42 4598.89 68
zzz-MVS96.47 2996.14 4197.47 1398.95 1594.05 1893.69 12697.62 9394.46 4096.29 8296.94 9093.56 6799.37 4794.29 2499.42 4598.99 52
MTAPA96.65 2096.38 3097.47 1398.95 1594.05 1895.88 5597.62 9394.46 4096.29 8296.94 9093.56 6799.37 4794.29 2499.42 4598.99 52
pm-mvs195.43 6695.94 5193.93 13798.38 5785.08 16795.46 6897.12 13491.84 9397.28 4598.46 2595.30 3397.71 24090.17 13399.42 4598.99 52
XVG-ACMP-BASELINE95.68 5995.34 7296.69 4198.40 5593.04 3894.54 10598.05 5190.45 13396.31 8096.76 10392.91 8698.72 14791.19 11099.42 4598.32 117
wuyk23d87.83 25490.79 19578.96 32990.46 31688.63 9892.72 14990.67 29191.65 10598.68 1197.64 5196.06 1677.53 34859.84 34299.41 5070.73 345
anonymousdsp96.74 1596.42 2697.68 798.00 8194.03 2196.97 1597.61 9687.68 18598.45 1898.77 1594.20 6299.50 1996.70 399.40 5199.53 14
SixPastTwentyTwo94.91 8495.21 7893.98 13398.52 4483.19 19195.93 5294.84 22894.86 3498.49 1598.74 1681.45 24399.60 894.69 1699.39 5299.15 36
HPM-MVS_fast97.01 796.89 1597.39 2099.12 793.92 2497.16 1098.17 3593.11 6296.48 7297.36 6996.92 699.34 5494.31 2399.38 5398.92 66
HPM-MVScopyleft96.81 1196.62 2297.36 2298.89 1893.53 3497.51 798.44 992.35 7495.95 10096.41 12596.71 899.42 2793.99 3199.36 5499.13 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMP_NAP96.21 4396.12 4396.49 4798.90 1791.42 5994.57 10198.03 5690.42 13496.37 7597.35 7095.68 1999.25 6994.44 2099.34 5598.80 79
SteuartSystems-ACMMP96.40 3696.30 3296.71 4098.63 2991.96 5295.70 5998.01 6093.34 6096.64 6796.57 11794.99 4799.36 4993.48 4599.34 5598.82 77
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft96.61 2296.34 3197.43 1798.61 3293.88 2596.95 1698.18 3292.26 7796.33 7896.84 9995.10 4199.40 3693.47 4699.33 5799.02 49
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM88.83 996.30 4196.07 4696.97 3398.39 5692.95 4194.74 9398.03 5690.82 12397.15 4896.85 9796.25 1599.00 10193.10 6499.33 5798.95 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSP-MVS95.82 5596.18 3894.72 10598.51 4586.69 13895.20 7797.00 13991.85 9097.40 4397.35 7095.58 2299.34 5493.44 4999.31 5998.13 132
test_0728_SECOND94.88 9898.55 3986.72 13795.20 7798.22 2999.38 4693.44 4999.31 5998.53 105
APDe-MVS96.46 3096.64 2195.93 5897.68 10089.38 8696.90 1798.41 1392.52 6997.43 4097.92 4095.11 4099.50 1994.45 1999.30 6198.92 66
SED-MVS96.00 5096.41 2994.76 10398.51 4586.97 13195.21 7598.10 4291.95 8497.63 3097.25 7596.48 1199.35 5093.29 5599.29 6297.95 147
IU-MVS98.51 4586.66 14096.83 15472.74 31195.83 10493.00 6899.29 6298.64 94
SMA-MVS95.77 5695.54 6596.47 4898.27 6491.19 6295.09 8197.79 8586.48 20197.42 4297.51 5994.47 5899.29 6393.55 4299.29 6298.93 62
MP-MVScopyleft96.14 4595.68 6397.51 1198.81 2394.06 1696.10 4697.78 8692.73 6493.48 18296.72 10894.23 6199.42 2791.99 8999.29 6299.05 47
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_040295.73 5796.22 3694.26 12798.19 6985.77 16093.24 13797.24 12696.88 1597.69 2897.77 4794.12 6399.13 8191.54 10699.29 6297.88 155
ZNCC-MVS96.42 3496.20 3797.07 2898.80 2592.79 4396.08 4798.16 3891.74 10195.34 12496.36 13395.68 1999.44 2394.41 2199.28 6798.97 58
DPE-MVS95.89 5195.88 5495.92 6097.93 8689.83 7793.46 13298.30 2092.37 7297.75 2796.95 8995.14 3899.51 1891.74 9799.28 6798.41 114
mPP-MVS96.46 3096.05 4797.69 598.62 3094.65 996.45 3197.74 8792.59 6895.47 11896.68 11094.50 5699.42 2793.10 6499.26 6998.99 52
test_241102_TWO98.10 4291.95 8497.54 3597.25 7595.37 2799.35 5093.29 5599.25 7098.49 107
ACMMP++99.25 70
CSCG94.69 9694.75 9294.52 11697.55 10787.87 11695.01 8697.57 9992.68 6596.20 9093.44 24891.92 10898.78 13789.11 15999.24 7296.92 206
TransMVSNet (Re)95.27 7696.04 4892.97 16898.37 5981.92 20395.07 8396.76 16093.97 4897.77 2698.57 1995.72 1897.90 22088.89 16299.23 7399.08 44
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3497.44 6296.51 999.40 3694.06 3099.23 7398.85 75
PGM-MVS96.32 3995.94 5197.43 1798.59 3593.84 2895.33 7198.30 2091.40 11095.76 10696.87 9695.26 3499.45 2292.77 7299.21 7599.00 50
SD-MVS95.19 7795.73 6293.55 14996.62 14888.88 9594.67 9598.05 5191.26 11397.25 4796.40 12695.42 2694.36 32192.72 7699.19 7697.40 190
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Vis-MVSNet (Re-imp)90.42 20490.16 20691.20 22697.66 10277.32 27294.33 10987.66 30791.20 11592.99 20095.13 19075.40 28298.28 19177.86 28599.19 7697.99 142
tfpnnormal94.27 11194.87 8892.48 18997.71 9680.88 21894.55 10495.41 21593.70 5396.67 6697.72 4891.40 11998.18 20287.45 18799.18 7898.36 115
FMVSNet194.84 9095.13 8193.97 13497.60 10484.29 17395.99 4896.56 16992.38 7197.03 5598.53 2190.12 15098.98 10288.78 16499.16 7998.65 90
ACMMPR96.46 3096.14 4197.41 1998.60 3393.82 2996.30 4197.96 6792.35 7495.57 11596.61 11594.93 4999.41 3293.78 3599.15 8099.00 50
HFP-MVS96.39 3796.17 4097.04 2998.51 4593.37 3596.30 4197.98 6392.35 7495.63 11296.47 12095.37 2799.27 6793.78 3599.14 8198.48 108
#test#95.89 5195.51 6697.04 2998.51 4593.37 3595.14 8097.98 6389.34 15195.63 11296.47 12095.37 2799.27 6791.99 8999.14 8198.48 108
VDD-MVS94.37 10594.37 10694.40 12497.49 11086.07 15593.97 12093.28 25894.49 3996.24 8697.78 4587.99 17698.79 13388.92 16199.14 8198.34 116
RRT_MVS91.36 18690.05 20995.29 8589.21 32988.15 10992.51 15994.89 22686.73 20095.54 11695.68 16561.82 33199.30 6294.91 1399.13 8498.43 112
region2R96.41 3596.09 4497.38 2198.62 3093.81 3196.32 3897.96 6792.26 7795.28 12896.57 11795.02 4599.41 3293.63 3999.11 8598.94 61
Gipumacopyleft95.31 7395.80 6093.81 14397.99 8490.91 6696.42 3497.95 6996.69 1691.78 23298.85 1291.77 11095.49 30491.72 9899.08 8695.02 270
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
GST-MVS96.24 4295.99 5097.00 3298.65 2892.71 4495.69 6198.01 6092.08 8295.74 10896.28 13895.22 3699.42 2793.17 6199.06 8798.88 70
