This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
uanet_test8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas16.61 33922.14 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 199.28 410.00 3700.00 3680.00 3680.00 366
sosnet-low-res8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
sosnet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
Regformer8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
uanet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 45100.00 199.90 7100.00 199.97 999.61 1799.97 1799.75 13100.00 199.84 14
MVS-HIRNet97.86 28198.22 25296.76 33799.28 27591.53 36398.38 27092.60 36799.13 15199.31 22199.96 1097.18 24599.68 31998.34 15199.83 13399.07 287
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 999.85 2099.94 1199.95 1199.73 899.90 12999.65 1699.97 3099.69 52
gg-mvs-nofinetune95.87 32995.17 33397.97 31398.19 35696.95 31799.69 2889.23 37099.89 1196.24 35999.94 1281.19 36399.51 35393.99 34598.20 34097.44 354
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 899.73 1699.85 2699.70 4999.92 1899.93 1399.45 2399.97 1799.36 50100.00 199.85 13
mvs_tets99.90 299.90 299.90 499.96 499.79 3699.72 1999.88 1899.92 699.98 399.93 1399.94 199.98 799.77 12100.00 199.92 3
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2299.83 699.85 2699.80 3299.93 1499.93 1398.54 13599.93 7199.59 2099.98 2199.76 37
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4299.68 3199.85 2699.95 399.98 399.92 1699.28 4199.98 799.75 13100.00 199.94 2
test_djsdf99.84 899.81 999.91 299.94 1099.84 1899.77 1199.80 4999.73 4099.97 699.92 1699.77 799.98 799.43 38100.00 199.90 4
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1399.86 599.92 699.69 5299.78 6899.92 1699.37 3199.88 15798.93 11399.95 4999.60 119
UA-Net99.78 1399.76 1499.86 1699.72 10899.71 6799.91 399.95 499.96 299.71 10099.91 1999.15 5499.97 1799.50 33100.00 199.90 4
v7n99.82 1099.80 1099.88 1199.96 499.84 1899.82 899.82 3999.84 2399.94 1199.91 1999.13 5899.96 3599.83 999.99 1299.83 18
Anonymous2023121199.62 3499.57 4099.76 4699.61 14799.60 10699.81 999.73 8399.82 2899.90 2299.90 2197.97 19699.86 19199.42 4399.96 4299.80 24
jajsoiax99.89 399.89 399.89 799.96 499.78 3999.70 2299.86 2299.89 1199.98 399.90 2199.94 199.98 799.75 13100.00 199.90 4
SixPastTwentyTwo99.42 6999.30 8999.76 4699.92 1499.67 8399.70 2299.14 30199.65 6399.89 2699.90 2196.20 27299.94 5799.42 4399.92 7499.67 65
DeepC-MVS98.90 499.62 3499.61 3199.67 8899.72 10899.44 13799.24 13099.71 9599.27 12699.93 1499.90 2199.70 1199.93 7198.99 10199.99 1299.64 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2599.71 999.96 3599.51 3199.97 3099.84 14
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1399.75 1499.86 2299.70 4999.91 2099.89 2599.60 1999.87 17099.59 2099.74 18599.71 46
MIMVSNet199.66 2599.62 2699.80 2999.94 1099.87 999.69 2899.77 6399.78 3599.93 1499.89 2597.94 19799.92 9099.65 1699.98 2199.62 106
Anonymous2024052199.44 6599.42 6599.49 16099.89 2198.96 22399.62 4899.76 6899.85 2099.82 5099.88 2896.39 26799.97 1799.59 2099.98 2199.55 145
Baseline_NR-MVSNet99.49 5299.37 7399.82 2399.91 1599.84 1898.83 22099.86 2299.68 5399.65 11999.88 2897.67 21899.87 17099.03 9899.86 11699.76 37
K. test v398.87 20298.60 21299.69 8599.93 1399.46 13099.74 1594.97 36199.78 3599.88 3299.88 2893.66 30099.97 1799.61 1899.95 4999.64 90
new-patchmatchnet99.35 9099.57 4098.71 28999.82 4496.62 32498.55 25399.75 7599.50 8899.88 3299.87 3199.31 3799.88 15799.43 38100.00 199.62 106
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2299.76 1399.87 2099.73 4099.89 2699.87 3199.63 1499.87 17099.54 2699.92 7499.63 95
v1099.69 2199.69 1899.66 9599.81 5199.39 15199.66 4099.75 7599.60 7999.92 1899.87 3198.75 10999.86 19199.90 299.99 1299.73 42
JIA-IIPM98.06 27697.92 27798.50 29598.59 34697.02 31698.80 22898.51 32999.88 1397.89 33999.87 3191.89 31699.90 12998.16 17097.68 35298.59 320
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 699.90 799.97 699.87 3199.81 599.95 4599.54 2699.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part198.63 22698.26 24999.75 5699.40 23699.49 12399.67 3699.68 10899.86 1699.88 3299.86 3686.73 35499.93 7199.34 5299.97 3099.81 23
DIV-MVS_2432*160099.63 3199.59 3499.76 4699.84 3499.90 499.37 9099.79 5599.83 2699.88 3299.85 3798.42 15399.90 12999.60 1999.73 19299.49 181
v899.68 2399.69 1899.65 10099.80 5699.40 14999.66 4099.76 6899.64 6599.93 1499.85 3798.66 12099.84 22799.88 699.99 1299.71 46
EU-MVSNet99.39 8199.62 2698.72 28799.88 2496.44 32699.56 6499.85 2699.90 799.90 2299.85 3798.09 18599.83 23899.58 2399.95 4999.90 4
DSMNet-mixed99.48 5499.65 2398.95 26099.71 11197.27 31099.50 6899.82 3999.59 8199.41 19899.85 3799.62 16100.00 199.53 2999.89 9299.59 128
ACMH98.42 699.59 3899.54 4599.72 7699.86 3099.62 9899.56 6499.79 5598.77 19699.80 6099.85 3799.64 1399.85 21098.70 13199.89 9299.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6499.59 5999.82 3999.39 11199.82 5099.84 4299.38 2999.91 10899.38 4799.93 7099.80 24
FC-MVSNet-test99.70 1999.65 2399.86 1699.88 2499.86 1299.72 1999.78 6099.90 799.82 5099.83 4398.45 15099.87 17099.51 3199.97 3099.86 11
lessismore_v099.64 10799.86 3099.38 15490.66 36899.89 2699.83 4394.56 29199.97 1799.56 2599.92 7499.57 139
GBi-Net99.42 6999.31 8499.73 7099.49 20399.77 4299.68 3199.70 9999.44 10399.62 13299.83 4397.21 24199.90 12998.96 10799.90 8499.53 158
test199.42 6999.31 8499.73 7099.49 20399.77 4299.68 3199.70 9999.44 10399.62 13299.83 4397.21 24199.90 12998.96 10799.90 8499.53 158
FMVSNet199.66 2599.63 2599.73 7099.78 7299.77 4299.68 3199.70 9999.67 5799.82 5099.83 4398.98 7499.90 12999.24 6799.97 3099.53 158
TAMVS99.49 5299.45 5799.63 11199.48 20999.42 14499.45 7599.57 17599.66 6199.78 6899.83 4397.85 20699.86 19199.44 3799.96 4299.61 115
SD-MVS99.01 17999.30 8998.15 30999.50 19899.40 14998.94 20899.61 14699.22 13799.75 8099.82 4999.54 2195.51 36797.48 22699.87 10999.54 153
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ab-mvs99.33 9999.28 9699.47 16699.57 16599.39 15199.78 1099.43 23998.87 18399.57 14899.82 4998.06 18899.87 17098.69 13399.73 19299.15 266
PMVScopyleft92.94 2198.82 20798.81 19698.85 27599.84 3497.99 28799.20 14099.47 22699.71 4499.42 19099.82 4998.09 18599.47 35593.88 34699.85 11999.07 287
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VPA-MVSNet99.66 2599.62 2699.79 3499.68 13099.75 5199.62 4899.69 10599.85 2099.80 6099.81 5298.81 9499.91 10899.47 3599.88 10099.70 49
UGNet99.38 8399.34 7899.49 16098.90 32298.90 23399.70 2299.35 26399.86 1698.57 30899.81 5298.50 14599.93 7199.38 4799.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ambc99.20 23599.35 24898.53 25499.17 15199.46 23099.67 11199.80 5498.46 14999.70 30297.92 18799.70 20499.38 219
