This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3396.95 1395.46 12599.23 493.45 7399.57 1395.34 1299.89 299.63 9
test_part194.39 10994.55 10693.92 14496.14 19082.86 20495.54 7098.09 4995.36 3598.27 2098.36 2875.91 29299.44 2393.41 5499.84 399.47 17
PS-CasMVS96.69 2097.43 594.49 12499.13 584.09 18996.61 2497.97 7297.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
WR-MVS_H96.60 2597.05 1495.24 9299.02 1186.44 15296.78 2198.08 5097.42 898.48 1697.86 4591.76 11699.63 694.23 2699.84 399.66 6
FC-MVSNet-test95.32 7395.88 5793.62 15498.49 5381.77 21395.90 5798.32 1993.93 5397.53 3797.56 5688.48 17399.40 4192.91 7599.83 699.68 4
PEN-MVS96.69 2097.39 894.61 11399.16 384.50 18096.54 2798.05 5798.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
DTE-MVSNet96.74 1797.43 594.67 11199.13 584.68 17996.51 2897.94 7898.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
CP-MVSNet96.19 4696.80 1794.38 13098.99 1383.82 19296.31 4197.53 10997.60 698.34 1997.52 5991.98 11299.63 693.08 7099.81 999.70 3
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 497.01 1298.92 498.78 1495.22 3798.61 17396.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n96.82 1097.31 1095.33 8698.54 4186.81 14296.83 1898.07 5396.59 1998.46 1798.43 2792.91 9199.52 1796.25 699.76 1199.65 8
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 8098.26 6587.69 12693.75 13397.86 8095.96 2997.48 3997.14 8495.33 3299.44 2390.79 12399.76 1199.38 22
Anonymous2023121196.60 2597.13 1295.00 10097.46 11786.35 15697.11 1498.24 2997.58 798.72 898.97 793.15 8599.15 8393.18 6499.74 1399.50 16
UniMVSNet_ETH3D97.13 697.72 395.35 8499.51 287.38 12997.70 697.54 10798.16 298.94 299.33 297.84 499.08 9590.73 12499.73 1499.59 12
pmmvs696.80 1397.36 995.15 9699.12 787.82 12596.68 2297.86 8096.10 2598.14 2399.28 397.94 398.21 21091.38 11599.69 1599.42 19
FIs94.90 8795.35 7493.55 15798.28 6381.76 21495.33 7698.14 4193.05 6797.07 5197.18 8287.65 18799.29 6891.72 10599.69 1599.61 11
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6694.15 4898.93 399.07 588.07 18099.57 1395.86 999.69 1599.46 18
Anonymous2024052192.86 15793.57 13690.74 24996.57 15775.50 30794.15 12095.60 21389.38 15695.90 10897.90 4480.39 26097.96 23192.60 8499.68 1898.75 84
ANet_high94.83 9396.28 3690.47 25796.65 15173.16 32394.33 11598.74 696.39 2298.09 2498.93 893.37 7798.70 16390.38 13199.68 1899.53 14
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7893.86 13198.02 6487.35 20096.22 9297.99 3894.48 6199.05 10192.73 8099.68 1897.93 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NR-MVSNet95.28 7695.28 7995.26 9197.75 9587.21 13395.08 8797.37 11793.92 5497.65 3095.90 15990.10 15899.33 6490.11 14599.66 2199.26 29
Baseline_NR-MVSNet94.47 10895.09 8692.60 19198.50 5280.82 22892.08 18796.68 17193.82 5596.29 8698.56 2090.10 15897.75 25190.10 14799.66 2199.24 31
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9992.91 15298.07 5393.46 6296.31 8495.97 15890.14 15499.34 5992.11 9199.64 2399.16 36
WR-MVS93.49 13393.72 12992.80 18397.57 11080.03 23890.14 25295.68 21193.70 5796.62 7295.39 19187.21 19599.04 10487.50 19999.64 2399.33 25
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9796.23 4696.87 16193.73 5697.87 2698.49 2490.73 14499.05 10186.43 21799.60 2599.10 44
ACMH+88.43 1196.48 3096.82 1695.47 8198.54 4189.06 9695.65 6598.61 796.10 2598.16 2297.52 5996.90 798.62 17290.30 13799.60 2598.72 90
VPA-MVSNet95.14 8095.67 6793.58 15697.76 9483.15 20094.58 10697.58 10493.39 6397.05 5498.04 3593.25 8098.51 18689.75 15599.59 2799.08 45
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7698.25 2691.78 10297.07 5197.22 8096.38 1399.28 7092.07 9499.59 2799.11 41
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2691.78 10297.07 5197.22 8096.38 1399.28 7092.07 9499.59 2799.11 41
ACMH88.36 1296.59 2797.43 594.07 13798.56 3685.33 17296.33 3998.30 2294.66 3998.72 898.30 3097.51 598.00 22794.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10792.26 18197.84 8494.91 3796.80 6595.78 16990.42 14999.41 3691.60 10999.58 3199.29 28
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10792.58 16197.81 8793.99 5096.80 6595.90 15990.10 15899.41 3691.60 10999.58 3199.26 29
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11798.08 5089.46 15596.61 7396.47 12595.85 1799.12 8990.45 12899.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1094.68 9995.27 8092.90 17996.57 15780.15 23294.65 10397.57 10590.68 13297.43 4198.00 3788.18 17799.15 8394.84 1599.55 3499.41 20
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 11195.57 6897.88 7988.72 17198.81 698.86 1090.77 14099.60 895.43 1199.53 3599.57 13
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 597.41 997.28 4698.46 2594.62 5798.84 13494.64 1799.53 3598.99 53
IS-MVSNet94.49 10794.35 11394.92 10298.25 6686.46 15197.13 1394.31 25196.24 2396.28 8996.36 13882.88 23599.35 5688.19 18699.52 3798.96 60
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10995.77 6198.29 2592.68 6998.03 2597.91 4295.13 4098.95 11993.85 3399.49 3899.36 24
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14498.32 1987.89 18896.86 6297.38 6795.55 2499.39 4695.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10287.57 19898.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
v894.65 10095.29 7892.74 18496.65 15179.77 24794.59 10497.17 13891.86 9497.47 4097.93 4088.16 17899.08 9594.32 2299.47 3999.38 22
CLD-MVS91.82 18391.41 18993.04 17196.37 16683.65 19486.82 31697.29 13084.65 24692.27 23489.67 32492.20 10697.85 24183.95 24499.47 3997.62 183
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11586.96 20798.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11788.98 16598.26 2198.86 1093.35 7899.60 896.41 499.45 4399.66 6
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 5092.67 7195.08 14496.39 13594.77 5399.42 2893.17 6599.44 4598.58 105
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1996.69 1696.86 6297.56 5695.48 2598.77 15190.11 14599.44 4598.31 122
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_0728_THIRD93.26 6597.40 4497.35 7294.69 5499.34 5993.88 3299.42 4798.89 69
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13597.62 9994.46 4496.29 8696.94 9493.56 7199.37 5394.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9994.46 4496.29 8696.94 9493.56 7199.37 5394.29 2499.42 4798.99 53
pm-mvs195.43 6895.94 5493.93 14398.38 5785.08 17695.46 7397.12 14291.84 9897.28 4698.46 2595.30 3497.71 25390.17 14399.42 4798.99 53
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11198.05 5790.45 13896.31 8496.76 10892.91 9198.72 15791.19 11699.42 4798.32 120
