This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 10
test_part199.89 399.88 499.94 299.91 1599.92 299.92 399.90 1199.98 299.99 399.97 999.50 2199.98 699.73 16100.00 199.92 3
UniMVSNet_ETH3D99.85 899.83 899.90 599.89 2299.91 399.89 599.71 9199.93 599.95 1199.89 2699.71 999.96 3499.51 2999.97 3099.84 15
ANet_high99.88 599.87 599.91 399.99 199.91 399.65 44100.00 199.90 8100.00 199.97 999.61 1699.97 1799.75 13100.00 199.84 15
pmmvs699.86 799.86 799.83 2299.94 1099.90 599.83 799.91 899.85 2099.94 1299.95 1299.73 899.90 12399.65 1799.97 3099.69 51
LTVRE_ROB99.19 199.88 599.87 599.88 1299.91 1599.90 599.96 199.92 599.90 899.97 799.87 3199.81 599.95 4399.54 2599.99 1399.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp99.80 1299.77 1399.90 599.96 499.88 799.73 1799.85 2499.70 4499.92 1999.93 1499.45 2299.97 1799.36 45100.00 199.85 14
PEN-MVS99.66 2599.59 3399.89 899.83 3799.87 899.66 3999.73 7999.70 4499.84 4299.73 8698.56 13199.96 3499.29 5899.94 6199.83 19
DTE-MVSNet99.68 2399.61 3099.88 1299.80 5699.87 899.67 3699.71 9199.72 4099.84 4299.78 6598.67 11799.97 1799.30 5599.95 4899.80 24
MIMVSNet199.66 2599.62 2699.80 3099.94 1099.87 899.69 2999.77 6099.78 3399.93 1599.89 2697.94 19599.92 8599.65 1799.98 2299.62 105
FC-MVSNet-test99.70 2099.65 2399.86 1799.88 2499.86 1199.72 2099.78 5799.90 899.82 4999.83 4198.45 14999.87 16499.51 2999.97 3099.86 12
FIs99.65 3099.58 3599.84 2099.84 3499.85 1299.66 3999.75 7199.86 1799.74 8799.79 5898.27 16899.85 20299.37 4499.93 6999.83 19
PS-CasMVS99.66 2599.58 3599.89 899.80 5699.85 1299.66 3999.73 7999.62 6399.84 4299.71 9998.62 12399.96 3499.30 5599.96 4199.86 12
TransMVSNet (Re)99.78 1499.77 1399.81 2799.91 1599.85 1299.75 1599.86 2099.70 4499.91 2199.89 2699.60 1899.87 16499.59 2099.74 18199.71 45
RPSCF99.18 13899.02 15499.64 10599.83 3799.85 1299.44 7599.82 3798.33 23899.50 17199.78 6597.90 19899.65 32596.78 26099.83 13199.44 197
TDRefinement99.72 1899.70 1899.77 4099.90 2099.85 1299.86 699.92 599.69 4799.78 6799.92 1799.37 3099.88 15198.93 10599.95 4899.60 116
nrg03099.70 2099.66 2299.82 2499.76 8499.84 1799.61 5199.70 9599.93 599.78 6799.68 12399.10 5999.78 26699.45 3499.96 4199.83 19
v7n99.82 1199.80 1199.88 1299.96 499.84 1799.82 999.82 3799.84 2299.94 1299.91 2099.13 5899.96 3499.83 999.99 1399.83 19
Baseline_NR-MVSNet99.49 5199.37 7099.82 2499.91 1599.84 1798.83 21599.86 2099.68 4999.65 11699.88 2997.67 21699.87 16499.03 9099.86 11499.76 36
test_djsdf99.84 999.81 1099.91 399.94 1099.84 1799.77 1299.80 4799.73 3799.97 799.92 1799.77 799.98 699.43 36100.00 199.90 5
MP-MVS-pluss99.14 14798.92 17899.80 3099.83 3799.83 2198.61 23699.63 13196.84 30699.44 18099.58 18398.81 9399.91 10397.70 19899.82 14099.67 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pm-mvs199.79 1399.79 1299.78 3899.91 1599.83 2199.76 1499.87 1899.73 3799.89 2799.87 3199.63 1499.87 16499.54 2599.92 7399.63 93
WR-MVS_H99.61 3599.53 4899.87 1599.80 5699.83 2199.67 3699.75 7199.58 7699.85 3999.69 11298.18 17999.94 5499.28 6099.95 4899.83 19
OurMVSNet-221017-099.75 1699.71 1799.84 2099.96 499.83 2199.83 799.85 2499.80 3099.93 1599.93 1498.54 13499.93 6799.59 2099.98 2299.76 36
SED-MVS99.40 7499.28 9399.77 4099.69 12099.82 2599.20 13499.54 18599.13 14399.82 4999.63 15098.91 8399.92 8597.85 18699.70 19999.58 130
test_241102_ONE99.69 12099.82 2599.54 18599.12 14699.82 4999.49 21798.91 8399.52 340
CP-MVSNet99.54 4699.43 6199.87 1599.76 8499.82 2599.57 5999.61 14199.54 7799.80 5999.64 14097.79 20899.95 4399.21 6399.94 6199.84 15
ACMMP_NAP99.28 10499.11 12399.79 3599.75 9499.81 2898.95 20199.53 19498.27 24299.53 16399.73 8698.75 10899.87 16497.70 19899.83 13199.68 57
zzz-MVS99.30 10199.14 11399.80 3099.81 5099.81 2898.73 23299.53 19499.27 11899.42 18699.63 15098.21 17499.95 4397.83 18999.79 15899.65 82
MTAPA99.35 8799.20 10599.80 3099.81 5099.81 2899.33 9499.53 19499.27 11899.42 18699.63 15098.21 17499.95 4397.83 18999.79 15899.65 82
APDe-MVS99.48 5399.36 7399.85 1999.55 17299.81 2899.50 6599.69 10198.99 15899.75 7999.71 9998.79 10099.93 6798.46 13499.85 11799.80 24
HPM-MVS_fast99.43 6499.30 8699.80 3099.83 3799.81 2899.52 6399.70 9598.35 23399.51 17099.50 21299.31 3699.88 15198.18 15899.84 12199.69 51
DVP-MVS99.32 9899.17 10899.77 4099.69 12099.80 3399.14 15599.31 26599.16 13799.62 12999.61 16898.35 16099.91 10397.88 18099.72 19399.61 112
test072699.69 12099.80 3399.24 12499.57 17099.16 13799.73 9199.65 13898.35 160
test_0728_SECOND99.83 2299.70 11799.79 3599.14 15599.61 14199.92 8597.88 18099.72 19399.77 32
mvs_tets99.90 299.90 299.90 599.96 499.79 3599.72 2099.88 1699.92 799.98 499.93 1499.94 199.98 699.77 12100.00 199.92 3
LS3D99.24 11499.11 12399.61 12298.38 34299.79 3599.57 5999.68 10499.61 6799.15 24199.71 9998.70 11299.91 10397.54 21299.68 20599.13 268
Effi-MVS+-dtu99.07 16298.92 17899.52 14998.89 31699.78 3899.15 15399.66 11299.34 10898.92 26599.24 27797.69 21399.98 698.11 16499.28 28898.81 303
jajsoiax99.89 399.89 399.89 899.96 499.78 3899.70 2399.86 2099.89 1299.98 499.90 2299.94 199.98 699.75 13100.00 199.90 5
IU-MVS99.69 12099.77 4099.22 28497.50 28299.69 10297.75 19399.70 19999.77 32
DPE-MVS99.14 14798.92 17899.82 2499.57 16199.77 4098.74 23099.60 15298.55 20899.76 7499.69 11298.23 17399.92 8596.39 28099.75 17399.76 36
PS-MVSNAJss99.84 999.82 999.89 899.96 499.77 4099.68 3299.85 2499.95 499.98 499.92 1799.28 4199.98 699.75 13100.00 199.94 2
GBi-Net99.42 6799.31 8199.73 6899.49 19999.77 4099.68 3299.70 9599.44 9599.62 12999.83 4197.21 23999.90 12398.96 9999.90 8399.53 154
test199.42 6799.31 8199.73 6899.49 19999.77 4099.68 3299.70 9599.44 9599.62 12999.83 4197.21 23999.90 12398.96 9999.90 8399.53 154
FMVSNet199.66 2599.63 2599.73 6899.78 7299.77 4099.68 3299.70 9599.67 5199.82 4999.83 4198.98 7499.90 12399.24 6299.97 3099.53 154
