This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
IterMVS-SCA-FT99.00 17599.16 10898.51 28299.75 9395.90 32098.07 28699.84 2999.84 2199.89 2699.73 8596.01 26799.99 499.33 48100.00 199.63 92
new-patchmatchnet99.35 8699.57 3798.71 27799.82 4296.62 31098.55 24299.75 7099.50 8199.88 3299.87 3099.31 3599.88 14799.43 35100.00 199.62 104
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 699.73 1699.85 2399.70 4399.92 1899.93 1399.45 2199.97 1699.36 44100.00 199.85 13
UA-Net99.78 1399.76 1499.86 1699.72 10699.71 5999.91 399.95 499.96 299.71 9699.91 1999.15 5299.97 1699.50 30100.00 199.90 4
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 3999.68 3199.85 2399.95 399.98 399.92 1699.28 4099.98 699.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 3799.70 2299.86 1999.89 1199.98 399.90 2199.94 199.98 699.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 499.96 499.79 3499.72 1999.88 1599.92 699.98 399.93 1399.94 199.98 699.77 12100.00 199.92 3
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
test_djsdf99.84 899.81 999.91 299.94 1099.84 1699.77 1199.80 4699.73 3699.97 699.92 1699.77 799.98 699.43 35100.00 199.90 4
IterMVS98.97 17999.16 10898.42 28699.74 9995.64 32398.06 28899.83 3199.83 2499.85 3899.74 8196.10 26699.99 499.27 60100.00 199.63 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 43100.00 199.90 7100.00 199.97 999.61 1699.97 1699.75 13100.00 199.84 14
pmmvs-eth3d99.48 5299.47 5199.51 14999.77 7999.41 14098.81 21699.66 11199.42 10199.75 7899.66 13299.20 4799.76 27298.98 9499.99 1299.36 216
v7n99.82 1099.80 1099.88 1199.96 499.84 1699.82 899.82 3699.84 2199.94 1199.91 1999.13 5799.96 3399.83 999.99 1299.83 18
v899.68 2299.69 1899.65 9599.80 5599.40 14199.66 3899.76 6499.64 5899.93 1499.85 3598.66 11899.84 21399.88 699.99 1299.71 44
v1099.69 2199.69 1899.66 9099.81 4999.39 14399.66 3899.75 7099.60 7299.92 1899.87 3098.75 10799.86 18099.90 299.99 1299.73 40
CHOSEN 1792x268899.39 7799.30 8599.65 9599.88 2399.25 17598.78 22399.88 1598.66 19399.96 899.79 5797.45 22299.93 6699.34 4699.99 1299.78 30
PVSNet_Blended_VisFu99.40 7399.38 6699.44 16999.90 1998.66 23798.94 19999.91 897.97 25399.79 6399.73 8599.05 6899.97 1699.15 7699.99 1299.68 56
IterMVS-LS99.41 7099.47 5199.25 21999.81 4998.09 26998.85 20899.76 6499.62 6299.83 4699.64 13998.54 13299.97 1699.15 7699.99 1299.68 56
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS98.90 499.62 3299.61 2999.67 8399.72 10699.44 12899.24 12199.71 9099.27 11799.93 1499.90 2199.70 1199.93 6698.99 9299.99 1299.64 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 599.90 799.97 699.87 3099.81 599.95 4299.54 2499.99 1299.80 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
D2MVS99.22 12199.19 10599.29 21099.69 11998.74 23298.81 21699.41 23098.55 20499.68 10399.69 11198.13 17799.87 16098.82 11199.98 2199.24 237
CHOSEN 280x42098.41 24398.41 22598.40 28799.34 24895.89 32196.94 33999.44 22498.80 18199.25 21899.52 20293.51 29099.98 698.94 10399.98 2199.32 225
v119299.57 3799.57 3799.57 13299.77 7999.22 18499.04 17799.60 14799.18 13199.87 3699.72 9199.08 6399.85 19899.89 599.98 2199.66 73
v114499.54 4599.53 4799.59 12399.79 6599.28 16799.10 16599.61 13799.20 12999.84 4199.73 8598.67 11699.84 21399.86 899.98 2199.64 87
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2099.83 699.85 2399.80 2999.93 1499.93 1398.54 13299.93 6699.59 1999.98 2199.76 35
UGNet99.38 7999.34 7499.49 15598.90 30898.90 22499.70 2299.35 25199.86 1698.57 29299.81 4998.50 14299.93 6699.38 4199.98 2199.66 73
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MIMVSNet199.66 2499.62 2599.80 2999.94 1099.87 799.69 2899.77 5999.78 3299.93 1499.89 2597.94 19199.92 8499.65 1699.98 2199.62 104
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2399.66 7799.69 2899.92 599.67 5099.77 7199.75 7899.61 1699.98 699.35 4599.98 2199.72 41
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9099.93 499.95 1099.89 2599.71 999.96 3399.51 2899.97 2999.84 14
CANet99.11 15299.05 14199.28 21298.83 31798.56 24198.71 23099.41 23099.25 12199.23 22299.22 27597.66 21599.94 5399.19 6799.97 2999.33 222
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 899.85 1999.94 1199.95 1199.73 899.90 11999.65 1699.97 2999.69 50
v14419299.55 4399.54 4399.58 12799.78 7199.20 19099.11 16499.62 13399.18 13199.89 2699.72 9198.66 11899.87 16099.88 699.97 2999.66 73
v192192099.56 4099.57 3799.55 13999.75 9399.11 19899.05 17599.61 13799.15 13899.88 3299.71 9899.08 6399.87 16099.90 299.97 2999.66 73
FC-MVSNet-test99.70 1999.65 2299.86 1699.88 2399.86 1099.72 1999.78 5699.90 799.82 4899.83 4098.45 14799.87 16099.51 2899.97 2999.86 11
v2v48299.50 4899.47 5199.58 12799.78 7199.25 17599.14 15199.58 16399.25 12199.81 5599.62 15698.24 16699.84 21399.83 999.97 2999.64 87
Patchmtry98.78 20498.54 21499.49 15598.89 31199.19 19199.32 9699.67 10799.65 5699.72 9199.79 5791.87 30499.95 4298.00 17199.97 2999.33 222
PVSNet_BlendedMVS99.03 16799.01 15399.09 23699.54 17297.99 27398.58 23699.82 3697.62 27199.34 20499.71 9898.52 13999.77 27097.98 17299.97 2999.52 160
FMVSNet199.66 2499.63 2499.73 6699.78 7199.77 3999.68 3199.70 9499.67 5099.82 4899.83 4098.98 7399.90 11999.24 6199.97 2999.53 150
HyFIR lowres test98.91 18898.64 20299.73 6699.85 3299.47 11798.07 28699.83 3198.64 19599.89 2699.60 17292.57 297100.00 199.33 4899.97 2999.72 41
ppachtmachnet_test98.89 19399.12 11898.20 29699.66 13395.24 32797.63 31699.68 10399.08 14699.78 6699.62 15698.65 12099.88 14798.02 16799.96 4099.48 177
Anonymous2023121199.62 3299.57 3799.76 4599.61 14399.60 9799.81 999.73 7899.82 2599.90 2299.90 2197.97 19099.86 18099.42 3999.96 4099.80 23
nrg03099.70 1999.66 2199.82 2399.76 8399.84 1699.61 5099.70 9499.93 499.78 6699.68 12299.10 5899.78 26299.45 3399.96 4099.83 18
v124099.56 4099.58 3499.51 14999.80 5599.00 20999.00 18499.65 12299.15 13899.90 2299.75 7899.09 6099.88 14799.90 299.96 4099.67 63
PS-CasMVS99.66 2499.58 3499.89 799.80 5599.85 1199.66 3899.73 7899.62 6299.84 4199.71 9898.62 12299.96 3399.30 5499.96 4099.86 11
TAMVS99.49 5099.45 5599.63 10699.48 20199.42 13699.45 7199.57 16599.66 5499.78 6699.83 4097.85 19999.86 18099.44 3499.96 4099.61 111
test_040299.22 12199.14 11299.45 16799.79 6599.43 13399.28 11199.68 10399.54 7699.40 19599.56 19099.07 6599.82 23496.01 28899.96 4099.11 265
our_test_398.85 19899.09 12998.13 29899.66 13394.90 33097.72 31299.58 16399.07 14899.64 11799.62 15698.19 17399.93 6698.41 13499.95 4799.55 140
CANet_DTU98.91 18898.85 18399.09 23698.79 32398.13 26498.18 27299.31 26099.48 8398.86 26699.51 20596.56 25099.95 4299.05 8899.95 4799.19 249
pmmvs599.19 13199.11 12199.42 17499.76 8398.88 22598.55 24299.73 7898.82 17899.72 9199.62 15696.56 25099.82 23499.32 5099.95 4799.56 137
