This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2699.71 999.96 3599.51 3399.97 3399.84 14
DROMVSNet99.69 2199.69 1899.68 8999.71 11299.91 299.76 1399.96 499.86 1999.51 18099.39 25299.57 2099.93 7199.64 1899.86 11999.20 263
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 50100.00 199.90 7100.00 199.97 1099.61 1799.97 1799.75 13100.00 199.84 14
KD-MVS_self_test99.63 3299.59 3499.76 4799.84 3499.90 599.37 9699.79 5599.83 3099.88 3299.85 4198.42 15699.90 13299.60 2099.73 19599.49 188
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2499.94 1199.95 1299.73 899.90 13299.65 1699.97 3399.69 55
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3299.81 599.95 4599.54 2899.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FOURS199.83 3899.89 899.74 1799.71 9599.69 5599.63 130
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 2099.85 2699.70 5299.92 1899.93 1499.45 2399.97 1799.36 53100.00 199.85 13
PEN-MVS99.66 2699.59 3499.89 799.83 3899.87 1099.66 4599.73 8399.70 5299.84 4599.73 9198.56 13599.96 3599.29 6699.94 6599.83 18
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5799.87 1099.67 4199.71 9599.72 4699.84 4599.78 7098.67 12099.97 1799.30 6399.95 5299.80 24
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3499.77 6399.78 3999.93 1499.89 2697.94 20099.92 9199.65 1699.98 2499.62 111
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2499.86 1399.72 2399.78 6099.90 799.82 5299.83 4798.45 15399.87 17799.51 3399.97 3399.86 11
FIs99.65 3199.58 3799.84 1999.84 3499.85 1499.66 4599.75 7599.86 1999.74 9299.79 6498.27 17399.85 21699.37 5299.93 7399.83 18
PS-CasMVS99.66 2699.58 3799.89 799.80 5799.85 1499.66 4599.73 8399.62 7399.84 4599.71 10498.62 12699.96 3599.30 6399.96 4599.86 11
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 5299.91 2099.89 2699.60 1999.87 17799.59 2199.74 18899.71 48
RPSCF99.18 14399.02 15899.64 11199.83 3899.85 1499.44 8499.82 3998.33 25199.50 18299.78 7097.90 20399.65 34196.78 27699.83 13799.44 209
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5599.78 7099.92 1799.37 3199.88 16498.93 11699.95 5299.60 126
CS-MVS-test99.43 6699.40 6899.53 15399.51 19799.84 1999.60 6399.94 699.52 9199.10 26498.89 33899.24 4699.90 13299.11 9599.66 22698.84 318
nrg03099.70 1999.66 2299.82 2399.76 8599.84 1999.61 5899.70 10099.93 499.78 7099.68 12899.10 6099.78 28199.45 3999.96 4599.83 18
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2799.94 1199.91 2099.13 5999.96 3599.83 999.99 1299.83 18
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22599.86 2299.68 5799.65 12499.88 2997.67 22199.87 17799.03 10199.86 11999.76 39
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4399.97 699.92 1799.77 799.98 799.43 41100.00 199.90 4
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3899.83 2498.61 24899.63 13796.84 32499.44 19199.58 19098.81 9699.91 11297.70 21499.82 14699.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4399.89 2699.87 3299.63 1499.87 17799.54 2899.92 7799.63 100
WR-MVS_H99.61 3799.53 4999.87 1499.80 5799.83 2499.67 4199.75 7599.58 8699.85 4299.69 11798.18 18499.94 5799.28 6899.95 5299.83 18
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3699.93 1499.93 1498.54 13899.93 7199.59 2199.98 2499.76 39
SED-MVS99.40 7799.28 9799.77 4099.69 12399.82 2899.20 14599.54 19499.13 15799.82 5299.63 15598.91 8699.92 9197.85 19999.70 20799.58 140
test_241102_ONE99.69 12399.82 2899.54 19499.12 16099.82 5299.49 22798.91 8699.52 358
CP-MVSNet99.54 4799.43 6299.87 1499.76 8599.82 2899.57 6899.61 14799.54 8799.80 6299.64 14597.79 21399.95 4599.21 7399.94 6599.84 14
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9699.81 3198.95 21199.53 20398.27 25599.53 17399.73 9198.75 11199.87 17797.70 21499.83 13799.68 61
zzz-MVS99.30 10699.14 11899.80 2999.81 5299.81 3198.73 24399.53 20399.27 13099.42 19799.63 15598.21 17999.95 4597.83 20299.79 16499.65 86
MTAPA99.35 9299.20 11099.80 2999.81 5299.81 3199.33 10499.53 20399.27 13099.42 19799.63 15598.21 17999.95 4597.83 20299.79 16499.65 86
APDe-MVS99.48 5499.36 7799.85 1899.55 18199.81 3199.50 7499.69 10698.99 17199.75 8399.71 10498.79 10399.93 7198.46 14699.85 12399.80 24
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3899.81 3199.52 7299.70 10098.35 24699.51 18099.50 22299.31 3799.88 16498.18 17099.84 12799.69 55
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12399.80 3699.14 16699.31 27599.16 15199.62 13899.61 17398.35 16599.91 11297.88 19399.72 20199.61 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 12399.80 3699.24 13599.57 17799.16 15199.73 9699.65 14398.35 165
test_0728_SECOND99.83 2199.70 12099.79 3899.14 16699.61 14799.92 9197.88 19399.72 20199.77 35
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2399.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
LS3D99.24 11999.11 12899.61 12798.38 35999.79 3899.57 6899.68 10999.61 7799.15 25699.71 10498.70 11599.91 11297.54 22899.68 21599.13 281
Effi-MVS+-dtu99.07 16698.92 18299.52 15598.89 33399.78 4199.15 16499.66 11899.34 12098.92 28199.24 29197.69 21899.98 798.11 17699.28 30098.81 320
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2899.86 2299.89 1199.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
DVP-MVS++99.38 8499.25 10499.77 4099.03 32099.77 4399.74 1799.61 14799.18 14599.76 7799.61 17399.00 7499.92 9197.72 21099.60 24599.62 111
IU-MVS99.69 12399.77 4399.22 29697.50 29899.69 10997.75 20899.70 20799.77 35
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 17099.77 4398.74 24199.60 15998.55 22199.76 7799.69 11798.23 17899.92 9196.39 29799.75 18099.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4399.68 3799.85 2699.95 399.98 399.92 1799.28 4199.98 799.75 13100.00 199.94 2
GBi-Net99.42 7099.31 8599.73 7399.49 20999.77 4399.68 3799.70 10099.44 10799.62 13899.83 4797.21 24499.90 13298.96 11099.90 8799.53 165
test199.42 7099.31 8599.73 7399.49 20999.77 4399.68 3799.70 10099.44 10799.62 13899.83 4797.21 24499.90 13298.96 11099.90 8799.53 165
FMVSNet199.66 2699.63 2699.73 7399.78 7399.77 4399.68 3799.70 10099.67 6199.82 5299.83 4798.98 7799.90 13299.24 7099.97 3399.53 165
test_one_060199.63 14499.76 5099.55 18899.23 13899.31 22799.61 17398.59 130
GeoE99.69 2199.66 2299.78 3799.76 8599.76 5099.60 6399.82 3999.46 10499.75 8399.56 20199.63 1499.95 4599.43 4199.88 10399.62 111
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 26999.76 5099.34 10299.97 298.93 18199.91 2099.79 6498.68 11799.93 7196.80 27599.56 25299.30 244
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3099.76 5099.32 10799.77 6399.53 8999.77 7599.76 8099.26 4599.78 28197.77 20499.88 10399.60 126
test117299.23 12099.05 14999.74 6399.52 19299.75 5499.20 14599.61 14798.97 17399.48 18499.58 19098.41 15799.91 11297.15 25799.55 25699.57 146
tfpnnormal99.43 6699.38 7199.60 12999.87 2899.75 5499.59 6599.78 6099.71 4799.90 2299.69 11798.85 9499.90 13297.25 25099.78 17099.15 274
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18799.75 5499.27 12599.61 14799.19 14499.57 15499.64 14598.76 10999.90 13297.29 24299.62 23599.56 149
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13299.75 5499.62 5399.69 10699.85 2499.80 6299.81 5698.81 9699.91 11299.47 3799.88 10399.70 51
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5299.75 5499.61 5899.67 11497.72 28699.35 21699.25 28699.23 4799.92 9197.21 25399.82 14699.67 68
