This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UA-Net97.35 497.24 1197.69 598.22 7093.87 3198.42 698.19 3596.95 1495.46 13099.23 493.45 7599.57 1395.34 1299.89 299.63 9
test_part194.39 11094.55 10793.92 14996.14 19982.86 21195.54 7698.09 5295.36 3698.27 2098.36 2875.91 29699.44 2493.41 5899.84 399.47 17
PS-CasMVS96.69 2097.43 594.49 12999.13 684.09 19596.61 2797.97 7597.91 598.64 1398.13 3495.24 3699.65 393.39 5999.84 399.72 2
WR-MVS_H96.60 2597.05 1495.24 9599.02 1286.44 15996.78 2498.08 5397.42 998.48 1697.86 4991.76 12199.63 694.23 2699.84 399.66 6
FC-MVSNet-test95.32 7595.88 5893.62 15898.49 5581.77 22095.90 6298.32 2093.93 5597.53 3997.56 6088.48 17799.40 4392.91 7999.83 699.68 4
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 18696.54 3098.05 6098.06 498.64 1398.25 3195.01 4899.65 392.95 7899.83 699.68 4
DTE-MVSNet96.74 1797.43 594.67 11699.13 684.68 18596.51 3197.94 8198.14 398.67 1298.32 2995.04 4599.69 293.27 6599.82 899.62 10
CP-MVSNet96.19 4696.80 1794.38 13598.99 1483.82 19896.31 4597.53 11297.60 798.34 1997.52 6391.98 11699.63 693.08 7499.81 999.70 3
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2593.86 3299.07 298.98 497.01 1398.92 498.78 1495.22 3798.61 17996.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n96.82 1097.31 1095.33 8998.54 4386.81 14896.83 2098.07 5696.59 2098.46 1798.43 2792.91 9499.52 1796.25 699.76 1199.65 8
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8398.26 6787.69 13093.75 14097.86 8395.96 3097.48 4197.14 9095.33 3299.44 2490.79 12799.76 1199.38 22
Anonymous2023121196.60 2597.13 1295.00 10397.46 12386.35 16397.11 1698.24 3097.58 898.72 898.97 793.15 8699.15 8793.18 6899.74 1399.50 16
UniMVSNet_ETH3D97.13 697.72 395.35 8799.51 287.38 13497.70 897.54 11098.16 298.94 299.33 297.84 499.08 9990.73 12899.73 1499.59 12
pmmvs696.80 1397.36 995.15 9999.12 887.82 12996.68 2597.86 8396.10 2698.14 2499.28 397.94 398.21 21691.38 11999.69 1599.42 19
FIs94.90 8995.35 7693.55 16198.28 6581.76 22195.33 8298.14 4493.05 7197.07 5397.18 8887.65 19199.29 7191.72 10999.69 1599.61 11
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5997.98 798.01 6994.15 5098.93 399.07 588.07 18499.57 1395.86 999.69 1599.46 18
Anonymous2024052192.86 15993.57 13790.74 25496.57 16475.50 31394.15 12795.60 21989.38 16195.90 11297.90 4880.39 26497.96 23892.60 8799.68 1898.75 85
ANet_high94.83 9596.28 3790.47 26196.65 15873.16 32994.33 12298.74 896.39 2398.09 2598.93 893.37 7998.70 16790.38 13599.68 1899.53 14
DeepC-MVS91.39 495.43 7095.33 7895.71 7697.67 11090.17 8093.86 13898.02 6787.35 20796.22 9597.99 4294.48 6299.05 10492.73 8399.68 1897.93 162
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NR-MVSNet95.28 7895.28 8195.26 9497.75 10187.21 13895.08 9397.37 12093.92 5797.65 3195.90 16590.10 16399.33 6790.11 15099.66 2199.26 29
Baseline_NR-MVSNet94.47 10995.09 8892.60 19698.50 5480.82 23592.08 19496.68 17693.82 5896.29 8998.56 2090.10 16397.75 25890.10 15299.66 2199.24 31
UniMVSNet (Re)95.32 7595.15 8595.80 7097.79 9988.91 10392.91 15998.07 5693.46 6596.31 8795.97 16490.14 15999.34 6292.11 9499.64 2399.16 36
WR-MVS93.49 13493.72 13092.80 18797.57 11680.03 24590.14 25895.68 21793.70 6096.62 7595.39 19887.21 19999.04 10787.50 20599.64 2399.33 25
MIMVSNet195.52 6695.45 7395.72 7599.14 589.02 10196.23 5096.87 16493.73 5997.87 2798.49 2490.73 14999.05 10486.43 22599.60 2599.10 44
ACMH+88.43 1196.48 3096.82 1695.47 8498.54 4389.06 10095.65 7198.61 996.10 2698.16 2397.52 6396.90 798.62 17890.30 14199.60 2598.72 91
VPA-MVSNet95.14 8295.67 6893.58 16097.76 10083.15 20694.58 11297.58 10793.39 6697.05 5698.04 3993.25 8298.51 19289.75 16099.59 2799.08 45
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6292.13 5495.33 8298.25 2791.78 10597.07 5397.22 8696.38 1399.28 7392.07 9799.59 2799.11 41
LGP-MVS_train96.84 4098.36 6292.13 5498.25 2791.78 10597.07 5397.22 8696.38 1399.28 7392.07 9799.59 2799.11 41
ACMH88.36 1296.59 2797.43 594.07 14298.56 3885.33 17996.33 4398.30 2394.66 4098.72 898.30 3097.51 598.00 23494.87 1499.59 2798.86 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet95.35 7395.21 8395.76 7397.69 10888.59 11192.26 18897.84 8794.91 3896.80 6895.78 17590.42 15499.41 3691.60 11399.58 3199.29 28
DU-MVS95.28 7895.12 8795.75 7497.75 10188.59 11192.58 16897.81 9093.99 5296.80 6895.90 16590.10 16399.41 3691.60 11399.58 3199.26 29
ACMP88.15 1395.71 6195.43 7596.54 4798.17 7391.73 6294.24 12498.08 5389.46 15996.61 7696.47 13195.85 1799.12 9390.45 13299.56 3398.77 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1094.68 10195.27 8292.90 18396.57 16480.15 23994.65 10997.57 10890.68 13697.43 4398.00 4188.18 18199.15 8794.84 1599.55 3499.41 20
PS-MVSNAJss96.01 5196.04 5295.89 6698.82 2488.51 11595.57 7597.88 8288.72 17898.81 698.86 1090.77 14599.60 895.43 1199.53 3599.57 13
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 697.41 1097.28 4898.46 2594.62 5898.84 13794.64 1799.53 3598.99 53
IS-MVSNet94.49 10894.35 11494.92 10598.25 6986.46 15897.13 1594.31 25796.24 2496.28 9296.36 14482.88 23999.35 5988.19 19199.52 3798.96 60
nrg03096.32 4196.55 2695.62 7897.83 9688.55 11395.77 6698.29 2692.68 7398.03 2697.91 4695.13 4098.95 12293.85 3699.49 3899.36 24
MP-MVS-pluss96.08 4995.92 5796.57 4699.06 1091.21 6693.25 15198.32 2087.89 19596.86 6597.38 7195.55 2499.39 4895.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_tets96.83 996.71 1997.17 2798.83 2392.51 5096.58 2997.61 10587.57 20598.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
v894.65 10295.29 8092.74 18896.65 15879.77 25394.59 11097.17 14191.86 9797.47 4297.93 4488.16 18299.08 9994.32 2299.47 3999.38 22
CLD-MVS91.82 18591.41 19193.04 17596.37 17683.65 20086.82 32297.29 13384.65 25292.27 24289.67 33292.20 11097.85 24883.95 25299.47 3997.62 190
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
jajsoiax96.59 2796.42 2997.12 2998.76 2892.49 5196.44 3797.42 11886.96 21498.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
test_djsdf96.62 2396.49 2897.01 3398.55 4191.77 6197.15 1397.37 12088.98 17298.26 2298.86 1093.35 8099.60 896.41 499.45 4399.66 6
CP-MVS96.44 3596.08 4997.54 1198.29 6494.62 1496.80 2298.08 5392.67 7595.08 15096.39 14194.77 5499.42 2993.17 6999.44 4598.58 110
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5994.31 1796.79 2398.32 2096.69 1796.86 6597.56 6095.48 2598.77 15590.11 15099.44 4598.31 127
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_0728_THIRD93.26 6897.40 4697.35 7894.69 5599.34 6293.88 3499.42 4798.89 70
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2393.69 14297.62 10294.46 4596.29 8996.94 10093.56 7399.37 5694.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2395.88 6397.62 10294.46 4596.29 8996.94 10093.56 7399.37 5694.29 2499.42 4798.99 53
pm-mvs195.43 7095.94 5593.93 14898.38 5985.08 18295.46 7997.12 14591.84 10197.28 4898.46 2595.30 3497.71 26090.17 14899.42 4798.99 53
XVG-ACMP-BASELINE95.68 6295.34 7796.69 4398.40 5793.04 4394.54 11898.05 6090.45 14296.31 8796.76 11492.91 9498.72 16191.19 12099.42 4798.32 125
