This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
IterMVS-SCA-FT99.00 18199.16 11398.51 29499.75 9595.90 33498.07 29799.84 3299.84 2399.89 2699.73 8796.01 27699.99 599.33 55100.00 199.63 95
new-patchmatchnet99.35 9099.57 4098.71 28999.82 4496.62 32498.55 25399.75 7599.50 8899.88 3299.87 3199.31 3799.88 15799.43 38100.00 199.62 106
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 899.73 1699.85 2699.70 4999.92 1899.93 1399.45 2399.97 1799.36 50100.00 199.85 13
UA-Net99.78 1399.76 1499.86 1699.72 10899.71 6799.91 399.95 499.96 299.71 10099.91 1999.15 5499.97 1799.50 33100.00 199.90 4
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4299.68 3199.85 2699.95 399.98 399.92 1699.28 4199.98 799.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 3999.70 2299.86 2299.89 1199.98 399.90 2199.94 199.98 799.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 499.96 499.79 3699.72 1999.88 1899.92 699.98 399.93 1399.94 199.98 799.77 12100.00 199.92 3
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
test_djsdf99.84 899.81 999.91 299.94 1099.84 1899.77 1199.80 4999.73 4099.97 699.92 1699.77 799.98 799.43 38100.00 199.90 4
IterMVS98.97 18599.16 11398.42 29899.74 10195.64 33798.06 29999.83 3499.83 2699.85 4099.74 8396.10 27599.99 599.27 66100.00 199.63 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 45100.00 199.90 7100.00 199.97 999.61 1799.97 1799.75 13100.00 199.84 14
pmmvs-eth3d99.48 5499.47 5399.51 15499.77 8099.41 14898.81 22599.66 11799.42 11099.75 8099.66 13499.20 4999.76 28598.98 10399.99 1299.36 225
v7n99.82 1099.80 1099.88 1199.96 499.84 1899.82 899.82 3999.84 2399.94 1199.91 1999.13 5899.96 3599.83 999.99 1299.83 18
v899.68 2399.69 1899.65 10099.80 5699.40 14999.66 4099.76 6899.64 6599.93 1499.85 3798.66 12099.84 22799.88 699.99 1299.71 46
v1099.69 2199.69 1899.66 9599.81 5199.39 15199.66 4099.75 7599.60 7999.92 1899.87 3198.75 10999.86 19199.90 299.99 1299.73 42
CHOSEN 1792x268899.39 8199.30 8999.65 10099.88 2499.25 18398.78 23299.88 1898.66 20499.96 899.79 6097.45 22999.93 7199.34 5299.99 1299.78 32
PVSNet_Blended_VisFu99.40 7699.38 7099.44 17599.90 1998.66 24798.94 20899.91 997.97 26699.79 6599.73 8799.05 6999.97 1799.15 8499.99 1299.68 58
IterMVS-LS99.41 7399.47 5399.25 22899.81 5198.09 28398.85 21799.76 6899.62 6999.83 4899.64 14198.54 13599.97 1799.15 8499.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS98.90 499.62 3499.61 3199.67 8899.72 10899.44 13799.24 13099.71 9599.27 12699.93 1499.90 2199.70 1199.93 7198.99 10199.99 1299.64 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 699.90 799.97 699.87 3199.81 599.95 4599.54 2699.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2024052199.44 6599.42 6599.49 16099.89 2198.96 22399.62 4899.76 6899.85 2099.82 5099.88 2896.39 26799.97 1799.59 2099.98 2199.55 145
D2MVS99.22 12799.19 11099.29 21899.69 12198.74 24198.81 22599.41 24298.55 21599.68 10799.69 11398.13 18399.87 17098.82 12099.98 2199.24 246
CHOSEN 280x42098.41 25498.41 23498.40 29999.34 25895.89 33596.94 35399.44 23598.80 19299.25 23099.52 20993.51 30199.98 798.94 11299.98 2199.32 234
v119299.57 3999.57 4099.57 13799.77 8099.22 19299.04 18699.60 15799.18 14099.87 3899.72 9399.08 6499.85 21099.89 599.98 2199.66 75
v114499.54 4799.53 4999.59 12799.79 6699.28 17599.10 17499.61 14699.20 13899.84 4399.73 8798.67 11899.84 22799.86 899.98 2199.64 90
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2299.83 699.85 2699.80 3299.93 1499.93 1398.54 13599.93 7199.59 2099.98 2199.76 37
UGNet99.38 8399.34 7899.49 16098.90 32298.90 23399.70 2299.35 26399.86 1698.57 30899.81 5298.50 14599.93 7199.38 4799.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MIMVSNet199.66 2599.62 2699.80 2999.94 1099.87 999.69 2899.77 6399.78 3599.93 1499.89 2597.94 19799.92 9099.65 1699.98 2199.62 106
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8599.69 2899.92 699.67 5799.77 7399.75 8099.61 1799.98 799.35 5199.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2599.71 999.96 3599.51 3199.97 3099.84 14
test_part198.63 22698.26 24999.75 5699.40 23699.49 12399.67 3699.68 10899.86 1699.88 3299.86 3686.73 35499.93 7199.34 5299.97 3099.81 23
CANet99.11 15999.05 14899.28 22198.83 33198.56 25398.71 24199.41 24299.25 13099.23 23499.22 28697.66 22299.94 5799.19 7599.97 3099.33 231
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 999.85 2099.94 1199.95 1199.73 899.90 12999.65 1699.97 3099.69 52
v14419299.55 4599.54 4599.58 13299.78 7299.20 19899.11 17399.62 13999.18 14099.89 2699.72 9398.66 12099.87 17099.88 699.97 3099.66 75
v192192099.56 4299.57 4099.55 14499.75 9599.11 20699.05 18499.61 14699.15 14999.88 3299.71 10099.08 6499.87 17099.90 299.97 3099.66 75
FC-MVSNet-test99.70 1999.65 2399.86 1699.88 2499.86 1299.72 1999.78 6099.90 799.82 5099.83 4398.45 15099.87 17099.51 3199.97 3099.86 11
v2v48299.50 5099.47 5399.58 13299.78 7299.25 18399.14 16199.58 17399.25 13099.81 5799.62 16098.24 17299.84 22799.83 999.97 3099.64 90
Patchmtry98.78 21098.54 22299.49 16098.89 32599.19 19999.32 10299.67 11399.65 6399.72 9599.79 6091.87 31799.95 4598.00 18199.97 3099.33 231
PVSNet_BlendedMVS99.03 17399.01 16099.09 24899.54 17797.99 28798.58 24799.82 3997.62 28499.34 21399.71 10098.52 14299.77 28397.98 18299.97 3099.52 168
FMVSNet199.66 2599.63 2599.73 7099.78 7299.77 4299.68 3199.70 9999.67 5799.82 5099.83 4398.98 7499.90 12999.24 6799.97 3099.53 158
HyFIR lowres test98.91 19498.64 20999.73 7099.85 3399.47 12698.07 29799.83 3498.64 20699.89 2699.60 17692.57 308100.00 199.33 5599.97 3099.72 43
ppachtmachnet_test98.89 19999.12 12498.20 30899.66 13695.24 34197.63 32799.68 10899.08 15699.78 6899.62 16098.65 12299.88 15798.02 17799.96 4299.48 186
Anonymous2023121199.62 3499.57 4099.76 4699.61 14799.60 10699.81 999.73 8399.82 2899.90 2299.90 2197.97 19699.86 19199.42 4399.96 4299.80 24
nrg03099.70 1999.66 2199.82 2399.76 8499.84 1899.61 5399.70 9999.93 499.78 6899.68 12499.10 5999.78 27599.45 3699.96 4299.83 18
v124099.56 4299.58 3799.51 15499.80 5699.00 21799.00 19399.65 12899.15 14999.90 2299.75 8099.09 6199.88 15799.90 299.96 4299.67 65
PS-CasMVS99.66 2599.58 3799.89 799.80 5699.85 1399.66 4099.73 8399.62 6999.84 4399.71 10098.62 12499.96 3599.30 6099.96 4299.86 11
TAMVS99.49 5299.45 5799.63 11199.48 20999.42 14499.45 7599.57 17599.66 6199.78 6899.83 4397.85 20699.86 19199.44 3799.96 4299.61 115
test_040299.22 12799.14 11799.45 17399.79 6699.43 14199.28 11799.68 10899.54 8399.40 20399.56 19599.07 6699.82 24896.01 30499.96 4299.11 274
our_test_398.85 20499.09 13698.13 31099.66 13694.90 34497.72 32399.58 17399.07 15899.64 12199.62 16098.19 17999.93 7198.41 14599.95 4999.55 145
CANet_DTU98.91 19498.85 19099.09 24898.79 33798.13 27898.18 28399.31 27299.48 9098.86 28299.51 21396.56 25899.95 4599.05 9799.95 4999.19 258