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 28999.75 5497.25 35099.47 22998.72 20799.66 12099.70 11199.29 3999.63 34498.07 17999.81 15499.62 111
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 18299.74 6099.26 12799.62 14099.16 15199.52 17599.64 14598.41 15799.91 11297.27 24599.61 24299.54 160
RE-MVS-def99.13 12199.54 18299.74 6099.26 12799.62 14099.16 15199.52 17599.64 14598.57 13397.27 24599.61 24299.54 160
abl_699.36 9099.23 10899.75 5799.71 11299.74 6099.33 10499.76 6899.07 16499.65 12499.63 15599.09 6299.92 9197.13 25899.76 17799.58 140
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8599.73 6399.28 12299.56 18298.19 26099.14 25899.29 27798.84 9599.92 9197.53 23099.80 15999.64 95
GST-MVS99.16 14898.96 17599.75 5799.73 10599.73 6399.20 14599.55 18898.22 25799.32 22399.35 26598.65 12499.91 11296.86 27099.74 18899.62 111
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22599.73 6399.13 17299.52 21197.40 30399.57 15499.64 14598.93 8399.83 24497.61 22499.79 16499.63 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.04 17398.79 20099.81 2699.78 7399.73 6399.35 10199.57 17798.54 22499.54 16898.99 32396.81 25899.93 7196.97 26499.53 26499.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS99.40 7799.43 6299.29 22299.44 23099.72 6799.36 9999.91 1099.71 4799.28 23398.83 34299.22 4899.86 19799.40 4899.77 17498.29 344
SR-MVS99.19 13999.00 16499.74 6399.51 19799.72 6799.18 15199.60 15998.85 19199.47 18699.58 19098.38 16299.92 9196.92 26699.54 26299.57 146
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6799.59 6599.82 3999.39 11599.82 5299.84 4699.38 2999.91 11299.38 5099.93 7399.80 24
UA-Net99.78 1399.76 1499.86 1699.72 10999.71 7099.91 399.95 599.96 299.71 10399.91 2099.15 5599.97 1799.50 35100.00 199.90 4
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 19299.71 7098.86 22099.19 30198.47 23198.59 31399.06 31298.08 19099.91 11296.94 26599.60 24599.60 126
XVS99.27 11399.11 12899.75 5799.71 11299.71 7099.37 9699.61 14799.29 12698.76 30199.47 23598.47 14999.88 16497.62 22299.73 19599.67 68
X-MVStestdata96.09 32794.87 33799.75 5799.71 11299.71 7099.37 9699.61 14799.29 12698.76 30161.30 37998.47 14999.88 16497.62 22299.73 19599.67 68
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8599.71 7099.32 10799.50 21898.35 24698.97 27499.48 23098.37 16399.92 9195.95 31799.75 18099.63 100
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.20 13699.01 16199.77 4099.75 9699.71 7099.16 16299.72 9297.99 27099.42 19799.60 18298.81 9699.93 7196.91 26799.74 18899.66 78
Gipumacopyleft99.57 3999.59 3499.49 16499.98 399.71 7099.72 2399.84 3299.81 3399.94 1199.78 7098.91 8699.71 30698.41 14899.95 5299.05 297
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
HFP-MVS99.25 11699.08 13999.76 4799.73 10599.70 7799.31 11199.59 16698.36 24199.36 21499.37 25598.80 10099.91 11297.43 23599.75 18099.68 61
region2R99.23 12099.05 14999.77 4099.76 8599.70 7799.31 11199.59 16698.41 23599.32 22399.36 26098.73 11499.93 7197.29 24299.74 18899.67 68
#test#99.12 15698.90 18699.76 4799.73 10599.70 7799.10 17999.59 16697.60 29199.36 21499.37 25598.80 10099.91 11296.84 27399.75 18099.68 61
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3899.70 7799.38 9299.78 6099.53 8999.67 11699.78 7099.19 5199.86 19797.32 24099.87 11299.55 152
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18399.25 28599.69 8199.05 18999.82 3999.50 9398.97 27499.05 31398.98 7799.98 798.20 16699.24 30698.62 326
ACMMPR99.23 12099.06 14599.76 4799.74 10299.69 8199.31 11199.59 16698.36 24199.35 21699.38 25498.61 12899.93 7197.43 23599.75 18099.67 68
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5799.69 8199.13 17299.65 12998.99 17199.64 12699.72 9799.39 2599.86 19798.23 16399.81 15499.60 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mPP-MVS99.19 13999.00 16499.76 4799.76 8599.68 8499.38 9299.54 19498.34 25099.01 27299.50 22298.53 14299.93 7197.18 25599.78 17099.66 78
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6799.68 8499.50 7499.65 12998.07 26699.52 17599.69 11798.57 13399.92 9197.18 25599.79 16499.63 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_part299.62 14899.67 8699.55 166
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8699.70 2899.14 30699.65 6799.89 2699.90 2296.20 27599.94 5799.42 4699.92 7799.67 68
Anonymous20240521198.75 21598.46 22999.63 11599.34 26499.66 8899.47 8097.65 35199.28 12999.56 16199.50 22293.15 30899.84 23398.62 13999.58 25099.40 221
PM-MVS99.36 9099.29 9599.58 13599.83 3899.66 8898.95 21199.86 2298.85 19199.81 5999.73 9198.40 16199.92 9198.36 15199.83 13799.17 270
CP-MVS99.23 12099.05 14999.75 5799.66 13899.66 8899.38 9299.62 14098.38 23999.06 27099.27 28198.79 10399.94 5797.51 23199.82 14699.66 78
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2899.66 8899.18 15199.60 15998.55 22199.57 15499.67 13499.03 7399.94 5797.01 26299.80 15999.69 55
Skip Steuart: Steuart Systems R&D Blog.
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8899.69 3499.92 799.67 6199.77 7599.75 8499.61 1799.98 799.35 5499.98 2499.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvs-test198.83 20698.70 20799.22 23698.89 33399.65 9398.88 21699.66 11899.34 12098.29 32698.94 33397.69 21899.96 3598.11 17698.54 34098.04 355
MAR-MVS98.24 26997.92 28099.19 24098.78 34799.65 9399.17 15699.14 30695.36 34598.04 34198.81 34597.47 23199.72 30295.47 33099.06 31298.21 349
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AllTest99.21 13499.07 14399.63 11599.78 7399.64 9599.12 17699.83 3498.63 21399.63 13099.72 9798.68 11799.75 29596.38 29899.83 13799.51 177
TestCases99.63 11599.78 7399.64 9599.83 3498.63 21399.63 13099.72 9798.68 11799.75 29596.38 29899.83 13799.51 177
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 16099.64 9599.30 11499.63 13799.61 7799.71 10399.56 20198.76 10999.96 3599.14 9399.92 7799.68 61
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3499.64 9598.25 28599.73 8398.39 23899.63 13099.43 24399.70 1199.90 13297.34 23998.64 33699.44 209
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4599.63 9999.16 16299.73 8397.56 29299.64 12699.69 11799.37 3199.89 14996.66 28399.87 11299.69 55
LGP-MVS_train99.74 6399.82 4599.63 9999.73 8397.56 29299.64 12699.69 11799.37 3199.89 14996.66 28399.87 11299.69 55
EIA-MVS99.12 15699.01 16199.45 17799.36 25299.62 10199.34 10299.79 5598.41 23598.84 29198.89 33898.75 11199.84 23398.15 17499.51 26798.89 312
XVG-OURS99.21 13499.06 14599.65 10499.82 4599.62 10197.87 32399.74 8098.36 24199.66 12099.68 12899.71 999.90 13296.84 27399.88 10399.43 215
baseline99.63 3299.62 2799.66 9999.80 5799.62 10199.44 8499.80 4999.71 4799.72 9899.69 11799.15 5599.83 24499.32 6099.94 6599.53 165
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20499.62 10199.01 19699.57 17796.80 32699.54 16899.63 15598.29 17199.91 11295.24 33499.71 20599.61 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DP-MVS99.48 5499.39 6999.74 6399.57 17099.62 10199.29 12199.61 14799.87 1799.74 9299.76 8098.69 11699.87 17798.20 16699.80 15999.75 42
ACMH98.42 699.59 3899.54 4599.72 7999.86 3099.62 10199.56 7099.79 5598.77 20299.80 6299.85 4199.64 1399.85 21698.70 13499.89 9599.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZD-MVS99.43 23399.61 10799.43 24296.38 33199.11 26299.07 31197.86 20799.92 9194.04 35099.49 271