wuyk23d87.83 26690.79 20578.96 34390.46 33088.63 10592.72 15690.67 30691.65 11098.68 1197.64 5396.06 1677.53 36359.84 35899.41 5270.73 361
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10287.68 19598.45 1898.77 1594.20 6699.50 1996.70 399.40 5399.53 14
SixPastTwentyTwo94.91 8695.21 8193.98 13998.52 4483.19 19995.93 5594.84 23794.86 3898.49 1598.74 1681.45 25199.60 894.69 1699.39 5499.15 37
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3793.11 6696.48 7697.36 7196.92 699.34 5994.31 2399.38 5598.92 67
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 1092.35 7895.95 10496.41 13096.71 899.42 2893.99 3199.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DIV-MVS_2432*160094.10 12294.73 9892.19 20297.66 10579.49 25294.86 9597.12 14289.59 15496.87 6197.65 5290.40 15298.34 20089.08 17099.35 5798.75 84
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10798.03 6290.42 13996.37 7997.35 7295.68 1999.25 7494.44 2099.34 5898.80 79
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6693.34 6496.64 7196.57 12294.99 4899.36 5593.48 4799.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3492.26 8196.33 8296.84 10495.10 4299.40 4193.47 4899.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9998.03 6290.82 12897.15 4996.85 10196.25 1599.00 11193.10 6899.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS95.82 5796.18 4194.72 11098.51 4586.69 14595.20 8297.00 14891.85 9597.40 4497.35 7295.58 2299.34 5993.44 5199.31 6298.13 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10398.55 3986.72 14495.20 8298.22 3199.38 5293.44 5199.31 6298.53 107
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9396.90 1798.41 1492.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6498.92 67
SED-MVS96.00 5296.41 3294.76 10898.51 4586.97 13895.21 8098.10 4691.95 8897.63 3197.25 7796.48 1199.35 5693.29 5999.29 6597.95 153
IU-MVS98.51 4586.66 14796.83 16272.74 32795.83 10993.00 7299.29 6598.64 96
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8697.79 9186.48 21197.42 4397.51 6194.47 6299.29 6893.55 4299.29 6598.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9292.73 6893.48 19296.72 11394.23 6599.42 2891.99 9699.29 6599.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_040295.73 5996.22 3994.26 13298.19 6985.77 16793.24 14597.24 13496.88 1597.69 2997.77 4894.12 6799.13 8791.54 11299.29 6597.88 161
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 4091.74 10695.34 12996.36 13895.68 1999.44 2394.41 2199.28 7098.97 59
DPE-MVScopyleft95.89 5395.88 5795.92 6297.93 8989.83 8493.46 14098.30 2292.37 7697.75 2896.95 9395.14 3999.51 1891.74 10499.28 7098.41 117
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9392.59 7295.47 12396.68 11594.50 6099.42 2893.10 6899.26 7298.99 53
test_241102_TWO98.10 4691.95 8897.54 3697.25 7795.37 2899.35 5693.29 5999.25 7398.49 110
ACMMP++99.25 73
CSCG94.69 9894.75 9694.52 12197.55 11187.87 12395.01 9197.57 10592.68 6996.20 9493.44 25891.92 11398.78 14789.11 16999.24 7596.92 216
TransMVSNet (Re)95.27 7896.04 5192.97 17498.37 5981.92 21295.07 8896.76 16893.97 5297.77 2798.57 1995.72 1897.90 23388.89 17499.23 7699.08 45
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1895.81 3097.55 3597.44 6496.51 999.40 4194.06 3099.23 7698.85 75
bset_n11_16_dypcd89.99 23089.15 23392.53 19494.75 24981.34 22084.19 34087.56 32385.13 23693.77 18492.46 28072.82 30199.01 10992.46 8799.21 7897.23 205
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7698.30 2291.40 11595.76 11196.87 10095.26 3599.45 2292.77 7799.21 7899.00 51
SD-MVS95.19 7995.73 6593.55 15796.62 15488.88 10294.67 10198.05 5791.26 11897.25 4896.40 13195.42 2694.36 33692.72 8199.19 8097.40 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Vis-MVSNet (Re-imp)90.42 21390.16 21691.20 23497.66 10577.32 28594.33 11587.66 32291.20 12092.99 21195.13 19875.40 29498.28 20377.86 29999.19 8097.99 148
tfpnnormal94.27 11694.87 9192.48 19697.71 9980.88 22794.55 11095.41 22493.70 5796.67 7097.72 4991.40 12498.18 21487.45 20099.18 8298.36 118
FMVSNet194.84 9295.13 8493.97 14097.60 10884.29 18295.99 5196.56 17792.38 7597.03 5598.53 2190.12 15598.98 11288.78 17699.16 8398.65 92
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7392.35 7895.57 12096.61 12094.93 5099.41 3693.78 3599.15 8499.00 51
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6992.35 7895.63 11796.47 12595.37 2899.27 7293.78 3599.14 8598.48 111
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8597.98 6989.34 15895.63 11796.47 12595.37 2899.27 7291.99 9699.14 8598.48 111
VDD-MVS94.37 11094.37 11294.40 12997.49 11486.07 16293.97 12893.28 26894.49 4396.24 9097.78 4687.99 18398.79 14388.92 17299.14 8598.34 119
RRT_MVS91.36 19490.05 22095.29 9089.21 34388.15 11692.51 16794.89 23586.73 21095.54 12195.68 17261.82 34599.30 6794.91 1399.13 8898.43 115
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7392.26 8195.28 13396.57 12295.02 4699.41 3693.63 3999.11 8998.94 62
DROMVSNet94.58 10294.82 9293.86 14996.36 16885.20 17495.56 6999.01 391.91 9191.67 24493.78 25093.18 8499.42 2892.78 7699.11 8996.97 214
Gipumacopyleft95.31 7595.80 6393.81 15197.99 8790.91 6996.42 3497.95 7596.69 1691.78 24398.85 1291.77 11595.49 31991.72 10599.08 9195.02 281
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6692.08 8695.74 11396.28 14395.22 3799.42 2893.17 6599.06 9298.88 71
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 16097.33 12690.05 14496.77 6796.85 10195.04 4498.56 18192.77 7799.06 9298.70 91
VPNet93.08 14793.76 12891.03 23898.60 3375.83 30591.51 21495.62 21291.84 9895.74 11397.10 8689.31 16698.32 20185.07 23499.06 9298.93 63
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8697.46 11788.05 11992.04 18998.42 1387.63 19696.36 8096.68 11594.37 6399.32 6592.41 8899.05 9598.64 96
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8795.58 6798.56 991.84 9896.36 8096.68 11594.37 6399.32 6592.41 8899.05 9598.64 96
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7594.58 4094.38 16796.49 12494.56 5899.39 4693.57 4099.05 9598.93 63
X-MVStestdata90.70 20688.45 24697.44 1798.56 3693.99 2596.50 2997.95 7594.58 4094.38 16726.89 36594.56 5899.39 4693.57 4099.05 9598.93 63
test20.0390.80 20390.85 20390.63 25395.63 22479.24 25789.81 26492.87 27489.90 14794.39 16696.40 13185.77 21695.27 32773.86 32599.05 9597.39 198
Anonymous2024052995.50 6695.83 6194.50 12297.33 12385.93 16495.19 8496.77 16796.64 1897.61 3498.05 3493.23 8198.79 14388.60 18199.04 10098.78 81