pmmvs599.19 13899.11 12799.42 18199.76 8498.88 23498.55 25399.73 8398.82 18999.72 9599.62 16096.56 25899.82 24899.32 5799.95 4999.56 142
bset_n11_16_dypcd98.69 22298.45 22999.42 18199.69 12198.52 25696.06 35996.80 35499.71 4499.73 9399.54 20495.14 28499.96 3599.39 4699.95 4999.79 30
RRT_MVS98.75 21498.54 22299.41 18998.14 36098.61 25198.98 20299.66 11799.31 12199.84 4399.75 8091.98 31499.98 799.20 7399.95 4999.62 106
V4299.56 4299.54 4599.63 11199.79 6699.46 13099.39 8499.59 16499.24 13299.86 3999.70 10798.55 13399.82 24899.79 1199.95 4999.60 119
EU-MVSNet99.39 8199.62 2698.72 28799.88 2496.44 32699.56 6499.85 2699.90 799.90 2299.85 3798.09 18599.83 23899.58 2399.95 4999.90 4
PMMVS299.48 5499.45 5799.57 13799.76 8498.99 21898.09 29499.90 1398.95 17199.78 6899.58 18499.57 2099.93 7199.48 3499.95 4999.79 30
DTE-MVSNet99.68 2399.61 3199.88 1199.80 5699.87 999.67 3699.71 9599.72 4399.84 4399.78 6698.67 11899.97 1799.30 6099.95 4999.80 24
WR-MVS_H99.61 3699.53 4999.87 1499.80 5699.83 2299.67 3699.75 7599.58 8299.85 4099.69 11398.18 18199.94 5799.28 6599.95 4999.83 18
K. test v398.87 20298.60 21299.69 8599.93 1399.46 13099.74 1594.97 36199.78 3599.88 3299.88 2893.66 30099.97 1799.61 1899.95 4999.64 90
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1399.86 599.92 699.69 5299.78 6899.92 1699.37 3199.88 15798.93 11399.95 4999.60 119
Gipumacopyleft99.57 3999.59 3499.49 16099.98 399.71 6799.72 1999.84 3299.81 2999.94 1199.78 6698.91 8399.71 30098.41 14599.95 4999.05 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS_030498.88 20098.71 20399.39 19498.85 32998.91 23299.45 7599.30 27598.56 21397.26 35299.68 12496.18 27399.96 3599.17 8099.94 6299.29 240
v14899.40 7699.41 6699.39 19499.76 8498.94 22599.09 17899.59 16499.17 14399.81 5799.61 16998.41 15499.69 30899.32 5799.94 6299.53 158
casdiffmvs99.63 3199.61 3199.67 8899.79 6699.59 10999.13 16799.85 2699.79 3499.76 7599.72 9399.33 3699.82 24899.21 7099.94 6299.59 128
PEN-MVS99.66 2599.59 3499.89 799.83 3899.87 999.66 4099.73 8399.70 4999.84 4399.73 8798.56 13299.96 3599.29 6399.94 6299.83 18
CP-MVSNet99.54 4799.43 6299.87 1499.76 8499.82 2699.57 6299.61 14699.54 8399.80 6099.64 14197.79 21099.95 4599.21 7099.94 6299.84 14
baseline99.63 3199.62 2699.66 9599.80 5699.62 9899.44 7899.80 4999.71 4499.72 9599.69 11399.15 5499.83 23899.32 5799.94 6299.53 158
FMVSNet299.35 9099.28 9699.55 14499.49 20399.35 16499.45 7599.57 17599.44 10399.70 10299.74 8397.21 24199.87 17099.03 9899.94 6299.44 202
ACMMP++_ref99.94 62
eth_miper_zixun_eth98.68 22398.71 20398.60 29199.10 30796.84 32197.52 33599.54 19198.94 17299.58 14599.48 22496.25 27199.76 28598.01 18099.93 7099.21 253
FIs99.65 3099.58 3799.84 1999.84 3499.85 1399.66 4099.75 7599.86 1699.74 8999.79 6098.27 17099.85 21099.37 4999.93 7099.83 18
pmmvs499.13 15399.06 14499.36 20499.57 16599.10 21098.01 30299.25 28698.78 19599.58 14599.44 23698.24 17299.76 28598.74 12899.93 7099.22 251
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6499.59 5999.82 3999.39 11199.82 5099.84 4299.38 2999.91 10899.38 4799.93 7099.80 24
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2299.76 1399.87 2099.73 4099.89 2699.87 3199.63 1499.87 17099.54 2699.92 7499.63 95
EI-MVSNet99.38 8399.44 5999.21 23399.58 15598.09 28399.26 12299.46 23099.62 6999.75 8099.67 13098.54 13599.85 21099.15 8499.92 7499.68 58
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4699.58 15599.64 9299.30 10999.63 13699.61 7399.71 10099.56 19598.76 10799.96 3599.14 9099.92 7499.68 58
lessismore_v099.64 10799.86 3099.38 15490.66 36899.89 2699.83 4394.56 29199.97 1799.56 2599.92 7499.57 139
SixPastTwentyTwo99.42 6999.30 8999.76 4699.92 1499.67 8399.70 2299.14 30199.65 6399.89 2699.90 2196.20 27299.94 5799.42 4399.92 7499.67 65
MVSTER98.47 24998.22 25299.24 23099.06 31198.35 26999.08 18199.46 23099.27 12699.75 8099.66 13488.61 34499.85 21099.14 9099.92 7499.52 168
N_pmnet98.73 21898.53 22499.35 20599.72 10898.67 24598.34 27194.65 36298.35 24099.79 6599.68 12498.03 18999.93 7198.28 15699.92 7499.44 202
CSCG99.37 8599.29 9499.60 12599.71 11199.46 13099.43 8099.85 2698.79 19399.41 19899.60 17698.92 8199.92 9098.02 17799.92 7499.43 208
CMPMVSbinary77.52 2398.50 24498.19 25799.41 18998.33 35399.56 11599.01 19199.59 16495.44 33799.57 14899.80 5495.64 28099.46 35796.47 28799.92 7499.21 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EG-PatchMatch MVS99.57 3999.56 4499.62 12099.77 8099.33 16799.26 12299.76 6899.32 12099.80 6099.78 6699.29 3999.87 17099.15 8499.91 8399.66 75
miper_lstm_enhance98.65 22598.60 21298.82 28299.20 28997.33 30997.78 32199.66 11799.01 16499.59 14399.50 21694.62 29099.85 21098.12 17299.90 8499.26 243
EI-MVSNet-UG-set99.48 5499.50 5199.42 18199.57 16598.65 25099.24 13099.46 23099.68 5399.80 6099.66 13498.99 7399.89 14399.19 7599.90 8499.72 43
diffmvs99.34 9599.32 8399.39 19499.67 13598.77 24098.57 25199.81 4899.61 7399.48 17799.41 23998.47 14699.86 19198.97 10599.90 8499.53 158
YYNet198.95 19198.99 16898.84 27799.64 14097.14 31498.22 28299.32 26898.92 17799.59 14399.66 13497.40 23199.83 23898.27 15799.90 8499.55 145
GBi-Net99.42 6999.31 8499.73 7099.49 20399.77 4299.68 3199.70 9999.44 10399.62 13299.83 4397.21 24199.90 12998.96 10799.90 8499.53 158
FMVSNet597.80 28397.25 29799.42 18198.83 33198.97 22199.38 8699.80 4998.87 18399.25 23099.69 11380.60 36699.91 10898.96 10799.90 8499.38 219
test199.42 6999.31 8499.73 7099.49 20399.77 4299.68 3199.70 9999.44 10399.62 13299.83 4397.21 24199.90 12998.96 10799.90 8499.53 158
FMVSNet398.80 20998.63 21199.32 21299.13 29998.72 24299.10 17499.48 22299.23 13499.62 13299.64 14192.57 30899.86 19198.96 10799.90 8499.39 217
cl-mvsnet____98.54 24098.41 23498.92 26599.03 31597.80 29697.46 33799.59 16498.90 17999.60 14099.46 23293.85 29799.78 27597.97 18499.89 9299.17 262
cl-mvsnet198.54 24098.42 23398.92 26599.03 31597.80 29697.46 33799.59 16498.90 17999.60 14099.46 23293.87 29699.78 27597.97 18499.89 9299.18 260
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18199.57 16598.66 24799.24 13099.46 23099.67 5799.79 6599.65 13998.97 7699.89 14399.15 8499.89 9299.71 46
DSMNet-mixed99.48 5499.65 2398.95 26099.71 11197.27 31099.50 6899.82 3999.59 8199.41 19899.85 3799.62 16100.00 199.53 2999.89 9299.59 128
Vis-MVSNet (Re-imp)98.77 21198.58 21799.34 20699.78 7298.88 23499.61 5399.56 18099.11 15599.24 23399.56 19593.00 30699.78 27597.43 22999.89 9299.35 228
EPP-MVSNet99.17 14699.00 16399.66 9599.80 5699.43 14199.70 2299.24 28999.48 9099.56 15599.77 7394.89 28699.93 7198.72 13099.89 9299.63 95
CLD-MVS98.76 21398.57 21899.33 20899.57 16598.97 22197.53 33399.55 18696.41 32399.27 22899.13 29599.07 6699.78 27596.73 27399.89 9299.23 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMH98.42 699.59 3899.54 4599.72 7699.86 3099.62 9899.56 6499.79 5598.77 19699.80 6099.85 3799.64 1399.85 21098.70 13199.89 9299.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GeoE99.69 2199.66 2199.78 3799.76 8499.76 4899.60 5899.82 3999.46 10099.75 8099.56 19599.63 1499.95 4599.43 3899.88 10099.62 106