testing_299.58 3699.56 4199.62 11599.81 4999.44 12899.14 15199.43 22799.69 4699.82 4899.79 5799.14 5499.79 25899.31 5399.95 4799.63 92
RRT_MVS98.75 20898.54 21499.41 18198.14 34698.61 24098.98 19399.66 11199.31 11299.84 4199.75 7891.98 30199.98 699.20 6599.95 4799.62 104
V4299.56 4099.54 4399.63 10699.79 6599.46 12199.39 8199.59 15499.24 12399.86 3799.70 10598.55 13099.82 23499.79 1199.95 4799.60 115
EU-MVSNet99.39 7799.62 2598.72 27599.88 2396.44 31299.56 6099.85 2399.90 799.90 2299.85 3598.09 17999.83 22499.58 2199.95 4799.90 4
PMMVS299.48 5299.45 5599.57 13299.76 8398.99 21098.09 28399.90 1198.95 16099.78 6699.58 18099.57 1999.93 6699.48 3199.95 4799.79 29
DTE-MVSNet99.68 2299.61 2999.88 1199.80 5599.87 799.67 3599.71 9099.72 3999.84 4199.78 6498.67 11699.97 1699.30 5499.95 4799.80 23
WR-MVS_H99.61 3499.53 4799.87 1499.80 5599.83 2099.67 3599.75 7099.58 7599.85 3899.69 11198.18 17599.94 5399.28 5999.95 4799.83 18
K. test v398.87 19698.60 20599.69 8099.93 1399.46 12199.74 1594.97 34599.78 3299.88 3299.88 2893.66 28999.97 1699.61 1899.95 4799.64 87
TDRefinement99.72 1799.70 1799.77 3999.90 1999.85 1199.86 599.92 599.69 4699.78 6699.92 1699.37 2999.88 14798.93 10499.95 4799.60 115
Gipumacopyleft99.57 3799.59 3299.49 15599.98 399.71 5999.72 1999.84 2999.81 2699.94 1199.78 6498.91 8299.71 28698.41 13499.95 4799.05 280
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS_030498.88 19498.71 19699.39 18698.85 31598.91 22399.45 7199.30 26398.56 20297.26 33799.68 12296.18 26499.96 3399.17 7299.94 6099.29 231
v14899.40 7399.41 6299.39 18699.76 8398.94 21699.09 16999.59 15499.17 13499.81 5599.61 16598.41 15099.69 29499.32 5099.94 6099.53 150
casdiffmvs99.63 3099.61 2999.67 8399.79 6599.59 10099.13 15899.85 2399.79 3199.76 7399.72 9199.33 3499.82 23499.21 6299.94 6099.59 124
PEN-MVS99.66 2499.59 3299.89 799.83 3699.87 799.66 3899.73 7899.70 4399.84 4199.73 8598.56 12999.96 3399.29 5799.94 6099.83 18
CP-MVSNet99.54 4599.43 6099.87 1499.76 8399.82 2499.57 5899.61 13799.54 7699.80 5899.64 13997.79 20399.95 4299.21 6299.94 6099.84 14
baseline99.63 3099.62 2599.66 9099.80 5599.62 9099.44 7499.80 4699.71 4099.72 9199.69 11199.15 5299.83 22499.32 5099.94 6099.53 150
FMVSNet299.35 8699.28 9299.55 13999.49 19599.35 15699.45 7199.57 16599.44 9499.70 9899.74 8197.21 23499.87 16099.03 8999.94 6099.44 193
ACMMP++_ref99.94 60
eth_miper_zixun_eth98.68 21598.71 19698.60 27999.10 29396.84 30797.52 32499.54 18098.94 16199.58 14199.48 21596.25 26299.76 27298.01 17099.93 6899.21 244
FIs99.65 2999.58 3499.84 1999.84 3399.85 1199.66 3899.75 7099.86 1699.74 8699.79 5798.27 16499.85 19899.37 4399.93 6899.83 18
pmmvs499.13 14699.06 13799.36 19699.57 16099.10 20298.01 29199.25 27498.78 18499.58 14199.44 22798.24 16699.76 27298.74 11899.93 6899.22 242
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 5799.59 5599.82 3699.39 10299.82 4899.84 3999.38 2799.91 10099.38 4199.93 6899.80 23
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2099.76 1399.87 1799.73 3699.89 2699.87 3099.63 1499.87 16099.54 2499.92 7299.63 92
EI-MVSNet99.38 7999.44 5799.21 22599.58 15098.09 26999.26 11599.46 21999.62 6299.75 7899.67 12898.54 13299.85 19899.15 7699.92 7299.68 56
TranMVSNet+NR-MVSNet99.54 4599.47 5199.76 4599.58 15099.64 8499.30 10399.63 13099.61 6699.71 9699.56 19098.76 10599.96 3399.14 8299.92 7299.68 56
lessismore_v099.64 10299.86 2999.38 14690.66 35299.89 2699.83 4094.56 28199.97 1699.56 2399.92 7299.57 135
SixPastTwentyTwo99.42 6699.30 8599.76 4599.92 1499.67 7599.70 2299.14 28799.65 5699.89 2699.90 2196.20 26399.94 5399.42 3999.92 7299.67 63
MVSTER98.47 23898.22 24099.24 22299.06 29798.35 25599.08 17299.46 21999.27 11799.75 7899.66 13288.61 33099.85 19899.14 8299.92 7299.52 160
N_pmnet98.73 21298.53 21699.35 19799.72 10698.67 23698.34 26094.65 34698.35 22999.79 6399.68 12298.03 18399.93 6698.28 14699.92 7299.44 193
CSCG99.37 8199.29 9099.60 12199.71 10999.46 12199.43 7699.85 2398.79 18299.41 19099.60 17298.92 8099.92 8498.02 16799.92 7299.43 199
CMPMVSbinary77.52 2398.50 23398.19 24599.41 18198.33 33999.56 10699.01 18299.59 15495.44 32199.57 14499.80 5195.64 27199.46 34196.47 27399.92 7299.21 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EG-PatchMatch MVS99.57 3799.56 4199.62 11599.77 7999.33 15999.26 11599.76 6499.32 11199.80 5899.78 6499.29 3899.87 16099.15 7699.91 8199.66 73
miper_lstm_enhance98.65 21798.60 20598.82 27099.20 27597.33 29597.78 31099.66 11199.01 15499.59 13999.50 20894.62 28099.85 19898.12 16299.90 8299.26 234
EI-MVSNet-UG-set99.48 5299.50 4999.42 17499.57 16098.65 23999.24 12199.46 21999.68 4899.80 5899.66 13298.99 7299.89 13299.19 6799.90 8299.72 41
diffmvs99.34 9199.32 7999.39 18699.67 13298.77 23198.57 24099.81 4599.61 6699.48 17099.41 23098.47 14399.86 18098.97 9699.90 8299.53 150
YYNet198.95 18598.99 16198.84 26599.64 13797.14 30098.22 27199.32 25698.92 16699.59 13999.66 13297.40 22499.83 22498.27 14799.90 8299.55 140
GBi-Net99.42 6699.31 8099.73 6699.49 19599.77 3999.68 3199.70 9499.44 9499.62 12899.83 4097.21 23499.90 11998.96 9899.90 8299.53 150
FMVSNet597.80 27197.25 28499.42 17498.83 31798.97 21399.38 8399.80 4698.87 17299.25 21899.69 11180.60 35199.91 10098.96 9899.90 8299.38 210
test199.42 6699.31 8099.73 6699.49 19599.77 3999.68 3199.70 9499.44 9499.62 12899.83 4097.21 23499.90 11998.96 9899.90 8299.53 150
FMVSNet398.80 20398.63 20499.32 20499.13 28598.72 23399.10 16599.48 21199.23 12599.62 12899.64 13992.57 29799.86 18098.96 9899.90 8299.39 208
cl-mvsnet_98.54 22998.41 22598.92 25399.03 30197.80 28297.46 32699.59 15498.90 16899.60 13699.46 22393.85 28699.78 26297.97 17499.89 9099.17 253
cl-mvsnet198.54 22998.42 22498.92 25399.03 30197.80 28297.46 32699.59 15498.90 16899.60 13699.46 22393.87 28599.78 26297.97 17499.89 9099.18 251
EI-MVSNet-Vis-set99.47 5899.49 5099.42 17499.57 16098.66 23799.24 12199.46 21999.67 5099.79 6399.65 13798.97 7599.89 13299.15 7699.89 9099.71 44
DSMNet-mixed99.48 5299.65 2298.95 24899.71 10997.27 29699.50 6499.82 3699.59 7499.41 19099.85 3599.62 15100.00 199.53 2699.89 9099.59 124
Vis-MVSNet (Re-imp)98.77 20598.58 21099.34 19899.78 7198.88 22599.61 5099.56 17099.11 14499.24 22199.56 19093.00 29599.78 26297.43 21899.89 9099.35 219
EPP-MVSNet99.17 13999.00 15699.66 9099.80 5599.43 13399.70 2299.24 27799.48 8399.56 15199.77 7194.89 27699.93 6698.72 12099.89 9099.63 92
CLD-MVS98.76 20798.57 21199.33 20099.57 16098.97 21397.53 32299.55 17596.41 30899.27 21699.13 28499.07 6599.78 26296.73 25999.89 9099.23 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMH98.42 699.59 3599.54 4399.72 7199.86 2999.62 9099.56 6099.79 5298.77 18599.80 5899.85 3599.64 1399.85 19898.70 12199.89 9099.70 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl_fuxian98.72 21398.71 19698.72 27599.12 28797.22 29897.68 31599.56 17098.90 16899.54 15899.48 21596.37 25999.73 28097.88 17999.88 9899.21 244