OPM-MVS95.61 6195.45 6896.08 5198.49 5391.00 6492.65 15397.33 11890.05 13996.77 6396.85 9795.04 4398.56 17092.77 7299.06 8798.70 89
VPNet93.08 14293.76 12291.03 23098.60 3375.83 29291.51 20495.62 20491.84 9395.74 10897.10 8489.31 16098.32 18985.07 22199.06 8798.93 62
xxxxxxxxxxxxxcwj95.03 7994.93 8595.33 8297.46 11388.05 11292.04 18098.42 1287.63 18696.36 7696.68 11094.37 5999.32 6092.41 8199.05 9098.64 94
SF-MVS95.88 5395.88 5495.87 6298.12 7289.65 8095.58 6498.56 791.84 9396.36 7696.68 11094.37 5999.32 6092.41 8199.05 9098.64 94
XVS96.49 2796.18 3897.44 1598.56 3693.99 2296.50 2997.95 6994.58 3694.38 16096.49 11994.56 5499.39 4193.57 4099.05 9098.93 62
X-MVStestdata90.70 19788.45 23497.44 1598.56 3693.99 2296.50 2997.95 6994.58 3694.38 16026.89 34894.56 5499.39 4193.57 4099.05 9098.93 62
test20.0390.80 19490.85 19390.63 24295.63 21479.24 24689.81 25392.87 26489.90 14294.39 15996.40 12685.77 20995.27 31273.86 30999.05 9097.39 191
Anonymous2024052995.50 6495.83 5894.50 11797.33 11985.93 15795.19 7996.77 15996.64 1897.61 3398.05 3393.23 7798.79 13388.60 16899.04 9598.78 81
testing_294.03 11894.38 10593.00 16696.79 14281.41 21192.87 14696.96 14285.88 21397.06 5397.92 4091.18 13198.71 15391.72 9899.04 9598.87 71
IterMVS-LS93.78 12394.28 11092.27 19296.27 17179.21 24891.87 19296.78 15791.77 9996.57 7197.07 8587.15 18998.74 14591.99 8999.03 9798.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ETH3D-3000-0.194.86 8894.55 10095.81 6397.61 10389.72 7894.05 11698.37 1488.09 17595.06 13995.85 15592.58 9399.10 8690.33 12698.99 9898.62 98
cl-mvsnet_90.65 19990.56 20090.91 23791.85 29676.98 27886.75 30695.36 21885.53 21894.06 16894.89 20277.36 27397.98 21890.27 12998.98 9997.76 167
AllTest94.88 8794.51 10296.00 5398.02 7992.17 4795.26 7498.43 1090.48 13195.04 14096.74 10592.54 9597.86 22685.11 21998.98 9997.98 143
TestCases96.00 5398.02 7992.17 4798.43 1090.48 13195.04 14096.74 10592.54 9597.86 22685.11 21998.98 9997.98 143
Patchmtry90.11 21489.92 21190.66 24190.35 31777.00 27692.96 14292.81 26590.25 13794.74 15196.93 9267.11 30397.52 24885.17 21498.98 9997.46 184
cl-mvsnet190.65 19990.56 20090.91 23791.85 29676.99 27786.75 30695.36 21885.52 22094.06 16894.89 20277.37 27297.99 21790.28 12898.97 10397.76 167
9.1494.81 8997.49 11094.11 11498.37 1487.56 18995.38 12296.03 14994.66 5299.08 8790.70 11698.97 103
D2MVS89.93 21889.60 21790.92 23594.03 25978.40 25888.69 27894.85 22778.96 27893.08 19695.09 19274.57 28396.94 27188.19 17298.96 10597.41 187
PHI-MVS94.34 10893.80 12095.95 5595.65 21291.67 5894.82 9097.86 7487.86 18093.04 19994.16 22791.58 11598.78 13790.27 12998.96 10597.41 187
ambc92.98 16796.88 13583.01 19595.92 5396.38 17996.41 7397.48 6088.26 16997.80 23189.96 14098.93 10798.12 133
EPNet89.80 22288.25 23894.45 12283.91 35086.18 15393.87 12187.07 31191.16 11780.64 33894.72 21078.83 25898.89 11585.17 21498.89 10898.28 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet93.91 12193.68 12694.59 11398.08 7585.55 16397.44 894.03 24794.22 4394.94 14396.19 14382.07 23899.57 1387.28 19198.89 10898.65 90
v119293.49 12893.78 12192.62 18496.16 18079.62 23991.83 19797.22 12886.07 20996.10 9696.38 13187.22 18799.02 9894.14 2998.88 11099.22 31
v114493.50 12793.81 11992.57 18696.28 17079.61 24091.86 19696.96 14286.95 19895.91 10396.32 13587.65 18098.96 10793.51 4398.88 11099.13 38
APD-MVS_3200maxsize96.82 996.65 2097.32 2397.95 8593.82 2996.31 3998.25 2495.51 3196.99 5697.05 8795.63 2199.39 4193.31 5498.88 11098.75 84
APD-MVScopyleft95.00 8194.69 9495.93 5897.38 11690.88 6794.59 9897.81 8189.22 15495.46 12096.17 14593.42 7299.34 5489.30 15198.87 11397.56 181
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OMC-MVS94.22 11493.69 12595.81 6397.25 12091.27 6092.27 17197.40 10987.10 19694.56 15595.42 18093.74 6598.11 20786.62 19998.85 11498.06 135
v14419293.20 14193.54 13192.16 19896.05 18678.26 26091.95 18497.14 13184.98 22995.96 9996.11 14687.08 19199.04 9593.79 3498.84 11599.17 34
v192192093.26 13693.61 12892.19 19596.04 19078.31 25991.88 19197.24 12685.17 22396.19 9296.19 14386.76 19999.05 9294.18 2898.84 11599.22 31
DP-MVS95.62 6095.84 5794.97 9697.16 12488.62 9994.54 10597.64 9296.94 1496.58 7097.32 7393.07 8398.72 14790.45 11998.84 11597.57 179
VDDNet94.03 11894.27 11293.31 15898.87 1982.36 19995.51 6791.78 28597.19 1196.32 7998.60 1884.24 21998.75 14287.09 19298.83 11898.81 78
CPTT-MVS94.74 9494.12 11596.60 4298.15 7193.01 3995.84 5697.66 9189.21 15593.28 18995.46 17788.89 16398.98 10289.80 14298.82 11997.80 164
ACMMP++_ref98.82 119
v2v48293.29 13393.63 12792.29 19196.35 16478.82 25391.77 20096.28 18188.45 16895.70 11196.26 14086.02 20898.90 11393.02 6798.81 12199.14 37
USDC89.02 23289.08 22188.84 27695.07 22974.50 30088.97 27196.39 17873.21 30893.27 19096.28 13882.16 23796.39 28977.55 28998.80 12295.62 259
tttt051789.81 22188.90 22892.55 18797.00 13079.73 23895.03 8583.65 33689.88 14395.30 12694.79 20953.64 34599.39 4191.99 8998.79 12398.54 104
PMVScopyleft87.21 1494.97 8295.33 7393.91 13898.97 1497.16 295.54 6695.85 19996.47 2093.40 18597.46 6195.31 3295.47 30586.18 20898.78 12489.11 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TinyColmap92.00 17392.76 14889.71 26295.62 21577.02 27590.72 22296.17 19087.70 18495.26 12996.29 13792.54 9596.45 28781.77 25198.77 12595.66 256
v124093.29 13393.71 12492.06 20196.01 19177.89 26591.81 19897.37 11085.12 22596.69 6596.40 12686.67 20099.07 9194.51 1898.76 12699.22 31
DeepPCF-MVS90.46 694.20 11593.56 13096.14 4995.96 19392.96 4089.48 25997.46 10685.14 22496.23 8795.42 18093.19 7898.08 20890.37 12398.76 12697.38 193