OPM-MVS99.26 11599.13 12199.63 11599.70 12099.61 10798.58 25299.48 22598.50 22799.52 17599.63 15599.14 5799.76 29197.89 19299.77 17499.51 177
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
testtj98.56 23798.17 26099.72 7999.45 22899.60 10998.88 21699.50 21896.88 32199.18 25399.48 23097.08 25199.92 9193.69 35499.38 28699.63 100
Anonymous2024052999.42 7099.34 7999.65 10499.53 18799.60 10999.63 5299.39 25599.47 10099.76 7799.78 7098.13 18699.86 19798.70 13499.68 21599.49 188
Anonymous2023121199.62 3599.57 4099.76 4799.61 14999.60 10999.81 999.73 8399.82 3299.90 2299.90 2297.97 19999.86 19799.42 4699.96 4599.80 24
VPNet99.46 6199.37 7499.71 8399.82 4599.59 11299.48 7899.70 10099.81 3399.69 10999.58 19097.66 22599.86 19799.17 8399.44 27799.67 68
casdiffmvs99.63 3299.61 3199.67 9299.79 6799.59 11299.13 17299.85 2699.79 3899.76 7799.72 9799.33 3699.82 25499.21 7399.94 6599.59 135
PHI-MVS99.11 16098.95 17799.59 13199.13 30499.59 11299.17 15699.65 12997.88 27899.25 23799.46 23898.97 7999.80 27597.26 24799.82 14699.37 229
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19799.58 11598.98 20799.60 15999.43 11299.70 10699.36 26097.70 21699.88 16499.20 7699.87 11299.59 135
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11599.82 4599.58 11598.83 22599.72 9298.36 24199.60 14699.71 10498.92 8499.91 11297.08 26099.84 12799.40 221
114514_t98.49 24898.11 26499.64 11199.73 10599.58 11599.24 13599.76 6889.94 36699.42 19799.56 20197.76 21599.86 19797.74 20999.82 14699.47 198
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 22099.56 11898.97 20999.61 14799.43 11299.67 11699.28 27997.85 20999.95 4599.17 8399.81 15499.65 86
DU-MVS99.33 10199.21 10999.71 8399.43 23399.56 11898.83 22599.53 20399.38 11699.67 11699.36 26097.67 22199.95 4599.17 8399.81 15499.63 100
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19398.33 36199.56 11899.01 19699.59 16695.44 34499.57 15499.80 5895.64 28399.46 36396.47 29499.92 7799.21 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NR-MVSNet99.40 7799.31 8599.68 8999.43 23399.55 12199.73 2099.50 21899.46 10499.88 3299.36 26097.54 22999.87 17798.97 10899.87 11299.63 100
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7399.55 12198.88 21699.66 11897.11 31899.47 18699.60 18299.07 6899.89 14996.18 30699.85 12399.58 140
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSC_two_6792asdad99.74 6399.03 32099.53 12399.23 29399.92 9197.77 20499.69 21099.78 32
No_MVS99.74 6399.03 32099.53 12399.23 29399.92 9197.77 20499.69 21099.78 32
ETH3D-3000-0.198.77 21298.50 22799.59 13199.47 22099.53 12398.77 23899.60 15997.33 30799.23 24199.50 22297.91 20299.83 24495.02 33899.67 22299.41 219
SF-MVS99.10 16498.93 17899.62 12499.58 16099.51 12699.13 17299.65 12997.97 27299.42 19799.61 17398.86 9299.87 17796.45 29599.68 21599.49 188
Fast-Effi-MVS+99.02 17698.87 18999.46 17399.38 24799.50 12799.04 19199.79 5597.17 31498.62 31098.74 34899.34 3599.95 4598.32 15699.41 28398.92 310
test_part198.63 22798.26 25099.75 5799.40 24299.49 12899.67 4199.68 10999.86 1999.88 3299.86 3886.73 35999.93 7199.34 5599.97 3399.81 23
MCST-MVS99.02 17698.81 19799.65 10499.58 16099.49 12898.58 25299.07 30998.40 23799.04 27199.25 28698.51 14799.80 27597.31 24199.51 26799.65 86
wuyk23d97.58 29599.13 12192.93 35499.69 12399.49 12899.52 7299.77 6397.97 27299.96 899.79 6499.84 399.94 5795.85 31999.82 14679.36 370
QAPM98.40 25797.99 27099.65 10499.39 24499.47 13199.67 4199.52 21191.70 36398.78 29999.80 5898.55 13699.95 4594.71 34299.75 18099.53 165
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3399.47 13198.07 30299.83 3498.64 21299.89 2699.60 18292.57 313100.00 199.33 5899.97 3399.72 45
F-COLMAP98.74 21798.45 23099.62 12499.57 17099.47 13198.84 22399.65 12996.31 33398.93 27899.19 29997.68 22099.87 17796.52 29099.37 29099.53 165
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25499.47 13199.62 5399.50 21899.44 10799.12 26199.78 7098.77 10899.94 5797.87 19699.72 20199.62 111
V4299.56 4299.54 4599.63 11599.79 6799.46 13599.39 9099.59 16699.24 13699.86 4099.70 11198.55 13699.82 25499.79 1199.95 5299.60 126
CDPH-MVS98.56 23798.20 25599.61 12799.50 20499.46 13598.32 27999.41 24595.22 34799.21 24799.10 30998.34 16799.82 25495.09 33799.66 22699.56 149
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13599.74 1794.97 36699.78 3999.88 3299.88 2993.66 30499.97 1799.61 1999.95 5299.64 95
DP-MVS Recon98.50 24598.23 25299.31 21999.49 20999.46 13598.56 25799.63 13794.86 35398.85 29099.37 25597.81 21199.59 35196.08 30899.44 27798.88 313
CSCG99.37 8799.29 9599.60 12999.71 11299.46 13599.43 8699.85 2698.79 19999.41 20599.60 18298.92 8499.92 9198.02 18099.92 7799.43 215
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13199.68 13299.45 14098.99 20399.67 11499.48 9599.55 16699.36 26094.92 28899.86 19798.95 11496.57 36599.45 204
OpenMVS_ROBcopyleft97.31 1797.36 30296.84 31398.89 27799.29 27799.45 14098.87 21999.48 22586.54 36999.44 19199.74 8797.34 23999.86 19791.61 35899.28 30097.37 363
OPU-MVS99.29 22299.12 30699.44 14299.20 14599.40 24899.00 7498.84 36996.54 28999.60 24599.58 140
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 10999.44 14299.24 13599.71 9599.27 13099.93 1499.90 2299.70 1199.93 7198.99 10499.99 1299.64 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ITE_SJBPF99.38 20299.63 14499.44 14299.73 8398.56 21999.33 22199.53 21398.88 9199.68 32596.01 31199.65 23099.02 303
TAPA-MVS97.92 1398.03 27897.55 29499.46 17399.47 22099.44 14298.50 26599.62 14086.79 36799.07 26999.26 28498.26 17499.62 34597.28 24499.73 19599.31 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS98.99 18598.80 19999.56 14499.25 28599.43 14698.54 26199.27 28498.58 21898.80 29699.43 24398.53 14299.70 30897.22 25299.59 24999.54 160
test_040299.22 12999.14 11899.45 17799.79 6799.43 14699.28 12299.68 10999.54 8799.40 21099.56 20199.07 6899.82 25496.01 31199.96 4599.11 282
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5799.43 14699.70 2899.24 29299.48 9599.56 16199.77 7794.89 28999.93 7198.72 13399.89 9599.63 100
WR-MVS99.11 16098.93 17899.66 9999.30 27599.42 14998.42 27399.37 26299.04 16999.57 15499.20 29796.89 25699.86 19798.66 13899.87 11299.70 51
TAMVS99.49 5299.45 5799.63 11599.48 21599.42 14999.45 8199.57 17799.66 6599.78 7099.83 4797.85 20999.86 19799.44 4099.96 4599.61 122
OMC-MVS98.90 19798.72 20399.44 17999.39 24499.42 14998.58 25299.64 13597.31 30899.44 19199.62 16498.59 13099.69 31496.17 30799.79 16499.22 258
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24499.42 14999.70 2899.56 18299.23 13899.35 21699.80 5899.17 5399.95 4598.21 16599.84 12799.59 135
pmmvs-eth3d99.48 5499.47 5399.51 15899.77 8199.41 15398.81 23099.66 11899.42 11499.75 8399.66 13899.20 5099.76 29198.98 10699.99 1299.36 232
v899.68 2499.69 1899.65 10499.80 5799.40 15499.66 4599.76 6899.64 6999.93 1499.85 4198.66 12299.84 23399.88 699.99 1299.71 48
SD-MVS99.01 18099.30 9098.15 31299.50 20499.40 15498.94 21399.61 14799.22 14299.75 8399.82 5399.54 2295.51 37497.48 23299.87 11299.54 160
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15899.04 31999.39 15698.47 26799.47 22996.70 32898.78 29999.33 26997.62 22899.86 19794.69 34399.38 28699.28 249
v1099.69 2199.69 1899.66 9999.81 5299.39 15699.66 4599.75 7599.60 8399.92 1899.87 3298.75 11199.86 19799.90 299.99 1299.73 44