VDDNet98.97 18598.82 19599.42 18199.71 11198.81 23799.62 4898.68 32199.81 2999.38 20699.80 5494.25 29399.85 21098.79 12299.32 28999.59 128
mvs_anonymous99.28 10799.39 6898.94 26199.19 29197.81 29599.02 18999.55 18699.78 3599.85 4099.80 5498.24 17299.86 19199.57 2499.50 26299.15 266
QAPM98.40 25697.99 26799.65 10099.39 23899.47 12699.67 3699.52 20891.70 35698.78 29299.80 5498.55 13399.95 4594.71 33599.75 17799.53 158
3Dnovator99.15 299.43 6699.36 7699.65 10099.39 23899.42 14499.70 2299.56 18099.23 13499.35 21099.80 5499.17 5299.95 4598.21 16299.84 12399.59 128
CMPMVSbinary77.52 2398.50 24498.19 25799.41 18998.33 35399.56 11599.01 19199.59 16495.44 33799.57 14899.80 5495.64 28099.46 35796.47 28799.92 7499.21 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FIs99.65 3099.58 3799.84 1999.84 3499.85 1399.66 4099.75 7599.86 1699.74 8999.79 6098.27 17099.85 21099.37 4999.93 7099.83 18
LCM-MVSNet-Re99.28 10799.15 11699.67 8899.33 26399.76 4899.34 9799.97 298.93 17599.91 2099.79 6098.68 11599.93 7196.80 26999.56 24499.30 237
CHOSEN 1792x268899.39 8199.30 8999.65 10099.88 2499.25 18398.78 23299.88 1898.66 20499.96 899.79 6097.45 22999.93 7199.34 5299.99 1299.78 32
CR-MVSNet98.35 26198.20 25498.83 27999.05 31298.12 27999.30 10999.67 11397.39 29799.16 24799.79 6091.87 31799.91 10898.78 12598.77 32198.44 331
Patchmtry98.78 21098.54 22299.49 16098.89 32599.19 19999.32 10299.67 11399.65 6399.72 9599.79 6091.87 31799.95 4598.00 18199.97 3099.33 231
wuyk23d97.58 29299.13 12092.93 34899.69 12199.49 12399.52 6699.77 6397.97 26699.96 899.79 6099.84 399.94 5795.85 31299.82 14279.36 363
Anonymous2024052999.42 6999.34 7899.65 10099.53 18299.60 10699.63 4799.39 25299.47 9599.76 7599.78 6698.13 18399.86 19198.70 13199.68 21099.49 181
DTE-MVSNet99.68 2399.61 3199.88 1199.80 5699.87 999.67 3699.71 9599.72 4399.84 4399.78 6698.67 11899.97 1799.30 6099.95 4999.80 24
EG-PatchMatch MVS99.57 3999.56 4499.62 12099.77 8099.33 16799.26 12299.76 6899.32 12099.80 6099.78 6699.29 3999.87 17099.15 8499.91 8399.66 75
RPSCF99.18 14299.02 15799.64 10799.83 3899.85 1399.44 7899.82 3998.33 24599.50 17599.78 6697.90 20099.65 33596.78 27099.83 13399.44 202
3Dnovator+98.92 399.35 9099.24 10499.67 8899.35 24899.47 12699.62 4899.50 21599.44 10399.12 25499.78 6698.77 10699.94 5797.87 19399.72 19899.62 106
Gipumacopyleft99.57 3999.59 3499.49 16099.98 399.71 6799.72 1999.84 3299.81 2999.94 1199.78 6698.91 8399.71 30098.41 14599.95 4999.05 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7399.70 8499.83 3899.70 7499.38 8699.78 6099.53 8599.67 11199.78 6699.19 5099.86 19197.32 23499.87 10999.55 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
USDC98.96 18898.93 17799.05 25499.54 17797.99 28797.07 35199.80 4998.21 25299.75 8099.77 7398.43 15199.64 33797.90 18899.88 10099.51 170
EPP-MVSNet99.17 14699.00 16399.66 9599.80 5699.43 14199.70 2299.24 28999.48 9099.56 15599.77 7394.89 28699.93 7198.72 13099.89 9299.63 95
OpenMVScopyleft98.12 1098.23 26997.89 28199.26 22599.19 29199.26 17999.65 4599.69 10591.33 35798.14 33099.77 7398.28 16999.96 3595.41 32499.55 24898.58 322
PatchT98.45 25198.32 24598.83 27998.94 32098.29 27099.24 13098.82 31699.84 2399.08 25899.76 7691.37 32099.94 5798.82 12099.00 31098.26 338
MIMVSNet98.43 25298.20 25499.11 24699.53 18298.38 26799.58 6198.61 32598.96 17099.33 21599.76 7690.92 32799.81 26497.38 23299.76 17499.15 266
DP-MVS99.48 5499.39 6899.74 6299.57 16599.62 9899.29 11699.61 14699.87 1499.74 8999.76 7698.69 11499.87 17098.20 16399.80 15699.75 40
ACMH+98.40 899.50 5099.43 6299.71 8099.86 3099.76 4899.32 10299.77 6399.53 8599.77 7399.76 7699.26 4599.78 27597.77 20199.88 10099.60 119
RRT_MVS98.75 21498.54 22299.41 18998.14 36098.61 25198.98 20299.66 11799.31 12199.84 4399.75 8091.98 31499.98 799.20 7399.95 4999.62 106
v124099.56 4299.58 3799.51 15499.80 5699.00 21799.00 19399.65 12899.15 14999.90 2299.75 8099.09 6199.88 15799.90 299.96 4299.67 65
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8599.69 2899.92 699.67 5799.77 7399.75 8099.61 1799.98 799.35 5199.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RPMNet98.60 23098.53 22498.83 27999.05 31298.12 27999.30 10999.62 13999.86 1699.16 24799.74 8392.53 31099.92 9098.75 12798.77 32198.44 331
FMVSNet299.35 9099.28 9699.55 14499.49 20399.35 16499.45 7599.57 17599.44 10399.70 10299.74 8397.21 24199.87 17099.03 9899.94 6299.44 202
IterMVS98.97 18599.16 11398.42 29899.74 10195.64 33798.06 29999.83 3499.83 2699.85 4099.74 8396.10 27599.99 599.27 66100.00 199.63 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVS_ROBcopyleft97.31 1797.36 29996.84 31098.89 27499.29 27299.45 13598.87 21499.48 22286.54 36299.44 18499.74 8397.34 23699.86 19191.61 35199.28 29397.37 356
IterMVS-SCA-FT99.00 18199.16 11398.51 29499.75 9595.90 33498.07 29799.84 3299.84 2399.89 2699.73 8796.01 27699.99 599.33 55100.00 199.63 95
ACMMP_NAP99.28 10799.11 12799.79 3499.75 9599.81 2998.95 20699.53 20098.27 24999.53 16799.73 8798.75 10999.87 17097.70 20899.83 13399.68 58
v114499.54 4799.53 4999.59 12799.79 6699.28 17599.10 17499.61 14699.20 13899.84 4399.73 8798.67 11899.84 22799.86 899.98 2199.64 90
PM-MVS99.36 8899.29 9499.58 13299.83 3899.66 8598.95 20699.86 2298.85 18599.81 5799.73 8798.40 15899.92 9098.36 14899.83 13399.17 262
PEN-MVS99.66 2599.59 3499.89 799.83 3899.87 999.66 4099.73 8399.70 4999.84 4399.73 8798.56 13299.96 3599.29 6399.94 6299.83 18
PVSNet_Blended_VisFu99.40 7699.38 7099.44 17599.90 1998.66 24798.94 20899.91 997.97 26699.79 6599.73 8799.05 6999.97 1799.15 8499.99 1299.68 58
Patchmatch-RL test98.60 23098.36 23999.33 20899.77 8099.07 21498.27 27899.87 2098.91 17899.74 8999.72 9390.57 33499.79 27298.55 13999.85 11999.11 274
v14419299.55 4599.54 4599.58 13299.78 7299.20 19899.11 17399.62 13999.18 14099.89 2699.72 9398.66 12099.87 17099.88 699.97 3099.66 75
v119299.57 3999.57 4099.57 13799.77 8099.22 19299.04 18699.60 15799.18 14099.87 3899.72 9399.08 6499.85 21099.89 599.98 2199.66 75
AllTest99.21 13299.07 14299.63 11199.78 7299.64 9299.12 17199.83 3498.63 20799.63 12599.72 9398.68 11599.75 28996.38 29199.83 13399.51 170
TestCases99.63 11199.78 7299.64 9299.83 3498.63 20799.63 12599.72 9398.68 11599.75 28996.38 29199.83 13399.51 170
casdiffmvs99.63 3199.61 3199.67 8899.79 6699.59 10999.13 16799.85 2699.79 3499.76 7599.72 9399.33 3699.82 24899.21 7099.94 6299.59 128
ACMM98.09 1199.46 6199.38 7099.72 7699.80 5699.69 7899.13 16799.65 12898.99 16599.64 12199.72 9399.39 2599.86 19198.23 16099.81 15199.60 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v192192099.56 4299.57 4099.55 14499.75 9599.11 20699.05 18499.61 14699.15 14999.88 3299.71 10099.08 6499.87 17099.90 299.97 3099.66 75
APDe-MVS99.48 5499.36 7699.85 1899.55 17699.81 2999.50 6899.69 10598.99 16599.75 8099.71 10098.79 10199.93 7198.46 14399.85 11999.80 24