VPA-MVSNet99.66 2499.62 2599.79 3499.68 12799.75 4799.62 4699.69 10099.85 1999.80 5899.81 4998.81 9299.91 10099.47 3299.88 9899.70 47
MDA-MVSNet_test_wron98.95 18598.99 16198.85 26399.64 13797.16 29998.23 27099.33 25498.93 16499.56 15199.66 13297.39 22699.83 22498.29 14599.88 9899.55 140
XVG-OURS99.21 12699.06 13799.65 9599.82 4299.62 9097.87 30799.74 7598.36 22499.66 11199.68 12299.71 999.90 11996.84 25399.88 9899.43 199
CDS-MVSNet99.22 12199.13 11599.50 15299.35 23899.11 19898.96 19699.54 18099.46 9299.61 13499.70 10596.31 26099.83 22499.34 4699.88 9899.55 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet99.03 16798.85 18399.55 13999.80 5599.25 17599.73 1699.15 28699.37 10499.61 13499.71 9894.73 27999.81 25097.70 19799.88 9899.58 129
USDC98.96 18298.93 17099.05 24299.54 17297.99 27397.07 33799.80 4698.21 24199.75 7899.77 7198.43 14899.64 32397.90 17799.88 9899.51 162
ACMH+98.40 899.50 4899.43 6099.71 7599.86 2999.76 4599.32 9699.77 5999.53 7899.77 7199.76 7499.26 4499.78 26297.77 19099.88 9899.60 115
SD-MVS99.01 17399.30 8598.15 29799.50 19099.40 14198.94 19999.61 13799.22 12899.75 7899.82 4699.54 2095.51 35197.48 21599.87 10699.54 147
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UniMVSNet (Re)99.37 8199.26 9799.68 8199.51 18499.58 10398.98 19399.60 14799.43 9999.70 9899.36 24397.70 20699.88 14799.20 6599.87 10699.59 124
WR-MVS99.11 15298.93 17099.66 9099.30 25999.42 13698.42 25799.37 24799.04 15399.57 14499.20 27996.89 24699.86 18098.66 12599.87 10699.70 47
NR-MVSNet99.40 7399.31 8099.68 8199.43 21999.55 10999.73 1699.50 20499.46 9299.88 3299.36 24397.54 21999.87 16098.97 9699.87 10699.63 92
LPG-MVS_test99.22 12199.05 14199.74 5999.82 4299.63 8899.16 14799.73 7897.56 27399.64 11799.69 11199.37 2999.89 13296.66 26399.87 10699.69 50
LGP-MVS_train99.74 5999.82 4299.63 8899.73 7897.56 27399.64 11799.69 11199.37 2999.89 13296.66 26399.87 10699.69 50
COLMAP_ROBcopyleft98.06 1299.45 6199.37 6999.70 7999.83 3699.70 6699.38 8399.78 5699.53 7899.67 10799.78 6499.19 4899.86 18097.32 22399.87 10699.55 140
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0399.55 4399.54 4399.58 12799.79 6599.37 14999.02 18099.89 1299.60 7299.82 4899.62 15698.81 9299.89 13299.43 3599.86 11399.47 182
Baseline_NR-MVSNet99.49 5099.37 6999.82 2399.91 1599.84 1698.83 21199.86 1999.68 4899.65 11599.88 2897.67 21199.87 16099.03 8999.86 11399.76 35
MSDG99.08 15898.98 16499.37 19399.60 14599.13 19697.54 32099.74 7598.84 17799.53 16299.55 19699.10 5899.79 25897.07 24199.86 11399.18 251
Patchmatch-RL test98.60 22098.36 23099.33 20099.77 7999.07 20698.27 26799.87 1798.91 16799.74 8699.72 9190.57 32199.79 25898.55 12999.85 11699.11 265
APDe-MVS99.48 5299.36 7299.85 1899.55 17199.81 2799.50 6499.69 10098.99 15599.75 7899.71 9898.79 9999.93 6698.46 13399.85 11699.80 23
ACMP97.51 1499.05 16398.84 18599.67 8399.78 7199.55 10998.88 20299.66 11197.11 29699.47 17199.60 17299.07 6599.89 13296.18 28399.85 11699.58 129
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft92.94 2198.82 20198.81 18998.85 26399.84 3397.99 27399.20 13199.47 21599.71 4099.42 18299.82 4698.09 17999.47 33993.88 32999.85 11699.07 278
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Anonymous2023120699.35 8699.31 8099.47 16099.74 9999.06 20899.28 11199.74 7599.23 12599.72 9199.53 20097.63 21799.88 14799.11 8499.84 12099.48 177
Regformer-399.41 7099.41 6299.40 18399.52 18098.70 23499.17 14199.44 22499.62 6299.75 7899.60 17298.90 8599.85 19898.89 10699.84 12099.65 81
Regformer-499.45 6199.44 5799.50 15299.52 18098.94 21699.17 14199.53 18999.64 5899.76 7399.60 17298.96 7899.90 11998.91 10599.84 12099.67 63
HPM-MVS_fast99.43 6399.30 8599.80 2999.83 3699.81 2799.52 6299.70 9498.35 22999.51 16799.50 20899.31 3599.88 14798.18 15799.84 12099.69 50
XVG-ACMP-BASELINE99.23 11399.10 12899.63 10699.82 4299.58 10398.83 21199.72 8798.36 22499.60 13699.71 9898.92 8099.91 10097.08 24099.84 12099.40 205
new_pmnet98.88 19498.89 17998.84 26599.70 11697.62 28798.15 27599.50 20497.98 25299.62 12899.54 19898.15 17699.94 5397.55 21099.84 12098.95 287
Test_1112_low_res98.95 18598.73 19499.63 10699.68 12799.15 19598.09 28399.80 4697.14 29499.46 17499.40 23296.11 26599.89 13299.01 9199.84 12099.84 14
1112_ss99.05 16398.84 18599.67 8399.66 13399.29 16598.52 24799.82 3697.65 27099.43 18099.16 28296.42 25699.91 10099.07 8799.84 12099.80 23
3Dnovator99.15 299.43 6399.36 7299.65 9599.39 22899.42 13699.70 2299.56 17099.23 12599.35 20199.80 5199.17 5099.95 4298.21 15299.84 12099.59 124
LF4IMVS99.01 17398.92 17499.27 21499.71 10999.28 16798.59 23599.77 5998.32 23599.39 19699.41 23098.62 12299.84 21396.62 26699.84 12098.69 303
ACMMP_NAP99.28 10399.11 12199.79 3499.75 9399.81 2798.95 19799.53 18998.27 23899.53 16299.73 8598.75 10799.87 16097.70 19799.83 13099.68 56
AllTest99.21 12699.07 13599.63 10699.78 7199.64 8499.12 16299.83 3198.63 19699.63 12199.72 9198.68 11399.75 27696.38 27799.83 13099.51 162
TestCases99.63 10699.78 7199.64 8499.83 3198.63 19699.63 12199.72 9198.68 11399.75 27696.38 27799.83 13099.51 162
PM-MVS99.36 8499.29 9099.58 12799.83 3699.66 7798.95 19799.86 1998.85 17499.81 5599.73 8598.40 15299.92 8498.36 13799.83 13099.17 253
EPNet98.13 26197.77 27399.18 23094.57 35297.99 27399.24 12197.96 32699.74 3597.29 33699.62 15693.13 29399.97 1698.59 12799.83 13099.58 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended98.70 21498.59 20799.02 24499.54 17297.99 27397.58 31999.82 3695.70 31999.34 20498.98 30398.52 13999.77 27097.98 17299.83 13099.30 228
MVS-HIRNet97.86 27098.22 24096.76 32399.28 26391.53 34798.38 25992.60 35199.13 14099.31 21099.96 1097.18 23899.68 30598.34 14099.83 13099.07 278
RPSCF99.18 13599.02 15099.64 10299.83 3699.85 1199.44 7499.82 3698.33 23499.50 16899.78 6497.90 19499.65 32196.78 25699.83 13099.44 193
TinyColmap98.97 17998.93 17099.07 24099.46 21198.19 26197.75 31199.75 7098.79 18299.54 15899.70 10598.97 7599.62 32596.63 26599.83 13099.41 203
MP-MVS-pluss99.14 14498.92 17499.80 2999.83 3699.83 2098.61 23299.63 13096.84 30299.44 17699.58 18098.81 9299.91 10097.70 19799.82 13999.67 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MDA-MVSNet-bldmvs99.06 16099.05 14199.07 24099.80 5597.83 28098.89 20199.72 8799.29 11399.63 12199.70 10596.47 25499.89 13298.17 15999.82 13999.50 168
jason99.16 14099.11 12199.32 20499.75 9398.44 24798.26 26899.39 24098.70 19199.74 8699.30 25798.54 13299.97 1698.48 13299.82 13999.55 140
jason: jason.