cl_fuxian98.72 21998.71 20398.72 28799.12 30197.22 31297.68 32699.56 18098.90 17999.54 16299.48 22496.37 26899.73 29497.88 19099.88 10099.21 253
VPA-MVSNet99.66 2599.62 2699.79 3499.68 13099.75 5199.62 4899.69 10599.85 2099.80 6099.81 5298.81 9499.91 10899.47 3599.88 10099.70 49
MDA-MVSNet_test_wron98.95 19198.99 16898.85 27599.64 14097.16 31398.23 28199.33 26698.93 17599.56 15599.66 13497.39 23399.83 23898.29 15599.88 10099.55 145
XVG-OURS99.21 13299.06 14499.65 10099.82 4499.62 9897.87 31899.74 8098.36 23599.66 11599.68 12499.71 999.90 12996.84 26799.88 10099.43 208
CDS-MVSNet99.22 12799.13 12099.50 15799.35 24899.11 20698.96 20599.54 19199.46 10099.61 13899.70 10796.31 26999.83 23899.34 5299.88 10099.55 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet99.03 17398.85 19099.55 14499.80 5699.25 18399.73 1699.15 30099.37 11399.61 13899.71 10094.73 28999.81 26497.70 20899.88 10099.58 133
USDC98.96 18898.93 17799.05 25499.54 17797.99 28797.07 35199.80 4998.21 25299.75 8099.77 7398.43 15199.64 33797.90 18899.88 10099.51 170
ACMH+98.40 899.50 5099.43 6299.71 8099.86 3099.76 4899.32 10299.77 6399.53 8599.77 7399.76 7699.26 4599.78 27597.77 20199.88 10099.60 119
SD-MVS99.01 17999.30 8998.15 30999.50 19899.40 14998.94 20899.61 14699.22 13799.75 8099.82 4999.54 2195.51 36797.48 22699.87 10999.54 153
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UniMVSNet (Re)99.37 8599.26 10199.68 8699.51 19299.58 11298.98 20299.60 15799.43 10899.70 10299.36 25297.70 21399.88 15799.20 7399.87 10999.59 128
WR-MVS99.11 15998.93 17799.66 9599.30 26999.42 14498.42 26899.37 25999.04 16399.57 14899.20 29096.89 25399.86 19198.66 13599.87 10999.70 49
NR-MVSNet99.40 7699.31 8499.68 8699.43 22799.55 11899.73 1699.50 21599.46 10099.88 3299.36 25297.54 22699.87 17098.97 10599.87 10999.63 95
LPG-MVS_test99.22 12799.05 14899.74 6299.82 4499.63 9699.16 15799.73 8397.56 28699.64 12199.69 11399.37 3199.89 14396.66 27799.87 10999.69 52
LGP-MVS_train99.74 6299.82 4499.63 9699.73 8397.56 28699.64 12199.69 11399.37 3199.89 14396.66 27799.87 10999.69 52
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7399.70 8499.83 3899.70 7499.38 8699.78 6099.53 8599.67 11199.78 6699.19 5099.86 19197.32 23499.87 10999.55 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0399.55 4599.54 4599.58 13299.79 6699.37 15799.02 18999.89 1599.60 7999.82 5099.62 16098.81 9499.89 14399.43 3899.86 11699.47 191
Baseline_NR-MVSNet99.49 5299.37 7399.82 2399.91 1599.84 1898.83 22099.86 2299.68 5399.65 11999.88 2897.67 21899.87 17099.03 9899.86 11699.76 37
MSDG99.08 16498.98 17199.37 20199.60 14999.13 20497.54 33199.74 8098.84 18899.53 16799.55 20299.10 5999.79 27297.07 25599.86 11699.18 260
Patchmatch-RL test98.60 23098.36 23999.33 20899.77 8099.07 21498.27 27899.87 2098.91 17899.74 8999.72 9390.57 33499.79 27298.55 13999.85 11999.11 274
APDe-MVS99.48 5499.36 7699.85 1899.55 17699.81 2999.50 6899.69 10598.99 16599.75 8099.71 10098.79 10199.93 7198.46 14399.85 11999.80 24
ACMP97.51 1499.05 16998.84 19299.67 8899.78 7299.55 11898.88 21199.66 11797.11 31199.47 17999.60 17699.07 6699.89 14396.18 29999.85 11999.58 133
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft92.94 2198.82 20798.81 19698.85 27599.84 3497.99 28799.20 14099.47 22699.71 4499.42 19099.82 4998.09 18599.47 35593.88 34699.85 11999.07 287
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Anonymous2023120699.35 9099.31 8499.47 16699.74 10199.06 21699.28 11799.74 8099.23 13499.72 9599.53 20797.63 22499.88 15799.11 9299.84 12399.48 186
Regformer-399.41 7399.41 6699.40 19199.52 18798.70 24399.17 15199.44 23599.62 6999.75 8099.60 17698.90 8699.85 21098.89 11599.84 12399.65 83
Regformer-499.45 6399.44 5999.50 15799.52 18798.94 22599.17 15199.53 20099.64 6599.76 7599.60 17698.96 7999.90 12998.91 11499.84 12399.67 65
HPM-MVS_fast99.43 6699.30 8999.80 2999.83 3899.81 2999.52 6699.70 9998.35 24099.51 17499.50 21699.31 3799.88 15798.18 16799.84 12399.69 52
XVG-ACMP-BASELINE99.23 11899.10 13599.63 11199.82 4499.58 11298.83 22099.72 9298.36 23599.60 14099.71 10098.92 8199.91 10897.08 25499.84 12399.40 214
new_pmnet98.88 20098.89 18698.84 27799.70 11897.62 30198.15 28699.50 21597.98 26599.62 13299.54 20498.15 18299.94 5797.55 22199.84 12398.95 300
Test_1112_low_res98.95 19198.73 20199.63 11199.68 13099.15 20398.09 29499.80 4997.14 30999.46 18299.40 24196.11 27499.89 14399.01 10099.84 12399.84 14
1112_ss99.05 16998.84 19299.67 8899.66 13699.29 17398.52 25899.82 3997.65 28399.43 18899.16 29396.42 26499.91 10899.07 9699.84 12399.80 24
3Dnovator99.15 299.43 6699.36 7699.65 10099.39 23899.42 14499.70 2299.56 18099.23 13499.35 21099.80 5499.17 5299.95 4598.21 16299.84 12399.59 128
LF4IMVS99.01 17998.92 18199.27 22399.71 11199.28 17598.59 24699.77 6398.32 24699.39 20599.41 23998.62 12499.84 22796.62 28099.84 12398.69 316
ACMMP_NAP99.28 10799.11 12799.79 3499.75 9599.81 2998.95 20699.53 20098.27 24999.53 16799.73 8798.75 10999.87 17097.70 20899.83 13399.68 58
AllTest99.21 13299.07 14299.63 11199.78 7299.64 9299.12 17199.83 3498.63 20799.63 12599.72 9398.68 11599.75 28996.38 29199.83 13399.51 170
TestCases99.63 11199.78 7299.64 9299.83 3498.63 20799.63 12599.72 9398.68 11599.75 28996.38 29199.83 13399.51 170
PM-MVS99.36 8899.29 9499.58 13299.83 3899.66 8598.95 20699.86 2298.85 18599.81 5799.73 8798.40 15899.92 9098.36 14899.83 13399.17 262
EPNet98.13 27297.77 28599.18 23894.57 36897.99 28799.24 13097.96 34199.74 3997.29 35199.62 16093.13 30499.97 1798.59 13799.83 13399.58 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended98.70 22198.59 21499.02 25699.54 17797.99 28797.58 33099.82 3995.70 33599.34 21398.98 31998.52 14299.77 28397.98 18299.83 13399.30 237
MVS-HIRNet97.86 28198.22 25296.76 33799.28 27591.53 36398.38 27092.60 36799.13 15199.31 22199.96 1097.18 24599.68 31998.34 15199.83 13399.07 287
RPSCF99.18 14299.02 15799.64 10799.83 3899.85 1399.44 7899.82 3998.33 24599.50 17599.78 6697.90 20099.65 33596.78 27099.83 13399.44 202
TinyColmap98.97 18598.93 17799.07 25299.46 21998.19 27597.75 32299.75 7598.79 19399.54 16299.70 10798.97 7699.62 33996.63 27999.83 13399.41 212
MP-MVS-pluss99.14 15198.92 18199.80 2999.83 3899.83 2298.61 24399.63 13696.84 31799.44 18499.58 18498.81 9499.91 10897.70 20899.82 14299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MDA-MVSNet-bldmvs99.06 16699.05 14899.07 25299.80 5697.83 29498.89 21099.72 9299.29 12299.63 12599.70 10796.47 26299.89 14398.17 16999.82 14299.50 176
jason99.16 14799.11 12799.32 21299.75 9598.44 26198.26 27999.39 25298.70 20299.74 8999.30 26698.54 13599.97 1798.48 14299.82 14299.55 145
jason: jason.