LCM-MVSNet-Re99.28 10499.15 11299.67 8699.33 25899.76 4699.34 9299.97 298.93 16899.91 2199.79 5898.68 11499.93 6796.80 25999.56 23999.30 232
ACMH+98.40 899.50 4999.43 6199.71 7899.86 3099.76 4699.32 9799.77 6099.53 7999.77 7299.76 7599.26 4599.78 26697.77 19199.88 9999.60 116
test117299.23 11599.05 14499.74 6099.52 18399.75 4899.20 13499.61 14198.97 16099.48 17399.58 18398.41 15299.91 10397.15 24199.55 24399.57 136
tfpnnormal99.43 6499.38 6799.60 12499.87 2899.75 4899.59 5699.78 5799.71 4199.90 2399.69 11298.85 9199.90 12397.25 23499.78 16499.15 261
APD-MVS_3200maxsize99.31 10099.16 10999.74 6099.53 17899.75 4899.27 11599.61 14199.19 13199.57 14599.64 14098.76 10699.90 12397.29 22699.62 22499.56 139
VPA-MVSNet99.66 2599.62 2699.79 3599.68 12899.75 4899.62 4799.69 10199.85 2099.80 5999.81 5098.81 9399.91 10399.47 3399.88 9999.70 48
HPM-MVScopyleft99.25 11199.07 13899.78 3899.81 5099.75 4899.61 5199.67 10897.72 27199.35 20599.25 27299.23 4699.92 8597.21 23799.82 14099.67 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DeepPCF-MVS98.42 699.18 13899.02 15499.67 8699.22 27699.75 4897.25 33899.47 21998.72 19499.66 11299.70 10699.29 3999.63 32898.07 16799.81 14899.62 105
SR-MVS-dyc-post99.27 10899.11 12399.73 6899.54 17399.74 5499.26 11699.62 13499.16 13799.52 16599.64 14098.41 15299.91 10397.27 22999.61 23199.54 149
RE-MVS-def99.13 11699.54 17399.74 5499.26 11699.62 13499.16 13799.52 16599.64 14098.57 12997.27 22999.61 23199.54 149
abl_699.36 8599.23 10399.75 5599.71 11099.74 5499.33 9499.76 6599.07 15199.65 11699.63 15099.09 6199.92 8597.13 24299.76 17099.58 130
ZNCC-MVS99.22 12499.04 15099.77 4099.76 8499.73 5799.28 11299.56 17598.19 24799.14 24399.29 26498.84 9299.92 8597.53 21499.80 15399.64 88
GST-MVS99.16 14398.96 17199.75 5599.73 10399.73 5799.20 13499.55 18098.22 24499.32 21299.35 25298.65 12199.91 10396.86 25499.74 18199.62 105
SMA-MVScopyleft99.19 13499.00 16099.73 6899.46 21599.73 5799.13 16299.52 20297.40 28799.57 14599.64 14098.93 8099.83 22897.61 20899.79 15899.63 93
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.04 16998.79 19699.81 2799.78 7299.73 5799.35 9199.57 17098.54 21199.54 15998.99 30596.81 25299.93 6796.97 24899.53 25199.77 32
SR-MVS99.19 13499.00 16099.74 6099.51 18899.72 6199.18 14099.60 15298.85 17899.47 17599.58 18398.38 15799.92 8596.92 25099.54 24999.57 136
XXY-MVS99.71 1999.67 2199.81 2799.89 2299.72 6199.59 5699.82 3799.39 10399.82 4999.84 4099.38 2899.91 10399.38 4299.93 6999.80 24
UA-Net99.78 1499.76 1599.86 1799.72 10799.71 6399.91 499.95 499.96 399.71 9799.91 2099.15 5399.97 1799.50 31100.00 199.90 5
HPM-MVS++copyleft98.96 18598.70 20399.74 6099.52 18399.71 6398.86 21099.19 28798.47 21898.59 29599.06 29898.08 18599.91 10396.94 24999.60 23499.60 116
XVS99.27 10899.11 12399.75 5599.71 11099.71 6399.37 8899.61 14199.29 11498.76 28399.47 22498.47 14599.88 15197.62 20699.73 18899.67 64
X-MVStestdata96.09 31594.87 32399.75 5599.71 11099.71 6399.37 8899.61 14199.29 11498.76 28361.30 36098.47 14599.88 15197.62 20699.73 18899.67 64
MP-MVScopyleft99.06 16398.83 19199.76 4699.76 8499.71 6399.32 9799.50 20898.35 23398.97 25899.48 21998.37 15899.92 8595.95 29899.75 17399.63 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.20 13199.01 15799.77 4099.75 9499.71 6399.16 15199.72 8897.99 25599.42 18699.60 17598.81 9399.93 6796.91 25199.74 18199.66 74
Gipumacopyleft99.57 3899.59 3399.49 15899.98 399.71 6399.72 2099.84 3099.81 2799.94 1299.78 6598.91 8399.71 29098.41 13599.95 4899.05 284
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
HFP-MVS99.25 11199.08 13499.76 4699.73 10399.70 7099.31 10199.59 15998.36 22899.36 20399.37 24298.80 9799.91 10397.43 21999.75 17399.68 57
region2R99.23 11599.05 14499.77 4099.76 8499.70 7099.31 10199.59 15998.41 22299.32 21299.36 24798.73 11199.93 6797.29 22699.74 18199.67 64
#test#99.12 15198.90 18299.76 4699.73 10399.70 7099.10 16999.59 15997.60 27699.36 20399.37 24298.80 9799.91 10396.84 25799.75 17399.68 57
COLMAP_ROBcopyleft98.06 1299.45 6299.37 7099.70 8299.83 3799.70 7099.38 8499.78 5799.53 7999.67 10899.78 6599.19 4999.86 18497.32 22499.87 10799.55 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Fast-Effi-MVS+-dtu99.20 13199.12 12099.43 17599.25 27299.69 7499.05 17999.82 3799.50 8298.97 25899.05 29998.98 7499.98 698.20 15499.24 29498.62 309
ACMMPR99.23 11599.06 14099.76 4699.74 10099.69 7499.31 10199.59 15998.36 22899.35 20599.38 24198.61 12599.93 6797.43 21999.75 17399.67 64
ACMM98.09 1199.46 6099.38 6799.72 7499.80 5699.69 7499.13 16299.65 12398.99 15899.64 11899.72 9299.39 2499.86 18498.23 15199.81 14899.60 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mPP-MVS99.19 13499.00 16099.76 4699.76 8499.68 7799.38 8499.54 18598.34 23799.01 25699.50 21298.53 13899.93 6797.18 23999.78 16499.66 74
ACMMPcopyleft99.25 11199.08 13499.74 6099.79 6699.68 7799.50 6599.65 12398.07 25199.52 16599.69 11298.57 12999.92 8597.18 23999.79 15899.63 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_part299.62 14399.67 7999.55 157
SixPastTwentyTwo99.42 6799.30 8699.76 4699.92 1499.67 7999.70 2399.14 29299.65 5799.89 2799.90 2296.20 26899.94 5499.42 4099.92 7399.67 64
Anonymous20240521198.75 21198.46 22499.63 10999.34 25399.66 8199.47 7197.65 33599.28 11799.56 15299.50 21293.15 29799.84 21798.62 12799.58 23799.40 209
PM-MVS99.36 8599.29 9199.58 13099.83 3799.66 8198.95 20199.86 2098.85 17899.81 5699.73 8698.40 15699.92 8598.36 13899.83 13199.17 257
CP-MVS99.23 11599.05 14499.75 5599.66 13499.66 8199.38 8499.62 13498.38 22699.06 25499.27 26898.79 10099.94 5497.51 21599.82 14099.66 74
SteuartSystems-ACMMP99.30 10199.14 11399.76 4699.87 2899.66 8199.18 14099.60 15298.55 20899.57 14599.67 12999.03 7199.94 5497.01 24699.80 15399.69 51
Skip Steuart: Steuart Systems R&D Blog.