HPM-MVScopyleft99.25 10999.07 13599.78 3799.81 4999.75 4799.61 5099.67 10797.72 26799.35 20199.25 26899.23 4599.92 8497.21 23499.82 13999.67 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t98.49 23698.11 25099.64 10299.73 10299.58 10399.24 12199.76 6489.94 34399.42 18299.56 19097.76 20599.86 18097.74 19399.82 13999.47 182
CP-MVS99.23 11399.05 14199.75 5499.66 13399.66 7799.38 8399.62 13398.38 22299.06 24999.27 26498.79 9999.94 5397.51 21499.82 13999.66 73
PHI-MVS99.11 15298.95 16999.59 12399.13 28599.59 10099.17 14199.65 12297.88 25999.25 21899.46 22398.97 7599.80 25597.26 22899.82 13999.37 213
wuyk23d97.58 28099.13 11592.93 33499.69 11999.49 11499.52 6299.77 5997.97 25399.96 899.79 5799.84 399.94 5395.85 29699.82 13979.36 347
CVMVSNet98.61 21998.88 18097.80 30699.58 15093.60 33599.26 11599.64 12899.66 5499.72 9199.67 12893.26 29199.93 6699.30 5499.81 14799.87 9
UniMVSNet_NR-MVSNet99.37 8199.25 9999.72 7199.47 20699.56 10698.97 19599.61 13799.43 9999.67 10799.28 26297.85 19999.95 4299.17 7299.81 14799.65 81
DU-MVS99.33 9599.21 10399.71 7599.43 21999.56 10698.83 21199.53 18999.38 10399.67 10799.36 24397.67 21199.95 4299.17 7299.81 14799.63 92
DeepPCF-MVS98.42 699.18 13599.02 15099.67 8399.22 27199.75 4797.25 33499.47 21598.72 19099.66 11199.70 10599.29 3899.63 32498.07 16699.81 14799.62 104
ACMM98.09 1199.46 5999.38 6699.72 7199.80 5599.69 7099.13 15899.65 12298.99 15599.64 11799.72 9199.39 2399.86 18098.23 15099.81 14799.60 115
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS99.22 12199.04 14699.77 3999.76 8399.73 5399.28 11199.56 17098.19 24399.14 23999.29 26098.84 9199.92 8497.53 21399.80 15299.64 87
test_0728_THIRD99.18 13199.62 12899.61 16598.58 12799.91 10097.72 19499.80 15299.77 31
SteuartSystems-ACMMP99.30 10099.14 11299.76 4599.87 2799.66 7799.18 13699.60 14798.55 20499.57 14499.67 12899.03 7099.94 5397.01 24299.80 15299.69 50
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS99.48 5299.39 6499.74 5999.57 16099.62 9099.29 11099.61 13799.87 1499.74 8699.76 7498.69 11299.87 16098.20 15399.80 15299.75 38
PCF-MVS96.03 1896.73 30095.86 31099.33 20099.44 21799.16 19396.87 34099.44 22486.58 34598.95 25599.40 23294.38 28299.88 14787.93 34299.80 15298.95 287
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SMA-MVS99.19 13199.00 15699.73 6699.46 21199.73 5399.13 15899.52 19897.40 28399.57 14499.64 13998.93 7999.83 22497.61 20799.79 15799.63 92
zzz-MVS99.30 10099.14 11299.80 2999.81 4999.81 2798.73 22899.53 18999.27 11799.42 18299.63 14798.21 17099.95 4297.83 18899.79 15799.65 81
MTAPA99.35 8699.20 10499.80 2999.81 4999.81 2799.33 9399.53 18999.27 11799.42 18299.63 14798.21 17099.95 4297.83 18899.79 15799.65 81
ACMMP++99.79 157
ACMMPcopyleft99.25 10999.08 13199.74 5999.79 6599.68 7399.50 6499.65 12298.07 24799.52 16499.69 11198.57 12899.92 8497.18 23699.79 15799.63 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS98.90 19098.72 19599.44 16999.39 22899.42 13698.58 23699.64 12897.31 28899.44 17699.62 15698.59 12699.69 29496.17 28499.79 15799.22 242
tfpnnormal99.43 6399.38 6699.60 12199.87 2799.75 4799.59 5599.78 5699.71 4099.90 2299.69 11198.85 9099.90 11997.25 23199.78 16399.15 257
HQP_MVS98.90 19098.68 20199.55 13999.58 15099.24 18098.80 21999.54 18098.94 16199.14 23999.25 26897.24 23299.82 23495.84 29799.78 16399.60 115
plane_prior599.54 18099.82 23495.84 29799.78 16399.60 115
mPP-MVS99.19 13199.00 15699.76 4599.76 8399.68 7399.38 8399.54 18098.34 23399.01 25199.50 20898.53 13699.93 6697.18 23699.78 16399.66 73
OPM-MVS99.26 10899.13 11599.63 10699.70 11699.61 9698.58 23699.48 21198.50 21099.52 16499.63 14799.14 5499.76 27297.89 17899.77 16799.51 162
MVS_111021_LR99.13 14699.03 14899.42 17499.58 15099.32 16197.91 30699.73 7898.68 19299.31 21099.48 21599.09 6099.66 31497.70 19799.77 16799.29 231
abl_699.36 8499.23 10299.75 5499.71 10999.74 5299.33 9399.76 6499.07 14899.65 11599.63 14799.09 6099.92 8497.13 23899.76 16999.58 129
MIMVSNet98.43 24198.20 24299.11 23499.53 17598.38 25399.58 5798.61 31098.96 15999.33 20699.76 7490.92 31499.81 25097.38 22199.76 16999.15 257
MVS_111021_HR99.12 14899.02 15099.40 18399.50 19099.11 19897.92 30499.71 9098.76 18899.08 24599.47 22099.17 5099.54 33497.85 18599.76 16999.54 147
DPE-MVS99.14 14498.92 17499.82 2399.57 16099.77 3998.74 22699.60 14798.55 20499.76 7399.69 11198.23 16999.92 8496.39 27699.75 17299.76 35
TSAR-MVS + MP.99.34 9199.24 10099.63 10699.82 4299.37 14999.26 11599.35 25198.77 18599.57 14499.70 10599.27 4399.88 14797.71 19599.75 17299.65 81
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS99.25 10999.08 13199.76 4599.73 10299.70 6699.31 10099.59 15498.36 22499.36 19999.37 23898.80 9699.91 10097.43 21899.75 17299.68 56
#test#99.12 14898.90 17899.76 4599.73 10299.70 6699.10 16599.59 15497.60 27299.36 19999.37 23898.80 9699.91 10096.84 25399.75 17299.68 56
ACMMPR99.23 11399.06 13799.76 4599.74 9999.69 7099.31 10099.59 15498.36 22499.35 20199.38 23798.61 12499.93 6697.43 21899.75 17299.67 63
MP-MVScopyleft99.06 16098.83 18799.76 4599.76 8399.71 5999.32 9699.50 20498.35 22998.97 25399.48 21598.37 15499.92 8495.95 29499.75 17299.63 92
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM98.40 24597.99 25599.65 9599.39 22899.47 11799.67 3599.52 19891.70 34098.78 27699.80 5198.55 13099.95 4294.71 31999.75 17299.53 150
DeepC-MVS_fast98.47 599.23 11399.12 11899.56 13699.28 26399.22 18498.99 18999.40 23799.08 14699.58 14199.64 13998.90 8599.83 22497.44 21799.75 17299.63 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS99.16 14098.96 16799.75 5499.73 10299.73 5399.20 13199.55 17598.22 24099.32 20899.35 24898.65 12099.91 10096.86 25099.74 18099.62 104
region2R99.23 11399.05 14199.77 3999.76 8399.70 6699.31 10099.59 15498.41 21899.32 20899.36 24398.73 11099.93 6697.29 22599.74 18099.67 63
Regformer-199.32 9799.27 9599.47 16099.41 22498.95 21598.99 18999.48 21199.48 8399.66 11199.52 20298.78 10199.87 16098.36 13799.74 18099.60 115
Regformer-299.34 9199.27 9599.53 14599.41 22499.10 20298.99 18999.53 18999.47 8899.66 11199.52 20298.80 9699.89 13298.31 14399.74 18099.60 115
PGM-MVS99.20 12899.01 15399.77 3999.75 9399.71 5999.16 14799.72 8797.99 25199.42 18299.60 17298.81 9299.93 6696.91 24799.74 18099.66 73
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1199.75 1499.86 1999.70 4399.91 2099.89 2599.60 1899.87 16099.59 1999.74 18099.71 44