Anonymous2023120688.77 24088.29 23790.20 25596.31 16878.81 25489.56 25893.49 25674.26 30292.38 21795.58 17182.21 23595.43 30772.07 31898.75 12896.34 226
SR-MVS96.70 1796.42 2697.54 998.05 7694.69 896.13 4598.07 4895.17 3296.82 6096.73 10795.09 4299.43 2692.99 6998.71 12998.50 106
UGNet93.08 14292.50 15694.79 10293.87 26387.99 11495.07 8394.26 24490.64 12887.33 30097.67 5086.89 19798.49 17688.10 17598.71 12997.91 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS91.33 18791.16 18891.82 20596.27 17179.36 24395.01 8685.61 32496.04 2894.82 14897.06 8672.03 29398.46 18284.96 22298.70 13197.65 175
HPM-MVS++copyleft95.02 8094.39 10496.91 3697.88 8793.58 3394.09 11596.99 14191.05 11892.40 21695.22 18791.03 13499.25 6992.11 8498.69 13297.90 153
miper_lstm_enhance89.90 21989.80 21290.19 25691.37 30577.50 26983.82 33195.00 22284.84 23193.05 19894.96 19976.53 28095.20 31389.96 14098.67 13397.86 157
FMVSNet292.78 15292.73 15192.95 17095.40 22181.98 20294.18 11395.53 21288.63 16396.05 9797.37 6681.31 24598.81 13187.38 19098.67 13398.06 135
DeepC-MVS_fast89.96 793.73 12493.44 13394.60 11296.14 18187.90 11593.36 13597.14 13185.53 21893.90 17395.45 17891.30 12398.59 16689.51 14898.62 13597.31 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS95.15 9196.84 13789.43 8395.21 7595.66 16693.12 8198.06 20986.28 20798.61 13697.95 147
114514_t90.51 20189.80 21292.63 18398.00 8182.24 20093.40 13497.29 12265.84 33689.40 27194.80 20886.99 19298.75 14283.88 23298.61 13696.89 208
CDPH-MVS92.67 15691.83 16995.18 9096.94 13288.46 10590.70 22397.07 13677.38 28792.34 22195.08 19392.67 9298.88 11685.74 21098.57 13898.20 127
cl_fuxian91.32 18891.42 18091.00 23392.29 28776.79 28187.52 29296.42 17685.76 21694.72 15393.89 23782.73 23098.16 20490.93 11398.55 13998.04 138
test_prior393.29 13392.85 14594.61 10895.95 19487.23 12490.21 23797.36 11589.33 15290.77 24594.81 20590.41 14698.68 15688.21 17098.55 13997.93 149
test_prior290.21 23789.33 15290.77 24594.81 20590.41 14688.21 17098.55 139
LCM-MVSNet-Re94.20 11594.58 9993.04 16495.91 19783.13 19393.79 12399.19 292.00 8398.84 598.04 3493.64 6699.02 9881.28 25698.54 14296.96 205
Patchmatch-RL test88.81 23988.52 23289.69 26395.33 22679.94 23186.22 31392.71 26978.46 28295.80 10594.18 22666.25 31195.33 31089.22 15798.53 14393.78 298
Anonymous20240521192.58 15992.50 15692.83 17696.55 15283.22 19092.43 16291.64 28694.10 4595.59 11496.64 11381.88 24297.50 24985.12 21898.52 14497.77 166
CNVR-MVS94.58 10094.29 10995.46 7996.94 13289.35 8791.81 19896.80 15689.66 14693.90 17395.44 17992.80 9098.72 14792.74 7498.52 14498.32 117
HQP_MVS94.26 11293.93 11795.23 8897.71 9688.12 11094.56 10297.81 8191.74 10193.31 18695.59 16886.93 19498.95 10989.26 15598.51 14698.60 101
plane_prior597.81 8198.95 10989.26 15598.51 14698.60 101
baseline94.26 11294.80 9092.64 18196.08 18480.99 21693.69 12698.04 5590.80 12494.89 14696.32 13593.19 7898.48 18091.68 10198.51 14698.43 112
ETH3D cwj APD-0.1693.99 12093.38 13595.80 6596.82 13889.92 7492.72 14998.02 5884.73 23393.65 17995.54 17591.68 11399.22 7288.78 16498.49 14998.26 123
thisisatest053088.69 24287.52 25292.20 19496.33 16679.36 24392.81 14784.01 33586.44 20293.67 17892.68 26553.62 34699.25 6989.65 14798.45 15098.00 141
train_agg92.71 15591.83 16995.35 8096.45 15789.46 8190.60 22596.92 14779.37 27190.49 25094.39 21991.20 12898.88 11688.66 16798.43 15197.72 170
test9_res88.16 17498.40 15297.83 160
ETH3 D test640091.91 17491.25 18593.89 13996.59 14984.41 17292.10 17797.72 8978.52 28191.82 23193.78 24188.70 16499.13 8183.61 23398.39 15398.14 130
TSAR-MVS + GP.93.07 14492.41 15895.06 9495.82 20190.87 6890.97 21692.61 27288.04 17694.61 15493.79 24088.08 17297.81 23089.41 15098.39 15396.50 220
VNet92.67 15692.96 14291.79 20696.27 17180.15 22391.95 18494.98 22392.19 8094.52 15796.07 14787.43 18497.39 25884.83 22398.38 15597.83 160
GBi-Net93.21 13992.96 14293.97 13495.40 22184.29 17395.99 4896.56 16988.63 16395.10 13598.53 2181.31 24598.98 10286.74 19598.38 15598.65 90
test193.21 13992.96 14293.97 13495.40 22184.29 17395.99 4896.56 16988.63 16395.10 13598.53 2181.31 24598.98 10286.74 19598.38 15598.65 90
FMVSNet390.78 19590.32 20592.16 19893.03 27779.92 23292.54 15594.95 22486.17 20895.10 13596.01 15069.97 29798.75 14286.74 19598.38 15597.82 162
MVS_111021_HR93.63 12693.42 13494.26 12796.65 14586.96 13389.30 26596.23 18588.36 17193.57 18194.60 21393.45 6997.77 23590.23 13198.38 15598.03 139
agg_prior192.60 15891.76 17295.10 9396.20 17688.89 9390.37 23296.88 15179.67 26890.21 25494.41 21791.30 12398.78 13788.46 16998.37 16097.64 176
agg_prior287.06 19398.36 16197.98 143
TSAR-MVS + MP.94.96 8394.75 9295.57 7598.86 2088.69 9696.37 3696.81 15585.23 22194.75 15097.12 8391.85 10999.40 3693.45 4798.33 16298.62 98
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
pmmvs-eth3d91.54 18190.73 19793.99 13295.76 20687.86 11790.83 21993.98 25078.23 28494.02 17196.22 14282.62 23396.83 27686.57 20098.33 16297.29 197
casdiffmvs94.32 10994.80 9092.85 17596.05 18681.44 21092.35 16798.05 5191.53 10895.75 10796.80 10093.35 7498.49 17691.01 11298.32 16498.64 94
Regformer-194.55 10194.33 10895.19 8992.83 28088.54 10391.87 19295.84 20093.99 4695.95 10095.04 19592.00 10498.79 13393.14 6398.31 16598.23 124
Regformer-294.86 8894.55 10095.77 6792.83 28089.98 7391.87 19296.40 17794.38 4296.19 9295.04 19592.47 9899.04 9593.49 4498.31 16598.28 121
3Dnovator+92.74 295.86 5495.77 6196.13 5096.81 14090.79 6996.30 4197.82 8096.13 2494.74 15197.23 7791.33 12199.16 7793.25 5898.30 16798.46 110
MVS_111021_LR93.66 12593.28 13894.80 10196.25 17490.95 6590.21 23795.43 21487.91 17793.74 17794.40 21892.88 8896.38 29090.39 12198.28 16897.07 200
CANet92.38 16591.99 16693.52 15393.82 26583.46 18791.14 21297.00 13989.81 14486.47 30494.04 23087.90 17899.21 7389.50 14998.27 16997.90 153