Vis-MVSNetpermissive99.75 1699.74 1699.79 3599.88 2499.66 8199.69 2999.92 599.67 5199.77 7299.75 7999.61 1699.98 699.35 4699.98 2299.72 42
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvs-test198.83 20298.70 20399.22 22798.89 31699.65 8698.88 20699.66 11299.34 10898.29 30898.94 31597.69 21399.96 3498.11 16498.54 32798.04 336
MAR-MVS98.24 26097.92 26999.19 23198.78 33099.65 8699.17 14599.14 29295.36 32798.04 32398.81 32597.47 22699.72 28695.47 31199.06 30098.21 330
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AllTest99.21 12999.07 13899.63 10999.78 7299.64 8899.12 16699.83 3298.63 20099.63 12299.72 9298.68 11499.75 28096.38 28199.83 13199.51 166
TestCases99.63 10999.78 7299.64 8899.83 3298.63 20099.63 12299.72 9298.68 11499.75 28096.38 28199.83 13199.51 166
TranMVSNet+NR-MVSNet99.54 4699.47 5299.76 4699.58 15199.64 8899.30 10499.63 13199.61 6799.71 9799.56 19498.76 10699.96 3499.14 8399.92 7399.68 57
XVG-OURS-SEG-HR99.16 14398.99 16599.66 9399.84 3499.64 8898.25 27399.73 7998.39 22599.63 12299.43 23299.70 1199.90 12397.34 22398.64 32399.44 197
LPG-MVS_test99.22 12499.05 14499.74 6099.82 4399.63 9299.16 15199.73 7997.56 27799.64 11899.69 11299.37 3099.89 13696.66 26799.87 10799.69 51
LGP-MVS_train99.74 6099.82 4399.63 9299.73 7997.56 27799.64 11899.69 11299.37 3099.89 13696.66 26799.87 10799.69 51
EIA-MVS99.12 15199.01 15799.45 17099.36 24199.62 9499.34 9299.79 5398.41 22298.84 27398.89 32098.75 10899.84 21798.15 16299.51 25498.89 296
XVG-OURS99.21 12999.06 14099.65 9899.82 4399.62 9497.87 31199.74 7698.36 22899.66 11299.68 12399.71 999.90 12396.84 25799.88 9999.43 203
baseline99.63 3199.62 2699.66 9399.80 5699.62 9499.44 7599.80 4799.71 4199.72 9299.69 11299.15 5399.83 22899.32 5199.94 6199.53 154
APD-MVScopyleft98.87 19998.59 21199.71 7899.50 19499.62 9499.01 18699.57 17096.80 30899.54 15999.63 15098.29 16699.91 10395.24 31599.71 19799.61 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DP-MVS99.48 5399.39 6599.74 6099.57 16199.62 9499.29 11199.61 14199.87 1599.74 8799.76 7598.69 11399.87 16498.20 15499.80 15399.75 39
ACMH98.42 699.59 3699.54 4499.72 7499.86 3099.62 9499.56 6199.79 5398.77 18999.80 5999.85 3699.64 1399.85 20298.70 12299.89 9199.70 48
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZD-MVS99.43 22399.61 10099.43 23196.38 31399.11 24799.07 29797.86 20299.92 8594.04 33199.49 258
OPM-MVS99.26 11099.13 11699.63 10999.70 11799.61 10098.58 24099.48 21598.50 21499.52 16599.63 15099.14 5599.76 27697.89 17999.77 16899.51 166
testtj98.56 22998.17 25199.72 7499.45 21899.60 10298.88 20699.50 20896.88 30399.18 23899.48 21997.08 24699.92 8593.69 33599.38 27499.63 93
Anonymous2024052999.42 6799.34 7599.65 9899.53 17899.60 10299.63 4699.39 24599.47 8999.76 7499.78 6598.13 18199.86 18498.70 12299.68 20599.49 177
Anonymous2023121199.62 3399.57 3899.76 4699.61 14499.60 10299.81 1099.73 7999.82 2699.90 2399.90 2297.97 19499.86 18499.42 4099.96 4199.80 24
VPNet99.46 6099.37 7099.71 7899.82 4399.59 10599.48 6999.70 9599.81 2799.69 10299.58 18397.66 22099.86 18499.17 7399.44 26499.67 64
casdiffmvs99.63 3199.61 3099.67 8699.79 6699.59 10599.13 16299.85 2499.79 3299.76 7499.72 9299.33 3599.82 23899.21 6399.94 6199.59 125
PHI-MVS99.11 15598.95 17399.59 12699.13 29099.59 10599.17 14599.65 12397.88 26399.25 22299.46 22798.97 7699.80 25997.26 23199.82 14099.37 217
UniMVSNet (Re)99.37 8299.26 9899.68 8499.51 18899.58 10898.98 19799.60 15299.43 10099.70 9999.36 24797.70 21199.88 15199.20 6699.87 10799.59 125
XVG-ACMP-BASELINE99.23 11599.10 13199.63 10999.82 4399.58 10898.83 21599.72 8898.36 22899.60 13799.71 9998.92 8199.91 10397.08 24499.84 12199.40 209
114514_t98.49 23998.11 25499.64 10599.73 10399.58 10899.24 12499.76 6589.94 34899.42 18699.56 19497.76 21099.86 18497.74 19499.82 14099.47 186
UniMVSNet_NR-MVSNet99.37 8299.25 10099.72 7499.47 21099.56 11198.97 19999.61 14199.43 10099.67 10899.28 26697.85 20499.95 4399.17 7399.81 14899.65 82
DU-MVS99.33 9699.21 10499.71 7899.43 22399.56 11198.83 21599.53 19499.38 10499.67 10899.36 24797.67 21699.95 4399.17 7399.81 14899.63 93
CMPMVSbinary77.52 2398.50 23698.19 24999.41 18498.33 34499.56 11199.01 18699.59 15995.44 32699.57 14599.80 5295.64 27699.46 34596.47 27799.92 7399.21 248
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NR-MVSNet99.40 7499.31 8199.68 8499.43 22399.55 11499.73 1799.50 20899.46 9399.88 3399.36 24797.54 22499.87 16498.97 9799.87 10799.63 93
ACMP97.51 1499.05 16698.84 18999.67 8699.78 7299.55 11498.88 20699.66 11297.11 30099.47 17599.60 17599.07 6699.89 13696.18 28799.85 11799.58 130
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ETH3D-3000-0.198.77 20898.50 22299.59 12699.47 21099.53 11698.77 22899.60 15297.33 29199.23 22699.50 21297.91 19799.83 22895.02 31999.67 21299.41 207
SF-MVS99.10 15998.93 17499.62 11899.58 15199.51 11799.13 16299.65 12397.97 25799.42 18699.61 16898.86 8999.87 16496.45 27899.68 20599.49 177
Fast-Effi-MVS+99.02 17298.87 18599.46 16699.38 23699.50 11899.04 18199.79 5397.17 29698.62 29298.74 32899.34 3499.95 4398.32 14399.41 27098.92 294
CS-MVS99.09 16099.03 15299.25 22299.45 21899.49 11999.41 7899.82 3799.10 14898.03 32498.48 33999.30 3899.89 13698.30 14599.41 27098.35 323
MCST-MVS99.02 17298.81 19399.65 9899.58 15199.49 11998.58 24099.07 29598.40 22499.04 25599.25 27298.51 14399.80 25997.31 22599.51 25499.65 82
wuyk23d97.58 28399.13 11692.93 33799.69 12099.49 11999.52 6399.77 6097.97 25799.96 999.79 5899.84 399.94 5495.85 30099.82 14079.36 351
QAPM98.40 24897.99 25999.65 9899.39 23399.47 12299.67 3699.52 20291.70 34598.78 28199.80 5298.55 13299.95 4394.71 32399.75 17399.53 154
HyFIR lowres test98.91 19198.64 20699.73 6899.85 3399.47 12298.07 29099.83 3298.64 19999.89 2799.60 17592.57 302100.00 199.33 4999.97 3099.72 42
F-COLMAP98.74 21398.45 22599.62 11899.57 16199.47 12298.84 21399.65 12396.31 31598.93 26299.19 28597.68 21599.87 16496.52 27399.37 27899.53 154
3Dnovator+98.92 399.35 8799.24 10199.67 8699.35 24399.47 12299.62 4799.50 20899.44 9599.12 24699.78 6598.77 10599.94 5497.87 18399.72 19399.62 105
V4299.56 4199.54 4499.63 10999.79 6699.46 12699.39 8299.59 15999.24 12499.86 3899.70 10698.55 13299.82 23899.79 1199.95 4899.60 116
CDPH-MVS98.56 22998.20 24699.61 12299.50 19499.46 12698.32 26799.41 23595.22 32999.21 23299.10 29598.34 16299.82 23895.09 31899.66 21699.56 139
K. test v398.87 19998.60 20999.69 8399.93 1399.46 12699.74 1694.97 34999.78 3399.88 3399.88 2993.66 29499.97 1799.61 1999.95 4899.64 88
DP-MVS Recon98.50 23698.23 24399.31 21099.49 19999.46 12698.56 24599.63 13194.86 33598.85 27299.37 24297.81 20699.59 33596.08 28999.44 26498.88 297
CSCG99.37 8299.29 9199.60 12499.71 11099.46 12699.43 7799.85 2498.79 18699.41 19499.60 17598.92 8199.92 8598.02 16899.92 7399.43 203
UnsupCasMVSNet_eth98.83 20298.57 21599.59 12699.68 12899.45 13198.99 19399.67 10899.48 8499.55 15799.36 24794.92 28099.86 18498.95 10396.57 34799.45 192