wuyk23d87.83 26990.79 20678.96 35090.46 33988.63 10992.72 16390.67 31291.65 11398.68 1197.64 5796.06 1677.53 37159.84 36699.41 5270.73 369
anonymousdsp96.74 1796.42 2997.68 798.00 8894.03 2696.97 1797.61 10587.68 20298.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
SixPastTwentyTwo94.91 8895.21 8393.98 14498.52 4683.19 20595.93 6094.84 24394.86 3998.49 1598.74 1681.45 25599.60 894.69 1699.39 5499.15 37
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1298.17 4093.11 7096.48 7997.36 7596.92 699.34 6294.31 2399.38 5598.92 67
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3997.51 998.44 1292.35 8295.95 10796.41 13696.71 899.42 2993.99 3399.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
KD-MVS_self_test94.10 12394.73 9992.19 20797.66 11179.49 25894.86 10197.12 14589.59 15896.87 6497.65 5690.40 15798.34 20689.08 17599.35 5798.75 85
ACMMP_NAP96.21 4596.12 4796.49 5098.90 1891.42 6494.57 11398.03 6590.42 14396.37 8297.35 7895.68 1999.25 7794.44 2099.34 5898.80 80
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3191.96 5795.70 6898.01 6993.34 6796.64 7496.57 12894.99 4999.36 5893.48 5199.34 5898.82 78
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3493.88 3096.95 1898.18 3692.26 8596.33 8596.84 11095.10 4399.40 4393.47 5299.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM88.83 996.30 4396.07 5096.97 3598.39 5892.95 4694.74 10598.03 6590.82 13297.15 5196.85 10796.25 1599.00 11493.10 7299.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111190.39 21690.61 21089.74 27998.04 8471.50 34095.59 7279.72 36989.41 16095.94 10998.14 3370.79 31398.81 14488.52 18799.32 6298.90 69
DVP-MVScopyleft95.82 5896.18 4294.72 11498.51 4786.69 15195.20 8897.00 15191.85 9897.40 4697.35 7895.58 2299.34 6293.44 5599.31 6398.13 141
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10798.55 4186.72 15095.20 8898.22 3299.38 5493.44 5599.31 6398.53 112
MSC_two_6792asdad95.90 6496.54 16789.57 9096.87 16499.41 3694.06 3099.30 6598.72 91
No_MVS95.90 6496.54 16789.57 9096.87 16499.41 3694.06 3099.30 6598.72 91
APDe-MVS96.46 3296.64 2295.93 6197.68 10989.38 9796.90 1998.41 1692.52 7797.43 4397.92 4595.11 4299.50 1994.45 1999.30 6598.92 67
SED-MVS96.00 5296.41 3294.76 11298.51 4786.97 14495.21 8698.10 4991.95 9297.63 3297.25 8396.48 1199.35 5993.29 6399.29 6897.95 160
IU-MVS98.51 4786.66 15396.83 16772.74 33495.83 11493.00 7699.29 6898.64 101
SMA-MVScopyleft95.77 5995.54 7096.47 5198.27 6691.19 6795.09 9297.79 9486.48 21897.42 4597.51 6594.47 6399.29 7193.55 4699.29 6898.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2594.06 2196.10 5397.78 9592.73 7293.48 19996.72 11994.23 6699.42 2991.99 9999.29 6899.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_040295.73 6096.22 4094.26 13798.19 7285.77 17493.24 15297.24 13796.88 1697.69 3097.77 5294.12 6899.13 9191.54 11699.29 6897.88 168
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2792.79 4896.08 5498.16 4391.74 10995.34 13596.36 14495.68 1999.44 2494.41 2199.28 7398.97 59
DPE-MVScopyleft95.89 5495.88 5895.92 6397.93 9389.83 8693.46 14798.30 2392.37 8097.75 2996.95 9995.14 3999.51 1891.74 10899.28 7398.41 122
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mPP-MVS96.46 3296.05 5197.69 598.62 3294.65 1396.45 3597.74 9692.59 7695.47 12896.68 12194.50 6199.42 2993.10 7299.26 7598.99 53
test_241102_TWO98.10 4991.95 9297.54 3797.25 8395.37 2899.35 5993.29 6399.25 7698.49 115
ACMMP++99.25 76
CSCG94.69 10094.75 9794.52 12697.55 11787.87 12795.01 9797.57 10892.68 7396.20 9793.44 26591.92 11798.78 15189.11 17499.24 7896.92 224
TransMVSNet (Re)95.27 8096.04 5292.97 17898.37 6181.92 21995.07 9496.76 17393.97 5497.77 2898.57 1995.72 1897.90 24088.89 17999.23 7999.08 45
abl_697.31 597.12 1397.86 398.54 4395.32 796.61 2798.35 1995.81 3197.55 3697.44 6896.51 999.40 4394.06 3099.23 7998.85 76
DROMVSNet95.44 6995.62 6994.89 10696.93 14787.69 13096.48 3499.14 393.93 5592.77 22494.52 23193.95 7099.49 2293.62 4399.22 8197.51 197
EGC-MVSNET80.97 32775.73 33996.67 4498.85 2294.55 1596.83 2096.60 1802.44 3745.32 37598.25 3192.24 10898.02 23291.85 10599.21 8297.45 200
bset_n11_16_dypcd89.99 23389.15 23692.53 19994.75 25981.34 22784.19 34687.56 32985.13 24293.77 19092.46 28772.82 30599.01 11292.46 9099.21 8297.23 214
PGM-MVS96.32 4195.94 5597.43 1998.59 3793.84 3395.33 8298.30 2391.40 11895.76 11696.87 10695.26 3599.45 2392.77 8099.21 8299.00 51
SD-MVS95.19 8195.73 6693.55 16196.62 16188.88 10694.67 10798.05 6091.26 12197.25 5096.40 13795.42 2694.36 34492.72 8499.19 8597.40 206
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Vis-MVSNet (Re-imp)90.42 21490.16 21891.20 23997.66 11177.32 29194.33 12287.66 32891.20 12392.99 21895.13 20575.40 29898.28 20977.86 30799.19 8597.99 155
test250685.42 29884.57 30087.96 30897.81 9766.53 36096.14 5156.35 37789.04 17093.55 19898.10 3542.88 37998.68 17188.09 19599.18 8798.67 95
ECVR-MVScopyleft90.12 22690.16 21890.00 27697.81 9772.68 33495.76 6778.54 37089.04 17095.36 13498.10 3570.51 31498.64 17787.10 21299.18 8798.67 95
tfpnnormal94.27 11794.87 9392.48 20197.71 10580.88 23494.55 11695.41 23093.70 6096.67 7397.72 5391.40 12998.18 22087.45 20699.18 8798.36 123
FMVSNet194.84 9495.13 8693.97 14597.60 11484.29 18895.99 5696.56 18392.38 7997.03 5798.53 2190.12 16098.98 11588.78 18199.16 9098.65 97
ACMMPR96.46 3296.14 4597.41 2198.60 3593.82 3496.30 4797.96 7692.35 8295.57 12596.61 12694.93 5199.41 3693.78 3899.15 9199.00 51
HFP-MVS96.39 3996.17 4497.04 3198.51 4793.37 4096.30 4797.98 7292.35 8295.63 12296.47 13195.37 2899.27 7593.78 3899.14 9298.48 116
#test#95.89 5495.51 7197.04 3198.51 4793.37 4095.14 9197.98 7289.34 16395.63 12296.47 13195.37 2899.27 7591.99 9999.14 9298.48 116
VDD-MVS94.37 11194.37 11394.40 13497.49 12086.07 16993.97 13593.28 27494.49 4496.24 9397.78 5087.99 18798.79 14788.92 17799.14 9298.34 124
RRT_MVS91.36 19690.05 22395.29 9389.21 35288.15 12092.51 17494.89 24186.73 21795.54 12695.68 17961.82 35199.30 7094.91 1399.13 9598.43 120
region2R96.41 3796.09 4897.38 2398.62 3293.81 3696.32 4497.96 7692.26 8595.28 13996.57 12895.02 4799.41 3693.63 4299.11 9698.94 62
Gipumacopyleft95.31 7795.80 6493.81 15597.99 9190.91 7196.42 3897.95 7896.69 1791.78 25198.85 1291.77 12095.49 32791.72 10999.08 9795.02 290
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
GST-MVS96.24 4495.99 5497.00 3498.65 3092.71 4995.69 7098.01 6992.08 9095.74 11896.28 14995.22 3799.42 2993.17 6999.06 9898.88 72
OPM-MVS95.61 6495.45 7396.08 5498.49 5591.00 6992.65 16797.33 12990.05 14896.77 7096.85 10795.04 4598.56 18792.77 8099.06 9898.70 94
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPNet93.08 14993.76 12991.03 24398.60 3575.83 31191.51 22195.62 21891.84 10195.74 11897.10 9289.31 17198.32 20785.07 24299.06 9898.93 63
xxxxxxxxxxxxxcwj95.03 8394.93 9095.33 8997.46 12388.05 12392.04 19698.42 1587.63 20396.36 8396.68 12194.37 6499.32 6892.41 9199.05 10198.64 101