HPM-MVScopyleft99.25 11499.07 14299.78 3799.81 5199.75 5199.61 5399.67 11397.72 28099.35 21099.25 27999.23 4699.92 9097.21 24799.82 14299.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t98.49 24798.11 26299.64 10799.73 10499.58 11299.24 13099.76 6889.94 35999.42 19099.56 19597.76 21299.86 19197.74 20499.82 14299.47 191
CP-MVS99.23 11899.05 14899.75 5699.66 13699.66 8599.38 8699.62 13998.38 23399.06 26299.27 27398.79 10199.94 5797.51 22599.82 14299.66 75
DROMVSNet99.61 3699.62 2699.59 12799.63 14299.89 799.68 3199.95 499.77 3899.40 20399.27 27399.48 2299.91 10899.54 2699.82 14298.98 298
PHI-MVS99.11 15998.95 17699.59 12799.13 29999.59 10999.17 15199.65 12897.88 27299.25 23099.46 23298.97 7699.80 26997.26 24199.82 14299.37 222
wuyk23d97.58 29299.13 12092.93 34899.69 12199.49 12399.52 6699.77 6397.97 26699.96 899.79 6099.84 399.94 5795.85 31299.82 14279.36 363
CVMVSNet98.61 22898.88 18797.80 31899.58 15593.60 35199.26 12299.64 13499.66 6199.72 9599.67 13093.26 30299.93 7199.30 6099.81 15199.87 9
UniMVSNet_NR-MVSNet99.37 8599.25 10399.72 7699.47 21499.56 11598.97 20499.61 14699.43 10899.67 11199.28 27197.85 20699.95 4599.17 8099.81 15199.65 83
DU-MVS99.33 9999.21 10899.71 8099.43 22799.56 11598.83 22099.53 20099.38 11299.67 11199.36 25297.67 21899.95 4599.17 8099.81 15199.63 95
DeepPCF-MVS98.42 699.18 14299.02 15799.67 8899.22 28499.75 5197.25 34599.47 22698.72 20199.66 11599.70 10799.29 3999.63 33898.07 17699.81 15199.62 106
ACMM98.09 1199.46 6199.38 7099.72 7699.80 5699.69 7899.13 16799.65 12898.99 16599.64 12199.72 9399.39 2599.86 19198.23 16099.81 15199.60 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS99.22 12799.04 15499.77 4099.76 8499.73 6099.28 11799.56 18098.19 25499.14 25199.29 26998.84 9299.92 9097.53 22499.80 15699.64 90
test_0728_THIRD99.18 14099.62 13299.61 16998.58 12999.91 10897.72 20599.80 15699.77 33
SteuartSystems-ACMMP99.30 10499.14 11799.76 4699.87 2899.66 8599.18 14699.60 15798.55 21599.57 14899.67 13099.03 7199.94 5797.01 25699.80 15699.69 52
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS99.48 5499.39 6899.74 6299.57 16599.62 9899.29 11699.61 14699.87 1499.74 8999.76 7698.69 11499.87 17098.20 16399.80 15699.75 40
PCF-MVS96.03 1896.73 31295.86 32399.33 20899.44 22499.16 20196.87 35499.44 23586.58 36198.95 26999.40 24194.38 29299.88 15787.93 35999.80 15698.95 300
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SMA-MVScopyleft99.19 13899.00 16399.73 7099.46 21999.73 6099.13 16799.52 20897.40 29699.57 14899.64 14198.93 8099.83 23897.61 21899.79 16199.63 95
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS99.30 10499.14 11799.80 2999.81 5199.81 2998.73 23899.53 20099.27 12699.42 19099.63 15198.21 17699.95 4597.83 19999.79 16199.65 83
MTAPA99.35 9099.20 10999.80 2999.81 5199.81 2999.33 9999.53 20099.27 12699.42 19099.63 15198.21 17699.95 4597.83 19999.79 16199.65 83
ACMMP++99.79 161
ACMMPcopyleft99.25 11499.08 13899.74 6299.79 6699.68 8199.50 6899.65 12898.07 26099.52 16999.69 11398.57 13099.92 9097.18 24999.79 16199.63 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS98.90 19698.72 20299.44 17599.39 23899.42 14498.58 24799.64 13497.31 30199.44 18499.62 16098.59 12899.69 30896.17 30099.79 16199.22 251
tfpnnormal99.43 6699.38 7099.60 12599.87 2899.75 5199.59 5999.78 6099.71 4499.90 2299.69 11398.85 9199.90 12997.25 24499.78 16799.15 266
HQP_MVS98.90 19698.68 20899.55 14499.58 15599.24 18898.80 22899.54 19198.94 17299.14 25199.25 27997.24 23999.82 24895.84 31399.78 16799.60 119
plane_prior599.54 19199.82 24895.84 31399.78 16799.60 119
mPP-MVS99.19 13899.00 16399.76 4699.76 8499.68 8199.38 8699.54 19198.34 24499.01 26499.50 21698.53 13999.93 7197.18 24999.78 16799.66 75
CS-MVS99.40 7699.43 6299.29 21899.44 22499.72 6499.36 9399.91 999.71 4499.28 22698.83 33499.22 4799.86 19199.40 4599.77 17198.29 336
OPM-MVS99.26 11399.13 12099.63 11199.70 11899.61 10498.58 24799.48 22298.50 22199.52 16999.63 15199.14 5699.76 28597.89 18999.77 17199.51 170
MVS_111021_LR99.13 15399.03 15699.42 18199.58 15599.32 16997.91 31799.73 8398.68 20399.31 22199.48 22499.09 6199.66 32897.70 20899.77 17199.29 240
abl_699.36 8899.23 10699.75 5699.71 11199.74 5799.33 9999.76 6899.07 15899.65 11999.63 15199.09 6199.92 9097.13 25299.76 17499.58 133
MIMVSNet98.43 25298.20 25499.11 24699.53 18298.38 26799.58 6198.61 32598.96 17099.33 21599.76 7690.92 32799.81 26497.38 23299.76 17499.15 266
MVS_111021_HR99.12 15599.02 15799.40 19199.50 19899.11 20697.92 31599.71 9598.76 19999.08 25899.47 22999.17 5299.54 34897.85 19699.76 17499.54 153
DPE-MVScopyleft99.14 15198.92 18199.82 2399.57 16599.77 4298.74 23699.60 15798.55 21599.76 7599.69 11398.23 17599.92 9096.39 29099.75 17799.76 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.99.34 9599.24 10499.63 11199.82 4499.37 15799.26 12299.35 26398.77 19699.57 14899.70 10799.27 4499.88 15797.71 20699.75 17799.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS99.25 11499.08 13899.76 4699.73 10499.70 7499.31 10699.59 16498.36 23599.36 20899.37 24798.80 9899.91 10897.43 22999.75 17799.68 58
#test#99.12 15598.90 18599.76 4699.73 10499.70 7499.10 17499.59 16497.60 28599.36 20899.37 24798.80 9899.91 10896.84 26799.75 17799.68 58
ACMMPR99.23 11899.06 14499.76 4699.74 10199.69 7899.31 10699.59 16498.36 23599.35 21099.38 24698.61 12699.93 7197.43 22999.75 17799.67 65
MP-MVScopyleft99.06 16698.83 19499.76 4699.76 8499.71 6799.32 10299.50 21598.35 24098.97 26799.48 22498.37 16099.92 9095.95 31099.75 17799.63 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM98.40 25697.99 26799.65 10099.39 23899.47 12699.67 3699.52 20891.70 35698.78 29299.80 5498.55 13399.95 4594.71 33599.75 17799.53 158
DeepC-MVS_fast98.47 599.23 11899.12 12499.56 14199.28 27599.22 19298.99 19899.40 24999.08 15699.58 14599.64 14198.90 8699.83 23897.44 22899.75 17799.63 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS99.16 14798.96 17499.75 5699.73 10499.73 6099.20 14099.55 18698.22 25199.32 21799.35 25798.65 12299.91 10896.86 26499.74 18599.62 106
region2R99.23 11899.05 14899.77 4099.76 8499.70 7499.31 10699.59 16498.41 22999.32 21799.36 25298.73 11299.93 7197.29 23699.74 18599.67 65
Regformer-199.32 10199.27 9999.47 16699.41 23398.95 22498.99 19899.48 22299.48 9099.66 11599.52 20998.78 10399.87 17098.36 14899.74 18599.60 119
Regformer-299.34 9599.27 9999.53 15099.41 23399.10 21098.99 19899.53 20099.47 9599.66 11599.52 20998.80 9899.89 14398.31 15499.74 18599.60 119
PGM-MVS99.20 13499.01 16099.77 4099.75 9599.71 6799.16 15799.72 9297.99 26499.42 19099.60 17698.81 9499.93 7196.91 26199.74 18599.66 75
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1399.75 1499.86 2299.70 4999.91 2099.89 2599.60 1999.87 17099.59 2099.74 18599.71 46