EI-MVSNet92.99 14693.26 14092.19 19592.12 29279.21 24892.32 16994.67 23791.77 9995.24 13195.85 15587.14 19098.49 17691.99 8998.26 17098.86 72
RRT_test8_iter0588.21 24888.17 24288.33 28691.62 30166.82 33591.73 20196.60 16786.34 20494.14 16395.38 18547.72 35199.11 8491.78 9698.26 17099.06 46
MVSTER89.32 22788.75 23091.03 23090.10 31976.62 28290.85 21894.67 23782.27 25295.24 13195.79 16061.09 33498.49 17690.49 11898.26 17097.97 146
testtj94.81 9294.42 10396.01 5297.23 12190.51 7094.77 9297.85 7791.29 11294.92 14595.66 16691.71 11299.40 3688.07 17698.25 17398.11 134
MSLP-MVS++93.25 13893.88 11891.37 21896.34 16582.81 19693.11 13897.74 8789.37 15094.08 16695.29 18690.40 14896.35 29290.35 12498.25 17394.96 271
LF4IMVS92.72 15492.02 16594.84 10095.65 21291.99 5192.92 14396.60 16785.08 22792.44 21493.62 24386.80 19896.35 29286.81 19498.25 17396.18 234
EI-MVSNet-UG-set94.35 10794.27 11294.59 11392.46 28585.87 15892.42 16394.69 23593.67 5796.13 9495.84 15891.20 12898.86 12193.78 3598.23 17699.03 48
PM-MVS93.33 13292.67 15295.33 8296.58 15094.06 1692.26 17292.18 27885.92 21296.22 8896.61 11585.64 21395.99 29790.35 12498.23 17695.93 243
EI-MVSNet-Vis-set94.36 10694.28 11094.61 10892.55 28485.98 15692.44 16194.69 23593.70 5396.12 9595.81 15991.24 12598.86 12193.76 3898.22 17898.98 57
V4293.43 13093.58 12992.97 16895.34 22581.22 21392.67 15296.49 17487.25 19296.20 9096.37 13287.32 18698.85 12392.39 8398.21 17998.85 75
TAMVS90.16 21389.05 22293.49 15496.49 15586.37 14790.34 23492.55 27380.84 26092.99 20094.57 21581.94 24198.20 19973.51 31098.21 17995.90 246
K. test v393.37 13193.27 13993.66 14598.05 7682.62 19794.35 10886.62 31396.05 2797.51 3798.85 1276.59 27999.65 393.21 5998.20 18198.73 87
DELS-MVS92.05 17292.16 16191.72 20994.44 24980.13 22587.62 28697.25 12587.34 19192.22 22493.18 25589.54 15998.73 14689.67 14698.20 18196.30 228
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TAPA-MVS88.58 1092.49 16391.75 17394.73 10496.50 15489.69 7992.91 14497.68 9078.02 28592.79 20594.10 22890.85 13597.96 21984.76 22598.16 18396.54 215
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D96.11 4695.83 5896.95 3594.75 23894.20 1497.34 997.98 6397.31 1095.32 12596.77 10193.08 8299.20 7491.79 9598.16 18397.44 186
Regformer-394.28 11094.23 11494.46 12192.78 28286.28 15192.39 16494.70 23493.69 5695.97 9895.56 17391.34 12098.48 18093.45 4798.14 18598.62 98
Regformer-494.90 8594.67 9695.59 7492.78 28289.02 9092.39 16495.91 19694.50 3896.41 7395.56 17392.10 10299.01 10094.23 2698.14 18598.74 85
DP-MVS Recon92.31 16791.88 16893.60 14797.18 12386.87 13491.10 21497.37 11084.92 23092.08 22794.08 22988.59 16598.20 19983.50 23498.14 18595.73 252
EG-PatchMatch MVS94.54 10294.67 9694.14 12997.87 8886.50 14192.00 18396.74 16188.16 17496.93 5797.61 5293.04 8497.90 22091.60 10398.12 18898.03 139
PCF-MVS84.52 1789.12 23187.71 24993.34 15696.06 18585.84 15986.58 31297.31 11968.46 32993.61 18093.89 23787.51 18398.52 17467.85 33398.11 18995.66 256
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator92.54 394.80 9394.90 8694.47 12095.47 21987.06 12896.63 2397.28 12491.82 9694.34 16297.41 6390.60 14398.65 16092.47 8098.11 18997.70 171
PMMVS281.31 30583.44 29074.92 33190.52 31446.49 35269.19 34585.23 33084.30 23587.95 29394.71 21176.95 27784.36 34764.07 33998.09 19193.89 296
lessismore_v093.87 14198.05 7683.77 18580.32 34597.13 4997.91 4277.49 26999.11 8492.62 7898.08 19298.74 85
CS-MVS92.54 16292.31 15993.23 16195.89 19984.07 18193.58 12998.48 888.60 16690.41 25386.23 33292.00 10499.35 5087.54 18598.06 19396.26 230
new-patchmatchnet88.97 23590.79 19583.50 32094.28 25355.83 35085.34 31793.56 25486.18 20795.47 11895.73 16383.10 22596.51 28585.40 21398.06 19398.16 128
plane_prior88.12 11093.01 14088.98 15698.06 193
PVSNet_BlendedMVS90.35 20889.96 21091.54 21594.81 23578.80 25590.14 24196.93 14579.43 27088.68 28595.06 19486.27 20598.15 20580.27 26498.04 19697.68 173
FMVSNet587.82 25586.56 26991.62 21292.31 28679.81 23693.49 13194.81 23183.26 24091.36 23696.93 9252.77 34797.49 25176.07 30098.03 19797.55 182
原ACMM192.87 17496.91 13484.22 17697.01 13876.84 29289.64 26994.46 21688.00 17598.70 15481.53 25498.01 19895.70 254
v14892.87 15093.29 13691.62 21296.25 17477.72 26791.28 21095.05 22189.69 14595.93 10296.04 14887.34 18598.38 18590.05 13897.99 19998.78 81
ITE_SJBPF95.95 5597.34 11893.36 3796.55 17291.93 8694.82 14895.39 18391.99 10697.08 26785.53 21297.96 20097.41 187
test1294.43 12395.95 19486.75 13696.24 18489.76 26789.79 15798.79 13397.95 20197.75 169
MCST-MVS92.91 14892.51 15594.10 13097.52 10885.72 16191.36 20997.13 13380.33 26292.91 20394.24 22391.23 12698.72 14789.99 13997.93 20297.86 157
CDS-MVSNet89.55 22388.22 24193.53 15295.37 22486.49 14289.26 26693.59 25379.76 26691.15 24192.31 27377.12 27498.38 18577.51 29097.92 20395.71 253
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
旧先验196.20 17684.17 17894.82 22995.57 17289.57 15897.89 20496.32 227
alignmvs93.26 13692.85 14594.50 11795.70 20887.45 12093.45 13395.76 20191.58 10695.25 13092.42 27281.96 24098.72 14791.61 10297.87 20597.33 195
testgi90.38 20691.34 18387.50 29597.49 11071.54 31889.43 26095.16 22088.38 17094.54 15694.68 21292.88 8893.09 33171.60 32297.85 20697.88 155
MVS_030490.96 19290.15 20893.37 15593.17 27287.06 12893.62 12892.43 27689.60 14882.25 32995.50 17682.56 23497.83 22984.41 22997.83 20795.22 264
新几何193.17 16397.16 12487.29 12394.43 23967.95 33091.29 23794.94 20086.97 19398.23 19781.06 26197.75 20893.98 294
ETV-MVS92.99 14692.74 14993.72 14495.86 20086.30 15092.33 16897.84 7891.70 10492.81 20486.17 33392.22 9999.19 7588.03 17797.73 20995.66 256