SF-MVS95.88 5695.88 5895.87 6798.12 7589.65 8995.58 7498.56 1191.84 10196.36 8396.68 12194.37 6499.32 6892.41 9199.05 10198.64 101
XVS96.49 2996.18 4297.44 1798.56 3893.99 2796.50 3297.95 7894.58 4194.38 17396.49 13094.56 5999.39 4893.57 4499.05 10198.93 63
X-MVStestdata90.70 20788.45 24997.44 1798.56 3893.99 2796.50 3297.95 7894.58 4194.38 17326.89 37294.56 5999.39 4893.57 4499.05 10198.93 63
test20.0390.80 20490.85 20490.63 25795.63 23479.24 26389.81 27092.87 28089.90 15194.39 17296.40 13785.77 22095.27 33573.86 33399.05 10197.39 207
Anonymous2024052995.50 6795.83 6294.50 12797.33 12985.93 17195.19 9096.77 17296.64 1997.61 3598.05 3893.23 8398.79 14788.60 18699.04 10698.78 82
IterMVS-LS93.78 12994.28 11792.27 20496.27 18879.21 26591.87 20996.78 17091.77 10796.57 7897.07 9387.15 20098.74 15991.99 9999.03 10798.86 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ETH3D-3000-0.194.86 9294.55 10795.81 6897.61 11389.72 8794.05 13198.37 1788.09 19195.06 15195.85 16792.58 10299.10 9790.33 14098.99 10898.62 105
cl____90.65 20990.56 21290.91 25091.85 31976.98 29786.75 32395.36 23385.53 23594.06 18194.89 21777.36 28697.98 23790.27 14398.98 10997.76 180
AllTest94.88 9194.51 11096.00 5698.02 8692.17 5295.26 8598.43 1390.48 14095.04 15296.74 11692.54 10497.86 24685.11 24098.98 10997.98 156
TestCases96.00 5698.02 8692.17 5298.43 1390.48 14095.04 15296.74 11692.54 10497.86 24685.11 24098.98 10997.98 156
Patchmtry90.11 22789.92 22590.66 25690.35 34077.00 29592.96 15792.81 28190.25 14694.74 16496.93 10267.11 32297.52 26785.17 23598.98 10997.46 199
DIV-MVS_self_test90.65 20990.56 21290.91 25091.85 31976.99 29686.75 32395.36 23385.52 23794.06 18194.89 21777.37 28597.99 23690.28 14298.97 11397.76 180
9.1494.81 9497.49 12094.11 12998.37 1787.56 20695.38 13296.03 16194.66 5699.08 9990.70 12998.97 113
D2MVS89.93 23489.60 23290.92 24894.03 28278.40 27588.69 29594.85 24278.96 30093.08 21495.09 20774.57 29996.94 29088.19 19198.96 11597.41 203
PHI-MVS94.34 11493.80 12795.95 5895.65 23291.67 6394.82 10297.86 8387.86 19693.04 21794.16 24391.58 12598.78 15190.27 14398.96 11597.41 203
ambc92.98 17796.88 14983.01 21095.92 6196.38 19396.41 8097.48 6688.26 18097.80 25189.96 15598.93 11798.12 142
EPNet89.80 23888.25 25494.45 13283.91 37386.18 16793.87 13787.07 33391.16 12580.64 36194.72 22578.83 27198.89 12885.17 23598.89 11898.28 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet93.91 12793.68 13394.59 12398.08 7885.55 17797.44 1094.03 26294.22 4994.94 15596.19 15482.07 25099.57 1387.28 21098.89 11898.65 97
v119293.49 13493.78 12892.62 19596.16 19779.62 25591.83 21497.22 13986.07 22696.10 10396.38 14287.22 19899.02 11094.14 2998.88 12099.22 32
v114493.50 13393.81 12692.57 19796.28 18779.61 25691.86 21396.96 15486.95 21595.91 11196.32 14687.65 19198.96 12093.51 4798.88 12099.13 39
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9293.82 3496.31 4598.25 2795.51 3596.99 6097.05 9595.63 2199.39 4893.31 6298.88 12098.75 85
APD-MVScopyleft95.00 8594.69 10095.93 6197.38 12690.88 7294.59 11097.81 9089.22 16895.46 13096.17 15793.42 7899.34 6289.30 16698.87 12397.56 194
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OMC-MVS94.22 12093.69 13295.81 6897.25 13091.27 6592.27 18797.40 11987.10 21394.56 16895.42 19593.74 7198.11 22586.62 22098.85 12498.06 144
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7995.27 896.37 4098.12 4695.66 3397.00 5897.03 9694.85 5299.42 2993.49 4898.84 12598.00 152
RE-MVS-def96.66 2098.07 7995.27 896.37 4098.12 4695.66 3397.00 5897.03 9695.40 2793.49 4898.84 12598.00 152
v14419293.20 14893.54 13992.16 21196.05 20678.26 27791.95 20197.14 14284.98 24795.96 10696.11 15887.08 20299.04 10793.79 3798.84 12599.17 35
v192192093.26 14393.61 13592.19 20796.04 21078.31 27691.88 20897.24 13785.17 24096.19 9996.19 15486.76 21099.05 10494.18 2898.84 12599.22 32
DP-MVS95.62 6395.84 6194.97 10497.16 13688.62 11094.54 11897.64 10196.94 1596.58 7797.32 8193.07 9098.72 16190.45 13298.84 12597.57 192
VDDNet94.03 12594.27 11993.31 17098.87 2082.36 21595.51 7891.78 30497.19 1296.32 8698.60 1884.24 23098.75 15687.09 21398.83 13098.81 79
CPTT-MVS94.74 9894.12 12296.60 4598.15 7493.01 4495.84 6497.66 10089.21 16993.28 20695.46 19288.89 17498.98 11589.80 15798.82 13197.80 177
ACMMP++_ref98.82 131
test117296.79 1596.52 2797.60 998.03 8594.87 1096.07 5598.06 5995.76 3296.89 6396.85 10794.85 5299.42 2993.35 6198.81 13398.53 112
v2v48293.29 14093.63 13492.29 20396.35 18178.82 27091.77 21796.28 19588.45 18495.70 12196.26 15186.02 21998.90 12693.02 7598.81 13399.14 38
USDC89.02 24789.08 23788.84 29495.07 25074.50 32088.97 28896.39 19273.21 33193.27 20796.28 14982.16 24996.39 30877.55 31198.80 13595.62 279
tttt051789.81 23788.90 24392.55 19897.00 14279.73 25495.03 9683.65 35889.88 15295.30 13794.79 22453.64 36699.39 4891.99 9998.79 13698.54 111
PMVScopyleft87.21 1494.97 8695.33 7893.91 15098.97 1597.16 295.54 7695.85 21396.47 2193.40 20297.46 6795.31 3395.47 32886.18 22998.78 13789.11 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TinyColmap92.00 18392.76 15789.71 28095.62 23577.02 29490.72 23996.17 20487.70 20195.26 14096.29 14892.54 10496.45 30681.77 27298.77 13895.66 276
v124093.29 14093.71 13192.06 21496.01 21177.89 28391.81 21597.37 12085.12 24396.69 7296.40 13786.67 21199.07 10394.51 1898.76 13999.22 32
DeepPCF-MVS90.46 694.20 12193.56 13896.14 5295.96 21392.96 4589.48 27697.46 11685.14 24196.23 9495.42 19593.19 8498.08 22690.37 13698.76 13997.38 209
Anonymous2023120688.77 25588.29 25390.20 27196.31 18578.81 27189.56 27593.49 27274.26 32592.38 23695.58 18582.21 24795.43 33072.07 34298.75 14196.34 246
SR-MVS96.70 1996.42 2997.54 1198.05 8194.69 1196.13 5298.07 5695.17 3796.82 6796.73 11895.09 4499.43 2892.99 7798.71 14298.50 114
UGNet93.08 14992.50 16694.79 11193.87 28687.99 12595.07 9494.26 25990.64 13787.33 32397.67 5586.89 20898.49 19388.10 19498.71 14297.91 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS91.33 19791.16 19991.82 21896.27 18879.36 26095.01 9785.61 34696.04 2994.82 16097.06 9472.03 31098.46 19984.96 24398.70 14497.65 188
HPM-MVS++copyleft95.02 8494.39 11296.91 3897.88 9493.58 3894.09 13096.99 15391.05 12692.40 23595.22 20291.03 14399.25 7792.11 9498.69 14597.90 166
DVP-MVS++95.93 5396.34 3494.70 11596.54 16786.66 15398.45 498.22 3293.26 6897.54 3797.36 7593.12 8799.38 5493.88 3498.68 14698.04 147
PC_three_145275.31 32195.87 11395.75 17692.93 9396.34 31387.18 21198.68 14698.04 147
miper_lstm_enhance89.90 23589.80 22790.19 27291.37 32877.50 28883.82 35095.00 23784.84 24993.05 21694.96 21476.53 29595.20 33689.96 15598.67 14897.86 170
FMVSNet292.78 16192.73 16092.95 18095.40 24181.98 21894.18 12695.53 22788.63 18096.05 10497.37 7281.31 25798.81 14487.38 20998.67 14898.06 144
DeepC-MVS_fast89.96 793.73 13093.44 14294.60 12296.14 19987.90 12693.36 15097.14 14285.53 23593.90 18895.45 19391.30 13398.59 18389.51 16398.62 15097.31 212
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS95.15 9996.84 15189.43 9495.21 8695.66 18093.12 8798.06 22786.28 22898.61 15197.95 160