IterMVS-LS93.78 12894.28 11692.27 19996.27 17979.21 25991.87 20296.78 16591.77 10496.57 7597.07 8787.15 19698.74 15591.99 9699.03 10198.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ETH3D-3000-0.194.86 9094.55 10695.81 6597.61 10789.72 8594.05 12498.37 1688.09 18495.06 14595.85 16192.58 9999.10 9390.33 13698.99 10298.62 100
cl-mvsnet____90.65 20890.56 21090.91 24591.85 31076.98 29186.75 31795.36 22785.53 22994.06 17594.89 21077.36 28297.98 23090.27 13998.98 10397.76 173
AllTest94.88 8994.51 10996.00 5598.02 8292.17 5095.26 7998.43 1190.48 13695.04 14696.74 11092.54 10197.86 23985.11 23298.98 10397.98 149
TestCases96.00 5598.02 8292.17 5098.43 1190.48 13695.04 14696.74 11092.54 10197.86 23985.11 23298.98 10397.98 149
Patchmtry90.11 22489.92 22290.66 25290.35 33177.00 28992.96 15092.81 27590.25 14294.74 15896.93 9667.11 31697.52 26085.17 22798.98 10397.46 191
cl-mvsnet190.65 20890.56 21090.91 24591.85 31076.99 29086.75 31795.36 22785.52 23194.06 17594.89 21077.37 28197.99 22990.28 13898.97 10797.76 173
9.1494.81 9397.49 11494.11 12298.37 1687.56 19995.38 12796.03 15594.66 5599.08 9590.70 12598.97 107
D2MVS89.93 23189.60 22990.92 24394.03 27378.40 26988.69 28994.85 23678.96 29493.08 20795.09 20074.57 29596.94 28388.19 18698.96 10997.41 194
PHI-MVS94.34 11393.80 12695.95 5795.65 22291.67 6194.82 9697.86 8087.86 18993.04 21094.16 23591.58 12098.78 14790.27 13998.96 10997.41 194
ambc92.98 17396.88 14283.01 20395.92 5696.38 18796.41 7797.48 6288.26 17697.80 24489.96 15098.93 11198.12 137
EPNet89.80 23588.25 25194.45 12783.91 36486.18 16093.87 13087.07 32791.16 12280.64 35494.72 21878.83 26798.89 12585.17 22798.89 11298.28 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet93.91 12693.68 13294.59 11898.08 7585.55 17097.44 894.03 25694.22 4794.94 14996.19 14882.07 24699.57 1387.28 20498.89 11298.65 92
v119293.49 13393.78 12792.62 19096.16 18879.62 24991.83 20797.22 13686.07 22096.10 10096.38 13687.22 19499.02 10794.14 2998.88 11499.22 32
v114493.50 13293.81 12592.57 19296.28 17879.61 25091.86 20696.96 15186.95 20895.91 10796.32 14087.65 18798.96 11793.51 4398.88 11499.13 39
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2695.51 3496.99 5897.05 8995.63 2199.39 4693.31 5898.88 11498.75 84
APD-MVScopyleft95.00 8394.69 9995.93 6097.38 12090.88 7094.59 10497.81 8789.22 16395.46 12596.17 15193.42 7699.34 5989.30 16198.87 11797.56 187
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OMC-MVS94.22 11993.69 13195.81 6597.25 12491.27 6392.27 18097.40 11687.10 20694.56 16295.42 18893.74 6998.11 21986.62 21298.85 11898.06 139
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4395.66 3297.00 5697.03 9094.85 5199.42 2893.49 4498.84 11998.00 145
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4395.66 3297.00 5697.03 9095.40 2793.49 4498.84 11998.00 145
v14419293.20 14693.54 13892.16 20696.05 19778.26 27191.95 19497.14 13984.98 24195.96 10396.11 15287.08 19899.04 10493.79 3498.84 11999.17 35
v192192093.26 14193.61 13492.19 20296.04 20178.31 27091.88 20197.24 13485.17 23496.19 9696.19 14886.76 20699.05 10194.18 2898.84 11999.22 32
DP-MVS95.62 6295.84 6094.97 10197.16 13088.62 10694.54 11197.64 9896.94 1496.58 7497.32 7593.07 8898.72 15790.45 12898.84 11997.57 185
VDDNet94.03 12494.27 11893.31 16698.87 1982.36 20895.51 7291.78 29897.19 1196.32 8398.60 1884.24 22698.75 15287.09 20598.83 12498.81 78
CPTT-MVS94.74 9694.12 12196.60 4498.15 7193.01 4295.84 5997.66 9789.21 16493.28 19995.46 18588.89 16998.98 11289.80 15298.82 12597.80 170
ACMMP++_ref98.82 125
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5695.76 3196.89 6096.85 10194.85 5199.42 2893.35 5798.81 12798.53 107
v2v48293.29 13893.63 13392.29 19896.35 17278.82 26491.77 21096.28 18988.45 17795.70 11696.26 14586.02 21598.90 12393.02 7198.81 12799.14 38
USDC89.02 24489.08 23488.84 28895.07 24074.50 31488.97 28296.39 18673.21 32493.27 20096.28 14382.16 24596.39 30177.55 30398.80 12995.62 270
tttt051789.81 23488.90 24092.55 19397.00 13679.73 24895.03 9083.65 35289.88 14895.30 13194.79 21753.64 36099.39 4691.99 9698.79 13098.54 106
PMVScopyleft87.21 1494.97 8495.33 7693.91 14598.97 1497.16 295.54 7095.85 20796.47 2093.40 19597.46 6395.31 3395.47 32086.18 22198.78 13189.11 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TinyColmap92.00 18192.76 15589.71 27495.62 22577.02 28890.72 23396.17 19887.70 19495.26 13496.29 14292.54 10196.45 29981.77 26498.77 13295.66 267
v124093.29 13893.71 13092.06 20996.01 20277.89 27791.81 20897.37 11785.12 23796.69 6996.40 13186.67 20799.07 9994.51 1898.76 13399.22 32
DeepPCF-MVS90.46 694.20 12093.56 13796.14 5195.96 20492.96 4389.48 27097.46 11385.14 23596.23 9195.42 18893.19 8298.08 22090.37 13298.76 13397.38 200
Anonymous2023120688.77 25288.29 25090.20 26796.31 17678.81 26589.56 26993.49 26674.26 31892.38 22895.58 17882.21 24395.43 32272.07 33498.75 13596.34 238
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5395.17 3696.82 6496.73 11295.09 4399.43 2792.99 7398.71 13698.50 109
UGNet93.08 14792.50 16494.79 10793.87 27787.99 12195.07 8894.26 25390.64 13387.33 31697.67 5186.89 20498.49 18788.10 18998.71 13697.91 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS91.33 19591.16 19891.82 21396.27 17979.36 25495.01 9185.61 34096.04 2894.82 15497.06 8872.03 30698.46 19384.96 23598.70 13897.65 181
HPM-MVS++copyleft95.02 8294.39 11196.91 3897.88 9093.58 3694.09 12396.99 15091.05 12392.40 22795.22 19591.03 13899.25 7492.11 9198.69 13997.90 159
miper_lstm_enhance89.90 23289.80 22490.19 26891.37 31977.50 28283.82 34495.00 23184.84 24393.05 20994.96 20776.53 29195.20 32889.96 15098.67 14097.86 163
FMVSNet292.78 15992.73 15892.95 17695.40 23181.98 21194.18 11995.53 22188.63 17396.05 10197.37 6881.31 25398.81 14187.38 20398.67 14098.06 139
DeepC-MVS_fast89.96 793.73 12993.44 14094.60 11796.14 19087.90 12293.36 14397.14 13985.53 22993.90 18295.45 18691.30 12898.59 17789.51 15898.62 14297.31 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS95.15 9696.84 14489.43 9095.21 8095.66 17393.12 8698.06 22186.28 22098.61 14397.95 153
114514_t90.51 21089.80 22492.63 18998.00 8482.24 20993.40 14297.29 13065.84 35289.40 28594.80 21686.99 19998.75 15283.88 24598.61 14396.89 218
CS-MVS92.12 17892.62 16090.60 25494.57 26078.12 27392.00 19298.58 887.75 19290.08 27091.88 29389.79 16299.10 9390.35 13398.60 14594.58 291
CDPH-MVS92.67 16391.83 17795.18 9596.94 13988.46 11290.70 23497.07 14577.38 30392.34 23295.08 20192.67 9898.88 12685.74 22398.57 14698.20 131
cl_fuxian91.32 19691.42 18891.00 24192.29 30176.79 29487.52 30396.42 18485.76 22694.72 16093.89 24682.73 23898.16 21690.93 12298.55 14798.04 142
test_prior393.29 13892.85 15294.61 11395.95 20587.23 13190.21 24897.36 12289.33 15990.77 25794.81 21390.41 15098.68 16788.21 18398.55 14797.93 155