TSAR-MVS + GP.99.12 14899.04 14699.38 19099.34 24899.16 19398.15 27599.29 26598.18 24499.63 12199.62 15699.18 4999.68 30598.20 15399.74 18099.30 228
XVS99.27 10799.11 12199.75 5499.71 10999.71 5999.37 8799.61 13799.29 11398.76 27899.47 22098.47 14399.88 14797.62 20599.73 18799.67 63
X-MVStestdata96.09 31294.87 31999.75 5499.71 10999.71 5999.37 8799.61 13799.29 11398.76 27861.30 35598.47 14399.88 14797.62 20599.73 18799.67 63
VDD-MVS99.20 12899.11 12199.44 16999.43 21998.98 21199.50 6498.32 32299.80 2999.56 15199.69 11196.99 24499.85 19898.99 9299.73 18799.50 168
ab-mvs99.33 9599.28 9299.47 16099.57 16099.39 14399.78 1099.43 22798.87 17299.57 14499.82 4698.06 18299.87 16098.69 12399.73 18799.15 257
TAPA-MVS97.92 1398.03 26697.55 27999.46 16399.47 20699.44 12898.50 24999.62 13386.79 34499.07 24899.26 26698.26 16599.62 32597.28 22799.73 18799.31 227
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVS99.32 9799.17 10799.77 3999.69 11999.80 3299.14 15199.31 26099.16 13699.62 12899.61 16598.35 15699.91 10097.88 17999.72 19299.61 111
test_0728_SECOND99.83 2199.70 11699.79 3499.14 15199.61 13799.92 8497.88 17999.72 19299.77 31
RRT_test8_iter0597.35 28897.25 28497.63 31198.81 32193.13 33799.26 11599.89 1299.51 8099.83 4699.68 12279.03 35499.88 14799.53 2699.72 19299.89 8
3Dnovator+98.92 399.35 8699.24 10099.67 8399.35 23899.47 11799.62 4699.50 20499.44 9499.12 24299.78 6498.77 10499.94 5397.87 18299.72 19299.62 104
plane_prior99.24 18098.42 25797.87 26099.71 196
APD-MVScopyleft98.87 19698.59 20799.71 7599.50 19099.62 9099.01 18299.57 16596.80 30499.54 15899.63 14798.29 16299.91 10095.24 31199.71 19699.61 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SED-MVS99.40 7399.28 9299.77 3999.69 11999.82 2499.20 13199.54 18099.13 14099.82 4899.63 14798.91 8299.92 8497.85 18599.70 19899.58 129
IU-MVS99.69 11999.77 3999.22 27997.50 27899.69 10197.75 19299.70 19899.77 31
ambc99.20 22799.35 23898.53 24299.17 14199.46 21999.67 10799.80 5198.46 14699.70 28897.92 17699.70 19899.38 210
test_241102_TWO99.54 18099.13 14099.76 7399.63 14798.32 16199.92 8497.85 18599.69 20199.75 38
MVSFormer99.41 7099.44 5799.31 20799.57 16098.40 25099.77 1199.80 4699.73 3699.63 12199.30 25798.02 18599.98 699.43 3599.69 20199.55 140
lupinMVS98.96 18298.87 18199.24 22299.57 16098.40 25098.12 27999.18 28398.28 23799.63 12199.13 28498.02 18599.97 1698.22 15199.69 20199.35 219
xxxxxxxxxxxxxcwj99.11 15298.96 16799.54 14399.53 17599.25 17598.29 26599.76 6499.07 14899.42 18299.61 16598.86 8899.87 16096.45 27499.68 20499.49 173
SF-MVS99.10 15698.93 17099.62 11599.58 15099.51 11299.13 15899.65 12297.97 25399.42 18299.61 16598.86 8899.87 16096.45 27499.68 20499.49 173
Anonymous2024052999.42 6699.34 7499.65 9599.53 17599.60 9799.63 4599.39 24099.47 8899.76 7399.78 6498.13 17799.86 18098.70 12199.68 20499.49 173
MSLP-MVS++99.05 16399.09 12998.91 25599.21 27298.36 25498.82 21599.47 21598.85 17498.90 26399.56 19098.78 10199.09 34598.57 12899.68 20499.26 234
DELS-MVS99.34 9199.30 8599.48 15899.51 18499.36 15298.12 27999.53 18999.36 10699.41 19099.61 16599.22 4699.87 16099.21 6299.68 20499.20 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet97.47 1598.42 24298.44 22198.35 28999.46 21196.26 31496.70 34299.34 25397.68 26999.00 25299.13 28497.40 22499.72 28297.59 20999.68 20499.08 273
LS3D99.24 11299.11 12199.61 11998.38 33799.79 3499.57 5899.68 10399.61 6699.15 23799.71 9898.70 11199.91 10097.54 21199.68 20499.13 264
ETH3D-3000-0.198.77 20598.50 21799.59 12399.47 20699.53 11198.77 22499.60 14797.33 28799.23 22299.50 20897.91 19399.83 22495.02 31599.67 21199.41 203
HQP3-MVS99.37 24799.67 211
CPTT-MVS98.74 21098.44 22199.64 10299.61 14399.38 14699.18 13699.55 17596.49 30799.27 21699.37 23897.11 24099.92 8495.74 30199.67 21199.62 104
HQP-MVS98.36 24798.02 25499.39 18699.31 25598.94 21697.98 29699.37 24797.45 28098.15 31098.83 31896.67 24899.70 28894.73 31799.67 21199.53 150
ETH3 D test640097.76 27397.19 28799.50 15299.38 23199.26 17198.34 26099.49 20992.99 33798.54 29499.20 27995.92 26999.82 23491.14 33799.66 21599.40 205
MVS_Test99.28 10399.31 8099.19 22899.35 23898.79 23099.36 8999.49 20999.17 13499.21 22899.67 12898.78 10199.66 31499.09 8599.66 21599.10 267
CDPH-MVS98.56 22598.20 24299.61 11999.50 19099.46 12198.32 26399.41 23095.22 32499.21 22899.10 29198.34 15899.82 23495.09 31499.66 21599.56 137
tttt051797.62 27897.20 28698.90 26199.76 8397.40 29399.48 6894.36 34799.06 15299.70 9899.49 21384.55 34599.94 5398.73 11999.65 21899.36 216
ITE_SJBPF99.38 19099.63 13999.44 12899.73 7898.56 20299.33 20699.53 20098.88 8799.68 30596.01 28899.65 21899.02 283
9.1498.64 20299.45 21498.81 21699.60 14797.52 27799.28 21599.56 19098.53 13699.83 22495.36 31099.64 220
Patchmatch-test98.10 26397.98 25798.48 28499.27 26596.48 31199.40 7999.07 29098.81 17999.23 22299.57 18790.11 32599.87 16096.69 26099.64 22099.09 270
sss98.90 19098.77 19399.27 21499.48 20198.44 24798.72 22999.32 25697.94 25799.37 19899.35 24896.31 26099.91 10098.85 10899.63 22299.47 182
cl-mvsnet297.56 28197.28 28298.40 28798.37 33896.75 30897.24 33599.37 24797.31 28899.41 19099.22 27587.30 33299.37 34397.70 19799.62 22399.08 273
miper_ehance_all_eth98.59 22298.59 20798.59 28098.98 30497.07 30197.49 32599.52 19898.50 21099.52 16499.37 23896.41 25899.71 28697.86 18399.62 22399.00 285
miper_enhance_ethall98.03 26697.94 26398.32 29198.27 34096.43 31396.95 33899.41 23096.37 30999.43 18098.96 30894.74 27899.69 29497.71 19599.62 22398.83 298
SCA98.11 26298.36 23097.36 31799.20 27592.99 33898.17 27498.49 31698.24 23999.10 24499.57 18796.01 26799.94 5396.86 25099.62 22399.14 261
MS-PatchMatch99.00 17598.97 16599.09 23699.11 29298.19 26198.76 22599.33 25498.49 21299.44 17699.58 18098.21 17099.69 29498.20 15399.62 22399.39 208
APD-MVS_3200maxsize99.31 9999.16 10899.74 5999.53 17599.75 4799.27 11499.61 13799.19 13099.57 14499.64 13998.76 10599.90 11997.29 22599.62 22399.56 137
EPNet_dtu97.62 27897.79 27297.11 32296.67 35192.31 34198.51 24898.04 32499.24 12395.77 34599.47 22093.78 28899.66 31498.98 9499.62 22399.37 213
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS98.52 23298.39 22798.94 24999.15 28297.39 29498.18 27299.21 28198.89 17199.23 22299.63 14797.37 22899.74 27894.22 32499.61 23099.69 50
OPU-MVS99.29 21099.12 28799.44 12899.20 13199.40 23299.00 7198.84 34796.54 26899.60 23199.58 129