114514_t90.51 21189.80 22792.63 19498.00 8882.24 21693.40 14997.29 13365.84 35989.40 29294.80 22386.99 20398.75 15683.88 25398.61 15196.89 226
CS-MVS92.12 18092.62 16290.60 25894.57 27078.12 27992.00 19998.58 1087.75 19990.08 27791.88 30189.79 16799.10 9790.35 13798.60 15394.58 300
CDPH-MVS92.67 16591.83 17995.18 9896.94 14588.46 11690.70 24097.07 14877.38 30992.34 24095.08 20892.67 10198.88 12985.74 23198.57 15498.20 136
c3_l91.32 19891.42 19091.00 24692.29 31076.79 30087.52 30996.42 19085.76 23294.72 16693.89 25482.73 24298.16 22290.93 12698.55 15598.04 147
test_prior393.29 14092.85 15494.61 11895.95 21487.23 13690.21 25497.36 12589.33 16490.77 26494.81 22090.41 15598.68 17188.21 18998.55 15597.93 162
test_prior290.21 25489.33 16490.77 26494.81 22090.41 15588.21 18998.55 155
LCM-MVSNet-Re94.20 12194.58 10693.04 17595.91 21783.13 20793.79 13999.19 292.00 9198.84 598.04 3993.64 7299.02 11081.28 27798.54 15896.96 223
Patchmatch-RL test88.81 25488.52 24789.69 28195.33 24679.94 24786.22 33192.71 28578.46 30495.80 11594.18 24266.25 33095.33 33389.22 17298.53 15993.78 319
Anonymous20240521192.58 16892.50 16692.83 18696.55 16683.22 20492.43 17791.64 30594.10 5195.59 12496.64 12481.88 25497.50 26885.12 23998.52 16097.77 179
CNVR-MVS94.58 10494.29 11695.46 8596.94 14589.35 9891.81 21596.80 16989.66 15593.90 18895.44 19492.80 9898.72 16192.74 8298.52 16098.32 125
HQP_MVS94.26 11893.93 12495.23 9697.71 10588.12 12194.56 11497.81 9091.74 10993.31 20395.59 18286.93 20598.95 12289.26 17098.51 16298.60 108
plane_prior597.81 9098.95 12289.26 17098.51 16298.60 108
baseline94.26 11894.80 9592.64 19296.08 20480.99 23293.69 14298.04 6490.80 13394.89 15896.32 14693.19 8498.48 19791.68 11198.51 16298.43 120
ETH3D cwj APD-0.1693.99 12693.38 14495.80 7096.82 15289.92 8392.72 16398.02 6784.73 25193.65 19595.54 18991.68 12399.22 8188.78 18198.49 16598.26 131
thisisatest053088.69 25787.52 26892.20 20696.33 18379.36 26092.81 16184.01 35786.44 21993.67 19492.68 28453.62 36799.25 7789.65 16298.45 16698.00 152
train_agg92.71 16491.83 17995.35 8796.45 17489.46 9290.60 24296.92 15879.37 29390.49 26994.39 23591.20 13898.88 12988.66 18598.43 16797.72 183
CS-MVS-test93.33 13893.53 14192.71 18995.74 22683.08 20894.55 11698.85 591.02 12789.30 29491.91 29991.79 11999.23 8090.23 14598.41 16895.82 268
GeoE94.55 10594.68 10294.15 13997.23 13185.11 18194.14 12897.34 12888.71 17995.26 14095.50 19094.65 5799.12 9390.94 12598.40 16998.23 132
ZD-MVS97.23 13190.32 7997.54 11084.40 25394.78 16295.79 17292.76 9999.39 4888.72 18498.40 169
test9_res88.16 19398.40 16997.83 173
ETH3 D test640091.91 18491.25 19593.89 15196.59 16284.41 18792.10 19397.72 9878.52 30391.82 25093.78 25888.70 17599.13 9183.61 25498.39 17298.14 139
TSAR-MVS + GP.93.07 15192.41 16895.06 10295.82 22090.87 7390.97 23392.61 28988.04 19294.61 16793.79 25788.08 18397.81 25089.41 16598.39 17296.50 240
VNet92.67 16592.96 15191.79 21996.27 18880.15 23991.95 20194.98 23892.19 8894.52 17096.07 15987.43 19597.39 27784.83 24498.38 17497.83 173
GBi-Net93.21 14692.96 15193.97 14595.40 24184.29 18895.99 5696.56 18388.63 18095.10 14798.53 2181.31 25798.98 11586.74 21698.38 17498.65 97
test193.21 14692.96 15193.97 14595.40 24184.29 18895.99 5696.56 18388.63 18095.10 14798.53 2181.31 25798.98 11586.74 21698.38 17498.65 97
FMVSNet390.78 20590.32 21792.16 21193.03 30079.92 24892.54 16994.95 23986.17 22595.10 14796.01 16269.97 31698.75 15686.74 21698.38 17497.82 175
MVS_111021_HR93.63 13293.42 14394.26 13796.65 15886.96 14689.30 28296.23 19988.36 18793.57 19794.60 22893.45 7597.77 25590.23 14598.38 17498.03 150
agg_prior192.60 16791.76 18295.10 10196.20 19388.89 10490.37 24996.88 16279.67 29090.21 27494.41 23391.30 13398.78 15188.46 18898.37 17997.64 189
agg_prior287.06 21498.36 18097.98 156
TSAR-MVS + MP.94.96 8794.75 9795.57 8198.86 2188.69 10796.37 4096.81 16885.23 23894.75 16397.12 9191.85 11899.40 4393.45 5398.33 18198.62 105
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
pmmvs-eth3d91.54 19190.73 20893.99 14395.76 22587.86 12890.83 23693.98 26678.23 30694.02 18496.22 15382.62 24596.83 29586.57 22198.33 18197.29 213
casdiffmvs94.32 11594.80 9592.85 18596.05 20681.44 22692.35 18398.05 6091.53 11695.75 11796.80 11193.35 8098.49 19391.01 12498.32 18398.64 101
Regformer-194.55 10594.33 11595.19 9792.83 30388.54 11491.87 20995.84 21493.99 5295.95 10795.04 21092.00 11498.79 14793.14 7198.31 18498.23 132
Regformer-294.86 9294.55 10795.77 7292.83 30389.98 8291.87 20996.40 19194.38 4796.19 9995.04 21092.47 10799.04 10793.49 4898.31 18498.28 129
3Dnovator+92.74 295.86 5795.77 6596.13 5396.81 15490.79 7496.30 4797.82 8996.13 2594.74 16497.23 8591.33 13199.16 8693.25 6698.30 18698.46 118
MVS_111021_LR93.66 13193.28 14794.80 11096.25 19190.95 7090.21 25495.43 22987.91 19393.74 19394.40 23492.88 9696.38 30990.39 13498.28 18797.07 217
CANet92.38 17391.99 17593.52 16593.82 28883.46 20191.14 22997.00 15189.81 15386.47 32794.04 24687.90 18999.21 8289.50 16498.27 18897.90 166
EI-MVSNet92.99 15393.26 14992.19 20792.12 31579.21 26592.32 18594.67 25291.77 10795.24 14395.85 16787.14 20198.49 19391.99 9998.26 18998.86 73
RRT_test8_iter0588.21 26388.17 25888.33 30491.62 32466.82 35991.73 21896.60 18086.34 22194.14 17695.38 20047.72 37299.11 9591.78 10798.26 18999.06 47
MVSTER89.32 24388.75 24591.03 24390.10 34276.62 30190.85 23594.67 25282.27 27395.24 14395.79 17261.09 35498.49 19390.49 13198.26 18997.97 159
testtj94.81 9694.42 11196.01 5597.23 13190.51 7894.77 10497.85 8691.29 12094.92 15795.66 18091.71 12299.40 4388.07 19698.25 19298.11 143
MSLP-MVS++93.25 14593.88 12591.37 23196.34 18282.81 21293.11 15397.74 9689.37 16294.08 17995.29 20190.40 15796.35 31190.35 13798.25 19294.96 291
LF4IMVS92.72 16392.02 17494.84 10995.65 23291.99 5692.92 15896.60 18085.08 24592.44 23393.62 26086.80 20996.35 31186.81 21598.25 19296.18 253
EI-MVSNet-UG-set94.35 11394.27 11994.59 12392.46 30885.87 17292.42 17894.69 25093.67 6496.13 10195.84 17091.20 13898.86 13493.78 3898.23 19599.03 49
PM-MVS93.33 13892.67 16195.33 8996.58 16394.06 2192.26 18892.18 29585.92 22996.22 9596.61 12685.64 22495.99 32090.35 13798.23 19595.93 262
EI-MVSNet-Vis-set94.36 11294.28 11794.61 11892.55 30785.98 17092.44 17694.69 25093.70 6096.12 10295.81 17191.24 13598.86 13493.76 4198.22 19798.98 58
V4293.43 13693.58 13692.97 17895.34 24581.22 22992.67 16696.49 18887.25 20996.20 9796.37 14387.32 19798.85 13692.39 9398.21 19898.85 76
TAMVS90.16 22589.05 23893.49 16696.49 17286.37 16190.34 25192.55 29080.84 28292.99 21894.57 23081.94 25398.20 21773.51 33498.21 19895.90 265
K. test v393.37 13793.27 14893.66 15798.05 8182.62 21394.35 12186.62 33596.05 2897.51 4098.85 1276.59 29499.65 393.21 6798.20 20098.73 90
DELS-MVS92.05 18292.16 17091.72 22294.44 27280.13 24187.62 30397.25 13687.34 20892.22 24393.18 27289.54 17098.73 16089.67 16198.20 20096.30 248