PS-CasMVS99.66 2599.58 3799.89 799.80 5699.85 1399.66 4099.73 8399.62 6999.84 4399.71 10098.62 12499.96 3599.30 6099.96 4299.86 11
XVG-ACMP-BASELINE99.23 11899.10 13599.63 11199.82 4499.58 11298.83 22099.72 9298.36 23599.60 14099.71 10098.92 8199.91 10897.08 25499.84 12399.40 214
PVSNet_BlendedMVS99.03 17399.01 16099.09 24899.54 17797.99 28798.58 24799.82 3997.62 28499.34 21399.71 10098.52 14299.77 28397.98 18299.97 3099.52 168
IS-MVSNet99.03 17398.85 19099.55 14499.80 5699.25 18399.73 1699.15 30099.37 11399.61 13899.71 10094.73 28999.81 26497.70 20899.88 10099.58 133
LS3D99.24 11799.11 12799.61 12398.38 35199.79 3699.57 6299.68 10899.61 7399.15 24999.71 10098.70 11399.91 10897.54 22299.68 21099.13 273
TSAR-MVS + MP.99.34 9599.24 10499.63 11199.82 4499.37 15799.26 12299.35 26398.77 19699.57 14899.70 10799.27 4499.88 15797.71 20699.75 17799.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
V4299.56 4299.54 4599.63 11199.79 6699.46 13099.39 8499.59 16499.24 13299.86 3999.70 10798.55 13399.82 24899.79 1199.95 4999.60 119
MDA-MVSNet-bldmvs99.06 16699.05 14899.07 25299.80 5697.83 29498.89 21099.72 9299.29 12299.63 12599.70 10796.47 26299.89 14398.17 16999.82 14299.50 176
CDS-MVSNet99.22 12799.13 12099.50 15799.35 24899.11 20698.96 20599.54 19199.46 10099.61 13899.70 10796.31 26999.83 23899.34 5299.88 10099.55 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DeepPCF-MVS98.42 699.18 14299.02 15799.67 8899.22 28499.75 5197.25 34599.47 22698.72 20199.66 11599.70 10799.29 3999.63 33898.07 17699.81 15199.62 106
TinyColmap98.97 18598.93 17799.07 25299.46 21998.19 27597.75 32299.75 7598.79 19399.54 16299.70 10798.97 7699.62 33996.63 27999.83 13399.41 212
D2MVS99.22 12799.19 11099.29 21899.69 12198.74 24198.81 22599.41 24298.55 21599.68 10799.69 11398.13 18399.87 17098.82 12099.98 2199.24 246
DPE-MVScopyleft99.14 15198.92 18199.82 2399.57 16599.77 4298.74 23699.60 15798.55 21599.76 7599.69 11398.23 17599.92 9096.39 29099.75 17799.76 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
tfpnnormal99.43 6699.38 7099.60 12599.87 2899.75 5199.59 5999.78 6099.71 4499.90 2299.69 11398.85 9199.90 12997.25 24499.78 16799.15 266
tmp_tt95.75 33195.42 32996.76 33789.90 37094.42 34698.86 21597.87 34478.01 36399.30 22599.69 11397.70 21395.89 36699.29 6398.14 34499.95 1
VDD-MVS99.20 13499.11 12799.44 17599.43 22798.98 21999.50 6898.32 33799.80 3299.56 15599.69 11396.99 25199.85 21098.99 10199.73 19299.50 176
WR-MVS_H99.61 3699.53 4999.87 1499.80 5699.83 2299.67 3699.75 7599.58 8299.85 4099.69 11398.18 18199.94 5799.28 6599.95 4999.83 18
LPG-MVS_test99.22 12799.05 14899.74 6299.82 4499.63 9699.16 15799.73 8397.56 28699.64 12199.69 11399.37 3199.89 14396.66 27799.87 10999.69 52
LGP-MVS_train99.74 6299.82 4499.63 9699.73 8397.56 28699.64 12199.69 11399.37 3199.89 14396.66 27799.87 10999.69 52
baseline99.63 3199.62 2699.66 9599.80 5699.62 9899.44 7899.80 4999.71 4499.72 9599.69 11399.15 5499.83 23899.32 5799.94 6299.53 158
FMVSNet597.80 28397.25 29799.42 18198.83 33198.97 22199.38 8699.80 4998.87 18399.25 23099.69 11380.60 36699.91 10898.96 10799.90 8499.38 219
ACMMPcopyleft99.25 11499.08 13899.74 6299.79 6699.68 8199.50 6899.65 12898.07 26099.52 16999.69 11398.57 13099.92 9097.18 24999.79 16199.63 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_030498.88 20098.71 20399.39 19498.85 32998.91 23299.45 7599.30 27598.56 21397.26 35299.68 12496.18 27399.96 3599.17 8099.94 6299.29 240
MVP-Stereo99.16 14799.08 13899.43 17999.48 20999.07 21499.08 18199.55 18698.63 20799.31 22199.68 12498.19 17999.78 27598.18 16799.58 24299.45 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
nrg03099.70 1999.66 2199.82 2399.76 8499.84 1899.61 5399.70 9999.93 499.78 6899.68 12499.10 5999.78 27599.45 3699.96 4299.83 18
RRT_test8_iter0597.35 30097.25 29797.63 32398.81 33593.13 35399.26 12299.89 1599.51 8799.83 4899.68 12479.03 37199.88 15799.53 2999.72 19899.89 8
XVG-OURS99.21 13299.06 14499.65 10099.82 4499.62 9897.87 31899.74 8098.36 23599.66 11599.68 12499.71 999.90 12996.84 26799.88 10099.43 208
N_pmnet98.73 21898.53 22499.35 20599.72 10898.67 24598.34 27194.65 36298.35 24099.79 6599.68 12498.03 18999.93 7198.28 15699.92 7499.44 202
EI-MVSNet99.38 8399.44 5999.21 23399.58 15598.09 28399.26 12299.46 23099.62 6999.75 8099.67 13098.54 13599.85 21099.15 8499.92 7499.68 58
CVMVSNet98.61 22898.88 18797.80 31899.58 15593.60 35199.26 12299.64 13499.66 6199.72 9599.67 13093.26 30299.93 7199.30 6099.81 15199.87 9
MVS_Test99.28 10799.31 8499.19 23699.35 24898.79 23999.36 9399.49 22099.17 14399.21 24099.67 13098.78 10399.66 32899.09 9499.66 22199.10 276
SteuartSystems-ACMMP99.30 10499.14 11799.76 4699.87 2899.66 8599.18 14699.60 15798.55 21599.57 14899.67 13099.03 7199.94 5797.01 25699.80 15699.69 52
Skip Steuart: Steuart Systems R&D Blog.
pmmvs-eth3d99.48 5499.47 5399.51 15499.77 8099.41 14898.81 22599.66 11799.42 11099.75 8099.66 13499.20 4999.76 28598.98 10399.99 1299.36 225
EI-MVSNet-UG-set99.48 5499.50 5199.42 18199.57 16598.65 25099.24 13099.46 23099.68 5399.80 6099.66 13498.99 7399.89 14399.19 7599.90 8499.72 43
YYNet198.95 19198.99 16898.84 27799.64 14097.14 31498.22 28299.32 26898.92 17799.59 14399.66 13497.40 23199.83 23898.27 15799.90 8499.55 145
MDA-MVSNet_test_wron98.95 19198.99 16898.85 27599.64 14097.16 31398.23 28199.33 26698.93 17599.56 15599.66 13497.39 23399.83 23898.29 15599.88 10099.55 145
MVSTER98.47 24998.22 25299.24 23099.06 31198.35 26999.08 18199.46 23099.27 12699.75 8099.66 13488.61 34499.85 21099.14 9099.92 7499.52 168
test072699.69 12199.80 3499.24 13099.57 17599.16 14599.73 9399.65 13998.35 162
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18199.57 16598.66 24799.24 13099.46 23099.67 5799.79 6599.65 13998.97 7699.89 14399.15 8499.89 9299.71 46
SR-MVS-dyc-post99.27 11199.11 12799.73 7099.54 17799.74 5799.26 12299.62 13999.16 14599.52 16999.64 14198.41 15499.91 10897.27 23999.61 23699.54 153
RE-MVS-def99.13 12099.54 17799.74 5799.26 12299.62 13999.16 14599.52 16999.64 14198.57 13097.27 23999.61 23699.54 153
SMA-MVScopyleft99.19 13899.00 16399.73 7099.46 21999.73 6099.13 16799.52 20897.40 29699.57 14899.64 14198.93 8099.83 23897.61 21899.79 16199.63 95
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVS_3200maxsize99.31 10399.16 11399.74 6299.53 18299.75 5199.27 12099.61 14699.19 13999.57 14899.64 14198.76 10799.90 12997.29 23699.62 22999.56 142
ADS-MVSNet297.78 28497.66 29098.12 31199.14 29795.36 33999.22 13798.75 31996.97 31298.25 32299.64 14190.90 32899.94 5796.51 28499.56 24499.08 282
ADS-MVSNet97.72 28897.67 28997.86 31699.14 29794.65 34599.22 13798.86 31396.97 31298.25 32299.64 14190.90 32899.84 22796.51 28499.56 24499.08 282
CP-MVSNet99.54 4799.43 6299.87 1499.76 8499.82 2699.57 6299.61 14699.54 8399.80 6099.64 14197.79 21099.95 4599.21 7099.94 6299.84 14