TSAR-MVS + GP.99.12 15599.04 15499.38 19899.34 25899.16 20198.15 28699.29 27798.18 25599.63 12599.62 16099.18 5199.68 31998.20 16399.74 18599.30 237
DIV-MVS_2432*160099.63 3199.59 3499.76 4699.84 3499.90 499.37 9099.79 5599.83 2699.88 3299.85 3798.42 15399.90 12999.60 1999.73 19299.49 181
XVS99.27 11199.11 12799.75 5699.71 11199.71 6799.37 9099.61 14699.29 12298.76 29499.47 22998.47 14699.88 15797.62 21699.73 19299.67 65
X-MVStestdata96.09 32494.87 33499.75 5699.71 11199.71 6799.37 9099.61 14699.29 12298.76 29461.30 37298.47 14699.88 15797.62 21699.73 19299.67 65
VDD-MVS99.20 13499.11 12799.44 17599.43 22798.98 21999.50 6898.32 33799.80 3299.56 15599.69 11396.99 25199.85 21098.99 10199.73 19299.50 176
ab-mvs99.33 9999.28 9699.47 16699.57 16599.39 15199.78 1099.43 23998.87 18399.57 14899.82 4998.06 18899.87 17098.69 13399.73 19299.15 266
TAPA-MVS97.92 1398.03 27797.55 29199.46 16999.47 21499.44 13798.50 26099.62 13986.79 36099.07 26199.26 27798.26 17199.62 33997.28 23899.73 19299.31 236
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVS99.32 10199.17 11299.77 4099.69 12199.80 3499.14 16199.31 27299.16 14599.62 13299.61 16998.35 16299.91 10897.88 19099.72 19899.61 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 2199.70 11899.79 3699.14 16199.61 14699.92 9097.88 19099.72 19899.77 33
RRT_test8_iter0597.35 30097.25 29797.63 32398.81 33593.13 35399.26 12299.89 1599.51 8799.83 4899.68 12479.03 37199.88 15799.53 2999.72 19899.89 8
3Dnovator+98.92 399.35 9099.24 10499.67 8899.35 24899.47 12699.62 4899.50 21599.44 10399.12 25499.78 6698.77 10699.94 5797.87 19399.72 19899.62 106
plane_prior99.24 18898.42 26897.87 27399.71 202
APD-MVScopyleft98.87 20298.59 21499.71 8099.50 19899.62 9899.01 19199.57 17596.80 31999.54 16299.63 15198.29 16899.91 10895.24 32799.71 20299.61 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SED-MVS99.40 7699.28 9699.77 4099.69 12199.82 2699.20 14099.54 19199.13 15199.82 5099.63 15198.91 8399.92 9097.85 19699.70 20499.58 133
IU-MVS99.69 12199.77 4299.22 29197.50 29199.69 10597.75 20399.70 20499.77 33
ambc99.20 23599.35 24898.53 25499.17 15199.46 23099.67 11199.80 5498.46 14999.70 30297.92 18799.70 20499.38 219
test_241102_TWO99.54 19199.13 15199.76 7599.63 15198.32 16799.92 9097.85 19699.69 20799.75 40
MVSFormer99.41 7399.44 5999.31 21599.57 16598.40 26499.77 1199.80 4999.73 4099.63 12599.30 26698.02 19199.98 799.43 3899.69 20799.55 145
lupinMVS98.96 18898.87 18899.24 23099.57 16598.40 26498.12 29099.18 29798.28 24899.63 12599.13 29598.02 19199.97 1798.22 16199.69 20799.35 228
xxxxxxxxxxxxxcwj99.11 15998.96 17499.54 14899.53 18299.25 18398.29 27699.76 6899.07 15899.42 19099.61 16998.86 8999.87 17096.45 28899.68 21099.49 181
SF-MVS99.10 16398.93 17799.62 12099.58 15599.51 12199.13 16799.65 12897.97 26699.42 19099.61 16998.86 8999.87 17096.45 28899.68 21099.49 181
Anonymous2024052999.42 6999.34 7899.65 10099.53 18299.60 10699.63 4799.39 25299.47 9599.76 7599.78 6698.13 18399.86 19198.70 13199.68 21099.49 181
MSLP-MVS++99.05 16999.09 13698.91 26799.21 28698.36 26898.82 22499.47 22698.85 18598.90 27799.56 19598.78 10399.09 36198.57 13899.68 21099.26 243
DELS-MVS99.34 9599.30 8999.48 16499.51 19299.36 16098.12 29099.53 20099.36 11599.41 19899.61 16999.22 4799.87 17099.21 7099.68 21099.20 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet97.47 1598.42 25398.44 23198.35 30199.46 21996.26 32896.70 35699.34 26597.68 28299.00 26599.13 29597.40 23199.72 29697.59 22099.68 21099.08 282
LS3D99.24 11799.11 12799.61 12398.38 35199.79 3699.57 6299.68 10899.61 7399.15 24999.71 10098.70 11399.91 10897.54 22299.68 21099.13 273
ETH3D-3000-0.198.77 21198.50 22699.59 12799.47 21499.53 12098.77 23399.60 15797.33 30099.23 23499.50 21697.91 19999.83 23895.02 33199.67 21799.41 212
HQP3-MVS99.37 25999.67 217
CPTT-MVS98.74 21698.44 23199.64 10799.61 14799.38 15499.18 14699.55 18696.49 32299.27 22899.37 24797.11 24799.92 9095.74 31799.67 21799.62 106
HQP-MVS98.36 25898.02 26699.39 19499.31 26598.94 22597.98 30799.37 25997.45 29398.15 32698.83 33496.67 25699.70 30294.73 33399.67 21799.53 158
ETH3 D test640097.76 28597.19 30099.50 15799.38 24199.26 17998.34 27199.49 22092.99 35398.54 31099.20 29095.92 27899.82 24891.14 35499.66 22199.40 214
MVS_Test99.28 10799.31 8499.19 23699.35 24898.79 23999.36 9399.49 22099.17 14399.21 24099.67 13098.78 10399.66 32899.09 9499.66 22199.10 276
CDPH-MVS98.56 23698.20 25499.61 12399.50 19899.46 13098.32 27499.41 24295.22 34099.21 24099.10 30298.34 16499.82 24895.09 33099.66 22199.56 142
tttt051797.62 29097.20 29998.90 27399.76 8497.40 30799.48 7294.36 36399.06 16299.70 10299.49 22184.55 36099.94 5798.73 12999.65 22499.36 225
ITE_SJBPF99.38 19899.63 14299.44 13799.73 8398.56 21399.33 21599.53 20798.88 8899.68 31996.01 30499.65 22499.02 295
9.1498.64 20999.45 22298.81 22599.60 15797.52 29099.28 22699.56 19598.53 13999.83 23895.36 32699.64 226
Patchmatch-test98.10 27497.98 26998.48 29699.27 27796.48 32599.40 8299.07 30498.81 19099.23 23499.57 19290.11 33899.87 17096.69 27499.64 22699.09 279
sss98.90 19698.77 20099.27 22399.48 20998.44 26198.72 23999.32 26897.94 27099.37 20799.35 25796.31 26999.91 10898.85 11799.63 22899.47 191
cl-mvsnet297.56 29397.28 29598.40 29998.37 35296.75 32297.24 34699.37 25997.31 30199.41 19899.22 28687.30 34699.37 35997.70 20899.62 22999.08 282
miper_ehance_all_eth98.59 23398.59 21498.59 29298.98 31897.07 31597.49 33699.52 20898.50 22199.52 16999.37 24796.41 26699.71 30097.86 19499.62 22999.00 297
miper_enhance_ethall98.03 27797.94 27598.32 30398.27 35496.43 32796.95 35299.41 24296.37 32599.43 18898.96 32494.74 28899.69 30897.71 20699.62 22998.83 311
SCA98.11 27398.36 23997.36 32999.20 28992.99 35498.17 28598.49 33198.24 25099.10 25799.57 19296.01 27699.94 5796.86 26499.62 22999.14 270
MS-PatchMatch99.00 18198.97 17299.09 24899.11 30698.19 27598.76 23599.33 26698.49 22399.44 18499.58 18498.21 17699.69 30898.20 16399.62 22999.39 217
APD-MVS_3200maxsize99.31 10399.16 11399.74 6299.53 18299.75 5199.27 12099.61 14699.19 13999.57 14899.64 14198.76 10799.90 12997.29 23699.62 22999.56 142
EPNet_dtu97.62 29097.79 28497.11 33696.67 36592.31 35798.51 25998.04 33999.24 13295.77 36199.47 22993.78 29999.66 32898.98 10399.62 22999.37 222
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS-dyc-post99.27 11199.11 12799.73 7099.54 17799.74 5799.26 12299.62 13999.16 14599.52 16999.64 14198.41 15499.91 10897.27 23999.61 23699.54 153
RE-MVS-def99.13 12099.54 17799.74 5799.26 12299.62 13999.16 14599.52 16999.64 14198.57 13097.27 23999.61 23699.54 153
MG-MVS98.52 24298.39 23698.94 26199.15 29697.39 30898.18 28399.21 29598.89 18299.23 23499.63 15197.37 23599.74 29194.22 34099.61 23699.69 52
OPU-MVS99.29 21899.12 30199.44 13799.20 14099.40 24199.00 7298.84 36396.54 28299.60 23999.58 133