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TAPA-MVS88.58 1092.49 17191.75 18394.73 11396.50 17189.69 8892.91 15997.68 9978.02 30792.79 22394.10 24490.85 14497.96 23884.76 24698.16 20296.54 235
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D96.11 4895.83 6296.95 3794.75 25994.20 1997.34 1197.98 7297.31 1195.32 13696.77 11293.08 8999.20 8391.79 10698.16 20297.44 202
Regformer-394.28 11694.23 12194.46 13192.78 30586.28 16592.39 18094.70 24993.69 6395.97 10595.56 18791.34 13098.48 19793.45 5398.14 20498.62 105
Regformer-494.90 8994.67 10395.59 7992.78 30589.02 10192.39 18095.91 21094.50 4396.41 8095.56 18792.10 11299.01 11294.23 2698.14 20498.74 88
DP-MVS Recon92.31 17591.88 17893.60 15997.18 13586.87 14791.10 23197.37 12084.92 24892.08 24694.08 24588.59 17698.20 21783.50 25598.14 20495.73 272
EG-PatchMatch MVS94.54 10794.67 10394.14 14097.87 9586.50 15592.00 19996.74 17488.16 19096.93 6297.61 5893.04 9197.90 24091.60 11398.12 20798.03 150
PCF-MVS84.52 1789.12 24687.71 26593.34 16896.06 20585.84 17386.58 33097.31 13068.46 35293.61 19693.89 25487.51 19498.52 19167.85 35798.11 20895.66 276
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator92.54 394.80 9794.90 9194.47 13095.47 23987.06 14196.63 2697.28 13591.82 10494.34 17597.41 6990.60 15298.65 17692.47 8998.11 20897.70 184
PMMVS281.31 32383.44 30774.92 35290.52 33746.49 37769.19 36685.23 35284.30 25487.95 31694.71 22676.95 29084.36 37064.07 36398.09 21093.89 317
lessismore_v093.87 15398.05 8183.77 19980.32 36797.13 5297.91 4677.49 28299.11 9592.62 8698.08 21198.74 88
new-patchmatchnet88.97 25090.79 20683.50 34194.28 27655.83 37585.34 33593.56 27086.18 22495.47 12895.73 17783.10 23796.51 30485.40 23498.06 21298.16 137
plane_prior88.12 12193.01 15588.98 17298.06 212
PVSNet_BlendedMVS90.35 21989.96 22491.54 22894.81 25678.80 27290.14 25896.93 15679.43 29288.68 30795.06 20986.27 21698.15 22380.27 28598.04 21497.68 186
CL-MVSNet_self_test90.04 23289.90 22690.47 26195.24 24777.81 28486.60 32992.62 28885.64 23493.25 21093.92 25283.84 23296.06 31879.93 29298.03 21597.53 196
FMVSNet587.82 27086.56 28591.62 22592.31 30979.81 25293.49 14694.81 24683.26 25991.36 25596.93 10252.77 36897.49 27076.07 32298.03 21597.55 195
原ACMM192.87 18496.91 14884.22 19197.01 15076.84 31489.64 29094.46 23288.00 18698.70 16781.53 27598.01 21795.70 274
v14892.87 15893.29 14591.62 22596.25 19177.72 28691.28 22795.05 23689.69 15495.93 11096.04 16087.34 19698.38 20290.05 15397.99 21898.78 82
ITE_SJBPF95.95 5897.34 12893.36 4296.55 18691.93 9494.82 16095.39 19891.99 11597.08 28685.53 23397.96 21997.41 203
test1294.43 13395.95 21486.75 14996.24 19889.76 28889.79 16798.79 14797.95 22097.75 182
MCST-MVS92.91 15592.51 16594.10 14197.52 11885.72 17591.36 22697.13 14480.33 28492.91 22194.24 23991.23 13698.72 16189.99 15497.93 22197.86 170
CDS-MVSNet89.55 23988.22 25793.53 16495.37 24486.49 15689.26 28393.59 26979.76 28891.15 26092.31 29377.12 28798.38 20277.51 31297.92 22295.71 273
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
旧先验196.20 19384.17 19394.82 24495.57 18689.57 16997.89 22396.32 247
alignmvs93.26 14392.85 15494.50 12795.70 22887.45 13293.45 14895.76 21591.58 11495.25 14292.42 29281.96 25298.72 16191.61 11297.87 22497.33 211
testgi90.38 21791.34 19387.50 31497.49 12071.54 33989.43 27795.16 23588.38 18694.54 16994.68 22792.88 9693.09 35471.60 34697.85 22597.88 168
MVS_030490.96 20290.15 22193.37 16793.17 29587.06 14193.62 14492.43 29389.60 15782.25 35295.50 19082.56 24697.83 24984.41 25097.83 22695.22 284
新几何193.17 17497.16 13687.29 13594.43 25467.95 35391.29 25694.94 21586.97 20498.23 21581.06 28297.75 22793.98 315
ETV-MVS92.99 15392.74 15893.72 15695.86 21986.30 16492.33 18497.84 8791.70 11292.81 22286.17 35692.22 10999.19 8488.03 19797.73 22895.66 276
HQP3-MVS97.31 13097.73 228
HQP-MVS92.09 18191.49 18993.88 15296.36 17884.89 18391.37 22397.31 13087.16 21088.81 30093.40 26684.76 22798.60 18186.55 22297.73 22898.14 139
112190.26 22389.23 23393.34 16897.15 13887.40 13391.94 20394.39 25567.88 35491.02 26294.91 21686.91 20798.59 18381.17 28097.71 23194.02 314
CANet_DTU89.85 23689.17 23591.87 21792.20 31380.02 24690.79 23795.87 21286.02 22782.53 35191.77 30380.01 26598.57 18685.66 23297.70 23297.01 221
NCCC94.08 12493.54 13995.70 7796.49 17289.90 8592.39 18096.91 16090.64 13792.33 24194.60 22890.58 15398.96 12090.21 14797.70 23298.23 132
Vis-MVSNetpermissive95.50 6795.48 7295.56 8298.11 7689.40 9695.35 8098.22 3292.36 8194.11 17798.07 3792.02 11399.44 2493.38 6097.67 23497.85 172
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AdaColmapbinary91.63 18991.36 19292.47 20295.56 23786.36 16292.24 19096.27 19688.88 17689.90 28392.69 28391.65 12498.32 20777.38 31497.64 23592.72 338
EPNet_dtu85.63 29784.37 30189.40 28586.30 36774.33 32291.64 21988.26 32284.84 24972.96 37089.85 32571.27 31297.69 26176.60 31997.62 23696.18 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS94.72 9994.12 12296.50 4998.00 8894.23 1891.48 22298.17 4090.72 13495.30 13796.47 13187.94 18896.98 28991.41 11897.61 23798.30 128
canonicalmvs94.59 10394.69 10094.30 13695.60 23687.03 14395.59 7298.24 3091.56 11595.21 14592.04 29894.95 5098.66 17491.45 11797.57 23897.20 216
XXY-MVS92.58 16893.16 15090.84 25297.75 10179.84 24991.87 20996.22 20185.94 22895.53 12797.68 5492.69 10094.48 34083.21 25897.51 23998.21 135
Effi-MVS+-dtu93.90 12892.60 16497.77 494.74 26196.67 394.00 13395.41 23089.94 14991.93 24992.13 29690.12 16098.97 11987.68 20397.48 24097.67 187
OpenMVScopyleft89.45 892.27 17792.13 17292.68 19194.53 27184.10 19495.70 6897.03 14982.44 27291.14 26196.42 13588.47 17898.38 20285.95 23097.47 24195.55 280
ab-mvs92.40 17292.62 16291.74 22197.02 14181.65 22295.84 6495.50 22886.95 21592.95 22097.56 6090.70 15097.50 26879.63 29597.43 24296.06 257
thisisatest051584.72 30382.99 31189.90 27792.96 30175.33 31484.36 34483.42 35977.37 31088.27 31286.65 35153.94 36598.72 16182.56 26497.40 24395.67 275
test22296.95 14485.27 18088.83 29193.61 26865.09 36190.74 26694.85 21984.62 22997.36 24493.91 316
API-MVS91.52 19291.61 18491.26 23594.16 27786.26 16694.66 10894.82 24491.17 12492.13 24591.08 31390.03 16697.06 28779.09 30297.35 24590.45 353
EIA-MVS92.35 17492.03 17393.30 17195.81 22283.97 19692.80 16298.17 4087.71 20089.79 28787.56 34691.17 14199.18 8587.97 19897.27 24696.77 231
testdata91.03 24396.87 15082.01 21794.28 25871.55 33892.46 23295.42 19585.65 22397.38 27982.64 26397.27 24693.70 322
N_pmnet88.90 25287.25 27293.83 15494.40 27493.81 3684.73 33987.09 33279.36 29593.26 20892.43 29179.29 26991.68 35977.50 31397.22 24896.00 259
ppachtmachnet_test88.61 25888.64 24688.50 30091.76 32170.99 34384.59 34292.98 27879.30 29792.38 23693.53 26479.57 26797.45 27286.50 22497.17 24997.07 217
CNLPA91.72 18791.20 19693.26 17296.17 19691.02 6891.14 22995.55 22690.16 14790.87 26393.56 26386.31 21594.40 34379.92 29497.12 25094.37 305
jason89.17 24588.32 25191.70 22395.73 22780.07 24288.10 30093.22 27571.98 33790.09 27692.79 28078.53 27698.56 18787.43 20797.06 25196.46 242
jason: jason.