test_prior290.21 24889.33 15990.77 25794.81 21390.41 15088.21 18398.55 147
LCM-MVSNet-Re94.20 12094.58 10593.04 17195.91 20883.13 20193.79 13299.19 292.00 8798.84 598.04 3593.64 7099.02 10781.28 26998.54 15096.96 215
Patchmatch-RL test88.81 25188.52 24489.69 27595.33 23679.94 24186.22 32592.71 27978.46 29895.80 11094.18 23466.25 32495.33 32589.22 16798.53 15193.78 310
Anonymous20240521192.58 16692.50 16492.83 18296.55 15983.22 19892.43 17091.64 29994.10 4995.59 11996.64 11881.88 25097.50 26185.12 23198.52 15297.77 172
CNVR-MVS94.58 10294.29 11595.46 8296.94 13989.35 9491.81 20896.80 16489.66 15193.90 18295.44 18792.80 9598.72 15792.74 7998.52 15298.32 120
HQP_MVS94.26 11793.93 12395.23 9397.71 9988.12 11794.56 10897.81 8791.74 10693.31 19695.59 17586.93 20198.95 11989.26 16598.51 15498.60 103
plane_prior597.81 8798.95 11989.26 16598.51 15498.60 103
baseline94.26 11794.80 9492.64 18796.08 19580.99 22593.69 13598.04 6190.80 12994.89 15296.32 14093.19 8298.48 19191.68 10798.51 15498.43 115
ETH3D cwj APD-0.1693.99 12593.38 14295.80 6796.82 14589.92 8192.72 15698.02 6484.73 24593.65 18995.54 18291.68 11899.22 7788.78 17698.49 15798.26 126
thisisatest053088.69 25487.52 26592.20 20196.33 17479.36 25492.81 15484.01 35186.44 21293.67 18892.68 27753.62 36199.25 7489.65 15798.45 15898.00 145
train_agg92.71 16291.83 17795.35 8496.45 16489.46 8890.60 23696.92 15579.37 28790.49 26294.39 22791.20 13398.88 12688.66 18098.43 15997.72 176
GeoE94.55 10494.68 10194.15 13497.23 12585.11 17594.14 12197.34 12588.71 17295.26 13495.50 18394.65 5699.12 8990.94 12198.40 16098.23 127
ZD-MVS97.23 12590.32 7797.54 10784.40 24794.78 15695.79 16692.76 9699.39 4688.72 17998.40 160
test9_res88.16 18898.40 16097.83 166
ETH3 D test640091.91 18291.25 19493.89 14696.59 15584.41 18192.10 18697.72 9578.52 29791.82 24293.78 25088.70 17099.13 8783.61 24698.39 16398.14 134
TSAR-MVS + GP.93.07 14992.41 16695.06 9995.82 21190.87 7190.97 22792.61 28388.04 18594.61 16193.79 24988.08 17997.81 24389.41 16098.39 16396.50 232
VNet92.67 16392.96 14991.79 21496.27 17980.15 23291.95 19494.98 23292.19 8494.52 16496.07 15387.43 19197.39 27084.83 23698.38 16597.83 166
GBi-Net93.21 14492.96 14993.97 14095.40 23184.29 18295.99 5196.56 17788.63 17395.10 14198.53 2181.31 25398.98 11286.74 20898.38 16598.65 92
test193.21 14492.96 14993.97 14095.40 23184.29 18295.99 5196.56 17788.63 17395.10 14198.53 2181.31 25398.98 11286.74 20898.38 16598.65 92
FMVSNet390.78 20490.32 21592.16 20693.03 29179.92 24292.54 16294.95 23386.17 21995.10 14196.01 15669.97 31098.75 15286.74 20898.38 16597.82 168
MVS_111021_HR93.63 13193.42 14194.26 13296.65 15186.96 14089.30 27696.23 19388.36 18093.57 19194.60 22193.45 7397.77 24890.23 14198.38 16598.03 143
agg_prior192.60 16591.76 18095.10 9896.20 18488.89 10090.37 24396.88 15979.67 28490.21 26794.41 22591.30 12898.78 14788.46 18298.37 17097.64 182
agg_prior287.06 20698.36 17197.98 149
TSAR-MVS + MP.94.96 8594.75 9695.57 7898.86 2088.69 10396.37 3696.81 16385.23 23294.75 15797.12 8591.85 11499.40 4193.45 4998.33 17298.62 100
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
pmmvs-eth3d91.54 18990.73 20793.99 13895.76 21687.86 12490.83 23093.98 26078.23 30094.02 17896.22 14782.62 24196.83 28886.57 21398.33 17297.29 204
casdiffmvs94.32 11494.80 9492.85 18196.05 19781.44 21992.35 17698.05 5791.53 11395.75 11296.80 10593.35 7898.49 18791.01 12098.32 17498.64 96
Regformer-194.55 10494.33 11495.19 9492.83 29488.54 11091.87 20295.84 20893.99 5095.95 10495.04 20392.00 11098.79 14393.14 6798.31 17598.23 127
Regformer-294.86 9094.55 10695.77 6992.83 29489.98 8091.87 20296.40 18594.38 4696.19 9695.04 20392.47 10499.04 10493.49 4498.31 17598.28 124
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14790.79 7296.30 4397.82 8696.13 2494.74 15897.23 7991.33 12699.16 8293.25 6298.30 17798.46 113
MVS_111021_LR93.66 13093.28 14594.80 10696.25 18290.95 6890.21 24895.43 22387.91 18693.74 18794.40 22692.88 9396.38 30290.39 13098.28 17897.07 208
CANet92.38 17191.99 17393.52 16193.82 27983.46 19591.14 22397.00 14889.81 14986.47 32094.04 23887.90 18599.21 7889.50 15998.27 17997.90 159
EI-MVSNet92.99 15193.26 14792.19 20292.12 30679.21 25992.32 17894.67 24691.77 10495.24 13795.85 16187.14 19798.49 18791.99 9698.26 18098.86 72
RRT_test8_iter0588.21 26088.17 25588.33 29891.62 31566.82 35191.73 21196.60 17586.34 21494.14 17095.38 19347.72 36699.11 9191.78 10398.26 18099.06 47
MVSTER89.32 24088.75 24291.03 23890.10 33376.62 29590.85 22994.67 24682.27 26795.24 13795.79 16661.09 34898.49 18790.49 12798.26 18097.97 152
testtj94.81 9494.42 11096.01 5497.23 12590.51 7694.77 9897.85 8391.29 11794.92 15195.66 17391.71 11799.40 4188.07 19098.25 18398.11 138
MSLP-MVS++93.25 14393.88 12491.37 22696.34 17382.81 20593.11 14697.74 9389.37 15794.08 17395.29 19490.40 15296.35 30490.35 13398.25 18394.96 282
LF4IMVS92.72 16192.02 17294.84 10595.65 22291.99 5492.92 15196.60 17585.08 23992.44 22593.62 25386.80 20596.35 30486.81 20798.25 18396.18 245
EI-MVSNet-UG-set94.35 11294.27 11894.59 11892.46 29985.87 16592.42 17194.69 24493.67 6196.13 9895.84 16491.20 13398.86 13193.78 3598.23 18699.03 49
PM-MVS93.33 13792.67 15995.33 8696.58 15694.06 1992.26 18192.18 28985.92 22396.22 9296.61 12085.64 22095.99 31290.35 13398.23 18695.93 254
EI-MVSNet-Vis-set94.36 11194.28 11694.61 11392.55 29885.98 16392.44 16994.69 24493.70 5796.12 9995.81 16591.24 13098.86 13193.76 3898.22 18898.98 58
V4293.43 13593.58 13592.97 17495.34 23581.22 22292.67 15996.49 18287.25 20296.20 9496.37 13787.32 19398.85 13392.39 9098.21 18998.85 75
TAMVS90.16 22389.05 23593.49 16296.49 16286.37 15490.34 24592.55 28480.84 27692.99 21194.57 22381.94 24998.20 21173.51 32698.21 18995.90 257
K. test v393.37 13693.27 14693.66 15398.05 7882.62 20694.35 11486.62 32996.05 2797.51 3898.85 1276.59 29099.65 393.21 6398.20 19198.73 89
DELS-MVS92.05 18092.16 16891.72 21794.44 26280.13 23487.62 29797.25 13387.34 20192.22 23593.18 26589.54 16598.73 15689.67 15698.20 19196.30 240
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TAPA-MVS88.58 1092.49 16991.75 18194.73 10996.50 16189.69 8692.91 15297.68 9678.02 30192.79 21694.10 23690.85 13997.96 23184.76 23898.16 19396.54 227
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D96.11 4895.83 6196.95 3794.75 24994.20 1797.34 997.98 6997.31 1095.32 13096.77 10693.08 8799.20 7991.79 10298.16 19397.44 193
Regformer-394.28 11594.23 12094.46 12692.78 29686.28 15892.39 17394.70 24393.69 6095.97 10295.56 18091.34 12598.48 19193.45 4998.14 19598.62 100