HQP3-MVS97.31 11997.73 209
HQP-MVS92.09 17191.49 17993.88 14096.36 16184.89 16891.37 20697.31 11987.16 19388.81 27893.40 24984.76 21698.60 16486.55 20197.73 20998.14 130
112190.26 21189.23 21893.34 15697.15 12687.40 12191.94 18694.39 24067.88 33191.02 24394.91 20186.91 19698.59 16681.17 25997.71 21294.02 293
CANet_DTU89.85 22089.17 22091.87 20492.20 29080.02 23090.79 22095.87 19886.02 21082.53 32891.77 28180.01 25298.57 16985.66 21197.70 21397.01 203
NCCC94.08 11793.54 13195.70 7296.49 15589.90 7692.39 16496.91 14990.64 12892.33 22294.60 21390.58 14498.96 10790.21 13297.70 21398.23 124
Vis-MVSNetpermissive95.50 6495.48 6795.56 7698.11 7389.40 8595.35 6998.22 2992.36 7394.11 16498.07 3292.02 10399.44 2393.38 5397.67 21597.85 159
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AdaColmapbinary91.63 17991.36 18292.47 19095.56 21786.36 14892.24 17496.27 18288.88 16089.90 26292.69 26491.65 11498.32 18977.38 29297.64 21692.72 315
EPNet_dtu85.63 28284.37 28489.40 26786.30 34474.33 30291.64 20288.26 30084.84 23172.96 34789.85 30371.27 29597.69 24176.60 29797.62 21796.18 234
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS94.72 9594.12 11596.50 4698.00 8194.23 1391.48 20598.17 3590.72 12595.30 12696.47 12087.94 17796.98 27091.41 10897.61 21898.30 120
canonicalmvs94.59 9994.69 9494.30 12695.60 21687.03 13095.59 6398.24 2791.56 10795.21 13392.04 27894.95 4898.66 15891.45 10797.57 21997.20 199
XXY-MVS92.58 15993.16 14190.84 23997.75 9279.84 23391.87 19296.22 18785.94 21195.53 11797.68 4992.69 9194.48 31783.21 23797.51 22098.21 126
Effi-MVS+-dtu93.90 12292.60 15497.77 494.74 23996.67 394.00 11895.41 21589.94 14091.93 23092.13 27690.12 15098.97 10687.68 18397.48 22197.67 174
OpenMVScopyleft89.45 892.27 16992.13 16392.68 18094.53 24884.10 17995.70 5997.03 13782.44 25191.14 24296.42 12488.47 16798.38 18585.95 20997.47 22295.55 260
ab-mvs92.40 16492.62 15391.74 20897.02 12981.65 20695.84 5695.50 21386.95 19892.95 20297.56 5490.70 14197.50 24979.63 27397.43 22396.06 238
thisisatest051584.72 28782.99 29489.90 26092.96 27875.33 29484.36 32683.42 33777.37 28888.27 28986.65 32753.94 34498.72 14782.56 24397.40 22495.67 255
test22296.95 13185.27 16688.83 27493.61 25265.09 33890.74 24794.85 20484.62 21897.36 22593.91 295
API-MVS91.52 18291.61 17491.26 22294.16 25486.26 15294.66 9694.82 22991.17 11692.13 22691.08 29190.03 15697.06 26879.09 28097.35 22690.45 330
EIA-MVS92.35 16692.03 16493.30 15995.81 20383.97 18292.80 14898.17 3587.71 18389.79 26687.56 32291.17 13299.18 7687.97 17897.27 22796.77 212
testdata91.03 23096.87 13682.01 20194.28 24371.55 31592.46 21395.42 18085.65 21297.38 26082.64 24297.27 22793.70 301
N_pmnet88.90 23787.25 25693.83 14294.40 25193.81 3184.73 32187.09 31079.36 27393.26 19192.43 27179.29 25691.68 33677.50 29197.22 22996.00 240
ppachtmachnet_test88.61 24388.64 23188.50 28291.76 29870.99 32184.59 32492.98 26279.30 27592.38 21793.53 24779.57 25497.45 25386.50 20397.17 23097.07 200
CNLPA91.72 17791.20 18693.26 16096.17 17991.02 6391.14 21295.55 21190.16 13890.87 24493.56 24686.31 20494.40 32079.92 27297.12 23194.37 284
jason89.17 23088.32 23691.70 21095.73 20780.07 22688.10 28393.22 25971.98 31490.09 25692.79 26178.53 26398.56 17087.43 18897.06 23296.46 222
jason: jason.
RPSCF95.58 6294.89 8797.62 897.58 10596.30 495.97 5197.53 10292.42 7093.41 18397.78 4591.21 12797.77 23591.06 11197.06 23298.80 79
cl-mvsnet289.02 23288.50 23390.59 24389.76 32176.45 28486.62 31194.03 24782.98 24792.65 20892.49 26772.05 29297.53 24788.93 16097.02 23497.78 165
miper_ehance_all_eth90.48 20290.42 20390.69 24091.62 30176.57 28386.83 30496.18 18983.38 23994.06 16892.66 26682.20 23698.04 21089.79 14397.02 23497.45 185
miper_enhance_ethall88.42 24587.87 24790.07 25788.67 33475.52 29385.10 31895.59 20875.68 29492.49 21289.45 31378.96 25797.88 22287.86 18197.02 23496.81 211
eth_miper_zixun_eth90.72 19690.61 19991.05 22992.04 29476.84 28086.91 30196.67 16485.21 22294.41 15893.92 23679.53 25598.26 19589.76 14497.02 23498.06 135
QAPM92.88 14992.77 14793.22 16295.82 20183.31 18896.45 3197.35 11783.91 23793.75 17596.77 10189.25 16198.88 11684.56 22797.02 23497.49 183
thres600view787.66 25887.10 26189.36 26896.05 18673.17 30892.72 14985.31 32791.89 8893.29 18890.97 29263.42 32498.39 18373.23 31296.99 23996.51 217
test_yl90.11 21489.73 21591.26 22294.09 25779.82 23490.44 22992.65 27090.90 11993.19 19493.30 25173.90 28598.03 21182.23 24796.87 24095.93 243
DCV-MVSNet90.11 21489.73 21591.26 22294.09 25779.82 23490.44 22992.65 27090.90 11993.19 19493.30 25173.90 28598.03 21182.23 24796.87 24095.93 243
DVP-MVS95.34 7094.63 9897.48 1298.67 2794.05 1896.41 3598.18 3291.26 11395.12 13495.15 18886.60 20299.50 1993.43 5196.81 24298.89 68
pmmvs587.87 25387.14 25990.07 25793.26 27176.97 27988.89 27392.18 27873.71 30688.36 28793.89 23776.86 27896.73 27980.32 26396.81 24296.51 217
PVSNet_Blended_VisFu91.63 17991.20 18692.94 17197.73 9583.95 18392.14 17697.46 10678.85 28092.35 21994.98 19884.16 22099.08 8786.36 20596.77 24495.79 250
MVSFormer92.18 17092.23 16092.04 20294.74 23980.06 22797.15 1197.37 11088.98 15688.83 27692.79 26177.02 27599.60 896.41 496.75 24596.46 222
lupinMVS88.34 24787.31 25491.45 21694.74 23980.06 22787.23 29492.27 27771.10 31888.83 27691.15 28977.02 27598.53 17386.67 19896.75 24595.76 251
diffmvs91.74 17691.93 16791.15 22893.06 27578.17 26188.77 27697.51 10586.28 20592.42 21593.96 23588.04 17497.46 25290.69 11796.67 24797.82 162
DPM-MVS89.35 22688.40 23592.18 19796.13 18384.20 17786.96 30096.15 19175.40 29887.36 29991.55 28683.30 22398.01 21482.17 24996.62 24894.32 286
thres100view90087.35 26686.89 26388.72 27896.14 18173.09 31093.00 14185.31 32792.13 8193.26 19190.96 29363.42 32498.28 19171.27 32496.54 24994.79 274