RPSCF95.58 6594.89 9297.62 897.58 11596.30 495.97 5997.53 11292.42 7893.41 20097.78 5091.21 13797.77 25591.06 12197.06 25198.80 80
cl2289.02 24788.50 24890.59 25989.76 34476.45 30386.62 32894.03 26282.98 26692.65 22792.49 28672.05 30997.53 26688.93 17697.02 25397.78 178
miper_ehance_all_eth90.48 21290.42 21590.69 25591.62 32476.57 30286.83 32196.18 20383.38 25894.06 18192.66 28582.20 24898.04 22889.79 15897.02 25397.45 200
miper_enhance_ethall88.42 26087.87 26390.07 27388.67 35775.52 31285.10 33695.59 22375.68 31692.49 23189.45 33578.96 27097.88 24287.86 20197.02 25396.81 229
eth_miper_zixun_eth90.72 20690.61 21091.05 24292.04 31776.84 29986.91 31896.67 17785.21 23994.41 17193.92 25279.53 26898.26 21389.76 15997.02 25398.06 144
QAPM92.88 15792.77 15693.22 17395.82 22083.31 20296.45 3597.35 12783.91 25693.75 19196.77 11289.25 17298.88 12984.56 24897.02 25397.49 198
thres600view787.66 27387.10 27789.36 28696.05 20673.17 32892.72 16385.31 34991.89 9693.29 20590.97 31463.42 34498.39 20073.23 33696.99 25896.51 237
test_yl90.11 22789.73 23091.26 23594.09 28079.82 25090.44 24692.65 28690.90 12893.19 21293.30 26873.90 30198.03 22982.23 26896.87 25995.93 262
DCV-MVSNet90.11 22789.73 23091.26 23594.09 28079.82 25090.44 24692.65 28690.90 12893.19 21293.30 26873.90 30198.03 22982.23 26896.87 25995.93 262
MSP-MVS95.34 7494.63 10597.48 1498.67 2994.05 2396.41 3998.18 3691.26 12195.12 14695.15 20386.60 21399.50 1993.43 5796.81 26198.89 70
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
pmmvs587.87 26887.14 27590.07 27393.26 29476.97 29888.89 29092.18 29573.71 32988.36 31093.89 25476.86 29396.73 29880.32 28496.81 26196.51 237
PVSNet_Blended_VisFu91.63 18991.20 19692.94 18197.73 10483.95 19792.14 19297.46 11678.85 30292.35 23894.98 21384.16 23199.08 9986.36 22696.77 26395.79 270
MVSFormer92.18 17992.23 16992.04 21594.74 26180.06 24397.15 1397.37 12088.98 17288.83 29892.79 28077.02 28899.60 896.41 496.75 26496.46 242
lupinMVS88.34 26287.31 27091.45 22994.74 26180.06 24387.23 31192.27 29471.10 34188.83 29891.15 31177.02 28898.53 19086.67 21996.75 26495.76 271
diffmvs91.74 18691.93 17791.15 24193.06 29878.17 27888.77 29397.51 11586.28 22292.42 23493.96 25188.04 18597.46 27190.69 13096.67 26697.82 175
DPM-MVS89.35 24288.40 25092.18 21096.13 20284.20 19286.96 31796.15 20575.40 32087.36 32291.55 30883.30 23598.01 23382.17 27096.62 26794.32 307
thres100view90087.35 28186.89 27988.72 29696.14 19973.09 33093.00 15685.31 34992.13 8993.26 20890.96 31563.42 34498.28 20971.27 34896.54 26894.79 294
tfpn200view987.05 28986.52 28788.67 29795.77 22372.94 33191.89 20686.00 34190.84 13092.61 22889.80 32763.93 34198.28 20971.27 34896.54 26894.79 294
thres40087.20 28586.52 28789.24 29095.77 22372.94 33191.89 20686.00 34190.84 13092.61 22889.80 32763.93 34198.28 20971.27 34896.54 26896.51 237
CMPMVSbinary68.83 2287.28 28285.67 29592.09 21388.77 35685.42 17890.31 25294.38 25670.02 34788.00 31593.30 26873.78 30394.03 34875.96 32496.54 26896.83 228
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs488.95 25187.70 26692.70 19094.30 27585.60 17687.22 31292.16 29774.62 32389.75 28994.19 24177.97 28096.41 30782.71 26296.36 27296.09 255
Fast-Effi-MVS+-dtu92.77 16292.16 17094.58 12594.66 26788.25 11892.05 19596.65 17889.62 15690.08 27791.23 31092.56 10398.60 18186.30 22796.27 27396.90 225
MAR-MVS90.32 22188.87 24494.66 11794.82 25591.85 5994.22 12594.75 24780.91 27987.52 32188.07 34586.63 21297.87 24576.67 31896.21 27494.25 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS90.05 23188.30 25295.32 9296.09 20390.52 7792.42 17892.05 30182.08 27588.45 30992.86 27765.76 33298.69 16988.91 17896.07 27596.75 233
hse-mvs292.24 17891.20 19695.38 8696.16 19790.65 7592.52 17092.01 30289.23 16693.95 18592.99 27576.88 29198.69 16991.02 12296.03 27696.81 229
PVSNet_Blended88.74 25688.16 26090.46 26394.81 25678.80 27286.64 32696.93 15674.67 32288.68 30789.18 33886.27 21698.15 22380.27 28596.00 27794.44 304
F-COLMAP92.28 17691.06 20095.95 5897.52 11891.90 5893.53 14597.18 14083.98 25588.70 30694.04 24688.41 17998.55 18980.17 28895.99 27897.39 207
xiu_mvs_v1_base_debu91.47 19391.52 18691.33 23295.69 22981.56 22389.92 26596.05 20783.22 26091.26 25790.74 31791.55 12698.82 13989.29 16795.91 27993.62 324
xiu_mvs_v1_base91.47 19391.52 18691.33 23295.69 22981.56 22389.92 26596.05 20783.22 26091.26 25790.74 31791.55 12698.82 13989.29 16795.91 27993.62 324
xiu_mvs_v1_base_debi91.47 19391.52 18691.33 23295.69 22981.56 22389.92 26596.05 20783.22 26091.26 25790.74 31791.55 12698.82 13989.29 16795.91 27993.62 324
thres20085.85 29685.18 29787.88 31194.44 27272.52 33589.08 28786.21 33788.57 18391.44 25488.40 34364.22 33998.00 23468.35 35695.88 28293.12 330
Patchmatch-test86.10 29586.01 29286.38 32490.63 33574.22 32489.57 27486.69 33485.73 23389.81 28692.83 27865.24 33691.04 36177.82 31095.78 28393.88 318
h-mvs3392.89 15691.99 17595.58 8096.97 14390.55 7693.94 13694.01 26589.23 16693.95 18596.19 15476.88 29199.14 8991.02 12295.71 28497.04 220
mvs-test193.07 15191.80 18196.89 3994.74 26195.83 692.17 19195.41 23089.94 14989.85 28490.59 32390.12 16098.88 12987.68 20395.66 28595.97 260
cascas87.02 29086.28 29189.25 28991.56 32676.45 30384.33 34596.78 17071.01 34286.89 32685.91 35781.35 25696.94 29083.09 25995.60 28694.35 306
XVG-OURS-SEG-HR95.38 7295.00 8996.51 4898.10 7794.07 2092.46 17598.13 4590.69 13593.75 19196.25 15298.03 297.02 28892.08 9695.55 28798.45 119
DSMNet-mixed82.21 31781.56 31684.16 33889.57 34870.00 34990.65 24177.66 37254.99 37083.30 34797.57 5977.89 28190.50 36366.86 36095.54 28891.97 343
MVS_Test92.57 17093.29 14590.40 26493.53 29075.85 30992.52 17096.96 15488.73 17792.35 23896.70 12090.77 14598.37 20592.53 8895.49 28996.99 222
MIMVSNet87.13 28886.54 28688.89 29396.05 20676.11 30694.39 12088.51 32081.37 27888.27 31296.75 11572.38 30795.52 32565.71 36295.47 29095.03 289
Fast-Effi-MVS+91.28 19990.86 20392.53 19995.45 24082.53 21489.25 28596.52 18785.00 24689.91 28288.55 34292.94 9298.84 13784.72 24795.44 29196.22 251
ET-MVSNet_ETH3D86.15 29484.27 30391.79 21993.04 29981.28 22887.17 31486.14 33879.57 29183.65 34388.66 34057.10 35998.18 22087.74 20295.40 29295.90 265
BH-RMVSNet90.47 21390.44 21490.56 26095.21 24878.65 27489.15 28693.94 26788.21 18892.74 22594.22 24086.38 21497.88 24278.67 30495.39 29395.14 287
CHOSEN 1792x268887.19 28685.92 29491.00 24697.13 13979.41 25984.51 34395.60 21964.14 36290.07 27994.81 22078.26 27897.14 28573.34 33595.38 29496.46 242
Effi-MVS+92.79 16092.74 15892.94 18195.10 24983.30 20394.00 13397.53 11291.36 11989.35 29390.65 32294.01 6998.66 17487.40 20895.30 29596.88 227
MG-MVS89.54 24089.80 22788.76 29594.88 25272.47 33689.60 27392.44 29285.82 23089.48 29195.98 16382.85 24097.74 25981.87 27195.27 29696.08 256
HyFIR lowres test87.19 28685.51 29692.24 20597.12 14080.51 23685.03 33796.06 20666.11 35891.66 25292.98 27670.12 31599.14 8975.29 32695.23 29797.07 217