FMVSNet398.80 20998.63 21199.32 21299.13 29998.72 24299.10 17499.48 22299.23 13499.62 13299.64 14192.57 30899.86 19198.96 10799.90 8499.39 217
IterMVS-LS99.41 7399.47 5399.25 22899.81 5198.09 28398.85 21799.76 6899.62 6999.83 4899.64 14198.54 13599.97 1799.15 8499.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS_fast98.47 599.23 11899.12 12499.56 14199.28 27599.22 19298.99 19899.40 24999.08 15699.58 14599.64 14198.90 8699.83 23897.44 22899.75 17799.63 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS99.40 7699.28 9699.77 4099.69 12199.82 2699.20 14099.54 19199.13 15199.82 5099.63 15198.91 8399.92 9097.85 19699.70 20499.58 133
test_241102_TWO99.54 19199.13 15199.76 7599.63 15198.32 16799.92 9097.85 19699.69 20799.75 40
OPM-MVS99.26 11399.13 12099.63 11199.70 11899.61 10498.58 24799.48 22298.50 22199.52 16999.63 15199.14 5699.76 28597.89 18999.77 17199.51 170
zzz-MVS99.30 10499.14 11799.80 2999.81 5199.81 2998.73 23899.53 20099.27 12699.42 19099.63 15198.21 17699.95 4597.83 19999.79 16199.65 83
MTAPA99.35 9099.20 10999.80 2999.81 5199.81 2999.33 9999.53 20099.27 12699.42 19099.63 15198.21 17699.95 4597.83 19999.79 16199.65 83
abl_699.36 8899.23 10699.75 5699.71 11199.74 5799.33 9999.76 6899.07 15899.65 11999.63 15199.09 6199.92 9097.13 25299.76 17499.58 133
APD-MVScopyleft98.87 20298.59 21499.71 8099.50 19899.62 9899.01 19199.57 17596.80 31999.54 16299.63 15198.29 16899.91 10895.24 32799.71 20299.61 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MG-MVS98.52 24298.39 23698.94 26199.15 29697.39 30898.18 28399.21 29598.89 18299.23 23499.63 15197.37 23599.74 29194.22 34099.61 23699.69 52
FPMVS96.32 32095.50 32898.79 28399.60 14998.17 27798.46 26798.80 31797.16 30896.28 35799.63 15182.19 36299.09 36188.45 35898.89 31799.10 276
our_test_398.85 20499.09 13698.13 31099.66 13694.90 34497.72 32399.58 17399.07 15899.64 12199.62 16098.19 17999.93 7198.41 14599.95 4999.55 145
ppachtmachnet_test98.89 19999.12 12498.20 30899.66 13695.24 34197.63 32799.68 10899.08 15699.78 6899.62 16098.65 12299.88 15798.02 17799.96 4299.48 186
pmmvs599.19 13899.11 12799.42 18199.76 8498.88 23498.55 25399.73 8398.82 18999.72 9599.62 16096.56 25899.82 24899.32 5799.95 4999.56 142
patchmatchnet-post99.62 16090.58 33399.94 57
v2v48299.50 5099.47 5399.58 13299.78 7299.25 18399.14 16199.58 17399.25 13099.81 5799.62 16098.24 17299.84 22799.83 999.97 3099.64 90
test20.0399.55 4599.54 4599.58 13299.79 6699.37 15799.02 18999.89 1599.60 7999.82 5099.62 16098.81 9499.89 14399.43 3899.86 11699.47 191
TSAR-MVS + GP.99.12 15599.04 15499.38 19899.34 25899.16 20198.15 28699.29 27798.18 25599.63 12599.62 16099.18 5199.68 31998.20 16399.74 18599.30 237
EPNet98.13 27297.77 28599.18 23894.57 36897.99 28799.24 13097.96 34199.74 3997.29 35199.62 16093.13 30499.97 1798.59 13799.83 13399.58 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS98.90 19698.72 20299.44 17599.39 23899.42 14498.58 24799.64 13497.31 30199.44 18499.62 16098.59 12899.69 30896.17 30099.79 16199.22 251
xxxxxxxxxxxxxcwj99.11 15998.96 17499.54 14899.53 18299.25 18398.29 27699.76 6899.07 15899.42 19099.61 16998.86 8999.87 17096.45 28899.68 21099.49 181
SF-MVS99.10 16398.93 17799.62 12099.58 15599.51 12199.13 16799.65 12897.97 26699.42 19099.61 16998.86 8999.87 17096.45 28899.68 21099.49 181
DVP-MVS99.32 10199.17 11299.77 4099.69 12199.80 3499.14 16199.31 27299.16 14599.62 13299.61 16998.35 16299.91 10897.88 19099.72 19899.61 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 14099.62 13299.61 16998.58 12999.91 10897.72 20599.80 15699.77 33
v14899.40 7699.41 6699.39 19499.76 8498.94 22599.09 17899.59 16499.17 14399.81 5799.61 16998.41 15499.69 30899.32 5799.94 6299.53 158
DELS-MVS99.34 9599.30 8999.48 16499.51 19299.36 16098.12 29099.53 20099.36 11599.41 19899.61 16999.22 4799.87 17099.21 7099.68 21099.20 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MDTV_nov1_ep1397.73 28698.70 34490.83 36699.15 15998.02 34098.51 22098.82 28699.61 16990.98 32699.66 32896.89 26398.92 314
Regformer-399.41 7399.41 6699.40 19199.52 18798.70 24399.17 15199.44 23599.62 6999.75 8099.60 17698.90 8699.85 21098.89 11599.84 12399.65 83
Regformer-499.45 6399.44 5999.50 15799.52 18798.94 22599.17 15199.53 20099.64 6599.76 7599.60 17698.96 7999.90 12998.91 11499.84 12399.67 65
PGM-MVS99.20 13499.01 16099.77 4099.75 9599.71 6799.16 15799.72 9297.99 26499.42 19099.60 17698.81 9499.93 7196.91 26199.74 18599.66 75
HyFIR lowres test98.91 19498.64 20999.73 7099.85 3399.47 12698.07 29799.83 3498.64 20699.89 2699.60 17692.57 308100.00 199.33 5599.97 3099.72 43
CSCG99.37 8599.29 9499.60 12599.71 11199.46 13099.43 8099.85 2698.79 19399.41 19899.60 17698.92 8199.92 9098.02 17799.92 7499.43 208
ACMP97.51 1499.05 16998.84 19299.67 8899.78 7299.55 11898.88 21199.66 11797.11 31199.47 17999.60 17699.07 6699.89 14396.18 29999.85 11999.58 133
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
dp96.86 30897.07 30296.24 34598.68 34590.30 36999.19 14598.38 33697.35 29998.23 32499.59 18287.23 34799.82 24896.27 29598.73 32798.59 320
EPMVS96.53 31696.32 31497.17 33598.18 35792.97 35599.39 8489.95 36998.21 25298.61 30499.59 18286.69 35699.72 29696.99 25799.23 30198.81 312
test117299.23 11899.05 14899.74 6299.52 18799.75 5199.20 14099.61 14698.97 16799.48 17799.58 18498.41 15499.91 10897.15 25199.55 24899.57 139
SR-MVS99.19 13899.00 16399.74 6299.51 19299.72 6499.18 14699.60 15798.85 18599.47 17999.58 18498.38 15999.92 9096.92 26099.54 25599.57 139
MP-MVS-pluss99.14 15198.92 18199.80 2999.83 3899.83 2298.61 24399.63 13696.84 31799.44 18499.58 18498.81 9499.91 10897.70 20899.82 14299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MS-PatchMatch99.00 18198.97 17299.09 24899.11 30698.19 27598.76 23599.33 26698.49 22399.44 18499.58 18498.21 17699.69 30898.20 16399.62 22999.39 217
LFMVS98.46 25098.19 25799.26 22599.24 28298.52 25699.62 4896.94 35399.87 1499.31 22199.58 18491.04 32599.81 26498.68 13499.42 27599.45 197
VPNet99.46 6199.37 7399.71 8099.82 4499.59 10999.48 7299.70 9999.81 2999.69 10599.58 18497.66 22299.86 19199.17 8099.44 27099.67 65
PMMVS299.48 5499.45 5799.57 13799.76 8498.99 21898.09 29499.90 1398.95 17199.78 6899.58 18499.57 2099.93 7199.48 3499.95 4999.79 30
PatchmatchNetpermissive97.65 28997.80 28297.18 33498.82 33492.49 35699.17 15198.39 33598.12 25698.79 29099.58 18490.71 33299.89 14397.23 24599.41 27699.16 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.11 27398.36 23997.36 32999.20 28992.99 35498.17 28598.49 33198.24 25099.10 25799.57 19296.01 27699.94 5796.86 26499.62 22999.14 270
Patchmatch-test98.10 27497.98 26998.48 29699.27 27796.48 32599.40 8299.07 30498.81 19099.23 23499.57 19290.11 33899.87 17096.69 27499.64 22699.09 279
VNet99.18 14299.06 14499.56 14199.24 28299.36 16099.33 9999.31 27299.67 5799.47 17999.57 19296.48 26199.84 22799.15 8499.30 29199.47 191