ab-mvs99.33 10199.28 9799.47 17099.57 17099.39 15699.78 1099.43 24298.87 18999.57 15499.82 5398.06 19199.87 17798.69 13699.73 19599.15 274
plane_prior799.58 16099.38 159
lessismore_v099.64 11199.86 3099.38 15990.66 37499.89 2699.83 4794.56 29499.97 1799.56 2699.92 7799.57 146
CPTT-MVS98.74 21798.44 23299.64 11199.61 14999.38 15999.18 15199.55 18896.49 32999.27 23599.37 25597.11 25099.92 9195.74 32499.67 22299.62 111
TSAR-MVS + MP.99.34 9799.24 10699.63 11599.82 4599.37 16299.26 12799.35 26698.77 20299.57 15499.70 11199.27 4499.88 16497.71 21299.75 18099.65 86
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test20.0399.55 4599.54 4599.58 13599.79 6799.37 16299.02 19499.89 1599.60 8399.82 5299.62 16498.81 9699.89 14999.43 4199.86 11999.47 198
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19599.56 18099.37 16297.97 31599.68 10997.49 29999.08 26699.35 26595.41 28699.82 25497.70 21498.19 34999.01 304
agg_prior198.33 26497.92 28099.57 14099.35 25499.36 16597.99 31199.39 25594.85 35497.76 35398.98 32698.03 19299.85 21695.49 32899.44 27799.51 177
agg_prior99.35 25499.36 16599.39 25597.76 35399.85 216
VNet99.18 14399.06 14599.56 14499.24 28799.36 16599.33 10499.31 27599.67 6199.47 18699.57 19896.48 26499.84 23399.15 8799.30 29899.47 198
DELS-MVS99.34 9799.30 9099.48 16899.51 19799.36 16598.12 29599.53 20399.36 11999.41 20599.61 17399.22 4899.87 17799.21 7399.68 21599.20 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TEST999.35 25499.35 16998.11 29799.41 24594.83 35597.92 34498.99 32398.02 19499.85 216
train_agg98.35 26297.95 27499.57 14099.35 25499.35 16998.11 29799.41 24594.90 35197.92 34498.99 32398.02 19499.85 21695.38 33299.44 27799.50 183
FMVSNet299.35 9299.28 9799.55 14799.49 20999.35 16999.45 8199.57 17799.44 10799.70 10699.74 8797.21 24499.87 17799.03 10199.94 6599.44 209
test1299.54 15199.29 27799.33 17299.16 30498.43 32397.54 22999.82 25499.47 27499.48 193
EG-PatchMatch MVS99.57 3999.56 4499.62 12499.77 8199.33 17299.26 12799.76 6899.32 12499.80 6299.78 7099.29 3999.87 17799.15 8799.91 8699.66 78
MVS_111021_LR99.13 15499.03 15799.42 18599.58 16099.32 17497.91 32299.73 8398.68 20999.31 22799.48 23099.09 6299.66 33497.70 21499.77 17499.29 247
test_899.34 26499.31 17598.08 30199.40 25294.90 35197.87 34898.97 32998.02 19499.84 233
plane_prior399.31 17598.36 24199.14 258
NCCC98.82 20898.57 21999.58 13599.21 29199.31 17598.61 24899.25 28998.65 21198.43 32399.26 28497.86 20799.81 27096.55 28899.27 30399.61 122
旧先验199.49 20999.29 17899.26 28699.39 25297.67 22199.36 29199.46 202
1112_ss99.05 17098.84 19399.67 9299.66 13899.29 17898.52 26399.82 3997.65 28999.43 19599.16 30096.42 26799.91 11299.07 9999.84 12799.80 24
ETV-MVS99.18 14399.18 11299.16 24399.34 26499.28 18099.12 17699.79 5599.48 9598.93 27898.55 35599.40 2499.93 7198.51 14499.52 26698.28 345
v114499.54 4799.53 4999.59 13199.79 6799.28 18099.10 17999.61 14799.20 14399.84 4599.73 9198.67 12099.84 23399.86 899.98 2499.64 95
PatchMatch-RL98.68 22498.47 22899.30 22199.44 23099.28 18098.14 29399.54 19497.12 31799.11 26299.25 28697.80 21299.70 30896.51 29199.30 29898.93 309
LF4IMVS99.01 18098.92 18299.27 22799.71 11299.28 18098.59 25199.77 6398.32 25299.39 21199.41 24598.62 12699.84 23396.62 28799.84 12798.69 324
ETH3 D test640097.76 28697.19 30399.50 16199.38 24799.26 18498.34 27699.49 22392.99 36098.54 31799.20 29795.92 28199.82 25491.14 36199.66 22699.40 221
plane_prior699.47 22099.26 18497.24 242
API-MVS98.38 25898.39 23798.35 30498.83 33999.26 18499.14 16699.18 30298.59 21798.66 30898.78 34698.61 12899.57 35394.14 34899.56 25296.21 367
OpenMVScopyleft98.12 1098.23 27097.89 28499.26 22999.19 29699.26 18499.65 5099.69 10691.33 36498.14 33799.77 7798.28 17299.96 3595.41 33199.55 25698.58 330
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15199.53 18799.25 18898.29 28199.76 6899.07 16499.42 19799.61 17398.86 9299.87 17796.45 29599.68 21599.49 188
save fliter99.53 18799.25 18898.29 28199.38 26199.07 164
v2v48299.50 5099.47 5399.58 13599.78 7399.25 18899.14 16699.58 17599.25 13499.81 5999.62 16498.24 17599.84 23399.83 999.97 3399.64 95
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2499.25 18898.78 23799.88 1898.66 21099.96 899.79 6497.45 23299.93 7199.34 5599.99 1299.78 32
IS-MVSNet99.03 17498.85 19199.55 14799.80 5799.25 18899.73 2099.15 30599.37 11799.61 14499.71 10494.73 29299.81 27097.70 21499.88 10399.58 140
112198.56 23798.24 25199.52 15599.49 20999.24 19399.30 11499.22 29695.77 34098.52 31899.29 27797.39 23699.85 21695.79 32299.34 29399.46 202
HQP_MVS98.90 19798.68 20999.55 14799.58 16099.24 19398.80 23399.54 19498.94 17899.14 25899.25 28697.24 24299.82 25495.84 32099.78 17099.60 126
plane_prior99.24 19398.42 27397.87 27999.71 205
PLCcopyleft97.35 1698.36 25997.99 27099.48 16899.32 27099.24 19398.50 26599.51 21495.19 34998.58 31498.96 33196.95 25599.83 24495.63 32599.25 30499.37 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v119299.57 3999.57 4099.57 14099.77 8199.22 19799.04 19199.60 15999.18 14599.87 3999.72 9799.08 6699.85 21699.89 599.98 2499.66 78
test_prior398.62 22898.34 24399.46 17399.35 25499.22 19797.95 31699.39 25597.87 27998.05 33999.05 31397.90 20399.69 31495.99 31399.49 27199.48 193
test_prior99.46 17399.35 25499.22 19799.39 25599.69 31499.48 193
新几何199.52 15599.50 20499.22 19799.26 28695.66 34398.60 31299.28 27997.67 22199.89 14995.95 31799.32 29699.45 204
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14499.28 28099.22 19798.99 20399.40 25299.08 16299.58 15199.64 14598.90 8999.83 24497.44 23499.75 18099.63 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary98.60 23198.35 24299.38 20299.12 30699.22 19798.67 24799.42 24497.84 28398.81 29499.27 28197.32 24099.81 27095.14 33599.53 26499.10 284
v14419299.55 4599.54 4599.58 13599.78 7399.20 20399.11 17899.62 14099.18 14599.89 2699.72 9798.66 12299.87 17799.88 699.97 3399.66 78
test_prior499.19 20498.00 309
Patchmtry98.78 21198.54 22399.49 16498.89 33399.19 20499.32 10799.67 11499.65 6799.72 9899.79 6491.87 32299.95 4598.00 18499.97 3399.33 238
TSAR-MVS + GP.99.12 15699.04 15599.38 20299.34 26499.16 20698.15 29199.29 28098.18 26199.63 13099.62 16499.18 5299.68 32598.20 16699.74 18899.30 244
PCF-MVS96.03 1896.73 31595.86 32699.33 21299.44 23099.16 20696.87 35999.44 23886.58 36898.95 27699.40 24894.38 29599.88 16487.93 36699.80 15998.95 307
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Test_1112_low_res98.95 19298.73 20299.63 11599.68 13299.15 20898.09 29999.80 4997.14 31699.46 18999.40 24896.11 27799.89 14999.01 10399.84 12799.84 14
NP-MVS99.40 24299.13 20998.83 342
MSDG99.08 16598.98 17299.37 20599.60 15199.13 20997.54 33699.74 8098.84 19499.53 17399.55 20899.10 6099.79 27897.07 26199.86 11999.18 268
DPM-MVS98.28 26597.94 27899.32 21699.36 25299.11 21197.31 34898.78 32396.88 32198.84 29199.11 30897.77 21499.61 34994.03 35199.36 29199.23 256
v192192099.56 4299.57 4099.55 14799.75 9699.11 21199.05 18999.61 14799.15 15599.88 3299.71 10499.08 6699.87 17799.90 299.97 3399.66 78
CDS-MVSNet99.22 12999.13 12199.50 16199.35 25499.11 21198.96 21099.54 19499.46 10499.61 14499.70 11196.31 27299.83 24499.34 5599.88 10399.55 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_HR99.12 15699.02 15899.40 19599.50 20499.11 21197.92 32099.71 9598.76 20599.08 26699.47 23599.17 5399.54 35497.85 19999.76 17799.54 160