Regformer-494.90 8794.67 10295.59 7692.78 29689.02 9792.39 17395.91 20494.50 4296.41 7795.56 18092.10 10899.01 10994.23 2698.14 19598.74 87
DP-MVS Recon92.31 17391.88 17693.60 15597.18 12986.87 14191.10 22597.37 11784.92 24292.08 23894.08 23788.59 17298.20 21183.50 24798.14 19595.73 263
EG-PatchMatch MVS94.54 10694.67 10294.14 13597.87 9186.50 14892.00 19296.74 16988.16 18396.93 5997.61 5493.04 8997.90 23391.60 10998.12 19898.03 143
PCF-MVS84.52 1789.12 24387.71 26293.34 16496.06 19685.84 16686.58 32497.31 12768.46 34593.61 19093.89 24687.51 19098.52 18567.85 34998.11 19995.66 267
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator92.54 394.80 9594.90 8994.47 12595.47 22987.06 13596.63 2397.28 13291.82 10194.34 16997.41 6590.60 14798.65 17192.47 8698.11 19997.70 177
CS-MVS-test91.17 19891.31 19290.74 24994.24 26779.99 24091.46 21698.39 1586.29 21587.43 31489.06 33288.63 17199.07 9988.20 18598.09 20193.17 321
PMMVS281.31 31983.44 30374.92 34590.52 32846.49 36869.19 36085.23 34684.30 24887.95 30894.71 21976.95 28684.36 36264.07 35598.09 20193.89 308
lessismore_v093.87 14898.05 7883.77 19380.32 36197.13 5097.91 4277.49 27899.11 9192.62 8398.08 20398.74 87
new-patchmatchnet88.97 24790.79 20583.50 33494.28 26655.83 36685.34 32993.56 26486.18 21895.47 12395.73 17083.10 23396.51 29785.40 22698.06 20498.16 132
plane_prior88.12 11793.01 14888.98 16598.06 204
PVSNet_BlendedMVS90.35 21789.96 22191.54 22394.81 24678.80 26690.14 25296.93 15379.43 28688.68 29995.06 20286.27 21298.15 21780.27 27798.04 20697.68 179
CL-MVSNet_2432*160090.04 22989.90 22390.47 25795.24 23777.81 27886.60 32392.62 28285.64 22893.25 20393.92 24483.84 22896.06 31079.93 28498.03 20797.53 189
FMVSNet587.82 26786.56 28291.62 22092.31 30079.81 24693.49 13994.81 24083.26 25391.36 24896.93 9652.77 36297.49 26376.07 31498.03 20797.55 188
原ACMM192.87 18096.91 14184.22 18597.01 14776.84 30889.64 28394.46 22488.00 18298.70 16381.53 26798.01 20995.70 265
v14892.87 15693.29 14391.62 22096.25 18277.72 28091.28 22195.05 23089.69 15095.93 10696.04 15487.34 19298.38 19690.05 14897.99 21098.78 81
ITE_SJBPF95.95 5797.34 12293.36 4096.55 18091.93 9094.82 15495.39 19191.99 11197.08 27985.53 22597.96 21197.41 194
test1294.43 12895.95 20586.75 14396.24 19289.76 28189.79 16298.79 14397.95 21297.75 175
MCST-MVS92.91 15392.51 16394.10 13697.52 11285.72 16891.36 22097.13 14180.33 27892.91 21494.24 23191.23 13198.72 15789.99 14997.93 21397.86 163
CDS-MVSNet89.55 23688.22 25493.53 16095.37 23486.49 14989.26 27793.59 26379.76 28291.15 25392.31 28677.12 28398.38 19677.51 30497.92 21495.71 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
旧先验196.20 18484.17 18794.82 23895.57 17989.57 16497.89 21596.32 239
alignmvs93.26 14192.85 15294.50 12295.70 21887.45 12793.45 14195.76 20991.58 11195.25 13692.42 28581.96 24898.72 15791.61 10897.87 21697.33 202
testgi90.38 21591.34 19187.50 30797.49 11471.54 33289.43 27195.16 22988.38 17994.54 16394.68 22092.88 9393.09 34671.60 33897.85 21797.88 161
MVS_030490.96 20190.15 21893.37 16393.17 28687.06 13593.62 13792.43 28789.60 15382.25 34595.50 18382.56 24297.83 24284.41 24297.83 21895.22 275
新几何193.17 17097.16 13087.29 13094.43 24867.95 34691.29 24994.94 20886.97 20098.23 20981.06 27497.75 21993.98 306
ETV-MVS92.99 15192.74 15693.72 15295.86 21086.30 15792.33 17797.84 8491.70 10992.81 21586.17 34992.22 10599.19 8088.03 19197.73 22095.66 267
HQP3-MVS97.31 12797.73 220
HQP-MVS92.09 17991.49 18793.88 14796.36 16884.89 17791.37 21797.31 12787.16 20388.81 29293.40 25984.76 22398.60 17586.55 21497.73 22098.14 134
112190.26 22189.23 23093.34 16497.15 13287.40 12891.94 19694.39 24967.88 34791.02 25594.91 20986.91 20398.59 17781.17 27297.71 22394.02 305
CANet_DTU89.85 23389.17 23291.87 21292.20 30480.02 23990.79 23195.87 20686.02 22182.53 34491.77 29580.01 26198.57 18085.66 22497.70 22497.01 212
NCCC94.08 12393.54 13895.70 7496.49 16289.90 8392.39 17396.91 15790.64 13392.33 23394.60 22190.58 14898.96 11790.21 14297.70 22498.23 127
Vis-MVSNetpermissive95.50 6695.48 7095.56 7998.11 7389.40 9295.35 7498.22 3192.36 7794.11 17198.07 3392.02 10999.44 2393.38 5697.67 22697.85 165
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AdaColmapbinary91.63 18791.36 19092.47 19795.56 22786.36 15592.24 18396.27 19088.88 16989.90 27692.69 27691.65 11998.32 20177.38 30697.64 22792.72 330
EPNet_dtu85.63 29484.37 29789.40 27986.30 35874.33 31691.64 21288.26 31684.84 24372.96 36389.85 31771.27 30897.69 25476.60 31197.62 22896.18 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS94.72 9794.12 12196.50 4898.00 8494.23 1691.48 21598.17 3790.72 13095.30 13196.47 12587.94 18496.98 28291.41 11497.61 22998.30 123
canonicalmvs94.59 10194.69 9994.30 13195.60 22687.03 13795.59 6698.24 2991.56 11295.21 13992.04 29194.95 4998.66 16991.45 11397.57 23097.20 207
XXY-MVS92.58 16693.16 14890.84 24797.75 9579.84 24391.87 20296.22 19585.94 22295.53 12297.68 5092.69 9794.48 33283.21 25097.51 23198.21 130
Effi-MVS+-dtu93.90 12792.60 16297.77 494.74 25196.67 394.00 12695.41 22489.94 14591.93 24192.13 28990.12 15598.97 11687.68 19797.48 23297.67 180
OpenMVScopyleft89.45 892.27 17592.13 17092.68 18694.53 26184.10 18895.70 6297.03 14682.44 26691.14 25496.42 12988.47 17498.38 19685.95 22297.47 23395.55 271
ab-mvs92.40 17092.62 16091.74 21697.02 13581.65 21595.84 5995.50 22286.95 20892.95 21397.56 5690.70 14597.50 26179.63 28797.43 23496.06 249
thisisatest051584.72 29982.99 30789.90 27292.96 29275.33 30884.36 33883.42 35377.37 30488.27 30486.65 34453.94 35998.72 15782.56 25697.40 23595.67 266
test22296.95 13885.27 17388.83 28593.61 26265.09 35490.74 25994.85 21284.62 22597.36 23693.91 307
API-MVS91.52 19091.61 18291.26 23094.16 26886.26 15994.66 10294.82 23891.17 12192.13 23791.08 30590.03 16197.06 28079.09 29497.35 23790.45 345
EIA-MVS92.35 17292.03 17193.30 16795.81 21383.97 19092.80 15598.17 3787.71 19389.79 28087.56 33991.17 13699.18 8187.97 19297.27 23896.77 223
testdata91.03 23896.87 14382.01 21094.28 25271.55 33192.46 22495.42 18885.65 21997.38 27282.64 25597.27 23893.70 313
N_pmnet88.90 24987.25 26993.83 15094.40 26493.81 3484.73 33387.09 32679.36 28993.26 20192.43 28479.29 26591.68 35177.50 30597.22 24096.00 251
ppachtmachnet_test88.61 25588.64 24388.50 29491.76 31270.99 33584.59 33692.98 27279.30 29192.38 22893.53 25779.57 26397.45 26586.50 21697.17 24197.07 208
CNLPA91.72 18591.20 19593.26 16896.17 18791.02 6691.14 22395.55 22090.16 14390.87 25693.56 25686.31 21194.40 33579.92 28697.12 24294.37 296
jason89.17 24288.32 24891.70 21895.73 21780.07 23588.10 29493.22 26971.98 33090.09 26992.79 27378.53 27298.56 18187.43 20197.06 24396.46 234
jason: jason.