GeoE99.69 2199.66 2199.78 3799.76 8499.76 4899.60 5899.82 3999.46 10099.75 8099.56 19599.63 1499.95 4599.43 3899.88 10099.62 106
9.1498.64 20999.45 22298.81 22599.60 15797.52 29099.28 22699.56 19598.53 13999.83 23895.36 32699.64 226
MSLP-MVS++99.05 16999.09 13698.91 26799.21 28698.36 26898.82 22499.47 22698.85 18598.90 27799.56 19598.78 10399.09 36198.57 13899.68 21099.26 243
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4699.58 15599.64 9299.30 10999.63 13699.61 7399.71 10099.56 19598.76 10799.96 3599.14 9099.92 7499.68 58
114514_t98.49 24798.11 26299.64 10799.73 10499.58 11299.24 13099.76 6889.94 35999.42 19099.56 19597.76 21299.86 19197.74 20499.82 14299.47 191
Vis-MVSNet (Re-imp)98.77 21198.58 21799.34 20699.78 7298.88 23499.61 5399.56 18099.11 15599.24 23399.56 19593.00 30699.78 27597.43 22999.89 9299.35 228
test_040299.22 12799.14 11799.45 17399.79 6699.43 14199.28 11799.68 10899.54 8399.40 20399.56 19599.07 6699.82 24896.01 30499.96 4299.11 274
tpmvs97.39 29797.69 28796.52 34298.41 35091.76 36099.30 10998.94 31297.74 27997.85 34299.55 20292.40 31399.73 29496.25 29698.73 32798.06 346
MSDG99.08 16498.98 17199.37 20199.60 14999.13 20497.54 33199.74 8098.84 18899.53 16799.55 20299.10 5999.79 27297.07 25599.86 11699.18 260
bset_n11_16_dypcd98.69 22298.45 22999.42 18199.69 12198.52 25696.06 35996.80 35499.71 4499.73 9399.54 20495.14 28499.96 3599.39 4699.95 4999.79 30
tpmrst97.73 28698.07 26496.73 33998.71 34392.00 35899.10 17498.86 31398.52 21998.92 27499.54 20491.90 31599.82 24898.02 17799.03 30898.37 333
new_pmnet98.88 20098.89 18698.84 27799.70 11897.62 30198.15 28699.50 21597.98 26599.62 13299.54 20498.15 18299.94 5797.55 22199.84 12398.95 300
Anonymous2023120699.35 9099.31 8499.47 16699.74 10199.06 21699.28 11799.74 8099.23 13499.72 9599.53 20797.63 22499.88 15799.11 9299.84 12399.48 186
ITE_SJBPF99.38 19899.63 14299.44 13799.73 8398.56 21399.33 21599.53 20798.88 8899.68 31996.01 30499.65 22499.02 295
test_method91.72 33592.32 33889.91 34993.49 36970.18 37190.28 36399.56 18061.71 36695.39 36399.52 20993.90 29599.94 5798.76 12698.27 33999.62 106
CHOSEN 280x42098.41 25498.41 23498.40 29999.34 25895.89 33596.94 35399.44 23598.80 19299.25 23099.52 20993.51 30199.98 798.94 11299.98 2199.32 234
Regformer-199.32 10199.27 9999.47 16699.41 23398.95 22498.99 19899.48 22299.48 9099.66 11599.52 20998.78 10399.87 17098.36 14899.74 18599.60 119
Regformer-299.34 9599.27 9999.53 15099.41 23399.10 21098.99 19899.53 20099.47 9599.66 11599.52 20998.80 9899.89 14398.31 15499.74 18599.60 119
CANet_DTU98.91 19498.85 19099.09 24898.79 33798.13 27898.18 28399.31 27299.48 9098.86 28299.51 21396.56 25899.95 4599.05 9799.95 4999.19 258
pmmvs398.08 27597.80 28298.91 26799.41 23397.69 30097.87 31899.66 11795.87 33199.50 17599.51 21390.35 33699.97 1798.55 13999.47 26799.08 282
HY-MVS98.23 998.21 27197.95 27198.99 25799.03 31598.24 27199.61 5398.72 32096.81 31898.73 29699.51 21394.06 29499.86 19196.91 26198.20 34098.86 308
ETH3D-3000-0.198.77 21198.50 22699.59 12799.47 21499.53 12098.77 23399.60 15797.33 30099.23 23499.50 21697.91 19999.83 23895.02 33199.67 21799.41 212
miper_lstm_enhance98.65 22598.60 21298.82 28299.20 28997.33 30997.78 32199.66 11799.01 16499.59 14399.50 21694.62 29099.85 21098.12 17299.90 8499.26 243
Anonymous20240521198.75 21498.46 22899.63 11199.34 25899.66 8599.47 7497.65 34699.28 12599.56 15599.50 21693.15 30399.84 22798.62 13699.58 24299.40 214
mPP-MVS99.19 13899.00 16399.76 4699.76 8499.68 8199.38 8699.54 19198.34 24499.01 26499.50 21698.53 13999.93 7197.18 24999.78 16799.66 75
HPM-MVS_fast99.43 6699.30 8999.80 2999.83 3899.81 2999.52 6699.70 9998.35 24099.51 17499.50 21699.31 3799.88 15798.18 16799.84 12399.69 52
hse-mvs398.61 22898.34 24299.44 17599.60 14998.67 24599.27 12099.44 23599.68 5399.32 21799.49 22192.50 311100.00 199.24 6796.51 35999.65 83
test_241102_ONE99.69 12199.82 2699.54 19199.12 15499.82 5099.49 22198.91 8399.52 352
tttt051797.62 29097.20 29998.90 27399.76 8497.40 30799.48 7294.36 36399.06 16299.70 10299.49 22184.55 36099.94 5798.73 12999.65 22499.36 225
eth_miper_zixun_eth98.68 22398.71 20398.60 29199.10 30796.84 32197.52 33599.54 19198.94 17299.58 14599.48 22496.25 27199.76 28598.01 18099.93 7099.21 253
testtj98.56 23698.17 25999.72 7699.45 22299.60 10698.88 21199.50 21596.88 31499.18 24699.48 22497.08 24899.92 9093.69 34799.38 27999.63 95
cl_fuxian98.72 21998.71 20398.72 28799.12 30197.22 31297.68 32699.56 18098.90 17999.54 16299.48 22496.37 26899.73 29497.88 19099.88 10099.21 253
MP-MVScopyleft99.06 16698.83 19499.76 4699.76 8499.71 6799.32 10299.50 21598.35 24098.97 26799.48 22498.37 16099.92 9095.95 31099.75 17799.63 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_LR99.13 15399.03 15699.42 18199.58 15599.32 16997.91 31799.73 8398.68 20399.31 22199.48 22499.09 6199.66 32897.70 20899.77 17199.29 240
XVS99.27 11199.11 12799.75 5699.71 11199.71 6799.37 9099.61 14699.29 12298.76 29499.47 22998.47 14699.88 15797.62 21699.73 19299.67 65
EPNet_dtu97.62 29097.79 28497.11 33696.67 36592.31 35798.51 25998.04 33999.24 13295.77 36199.47 22993.78 29999.66 32898.98 10399.62 22999.37 222
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_HR99.12 15599.02 15799.40 19199.50 19899.11 20697.92 31599.71 9598.76 19999.08 25899.47 22999.17 5299.54 34897.85 19699.76 17499.54 153
cl-mvsnet____98.54 24098.41 23498.92 26599.03 31597.80 29697.46 33799.59 16498.90 17999.60 14099.46 23293.85 29799.78 27597.97 18499.89 9299.17 262
cl-mvsnet198.54 24098.42 23398.92 26599.03 31597.80 29697.46 33799.59 16498.90 17999.60 14099.46 23293.87 29699.78 27597.97 18499.89 9299.18 260
tpm cat196.78 31096.98 30596.16 34698.85 32990.59 36899.08 18199.32 26892.37 35497.73 34899.46 23291.15 32499.69 30896.07 30298.80 31898.21 341
PHI-MVS99.11 15998.95 17699.59 12799.13 29999.59 10999.17 15199.65 12897.88 27299.25 23099.46 23298.97 7699.80 26997.26 24199.82 14299.37 222
pmmvs499.13 15399.06 14499.36 20499.57 16599.10 21098.01 30299.25 28698.78 19599.58 14599.44 23698.24 17299.76 28598.74 12899.93 7099.22 251
XVG-OURS-SEG-HR99.16 14798.99 16899.66 9599.84 3499.64 9298.25 28099.73 8398.39 23299.63 12599.43 23799.70 1199.90 12997.34 23398.64 32999.44 202
CNVR-MVS98.99 18498.80 19899.56 14199.25 28099.43 14198.54 25699.27 28198.58 21298.80 28999.43 23798.53 13999.70 30297.22 24699.59 24199.54 153
diffmvs99.34 9599.32 8399.39 19499.67 13598.77 24098.57 25199.81 4899.61 7399.48 17799.41 23998.47 14699.86 19198.97 10599.90 8499.53 158
LF4IMVS99.01 17998.92 18199.27 22399.71 11199.28 17598.59 24699.77 6398.32 24699.39 20599.41 23998.62 12499.84 22796.62 28099.84 12398.69 316
OPU-MVS99.29 21899.12 30199.44 13799.20 14099.40 24199.00 7298.84 36396.54 28299.60 23999.58 133