HPM-MVS++copyleft98.96 18298.70 19999.74 5999.52 18099.71 5998.86 20699.19 28298.47 21498.59 29099.06 29398.08 18199.91 10096.94 24599.60 23199.60 115
CNVR-MVS98.99 17898.80 19199.56 13699.25 26799.43 13398.54 24599.27 26998.58 20198.80 27399.43 22898.53 13699.70 28897.22 23399.59 23399.54 147
Anonymous20240521198.75 20898.46 21999.63 10699.34 24899.66 7799.47 7097.65 33199.28 11699.56 15199.50 20893.15 29299.84 21398.62 12699.58 23499.40 205
MVP-Stereo99.16 14099.08 13199.43 17299.48 20199.07 20699.08 17299.55 17598.63 19699.31 21099.68 12298.19 17399.78 26298.18 15799.58 23499.45 188
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ADS-MVSNet297.78 27297.66 27898.12 29999.14 28395.36 32599.22 12898.75 30496.97 29798.25 30699.64 13990.90 31599.94 5396.51 27099.56 23699.08 273
ADS-MVSNet97.72 27697.67 27797.86 30499.14 28394.65 33199.22 12898.86 29796.97 29798.25 30699.64 13990.90 31599.84 21396.51 27099.56 23699.08 273
LCM-MVSNet-Re99.28 10399.15 11199.67 8399.33 25399.76 4599.34 9199.97 298.93 16499.91 2099.79 5798.68 11399.93 6696.80 25599.56 23699.30 228
API-MVS98.38 24698.39 22798.35 28998.83 31799.26 17199.14 15199.18 28398.59 20098.66 28598.78 32198.61 12499.57 33394.14 32599.56 23696.21 344
xiu_mvs_v1_base_debu99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
xiu_mvs_v1_base99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
xiu_mvs_v1_base_debi99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
OpenMVScopyleft98.12 1098.23 25897.89 26999.26 21699.19 27799.26 17199.65 4399.69 10091.33 34198.14 31499.77 7198.28 16399.96 3395.41 30899.55 24098.58 309
MVEpermissive92.54 2296.66 30296.11 30598.31 29399.68 12797.55 28997.94 30295.60 34499.37 10490.68 35098.70 32496.56 25098.61 34986.94 34799.55 24098.77 301
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SR-MVS99.19 13199.00 15699.74 5999.51 18499.72 5799.18 13699.60 14798.85 17499.47 17199.58 18098.38 15399.92 8496.92 24699.54 24599.57 135
thisisatest053097.45 28396.95 29398.94 24999.68 12797.73 28499.09 16994.19 34998.61 19999.56 15199.30 25784.30 34699.93 6698.27 14799.54 24599.16 255
MSP-MVS99.04 16698.79 19299.81 2699.78 7199.73 5399.35 9099.57 16598.54 20799.54 15898.99 30096.81 24799.93 6696.97 24499.53 24799.77 31
AdaColmapbinary98.60 22098.35 23299.38 19099.12 28799.22 18498.67 23199.42 22997.84 26498.81 27199.27 26497.32 23099.81 25095.14 31299.53 24799.10 267
ETV-MVS99.18 13599.18 10699.16 23199.34 24899.28 16799.12 16299.79 5299.48 8398.93 25798.55 33099.40 2299.93 6698.51 13199.52 24998.28 322
EIA-MVS99.12 14899.01 15399.45 16799.36 23699.62 9099.34 9199.79 5298.41 21898.84 26898.89 31598.75 10799.84 21398.15 16199.51 25098.89 292
MCST-MVS99.02 16998.81 18999.65 9599.58 15099.49 11498.58 23699.07 29098.40 22099.04 25099.25 26898.51 14199.80 25597.31 22499.51 25099.65 81
mvs_anonymous99.28 10399.39 6498.94 24999.19 27797.81 28199.02 18099.55 17599.78 3299.85 3899.80 5198.24 16699.86 18099.57 2299.50 25299.15 257
CNLPA98.57 22498.34 23399.28 21299.18 27999.10 20298.34 26099.41 23098.48 21398.52 29598.98 30397.05 24299.78 26295.59 30399.50 25298.96 286
test_prior398.62 21898.34 23399.46 16399.35 23899.22 18497.95 30099.39 24097.87 26098.05 31699.05 29497.90 19499.69 29495.99 29099.49 25499.48 177
test_prior297.95 30097.87 26098.05 31699.05 29497.90 19495.99 29099.49 254
pmmvs398.08 26497.80 27098.91 25599.41 22497.69 28697.87 30799.66 11195.87 31599.50 16899.51 20590.35 32399.97 1698.55 12999.47 25699.08 273
test1299.54 14399.29 26199.33 15999.16 28598.43 30097.54 21999.82 23499.47 25699.48 177
agg_prior294.58 32199.46 25899.50 168
test9_res95.10 31399.44 25999.50 168
train_agg98.35 25097.95 25999.57 13299.35 23899.35 15698.11 28199.41 23094.90 32897.92 32298.99 30098.02 18599.85 19895.38 30999.44 25999.50 168
agg_prior198.33 25297.92 26599.57 13299.35 23899.36 15297.99 29599.39 24094.85 33197.76 33198.98 30398.03 18399.85 19895.49 30599.44 25999.51 162
VPNet99.46 5999.37 6999.71 7599.82 4299.59 10099.48 6899.70 9499.81 2699.69 10199.58 18097.66 21599.86 18099.17 7299.44 25999.67 63
DP-MVS Recon98.50 23398.23 23999.31 20799.49 19599.46 12198.56 24199.63 13094.86 33098.85 26799.37 23897.81 20199.59 33196.08 28599.44 25998.88 293
LFMVS98.46 23998.19 24599.26 21699.24 26998.52 24399.62 4696.94 33899.87 1499.31 21099.58 18091.04 31299.81 25098.68 12499.42 26499.45 188
CS-MVS99.09 15799.03 14899.25 21999.45 21499.49 11499.41 7799.82 3699.10 14598.03 31998.48 33499.30 3799.89 13298.30 14499.41 26598.35 319
Fast-Effi-MVS+99.02 16998.87 18199.46 16399.38 23199.50 11399.04 17799.79 5297.17 29298.62 28798.74 32399.34 3399.95 4298.32 14299.41 26598.92 290
PatchmatchNetpermissive97.65 27797.80 27097.18 32098.82 32092.49 34099.17 14198.39 32098.12 24598.79 27499.58 18090.71 31999.89 13297.23 23299.41 26599.16 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest051596.98 29496.42 30098.66 27899.42 22397.47 29097.27 33394.30 34897.24 29099.15 23798.86 31785.01 34399.87 16097.10 23999.39 26898.63 304
ETH3D cwj APD-0.1698.50 23398.16 24899.51 14999.04 30099.39 14398.47 25199.47 21596.70 30698.78 27699.33 25297.62 21899.86 18094.69 32099.38 26999.28 233
testtj98.56 22598.17 24799.72 7199.45 21499.60 9798.88 20299.50 20496.88 29999.18 23499.48 21597.08 24199.92 8493.69 33099.38 26999.63 92
原ACMM199.37 19399.47 20698.87 22799.27 26996.74 30598.26 30599.32 25397.93 19299.82 23495.96 29399.38 26999.43 199
test22299.51 18499.08 20597.83 30999.29 26595.21 32598.68 28499.31 25597.28 23199.38 26999.43 199
F-COLMAP98.74 21098.45 22099.62 11599.57 16099.47 11798.84 20999.65 12296.31 31098.93 25799.19 28197.68 21099.87 16096.52 26999.37 27399.53 150
DPM-MVS98.28 25397.94 26399.32 20499.36 23699.11 19897.31 33298.78 30296.88 29998.84 26899.11 29097.77 20499.61 32994.03 32799.36 27499.23 240
旧先验199.49 19599.29 16599.26 27199.39 23697.67 21199.36 27499.46 186
PS-MVSNAJ99.00 17599.08 13198.76 27399.37 23498.10 26898.00 29399.51 20199.47 8899.41 19098.50 33399.28 4099.97 1698.83 10999.34 27698.20 328
112198.56 22598.24 23899.52 14699.49 19599.24 18099.30 10399.22 27995.77 31798.52 29599.29 26097.39 22699.85 19895.79 29999.34 27699.46 186
xiu_mvs_v2_base99.02 16999.11 12198.77 27299.37 23498.09 26998.13 27899.51 20199.47 8899.42 18298.54 33199.38 2799.97 1698.83 10999.33 27898.24 324
新几何199.52 14699.50 19099.22 18499.26 27195.66 32098.60 28999.28 26297.67 21199.89 13295.95 29499.32 27999.45 188