OpenMVS_ROBcopyleft97.31 1797.36 29096.84 30198.89 26599.29 26699.45 13198.87 20999.48 21586.54 35199.44 18099.74 8297.34 23499.86 18491.61 33999.28 28897.37 344
OPU-MVS99.29 21399.12 29299.44 13399.20 13499.40 23699.00 7298.84 35196.54 27299.60 23499.58 130
testing_299.58 3799.56 4299.62 11899.81 5099.44 13399.14 15599.43 23199.69 4799.82 4999.79 5899.14 5599.79 26299.31 5499.95 4899.63 93
DeepC-MVS98.90 499.62 3399.61 3099.67 8699.72 10799.44 13399.24 12499.71 9199.27 11899.93 1599.90 2299.70 1199.93 6798.99 9399.99 1399.64 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ITE_SJBPF99.38 19399.63 14099.44 13399.73 7998.56 20699.33 21099.53 20498.88 8899.68 30996.01 29299.65 21999.02 287
TAPA-MVS97.92 1398.03 26997.55 28399.46 16699.47 21099.44 13398.50 25399.62 13486.79 34999.07 25399.26 27098.26 16999.62 32997.28 22899.73 18899.31 231
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS98.99 18198.80 19599.56 13999.25 27299.43 13898.54 24999.27 27498.58 20598.80 27899.43 23298.53 13899.70 29297.22 23699.59 23699.54 149
test_040299.22 12499.14 11399.45 17099.79 6699.43 13899.28 11299.68 10499.54 7799.40 19999.56 19499.07 6699.82 23896.01 29299.96 4199.11 269
EPP-MVSNet99.17 14299.00 16099.66 9399.80 5699.43 13899.70 2399.24 28299.48 8499.56 15299.77 7294.89 28199.93 6798.72 12199.89 9199.63 93
WR-MVS99.11 15598.93 17499.66 9399.30 26499.42 14198.42 26199.37 25299.04 15699.57 14599.20 28396.89 25199.86 18498.66 12699.87 10799.70 48
TAMVS99.49 5199.45 5699.63 10999.48 20599.42 14199.45 7299.57 17099.66 5599.78 6799.83 4197.85 20499.86 18499.44 3599.96 4199.61 112
OMC-MVS98.90 19398.72 19999.44 17299.39 23399.42 14198.58 24099.64 12997.31 29299.44 18099.62 15998.59 12799.69 29896.17 28899.79 15899.22 246
3Dnovator99.15 299.43 6499.36 7399.65 9899.39 23399.42 14199.70 2399.56 17599.23 12699.35 20599.80 5299.17 5199.95 4398.21 15399.84 12199.59 125
pmmvs-eth3d99.48 5399.47 5299.51 15299.77 8099.41 14598.81 22099.66 11299.42 10299.75 7999.66 13399.20 4899.76 27698.98 9599.99 1399.36 220
v899.68 2399.69 1999.65 9899.80 5699.40 14699.66 3999.76 6599.64 5999.93 1599.85 3698.66 11999.84 21799.88 699.99 1399.71 45
SD-MVS99.01 17699.30 8698.15 30099.50 19499.40 14698.94 20399.61 14199.22 12999.75 7999.82 4799.54 2095.51 35597.48 21699.87 10799.54 149
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D cwj APD-0.1698.50 23698.16 25299.51 15299.04 30599.39 14898.47 25599.47 21996.70 31098.78 28199.33 25697.62 22399.86 18494.69 32499.38 27499.28 237
v1099.69 2299.69 1999.66 9399.81 5099.39 14899.66 3999.75 7199.60 7399.92 1999.87 3198.75 10899.86 18499.90 299.99 1399.73 41
ab-mvs99.33 9699.28 9399.47 16399.57 16199.39 14899.78 1199.43 23198.87 17699.57 14599.82 4798.06 18699.87 16498.69 12499.73 18899.15 261
plane_prior799.58 15199.38 151
lessismore_v099.64 10599.86 3099.38 15190.66 35699.89 2799.83 4194.56 28699.97 1799.56 2499.92 7399.57 136
CPTT-MVS98.74 21398.44 22699.64 10599.61 14499.38 15199.18 14099.55 18096.49 31199.27 22099.37 24297.11 24599.92 8595.74 30599.67 21299.62 105
TSAR-MVS + MP.99.34 9299.24 10199.63 10999.82 4399.37 15499.26 11699.35 25698.77 18999.57 14599.70 10699.27 4499.88 15197.71 19699.75 17399.65 82
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test20.0399.55 4499.54 4499.58 13099.79 6699.37 15499.02 18499.89 1399.60 7399.82 4999.62 15998.81 9399.89 13699.43 3699.86 11499.47 186
UnsupCasMVSNet_bld98.55 23298.27 24199.40 18699.56 17199.37 15497.97 30399.68 10497.49 28399.08 25099.35 25295.41 27999.82 23897.70 19898.19 33599.01 288
agg_prior198.33 25597.92 26999.57 13599.35 24399.36 15797.99 29999.39 24594.85 33697.76 33698.98 30898.03 18799.85 20295.49 30999.44 26499.51 166
agg_prior99.35 24399.36 15799.39 24597.76 33699.85 202
VNet99.18 13899.06 14099.56 13999.24 27499.36 15799.33 9499.31 26599.67 5199.47 17599.57 19196.48 25899.84 21799.15 7799.30 28699.47 186
DELS-MVS99.34 9299.30 8699.48 16199.51 18899.36 15798.12 28399.53 19499.36 10799.41 19499.61 16899.22 4799.87 16499.21 6399.68 20599.20 251
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TEST999.35 24399.35 16198.11 28599.41 23594.83 33797.92 32798.99 30598.02 18999.85 202
train_agg98.35 25397.95 26399.57 13599.35 24399.35 16198.11 28599.41 23594.90 33397.92 32798.99 30598.02 18999.85 20295.38 31399.44 26499.50 172
FMVSNet299.35 8799.28 9399.55 14299.49 19999.35 16199.45 7299.57 17099.44 9599.70 9999.74 8297.21 23999.87 16499.03 9099.94 6199.44 197
test1299.54 14699.29 26699.33 16499.16 29098.43 30597.54 22499.82 23899.47 26199.48 181
EG-PatchMatch MVS99.57 3899.56 4299.62 11899.77 8099.33 16499.26 11699.76 6599.32 11299.80 5999.78 6599.29 3999.87 16499.15 7799.91 8299.66 74
MVS_111021_LR99.13 14999.03 15299.42 17799.58 15199.32 16697.91 31099.73 7998.68 19699.31 21499.48 21999.09 6199.66 31897.70 19899.77 16899.29 235
test_899.34 25399.31 16798.08 28999.40 24294.90 33397.87 33198.97 31198.02 18999.84 217
plane_prior399.31 16798.36 22899.14 243
NCCC98.82 20498.57 21599.58 13099.21 27799.31 16798.61 23699.25 27998.65 19898.43 30599.26 27097.86 20299.81 25496.55 27199.27 29199.61 112
旧先验199.49 19999.29 17099.26 27699.39 24097.67 21699.36 27999.46 190
1112_ss99.05 16698.84 18999.67 8699.66 13499.29 17098.52 25199.82 3797.65 27499.43 18499.16 28696.42 26199.91 10399.07 8899.84 12199.80 24
ETV-MVS99.18 13899.18 10799.16 23499.34 25399.28 17299.12 16699.79 5399.48 8498.93 26298.55 33599.40 2399.93 6798.51 13299.52 25398.28 326
v114499.54 4699.53 4899.59 12699.79 6699.28 17299.10 16999.61 14199.20 13099.84 4299.73 8698.67 11799.84 21799.86 899.98 2299.64 88
PatchMatch-RL98.68 21898.47 22399.30 21299.44 22199.28 17298.14 28199.54 18597.12 29999.11 24799.25 27297.80 20799.70 29296.51 27499.30 28698.93 293
LF4IMVS99.01 17698.92 17899.27 21799.71 11099.28 17298.59 23999.77 6098.32 23999.39 20099.41 23498.62 12399.84 21796.62 27099.84 12198.69 307
ETH3 D test640097.76 27697.19 29199.50 15599.38 23699.26 17698.34 26499.49 21392.99 34298.54 29999.20 28395.92 27499.82 23891.14 34299.66 21699.40 209
plane_prior699.47 21099.26 17697.24 237
API-MVS98.38 24998.39 23198.35 29298.83 32299.26 17699.14 15599.18 28898.59 20498.66 29098.78 32698.61 12599.57 33794.14 32999.56 23996.21 348
OpenMVScopyleft98.12 1098.23 26197.89 27399.26 21999.19 28299.26 17699.65 4499.69 10191.33 34698.14 31999.77 7298.28 16799.96 3495.41 31299.55 24398.58 313
xxxxxxxxxxxxxcwj99.11 15598.96 17199.54 14699.53 17899.25 18098.29 26999.76 6599.07 15199.42 18699.61 16898.86 8999.87 16496.45 27899.68 20599.49 177
save fliter99.53 17899.25 18098.29 26999.38 25199.07 151
v2v48299.50 4999.47 5299.58 13099.78 7299.25 18099.14 15599.58 16899.25 12299.81 5699.62 15998.24 17099.84 21799.83 999.97 3099.64 88
CHOSEN 1792x268899.39 7899.30 8699.65 9899.88 2499.25 18098.78 22799.88 1698.66 19799.96 999.79 5897.45 22799.93 6799.34 4799.99 1399.78 31