Regformer-299.34 9799.27 10099.53 15399.41 23999.10 21598.99 20399.53 20399.47 10099.66 12099.52 21598.80 10099.89 14998.31 15799.74 18899.60 126
pmmvs499.13 15499.06 14599.36 20899.57 17099.10 21598.01 30799.25 28998.78 20199.58 15199.44 24298.24 17599.76 29198.74 13199.93 7399.22 258
CNLPA98.57 23698.34 24399.28 22599.18 29899.10 21598.34 27699.41 24598.48 23098.52 31898.98 32697.05 25299.78 28195.59 32699.50 26998.96 306
test22299.51 19799.08 21897.83 32599.29 28095.21 34898.68 30799.31 27297.28 24199.38 28699.43 215
MVP-Stereo99.16 14899.08 13999.43 18399.48 21599.07 21999.08 18699.55 18898.63 21399.31 22799.68 12898.19 18299.78 28198.18 17099.58 25099.45 204
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-RL test98.60 23198.36 24099.33 21299.77 8199.07 21998.27 28399.87 2098.91 18499.74 9299.72 9790.57 33999.79 27898.55 14299.85 12399.11 282
Anonymous2023120699.35 9299.31 8599.47 17099.74 10299.06 22199.28 12299.74 8099.23 13899.72 9899.53 21397.63 22799.88 16499.11 9599.84 12799.48 193
v124099.56 4299.58 3799.51 15899.80 5799.00 22299.00 19899.65 12999.15 15599.90 2299.75 8499.09 6299.88 16499.90 299.96 4599.67 68
PMMVS299.48 5499.45 5799.57 14099.76 8598.99 22398.09 29999.90 1498.95 17799.78 7099.58 19099.57 2099.93 7199.48 3699.95 5299.79 30
Effi-MVS+99.06 16798.97 17399.34 21099.31 27198.98 22498.31 28099.91 1098.81 19698.79 29798.94 33399.14 5799.84 23398.79 12598.74 33299.20 263
VDD-MVS99.20 13699.11 12899.44 17999.43 23398.98 22499.50 7498.32 34299.80 3699.56 16199.69 11796.99 25499.85 21698.99 10499.73 19599.50 183
FMVSNet597.80 28497.25 30099.42 18598.83 33998.97 22699.38 9299.80 4998.87 18999.25 23799.69 11780.60 37199.91 11298.96 11099.90 8799.38 226
CLD-MVS98.76 21498.57 21999.33 21299.57 17098.97 22697.53 33899.55 18896.41 33099.27 23599.13 30299.07 6899.78 28196.73 27999.89 9599.23 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2024052199.44 6599.42 6599.49 16499.89 2198.96 22899.62 5399.76 6899.85 2499.82 5299.88 2996.39 27099.97 1799.59 2199.98 2499.55 152
Regformer-199.32 10399.27 10099.47 17099.41 23998.95 22998.99 20399.48 22599.48 9599.66 12099.52 21598.78 10599.87 17798.36 15199.74 18899.60 126
v14899.40 7799.41 6699.39 19899.76 8598.94 23099.09 18399.59 16699.17 14999.81 5999.61 17398.41 15799.69 31499.32 6099.94 6599.53 165
Regformer-499.45 6399.44 5999.50 16199.52 19298.94 23099.17 15699.53 20399.64 6999.76 7799.60 18298.96 8299.90 13298.91 11799.84 12799.67 68
HQP5-MVS98.94 230
HQP-MVS98.36 25998.02 26999.39 19899.31 27198.94 23097.98 31299.37 26297.45 30098.15 33398.83 34296.67 25999.70 30894.73 34099.67 22299.53 165
alignmvs98.28 26597.96 27399.25 23299.12 30698.93 23499.03 19398.42 33899.64 6998.72 30497.85 36790.86 33599.62 34598.88 11999.13 30999.19 266
testdata99.42 18599.51 19798.93 23499.30 27896.20 33498.87 28899.40 24898.33 16999.89 14996.29 30199.28 30099.44 209
PAPM_NR98.36 25998.04 26799.33 21299.48 21598.93 23498.79 23699.28 28397.54 29598.56 31698.57 35397.12 24999.69 31494.09 34998.90 32399.38 226
MVS_030498.88 20198.71 20499.39 19898.85 33798.91 23799.45 8199.30 27898.56 21997.26 35999.68 12896.18 27699.96 3599.17 8399.94 6599.29 247
UGNet99.38 8499.34 7999.49 16498.90 33098.90 23899.70 2899.35 26699.86 1998.57 31599.81 5698.50 14899.93 7199.38 5099.98 2499.66 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs599.19 13999.11 12899.42 18599.76 8598.88 23998.55 25899.73 8398.82 19599.72 9899.62 16496.56 26199.82 25499.32 6099.95 5299.56 149
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21099.78 7398.88 23999.61 5899.56 18299.11 16199.24 24099.56 20193.00 31199.78 28197.43 23599.89 9599.35 235
原ACMM199.37 20599.47 22098.87 24199.27 28496.74 32798.26 32899.32 27097.93 20199.82 25495.96 31699.38 28699.43 215
VDDNet98.97 18698.82 19699.42 18599.71 11298.81 24299.62 5398.68 32699.81 3399.38 21299.80 5894.25 29699.85 21698.79 12599.32 29699.59 135
testgi99.29 10899.26 10299.37 20599.75 9698.81 24298.84 22399.89 1598.38 23999.75 8399.04 31699.36 3499.86 19799.08 9899.25 30499.45 204
MVS_Test99.28 10999.31 8599.19 24099.35 25498.79 24499.36 9999.49 22399.17 14999.21 24799.67 13498.78 10599.66 33499.09 9799.66 22699.10 284
diffmvs99.34 9799.32 8499.39 19899.67 13798.77 24598.57 25699.81 4899.61 7799.48 18499.41 24598.47 14999.86 19798.97 10899.90 8799.53 165
D2MVS99.22 12999.19 11199.29 22299.69 12398.74 24698.81 23099.41 24598.55 22199.68 11199.69 11798.13 18699.87 17798.82 12399.98 2499.24 253
FMVSNet398.80 21098.63 21299.32 21699.13 30498.72 24799.10 17999.48 22599.23 13899.62 13899.64 14592.57 31399.86 19798.96 11099.90 8799.39 224
canonicalmvs99.02 17699.00 16499.09 25199.10 31298.70 24899.61 5899.66 11899.63 7298.64 30997.65 36999.04 7299.54 35498.79 12598.92 32199.04 298
Regformer-399.41 7499.41 6699.40 19599.52 19298.70 24899.17 15699.44 23899.62 7399.75 8399.60 18298.90 8999.85 21698.89 11899.84 12799.65 86
h-mvs3398.61 22998.34 24399.44 17999.60 15198.67 25099.27 12599.44 23899.68 5799.32 22399.49 22792.50 316100.00 199.24 7096.51 36699.65 86
N_pmnet98.73 21998.53 22599.35 20999.72 10998.67 25098.34 27694.65 36798.35 24699.79 6799.68 12898.03 19299.93 7198.28 15999.92 7799.44 209
CL-MVSNet_self_test98.71 22198.56 22299.15 24599.22 28998.66 25297.14 35399.51 21498.09 26599.54 16899.27 28196.87 25799.74 29798.43 14798.96 31899.03 299
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18599.57 17098.66 25299.24 13599.46 23399.67 6199.79 6799.65 14398.97 7999.89 14999.15 8799.89 9599.71 48
PVSNet_Blended_VisFu99.40 7799.38 7199.44 17999.90 1998.66 25298.94 21399.91 1097.97 27299.79 6799.73 9199.05 7199.97 1799.15 8799.99 1299.68 61
EI-MVSNet-UG-set99.48 5499.50 5199.42 18599.57 17098.65 25599.24 13599.46 23399.68 5799.80 6299.66 13898.99 7699.89 14999.19 7899.90 8799.72 45
RRT_MVS98.75 21598.54 22399.41 19398.14 36898.61 25698.98 20799.66 11899.31 12599.84 4599.75 8491.98 31999.98 799.20 7699.95 5299.62 111
hse-mvs298.52 24398.30 24799.16 24399.29 27798.60 25798.77 23899.02 31399.68 5799.32 22399.04 31692.50 31699.85 21699.24 7097.87 35799.03 299
CANet99.11 16099.05 14999.28 22598.83 33998.56 25898.71 24699.41 24599.25 13499.23 24199.22 29397.66 22599.94 5799.19 7899.97 3399.33 238
AUN-MVS97.82 28397.38 29699.14 24699.27 28298.53 25998.72 24499.02 31398.10 26397.18 36199.03 32089.26 34899.85 21697.94 18997.91 35599.03 299
ambc99.20 23999.35 25498.53 25999.17 15699.46 23399.67 11699.80 5898.46 15299.70 30897.92 19099.70 20799.38 226
bset_n11_16_dypcd98.69 22398.45 23099.42 18599.69 12398.52 26196.06 36496.80 35999.71 4799.73 9699.54 21095.14 28799.96 3599.39 4999.95 5299.79 30
LFMVS98.46 25198.19 25899.26 22999.24 28798.52 26199.62 5396.94 35899.87 1799.31 22799.58 19091.04 33099.81 27098.68 13799.42 28299.45 204
test_yl98.25 26797.95 27499.13 24799.17 29998.47 26399.00 19898.67 32898.97 17399.22 24599.02 32191.31 32699.69 31497.26 24798.93 31999.24 253
DCV-MVSNet98.25 26797.95 27499.13 24799.17 29998.47 26399.00 19898.67 32898.97 17399.22 24599.02 32191.31 32699.69 31497.26 24798.93 31999.24 253
BH-RMVSNet98.41 25598.14 26399.21 23799.21 29198.47 26398.60 25098.26 34398.35 24698.93 27899.31 27297.20 24799.66 33494.32 34599.10 31199.51 177
jason99.16 14899.11 12899.32 21699.75 9698.44 26698.26 28499.39 25598.70 20899.74 9299.30 27498.54 13899.97 1798.48 14599.82 14699.55 152
jason: jason.