tfpn200view987.05 27486.52 27188.67 27995.77 20472.94 31191.89 18986.00 31990.84 12192.61 20989.80 30563.93 32198.28 19171.27 32496.54 24994.79 274
thres40087.20 27086.52 27189.24 27295.77 20472.94 31191.89 18986.00 31990.84 12192.61 20989.80 30563.93 32198.28 19171.27 32496.54 24996.51 217
CMPMVSbinary68.83 2287.28 26785.67 27992.09 20088.77 33385.42 16490.31 23594.38 24170.02 32488.00 29293.30 25173.78 28794.03 32575.96 30296.54 24996.83 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs488.95 23687.70 25092.70 17994.30 25285.60 16287.22 29592.16 28074.62 30089.75 26894.19 22577.97 26796.41 28882.71 24196.36 25396.09 236
Fast-Effi-MVS+-dtu92.77 15392.16 16194.58 11594.66 24588.25 10792.05 17996.65 16589.62 14790.08 25791.23 28892.56 9498.60 16486.30 20696.27 25496.90 207
MAR-MVS90.32 21088.87 22994.66 10794.82 23491.85 5494.22 11294.75 23280.91 25787.52 29888.07 32186.63 20197.87 22576.67 29696.21 25594.25 287
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended88.74 24188.16 24490.46 24694.81 23578.80 25586.64 30996.93 14574.67 29988.68 28589.18 31486.27 20598.15 20580.27 26496.00 25694.44 283
F-COLMAP92.28 16891.06 18995.95 5597.52 10891.90 5393.53 13097.18 12983.98 23688.70 28494.04 23088.41 16898.55 17280.17 26795.99 25797.39 191
xiu_mvs_v1_base_debu91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
xiu_mvs_v1_base91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
xiu_mvs_v1_base_debi91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
thres20085.85 28185.18 28187.88 29294.44 24972.52 31489.08 27086.21 31588.57 16791.44 23588.40 31964.22 31998.00 21568.35 33295.88 26193.12 309
Patchmatch-test86.10 28086.01 27686.38 30390.63 31274.22 30489.57 25786.69 31285.73 21789.81 26592.83 25965.24 31691.04 33877.82 28895.78 26293.88 297
mvs-test193.07 14491.80 17196.89 3794.74 23995.83 692.17 17595.41 21589.94 14089.85 26390.59 30190.12 15098.88 11687.68 18395.66 26395.97 241
cascas87.02 27586.28 27589.25 27191.56 30376.45 28484.33 32796.78 15771.01 31986.89 30385.91 33481.35 24496.94 27183.09 23895.60 26494.35 285
XVG-OURS-SEG-HR95.38 6895.00 8496.51 4598.10 7494.07 1592.46 16098.13 4190.69 12693.75 17596.25 14198.03 297.02 26992.08 8695.55 26598.45 111
DSMNet-mixed82.21 30181.56 29984.16 31789.57 32570.00 32590.65 22477.66 34854.99 34783.30 32497.57 5377.89 26890.50 34066.86 33695.54 26691.97 320
MVS_Test92.57 16193.29 13690.40 24793.53 26775.85 29092.52 15696.96 14288.73 16192.35 21996.70 10990.77 13698.37 18892.53 7995.49 26796.99 204
MIMVSNet87.13 27386.54 27088.89 27596.05 18676.11 28794.39 10788.51 29881.37 25688.27 28996.75 10472.38 29095.52 30265.71 33895.47 26895.03 269
Fast-Effi-MVS+91.28 18990.86 19292.53 18895.45 22082.53 19889.25 26896.52 17385.00 22889.91 26188.55 31892.94 8598.84 12484.72 22695.44 26996.22 232
ET-MVSNet_ETH3D86.15 27984.27 28691.79 20693.04 27681.28 21287.17 29786.14 31679.57 26983.65 32088.66 31657.10 33998.18 20287.74 18295.40 27095.90 246
BH-RMVSNet90.47 20390.44 20290.56 24495.21 22778.65 25789.15 26993.94 25188.21 17292.74 20694.22 22486.38 20397.88 22278.67 28295.39 27195.14 267
CHOSEN 1792x268887.19 27185.92 27891.00 23397.13 12779.41 24284.51 32595.60 20564.14 33990.07 25894.81 20578.26 26597.14 26673.34 31195.38 27296.46 222
Effi-MVS+92.79 15192.74 14992.94 17195.10 22883.30 18994.00 11897.53 10291.36 11189.35 27290.65 30094.01 6498.66 15887.40 18995.30 27396.88 209
MG-MVS89.54 22489.80 21288.76 27794.88 23172.47 31589.60 25692.44 27585.82 21489.48 27095.98 15182.85 22897.74 23981.87 25095.27 27496.08 237
HyFIR lowres test87.19 27185.51 28092.24 19397.12 12880.51 22085.03 31996.06 19266.11 33591.66 23392.98 25870.12 29699.14 8075.29 30495.23 27597.07 200
BH-untuned90.68 19890.90 19090.05 25995.98 19279.57 24190.04 24494.94 22587.91 17794.07 16793.00 25787.76 17997.78 23479.19 27995.17 27692.80 313
pmmvs380.83 30978.96 31686.45 30287.23 34077.48 27084.87 32082.31 33963.83 34085.03 31189.50 31249.66 34893.10 33073.12 31495.10 27788.78 335
mvs_anonymous90.37 20791.30 18487.58 29492.17 29168.00 32989.84 25294.73 23383.82 23893.22 19397.40 6487.54 18297.40 25787.94 17995.05 27897.34 194
IterMVS-SCA-FT91.65 17891.55 17591.94 20393.89 26279.22 24787.56 28993.51 25591.53 10895.37 12396.62 11478.65 26098.90 11391.89 9494.95 27997.70 171
test-LLR83.58 29283.17 29284.79 31389.68 32366.86 33383.08 33284.52 33283.07 24582.85 32684.78 33762.86 32793.49 32882.85 23994.86 28094.03 291
test-mter81.21 30780.01 31384.79 31389.68 32366.86 33383.08 33284.52 33273.85 30582.85 32684.78 33743.66 35593.49 32882.85 23994.86 28094.03 291
PatchMatch-RL89.18 22988.02 24692.64 18195.90 19892.87 4288.67 28091.06 28980.34 26190.03 25991.67 28383.34 22294.42 31976.35 29994.84 28290.64 329
OpenMVS_ROBcopyleft85.12 1689.52 22589.05 22290.92 23594.58 24781.21 21491.10 21493.41 25777.03 29193.41 18393.99 23483.23 22497.80 23179.93 27194.80 28393.74 300
our_test_387.55 26187.59 25187.44 29691.76 29870.48 32283.83 33090.55 29279.79 26592.06 22892.17 27578.63 26295.63 30084.77 22494.73 28496.22 232
CHOSEN 280x42080.04 31477.97 31986.23 30490.13 31874.53 29972.87 34389.59 29466.38 33476.29 34485.32 33656.96 34095.36 30869.49 33194.72 28588.79 334
IterMVS90.18 21290.16 20690.21 25493.15 27375.98 28987.56 28992.97 26386.43 20394.09 16596.40 12678.32 26497.43 25487.87 18094.69 28697.23 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EMVS80.35 31380.28 31180.54 32684.73 34969.07 32772.54 34480.73 34387.80 18181.66 33581.73 34262.89 32689.84 34175.79 30394.65 28782.71 342
PLCcopyleft85.34 1590.40 20588.92 22694.85 9996.53 15390.02 7291.58 20396.48 17580.16 26386.14 30692.18 27485.73 21098.25 19676.87 29594.61 28896.30 228