IS-MVSNet99.03 17098.85 18799.55 14299.80 5699.25 18099.73 1799.15 29199.37 10599.61 13599.71 9994.73 28499.81 25497.70 19899.88 9999.58 130
112198.56 22998.24 24299.52 14999.49 19999.24 18599.30 10499.22 28495.77 32298.52 30099.29 26497.39 23199.85 20295.79 30399.34 28199.46 190
HQP_MVS98.90 19398.68 20599.55 14299.58 15199.24 18598.80 22399.54 18598.94 16599.14 24399.25 27297.24 23799.82 23895.84 30199.78 16499.60 116
plane_prior99.24 18598.42 26197.87 26499.71 197
PLCcopyleft97.35 1698.36 25097.99 25999.48 16199.32 25999.24 18598.50 25399.51 20595.19 33198.58 29698.96 31396.95 25099.83 22895.63 30699.25 29299.37 217
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v119299.57 3899.57 3899.57 13599.77 8099.22 18999.04 18199.60 15299.18 13299.87 3799.72 9299.08 6499.85 20299.89 599.98 2299.66 74
test_prior398.62 22198.34 23799.46 16699.35 24399.22 18997.95 30499.39 24597.87 26498.05 32199.05 29997.90 19899.69 29895.99 29499.49 25899.48 181
test_prior99.46 16699.35 24399.22 18999.39 24599.69 29899.48 181
新几何199.52 14999.50 19499.22 18999.26 27695.66 32598.60 29499.28 26697.67 21699.89 13695.95 29899.32 28499.45 192
DeepC-MVS_fast98.47 599.23 11599.12 12099.56 13999.28 26899.22 18998.99 19399.40 24299.08 14999.58 14299.64 14098.90 8699.83 22897.44 21899.75 17399.63 93
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary98.60 22398.35 23699.38 19399.12 29299.22 18998.67 23599.42 23497.84 26898.81 27699.27 26897.32 23599.81 25495.14 31699.53 25199.10 271
v14419299.55 4499.54 4499.58 13099.78 7299.20 19599.11 16899.62 13499.18 13299.89 2799.72 9298.66 11999.87 16499.88 699.97 3099.66 74
test_prior499.19 19698.00 297
Patchmtry98.78 20798.54 21899.49 15898.89 31699.19 19699.32 9799.67 10899.65 5799.72 9299.79 5891.87 30999.95 4398.00 17299.97 3099.33 226
TSAR-MVS + GP.99.12 15199.04 15099.38 19399.34 25399.16 19898.15 27999.29 27098.18 24899.63 12299.62 15999.18 5099.68 30998.20 15499.74 18199.30 232
PCF-MVS96.03 1896.73 30395.86 31499.33 20399.44 22199.16 19896.87 34499.44 22886.58 35098.95 26099.40 23694.38 28799.88 15187.93 34799.80 15398.95 291
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Test_1112_low_res98.95 18898.73 19899.63 10999.68 12899.15 20098.09 28799.80 4797.14 29899.46 17899.40 23696.11 27099.89 13699.01 9299.84 12199.84 15
NP-MVS99.40 23299.13 20198.83 323
MSDG99.08 16198.98 16899.37 19699.60 14699.13 20197.54 32499.74 7698.84 18199.53 16399.55 20099.10 5999.79 26297.07 24599.86 11499.18 255
DPM-MVS98.28 25697.94 26799.32 20799.36 24199.11 20397.31 33698.78 30796.88 30398.84 27399.11 29497.77 20999.61 33394.03 33299.36 27999.23 244
v192192099.56 4199.57 3899.55 14299.75 9499.11 20399.05 17999.61 14199.15 14199.88 3399.71 9999.08 6499.87 16499.90 299.97 3099.66 74
CDS-MVSNet99.22 12499.13 11699.50 15599.35 24399.11 20398.96 20099.54 18599.46 9399.61 13599.70 10696.31 26599.83 22899.34 4799.88 9999.55 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_HR99.12 15199.02 15499.40 18699.50 19499.11 20397.92 30899.71 9198.76 19299.08 25099.47 22499.17 5199.54 33897.85 18699.76 17099.54 149
Regformer-299.34 9299.27 9699.53 14899.41 22999.10 20798.99 19399.53 19499.47 8999.66 11299.52 20698.80 9799.89 13698.31 14499.74 18199.60 116
pmmvs499.13 14999.06 14099.36 19999.57 16199.10 20798.01 29599.25 27998.78 18899.58 14299.44 23198.24 17099.76 27698.74 11999.93 6999.22 246
CNLPA98.57 22898.34 23799.28 21599.18 28499.10 20798.34 26499.41 23598.48 21798.52 30098.98 30897.05 24799.78 26695.59 30799.50 25698.96 290
test22299.51 18899.08 21097.83 31399.29 27095.21 33098.68 28999.31 25997.28 23699.38 27499.43 203
MVP-Stereo99.16 14399.08 13499.43 17599.48 20599.07 21199.08 17699.55 18098.63 20099.31 21499.68 12398.19 17799.78 26698.18 15899.58 23799.45 192
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-RL test98.60 22398.36 23499.33 20399.77 8099.07 21198.27 27199.87 1898.91 17199.74 8799.72 9290.57 32699.79 26298.55 13099.85 11799.11 269
Anonymous2023120699.35 8799.31 8199.47 16399.74 10099.06 21399.28 11299.74 7699.23 12699.72 9299.53 20497.63 22299.88 15199.11 8599.84 12199.48 181
v124099.56 4199.58 3599.51 15299.80 5699.00 21499.00 18899.65 12399.15 14199.90 2399.75 7999.09 6199.88 15199.90 299.96 4199.67 64
PMMVS299.48 5399.45 5699.57 13599.76 8498.99 21598.09 28799.90 1198.95 16499.78 6799.58 18399.57 1999.93 6799.48 3299.95 4899.79 30
Effi-MVS+99.06 16398.97 16999.34 20199.31 26098.98 21698.31 26899.91 898.81 18398.79 27998.94 31599.14 5599.84 21798.79 11498.74 31999.20 251
VDD-MVS99.20 13199.11 12399.44 17299.43 22398.98 21699.50 6598.32 32699.80 3099.56 15299.69 11296.99 24999.85 20298.99 9399.73 18899.50 172
FMVSNet597.80 27497.25 28899.42 17798.83 32298.97 21899.38 8499.80 4798.87 17699.25 22299.69 11280.60 35699.91 10398.96 9999.90 8399.38 214
CLD-MVS98.76 21098.57 21599.33 20399.57 16198.97 21897.53 32699.55 18096.41 31299.27 22099.13 28899.07 6699.78 26696.73 26399.89 9199.23 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Regformer-199.32 9899.27 9699.47 16399.41 22998.95 22098.99 19399.48 21599.48 8499.66 11299.52 20698.78 10299.87 16498.36 13899.74 18199.60 116
v14899.40 7499.41 6399.39 18999.76 8498.94 22199.09 17399.59 15999.17 13599.81 5699.61 16898.41 15299.69 29899.32 5199.94 6199.53 154
Regformer-499.45 6299.44 5899.50 15599.52 18398.94 22199.17 14599.53 19499.64 5999.76 7499.60 17598.96 7999.90 12398.91 10699.84 12199.67 64
HQP5-MVS98.94 221
HQP-MVS98.36 25098.02 25899.39 18999.31 26098.94 22197.98 30099.37 25297.45 28498.15 31598.83 32396.67 25399.70 29294.73 32199.67 21299.53 154
alignmvs98.28 25697.96 26299.25 22299.12 29298.93 22599.03 18398.42 32299.64 5998.72 28697.85 34890.86 32299.62 32998.88 10899.13 29799.19 253
testdata99.42 17799.51 18898.93 22599.30 26896.20 31698.87 27099.40 23698.33 16499.89 13696.29 28499.28 28899.44 197
PAPM_NR98.36 25098.04 25799.33 20399.48 20598.93 22598.79 22699.28 27397.54 27998.56 29898.57 33397.12 24499.69 29894.09 33098.90 31099.38 214
MVS_030498.88 19798.71 20099.39 18998.85 32098.91 22899.45 7299.30 26898.56 20697.26 34299.68 12396.18 26999.96 3499.17 7399.94 6199.29 235
UGNet99.38 8099.34 7599.49 15898.90 31398.90 22999.70 2399.35 25699.86 1798.57 29799.81 5098.50 14499.93 6799.38 4299.98 2299.66 74
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs599.19 13499.11 12399.42 17799.76 8498.88 23098.55 24699.73 7998.82 18299.72 9299.62 15996.56 25599.82 23899.32 5199.95 4899.56 139
Vis-MVSNet (Re-imp)98.77 20898.58 21499.34 20199.78 7298.88 23099.61 5199.56 17599.11 14799.24 22599.56 19493.00 30099.78 26697.43 21999.89 9199.35 223
原ACMM199.37 19699.47 21098.87 23299.27 27496.74 30998.26 31099.32 25797.93 19699.82 23895.96 29799.38 27499.43 203
VDDNet98.97 18298.82 19299.42 17799.71 11098.81 23399.62 4798.68 31099.81 2799.38 20199.80 5294.25 28899.85 20298.79 11499.32 28499.59 125
testgi99.29 10399.26 9899.37 19699.75 9498.81 23398.84 21399.89 1398.38 22699.75 7999.04 30299.36 3399.86 18499.08 8799.25 29299.45 192