VDDNet98.97 17998.82 18899.42 17499.71 10998.81 22899.62 4698.68 30699.81 2699.38 19799.80 5194.25 28399.85 19898.79 11399.32 27999.59 124
VNet99.18 13599.06 13799.56 13699.24 26999.36 15299.33 9399.31 26099.67 5099.47 17199.57 18796.48 25399.84 21399.15 7699.30 28199.47 182
PatchMatch-RL98.68 21598.47 21899.30 20999.44 21799.28 16798.14 27799.54 18097.12 29599.11 24399.25 26897.80 20299.70 28896.51 27099.30 28198.93 289
Effi-MVS+-dtu99.07 15998.92 17499.52 14698.89 31199.78 3799.15 14999.66 11199.34 10798.92 26099.24 27397.69 20899.98 698.11 16399.28 28398.81 299
testdata99.42 17499.51 18498.93 22099.30 26396.20 31198.87 26599.40 23298.33 16099.89 13296.29 28099.28 28399.44 193
OpenMVS_ROBcopyleft97.31 1797.36 28796.84 29798.89 26299.29 26199.45 12698.87 20599.48 21186.54 34699.44 17699.74 8197.34 22999.86 18091.61 33499.28 28397.37 340
NCCC98.82 20198.57 21199.58 12799.21 27299.31 16298.61 23299.25 27498.65 19498.43 30099.26 26697.86 19899.81 25096.55 26799.27 28699.61 111
testgi99.29 10299.26 9799.37 19399.75 9398.81 22898.84 20999.89 1298.38 22299.75 7899.04 29799.36 3299.86 18099.08 8699.25 28799.45 188
PLCcopyleft97.35 1698.36 24797.99 25599.48 15899.32 25499.24 18098.50 24999.51 20195.19 32698.58 29198.96 30896.95 24599.83 22495.63 30299.25 28799.37 213
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu99.20 12899.12 11899.43 17299.25 26799.69 7099.05 17599.82 3699.50 8198.97 25399.05 29498.98 7399.98 698.20 15399.24 28998.62 305
PMMVS98.49 23698.29 23699.11 23498.96 30598.42 24997.54 32099.32 25697.53 27698.47 29998.15 34097.88 19799.82 23497.46 21699.24 28999.09 270
EPMVS96.53 30496.32 30197.17 32198.18 34392.97 33999.39 8189.95 35398.21 24198.61 28899.59 17886.69 34199.72 28296.99 24399.23 29198.81 299
alignmvs98.28 25397.96 25899.25 21999.12 28798.93 22099.03 17998.42 31899.64 5898.72 28197.85 34390.86 31799.62 32598.88 10799.13 29299.19 249
cascas96.99 29396.82 29897.48 31397.57 35095.64 32396.43 34499.56 17091.75 33997.13 33997.61 34695.58 27398.63 34896.68 26199.11 29398.18 329
BH-RMVSNet98.41 24398.14 24999.21 22599.21 27298.47 24498.60 23498.26 32398.35 22998.93 25799.31 25597.20 23799.66 31494.32 32299.10 29499.51 162
MAR-MVS98.24 25797.92 26599.19 22898.78 32599.65 8299.17 14199.14 28795.36 32298.04 31898.81 32097.47 22199.72 28295.47 30799.06 29598.21 326
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GA-MVS97.99 26997.68 27698.93 25299.52 18098.04 27297.19 33699.05 29398.32 23598.81 27198.97 30689.89 32899.41 34298.33 14199.05 29699.34 221
EMVS96.96 29597.28 28295.99 33398.76 32791.03 34995.26 34798.61 31099.34 10798.92 26098.88 31693.79 28799.66 31492.87 33199.05 29697.30 341
E-PMN97.14 29297.43 28096.27 33098.79 32391.62 34695.54 34699.01 29499.44 9498.88 26499.12 28892.78 29699.68 30594.30 32399.03 29897.50 337
tpmrst97.73 27498.07 25296.73 32598.71 32992.00 34299.10 16598.86 29798.52 20898.92 26099.54 19891.90 30299.82 23498.02 16799.03 29898.37 318
PatchT98.45 24098.32 23598.83 26798.94 30698.29 25699.24 12198.82 30099.84 2199.08 24599.76 7491.37 30799.94 5398.82 11199.00 30098.26 323
test_yl98.25 25597.95 25999.13 23299.17 28098.47 24499.00 18498.67 30898.97 15799.22 22699.02 29891.31 30899.69 29497.26 22898.93 30199.24 237
DCV-MVSNet98.25 25597.95 25999.13 23299.17 28098.47 24499.00 18498.67 30898.97 15799.22 22699.02 29891.31 30899.69 29497.26 22898.93 30199.24 237
canonicalmvs99.02 16999.00 15699.09 23699.10 29398.70 23499.61 5099.66 11199.63 6198.64 28697.65 34599.04 6999.54 33498.79 11398.92 30399.04 281
MDTV_nov1_ep1397.73 27498.70 33090.83 35099.15 14998.02 32598.51 20998.82 27099.61 16590.98 31399.66 31496.89 24998.92 303
PAPM_NR98.36 24798.04 25399.33 20099.48 20198.93 22098.79 22299.28 26897.54 27598.56 29398.57 32897.12 23999.69 29494.09 32698.90 30599.38 210
FPMVS96.32 30895.50 31598.79 27199.60 14598.17 26398.46 25698.80 30197.16 29396.28 34199.63 14782.19 34799.09 34588.45 34198.89 30699.10 267
tpm cat196.78 29896.98 29296.16 33298.85 31590.59 35299.08 17299.32 25692.37 33897.73 33399.46 22391.15 31199.69 29496.07 28698.80 30798.21 326
test-LLR97.15 29096.95 29397.74 30998.18 34395.02 32897.38 32896.10 33998.00 24997.81 32898.58 32690.04 32699.91 10097.69 20398.78 30898.31 320
test-mter96.23 31195.73 31397.74 30998.18 34395.02 32897.38 32896.10 33997.90 25897.81 32898.58 32679.12 35399.91 10097.69 20398.78 30898.31 320
TESTMET0.1,196.24 31095.84 31197.41 31698.24 34193.84 33497.38 32895.84 34398.43 21597.81 32898.56 32979.77 35299.89 13297.77 19098.77 31098.52 312
CR-MVSNet98.35 25098.20 24298.83 26799.05 29898.12 26599.30 10399.67 10797.39 28499.16 23599.79 5791.87 30499.91 10098.78 11698.77 31098.44 316
RPMNet98.53 23198.44 22198.83 26799.05 29898.12 26599.30 10398.78 30299.86 1699.16 23599.74 8192.53 29999.91 10098.75 11798.77 31098.44 316
WTY-MVS98.59 22298.37 22999.26 21699.43 21998.40 25098.74 22699.13 28998.10 24699.21 22899.24 27394.82 27799.90 11997.86 18398.77 31099.49 173
Effi-MVS+99.06 16098.97 16599.34 19899.31 25598.98 21198.31 26499.91 898.81 17998.79 27498.94 31099.14 5499.84 21398.79 11398.74 31499.20 247
PAPR97.56 28197.07 28999.04 24398.80 32298.11 26797.63 31699.25 27494.56 33498.02 32098.25 33997.43 22399.68 30590.90 33898.74 31499.33 222
tpmvs97.39 28597.69 27596.52 32898.41 33691.76 34499.30 10398.94 29697.74 26697.85 32799.55 19692.40 30099.73 28096.25 28298.73 31698.06 331
dp96.86 29697.07 28996.24 33198.68 33190.30 35399.19 13598.38 32197.35 28698.23 30899.59 17887.23 33399.82 23496.27 28198.73 31698.59 307
XVG-OURS-SEG-HR99.16 14098.99 16199.66 9099.84 3399.64 8498.25 26999.73 7898.39 22199.63 12199.43 22899.70 1199.90 11997.34 22298.64 31899.44 193
thres600view796.60 30396.16 30497.93 30299.63 13996.09 31899.18 13697.57 33298.77 18598.72 28197.32 34987.04 33599.72 28288.57 34098.62 31997.98 333
thres20096.09 31295.68 31497.33 31999.48 20196.22 31598.53 24697.57 33298.06 24898.37 30296.73 35486.84 33999.61 32986.99 34698.57 32096.16 345
131498.00 26897.90 26898.27 29598.90 30897.45 29299.30 10399.06 29294.98 32797.21 33899.12 28898.43 14899.67 31095.58 30498.56 32197.71 336
mvs-test198.83 19998.70 19999.22 22498.89 31199.65 8298.88 20299.66 11199.34 10798.29 30398.94 31097.69 20899.96 3398.11 16398.54 32298.04 332
thres100view90096.39 30696.03 30797.47 31499.63 13995.93 31999.18 13697.57 33298.75 18998.70 28397.31 35087.04 33599.67 31087.62 34398.51 32396.81 342