BH-untuned90.68 20890.90 20190.05 27595.98 21279.57 25790.04 26194.94 24087.91 19394.07 18093.00 27487.76 19097.78 25479.19 30195.17 29892.80 336
pmmvs380.83 32878.96 33586.45 32187.23 36377.48 28984.87 33882.31 36163.83 36385.03 33489.50 33449.66 36993.10 35373.12 33895.10 29988.78 358
mvs_anonymous90.37 21891.30 19487.58 31392.17 31468.00 35389.84 26994.73 24883.82 25793.22 21197.40 7087.54 19397.40 27687.94 19995.05 30097.34 210
IterMVS-SCA-FT91.65 18891.55 18591.94 21693.89 28579.22 26487.56 30693.51 27191.53 11695.37 13396.62 12578.65 27398.90 12691.89 10494.95 30197.70 184
test-LLR83.58 30883.17 30984.79 33489.68 34666.86 35783.08 35184.52 35483.07 26482.85 34984.78 36062.86 34793.49 35182.85 26094.86 30294.03 312
test-mter81.21 32580.01 33284.79 33489.68 34666.86 35783.08 35184.52 35473.85 32882.85 34984.78 36043.66 37693.49 35182.85 26094.86 30294.03 312
PatchMatch-RL89.18 24488.02 26292.64 19295.90 21892.87 4788.67 29791.06 30880.34 28390.03 28091.67 30583.34 23494.42 34276.35 32194.84 30490.64 352
OpenMVS_ROBcopyleft85.12 1689.52 24189.05 23890.92 24894.58 26981.21 23091.10 23193.41 27377.03 31393.41 20093.99 25083.23 23697.80 25179.93 29294.80 30593.74 321
our_test_387.55 27687.59 26787.44 31591.76 32170.48 34483.83 34990.55 31379.79 28792.06 24792.17 29578.63 27595.63 32384.77 24594.73 30696.22 251
CHOSEN 280x42080.04 33377.97 33886.23 32590.13 34174.53 31972.87 36489.59 31666.38 35776.29 36785.32 35956.96 36095.36 33169.49 35594.72 30788.79 357
IterMVS90.18 22490.16 21890.21 27093.15 29675.98 30887.56 30692.97 27986.43 22094.09 17896.40 13778.32 27797.43 27387.87 20094.69 30897.23 214
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EMVS80.35 33280.28 33080.54 34784.73 37269.07 35172.54 36580.73 36587.80 19781.66 35881.73 36562.89 34689.84 36475.79 32594.65 30982.71 365
PLCcopyleft85.34 1590.40 21588.92 24194.85 10896.53 17090.02 8191.58 22096.48 18980.16 28586.14 32992.18 29485.73 22198.25 21476.87 31794.61 31096.30 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG90.82 20390.67 20991.26 23594.16 27783.08 20886.63 32796.19 20290.60 13991.94 24891.89 30089.16 17395.75 32280.96 28394.51 31194.95 292
xiu_mvs_v2_base89.00 24989.19 23488.46 30294.86 25474.63 31786.97 31695.60 21980.88 28087.83 31788.62 34191.04 14298.81 14482.51 26694.38 31291.93 344
PS-MVSNAJ88.86 25388.99 24088.48 30194.88 25274.71 31586.69 32595.60 21980.88 28087.83 31787.37 34990.77 14598.82 13982.52 26594.37 31391.93 344
EU-MVSNet87.39 28086.71 28389.44 28393.40 29176.11 30694.93 10090.00 31557.17 36895.71 12097.37 7264.77 33897.68 26292.67 8594.37 31394.52 302
E-PMN80.72 33080.86 32480.29 34885.11 37068.77 35272.96 36381.97 36287.76 19883.25 34883.01 36462.22 35089.17 36677.15 31694.31 31582.93 364
GA-MVS87.70 27186.82 28090.31 26593.27 29377.22 29384.72 34192.79 28385.11 24489.82 28590.07 32466.80 32597.76 25784.56 24894.27 31695.96 261
sss87.23 28386.82 28088.46 30293.96 28377.94 28086.84 32092.78 28477.59 30887.61 32091.83 30278.75 27291.92 35877.84 30894.20 31795.52 281
MDA-MVSNet-bldmvs91.04 20090.88 20291.55 22794.68 26680.16 23885.49 33492.14 29890.41 14494.93 15695.79 17285.10 22596.93 29285.15 23794.19 31897.57 192
PAPM_NR91.03 20190.81 20591.68 22496.73 15681.10 23193.72 14196.35 19488.19 18988.77 30492.12 29785.09 22697.25 28182.40 26793.90 31996.68 234
YYNet188.17 26488.24 25587.93 30992.21 31273.62 32680.75 35888.77 31882.51 27194.99 15495.11 20682.70 24393.70 34983.33 25693.83 32096.48 241
MDA-MVSNet_test_wron88.16 26588.23 25687.93 30992.22 31173.71 32580.71 35988.84 31782.52 27094.88 15995.14 20482.70 24393.61 35083.28 25793.80 32196.46 242
1112_ss88.42 26087.41 26991.45 22996.69 15780.99 23289.72 27196.72 17573.37 33087.00 32590.69 32077.38 28498.20 21781.38 27693.72 32295.15 286
PVSNet76.22 2082.89 31382.37 31384.48 33693.96 28364.38 36878.60 36188.61 31971.50 33984.43 34086.36 35574.27 30094.60 33969.87 35493.69 32394.46 303
TESTMET0.1,179.09 33578.04 33782.25 34487.52 36064.03 36983.08 35180.62 36670.28 34680.16 36283.22 36344.13 37590.56 36279.95 29093.36 32492.15 342
PAPR87.65 27486.77 28290.27 26792.85 30277.38 29088.56 29896.23 19976.82 31584.98 33589.75 33186.08 21897.16 28472.33 34193.35 32596.26 250
SCA87.43 27987.21 27388.10 30792.01 31871.98 33889.43 27788.11 32682.26 27488.71 30592.83 27878.65 27397.59 26479.61 29693.30 32694.75 296
Test_1112_low_res87.50 27886.58 28490.25 26896.80 15577.75 28587.53 30896.25 19769.73 34886.47 32793.61 26175.67 29797.88 24279.95 29093.20 32795.11 288
MDTV_nov1_ep1383.88 30689.42 35061.52 37188.74 29487.41 33073.99 32784.96 33694.01 24965.25 33595.53 32478.02 30693.16 328
WTY-MVS86.93 29186.50 28988.24 30594.96 25174.64 31687.19 31392.07 30078.29 30588.32 31191.59 30778.06 27994.27 34574.88 32893.15 32995.80 269
PMMVS83.00 31281.11 32088.66 29883.81 37486.44 15982.24 35585.65 34461.75 36682.07 35485.64 35879.75 26691.59 36075.99 32393.09 33087.94 359
UnsupCasMVSNet_bld88.50 25988.03 26189.90 27795.52 23878.88 26987.39 31094.02 26479.32 29693.06 21594.02 24880.72 26294.27 34575.16 32793.08 33196.54 235
MVS84.98 30284.30 30287.01 31791.03 33077.69 28791.94 20394.16 26059.36 36784.23 34187.50 34885.66 22296.80 29671.79 34393.05 33286.54 360
PatchT87.51 27788.17 25885.55 32790.64 33466.91 35592.02 19886.09 33992.20 8789.05 29797.16 8964.15 34096.37 31089.21 17392.98 33393.37 328
MS-PatchMatch88.05 26687.75 26488.95 29193.28 29277.93 28187.88 30292.49 29175.42 31992.57 23093.59 26280.44 26394.24 34781.28 27792.75 33494.69 299
CR-MVSNet87.89 26787.12 27690.22 26991.01 33178.93 26792.52 17092.81 28173.08 33289.10 29596.93 10267.11 32297.64 26388.80 18092.70 33594.08 309
RPMNet90.31 22290.14 22290.81 25391.01 33178.93 26792.52 17098.12 4691.91 9589.10 29596.89 10568.84 31799.41 3690.17 14892.70 33594.08 309
KD-MVS_2432*160082.17 31880.75 32586.42 32282.04 37570.09 34781.75 35690.80 31082.56 26890.37 27289.30 33642.90 37796.11 31674.47 32992.55 33793.06 331
miper_refine_blended82.17 31880.75 32586.42 32282.04 37570.09 34781.75 35690.80 31082.56 26890.37 27289.30 33642.90 37796.11 31674.47 32992.55 33793.06 331
BH-w/o87.21 28487.02 27887.79 31294.77 25877.27 29287.90 30193.21 27781.74 27789.99 28188.39 34483.47 23396.93 29271.29 34792.43 33989.15 354
IB-MVS77.21 1983.11 31081.05 32189.29 28791.15 32975.85 30985.66 33386.00 34179.70 28982.02 35686.61 35248.26 37198.39 20077.84 30892.22 34093.63 323
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 32081.02 32285.34 33087.46 36271.04 34194.74 10567.56 37496.44 2279.43 36498.99 645.24 37396.15 31467.18 35992.17 34188.85 356
HY-MVS82.50 1886.81 29285.93 29389.47 28293.63 28977.93 28194.02 13291.58 30675.68 31683.64 34493.64 25977.40 28397.42 27471.70 34592.07 34293.05 333
TR-MVS87.70 27187.17 27489.27 28894.11 27979.26 26288.69 29591.86 30381.94 27690.69 26789.79 32982.82 24197.42 27472.65 34091.98 34391.14 349
new_pmnet81.22 32481.01 32381.86 34590.92 33370.15 34684.03 34780.25 36870.83 34385.97 33089.78 33067.93 32184.65 36967.44 35891.90 34490.78 351