testdata99.42 18199.51 19298.93 22999.30 27596.20 32798.87 28199.40 24198.33 16699.89 14396.29 29499.28 29399.44 202
Test_1112_low_res98.95 19198.73 20199.63 11199.68 13099.15 20398.09 29499.80 4997.14 30999.46 18299.40 24196.11 27499.89 14399.01 10099.84 12399.84 14
PCF-MVS96.03 1896.73 31295.86 32399.33 20899.44 22499.16 20196.87 35499.44 23586.58 36198.95 26999.40 24194.38 29299.88 15787.93 35999.80 15698.95 300
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
旧先验199.49 20399.29 17399.26 28399.39 24597.67 21899.36 28499.46 195
ACMMPR99.23 11899.06 14499.76 4699.74 10199.69 7899.31 10699.59 16498.36 23599.35 21099.38 24698.61 12699.93 7197.43 22999.75 17799.67 65
miper_ehance_all_eth98.59 23398.59 21498.59 29298.98 31897.07 31597.49 33699.52 20898.50 22199.52 16999.37 24796.41 26699.71 30097.86 19499.62 22999.00 297
HFP-MVS99.25 11499.08 13899.76 4699.73 10499.70 7499.31 10699.59 16498.36 23599.36 20899.37 24798.80 9899.91 10897.43 22999.75 17799.68 58
#test#99.12 15598.90 18599.76 4699.73 10499.70 7499.10 17499.59 16497.60 28599.36 20899.37 24798.80 9899.91 10896.84 26799.75 17799.68 58
CPTT-MVS98.74 21698.44 23199.64 10799.61 14799.38 15499.18 14699.55 18696.49 32299.27 22899.37 24797.11 24799.92 9095.74 31799.67 21799.62 106
DP-MVS Recon98.50 24498.23 25199.31 21599.49 20399.46 13098.56 25299.63 13694.86 34698.85 28399.37 24797.81 20899.59 34596.08 30199.44 27098.88 306
region2R99.23 11899.05 14899.77 4099.76 8499.70 7499.31 10699.59 16498.41 22999.32 21799.36 25298.73 11299.93 7197.29 23699.74 18599.67 65
DU-MVS99.33 9999.21 10899.71 8099.43 22799.56 11598.83 22099.53 20099.38 11299.67 11199.36 25297.67 21899.95 4599.17 8099.81 15199.63 95
UniMVSNet (Re)99.37 8599.26 10199.68 8699.51 19299.58 11298.98 20299.60 15799.43 10899.70 10299.36 25297.70 21399.88 15799.20 7399.87 10999.59 128
NR-MVSNet99.40 7699.31 8499.68 8699.43 22799.55 11899.73 1699.50 21599.46 10099.88 3299.36 25297.54 22699.87 17098.97 10599.87 10999.63 95
UnsupCasMVSNet_eth98.83 20598.57 21899.59 12799.68 13099.45 13598.99 19899.67 11399.48 9099.55 16099.36 25294.92 28599.86 19198.95 11196.57 35899.45 197
GST-MVS99.16 14798.96 17499.75 5699.73 10499.73 6099.20 14099.55 18698.22 25199.32 21799.35 25798.65 12299.91 10896.86 26499.74 18599.62 106
UnsupCasMVSNet_bld98.55 23998.27 24899.40 19199.56 17599.37 15797.97 31099.68 10897.49 29299.08 25899.35 25795.41 28399.82 24897.70 20898.19 34299.01 296
sss98.90 19698.77 20099.27 22399.48 20998.44 26198.72 23999.32 26897.94 27099.37 20799.35 25796.31 26999.91 10898.85 11799.63 22899.47 191
CostFormer96.71 31396.79 31296.46 34398.90 32290.71 36799.41 8198.68 32194.69 34998.14 33099.34 26086.32 35799.80 26997.60 21998.07 34698.88 306
ETH3D cwj APD-0.1698.50 24498.16 26099.51 15499.04 31499.39 15198.47 26299.47 22696.70 32198.78 29299.33 26197.62 22599.86 19194.69 33699.38 27999.28 242
原ACMM199.37 20199.47 21498.87 23699.27 28196.74 32098.26 32199.32 26297.93 19899.82 24895.96 30999.38 27999.43 208
tpm97.15 30296.95 30697.75 32098.91 32194.24 34799.32 10297.96 34197.71 28198.29 31999.32 26286.72 35599.92 9098.10 17596.24 36199.09 279
test22299.51 19299.08 21397.83 32099.29 27795.21 34198.68 30099.31 26497.28 23899.38 27999.43 208
BH-RMVSNet98.41 25498.14 26199.21 23399.21 28698.47 25898.60 24598.26 33898.35 24098.93 27199.31 26497.20 24499.66 32894.32 33899.10 30499.51 170
thisisatest053097.45 29596.95 30698.94 26199.68 13097.73 29899.09 17894.19 36598.61 21099.56 15599.30 26684.30 36199.93 7198.27 15799.54 25599.16 264
MVSFormer99.41 7399.44 5999.31 21599.57 16598.40 26499.77 1199.80 4999.73 4099.63 12599.30 26698.02 19199.98 799.43 3899.69 20799.55 145
jason99.16 14799.11 12799.32 21299.75 9598.44 26198.26 27999.39 25298.70 20299.74 8999.30 26698.54 13599.97 1798.48 14299.82 14299.55 145
jason: jason.
ZNCC-MVS99.22 12799.04 15499.77 4099.76 8499.73 6099.28 11799.56 18098.19 25499.14 25199.29 26998.84 9299.92 9097.53 22499.80 15699.64 90
112198.56 23698.24 25099.52 15199.49 20399.24 18899.30 10999.22 29195.77 33398.52 31199.29 26997.39 23399.85 21095.79 31599.34 28699.46 195
新几何199.52 15199.50 19899.22 19299.26 28395.66 33698.60 30599.28 27197.67 21899.89 14395.95 31099.32 28999.45 197
UniMVSNet_NR-MVSNet99.37 8599.25 10399.72 7699.47 21499.56 11598.97 20499.61 14699.43 10899.67 11199.28 27197.85 20699.95 4599.17 8099.81 15199.65 83
CL-MVSNet_2432*160098.71 22098.56 22199.15 24199.22 28498.66 24797.14 34899.51 21198.09 25999.54 16299.27 27396.87 25499.74 29198.43 14498.96 31199.03 291
CP-MVS99.23 11899.05 14899.75 5699.66 13699.66 8599.38 8699.62 13998.38 23399.06 26299.27 27398.79 10199.94 5797.51 22599.82 14299.66 75
DROMVSNet99.61 3699.62 2699.59 12799.63 14299.89 799.68 3199.95 499.77 3899.40 20399.27 27399.48 2299.91 10899.54 2699.82 14298.98 298
AdaColmapbinary98.60 23098.35 24199.38 19899.12 30199.22 19298.67 24299.42 24197.84 27798.81 28799.27 27397.32 23799.81 26495.14 32899.53 25799.10 276
NCCC98.82 20798.57 21899.58 13299.21 28699.31 17098.61 24399.25 28698.65 20598.43 31699.26 27797.86 20499.81 26496.55 28199.27 29699.61 115
TAPA-MVS97.92 1398.03 27797.55 29199.46 16999.47 21499.44 13798.50 26099.62 13986.79 36099.07 26199.26 27798.26 17199.62 33997.28 23899.73 19299.31 236
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MCST-MVS99.02 17598.81 19699.65 10099.58 15599.49 12398.58 24799.07 30498.40 23199.04 26399.25 27998.51 14499.80 26997.31 23599.51 26099.65 83
HQP_MVS98.90 19698.68 20899.55 14499.58 15599.24 18898.80 22899.54 19198.94 17299.14 25199.25 27997.24 23999.82 24895.84 31399.78 16799.60 119
plane_prior499.25 279
HPM-MVScopyleft99.25 11499.07 14299.78 3799.81 5199.75 5199.61 5399.67 11397.72 28099.35 21099.25 27999.23 4699.92 9097.21 24799.82 14299.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PatchMatch-RL98.68 22398.47 22799.30 21799.44 22499.28 17598.14 28899.54 19197.12 31099.11 25599.25 27997.80 20999.70 30296.51 28499.30 29198.93 302
Effi-MVS+-dtu99.07 16598.92 18199.52 15198.89 32599.78 3999.15 15999.66 11799.34 11698.92 27499.24 28497.69 21599.98 798.11 17399.28 29398.81 312
WTY-MVS98.59 23398.37 23899.26 22599.43 22798.40 26498.74 23699.13 30398.10 25799.21 24099.24 28494.82 28799.90 12997.86 19498.77 32199.49 181
cl-mvsnet297.56 29397.28 29598.40 29998.37 35296.75 32297.24 34699.37 25997.31 30199.41 19899.22 28687.30 34699.37 35997.70 20899.62 22999.08 282
CANet99.11 15999.05 14899.28 22198.83 33198.56 25398.71 24199.41 24299.25 13099.23 23499.22 28697.66 22299.94 5799.19 7599.97 3099.33 231
baseline197.73 28697.33 29498.96 25999.30 26997.73 29899.40 8298.42 33399.33 11999.46 18299.21 28891.18 32399.82 24898.35 15091.26 36499.32 234
tpm296.35 31996.22 31696.73 33998.88 32891.75 36199.21 13998.51 32993.27 35297.89 33999.21 28884.83 35999.70 30296.04 30398.18 34398.75 315