HPM-MVS++copyleft98.96 18898.70 20699.74 6299.52 18799.71 6798.86 21599.19 29698.47 22598.59 30699.06 30598.08 18799.91 10896.94 25999.60 23999.60 119
CNVR-MVS98.99 18498.80 19899.56 14199.25 28099.43 14198.54 25699.27 28198.58 21298.80 28999.43 23798.53 13999.70 30297.22 24699.59 24199.54 153
Anonymous20240521198.75 21498.46 22899.63 11199.34 25899.66 8599.47 7497.65 34699.28 12599.56 15599.50 21693.15 30399.84 22798.62 13699.58 24299.40 214
MVP-Stereo99.16 14799.08 13899.43 17999.48 20999.07 21499.08 18199.55 18698.63 20799.31 22199.68 12498.19 17999.78 27598.18 16799.58 24299.45 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ADS-MVSNet297.78 28497.66 29098.12 31199.14 29795.36 33999.22 13798.75 31996.97 31298.25 32299.64 14190.90 32899.94 5796.51 28499.56 24499.08 282
ADS-MVSNet97.72 28897.67 28997.86 31699.14 29794.65 34599.22 13798.86 31396.97 31298.25 32299.64 14190.90 32899.84 22796.51 28499.56 24499.08 282
LCM-MVSNet-Re99.28 10799.15 11699.67 8899.33 26399.76 4899.34 9799.97 298.93 17599.91 2099.79 6098.68 11599.93 7196.80 26999.56 24499.30 237
API-MVS98.38 25798.39 23698.35 30198.83 33199.26 17999.14 16199.18 29798.59 21198.66 30198.78 33898.61 12699.57 34794.14 34199.56 24496.21 360
test117299.23 11899.05 14899.74 6299.52 18799.75 5199.20 14099.61 14698.97 16799.48 17799.58 18498.41 15499.91 10897.15 25199.55 24899.57 139
xiu_mvs_v1_base_debu99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
CS-MVS-test99.20 13499.22 10799.12 24599.30 26999.78 3999.35 9599.90 1399.47 9598.98 26698.52 34998.83 9399.87 17099.10 9399.55 24897.72 351
xiu_mvs_v1_base99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
xiu_mvs_v1_base_debi99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
OpenMVScopyleft98.12 1098.23 26997.89 28199.26 22599.19 29199.26 17999.65 4599.69 10591.33 35798.14 33099.77 7398.28 16999.96 3595.41 32499.55 24898.58 322
MVEpermissive92.54 2296.66 31496.11 31898.31 30599.68 13097.55 30397.94 31395.60 36099.37 11390.68 36798.70 34196.56 25898.61 36586.94 36499.55 24898.77 314
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SR-MVS99.19 13899.00 16399.74 6299.51 19299.72 6499.18 14699.60 15798.85 18599.47 17999.58 18498.38 15999.92 9096.92 26099.54 25599.57 139
thisisatest053097.45 29596.95 30698.94 26199.68 13097.73 29899.09 17894.19 36598.61 21099.56 15599.30 26684.30 36199.93 7198.27 15799.54 25599.16 264
MSP-MVS99.04 17298.79 19999.81 2699.78 7299.73 6099.35 9599.57 17598.54 21899.54 16298.99 31696.81 25599.93 7196.97 25899.53 25799.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary98.60 23098.35 24199.38 19899.12 30199.22 19298.67 24299.42 24197.84 27798.81 28799.27 27397.32 23799.81 26495.14 32899.53 25799.10 276
ETV-MVS99.18 14299.18 11199.16 23999.34 25899.28 17599.12 17199.79 5599.48 9098.93 27198.55 34799.40 2499.93 7198.51 14199.52 25998.28 337
EIA-MVS99.12 15599.01 16099.45 17399.36 24699.62 9899.34 9799.79 5598.41 22998.84 28498.89 33198.75 10999.84 22798.15 17199.51 26098.89 305
MCST-MVS99.02 17598.81 19699.65 10099.58 15599.49 12398.58 24799.07 30498.40 23199.04 26399.25 27998.51 14499.80 26997.31 23599.51 26099.65 83
mvs_anonymous99.28 10799.39 6898.94 26199.19 29197.81 29599.02 18999.55 18699.78 3599.85 4099.80 5498.24 17299.86 19199.57 2499.50 26299.15 266
CNLPA98.57 23598.34 24299.28 22199.18 29399.10 21098.34 27199.41 24298.48 22498.52 31198.98 31997.05 24999.78 27595.59 31999.50 26298.96 299
ZD-MVS99.43 22799.61 10499.43 23996.38 32499.11 25599.07 30497.86 20499.92 9094.04 34399.49 264
test_prior398.62 22798.34 24299.46 16999.35 24899.22 19297.95 31199.39 25297.87 27398.05 33299.05 30697.90 20099.69 30895.99 30699.49 26499.48 186
test_prior297.95 31197.87 27398.05 33299.05 30697.90 20095.99 30699.49 264
pmmvs398.08 27597.80 28298.91 26799.41 23397.69 30097.87 31899.66 11795.87 33199.50 17599.51 21390.35 33699.97 1798.55 13999.47 26799.08 282
test1299.54 14899.29 27299.33 16799.16 29998.43 31697.54 22699.82 24899.47 26799.48 186
agg_prior294.58 33799.46 26999.50 176
test9_res95.10 32999.44 27099.50 176
train_agg98.35 26197.95 27199.57 13799.35 24899.35 16498.11 29299.41 24294.90 34497.92 33798.99 31698.02 19199.85 21095.38 32599.44 27099.50 176
agg_prior198.33 26397.92 27799.57 13799.35 24899.36 16097.99 30699.39 25294.85 34797.76 34698.98 31998.03 18999.85 21095.49 32199.44 27099.51 170
VPNet99.46 6199.37 7399.71 8099.82 4499.59 10999.48 7299.70 9999.81 2999.69 10599.58 18497.66 22299.86 19199.17 8099.44 27099.67 65
DP-MVS Recon98.50 24498.23 25199.31 21599.49 20399.46 13098.56 25299.63 13694.86 34698.85 28399.37 24797.81 20899.59 34596.08 30199.44 27098.88 306
LFMVS98.46 25098.19 25799.26 22599.24 28298.52 25699.62 4896.94 35399.87 1499.31 22199.58 18491.04 32599.81 26498.68 13499.42 27599.45 197
Fast-Effi-MVS+99.02 17598.87 18899.46 16999.38 24199.50 12299.04 18699.79 5597.17 30798.62 30398.74 34099.34 3599.95 4598.32 15399.41 27698.92 303
PatchmatchNetpermissive97.65 28997.80 28297.18 33498.82 33492.49 35699.17 15198.39 33598.12 25698.79 29099.58 18490.71 33299.89 14397.23 24599.41 27699.16 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest051596.98 30696.42 31398.66 29099.42 23297.47 30497.27 34494.30 36497.24 30399.15 24998.86 33385.01 35899.87 17097.10 25399.39 27898.63 317
ETH3D cwj APD-0.1698.50 24498.16 26099.51 15499.04 31499.39 15198.47 26299.47 22696.70 32198.78 29299.33 26197.62 22599.86 19194.69 33699.38 27999.28 242
testtj98.56 23698.17 25999.72 7699.45 22299.60 10698.88 21199.50 21596.88 31499.18 24699.48 22497.08 24899.92 9093.69 34799.38 27999.63 95
原ACMM199.37 20199.47 21498.87 23699.27 28196.74 32098.26 32199.32 26297.93 19899.82 24895.96 30999.38 27999.43 208
test22299.51 19299.08 21397.83 32099.29 27795.21 34198.68 30099.31 26497.28 23899.38 27999.43 208
F-COLMAP98.74 21698.45 22999.62 12099.57 16599.47 12698.84 21899.65 12896.31 32698.93 27199.19 29297.68 21799.87 17096.52 28399.37 28399.53 158
DPM-MVS98.28 26497.94 27599.32 21299.36 24699.11 20697.31 34398.78 31896.88 31498.84 28499.11 30197.77 21199.61 34394.03 34499.36 28499.23 249
旧先验199.49 20399.29 17399.26 28399.39 24597.67 21899.36 28499.46 195
PS-MVSNAJ99.00 18199.08 13898.76 28599.37 24498.10 28298.00 30499.51 21199.47 9599.41 19898.50 35199.28 4199.97 1798.83 11899.34 28698.20 343
112198.56 23698.24 25099.52 15199.49 20399.24 18899.30 10999.22 29195.77 33398.52 31199.29 26997.39 23399.85 21095.79 31599.34 28699.46 195
xiu_mvs_v2_base99.02 17599.11 12798.77 28499.37 24498.09 28398.13 28999.51 21199.47 9599.42 19098.54 34899.38 2999.97 1798.83 11899.33 28898.24 339
新几何199.52 15199.50 19899.22 19299.26 28395.66 33698.60 30599.28 27197.67 21899.89 14395.95 31099.32 28999.45 197
VDDNet98.97 18598.82 19599.42 18199.71 11198.81 23799.62 4898.68 32199.81 2999.38 20699.80 5494.25 29399.85 21098.79 12299.32 28999.59 128