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG90.82 19390.67 19891.26 22294.16 25483.08 19486.63 31096.19 18890.60 13091.94 22991.89 27989.16 16295.75 29980.96 26294.51 28994.95 272
xiu_mvs_v2_base89.00 23489.19 21988.46 28494.86 23374.63 29786.97 29995.60 20580.88 25887.83 29488.62 31791.04 13398.81 13182.51 24594.38 29091.93 321
PS-MVSNAJ88.86 23888.99 22588.48 28394.88 23174.71 29586.69 30895.60 20580.88 25887.83 29487.37 32590.77 13698.82 12682.52 24494.37 29191.93 321
EU-MVSNet87.39 26586.71 26789.44 26593.40 26876.11 28794.93 8990.00 29357.17 34595.71 11097.37 6664.77 31897.68 24292.67 7794.37 29194.52 281
E-PMN80.72 31180.86 30780.29 32785.11 34768.77 32872.96 34281.97 34087.76 18283.25 32583.01 34162.22 33089.17 34377.15 29494.31 29382.93 341
GA-MVS87.70 25686.82 26490.31 24893.27 27077.22 27484.72 32392.79 26785.11 22689.82 26490.07 30266.80 30697.76 23784.56 22794.27 29495.96 242
sss87.23 26886.82 26488.46 28493.96 26077.94 26286.84 30392.78 26877.59 28687.61 29791.83 28078.75 25991.92 33577.84 28694.20 29595.52 261
MDA-MVSNet-bldmvs91.04 19090.88 19191.55 21494.68 24480.16 22285.49 31692.14 28190.41 13594.93 14495.79 16085.10 21496.93 27385.15 21694.19 29697.57 179
PAPM_NR91.03 19190.81 19491.68 21196.73 14381.10 21593.72 12596.35 18088.19 17388.77 28292.12 27785.09 21597.25 26282.40 24693.90 29796.68 214
YYNet188.17 24988.24 23987.93 29092.21 28973.62 30680.75 33788.77 29682.51 25094.99 14295.11 19182.70 23193.70 32683.33 23593.83 29896.48 221
MDA-MVSNet_test_wron88.16 25088.23 24087.93 29092.22 28873.71 30580.71 33888.84 29582.52 24994.88 14795.14 18982.70 23193.61 32783.28 23693.80 29996.46 222
1112_ss88.42 24587.41 25391.45 21696.69 14480.99 21689.72 25496.72 16273.37 30787.00 30290.69 29877.38 27198.20 19981.38 25593.72 30095.15 266
PVSNet76.22 2082.89 29782.37 29684.48 31593.96 26064.38 34378.60 34088.61 29771.50 31684.43 31786.36 33174.27 28494.60 31669.87 33093.69 30194.46 282
TESTMET0.1,179.09 31678.04 31882.25 32387.52 33764.03 34483.08 33280.62 34470.28 32380.16 33983.22 34044.13 35490.56 33979.95 26993.36 30292.15 319
PAPR87.65 25986.77 26690.27 25092.85 27977.38 27188.56 28196.23 18576.82 29384.98 31289.75 30986.08 20797.16 26572.33 31793.35 30396.26 230
SCA87.43 26487.21 25788.10 28992.01 29571.98 31789.43 26088.11 30482.26 25388.71 28392.83 25978.65 26097.59 24579.61 27493.30 30494.75 276
Test_1112_low_res87.50 26386.58 26890.25 25196.80 14177.75 26687.53 29196.25 18369.73 32586.47 30493.61 24475.67 28197.88 22279.95 26993.20 30595.11 268
MDTV_nov1_ep1383.88 28989.42 32761.52 34688.74 27787.41 30873.99 30484.96 31394.01 23365.25 31595.53 30178.02 28493.16 306
WTY-MVS86.93 27686.50 27388.24 28794.96 23074.64 29687.19 29692.07 28378.29 28388.32 28891.59 28578.06 26694.27 32274.88 30693.15 30795.80 249
PMMVS83.00 29681.11 30388.66 28083.81 35186.44 14582.24 33685.65 32261.75 34382.07 33185.64 33579.75 25391.59 33775.99 30193.09 30887.94 336
UnsupCasMVSNet_bld88.50 24488.03 24589.90 26095.52 21878.88 25287.39 29394.02 24979.32 27493.06 19794.02 23280.72 25094.27 32275.16 30593.08 30996.54 215
MVS84.98 28684.30 28587.01 29891.03 30777.69 26891.94 18694.16 24559.36 34484.23 31887.50 32485.66 21196.80 27771.79 31993.05 31086.54 337
PatchT87.51 26288.17 24285.55 30690.64 31166.91 33192.02 18286.09 31792.20 7989.05 27597.16 8164.15 32096.37 29189.21 15892.98 31193.37 307
MS-PatchMatch88.05 25187.75 24888.95 27393.28 26977.93 26387.88 28592.49 27475.42 29792.57 21193.59 24580.44 25194.24 32481.28 25692.75 31294.69 279
CR-MVSNet87.89 25287.12 26090.22 25291.01 30878.93 25092.52 15692.81 26573.08 30989.10 27396.93 9267.11 30397.64 24388.80 16392.70 31394.08 288
RPMNet89.30 22889.00 22490.22 25291.01 30878.93 25092.52 15687.85 30691.91 8789.10 27396.89 9568.84 29897.64 24390.17 13392.70 31394.08 288
BH-w/o87.21 26987.02 26287.79 29394.77 23777.27 27387.90 28493.21 26181.74 25589.99 26088.39 32083.47 22196.93 27371.29 32392.43 31589.15 331
IB-MVS77.21 1983.11 29481.05 30489.29 26991.15 30675.85 29085.66 31586.00 31979.70 26782.02 33386.61 32848.26 35098.39 18377.84 28692.22 31693.63 302
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 30281.02 30585.34 30987.46 33971.04 31994.74 9367.56 35096.44 2179.43 34198.99 645.24 35296.15 29467.18 33592.17 31788.85 333
HY-MVS82.50 1886.81 27785.93 27789.47 26493.63 26677.93 26394.02 11791.58 28775.68 29483.64 32193.64 24277.40 27097.42 25571.70 32192.07 31893.05 310
TR-MVS87.70 25687.17 25889.27 27094.11 25679.26 24588.69 27891.86 28481.94 25490.69 24889.79 30782.82 22997.42 25572.65 31691.98 31991.14 326
new_pmnet81.22 30681.01 30681.86 32490.92 31070.15 32484.03 32880.25 34670.83 32085.97 30789.78 30867.93 30284.65 34667.44 33491.90 32090.78 328
FPMVS84.50 28883.28 29188.16 28896.32 16794.49 1185.76 31485.47 32583.09 24485.20 31094.26 22263.79 32386.58 34563.72 34091.88 32183.40 340
UnsupCasMVSNet_eth90.33 20990.34 20490.28 24994.64 24680.24 22189.69 25595.88 19785.77 21593.94 17295.69 16481.99 23992.98 33284.21 23091.30 32297.62 177
MVP-Stereo90.07 21788.92 22693.54 15196.31 16886.49 14290.93 21795.59 20879.80 26491.48 23495.59 16880.79 24997.39 25878.57 28391.19 32396.76 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131486.46 27886.33 27486.87 30091.65 30074.54 29891.94 18694.10 24674.28 30184.78 31487.33 32683.03 22695.00 31478.72 28191.16 32491.06 327
tpm84.38 28984.08 28785.30 31090.47 31563.43 34589.34 26385.63 32377.24 29087.62 29695.03 19761.00 33597.30 26179.26 27891.09 32595.16 265
CVMVSNet85.16 28484.72 28286.48 30192.12 29270.19 32392.32 16988.17 30356.15 34690.64 24995.85 15567.97 30196.69 28088.78 16490.52 32692.56 316