MVS_Test99.28 10499.31 8199.19 23199.35 24398.79 23599.36 9099.49 21399.17 13599.21 23299.67 12998.78 10299.66 31899.09 8699.66 21699.10 271
diffmvs99.34 9299.32 8099.39 18999.67 13398.77 23698.57 24499.81 4699.61 6799.48 17399.41 23498.47 14599.86 18498.97 9799.90 8399.53 154
D2MVS99.22 12499.19 10699.29 21399.69 12098.74 23798.81 22099.41 23598.55 20899.68 10499.69 11298.13 18199.87 16498.82 11299.98 2299.24 241
FMVSNet398.80 20698.63 20899.32 20799.13 29098.72 23899.10 16999.48 21599.23 12699.62 12999.64 14092.57 30299.86 18498.96 9999.90 8399.39 212
canonicalmvs99.02 17299.00 16099.09 23999.10 29898.70 23999.61 5199.66 11299.63 6298.64 29197.65 35099.04 7099.54 33898.79 11498.92 30899.04 285
Regformer-399.41 7199.41 6399.40 18699.52 18398.70 23999.17 14599.44 22899.62 6399.75 7999.60 17598.90 8699.85 20298.89 10799.84 12199.65 82
N_pmnet98.73 21598.53 22099.35 20099.72 10798.67 24198.34 26494.65 35098.35 23399.79 6499.68 12398.03 18799.93 6798.28 14799.92 7399.44 197
EI-MVSNet-Vis-set99.47 5999.49 5199.42 17799.57 16198.66 24299.24 12499.46 22399.67 5199.79 6499.65 13898.97 7699.89 13699.15 7799.89 9199.71 45
PVSNet_Blended_VisFu99.40 7499.38 6799.44 17299.90 2098.66 24298.94 20399.91 897.97 25799.79 6499.73 8699.05 6999.97 1799.15 7799.99 1399.68 57
EI-MVSNet-UG-set99.48 5399.50 5099.42 17799.57 16198.65 24499.24 12499.46 22399.68 4999.80 5999.66 13398.99 7399.89 13699.19 6899.90 8399.72 42
RRT_MVS98.75 21198.54 21899.41 18498.14 35198.61 24598.98 19799.66 11299.31 11399.84 4299.75 7991.98 30699.98 699.20 6699.95 4899.62 105
CANet99.11 15599.05 14499.28 21598.83 32298.56 24698.71 23499.41 23599.25 12299.23 22699.22 27997.66 22099.94 5499.19 6899.97 3099.33 226
ambc99.20 23099.35 24398.53 24799.17 14599.46 22399.67 10899.80 5298.46 14899.70 29297.92 17799.70 19999.38 214
LFMVS98.46 24298.19 24999.26 21999.24 27498.52 24899.62 4796.94 34299.87 1599.31 21499.58 18391.04 31799.81 25498.68 12599.42 26999.45 192
test_yl98.25 25897.95 26399.13 23599.17 28598.47 24999.00 18898.67 31298.97 16099.22 23099.02 30391.31 31399.69 29897.26 23198.93 30699.24 241
DCV-MVSNet98.25 25897.95 26399.13 23599.17 28598.47 24999.00 18898.67 31298.97 16099.22 23099.02 30391.31 31399.69 29897.26 23198.93 30699.24 241
BH-RMVSNet98.41 24698.14 25399.21 22899.21 27798.47 24998.60 23898.26 32798.35 23398.93 26299.31 25997.20 24299.66 31894.32 32699.10 29999.51 166
jason99.16 14399.11 12399.32 20799.75 9498.44 25298.26 27299.39 24598.70 19599.74 8799.30 26198.54 13499.97 1798.48 13399.82 14099.55 142
jason: jason.
sss98.90 19398.77 19799.27 21799.48 20598.44 25298.72 23399.32 26197.94 26199.37 20299.35 25296.31 26599.91 10398.85 10999.63 22399.47 186
PMMVS98.49 23998.29 24099.11 23798.96 31098.42 25497.54 32499.32 26197.53 28098.47 30498.15 34597.88 20199.82 23897.46 21799.24 29499.09 274
MVSFormer99.41 7199.44 5899.31 21099.57 16198.40 25599.77 1299.80 4799.73 3799.63 12299.30 26198.02 18999.98 699.43 3699.69 20299.55 142
lupinMVS98.96 18598.87 18599.24 22599.57 16198.40 25598.12 28399.18 28898.28 24199.63 12299.13 28898.02 18999.97 1798.22 15299.69 20299.35 223
WTY-MVS98.59 22698.37 23399.26 21999.43 22398.40 25598.74 23099.13 29498.10 25099.21 23299.24 27794.82 28299.90 12397.86 18498.77 31599.49 177
MIMVSNet98.43 24498.20 24699.11 23799.53 17898.38 25899.58 5898.61 31498.96 16399.33 21099.76 7590.92 31999.81 25497.38 22299.76 17099.15 261
MSLP-MVS++99.05 16699.09 13298.91 25899.21 27798.36 25998.82 21999.47 21998.85 17898.90 26899.56 19498.78 10299.09 34998.57 12999.68 20599.26 238
MVSTER98.47 24198.22 24499.24 22599.06 30298.35 26099.08 17699.46 22399.27 11899.75 7999.66 13388.61 33599.85 20299.14 8399.92 7399.52 164
PatchT98.45 24398.32 23998.83 27098.94 31198.29 26199.24 12498.82 30599.84 2299.08 25099.76 7591.37 31299.94 5498.82 11299.00 30598.26 327
HY-MVS98.23 998.21 26397.95 26398.99 24899.03 30698.24 26299.61 5198.72 30996.81 30798.73 28599.51 20994.06 28999.86 18496.91 25198.20 33398.86 299
xiu_mvs_v1_base_debu99.23 11599.34 7598.91 25899.59 14898.23 26398.47 25599.66 11299.61 6799.68 10498.94 31599.39 2499.97 1799.18 7099.55 24398.51 317
xiu_mvs_v1_base99.23 11599.34 7598.91 25899.59 14898.23 26398.47 25599.66 11299.61 6799.68 10498.94 31599.39 2499.97 1799.18 7099.55 24398.51 317
xiu_mvs_v1_base_debi99.23 11599.34 7598.91 25899.59 14898.23 26398.47 25599.66 11299.61 6799.68 10498.94 31599.39 2499.97 1799.18 7099.55 24398.51 317
MS-PatchMatch99.00 17898.97 16999.09 23999.11 29798.19 26698.76 22999.33 25998.49 21699.44 18099.58 18398.21 17499.69 29898.20 15499.62 22499.39 212
TinyColmap98.97 18298.93 17499.07 24399.46 21598.19 26697.75 31599.75 7198.79 18699.54 15999.70 10698.97 7699.62 32996.63 26999.83 13199.41 207
FPMVS96.32 31195.50 31998.79 27499.60 14698.17 26898.46 26098.80 30697.16 29796.28 34699.63 15082.19 35299.09 34988.45 34698.89 31199.10 271
CANet_DTU98.91 19198.85 18799.09 23998.79 32898.13 26998.18 27699.31 26599.48 8498.86 27199.51 20996.56 25599.95 4399.05 8999.95 4899.19 253
CR-MVSNet98.35 25398.20 24698.83 27099.05 30398.12 27099.30 10499.67 10897.39 28899.16 23999.79 5891.87 30999.91 10398.78 11798.77 31598.44 320
RPMNet98.60 22398.53 22098.83 27099.05 30398.12 27099.30 10499.62 13499.86 1799.16 23999.74 8292.53 30499.92 8598.75 11898.77 31598.44 320
PAPR97.56 28497.07 29399.04 24698.80 32798.11 27297.63 32099.25 27994.56 33998.02 32598.25 34497.43 22899.68 30990.90 34398.74 31999.33 226
PS-MVSNAJ99.00 17899.08 13498.76 27699.37 23998.10 27398.00 29799.51 20599.47 8999.41 19498.50 33899.28 4199.97 1798.83 11099.34 28198.20 332
xiu_mvs_v2_base99.02 17299.11 12398.77 27599.37 23998.09 27498.13 28299.51 20599.47 8999.42 18698.54 33699.38 2899.97 1798.83 11099.33 28398.24 328
EI-MVSNet99.38 8099.44 5899.21 22899.58 15198.09 27499.26 11699.46 22399.62 6399.75 7999.67 12998.54 13499.85 20299.15 7799.92 7399.68 57
IterMVS-LS99.41 7199.47 5299.25 22299.81 5098.09 27498.85 21299.76 6599.62 6399.83 4799.64 14098.54 13499.97 1799.15 7799.99 1399.68 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS97.99 27297.68 28098.93 25599.52 18398.04 27797.19 34099.05 29898.32 23998.81 27698.97 31189.89 33399.41 34698.33 14299.05 30199.34 225
EPNet98.13 26497.77 27799.18 23394.57 35797.99 27899.24 12497.96 33099.74 3697.29 34199.62 15993.13 29899.97 1798.59 12899.83 13199.58 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS99.03 17099.01 15799.09 23999.54 17397.99 27898.58 24099.82 3797.62 27599.34 20899.71 9998.52 14199.77 27497.98 17399.97 3099.52 164
PVSNet_Blended98.70 21798.59 21199.02 24799.54 17397.99 27897.58 32399.82 3795.70 32499.34 20898.98 30898.52 14199.77 27497.98 17399.83 13199.30 232
USDC98.96 18598.93 17499.05 24599.54 17397.99 27897.07 34199.80 4798.21 24599.75 7999.77 7298.43 15099.64 32797.90 17899.88 9999.51 166