VNet99.18 14299.06 14499.56 14199.24 28299.36 16099.33 9999.31 27299.67 5799.47 17999.57 19296.48 26199.84 22799.15 8499.30 29199.47 191
PatchMatch-RL98.68 22398.47 22799.30 21799.44 22499.28 17598.14 28899.54 19197.12 31099.11 25599.25 27997.80 20999.70 30296.51 28499.30 29198.93 302
Effi-MVS+-dtu99.07 16598.92 18199.52 15198.89 32599.78 3999.15 15999.66 11799.34 11698.92 27499.24 28497.69 21599.98 798.11 17399.28 29398.81 312
testdata99.42 18199.51 19298.93 22999.30 27596.20 32798.87 28199.40 24198.33 16699.89 14396.29 29499.28 29399.44 202
OpenMVS_ROBcopyleft97.31 1797.36 29996.84 31098.89 27499.29 27299.45 13598.87 21499.48 22286.54 36299.44 18499.74 8397.34 23699.86 19191.61 35199.28 29397.37 356
NCCC98.82 20798.57 21899.58 13299.21 28699.31 17098.61 24399.25 28698.65 20598.43 31699.26 27797.86 20499.81 26496.55 28199.27 29699.61 115
testgi99.29 10699.26 10199.37 20199.75 9598.81 23798.84 21899.89 1598.38 23399.75 8099.04 30999.36 3499.86 19199.08 9599.25 29799.45 197
PLCcopyleft97.35 1698.36 25897.99 26799.48 16499.32 26499.24 18898.50 26099.51 21195.19 34298.58 30798.96 32496.95 25299.83 23895.63 31899.25 29799.37 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu99.20 13499.12 12499.43 17999.25 28099.69 7899.05 18499.82 3999.50 8898.97 26799.05 30698.98 7499.98 798.20 16399.24 29998.62 318
PMMVS98.49 24798.29 24799.11 24698.96 31998.42 26397.54 33199.32 26897.53 28998.47 31598.15 35797.88 20399.82 24897.46 22799.24 29999.09 279
EPMVS96.53 31696.32 31497.17 33598.18 35792.97 35599.39 8489.95 36998.21 25298.61 30499.59 18286.69 35699.72 29696.99 25799.23 30198.81 312
alignmvs98.28 26497.96 27099.25 22899.12 30198.93 22999.03 18898.42 33399.64 6598.72 29797.85 36090.86 33099.62 33998.88 11699.13 30299.19 258
cascas96.99 30596.82 31197.48 32597.57 36495.64 33796.43 35899.56 18091.75 35597.13 35597.61 36395.58 28298.63 36496.68 27599.11 30398.18 344
BH-RMVSNet98.41 25498.14 26199.21 23399.21 28698.47 25898.60 24598.26 33898.35 24098.93 27199.31 26497.20 24499.66 32894.32 33899.10 30499.51 170
MAR-MVS98.24 26897.92 27799.19 23698.78 33999.65 9099.17 15199.14 30195.36 33898.04 33498.81 33797.47 22899.72 29695.47 32399.06 30598.21 341
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GA-MVS97.99 28097.68 28898.93 26499.52 18798.04 28697.19 34799.05 30798.32 24698.81 28798.97 32289.89 34199.41 35898.33 15299.05 30699.34 230
EMVS96.96 30797.28 29595.99 34798.76 34191.03 36595.26 36298.61 32599.34 11698.92 27498.88 33293.79 29899.66 32892.87 34899.05 30697.30 357
E-PMN97.14 30497.43 29296.27 34498.79 33791.62 36295.54 36199.01 31099.44 10398.88 27899.12 29992.78 30799.68 31994.30 33999.03 30897.50 353
tpmrst97.73 28698.07 26496.73 33998.71 34392.00 35899.10 17498.86 31398.52 21998.92 27499.54 20491.90 31599.82 24898.02 17799.03 30898.37 333
PatchT98.45 25198.32 24598.83 27998.94 32098.29 27099.24 13098.82 31699.84 2399.08 25899.76 7691.37 32099.94 5798.82 12099.00 31098.26 338
CL-MVSNet_2432*160098.71 22098.56 22199.15 24199.22 28498.66 24797.14 34899.51 21198.09 25999.54 16299.27 27396.87 25499.74 29198.43 14498.96 31199.03 291
test_yl98.25 26697.95 27199.13 24399.17 29498.47 25899.00 19398.67 32398.97 16799.22 23899.02 31491.31 32199.69 30897.26 24198.93 31299.24 246
DCV-MVSNet98.25 26697.95 27199.13 24399.17 29498.47 25899.00 19398.67 32398.97 16799.22 23899.02 31491.31 32199.69 30897.26 24198.93 31299.24 246
canonicalmvs99.02 17599.00 16399.09 24899.10 30798.70 24399.61 5399.66 11799.63 6898.64 30297.65 36299.04 7099.54 34898.79 12298.92 31499.04 290
MDTV_nov1_ep1397.73 28698.70 34490.83 36699.15 15998.02 34098.51 22098.82 28699.61 16990.98 32699.66 32896.89 26398.92 314
PAPM_NR98.36 25898.04 26599.33 20899.48 20998.93 22998.79 23199.28 28097.54 28898.56 30998.57 34597.12 24699.69 30894.09 34298.90 31699.38 219
FPMVS96.32 32095.50 32898.79 28399.60 14998.17 27798.46 26798.80 31797.16 30896.28 35799.63 15182.19 36299.09 36188.45 35898.89 31799.10 276
tpm cat196.78 31096.98 30596.16 34698.85 32990.59 36899.08 18199.32 26892.37 35497.73 34899.46 23291.15 32499.69 30896.07 30298.80 31898.21 341
test-LLR97.15 30296.95 30697.74 32198.18 35795.02 34297.38 33996.10 35598.00 26297.81 34398.58 34390.04 33999.91 10897.69 21498.78 31998.31 334
test-mter96.23 32395.73 32697.74 32198.18 35795.02 34297.38 33996.10 35597.90 27197.81 34398.58 34379.12 37099.91 10897.69 21498.78 31998.31 334
TESTMET0.1,196.24 32295.84 32497.41 32898.24 35593.84 35097.38 33995.84 35998.43 22697.81 34398.56 34679.77 36799.89 14397.77 20198.77 32198.52 325
CR-MVSNet98.35 26198.20 25498.83 27999.05 31298.12 27999.30 10999.67 11397.39 29799.16 24799.79 6091.87 31799.91 10898.78 12598.77 32198.44 331
RPMNet98.60 23098.53 22498.83 27999.05 31298.12 27999.30 10999.62 13999.86 1699.16 24799.74 8392.53 31099.92 9098.75 12798.77 32198.44 331
WTY-MVS98.59 23398.37 23899.26 22599.43 22798.40 26498.74 23699.13 30398.10 25799.21 24099.24 28494.82 28799.90 12997.86 19498.77 32199.49 181
Effi-MVS+99.06 16698.97 17299.34 20699.31 26598.98 21998.31 27599.91 998.81 19098.79 29098.94 32699.14 5699.84 22798.79 12298.74 32599.20 256
PAPR97.56 29397.07 30299.04 25598.80 33698.11 28197.63 32799.25 28694.56 35098.02 33598.25 35697.43 23099.68 31990.90 35598.74 32599.33 231
tpmvs97.39 29797.69 28796.52 34298.41 35091.76 36099.30 10998.94 31297.74 27997.85 34299.55 20292.40 31399.73 29496.25 29698.73 32798.06 346
dp96.86 30897.07 30296.24 34598.68 34590.30 36999.19 14598.38 33697.35 29998.23 32499.59 18287.23 34799.82 24896.27 29598.73 32798.59 320
XVG-OURS-SEG-HR99.16 14798.99 16899.66 9599.84 3499.64 9298.25 28099.73 8398.39 23299.63 12599.43 23799.70 1199.90 12997.34 23398.64 32999.44 202
thres600view796.60 31596.16 31797.93 31499.63 14296.09 33299.18 14697.57 34798.77 19698.72 29797.32 36687.04 34999.72 29688.57 35798.62 33097.98 348
thres20096.09 32495.68 32797.33 33199.48 20996.22 32998.53 25797.57 34798.06 26198.37 31896.73 37186.84 35399.61 34386.99 36398.57 33196.16 361
131498.00 27997.90 28098.27 30798.90 32297.45 30699.30 10999.06 30694.98 34397.21 35399.12 29998.43 15199.67 32495.58 32098.56 33297.71 352
mvs-test198.83 20598.70 20699.22 23298.89 32599.65 9098.88 21199.66 11799.34 11698.29 31998.94 32697.69 21599.96 3598.11 17398.54 33398.04 347
thres100view90096.39 31896.03 32097.47 32699.63 14295.93 33399.18 14697.57 34798.75 20098.70 29997.31 36787.04 34999.67 32487.62 36098.51 33496.81 358
tfpn200view996.30 32195.89 32197.53 32499.58 15596.11 33099.00 19397.54 35098.43 22698.52 31196.98 36986.85 35199.67 32487.62 36098.51 33496.81 358
thres40096.40 31795.89 32197.92 31599.58 15596.11 33099.00 19397.54 35098.43 22698.52 31196.98 36986.85 35199.67 32487.62 36098.51 33497.98 348
MVS95.72 33294.63 33698.99 25798.56 34797.98 29299.30 10998.86 31372.71 36597.30 35099.08 30398.34 16499.74 29189.21 35698.33 33799.26 243