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10992.42 7493.41 19397.78 4691.21 13297.77 24891.06 11797.06 24398.80 79
cl-mvsnet289.02 24488.50 24590.59 25589.76 33576.45 29786.62 32294.03 25682.98 26092.65 21992.49 27972.05 30597.53 25988.93 17197.02 24597.78 171
miper_ehance_all_eth90.48 21190.42 21390.69 25191.62 31576.57 29686.83 31596.18 19783.38 25294.06 17592.66 27882.20 24498.04 22289.79 15397.02 24597.45 192
miper_enhance_ethall88.42 25787.87 26090.07 26988.67 34875.52 30685.10 33095.59 21775.68 31092.49 22389.45 32778.96 26697.88 23587.86 19597.02 24596.81 221
eth_miper_zixun_eth90.72 20590.61 20991.05 23792.04 30876.84 29386.91 31296.67 17285.21 23394.41 16593.92 24479.53 26498.26 20789.76 15497.02 24598.06 139
QAPM92.88 15592.77 15493.22 16995.82 21183.31 19696.45 3197.35 12483.91 25093.75 18596.77 10689.25 16798.88 12684.56 24097.02 24597.49 190
thres600view787.66 27087.10 27489.36 28096.05 19773.17 32292.72 15685.31 34391.89 9393.29 19890.97 30663.42 33898.39 19473.23 32896.99 25096.51 229
test_yl90.11 22489.73 22791.26 23094.09 27179.82 24490.44 24092.65 28090.90 12493.19 20593.30 26173.90 29798.03 22382.23 26096.87 25195.93 254
DCV-MVSNet90.11 22489.73 22791.26 23094.09 27179.82 24490.44 24092.65 28090.90 12493.19 20593.30 26173.90 29798.03 22382.23 26096.87 25195.93 254
MSP-MVS95.34 7294.63 10497.48 1498.67 2794.05 2196.41 3598.18 3491.26 11895.12 14095.15 19686.60 20999.50 1993.43 5396.81 25398.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
pmmvs587.87 26587.14 27290.07 26993.26 28576.97 29288.89 28492.18 28973.71 32288.36 30293.89 24676.86 28996.73 29180.32 27696.81 25396.51 229
PVSNet_Blended_VisFu91.63 18791.20 19592.94 17797.73 9883.95 19192.14 18597.46 11378.85 29692.35 23094.98 20684.16 22799.08 9586.36 21896.77 25595.79 261
MVSFormer92.18 17792.23 16792.04 21094.74 25180.06 23697.15 1197.37 11788.98 16588.83 29092.79 27377.02 28499.60 896.41 496.75 25696.46 234
lupinMVS88.34 25987.31 26791.45 22494.74 25180.06 23687.23 30592.27 28871.10 33488.83 29091.15 30377.02 28498.53 18486.67 21196.75 25695.76 262
diffmvs91.74 18491.93 17591.15 23693.06 28978.17 27288.77 28797.51 11286.28 21692.42 22693.96 24388.04 18197.46 26490.69 12696.67 25897.82 168
DPM-MVS89.35 23988.40 24792.18 20596.13 19384.20 18686.96 31196.15 19975.40 31487.36 31591.55 30083.30 23198.01 22682.17 26296.62 25994.32 298
thres100view90087.35 27886.89 27688.72 29096.14 19073.09 32493.00 14985.31 34392.13 8593.26 20190.96 30763.42 33898.28 20371.27 34096.54 26094.79 285
tfpn200view987.05 28686.52 28488.67 29195.77 21472.94 32591.89 19986.00 33590.84 12692.61 22089.80 31963.93 33598.28 20371.27 34096.54 26094.79 285
thres40087.20 28286.52 28489.24 28495.77 21472.94 32591.89 19986.00 33590.84 12692.61 22089.80 31963.93 33598.28 20371.27 34096.54 26096.51 229
CMPMVSbinary68.83 2287.28 27985.67 29292.09 20888.77 34785.42 17190.31 24694.38 25070.02 34088.00 30793.30 26173.78 29994.03 34075.96 31696.54 26096.83 220
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs488.95 24887.70 26392.70 18594.30 26585.60 16987.22 30692.16 29174.62 31689.75 28294.19 23377.97 27696.41 30082.71 25496.36 26496.09 247
Fast-Effi-MVS+-dtu92.77 16092.16 16894.58 12094.66 25788.25 11492.05 18896.65 17389.62 15290.08 27091.23 30292.56 10098.60 17586.30 21996.27 26596.90 217
MAR-MVS90.32 21988.87 24194.66 11294.82 24591.85 5794.22 11894.75 24180.91 27387.52 31388.07 33886.63 20897.87 23876.67 31096.21 26694.25 299
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS90.05 22888.30 24995.32 8996.09 19490.52 7592.42 17192.05 29582.08 26988.45 30192.86 27065.76 32698.69 16588.91 17396.07 26796.75 225
hse-mvs292.24 17691.20 19595.38 8396.16 18890.65 7392.52 16392.01 29689.23 16193.95 17992.99 26876.88 28798.69 16591.02 11896.03 26896.81 221
PVSNet_Blended88.74 25388.16 25790.46 25994.81 24678.80 26686.64 32096.93 15374.67 31588.68 29989.18 33086.27 21298.15 21780.27 27796.00 26994.44 295
F-COLMAP92.28 17491.06 19995.95 5797.52 11291.90 5693.53 13897.18 13783.98 24988.70 29894.04 23888.41 17598.55 18380.17 28095.99 27097.39 198
xiu_mvs_v1_base_debu91.47 19191.52 18491.33 22795.69 21981.56 21689.92 25996.05 20183.22 25491.26 25090.74 30991.55 12198.82 13689.29 16295.91 27193.62 315
xiu_mvs_v1_base91.47 19191.52 18491.33 22795.69 21981.56 21689.92 25996.05 20183.22 25491.26 25090.74 30991.55 12198.82 13689.29 16295.91 27193.62 315
xiu_mvs_v1_base_debi91.47 19191.52 18491.33 22795.69 21981.56 21689.92 25996.05 20183.22 25491.26 25090.74 30991.55 12198.82 13689.29 16295.91 27193.62 315
thres20085.85 29385.18 29487.88 30494.44 26272.52 32889.08 28186.21 33188.57 17691.44 24788.40 33664.22 33398.00 22768.35 34895.88 27493.12 322
Patchmatch-test86.10 29286.01 28986.38 31790.63 32674.22 31889.57 26886.69 32885.73 22789.81 27992.83 27165.24 33091.04 35377.82 30295.78 27593.88 309
hse-mvs392.89 15491.99 17395.58 7796.97 13790.55 7493.94 12994.01 25989.23 16193.95 17996.19 14876.88 28799.14 8591.02 11895.71 27697.04 211
mvs-test193.07 14991.80 17996.89 3994.74 25195.83 692.17 18495.41 22489.94 14589.85 27790.59 31590.12 15598.88 12687.68 19795.66 27795.97 252
cascas87.02 28786.28 28889.25 28391.56 31776.45 29784.33 33996.78 16571.01 33586.89 31985.91 35081.35 25296.94 28383.09 25195.60 27894.35 297
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16898.13 4290.69 13193.75 18596.25 14698.03 297.02 28192.08 9395.55 27998.45 114
DSMNet-mixed82.21 31381.56 31284.16 33189.57 33970.00 34190.65 23577.66 36454.99 36383.30 34097.57 5577.89 27790.50 35566.86 35295.54 28091.97 335
MVS_Test92.57 16893.29 14390.40 26093.53 28175.85 30392.52 16396.96 15188.73 17092.35 23096.70 11490.77 14098.37 19992.53 8595.49 28196.99 213
MIMVSNet87.13 28586.54 28388.89 28796.05 19776.11 30094.39 11388.51 31481.37 27288.27 30496.75 10972.38 30395.52 31765.71 35495.47 28295.03 280
Fast-Effi-MVS+91.28 19790.86 20292.53 19495.45 23082.53 20789.25 27996.52 18185.00 24089.91 27588.55 33592.94 9098.84 13484.72 23995.44 28396.22 243
ET-MVSNet_ETH3D86.15 29184.27 29991.79 21493.04 29081.28 22187.17 30886.14 33279.57 28583.65 33688.66 33357.10 35398.18 21487.74 19695.40 28495.90 257
BH-RMVSNet90.47 21290.44 21290.56 25695.21 23878.65 26889.15 28093.94 26188.21 18192.74 21794.22 23286.38 21097.88 23578.67 29695.39 28595.14 278
CHOSEN 1792x268887.19 28385.92 29191.00 24197.13 13379.41 25384.51 33795.60 21364.14 35590.07 27294.81 21378.26 27497.14 27873.34 32795.38 28696.46 234
Effi-MVS+92.79 15892.74 15692.94 17795.10 23983.30 19794.00 12697.53 10991.36 11689.35 28690.65 31494.01 6898.66 16987.40 20295.30 28796.88 219
MG-MVS89.54 23789.80 22488.76 28994.88 24272.47 32989.60 26792.44 28685.82 22489.48 28495.98 15782.85 23697.74 25281.87 26395.27 28896.08 248
HyFIR lowres test87.19 28385.51 29392.24 20097.12 13480.51 22985.03 33196.06 20066.11 35191.66 24592.98 26970.12 30999.14 8575.29 31895.23 28997.07 208