FPMVS84.50 30483.28 30888.16 30696.32 18494.49 1685.76 33285.47 34783.09 26385.20 33394.26 23863.79 34386.58 36863.72 36491.88 34583.40 363
UnsupCasMVSNet_eth90.33 22090.34 21690.28 26694.64 26880.24 23789.69 27295.88 21185.77 23193.94 18795.69 17881.99 25192.98 35584.21 25191.30 34697.62 190
MVP-Stereo90.07 23088.92 24193.54 16396.31 18586.49 15690.93 23495.59 22379.80 28691.48 25395.59 18280.79 26197.39 27778.57 30591.19 34796.76 232
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131486.46 29386.33 29086.87 31991.65 32374.54 31891.94 20394.10 26174.28 32484.78 33787.33 35083.03 23895.00 33778.72 30391.16 34891.06 350
tpm84.38 30584.08 30485.30 33190.47 33863.43 37089.34 28085.63 34577.24 31287.62 31995.03 21261.00 35597.30 28079.26 30091.09 34995.16 285
CVMVSNet85.16 30084.72 29886.48 32092.12 31570.19 34592.32 18588.17 32556.15 36990.64 26895.85 16767.97 32096.69 29988.78 18190.52 35092.56 339
test0.0.03 182.48 31581.47 31985.48 32889.70 34573.57 32784.73 33981.64 36383.07 26488.13 31486.61 35262.86 34789.10 36766.24 36190.29 35193.77 320
baseline283.38 30981.54 31888.90 29291.38 32772.84 33388.78 29281.22 36478.97 29979.82 36387.56 34661.73 35297.80 25174.30 33190.05 35296.05 258
PAPM81.91 32180.11 33187.31 31693.87 28672.32 33784.02 34893.22 27569.47 34976.13 36889.84 32672.15 30897.23 28253.27 37089.02 35392.37 341
MVS-HIRNet78.83 33680.60 32773.51 35393.07 29747.37 37687.10 31578.00 37168.94 35077.53 36697.26 8271.45 31194.62 33863.28 36588.74 35478.55 368
tpm281.46 32280.35 32984.80 33389.90 34365.14 36490.44 24685.36 34865.82 36082.05 35592.44 29057.94 35896.69 29970.71 35188.49 35592.56 339
CostFormer83.09 31182.21 31485.73 32689.27 35167.01 35490.35 25086.47 33670.42 34583.52 34693.23 27161.18 35396.85 29477.21 31588.26 35693.34 329
GG-mvs-BLEND83.24 34285.06 37171.03 34294.99 9965.55 37574.09 36975.51 36944.57 37494.46 34159.57 36787.54 35784.24 362
PatchmatchNetpermissive85.22 29984.64 29986.98 31889.51 34969.83 35090.52 24487.34 33178.87 30187.22 32492.74 28266.91 32496.53 30281.77 27286.88 35894.58 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline187.62 27587.31 27088.54 29994.71 26574.27 32393.10 15488.20 32486.20 22392.18 24493.04 27373.21 30495.52 32579.32 29985.82 35995.83 267
tpmvs84.22 30683.97 30584.94 33287.09 36465.18 36391.21 22888.35 32182.87 26785.21 33290.96 31565.24 33696.75 29779.60 29885.25 36092.90 335
ADS-MVSNet284.01 30782.20 31589.41 28489.04 35376.37 30587.57 30490.98 30972.71 33584.46 33892.45 28868.08 31896.48 30570.58 35283.97 36195.38 282
ADS-MVSNet82.25 31681.55 31784.34 33789.04 35365.30 36287.57 30485.13 35372.71 33584.46 33892.45 28868.08 31892.33 35770.58 35283.97 36195.38 282
JIA-IIPM85.08 30183.04 31091.19 24087.56 35986.14 16889.40 27984.44 35688.98 17282.20 35397.95 4356.82 36196.15 31476.55 32083.45 36391.30 348
MVEpermissive59.87 2373.86 33872.65 34177.47 35187.00 36674.35 32161.37 36860.93 37667.27 35569.69 37186.49 35481.24 26072.33 37256.45 36983.45 36385.74 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DWT-MVSNet_test80.74 32979.18 33485.43 32987.51 36166.87 35689.87 26886.01 34074.20 32680.86 36080.62 36648.84 37096.68 30181.54 27483.14 36592.75 337
EPMVS81.17 32680.37 32883.58 34085.58 36965.08 36590.31 25271.34 37377.31 31185.80 33191.30 30959.38 35692.70 35679.99 28982.34 36692.96 334
tpmrst82.85 31482.93 31282.64 34387.65 35858.99 37390.14 25887.90 32775.54 31883.93 34291.63 30666.79 32795.36 33181.21 27981.54 36793.57 327
tpm cat180.61 33179.46 33384.07 33988.78 35565.06 36689.26 28388.23 32362.27 36581.90 35789.66 33362.70 34995.29 33471.72 34480.60 36891.86 346
dp79.28 33478.62 33681.24 34685.97 36856.45 37486.91 31885.26 35172.97 33381.45 35989.17 33956.01 36395.45 32973.19 33776.68 36991.82 347
DeepMVS_CXcopyleft53.83 35570.38 37764.56 36748.52 37933.01 37165.50 37274.21 37056.19 36246.64 37438.45 37370.07 37050.30 370
tmp_tt37.97 34044.33 34318.88 35611.80 37921.54 37963.51 36745.66 3804.23 37351.34 37350.48 37159.08 35722.11 37544.50 37268.35 37113.00 371
PVSNet_070.34 2174.58 33772.96 34079.47 34990.63 33566.24 36173.26 36283.40 36063.67 36478.02 36578.35 36872.53 30689.59 36556.68 36860.05 37282.57 366
test_method50.44 33948.94 34254.93 35439.68 37812.38 38028.59 36990.09 3146.82 37241.10 37478.41 36754.41 36470.69 37350.12 37151.26 37381.72 367
test1239.49 34212.01 3451.91 3572.87 3801.30 38182.38 3541.34 3821.36 3752.84 3766.56 3742.45 3800.97 3762.73 3745.56 3743.47 372
testmvs9.02 34311.42 3461.81 3582.77 3811.13 38279.44 3601.90 3811.18 3762.65 3776.80 3731.95 3810.87 3772.62 3753.45 3753.44 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.35 34131.13 3440.00 3590.00 3820.00 3830.00 37095.58 2250.00 3770.00 37891.15 31193.43 770.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.56 34410.09 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37790.77 1450.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re7.56 34410.08 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37890.69 3200.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.21 394.68 1298.45 498.81 697.73 698.27 20
test_one_060198.26 6787.14 13998.18 3694.25 4896.99 6097.36 7595.13 40
eth-test20.00 382
eth-test0.00 382
test_241102_ONE98.51 4786.97 14498.10 4991.85 9897.63 3297.03 9696.48 1198.95 122
save fliter97.46 12388.05 12392.04 19697.08 14787.63 203
test072698.51 4786.69 15195.34 8198.18 3691.85 9897.63 3297.37 7295.58 22
GSMVS94.75 296
test_part298.21 7189.41 9596.72 71
sam_mvs166.64 32894.75 296
sam_mvs66.41 329
MTGPAbinary97.62 102
test_post190.21 2545.85 37665.36 33496.00 31979.61 296
test_post6.07 37565.74 33395.84 321
patchmatchnet-post91.71 30466.22 33197.59 264
MTMP94.82 10254.62 378
gm-plane-assit87.08 36559.33 37271.22 34083.58 36297.20 28373.95 332
TEST996.45 17489.46 9290.60 24296.92 15879.09 29890.49 26994.39 23591.31 13298.88 129
test_896.37 17689.14 9990.51 24596.89 16179.37 29390.42 27194.36 23791.20 13898.82 139
agg_prior96.20 19388.89 10496.88 16290.21 27498.78 151
test_prior489.91 8490.74 238
test_prior94.61 11895.95 21487.23 13697.36 12598.68 17197.93 162
旧先验290.00 26368.65 35192.71 22696.52 30385.15 237
新几何290.02 262
无先验89.94 26495.75 21670.81 34498.59 18381.17 28094.81 293
原ACMM289.34 280
testdata298.03 22980.24 287
segment_acmp92.14 111
testdata188.96 28988.44 185
plane_prior797.71 10588.68 108
plane_prior697.21 13488.23 11986.93 205
plane_prior495.59 182
plane_prior388.43 11790.35 14593.31 203
plane_prior294.56 11491.74 109
plane_prior197.38 126
n20.00 383
nn0.00 383
door-mid92.13 299
test1196.65 178
door91.26 307
HQP5-MVS84.89 183
HQP-NCC96.36 17891.37 22387.16 21088.81 300
ACMP_Plane96.36 17891.37 22387.16 21088.81 300
BP-MVS86.55 222
HQP4-MVS88.81 30098.61 17998.15 138
HQP2-MVS84.76 227
NP-MVS96.82 15287.10 14093.40 266
MDTV_nov1_ep13_2view42.48 37888.45 29967.22 35683.56 34566.80 32572.86 33994.06 311
Test By Simon90.61 151