BH-untuned98.22 27098.09 26398.58 29399.38 24197.24 31198.55 25398.98 31197.81 27899.20 24598.76 33997.01 25099.65 33594.83 33298.33 33798.86 308
test_method91.72 33592.32 33889.91 34993.49 36970.18 37190.28 36399.56 18061.71 36695.39 36399.52 20993.90 29599.94 5798.76 12698.27 33999.62 106
gg-mvs-nofinetune95.87 32995.17 33397.97 31398.19 35696.95 31799.69 2889.23 37099.89 1196.24 35999.94 1281.19 36399.51 35393.99 34598.20 34097.44 354
HY-MVS98.23 998.21 27197.95 27198.99 25799.03 31598.24 27199.61 5398.72 32096.81 31898.73 29699.51 21394.06 29499.86 19196.91 26198.20 34098.86 308
UnsupCasMVSNet_bld98.55 23998.27 24899.40 19199.56 17599.37 15797.97 31099.68 10897.49 29299.08 25899.35 25795.41 28399.82 24897.70 20898.19 34299.01 296
tpm296.35 31996.22 31696.73 33998.88 32891.75 36199.21 13998.51 32993.27 35297.89 33999.21 28884.83 35999.70 30296.04 30398.18 34398.75 315
tmp_tt95.75 33195.42 32996.76 33789.90 37094.42 34698.86 21597.87 34478.01 36399.30 22599.69 11397.70 21395.89 36699.29 6398.14 34499.95 1
baseline296.83 30996.28 31598.46 29799.09 30996.91 31998.83 22093.87 36697.23 30496.23 36098.36 35388.12 34599.90 12996.68 27598.14 34498.57 323
CostFormer96.71 31396.79 31296.46 34398.90 32290.71 36799.41 8198.68 32194.69 34998.14 33099.34 26086.32 35799.80 26997.60 21998.07 34698.88 306
DWT-MVSNet_test96.03 32695.80 32596.71 34198.50 34991.93 35999.25 12997.87 34495.99 33096.81 35697.61 36381.02 36499.66 32897.20 24897.98 34798.54 324
AUN-MVS97.82 28297.38 29399.14 24299.27 27798.53 25498.72 23999.02 30898.10 25797.18 35499.03 31389.26 34399.85 21097.94 18697.91 34899.03 291
DeepMVS_CXcopyleft97.98 31299.69 12196.95 31799.26 28375.51 36495.74 36298.28 35596.47 26299.62 33991.23 35397.89 34997.38 355
hse-mvs298.52 24298.30 24699.16 23999.29 27298.60 25298.77 23399.02 30899.68 5399.32 21799.04 30992.50 31199.85 21099.24 6797.87 35099.03 291
PAPM95.61 33394.71 33598.31 30599.12 30196.63 32396.66 35798.46 33290.77 35896.25 35898.68 34293.01 30599.69 30881.60 36597.86 35198.62 318
JIA-IIPM98.06 27697.92 27798.50 29598.59 34697.02 31698.80 22898.51 32999.88 1397.89 33999.87 3191.89 31699.90 12998.16 17097.68 35298.59 320
ET-MVSNet_ETH3D96.78 31096.07 31998.91 26799.26 27997.92 29397.70 32596.05 35897.96 26992.37 36698.43 35287.06 34899.90 12998.27 15797.56 35398.91 304
TR-MVS97.44 29697.15 30198.32 30398.53 34897.46 30598.47 26297.91 34396.85 31698.21 32598.51 35096.42 26499.51 35392.16 35097.29 35497.98 348
BH-w/o97.20 30197.01 30497.76 31999.08 31095.69 33698.03 30198.52 32895.76 33497.96 33698.02 35895.62 28199.47 35592.82 34997.25 35598.12 345
KD-MVS_2432*160095.89 32795.41 33097.31 33294.96 36693.89 34897.09 34999.22 29197.23 30498.88 27899.04 30979.23 36899.54 34896.24 29796.81 35698.50 329
miper_refine_blended95.89 32795.41 33097.31 33294.96 36693.89 34897.09 34999.22 29197.23 30498.88 27899.04 30979.23 36899.54 34896.24 29796.81 35698.50 329
UnsupCasMVSNet_eth98.83 20598.57 21899.59 12799.68 13099.45 13598.99 19899.67 11399.48 9099.55 16099.36 25294.92 28599.86 19198.95 11196.57 35899.45 197
hse-mvs398.61 22898.34 24299.44 17599.60 14998.67 24599.27 12099.44 23599.68 5399.32 21799.49 22192.50 311100.00 199.24 6796.51 35999.65 83
GG-mvs-BLEND97.36 32997.59 36296.87 32099.70 2288.49 37194.64 36597.26 36880.66 36599.12 36091.50 35296.50 36096.08 362
tpm97.15 30296.95 30697.75 32098.91 32194.24 34799.32 10297.96 34197.71 28198.29 31999.32 26286.72 35599.92 9098.10 17596.24 36199.09 279
test0.0.03 197.37 29896.91 30998.74 28697.72 36197.57 30297.60 32997.36 35298.00 26299.21 24098.02 35890.04 33999.79 27298.37 14795.89 36298.86 308
IB-MVS95.41 2095.30 33494.46 33797.84 31798.76 34195.33 34097.33 34296.07 35796.02 32995.37 36497.41 36576.17 37299.96 3597.54 22295.44 36398.22 340
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline197.73 28697.33 29498.96 25999.30 26997.73 29899.40 8298.42 33399.33 11999.46 18299.21 28891.18 32399.82 24898.35 15091.26 36499.32 234
PVSNet_095.53 1995.85 33095.31 33297.47 32698.78 33993.48 35295.72 36099.40 24996.18 32897.37 34997.73 36195.73 27999.58 34695.49 32181.40 36599.36 225
testmvs28.94 33733.33 33915.79 35126.03 3719.81 37396.77 35515.67 37211.55 36823.87 36950.74 37519.03 3748.53 36923.21 36733.07 36629.03 365
test12329.31 33633.05 34118.08 35025.93 37212.24 37297.53 33310.93 37311.78 36724.21 36850.08 37621.04 3738.60 36823.51 36632.43 36733.39 364
uanet_test8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k24.88 33833.17 3400.00 3520.00 3730.00 3740.00 36499.62 1390.00 3690.00 37099.13 29599.82 40.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas16.61 33922.14 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 199.28 410.00 3700.00 3680.00 3680.00 366
sosnet-low-res8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
sosnet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
Regformer8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.26 34611.02 3490.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.16 2930.00 3750.00 3700.00 3680.00 3680.00 366
uanet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
test_241102_ONE99.69 12199.82 2699.54 19199.12 15499.82 5099.49 22198.91 8399.52 352
save fliter99.53 18299.25 18398.29 27699.38 25899.07 158
test072699.69 12199.80 3499.24 13099.57 17599.16 14599.73 9399.65 13998.35 162
GSMVS99.14 270
test_part299.62 14699.67 8399.55 160
sam_mvs190.81 33199.14 270
sam_mvs90.52 335
MTGPAbinary99.53 200
test_post199.14 16151.63 37489.54 34299.82 24896.86 264
test_post52.41 37390.25 33799.86 191
patchmatchnet-post99.62 16090.58 33399.94 57
MTMP99.09 17898.59 327
gm-plane-assit97.59 36289.02 37093.47 35198.30 35499.84 22796.38 291
TEST999.35 24899.35 16498.11 29299.41 24294.83 34897.92 33798.99 31698.02 19199.85 210
test_899.34 25899.31 17098.08 29699.40 24994.90 34497.87 34198.97 32298.02 19199.84 227
agg_prior99.35 24899.36 16099.39 25297.76 34699.85 210
test_prior499.19 19998.00 304
test_prior99.46 16999.35 24899.22 19299.39 25299.69 30899.48 186
旧先验297.94 31395.33 33998.94 27099.88 15796.75 271
新几何298.04 300
无先验98.01 30299.23 29095.83 33299.85 21095.79 31599.44 202
原ACMM297.92 315
testdata299.89 14395.99 306
segment_acmp98.37 160
testdata197.72 32397.86 276
plane_prior799.58 15599.38 154
plane_prior699.47 21499.26 17997.24 239
plane_prior499.25 279
plane_prior399.31 17098.36 23599.14 251
plane_prior298.80 22898.94 172
plane_prior199.51 192
n20.00 374
nn0.00 374
door-mid99.83 34
test1199.29 277
door99.77 63
HQP5-MVS98.94 225
HQP-NCC99.31 26597.98 30797.45 29398.15 326
ACMP_Plane99.31 26597.98 30797.45 29398.15 326
BP-MVS94.73 333
HQP4-MVS98.15 32699.70 30299.53 158
HQP2-MVS96.67 256
NP-MVS99.40 23699.13 20498.83 334
MDTV_nov1_ep13_2view91.44 36499.14 16197.37 29899.21 24091.78 31996.75 27199.03 291
Test By Simon98.41 154