BH-untuned90.68 20790.90 20090.05 27195.98 20379.57 25190.04 25594.94 23487.91 18694.07 17493.00 26787.76 18697.78 24779.19 29395.17 29092.80 328
pmmvs380.83 32378.96 33186.45 31487.23 35477.48 28384.87 33282.31 35563.83 35685.03 32789.50 32649.66 36393.10 34573.12 33095.10 29188.78 350
mvs_anonymous90.37 21691.30 19387.58 30692.17 30568.00 34589.84 26394.73 24283.82 25193.22 20497.40 6687.54 18997.40 26987.94 19395.05 29297.34 201
IterMVS-SCA-FT91.65 18691.55 18391.94 21193.89 27679.22 25887.56 30093.51 26591.53 11395.37 12896.62 11978.65 26998.90 12391.89 10194.95 29397.70 177
test-LLR83.58 30483.17 30584.79 32789.68 33766.86 34983.08 34584.52 34883.07 25882.85 34284.78 35362.86 34193.49 34382.85 25294.86 29494.03 303
test-mter81.21 32180.01 32884.79 32789.68 33766.86 34983.08 34584.52 34873.85 32182.85 34284.78 35343.66 37093.49 34382.85 25294.86 29494.03 303
PatchMatch-RL89.18 24188.02 25992.64 18795.90 20992.87 4588.67 29191.06 30280.34 27790.03 27391.67 29783.34 23094.42 33476.35 31394.84 29690.64 344
OpenMVS_ROBcopyleft85.12 1689.52 23889.05 23590.92 24394.58 25981.21 22391.10 22593.41 26777.03 30793.41 19393.99 24283.23 23297.80 24479.93 28494.80 29793.74 312
our_test_387.55 27387.59 26487.44 30891.76 31270.48 33683.83 34390.55 30779.79 28192.06 23992.17 28878.63 27195.63 31584.77 23794.73 29896.22 243
CHOSEN 280x42080.04 32877.97 33486.23 31890.13 33274.53 31372.87 35889.59 31066.38 35076.29 36085.32 35256.96 35495.36 32369.49 34794.72 29988.79 349
IterMVS90.18 22290.16 21690.21 26693.15 28775.98 30287.56 30092.97 27386.43 21394.09 17296.40 13178.32 27397.43 26687.87 19494.69 30097.23 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EMVS80.35 32780.28 32680.54 34084.73 36369.07 34372.54 35980.73 35987.80 19081.66 35181.73 35862.89 34089.84 35675.79 31794.65 30182.71 357
PLCcopyleft85.34 1590.40 21488.92 23894.85 10496.53 16090.02 7991.58 21396.48 18380.16 27986.14 32292.18 28785.73 21798.25 20876.87 30994.61 30296.30 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG90.82 20290.67 20891.26 23094.16 26883.08 20286.63 32196.19 19690.60 13591.94 24091.89 29289.16 16895.75 31480.96 27594.51 30394.95 283
xiu_mvs_v2_base89.00 24689.19 23188.46 29694.86 24474.63 31186.97 31095.60 21380.88 27487.83 30988.62 33491.04 13798.81 14182.51 25894.38 30491.93 336
PS-MVSNAJ88.86 25088.99 23788.48 29594.88 24274.71 30986.69 31995.60 21380.88 27487.83 30987.37 34290.77 14098.82 13682.52 25794.37 30591.93 336
EU-MVSNet87.39 27786.71 28089.44 27793.40 28276.11 30094.93 9490.00 30957.17 36195.71 11597.37 6864.77 33297.68 25592.67 8294.37 30594.52 293
E-PMN80.72 32580.86 32080.29 34185.11 36168.77 34472.96 35781.97 35687.76 19183.25 34183.01 35762.22 34489.17 35877.15 30894.31 30782.93 356
GA-MVS87.70 26886.82 27790.31 26193.27 28477.22 28784.72 33592.79 27785.11 23889.82 27890.07 31666.80 31997.76 25084.56 24094.27 30895.96 253
sss87.23 28086.82 27788.46 29693.96 27477.94 27486.84 31492.78 27877.59 30287.61 31291.83 29478.75 26891.92 35077.84 30094.20 30995.52 272
MDA-MVSNet-bldmvs91.04 19990.88 20191.55 22294.68 25680.16 23185.49 32892.14 29290.41 14094.93 15095.79 16685.10 22196.93 28585.15 22994.19 31097.57 185
PAPM_NR91.03 20090.81 20491.68 21996.73 14981.10 22493.72 13496.35 18888.19 18288.77 29692.12 29085.09 22297.25 27482.40 25993.90 31196.68 226
YYNet188.17 26188.24 25287.93 30292.21 30373.62 32080.75 35288.77 31282.51 26594.99 14895.11 19982.70 23993.70 34183.33 24893.83 31296.48 233
MDA-MVSNet_test_wron88.16 26288.23 25387.93 30292.22 30273.71 31980.71 35388.84 31182.52 26494.88 15395.14 19782.70 23993.61 34283.28 24993.80 31396.46 234
1112_ss88.42 25787.41 26691.45 22496.69 15080.99 22589.72 26596.72 17073.37 32387.00 31890.69 31277.38 28098.20 21181.38 26893.72 31495.15 277
PVSNet76.22 2082.89 30982.37 30984.48 32993.96 27464.38 35978.60 35588.61 31371.50 33284.43 33386.36 34874.27 29694.60 33169.87 34693.69 31594.46 294
TESTMET0.1,179.09 33078.04 33382.25 33787.52 35164.03 36083.08 34580.62 36070.28 33980.16 35583.22 35644.13 36990.56 35479.95 28293.36 31692.15 334
PAPR87.65 27186.77 27990.27 26392.85 29377.38 28488.56 29296.23 19376.82 30984.98 32889.75 32386.08 21497.16 27772.33 33393.35 31796.26 242
SCA87.43 27687.21 27088.10 30192.01 30971.98 33189.43 27188.11 32082.26 26888.71 29792.83 27178.65 26997.59 25779.61 28893.30 31894.75 287
Test_1112_low_res87.50 27586.58 28190.25 26496.80 14877.75 27987.53 30296.25 19169.73 34186.47 32093.61 25475.67 29397.88 23579.95 28293.20 31995.11 279
MDTV_nov1_ep1383.88 30289.42 34161.52 36288.74 28887.41 32473.99 32084.96 32994.01 24165.25 32995.53 31678.02 29893.16 320
WTY-MVS86.93 28886.50 28688.24 29994.96 24174.64 31087.19 30792.07 29478.29 29988.32 30391.59 29978.06 27594.27 33774.88 32093.15 32195.80 260
PMMVS83.00 30881.11 31688.66 29283.81 36586.44 15282.24 34985.65 33861.75 35982.07 34785.64 35179.75 26291.59 35275.99 31593.09 32287.94 351
UnsupCasMVSNet_bld88.50 25688.03 25889.90 27295.52 22878.88 26387.39 30494.02 25879.32 29093.06 20894.02 24080.72 25894.27 33775.16 31993.08 32396.54 227
MVS84.98 29884.30 29887.01 31091.03 32177.69 28191.94 19694.16 25459.36 36084.23 33487.50 34185.66 21896.80 28971.79 33593.05 32486.54 352
PatchT87.51 27488.17 25585.55 32090.64 32566.91 34792.02 19186.09 33392.20 8389.05 28997.16 8364.15 33496.37 30389.21 16892.98 32593.37 319
MS-PatchMatch88.05 26387.75 26188.95 28593.28 28377.93 27587.88 29692.49 28575.42 31392.57 22293.59 25580.44 25994.24 33981.28 26992.75 32694.69 290
CR-MVSNet87.89 26487.12 27390.22 26591.01 32278.93 26192.52 16392.81 27573.08 32589.10 28796.93 9667.11 31697.64 25688.80 17592.70 32794.08 300
RPMNet90.31 22090.14 21990.81 24891.01 32278.93 26192.52 16398.12 4391.91 9189.10 28796.89 9968.84 31199.41 3690.17 14392.70 32794.08 300
KD-MVS_2432*160082.17 31480.75 32186.42 31582.04 36670.09 33981.75 35090.80 30482.56 26290.37 26589.30 32842.90 37196.11 30874.47 32192.55 32993.06 323
miper_refine_blended82.17 31480.75 32186.42 31582.04 36670.09 33981.75 35090.80 30482.56 26290.37 26589.30 32842.90 37196.11 30874.47 32192.55 32993.06 323
BH-w/o87.21 28187.02 27587.79 30594.77 24877.27 28687.90 29593.21 27181.74 27189.99 27488.39 33783.47 22996.93 28571.29 33992.43 33189.15 346
IB-MVS77.21 1983.11 30681.05 31789.29 28191.15 32075.85 30385.66 32786.00 33579.70 28382.02 34986.61 34548.26 36598.39 19477.84 30092.22 33293.63 314
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 31681.02 31885.34 32387.46 35371.04 33394.74 9967.56 36696.44 2179.43 35798.99 645.24 36796.15 30667.18 35192.17 33388.85 348
HY-MVS82.50 1886.81 28985.93 29089.47 27693.63 28077.93 27594.02 12591.58 30075.68 31083.64 33793.64 25277.40 27997.42 26771.70 33792.07 33493.05 325
TR-MVS87.70 26887.17 27189.27 28294.11 27079.26 25688.69 28991.86 29781.94 27090.69 26089.79 32182.82 23797.42 26772.65 33291.98 33591.14 341