sss98.90 19798.77 20199.27 22799.48 21598.44 26698.72 24499.32 27197.94 27699.37 21399.35 26596.31 27299.91 11298.85 12099.63 23499.47 198
PMMVS98.49 24898.29 24899.11 24998.96 32798.42 26897.54 33699.32 27197.53 29698.47 32298.15 36497.88 20699.82 25497.46 23399.24 30699.09 287
MVSFormer99.41 7499.44 5999.31 21999.57 17098.40 26999.77 1199.80 4999.73 4399.63 13099.30 27498.02 19499.98 799.43 4199.69 21099.55 152
lupinMVS98.96 18998.87 18999.24 23499.57 17098.40 26998.12 29599.18 30298.28 25499.63 13099.13 30298.02 19499.97 1798.22 16499.69 21099.35 235
WTY-MVS98.59 23498.37 23999.26 22999.43 23398.40 26998.74 24199.13 30898.10 26399.21 24799.24 29194.82 29099.90 13297.86 19798.77 32899.49 188
MIMVSNet98.43 25398.20 25599.11 24999.53 18798.38 27299.58 6798.61 33098.96 17699.33 22199.76 8090.92 33299.81 27097.38 23899.76 17799.15 274
MSLP-MVS++99.05 17099.09 13798.91 27099.21 29198.36 27398.82 22999.47 22998.85 19198.90 28499.56 20198.78 10599.09 36798.57 14199.68 21599.26 250
MVSTER98.47 25098.22 25399.24 23499.06 31698.35 27499.08 18699.46 23399.27 13099.75 8399.66 13888.61 34999.85 21699.14 9399.92 7799.52 175
PatchT98.45 25298.32 24698.83 28298.94 32898.29 27599.24 13598.82 32199.84 2799.08 26699.76 8091.37 32599.94 5798.82 12399.00 31798.26 346
HY-MVS98.23 998.21 27297.95 27498.99 26099.03 32098.24 27699.61 5898.72 32596.81 32598.73 30399.51 21994.06 29799.86 19796.91 26798.20 34798.86 315
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
xiu_mvs_v1_base99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
MS-PatchMatch99.00 18298.97 17399.09 25199.11 31198.19 28098.76 24099.33 26998.49 22999.44 19199.58 19098.21 17999.69 31498.20 16699.62 23599.39 224
TinyColmap98.97 18698.93 17899.07 25599.46 22598.19 28097.75 32799.75 7598.79 19999.54 16899.70 11198.97 7999.62 34596.63 28699.83 13799.41 219
FPMVS96.32 32395.50 33198.79 28699.60 15198.17 28298.46 27298.80 32297.16 31596.28 36499.63 15582.19 36799.09 36788.45 36598.89 32499.10 284
CANet_DTU98.91 19598.85 19199.09 25198.79 34598.13 28398.18 28899.31 27599.48 9598.86 28999.51 21996.56 26199.95 4599.05 10099.95 5299.19 266
CR-MVSNet98.35 26298.20 25598.83 28299.05 31798.12 28499.30 11499.67 11497.39 30499.16 25499.79 6491.87 32299.91 11298.78 12898.77 32898.44 339
RPMNet98.60 23198.53 22598.83 28299.05 31798.12 28499.30 11499.62 14099.86 1999.16 25499.74 8792.53 31599.92 9198.75 13098.77 32898.44 339
PAPR97.56 29697.07 30599.04 25898.80 34498.11 28697.63 33299.25 28994.56 35798.02 34298.25 36397.43 23399.68 32590.90 36298.74 33299.33 238
PS-MVSNAJ99.00 18299.08 13998.76 28899.37 25098.10 28798.00 30999.51 21499.47 10099.41 20598.50 35899.28 4199.97 1798.83 12199.34 29398.20 351
xiu_mvs_v2_base99.02 17699.11 12898.77 28799.37 25098.09 28898.13 29499.51 21499.47 10099.42 19798.54 35699.38 2999.97 1798.83 12199.33 29598.24 347
EI-MVSNet99.38 8499.44 5999.21 23799.58 16098.09 28899.26 12799.46 23399.62 7399.75 8399.67 13498.54 13899.85 21699.15 8799.92 7799.68 61
IterMVS-LS99.41 7499.47 5399.25 23299.81 5298.09 28898.85 22299.76 6899.62 7399.83 5099.64 14598.54 13899.97 1799.15 8799.99 1299.68 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS97.99 28197.68 29198.93 26799.52 19298.04 29197.19 35299.05 31298.32 25298.81 29498.97 32989.89 34699.41 36498.33 15599.05 31399.34 237
EPNet98.13 27397.77 28899.18 24294.57 37697.99 29299.24 13597.96 34699.74 4297.29 35899.62 16493.13 30999.97 1798.59 14099.83 13799.58 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS99.03 17499.01 16199.09 25199.54 18297.99 29298.58 25299.82 3997.62 29099.34 21999.71 10498.52 14599.77 28997.98 18599.97 3399.52 175
PVSNet_Blended98.70 22298.59 21599.02 25999.54 18297.99 29297.58 33599.82 3995.70 34299.34 21998.98 32698.52 14599.77 28997.98 18599.83 13799.30 244
USDC98.96 18998.93 17899.05 25799.54 18297.99 29297.07 35699.80 4998.21 25899.75 8399.77 7798.43 15499.64 34397.90 19199.88 10399.51 177
PMVScopyleft92.94 2198.82 20898.81 19798.85 27899.84 3497.99 29299.20 14599.47 22999.71 4799.42 19799.82 5398.09 18899.47 36193.88 35399.85 12399.07 295
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS95.72 33594.63 33998.99 26098.56 35597.98 29799.30 11498.86 31872.71 37297.30 35799.08 31098.34 16799.74 29789.21 36398.33 34499.26 250
ET-MVSNet_ETH3D96.78 31396.07 32298.91 27099.26 28497.92 29897.70 33096.05 36397.96 27592.37 37398.43 35987.06 35399.90 13298.27 16097.56 36098.91 311
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25599.80 5797.83 29998.89 21599.72 9299.29 12699.63 13099.70 11196.47 26599.89 14998.17 17299.82 14699.50 183
mvs_anonymous99.28 10999.39 6998.94 26499.19 29697.81 30099.02 19499.55 18899.78 3999.85 4299.80 5898.24 17599.86 19799.57 2599.50 26999.15 274
cl____98.54 24198.41 23598.92 26899.03 32097.80 30197.46 34299.59 16698.90 18599.60 14699.46 23893.85 30099.78 28197.97 18799.89 9599.17 270
DIV-MVS_self_test98.54 24198.42 23498.92 26899.03 32097.80 30197.46 34299.59 16698.90 18599.60 14699.46 23893.87 29999.78 28197.97 18799.89 9599.18 268
thisisatest053097.45 29896.95 30998.94 26499.68 13297.73 30399.09 18394.19 37098.61 21699.56 16199.30 27484.30 36699.93 7198.27 16099.54 26299.16 272
baseline197.73 28897.33 29798.96 26299.30 27597.73 30399.40 8898.42 33899.33 12399.46 18999.21 29591.18 32899.82 25498.35 15391.26 37199.32 241
pmmvs398.08 27697.80 28598.91 27099.41 23997.69 30597.87 32399.66 11895.87 33899.50 18299.51 21990.35 34199.97 1798.55 14299.47 27499.08 290
new_pmnet98.88 20198.89 18798.84 28099.70 12097.62 30698.15 29199.50 21897.98 27199.62 13899.54 21098.15 18599.94 5797.55 22799.84 12798.95 307
test0.0.03 197.37 30196.91 31298.74 28997.72 36997.57 30797.60 33497.36 35798.00 26899.21 24798.02 36590.04 34499.79 27898.37 15095.89 36998.86 315
MVEpermissive92.54 2296.66 31796.11 32198.31 30899.68 13297.55 30897.94 31895.60 36599.37 11790.68 37498.70 34996.56 26198.61 37186.94 37199.55 25698.77 322
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thisisatest051596.98 30996.42 31698.66 29399.42 23897.47 30997.27 34994.30 36997.24 31099.15 25698.86 34185.01 36399.87 17797.10 25999.39 28598.63 325
TR-MVS97.44 29997.15 30498.32 30698.53 35697.46 31098.47 26797.91 34896.85 32398.21 33298.51 35796.42 26799.51 35992.16 35797.29 36197.98 356