ETH3 D test640097.76 28597.19 30099.50 15799.38 24199.26 17998.34 27199.49 22092.99 35398.54 31099.20 29095.92 27899.82 24891.14 35499.66 22199.40 214
WR-MVS99.11 15998.93 17799.66 9599.30 26999.42 14498.42 26899.37 25999.04 16399.57 14899.20 29096.89 25399.86 19198.66 13599.87 10999.70 49
F-COLMAP98.74 21698.45 22999.62 12099.57 16599.47 12698.84 21899.65 12896.31 32698.93 27199.19 29297.68 21799.87 17096.52 28399.37 28399.53 158
1112_ss99.05 16998.84 19299.67 8899.66 13699.29 17398.52 25899.82 3997.65 28399.43 18899.16 29396.42 26499.91 10899.07 9699.84 12399.80 24
ab-mvs-re8.26 34611.02 3490.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.16 2930.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k24.88 33833.17 3400.00 3520.00 3730.00 3740.00 36499.62 1390.00 3690.00 37099.13 29599.82 40.00 3700.00 3680.00 3680.00 366
lupinMVS98.96 18898.87 18899.24 23099.57 16598.40 26498.12 29099.18 29798.28 24899.63 12599.13 29598.02 19199.97 1798.22 16199.69 20799.35 228
PVSNet97.47 1598.42 25398.44 23198.35 30199.46 21996.26 32896.70 35699.34 26597.68 28299.00 26599.13 29597.40 23199.72 29697.59 22099.68 21099.08 282
CLD-MVS98.76 21398.57 21899.33 20899.57 16598.97 22197.53 33399.55 18696.41 32399.27 22899.13 29599.07 6699.78 27596.73 27399.89 9299.23 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
131498.00 27997.90 28098.27 30798.90 32297.45 30699.30 10999.06 30694.98 34397.21 35399.12 29998.43 15199.67 32495.58 32098.56 33297.71 352
E-PMN97.14 30497.43 29296.27 34498.79 33791.62 36295.54 36199.01 31099.44 10398.88 27899.12 29992.78 30799.68 31994.30 33999.03 30897.50 353
DPM-MVS98.28 26497.94 27599.32 21299.36 24699.11 20697.31 34398.78 31896.88 31498.84 28499.11 30197.77 21199.61 34394.03 34499.36 28499.23 249
CDPH-MVS98.56 23698.20 25499.61 12399.50 19899.46 13098.32 27499.41 24295.22 34099.21 24099.10 30298.34 16499.82 24895.09 33099.66 22199.56 142
MVS95.72 33294.63 33698.99 25798.56 34797.98 29299.30 10998.86 31372.71 36597.30 35099.08 30398.34 16499.74 29189.21 35698.33 33799.26 243
ZD-MVS99.43 22799.61 10499.43 23996.38 32499.11 25599.07 30497.86 20499.92 9094.04 34399.49 264
HPM-MVS++copyleft98.96 18898.70 20699.74 6299.52 18799.71 6798.86 21599.19 29698.47 22598.59 30699.06 30598.08 18799.91 10896.94 25999.60 23999.60 119
Fast-Effi-MVS+-dtu99.20 13499.12 12499.43 17999.25 28099.69 7899.05 18499.82 3999.50 8898.97 26799.05 30698.98 7499.98 798.20 16399.24 29998.62 318
test_prior398.62 22798.34 24299.46 16999.35 24899.22 19297.95 31199.39 25297.87 27398.05 33299.05 30697.90 20099.69 30895.99 30699.49 26499.48 186
test_prior297.95 31197.87 27398.05 33299.05 30697.90 20095.99 30699.49 264
hse-mvs298.52 24298.30 24699.16 23999.29 27298.60 25298.77 23399.02 30899.68 5399.32 21799.04 30992.50 31199.85 21099.24 6797.87 35099.03 291
KD-MVS_2432*160095.89 32795.41 33097.31 33294.96 36693.89 34897.09 34999.22 29197.23 30498.88 27899.04 30979.23 36899.54 34896.24 29796.81 35698.50 329
miper_refine_blended95.89 32795.41 33097.31 33294.96 36693.89 34897.09 34999.22 29197.23 30498.88 27899.04 30979.23 36899.54 34896.24 29796.81 35698.50 329
testgi99.29 10699.26 10199.37 20199.75 9598.81 23798.84 21899.89 1598.38 23399.75 8099.04 30999.36 3499.86 19199.08 9599.25 29799.45 197
AUN-MVS97.82 28297.38 29399.14 24299.27 27798.53 25498.72 23999.02 30898.10 25797.18 35499.03 31389.26 34399.85 21097.94 18697.91 34899.03 291
test_yl98.25 26697.95 27199.13 24399.17 29498.47 25899.00 19398.67 32398.97 16799.22 23899.02 31491.31 32199.69 30897.26 24198.93 31299.24 246
DCV-MVSNet98.25 26697.95 27199.13 24399.17 29498.47 25899.00 19398.67 32398.97 16799.22 23899.02 31491.31 32199.69 30897.26 24198.93 31299.24 246
MSP-MVS99.04 17298.79 19999.81 2699.78 7299.73 6099.35 9599.57 17598.54 21899.54 16298.99 31696.81 25599.93 7196.97 25899.53 25799.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TEST999.35 24899.35 16498.11 29299.41 24294.83 34897.92 33798.99 31698.02 19199.85 210
train_agg98.35 26197.95 27199.57 13799.35 24899.35 16498.11 29299.41 24294.90 34497.92 33798.99 31698.02 19199.85 21095.38 32599.44 27099.50 176
agg_prior198.33 26397.92 27799.57 13799.35 24899.36 16097.99 30699.39 25294.85 34797.76 34698.98 31998.03 18999.85 21095.49 32199.44 27099.51 170
PVSNet_Blended98.70 22198.59 21499.02 25699.54 17797.99 28797.58 33099.82 3995.70 33599.34 21398.98 31998.52 14299.77 28397.98 18299.83 13399.30 237
CNLPA98.57 23598.34 24299.28 22199.18 29399.10 21098.34 27199.41 24298.48 22498.52 31198.98 31997.05 24999.78 27595.59 31999.50 26298.96 299
test_899.34 25899.31 17098.08 29699.40 24994.90 34497.87 34198.97 32298.02 19199.84 227
GA-MVS97.99 28097.68 28898.93 26499.52 18798.04 28697.19 34799.05 30798.32 24698.81 28798.97 32289.89 34199.41 35898.33 15299.05 30699.34 230
miper_enhance_ethall98.03 27797.94 27598.32 30398.27 35496.43 32796.95 35299.41 24296.37 32599.43 18898.96 32494.74 28899.69 30897.71 20699.62 22998.83 311
PLCcopyleft97.35 1698.36 25897.99 26799.48 16499.32 26499.24 18898.50 26099.51 21195.19 34298.58 30798.96 32496.95 25299.83 23895.63 31899.25 29799.37 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
mvs-test198.83 20598.70 20699.22 23298.89 32599.65 9098.88 21199.66 11799.34 11698.29 31998.94 32697.69 21599.96 3598.11 17398.54 33398.04 347
Effi-MVS+99.06 16698.97 17299.34 20699.31 26598.98 21998.31 27599.91 998.81 19098.79 29098.94 32699.14 5699.84 22798.79 12298.74 32599.20 256
xiu_mvs_v1_base99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
xiu_mvs_v1_base_debi99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
EIA-MVS99.12 15599.01 16099.45 17399.36 24699.62 9899.34 9799.79 5598.41 22998.84 28498.89 33198.75 10999.84 22798.15 17199.51 26098.89 305
EMVS96.96 30797.28 29595.99 34798.76 34191.03 36595.26 36298.61 32599.34 11698.92 27498.88 33293.79 29899.66 32892.87 34899.05 30697.30 357
thisisatest051596.98 30696.42 31398.66 29099.42 23297.47 30497.27 34494.30 36497.24 30399.15 24998.86 33385.01 35899.87 17097.10 25399.39 27898.63 317
CS-MVS99.40 7699.43 6299.29 21899.44 22499.72 6499.36 9399.91 999.71 4499.28 22698.83 33499.22 4799.86 19199.40 4599.77 17198.29 336
NP-MVS99.40 23699.13 20498.83 334
HQP-MVS98.36 25898.02 26699.39 19499.31 26598.94 22597.98 30799.37 25997.45 29398.15 32698.83 33496.67 25699.70 30294.73 33399.67 21799.53 158
MAR-MVS98.24 26897.92 27799.19 23698.78 33999.65 9099.17 15199.14 30195.36 33898.04 33498.81 33797.47 22899.72 29695.47 32399.06 30598.21 341
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS98.38 25798.39 23698.35 30198.83 33199.26 17999.14 16199.18 29798.59 21198.66 30198.78 33898.61 12699.57 34794.14 34199.56 24496.21 360
BH-untuned98.22 27098.09 26398.58 29399.38 24197.24 31198.55 25398.98 31197.81 27899.20 24598.76 33997.01 25099.65 33594.83 33298.33 33798.86 308