PMVScopyleft92.94 2198.82 20498.81 19398.85 26699.84 3497.99 27899.20 13499.47 21999.71 4199.42 18699.82 4798.09 18399.47 34393.88 33499.85 11799.07 282
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS95.72 32194.63 32598.99 24898.56 33897.98 28399.30 10498.86 30272.71 35497.30 34099.08 29698.34 16299.74 28289.21 34498.33 33199.26 238
ET-MVSNet_ETH3D96.78 30196.07 31098.91 25899.26 27197.92 28497.70 31896.05 34697.96 26092.37 35498.43 34087.06 33999.90 12398.27 14897.56 34498.91 295
MDA-MVSNet-bldmvs99.06 16399.05 14499.07 24399.80 5697.83 28598.89 20599.72 8899.29 11499.63 12299.70 10696.47 25999.89 13698.17 16099.82 14099.50 172
mvs_anonymous99.28 10499.39 6598.94 25299.19 28297.81 28699.02 18499.55 18099.78 3399.85 3999.80 5298.24 17099.86 18499.57 2399.50 25699.15 261
cl-mvsnet_98.54 23398.41 22998.92 25699.03 30697.80 28797.46 33099.59 15998.90 17299.60 13799.46 22793.85 29199.78 26697.97 17599.89 9199.17 257
cl-mvsnet198.54 23398.42 22898.92 25699.03 30697.80 28797.46 33099.59 15998.90 17299.60 13799.46 22793.87 29099.78 26697.97 17599.89 9199.18 255
thisisatest053097.45 28696.95 29798.94 25299.68 12897.73 28999.09 17394.19 35398.61 20399.56 15299.30 26184.30 35199.93 6798.27 14899.54 24999.16 259
baseline197.73 27797.33 28598.96 25099.30 26497.73 28999.40 8098.42 32299.33 11199.46 17899.21 28191.18 31599.82 23898.35 14091.26 35299.32 229
pmmvs398.08 26797.80 27498.91 25899.41 22997.69 29197.87 31199.66 11295.87 32099.50 17199.51 20990.35 32899.97 1798.55 13099.47 26199.08 277
new_pmnet98.88 19798.89 18398.84 26899.70 11797.62 29298.15 27999.50 20897.98 25699.62 12999.54 20298.15 18099.94 5497.55 21199.84 12198.95 291
test0.0.03 197.37 28996.91 30098.74 27797.72 35297.57 29397.60 32297.36 34198.00 25399.21 23298.02 34690.04 33199.79 26298.37 13795.89 35098.86 299
MVEpermissive92.54 2296.66 30596.11 30998.31 29699.68 12897.55 29497.94 30695.60 34899.37 10590.68 35598.70 32996.56 25598.61 35386.94 35299.55 24398.77 305
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thisisatest051596.98 29796.42 30498.66 28199.42 22897.47 29597.27 33794.30 35297.24 29499.15 24198.86 32285.01 34899.87 16497.10 24399.39 27398.63 308
TR-MVS97.44 28797.15 29298.32 29498.53 33997.46 29698.47 25597.91 33296.85 30598.21 31498.51 33796.42 26199.51 34192.16 33897.29 34597.98 337
131498.00 27197.90 27298.27 29898.90 31397.45 29799.30 10499.06 29794.98 33297.21 34399.12 29298.43 15099.67 31495.58 30898.56 32697.71 340
tttt051797.62 28197.20 29098.90 26499.76 8497.40 29899.48 6994.36 35199.06 15599.70 9999.49 21784.55 35099.94 5498.73 12099.65 21999.36 220
MG-MVS98.52 23598.39 23198.94 25299.15 28797.39 29998.18 27699.21 28698.89 17599.23 22699.63 15097.37 23399.74 28294.22 32899.61 23199.69 51
miper_lstm_enhance98.65 22098.60 20998.82 27399.20 28097.33 30097.78 31499.66 11299.01 15799.59 14099.50 21294.62 28599.85 20298.12 16399.90 8399.26 238
DSMNet-mixed99.48 5399.65 2398.95 25199.71 11097.27 30199.50 6599.82 3799.59 7599.41 19499.85 3699.62 15100.00 199.53 2799.89 9199.59 125
BH-untuned98.22 26298.09 25598.58 28499.38 23697.24 30298.55 24698.98 30097.81 26999.20 23798.76 32797.01 24899.65 32594.83 32098.33 33198.86 299
cl_fuxian98.72 21698.71 20098.72 27899.12 29297.22 30397.68 31999.56 17598.90 17299.54 15999.48 21996.37 26499.73 28497.88 18099.88 9999.21 248
MDA-MVSNet_test_wron98.95 18898.99 16598.85 26699.64 13897.16 30498.23 27499.33 25998.93 16899.56 15299.66 13397.39 23199.83 22898.29 14699.88 9999.55 142
YYNet198.95 18898.99 16598.84 26899.64 13897.14 30598.22 27599.32 26198.92 17099.59 14099.66 13397.40 22999.83 22898.27 14899.90 8399.55 142
miper_ehance_all_eth98.59 22698.59 21198.59 28398.98 30997.07 30697.49 32999.52 20298.50 21499.52 16599.37 24296.41 26399.71 29097.86 18499.62 22499.00 289
JIA-IIPM98.06 26897.92 26998.50 28698.59 33797.02 30798.80 22398.51 31899.88 1497.89 32999.87 3191.89 30899.90 12398.16 16197.68 34398.59 311
gg-mvs-nofinetune95.87 31895.17 32297.97 30498.19 34796.95 30899.69 2989.23 35899.89 1296.24 34899.94 1381.19 35399.51 34193.99 33398.20 33397.44 342
DeepMVS_CXcopyleft97.98 30399.69 12096.95 30899.26 27675.51 35395.74 35198.28 34396.47 25999.62 32991.23 34197.89 34197.38 343
baseline296.83 30096.28 30698.46 28899.09 30096.91 31098.83 21593.87 35497.23 29596.23 34998.36 34188.12 33699.90 12396.68 26598.14 33798.57 314
GG-mvs-BLEND97.36 32097.59 35396.87 31199.70 2388.49 35994.64 35397.26 35680.66 35599.12 34891.50 34096.50 34896.08 350
eth_miper_zixun_eth98.68 21898.71 20098.60 28299.10 29896.84 31297.52 32899.54 18598.94 16599.58 14299.48 21996.25 26799.76 27698.01 17199.93 6999.21 248
cl-mvsnet297.56 28497.28 28698.40 29098.37 34396.75 31397.24 33999.37 25297.31 29299.41 19499.22 27987.30 33799.37 34797.70 19899.62 22499.08 277
PAPM95.61 32294.71 32498.31 29699.12 29296.63 31496.66 34798.46 32190.77 34796.25 34798.68 33093.01 29999.69 29881.60 35397.86 34298.62 309
new-patchmatchnet99.35 8799.57 3898.71 28099.82 4396.62 31598.55 24699.75 7199.50 8299.88 3399.87 3199.31 3699.88 15199.43 36100.00 199.62 105
Patchmatch-test98.10 26697.98 26198.48 28799.27 27096.48 31699.40 8099.07 29598.81 18399.23 22699.57 19190.11 33099.87 16496.69 26499.64 22199.09 274
EU-MVSNet99.39 7899.62 2698.72 27899.88 2496.44 31799.56 6199.85 2499.90 899.90 2399.85 3698.09 18399.83 22899.58 2299.95 4899.90 5
miper_enhance_ethall98.03 26997.94 26798.32 29498.27 34596.43 31896.95 34299.41 23596.37 31499.43 18498.96 31394.74 28399.69 29897.71 19699.62 22498.83 302
PVSNet97.47 1598.42 24598.44 22698.35 29299.46 21596.26 31996.70 34699.34 25897.68 27399.00 25799.13 28897.40 22999.72 28697.59 21099.68 20599.08 277
thres20096.09 31595.68 31897.33 32299.48 20596.22 32098.53 25097.57 33698.06 25298.37 30796.73 35986.84 34499.61 33386.99 35198.57 32596.16 349
tfpn200view996.30 31295.89 31297.53 31599.58 15196.11 32199.00 18897.54 33998.43 21998.52 30096.98 35786.85 34299.67 31487.62 34898.51 32896.81 346
thres40096.40 30895.89 31297.92 30699.58 15196.11 32199.00 18897.54 33998.43 21998.52 30096.98 35786.85 34299.67 31487.62 34898.51 32897.98 337
thres600view796.60 30696.16 30897.93 30599.63 14096.09 32399.18 14097.57 33698.77 18998.72 28697.32 35487.04 34099.72 28688.57 34598.62 32497.98 337
thres100view90096.39 30996.03 31197.47 31799.63 14095.93 32499.18 14097.57 33698.75 19398.70 28897.31 35587.04 34099.67 31487.62 34898.51 32896.81 346
IterMVS-SCA-FT99.00 17899.16 10998.51 28599.75 9495.90 32598.07 29099.84 3099.84 2299.89 2799.73 8696.01 27299.99 499.33 49100.00 199.63 93
CHOSEN 280x42098.41 24698.41 22998.40 29099.34 25395.89 32696.94 34399.44 22898.80 18599.25 22299.52 20693.51 29599.98 698.94 10499.98 2299.32 229
BH-w/o97.20 29297.01 29597.76 31099.08 30195.69 32798.03 29498.52 31795.76 32397.96 32698.02 34695.62 27799.47 34392.82 33797.25 34698.12 334
cascas96.99 29696.82 30297.48 31697.57 35595.64 32896.43 34899.56 17591.75 34497.13 34497.61 35195.58 27898.63 35296.68 26599.11 29898.18 333