131498.00 28097.90 28398.27 31098.90 33097.45 31199.30 11499.06 31194.98 35097.21 36099.12 30698.43 15499.67 33095.58 32798.56 33997.71 359
tttt051797.62 29397.20 30298.90 27699.76 8597.40 31299.48 7894.36 36899.06 16899.70 10699.49 22784.55 36599.94 5798.73 13299.65 23099.36 232
MG-MVS98.52 24398.39 23798.94 26499.15 30197.39 31398.18 28899.21 30098.89 18899.23 24199.63 15597.37 23899.74 29794.22 34799.61 24299.69 55
miper_lstm_enhance98.65 22698.60 21398.82 28599.20 29497.33 31497.78 32699.66 11899.01 17099.59 14999.50 22294.62 29399.85 21698.12 17599.90 8799.26 250
DSMNet-mixed99.48 5499.65 2498.95 26399.71 11297.27 31599.50 7499.82 3999.59 8599.41 20599.85 4199.62 16100.00 199.53 3099.89 9599.59 135
BH-untuned98.22 27198.09 26598.58 29699.38 24797.24 31698.55 25898.98 31697.81 28499.20 25298.76 34797.01 25399.65 34194.83 33998.33 34498.86 315
c3_l98.72 22098.71 20498.72 29099.12 30697.22 31797.68 33199.56 18298.90 18599.54 16899.48 23096.37 27199.73 30097.88 19399.88 10399.21 260
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27899.64 14297.16 31898.23 28699.33 26998.93 18199.56 16199.66 13897.39 23699.83 24498.29 15899.88 10399.55 152
YYNet198.95 19298.99 16998.84 28099.64 14297.14 31998.22 28799.32 27198.92 18399.59 14999.66 13897.40 23499.83 24498.27 16099.90 8799.55 152
miper_ehance_all_eth98.59 23498.59 21598.59 29598.98 32697.07 32097.49 34199.52 21198.50 22799.52 17599.37 25596.41 26999.71 30697.86 19799.62 23599.00 305
JIA-IIPM98.06 27797.92 28098.50 29898.59 35497.02 32198.80 23398.51 33499.88 1697.89 34699.87 3291.89 32199.90 13298.16 17397.68 35998.59 328
gg-mvs-nofinetune95.87 33295.17 33697.97 31698.19 36496.95 32299.69 3489.23 37799.89 1196.24 36699.94 1381.19 36899.51 35993.99 35298.20 34797.44 361
DeepMVS_CXcopyleft97.98 31599.69 12396.95 32299.26 28675.51 37195.74 36998.28 36296.47 26599.62 34591.23 36097.89 35697.38 362
baseline296.83 31296.28 31898.46 30099.09 31496.91 32498.83 22593.87 37197.23 31196.23 36798.36 36088.12 35099.90 13296.68 28198.14 35198.57 331
GG-mvs-BLEND97.36 33297.59 37096.87 32599.70 2888.49 37894.64 37297.26 37580.66 37099.12 36691.50 35996.50 36796.08 369
eth_miper_zixun_eth98.68 22498.71 20498.60 29499.10 31296.84 32697.52 34099.54 19498.94 17899.58 15199.48 23096.25 27499.76 29198.01 18399.93 7399.21 260
cl2297.56 29697.28 29898.40 30298.37 36096.75 32797.24 35199.37 26297.31 30899.41 20599.22 29387.30 35199.37 36597.70 21499.62 23599.08 290
PAPM95.61 33694.71 33898.31 30899.12 30696.63 32896.66 36298.46 33790.77 36596.25 36598.68 35093.01 31099.69 31481.60 37297.86 35898.62 326
new-patchmatchnet99.35 9299.57 4098.71 29299.82 4596.62 32998.55 25899.75 7599.50 9399.88 3299.87 3299.31 3799.88 16499.43 41100.00 199.62 111
Patchmatch-test98.10 27597.98 27298.48 29999.27 28296.48 33099.40 8899.07 30998.81 19699.23 24199.57 19890.11 34399.87 17796.69 28099.64 23299.09 287
EU-MVSNet99.39 8299.62 2798.72 29099.88 2496.44 33199.56 7099.85 2699.90 799.90 2299.85 4198.09 18899.83 24499.58 2499.95 5299.90 4
miper_enhance_ethall98.03 27897.94 27898.32 30698.27 36296.43 33296.95 35799.41 24596.37 33299.43 19598.96 33194.74 29199.69 31497.71 21299.62 23598.83 319
PVSNet97.47 1598.42 25498.44 23298.35 30499.46 22596.26 33396.70 36199.34 26897.68 28899.00 27399.13 30297.40 23499.72 30297.59 22699.68 21599.08 290
thres20096.09 32795.68 33097.33 33499.48 21596.22 33498.53 26297.57 35298.06 26798.37 32596.73 37886.84 35899.61 34986.99 37098.57 33896.16 368
tfpn200view996.30 32495.89 32497.53 32799.58 16096.11 33599.00 19897.54 35598.43 23298.52 31896.98 37686.85 35699.67 33087.62 36798.51 34196.81 365
thres40096.40 32095.89 32497.92 31899.58 16096.11 33599.00 19897.54 35598.43 23298.52 31896.98 37686.85 35699.67 33087.62 36798.51 34197.98 356
thres600view796.60 31896.16 32097.93 31799.63 14496.09 33799.18 15197.57 35298.77 20298.72 30497.32 37387.04 35499.72 30288.57 36498.62 33797.98 356
thres100view90096.39 32196.03 32397.47 32999.63 14495.93 33899.18 15197.57 35298.75 20698.70 30697.31 37487.04 35499.67 33087.62 36798.51 34196.81 365
IterMVS-SCA-FT99.00 18299.16 11498.51 29799.75 9695.90 33998.07 30299.84 3299.84 2799.89 2699.73 9196.01 27999.99 599.33 58100.00 199.63 100
CHOSEN 280x42098.41 25598.41 23598.40 30299.34 26495.89 34096.94 35899.44 23898.80 19899.25 23799.52 21593.51 30699.98 798.94 11599.98 2499.32 241
BH-w/o97.20 30497.01 30797.76 32299.08 31595.69 34198.03 30698.52 33395.76 34197.96 34398.02 36595.62 28499.47 36192.82 35697.25 36298.12 353
cascas96.99 30896.82 31497.48 32897.57 37295.64 34296.43 36399.56 18291.75 36297.13 36297.61 37095.58 28598.63 37096.68 28199.11 31098.18 352
IterMVS98.97 18699.16 11498.42 30199.74 10295.64 34298.06 30499.83 3499.83 3099.85 4299.74 8796.10 27899.99 599.27 69100.00 199.63 100
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ADS-MVSNet297.78 28597.66 29398.12 31499.14 30295.36 34499.22 14298.75 32496.97 31998.25 32999.64 14590.90 33399.94 5796.51 29199.56 25299.08 290
IB-MVS95.41 2095.30 33794.46 34197.84 32098.76 34995.33 34597.33 34796.07 36296.02 33695.37 37197.41 37276.17 37899.96 3597.54 22895.44 37098.22 348
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ppachtmachnet_test98.89 20099.12 12598.20 31199.66 13895.24 34697.63 33299.68 10999.08 16299.78 7099.62 16498.65 12499.88 16498.02 18099.96 4599.48 193
test-LLR97.15 30596.95 30997.74 32498.18 36595.02 34797.38 34496.10 36098.00 26897.81 35098.58 35190.04 34499.91 11297.69 22098.78 32698.31 342
test-mter96.23 32695.73 32997.74 32498.18 36595.02 34797.38 34496.10 36097.90 27797.81 35098.58 35179.12 37599.91 11297.69 22098.78 32698.31 342
our_test_398.85 20599.09 13798.13 31399.66 13894.90 34997.72 32899.58 17599.07 16499.64 12699.62 16498.19 18299.93 7198.41 14899.95 5299.55 152
ADS-MVSNet97.72 29197.67 29297.86 31999.14 30294.65 35099.22 14298.86 31896.97 31998.25 32999.64 14590.90 33399.84 23396.51 29199.56 25299.08 290
tmp_tt95.75 33495.42 33296.76 34189.90 37894.42 35198.86 22097.87 34978.01 37099.30 23299.69 11797.70 21695.89 37399.29 6698.14 35199.95 1
tpm97.15 30596.95 30997.75 32398.91 32994.24 35299.32 10797.96 34697.71 28798.29 32699.32 27086.72 36099.92 9198.10 17896.24 36899.09 287