new_pmnet81.22 32081.01 31981.86 33890.92 32470.15 33884.03 34180.25 36270.83 33685.97 32389.78 32267.93 31584.65 36167.44 35091.90 33690.78 343
FPMVS84.50 30083.28 30488.16 30096.32 17594.49 1485.76 32685.47 34183.09 25785.20 32694.26 23063.79 33786.58 36063.72 35691.88 33783.40 355
UnsupCasMVSNet_eth90.33 21890.34 21490.28 26294.64 25880.24 23089.69 26695.88 20585.77 22593.94 18195.69 17181.99 24792.98 34784.21 24391.30 33897.62 183
MVP-Stereo90.07 22788.92 23893.54 15996.31 17686.49 14990.93 22895.59 21779.80 28091.48 24695.59 17580.79 25797.39 27078.57 29791.19 33996.76 224
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131486.46 29086.33 28786.87 31291.65 31474.54 31291.94 19694.10 25574.28 31784.78 33087.33 34383.03 23495.00 32978.72 29591.16 34091.06 342
tpm84.38 30184.08 30085.30 32490.47 32963.43 36189.34 27485.63 33977.24 30687.62 31195.03 20561.00 34997.30 27379.26 29291.09 34195.16 276
CVMVSNet85.16 29684.72 29586.48 31392.12 30670.19 33792.32 17888.17 31956.15 36290.64 26195.85 16167.97 31496.69 29288.78 17690.52 34292.56 331
test0.0.03 182.48 31181.47 31585.48 32189.70 33673.57 32184.73 33381.64 35783.07 25888.13 30686.61 34562.86 34189.10 35966.24 35390.29 34393.77 311
baseline283.38 30581.54 31488.90 28691.38 31872.84 32788.78 28681.22 35878.97 29379.82 35687.56 33961.73 34697.80 24474.30 32390.05 34496.05 250
PAPM81.91 31780.11 32787.31 30993.87 27772.32 33084.02 34293.22 26969.47 34276.13 36189.84 31872.15 30497.23 27553.27 36289.02 34592.37 333
MVS-HIRNet78.83 33180.60 32373.51 34693.07 28847.37 36787.10 30978.00 36368.94 34377.53 35997.26 7671.45 30794.62 33063.28 35788.74 34678.55 360
tpm281.46 31880.35 32584.80 32689.90 33465.14 35590.44 24085.36 34265.82 35382.05 34892.44 28357.94 35296.69 29270.71 34388.49 34792.56 331
CostFormer83.09 30782.21 31085.73 31989.27 34267.01 34690.35 24486.47 33070.42 33883.52 33993.23 26461.18 34796.85 28777.21 30788.26 34893.34 320
GG-mvs-BLEND83.24 33585.06 36271.03 33494.99 9365.55 36774.09 36275.51 36244.57 36894.46 33359.57 35987.54 34984.24 354
PatchmatchNetpermissive85.22 29584.64 29686.98 31189.51 34069.83 34290.52 23887.34 32578.87 29587.22 31792.74 27566.91 31896.53 29581.77 26486.88 35094.58 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline187.62 27287.31 26788.54 29394.71 25574.27 31793.10 14788.20 31886.20 21792.18 23693.04 26673.21 30095.52 31779.32 29185.82 35195.83 259
tpmvs84.22 30283.97 30184.94 32587.09 35565.18 35491.21 22288.35 31582.87 26185.21 32590.96 30765.24 33096.75 29079.60 29085.25 35292.90 327
ADS-MVSNet284.01 30382.20 31189.41 27889.04 34476.37 29987.57 29890.98 30372.71 32884.46 33192.45 28168.08 31296.48 29870.58 34483.97 35395.38 273
ADS-MVSNet82.25 31281.55 31384.34 33089.04 34465.30 35387.57 29885.13 34772.71 32884.46 33192.45 28168.08 31292.33 34970.58 34483.97 35395.38 273
JIA-IIPM85.08 29783.04 30691.19 23587.56 35086.14 16189.40 27384.44 35088.98 16582.20 34697.95 3956.82 35596.15 30676.55 31283.45 35591.30 340
MVEpermissive59.87 2373.86 33372.65 33677.47 34487.00 35774.35 31561.37 36260.93 36867.27 34869.69 36486.49 34781.24 25672.33 36456.45 36183.45 35585.74 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DWT-MVSNet_test80.74 32479.18 33085.43 32287.51 35266.87 34889.87 26286.01 33474.20 31980.86 35380.62 35948.84 36496.68 29481.54 26683.14 35792.75 329
EPMVS81.17 32280.37 32483.58 33385.58 36065.08 35690.31 24671.34 36577.31 30585.80 32491.30 30159.38 35092.70 34879.99 28182.34 35892.96 326
tpmrst82.85 31082.93 30882.64 33687.65 34958.99 36490.14 25287.90 32175.54 31283.93 33591.63 29866.79 32195.36 32381.21 27181.54 35993.57 318
tpm cat180.61 32679.46 32984.07 33288.78 34665.06 35789.26 27788.23 31762.27 35881.90 35089.66 32562.70 34395.29 32671.72 33680.60 36091.86 338
dp79.28 32978.62 33281.24 33985.97 35956.45 36586.91 31285.26 34572.97 32681.45 35289.17 33156.01 35795.45 32173.19 32976.68 36191.82 339
DeepMVS_CXcopyleft53.83 34870.38 36864.56 35848.52 37033.01 36465.50 36574.21 36356.19 35646.64 36638.45 36570.07 36250.30 362
tmp_tt37.97 33544.33 33818.88 34911.80 37021.54 37063.51 36145.66 3714.23 36651.34 36650.48 36459.08 35122.11 36744.50 36468.35 36313.00 363
PVSNet_070.34 2174.58 33272.96 33579.47 34290.63 32666.24 35273.26 35683.40 35463.67 35778.02 35878.35 36172.53 30289.59 35756.68 36060.05 36482.57 358
test_method50.44 33448.94 33754.93 34739.68 36912.38 37128.59 36390.09 3086.82 36541.10 36778.41 36054.41 35870.69 36550.12 36351.26 36581.72 359
test1239.49 33712.01 3401.91 3502.87 3711.30 37282.38 3481.34 3731.36 3672.84 3686.56 3672.45 3730.97 3682.73 3665.56 3663.47 364
testmvs9.02 33811.42 3411.81 3512.77 3721.13 37379.44 3541.90 3721.18 3682.65 3696.80 3661.95 3740.87 3692.62 3673.45 3673.44 365
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k23.35 33631.13 3390.00 3520.00 3730.00 3740.00 36495.58 2190.00 3690.00 37091.15 30393.43 750.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.56 33910.09 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37090.77 1400.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re7.56 33910.08 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37090.69 3120.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
test_241102_ONE98.51 4586.97 13898.10 4691.85 9597.63 3197.03 9096.48 1198.95 119
save fliter97.46 11788.05 11992.04 18997.08 14487.63 196
test072698.51 4586.69 14595.34 7598.18 3491.85 9597.63 3197.37 6895.58 22
GSMVS94.75 287
test_part298.21 6889.41 9196.72 68
sam_mvs166.64 32294.75 287
sam_mvs66.41 323
MTGPAbinary97.62 99
test_post190.21 2485.85 36965.36 32896.00 31179.61 288
test_post6.07 36865.74 32795.84 313
patchmatchnet-post91.71 29666.22 32597.59 257
MTMP94.82 9654.62 369
gm-plane-assit87.08 35659.33 36371.22 33383.58 35597.20 27673.95 324
TEST996.45 16489.46 8890.60 23696.92 15579.09 29290.49 26294.39 22791.31 12798.88 126
test_896.37 16689.14 9590.51 23996.89 15879.37 28790.42 26494.36 22991.20 13398.82 136
agg_prior96.20 18488.89 10096.88 15990.21 26798.78 147
test_prior489.91 8290.74 232
test_prior94.61 11395.95 20587.23 13197.36 12298.68 16797.93 155
旧先验290.00 25768.65 34492.71 21896.52 29685.15 229
新几何290.02 256
无先验89.94 25895.75 21070.81 33798.59 17781.17 27294.81 284
原ACMM289.34 274
testdata298.03 22380.24 279
segment_acmp92.14 107
testdata188.96 28388.44 178
plane_prior797.71 9988.68 104
plane_prior697.21 12888.23 11586.93 201
plane_prior495.59 175
plane_prior388.43 11390.35 14193.31 196
plane_prior294.56 10891.74 106
plane_prior197.38 120
n20.00 374
nn0.00 374
door-mid92.13 293
test1196.65 173
door91.26 301
HQP5-MVS84.89 177
HQP-NCC96.36 16891.37 21787.16 20388.81 292
ACMP_Plane96.36 16891.37 21787.16 20388.81 292
BP-MVS86.55 214
HQP4-MVS88.81 29298.61 17398.15 133
HQP2-MVS84.76 223
NP-MVS96.82 14587.10 13493.40 259
MDTV_nov1_ep13_2view42.48 36988.45 29367.22 34983.56 33866.80 31972.86 33194.06 302
Test By Simon90.61 146