IterMVS98.97 18299.16 10998.42 28999.74 10095.64 32898.06 29299.83 3299.83 2599.85 3999.74 8296.10 27199.99 499.27 61100.00 199.63 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ADS-MVSNet297.78 27597.66 28298.12 30299.14 28895.36 33099.22 13198.75 30896.97 30198.25 31199.64 14090.90 32099.94 5496.51 27499.56 23999.08 277
IB-MVS95.41 2095.30 32394.46 32697.84 30898.76 33295.33 33197.33 33596.07 34596.02 31895.37 35297.41 35376.17 36099.96 3497.54 21295.44 35198.22 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ppachtmachnet_test98.89 19699.12 12098.20 29999.66 13495.24 33297.63 32099.68 10499.08 14999.78 6799.62 15998.65 12199.88 15198.02 16899.96 4199.48 181
test-LLR97.15 29396.95 29797.74 31298.18 34895.02 33397.38 33296.10 34398.00 25397.81 33398.58 33190.04 33199.91 10397.69 20498.78 31398.31 324
test-mter96.23 31495.73 31797.74 31298.18 34895.02 33397.38 33296.10 34397.90 26297.81 33398.58 33179.12 35899.91 10397.69 20498.78 31398.31 324
our_test_398.85 20199.09 13298.13 30199.66 13494.90 33597.72 31699.58 16899.07 15199.64 11899.62 15998.19 17799.93 6798.41 13599.95 4899.55 142
ADS-MVSNet97.72 27997.67 28197.86 30799.14 28894.65 33699.22 13198.86 30296.97 30198.25 31199.64 14090.90 32099.84 21796.51 27499.56 23999.08 277
tmp_tt95.75 32095.42 32096.76 32689.90 35894.42 33798.86 21097.87 33378.01 35299.30 21899.69 11297.70 21195.89 35499.29 5898.14 33799.95 1
tpm97.15 29396.95 29797.75 31198.91 31294.24 33899.32 9797.96 33097.71 27298.29 30899.32 25786.72 34599.92 8598.10 16696.24 34999.09 274
TESTMET0.1,196.24 31395.84 31597.41 31998.24 34693.84 33997.38 33295.84 34798.43 21997.81 33398.56 33479.77 35799.89 13697.77 19198.77 31598.52 316
CVMVSNet98.61 22298.88 18497.80 30999.58 15193.60 34099.26 11699.64 12999.66 5599.72 9299.67 12993.26 29699.93 6799.30 5599.81 14899.87 10
PVSNet_095.53 1995.85 31995.31 32197.47 31798.78 33093.48 34195.72 34999.40 24296.18 31797.37 33997.73 34995.73 27599.58 33695.49 30981.40 35399.36 220
RRT_test8_iter0597.35 29197.25 28897.63 31498.81 32693.13 34299.26 11699.89 1399.51 8199.83 4799.68 12379.03 35999.88 15199.53 2799.72 19399.89 9
SCA98.11 26598.36 23497.36 32099.20 28092.99 34398.17 27898.49 32098.24 24399.10 24999.57 19196.01 27299.94 5496.86 25499.62 22499.14 265
EPMVS96.53 30796.32 30597.17 32498.18 34892.97 34499.39 8289.95 35798.21 24598.61 29399.59 18186.69 34699.72 28696.99 24799.23 29698.81 303
PatchmatchNetpermissive97.65 28097.80 27497.18 32398.82 32592.49 34599.17 14598.39 32498.12 24998.79 27999.58 18390.71 32499.89 13697.23 23599.41 27099.16 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu97.62 28197.79 27697.11 32596.67 35692.31 34698.51 25298.04 32899.24 12495.77 35099.47 22493.78 29399.66 31898.98 9599.62 22499.37 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpmrst97.73 27798.07 25696.73 32898.71 33492.00 34799.10 16998.86 30298.52 21298.92 26599.54 20291.90 30799.82 23898.02 16899.03 30398.37 322
DWT-MVSNet_test96.03 31795.80 31696.71 33098.50 34091.93 34899.25 12397.87 33395.99 31996.81 34597.61 35181.02 35499.66 31897.20 23897.98 34098.54 315
tpmvs97.39 28897.69 27996.52 33198.41 34191.76 34999.30 10498.94 30197.74 27097.85 33299.55 20092.40 30599.73 28496.25 28698.73 32198.06 335
tpm296.35 31096.22 30796.73 32898.88 31991.75 35099.21 13398.51 31893.27 34197.89 32999.21 28184.83 34999.70 29296.04 29198.18 33698.75 306
E-PMN97.14 29597.43 28496.27 33398.79 32891.62 35195.54 35099.01 29999.44 9598.88 26999.12 29292.78 30199.68 30994.30 32799.03 30397.50 341
MVS-HIRNet97.86 27398.22 24496.76 32699.28 26891.53 35298.38 26392.60 35599.13 14399.31 21499.96 1197.18 24399.68 30998.34 14199.83 13199.07 282
MDTV_nov1_ep13_2view91.44 35399.14 15597.37 28999.21 23291.78 31196.75 26199.03 286
EMVS96.96 29897.28 28695.99 33698.76 33291.03 35495.26 35198.61 31499.34 10898.92 26598.88 32193.79 29299.66 31892.87 33699.05 30197.30 345
MDTV_nov1_ep1397.73 27898.70 33590.83 35599.15 15398.02 32998.51 21398.82 27599.61 16890.98 31899.66 31896.89 25398.92 308
CostFormer96.71 30496.79 30396.46 33298.90 31390.71 35699.41 7898.68 31094.69 33898.14 31999.34 25586.32 34799.80 25997.60 20998.07 33998.88 297
tpm cat196.78 30196.98 29696.16 33598.85 32090.59 35799.08 17699.32 26192.37 34397.73 33899.46 22791.15 31699.69 29896.07 29098.80 31298.21 330
dp96.86 29997.07 29396.24 33498.68 33690.30 35899.19 13998.38 32597.35 29098.23 31399.59 18187.23 33899.82 23896.27 28598.73 32198.59 311
gm-plane-assit97.59 35389.02 35993.47 34098.30 34299.84 21796.38 281
test12329.31 32433.05 32918.08 33825.93 36012.24 36097.53 32610.93 36111.78 35524.21 35650.08 36421.04 3618.60 35623.51 35432.43 35533.39 352
testmvs28.94 32533.33 32715.79 33926.03 3599.81 36196.77 34515.67 36011.55 35623.87 35750.74 36319.03 3628.53 35723.21 35533.07 35429.03 353
uanet_test8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k24.88 32633.17 3280.00 3400.00 3610.00 3620.00 35299.62 1340.00 3570.00 35899.13 28899.82 40.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas16.61 32722.14 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 199.28 410.00 3580.00 3560.00 3560.00 354
sosnet-low-res8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
sosnet8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
Regformer8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.26 33411.02 3370.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35899.16 2860.00 3630.00 3580.00 3560.00 3560.00 354
uanet8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
test_241102_TWO99.54 18599.13 14399.76 7499.63 15098.32 16599.92 8597.85 18699.69 20299.75 39
9.1498.64 20699.45 21898.81 22099.60 15297.52 28199.28 21999.56 19498.53 13899.83 22895.36 31499.64 221
test_0728_THIRD99.18 13299.62 12999.61 16898.58 12899.91 10397.72 19599.80 15399.77 32
GSMVS99.14 265
sam_mvs190.81 32399.14 265
sam_mvs90.52 327
MTGPAbinary99.53 194
test_post199.14 15551.63 36289.54 33499.82 23896.86 254
test_post52.41 36190.25 32999.86 184
patchmatchnet-post99.62 15990.58 32599.94 54
MTMP99.09 17398.59 316
test9_res95.10 31799.44 26499.50 172
agg_prior294.58 32599.46 26399.50 172
test_prior297.95 30497.87 26498.05 32199.05 29997.90 19895.99 29499.49 258
旧先验297.94 30695.33 32898.94 26199.88 15196.75 261
新几何298.04 293
无先验98.01 29599.23 28395.83 32199.85 20295.79 30399.44 197
原ACMM297.92 308
testdata299.89 13695.99 294
segment_acmp98.37 158
testdata197.72 31697.86 267
plane_prior599.54 18599.82 23895.84 30199.78 16499.60 116
plane_prior499.25 272
plane_prior298.80 22398.94 165
plane_prior199.51 188
n20.00 362
nn0.00 362
door-mid99.83 32
test1199.29 270
door99.77 60
HQP-NCC99.31 26097.98 30097.45 28498.15 315
ACMP_Plane99.31 26097.98 30097.45 28498.15 315
BP-MVS94.73 321
HQP4-MVS98.15 31599.70 29299.53 154
HQP3-MVS99.37 25299.67 212
HQP2-MVS96.67 253
ACMMP++_ref99.94 61
ACMMP++99.79 158
Test By Simon98.41 152