tfpn200view996.30 30995.89 30897.53 31299.58 15096.11 31699.00 18497.54 33598.43 21598.52 29596.98 35286.85 33799.67 31087.62 34398.51 32396.81 342
thres40096.40 30595.89 30897.92 30399.58 15096.11 31699.00 18497.54 33598.43 21598.52 29596.98 35286.85 33799.67 31087.62 34398.51 32397.98 333
MVS95.72 31894.63 32198.99 24598.56 33397.98 27899.30 10398.86 29772.71 34997.30 33599.08 29298.34 15899.74 27889.21 33998.33 32699.26 234
BH-untuned98.22 25998.09 25198.58 28199.38 23197.24 29798.55 24298.98 29597.81 26599.20 23398.76 32297.01 24399.65 32194.83 31698.33 32698.86 295
gg-mvs-nofinetune95.87 31595.17 31897.97 30198.19 34296.95 30399.69 2889.23 35499.89 1196.24 34399.94 1281.19 34899.51 33793.99 32898.20 32897.44 338
HY-MVS98.23 998.21 26097.95 25998.99 24599.03 30198.24 25799.61 5098.72 30596.81 30398.73 28099.51 20594.06 28499.86 18096.91 24798.20 32898.86 295
UnsupCasMVSNet_bld98.55 22898.27 23799.40 18399.56 17099.37 14997.97 29999.68 10397.49 27999.08 24599.35 24895.41 27499.82 23497.70 19798.19 33099.01 284
tpm296.35 30796.22 30396.73 32598.88 31491.75 34599.21 13098.51 31493.27 33697.89 32499.21 27784.83 34499.70 28896.04 28798.18 33198.75 302
tmp_tt95.75 31795.42 31696.76 32389.90 35394.42 33298.86 20697.87 32978.01 34799.30 21499.69 11197.70 20695.89 35099.29 5798.14 33299.95 1
baseline296.83 29796.28 30298.46 28599.09 29596.91 30598.83 21193.87 35097.23 29196.23 34498.36 33688.12 33199.90 11996.68 26198.14 33298.57 310
CostFormer96.71 30196.79 29996.46 32998.90 30890.71 35199.41 7798.68 30694.69 33398.14 31499.34 25186.32 34299.80 25597.60 20898.07 33498.88 293
DWT-MVSNet_test96.03 31495.80 31296.71 32798.50 33591.93 34399.25 12097.87 32995.99 31496.81 34097.61 34681.02 34999.66 31497.20 23597.98 33598.54 311
DeepMVS_CXcopyleft97.98 30099.69 11996.95 30399.26 27175.51 34895.74 34698.28 33896.47 25499.62 32591.23 33697.89 33697.38 339
PAPM95.61 31994.71 32098.31 29399.12 28796.63 30996.66 34398.46 31790.77 34296.25 34298.68 32593.01 29499.69 29481.60 34897.86 33798.62 305
JIA-IIPM98.06 26597.92 26598.50 28398.59 33297.02 30298.80 21998.51 31499.88 1397.89 32499.87 3091.89 30399.90 11998.16 16097.68 33898.59 307
ET-MVSNet_ETH3D96.78 29896.07 30698.91 25599.26 26697.92 27997.70 31496.05 34297.96 25692.37 34998.43 33587.06 33499.90 11998.27 14797.56 33998.91 291
TR-MVS97.44 28497.15 28898.32 29198.53 33497.46 29198.47 25197.91 32896.85 30198.21 30998.51 33296.42 25699.51 33792.16 33397.29 34097.98 333
BH-w/o97.20 28997.01 29197.76 30799.08 29695.69 32298.03 29098.52 31395.76 31897.96 32198.02 34195.62 27299.47 33992.82 33297.25 34198.12 330
UnsupCasMVSNet_eth98.83 19998.57 21199.59 12399.68 12799.45 12698.99 18999.67 10799.48 8399.55 15699.36 24394.92 27599.86 18098.95 10296.57 34299.45 188
GG-mvs-BLEND97.36 31797.59 34896.87 30699.70 2288.49 35594.64 34897.26 35180.66 35099.12 34491.50 33596.50 34396.08 346
tpm97.15 29096.95 29397.75 30898.91 30794.24 33399.32 9697.96 32697.71 26898.29 30399.32 25386.72 34099.92 8498.10 16596.24 34499.09 270
test0.0.03 197.37 28696.91 29698.74 27497.72 34797.57 28897.60 31897.36 33798.00 24999.21 22898.02 34190.04 32699.79 25898.37 13695.89 34598.86 295
IB-MVS95.41 2095.30 32094.46 32297.84 30598.76 32795.33 32697.33 33196.07 34196.02 31395.37 34797.41 34876.17 35599.96 3397.54 21195.44 34698.22 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline197.73 27497.33 28198.96 24799.30 25997.73 28499.40 7998.42 31899.33 11099.46 17499.21 27791.18 31099.82 23498.35 13991.26 34799.32 225
PVSNet_095.53 1995.85 31695.31 31797.47 31498.78 32593.48 33695.72 34599.40 23796.18 31297.37 33497.73 34495.73 27099.58 33295.49 30581.40 34899.36 216
testmvs28.94 32233.33 32315.79 33626.03 3549.81 35696.77 34115.67 35611.55 35123.87 35250.74 35819.03 3578.53 35323.21 35033.07 34929.03 349
test12329.31 32133.05 32518.08 33525.93 35512.24 35597.53 32210.93 35711.78 35024.21 35150.08 35921.04 3568.60 35223.51 34932.43 35033.39 348
uanet_test8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34899.53 1890.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k24.88 32333.17 3240.00 3370.00 3560.00 3570.00 34899.62 1330.00 3520.00 35399.13 28499.82 40.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas16.61 32422.14 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 199.28 400.00 3540.00 3510.00 3510.00 350
sosnet-low-res8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
sosnet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
Regformer8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.26 33111.02 3330.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.16 2820.00 3580.00 3540.00 3510.00 3510.00 350
uanet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_ONE99.69 11999.82 2499.54 18099.12 14399.82 4899.49 21398.91 8299.52 336
save fliter99.53 17599.25 17598.29 26599.38 24699.07 148
test072699.69 11999.80 3299.24 12199.57 16599.16 13699.73 9099.65 13798.35 156
GSMVS99.14 261
test_part299.62 14299.67 7599.55 156
sam_mvs190.81 31899.14 261
sam_mvs90.52 322
MTGPAbinary99.53 189
test_post199.14 15151.63 35789.54 32999.82 23496.86 250
test_post52.41 35690.25 32499.86 180
patchmatchnet-post99.62 15690.58 32099.94 53
MTMP99.09 16998.59 312
gm-plane-assit97.59 34889.02 35493.47 33598.30 33799.84 21396.38 277
TEST999.35 23899.35 15698.11 28199.41 23094.83 33297.92 32298.99 30098.02 18599.85 198
test_899.34 24899.31 16298.08 28599.40 23794.90 32897.87 32698.97 30698.02 18599.84 213
agg_prior99.35 23899.36 15299.39 24097.76 33199.85 198
test_prior499.19 19198.00 293
test_prior99.46 16399.35 23899.22 18499.39 24099.69 29499.48 177
旧先验297.94 30295.33 32398.94 25699.88 14796.75 257
新几何298.04 289
无先验98.01 29199.23 27895.83 31699.85 19895.79 29999.44 193
原ACMM297.92 304
testdata299.89 13295.99 290
segment_acmp98.37 154
testdata197.72 31297.86 263
plane_prior799.58 15099.38 146
plane_prior699.47 20699.26 17197.24 232
plane_prior499.25 268
plane_prior399.31 16298.36 22499.14 239
plane_prior298.80 21998.94 161
plane_prior199.51 184
n20.00 358
nn0.00 358
door-mid99.83 31
test1199.29 265
door99.77 59
HQP5-MVS98.94 216
HQP-NCC99.31 25597.98 29697.45 28098.15 310
ACMP_Plane99.31 25597.98 29697.45 28098.15 310
BP-MVS94.73 317
HQP4-MVS98.15 31099.70 28899.53 150
HQP2-MVS96.67 248
NP-MVS99.40 22799.13 19698.83 318
MDTV_nov1_ep13_2view91.44 34899.14 15197.37 28599.21 22891.78 30696.75 25799.03 282
Test By Simon98.41 150