KD-MVS_2432*160095.89 33095.41 33397.31 33594.96 37493.89 35397.09 35499.22 29697.23 31198.88 28599.04 31679.23 37399.54 35496.24 30496.81 36398.50 337
miper_refine_blended95.89 33095.41 33397.31 33594.96 37493.89 35397.09 35499.22 29697.23 31198.88 28599.04 31679.23 37399.54 35496.24 30496.81 36398.50 337
TESTMET0.1,196.24 32595.84 32797.41 33198.24 36393.84 35597.38 34495.84 36498.43 23297.81 35098.56 35479.77 37299.89 14997.77 20498.77 32898.52 333
CVMVSNet98.61 22998.88 18897.80 32199.58 16093.60 35699.26 12799.64 13599.66 6599.72 9899.67 13493.26 30799.93 7199.30 6399.81 15499.87 9
PVSNet_095.53 1995.85 33395.31 33597.47 32998.78 34793.48 35795.72 36599.40 25296.18 33597.37 35697.73 36895.73 28299.58 35295.49 32881.40 37299.36 232
RRT_test8_iter0597.35 30397.25 30097.63 32698.81 34393.13 35899.26 12799.89 1599.51 9299.83 5099.68 12879.03 37699.88 16499.53 3099.72 20199.89 8
SCA98.11 27498.36 24097.36 33299.20 29492.99 35998.17 29098.49 33698.24 25699.10 26499.57 19896.01 27999.94 5796.86 27099.62 23599.14 278
EPMVS96.53 31996.32 31797.17 33898.18 36592.97 36099.39 9089.95 37698.21 25898.61 31199.59 18886.69 36199.72 30296.99 26399.23 30898.81 320
PatchmatchNetpermissive97.65 29297.80 28597.18 33798.82 34292.49 36199.17 15698.39 34098.12 26298.79 29799.58 19090.71 33799.89 14997.23 25199.41 28399.16 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu97.62 29397.79 28797.11 33996.67 37392.31 36298.51 26498.04 34499.24 13695.77 36899.47 23593.78 30299.66 33498.98 10699.62 23599.37 229
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpmrst97.73 28898.07 26696.73 34398.71 35192.00 36399.10 17998.86 31898.52 22598.92 28199.54 21091.90 32099.82 25498.02 18099.03 31598.37 341
DWT-MVSNet_test96.03 32995.80 32896.71 34598.50 35791.93 36499.25 13497.87 34995.99 33796.81 36397.61 37081.02 36999.66 33497.20 25497.98 35498.54 332
tpmvs97.39 30097.69 29096.52 34698.41 35891.76 36599.30 11498.94 31797.74 28597.85 34999.55 20892.40 31899.73 30096.25 30398.73 33498.06 354
tpm296.35 32296.22 31996.73 34398.88 33691.75 36699.21 14498.51 33493.27 35997.89 34699.21 29584.83 36499.70 30896.04 31098.18 35098.75 323
E-PMN97.14 30797.43 29596.27 34998.79 34591.62 36795.54 36699.01 31599.44 10798.88 28599.12 30692.78 31299.68 32594.30 34699.03 31597.50 360
MVS-HIRNet97.86 28298.22 25396.76 34199.28 28091.53 36898.38 27592.60 37299.13 15799.31 22799.96 1197.18 24899.68 32598.34 15499.83 13799.07 295
MDTV_nov1_ep13_2view91.44 36999.14 16697.37 30599.21 24791.78 32496.75 27799.03 299
EMVS96.96 31097.28 29895.99 35298.76 34991.03 37095.26 36798.61 33099.34 12098.92 28198.88 34093.79 30199.66 33492.87 35599.05 31397.30 364
MDTV_nov1_ep1397.73 28998.70 35290.83 37199.15 16498.02 34598.51 22698.82 29399.61 17390.98 33199.66 33496.89 26998.92 321
ECVR-MVScopyleft97.73 28898.04 26796.78 34099.59 15590.81 37299.72 2390.43 37599.89 1199.86 4099.86 3893.60 30599.89 14999.46 3899.99 1299.65 86
CostFormer96.71 31696.79 31596.46 34898.90 33090.71 37399.41 8798.68 32694.69 35698.14 33799.34 26886.32 36299.80 27597.60 22598.07 35398.88 313
tpm cat196.78 31396.98 30896.16 35198.85 33790.59 37499.08 18699.32 27192.37 36197.73 35599.46 23891.15 32999.69 31496.07 30998.80 32598.21 349
dp96.86 31197.07 30596.24 35098.68 35390.30 37599.19 15098.38 34197.35 30698.23 33199.59 18887.23 35299.82 25496.27 30298.73 33498.59 328
test111197.74 28798.16 26196.49 34799.60 15189.86 37699.71 2791.21 37399.89 1199.88 3299.87 3293.73 30399.90 13299.56 2699.99 1299.70 51
gm-plane-assit97.59 37089.02 37793.47 35898.30 36199.84 23396.38 298
test250694.73 33894.59 34095.15 35399.59 15585.90 37899.75 1574.01 37999.89 1199.71 10399.86 3879.00 37799.90 13299.52 3299.99 1299.65 86
test_method91.72 33992.32 34289.91 35593.49 37770.18 37990.28 36899.56 18261.71 37395.39 37099.52 21593.90 29899.94 5798.76 12998.27 34699.62 111
test12329.31 34033.05 34518.08 35625.93 38012.24 38097.53 33810.93 38111.78 37424.21 37550.08 38321.04 3798.60 37523.51 37332.43 37433.39 371
testmvs28.94 34133.33 34315.79 35726.03 3799.81 38196.77 36015.67 38011.55 37523.87 37650.74 38219.03 3808.53 37623.21 37433.07 37329.03 372
test_blank8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
cdsmvs_eth3d_5k24.88 34233.17 3440.00 3580.00 3810.00 3820.00 36999.62 1400.00 3760.00 37799.13 30299.82 40.00 3770.00 3750.00 3750.00 373
pcd_1.5k_mvsjas16.61 34322.14 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 199.28 410.00 3770.00 3750.00 3750.00 373
sosnet-low-res8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
sosnet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
Regformer8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
ab-mvs-re8.26 35111.02 3540.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37799.16 3000.00 3810.00 3770.00 3750.00 3750.00 373
uanet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
PC_three_145297.56 29299.68 11199.41 24599.09 6297.09 37296.66 28399.60 24599.62 111
eth-test20.00 381
eth-test0.00 381
test_241102_TWO99.54 19499.13 15799.76 7799.63 15598.32 17099.92 9197.85 19999.69 21099.75 42
9.1498.64 21099.45 22898.81 23099.60 15997.52 29799.28 23399.56 20198.53 14299.83 24495.36 33399.64 232
test_0728_THIRD99.18 14599.62 13899.61 17398.58 13299.91 11297.72 21099.80 15999.77 35
GSMVS99.14 278
sam_mvs190.81 33699.14 278
sam_mvs90.52 340
MTGPAbinary99.53 203
test_post199.14 16651.63 38189.54 34799.82 25496.86 270
test_post52.41 38090.25 34299.86 197
patchmatchnet-post99.62 16490.58 33899.94 57
MTMP99.09 18398.59 332
test9_res95.10 33699.44 27799.50 183
agg_prior294.58 34499.46 27699.50 183
test_prior297.95 31697.87 27998.05 33999.05 31397.90 20395.99 31399.49 271
旧先验297.94 31895.33 34698.94 27799.88 16496.75 277
新几何298.04 305
无先验98.01 30799.23 29395.83 33999.85 21695.79 32299.44 209
原ACMM297.92 320
testdata299.89 14995.99 313
segment_acmp98.37 163
testdata197.72 32897.86 282
plane_prior599.54 19499.82 25495.84 32099.78 17099.60 126
plane_prior499.25 286
plane_prior298.80 23398.94 178
plane_prior199.51 197
n20.00 382
nn0.00 382
door-mid99.83 34
test1199.29 280
door99.77 63
HQP-NCC99.31 27197.98 31297.45 30098.15 333
ACMP_Plane99.31 27197.98 31297.45 30098.15 333
BP-MVS94.73 340
HQP4-MVS98.15 33399.70 30899.53 165
HQP3-MVS99.37 26299.67 222
HQP2-MVS96.67 259
ACMMP++_ref99.94 65
ACMMP++99.79 164
Test By Simon98.41 157