Fast-Effi-MVS+99.02 17598.87 18899.46 16999.38 24199.50 12299.04 18699.79 5597.17 30798.62 30398.74 34099.34 3599.95 4598.32 15399.41 27698.92 303
MVEpermissive92.54 2296.66 31496.11 31898.31 30599.68 13097.55 30397.94 31395.60 36099.37 11390.68 36798.70 34196.56 25898.61 36586.94 36499.55 24898.77 314
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM95.61 33394.71 33598.31 30599.12 30196.63 32396.66 35798.46 33290.77 35896.25 35898.68 34293.01 30599.69 30881.60 36597.86 35198.62 318
test-LLR97.15 30296.95 30697.74 32198.18 35795.02 34297.38 33996.10 35598.00 26297.81 34398.58 34390.04 33999.91 10897.69 21498.78 31998.31 334
test-mter96.23 32395.73 32697.74 32198.18 35795.02 34297.38 33996.10 35597.90 27197.81 34398.58 34379.12 37099.91 10897.69 21498.78 31998.31 334
PAPM_NR98.36 25898.04 26599.33 20899.48 20998.93 22998.79 23199.28 28097.54 28898.56 30998.57 34597.12 24699.69 30894.09 34298.90 31699.38 219
TESTMET0.1,196.24 32295.84 32497.41 32898.24 35593.84 35097.38 33995.84 35998.43 22697.81 34398.56 34679.77 36799.89 14397.77 20198.77 32198.52 325
ETV-MVS99.18 14299.18 11199.16 23999.34 25899.28 17599.12 17199.79 5599.48 9098.93 27198.55 34799.40 2499.93 7198.51 14199.52 25998.28 337
xiu_mvs_v2_base99.02 17599.11 12798.77 28499.37 24498.09 28398.13 28999.51 21199.47 9599.42 19098.54 34899.38 2999.97 1798.83 11899.33 28898.24 339
CS-MVS-test99.20 13499.22 10799.12 24599.30 26999.78 3999.35 9599.90 1399.47 9598.98 26698.52 34998.83 9399.87 17099.10 9399.55 24897.72 351
TR-MVS97.44 29697.15 30198.32 30398.53 34897.46 30598.47 26297.91 34396.85 31698.21 32598.51 35096.42 26499.51 35392.16 35097.29 35497.98 348
PS-MVSNAJ99.00 18199.08 13898.76 28599.37 24498.10 28298.00 30499.51 21199.47 9599.41 19898.50 35199.28 4199.97 1798.83 11899.34 28698.20 343
ET-MVSNet_ETH3D96.78 31096.07 31998.91 26799.26 27997.92 29397.70 32596.05 35897.96 26992.37 36698.43 35287.06 34899.90 12998.27 15797.56 35398.91 304
baseline296.83 30996.28 31598.46 29799.09 30996.91 31998.83 22093.87 36697.23 30496.23 36098.36 35388.12 34599.90 12996.68 27598.14 34498.57 323
gm-plane-assit97.59 36289.02 37093.47 35198.30 35499.84 22796.38 291
DeepMVS_CXcopyleft97.98 31299.69 12196.95 31799.26 28375.51 36495.74 36298.28 35596.47 26299.62 33991.23 35397.89 34997.38 355
PAPR97.56 29397.07 30299.04 25598.80 33698.11 28197.63 32799.25 28694.56 35098.02 33598.25 35697.43 23099.68 31990.90 35598.74 32599.33 231
PMMVS98.49 24798.29 24799.11 24698.96 31998.42 26397.54 33199.32 26897.53 28998.47 31598.15 35797.88 20399.82 24897.46 22799.24 29999.09 279
test0.0.03 197.37 29896.91 30998.74 28697.72 36197.57 30297.60 32997.36 35298.00 26299.21 24098.02 35890.04 33999.79 27298.37 14795.89 36298.86 308
BH-w/o97.20 30197.01 30497.76 31999.08 31095.69 33698.03 30198.52 32895.76 33497.96 33698.02 35895.62 28199.47 35592.82 34997.25 35598.12 345
alignmvs98.28 26497.96 27099.25 22899.12 30198.93 22999.03 18898.42 33399.64 6598.72 29797.85 36090.86 33099.62 33998.88 11699.13 30299.19 258
PVSNet_095.53 1995.85 33095.31 33297.47 32698.78 33993.48 35295.72 36099.40 24996.18 32897.37 34997.73 36195.73 27999.58 34695.49 32181.40 36599.36 225
canonicalmvs99.02 17599.00 16399.09 24899.10 30798.70 24399.61 5399.66 11799.63 6898.64 30297.65 36299.04 7099.54 34898.79 12298.92 31499.04 290
DWT-MVSNet_test96.03 32695.80 32596.71 34198.50 34991.93 35999.25 12997.87 34495.99 33096.81 35697.61 36381.02 36499.66 32897.20 24897.98 34798.54 324
cascas96.99 30596.82 31197.48 32597.57 36495.64 33796.43 35899.56 18091.75 35597.13 35597.61 36395.58 28298.63 36496.68 27599.11 30398.18 344
IB-MVS95.41 2095.30 33494.46 33797.84 31798.76 34195.33 34097.33 34296.07 35796.02 32995.37 36497.41 36576.17 37299.96 3597.54 22295.44 36398.22 340
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres600view796.60 31596.16 31797.93 31499.63 14296.09 33299.18 14697.57 34798.77 19698.72 29797.32 36687.04 34999.72 29688.57 35798.62 33097.98 348
thres100view90096.39 31896.03 32097.47 32699.63 14295.93 33399.18 14697.57 34798.75 20098.70 29997.31 36787.04 34999.67 32487.62 36098.51 33496.81 358
GG-mvs-BLEND97.36 32997.59 36296.87 32099.70 2288.49 37194.64 36597.26 36880.66 36599.12 36091.50 35296.50 36096.08 362
tfpn200view996.30 32195.89 32197.53 32499.58 15596.11 33099.00 19397.54 35098.43 22698.52 31196.98 36986.85 35199.67 32487.62 36098.51 33496.81 358
thres40096.40 31795.89 32197.92 31599.58 15596.11 33099.00 19397.54 35098.43 22698.52 31196.98 36986.85 35199.67 32487.62 36098.51 33497.98 348
thres20096.09 32495.68 32797.33 33199.48 20996.22 32998.53 25797.57 34798.06 26198.37 31896.73 37186.84 35399.61 34386.99 36398.57 33196.16 361
X-MVStestdata96.09 32494.87 33499.75 5699.71 11199.71 6799.37 9099.61 14699.29 12298.76 29461.30 37298.47 14699.88 15797.62 21699.73 19299.67 65
test_post52.41 37390.25 33799.86 191
test_post199.14 16151.63 37489.54 34299.82 24896.86 264
testmvs28.94 33733.33 33915.79 35126.03 3719.81 37396.77 35515.67 37211.55 36823.87 36950.74 37519.03 3748.53 36923.21 36733.07 36629.03 365
test12329.31 33633.05 34118.08 35025.93 37212.24 37297.53 33310.93 37311.78 36724.21 36850.08 37621.04 3738.60 36823.51 36632.43 36733.39 364
eth-test20.00 373
eth-test0.00 373
IU-MVS99.69 12199.77 4299.22 29197.50 29199.69 10597.75 20399.70 20499.77 33
save fliter99.53 18299.25 18398.29 27699.38 25899.07 158
test_0728_SECOND99.83 2199.70 11899.79 3699.14 16199.61 14699.92 9097.88 19099.72 19899.77 33
GSMVS99.14 270
test_part299.62 14699.67 8399.55 160
sam_mvs190.81 33199.14 270
sam_mvs90.52 335
MTGPAbinary99.53 200
MTMP99.09 17898.59 327
test9_res95.10 32999.44 27099.50 176
agg_prior294.58 33799.46 26999.50 176
agg_prior99.35 24899.36 16099.39 25297.76 34699.85 210
test_prior499.19 19998.00 304
test_prior99.46 16999.35 24899.22 19299.39 25299.69 30899.48 186
旧先验297.94 31395.33 33998.94 27099.88 15796.75 271
新几何298.04 300
无先验98.01 30299.23 29095.83 33299.85 21095.79 31599.44 202
原ACMM297.92 315
testdata299.89 14395.99 306
segment_acmp98.37 160
testdata197.72 32397.86 276
test1299.54 14899.29 27299.33 16799.16 29998.43 31697.54 22699.82 24899.47 26799.48 186
plane_prior799.58 15599.38 154
plane_prior699.47 21499.26 17997.24 239
plane_prior599.54 19199.82 24895.84 31399.78 16799.60 119
plane_prior399.31 17098.36 23599.14 251
plane_prior298.80 22898.94 172
plane_prior199.51 192
plane_prior99.24 18898.42 26897.87 27399.71 202
n20.00 374
nn0.00 374
door-mid99.83 34
test1199.29 277
door99.77 63
HQP5-MVS98.94 225
HQP-NCC99.31 26597.98 30797.45 29398.15 326
ACMP_Plane99.31 26597.98 30797.45 29398.15 326
BP-MVS94.73 333
HQP4-MVS98.15 32699.70 30299.53 158
HQP3-MVS99.37 25999.67 217
HQP2-MVS96.67 256
MDTV_nov1_ep13_2view91.44 36499.14 16197.37 29899.21 24091.78 31996.75 27199.03 291
ACMMP++_ref99.94 62
ACMMP++99.79 161
Test By Simon98.41 154