test0.0.03 182.48 29981.47 30285.48 30789.70 32273.57 30784.73 32181.64 34183.07 24588.13 29186.61 32862.86 32789.10 34466.24 33790.29 32793.77 299
baseline283.38 29381.54 30188.90 27491.38 30472.84 31388.78 27581.22 34278.97 27779.82 34087.56 32261.73 33297.80 23174.30 30790.05 32896.05 239
PAPM81.91 30380.11 31287.31 29793.87 26372.32 31684.02 32993.22 25969.47 32676.13 34589.84 30472.15 29197.23 26353.27 34689.02 32992.37 318
MVS-HIRNet78.83 31780.60 30873.51 33293.07 27447.37 35187.10 29878.00 34768.94 32777.53 34397.26 7471.45 29494.62 31563.28 34188.74 33078.55 344
tpm281.46 30480.35 31084.80 31289.90 32065.14 33990.44 22985.36 32665.82 33782.05 33292.44 27057.94 33896.69 28070.71 32788.49 33192.56 316
CostFormer83.09 29582.21 29785.73 30589.27 32867.01 33090.35 23386.47 31470.42 32283.52 32393.23 25461.18 33396.85 27577.21 29388.26 33293.34 308
GG-mvs-BLEND83.24 32185.06 34871.03 32094.99 8865.55 35174.09 34675.51 34544.57 35394.46 31859.57 34387.54 33384.24 339
PatchmatchNetpermissive85.22 28384.64 28386.98 29989.51 32669.83 32690.52 22787.34 30978.87 27987.22 30192.74 26366.91 30596.53 28381.77 25186.88 33494.58 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline187.62 26087.31 25488.54 28194.71 24374.27 30393.10 13988.20 30286.20 20692.18 22593.04 25673.21 28895.52 30279.32 27785.82 33595.83 248
tpmvs84.22 29083.97 28884.94 31187.09 34165.18 33891.21 21188.35 29982.87 24885.21 30990.96 29365.24 31696.75 27879.60 27685.25 33692.90 312
ADS-MVSNet284.01 29182.20 29889.41 26689.04 33076.37 28687.57 28790.98 29072.71 31284.46 31592.45 26868.08 29996.48 28670.58 32883.97 33795.38 262
ADS-MVSNet82.25 30081.55 30084.34 31689.04 33065.30 33787.57 28785.13 33172.71 31284.46 31592.45 26868.08 29992.33 33470.58 32883.97 33795.38 262
JIA-IIPM85.08 28583.04 29391.19 22787.56 33686.14 15489.40 26284.44 33488.98 15682.20 33097.95 3856.82 34196.15 29476.55 29883.45 33991.30 325
MVEpermissive59.87 2373.86 31972.65 32177.47 33087.00 34374.35 30161.37 34760.93 35267.27 33269.69 34886.49 33081.24 24872.33 34956.45 34583.45 33985.74 338
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DWT-MVSNet_test80.74 31079.18 31585.43 30887.51 33866.87 33289.87 25186.01 31874.20 30380.86 33780.62 34348.84 34996.68 28281.54 25383.14 34192.75 314
EPMVS81.17 30880.37 30983.58 31985.58 34665.08 34090.31 23571.34 34977.31 28985.80 30891.30 28759.38 33692.70 33379.99 26882.34 34292.96 311
tpmrst82.85 29882.93 29582.64 32287.65 33558.99 34890.14 24187.90 30575.54 29683.93 31991.63 28466.79 30895.36 30881.21 25881.54 34393.57 306
tpm cat180.61 31279.46 31484.07 31888.78 33265.06 34189.26 26688.23 30162.27 34281.90 33489.66 31162.70 32995.29 31171.72 32080.60 34491.86 323
dp79.28 31578.62 31781.24 32585.97 34556.45 34986.91 30185.26 32972.97 31081.45 33689.17 31556.01 34395.45 30673.19 31376.68 34591.82 324
DeepMVS_CXcopyleft53.83 33370.38 35264.56 34248.52 35433.01 34865.50 34974.21 34656.19 34246.64 35038.45 34870.07 34650.30 346
tmp_tt37.97 32044.33 32218.88 33411.80 35321.54 35463.51 34645.66 3554.23 34951.34 35050.48 34759.08 33722.11 35144.50 34768.35 34713.00 347
PVSNet_070.34 2174.58 31872.96 32079.47 32890.63 31266.24 33673.26 34183.40 33863.67 34178.02 34278.35 34472.53 28989.59 34256.68 34460.05 34882.57 343
test1239.49 32212.01 3241.91 3352.87 3541.30 35582.38 3351.34 3571.36 3502.84 3516.56 3502.45 3560.97 3522.73 3495.56 3493.47 348
testmvs9.02 32311.42 3251.81 3362.77 3551.13 35679.44 3391.90 3561.18 3512.65 3526.80 3491.95 3570.87 3532.62 3503.45 3503.44 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34898.14 390.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.35 32131.13 3230.00 3370.00 3560.00 3570.00 34895.58 2100.00 3520.00 35391.15 28993.43 710.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.56 32410.09 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35390.77 1360.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.56 32410.08 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35390.69 2980.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_ONE98.51 4586.97 13198.10 4291.85 9097.63 3097.03 8896.48 1198.95 109
save fliter97.46 11388.05 11292.04 18097.08 13587.63 186
test072698.51 4586.69 13895.34 7098.18 3291.85 9097.63 3097.37 6695.58 22
GSMVS94.75 276
test_part298.21 6889.41 8496.72 64
sam_mvs166.64 30994.75 276
sam_mvs66.41 310
MTGPAbinary97.62 93
test_post190.21 2375.85 35265.36 31496.00 29679.61 274
test_post6.07 35165.74 31395.84 298
patchmatchnet-post91.71 28266.22 31297.59 245
MTMP94.82 9054.62 353
gm-plane-assit87.08 34259.33 34771.22 31783.58 33997.20 26473.95 308
TEST996.45 15789.46 8190.60 22596.92 14779.09 27690.49 25094.39 21991.31 12298.88 116
test_896.37 15989.14 8890.51 22896.89 15079.37 27190.42 25294.36 22191.20 12898.82 126
agg_prior96.20 17688.89 9396.88 15190.21 25498.78 137
test_prior489.91 7590.74 221
test_prior94.61 10895.95 19487.23 12497.36 11598.68 15697.93 149
旧先验290.00 24668.65 32892.71 20796.52 28485.15 216
新几何290.02 245
无先验89.94 24795.75 20270.81 32198.59 16681.17 25994.81 273
原ACMM289.34 263
testdata298.03 21180.24 266
segment_acmp92.14 101
testdata188.96 27288.44 169
plane_prior797.71 9688.68 97
plane_prior697.21 12288.23 10886.93 194
plane_prior495.59 168
plane_prior388.43 10690.35 13693.31 186
plane_prior294.56 10291.74 101
plane_prior197.38 116
n20.00 358
nn0.00 358
door-mid92.13 282
test1196.65 165
door91.26 288
HQP5-MVS84.89 168
HQP-NCC96.36 16191.37 20687.16 19388.81 278
ACMP_Plane96.36 16191.37 20687.16 19388.81 278
BP-MVS86.55 201
HQP4-MVS88.81 27898.61 16298.15 129
HQP2-MVS84.76 216
NP-MVS96.82 13887.10 12793.40 249
MDTV_nov1_ep13_2view42.48 35388.45 28267.22 33383.56 32266.80 30672.86 31594.06 290
Test By Simon90.61 142