This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 44100.00 199.90 7100.00 199.97 999.61 1699.97 1699.75 13100.00 199.84 14
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4099.68 3199.85 2399.95 399.98 399.92 1699.28 4099.98 699.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 3899.70 2299.86 1999.89 1199.98 399.90 2199.94 199.98 699.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 499.96 499.79 3599.72 1999.88 1599.92 699.98 399.93 1399.94 199.98 699.77 12100.00 199.92 3
test_djsdf99.84 899.81 999.91 299.94 1099.84 1799.77 1199.80 4699.73 3899.97 699.92 1699.77 799.98 699.43 36100.00 199.90 4
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 599.90 799.97 699.87 3099.81 599.95 4399.54 2599.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CHOSEN 1792x268899.39 7799.30 8599.65 9999.88 2399.25 18098.78 22799.88 1598.66 19899.96 899.79 5997.45 22699.93 6799.34 4899.99 1299.78 32
wuyk23d97.58 28699.13 11592.93 34299.69 11999.49 11999.52 6399.77 6097.97 26099.96 899.79 5999.84 399.94 5495.85 30599.82 14079.36 356
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9199.93 499.95 1099.89 2599.71 999.96 3399.51 2999.97 2999.84 14
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 899.85 2099.94 1199.95 1199.73 899.90 12499.65 1699.97 2999.69 52
v7n99.82 1099.80 1099.88 1199.96 499.84 1799.82 899.82 3699.84 2299.94 1199.91 1999.13 5699.96 3399.83 999.99 1299.83 18
Gipumacopyleft99.57 3799.59 3299.49 15899.98 399.71 6399.72 1999.84 2999.81 2899.94 1199.78 6598.91 8199.71 29398.41 13799.95 4899.05 285
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.68 2299.69 1899.65 9999.80 5599.40 14699.66 3999.76 6599.64 6099.93 1499.85 3698.66 11799.84 22099.88 699.99 1299.71 46
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2199.83 699.85 2399.80 3199.93 1499.93 1398.54 13299.93 6799.59 2099.98 2199.76 37
MIMVSNet199.66 2499.62 2599.80 2999.94 1099.87 899.69 2899.77 6099.78 3499.93 1499.89 2597.94 19499.92 8699.65 1699.98 2199.62 105
DeepC-MVS98.90 499.62 3399.61 2999.67 8799.72 10699.44 13499.24 12599.71 9199.27 11999.93 1499.90 2199.70 1199.93 6798.99 9499.99 1299.64 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 799.73 1699.85 2399.70 4699.92 1899.93 1399.45 2199.97 1699.36 46100.00 199.85 13
v1099.69 2199.69 1899.66 9499.81 5099.39 14899.66 3999.75 7199.60 7499.92 1899.87 3098.75 10699.86 18699.90 299.99 1299.73 42
LCM-MVSNet-Re99.28 10399.15 11199.67 8799.33 25999.76 4699.34 9399.97 298.93 16999.91 2099.79 5998.68 11299.93 6796.80 26299.56 24099.30 233
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1299.75 1499.86 1999.70 4699.91 2099.89 2599.60 1899.87 16699.59 2099.74 18199.71 46
tfpnnormal99.43 6399.38 6699.60 12499.87 2799.75 4899.59 5699.78 5799.71 4299.90 2299.69 11298.85 8999.90 12497.25 23799.78 16499.15 262
Anonymous2023121199.62 3399.57 3899.76 4599.61 14499.60 10299.81 999.73 7999.82 2799.90 2299.90 2197.97 19399.86 18699.42 4099.96 4199.80 24
v124099.56 4099.58 3599.51 15299.80 5599.00 21499.00 18899.65 12499.15 14299.90 2299.75 7999.09 5999.88 15399.90 299.96 4199.67 65
EU-MVSNet99.39 7799.62 2598.72 28199.88 2396.44 32099.56 6199.85 2399.90 799.90 2299.85 3698.09 18299.83 23199.58 2299.95 4899.90 4
IterMVS-SCA-FT99.00 17799.16 10898.51 28899.75 9395.90 32898.07 29199.84 2999.84 2299.89 2699.73 8696.01 27299.99 499.33 51100.00 199.63 94
v14419299.55 4399.54 4399.58 13099.78 7199.20 19599.11 16899.62 13599.18 13399.89 2699.72 9298.66 11799.87 16699.88 699.97 2999.66 75
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2199.76 1399.87 1799.73 3899.89 2699.87 3099.63 1499.87 16699.54 2599.92 7399.63 94
lessismore_v099.64 10699.86 2999.38 15190.66 36199.89 2699.83 4294.56 28799.97 1699.56 2499.92 7399.57 136
SixPastTwentyTwo99.42 6699.30 8599.76 4599.92 1499.67 7999.70 2299.14 29599.65 5899.89 2699.90 2196.20 26899.94 5499.42 4099.92 7399.67 65
HyFIR lowres test98.91 19098.64 20599.73 6999.85 3299.47 12398.07 29199.83 3198.64 20099.89 2699.60 17592.57 303100.00 199.33 5199.97 2999.72 43
DIV-MVS_2432*160099.63 3099.59 3299.76 4599.84 3399.90 499.37 8899.79 5299.83 2599.88 3299.85 3698.42 15099.90 12499.60 1999.73 18899.49 177
test_part198.63 22298.26 24399.75 5599.40 23299.49 11999.67 3599.68 10499.86 1699.88 3299.86 3586.73 34799.93 6799.34 4899.97 2999.81 23
new-patchmatchnet99.35 8699.57 3898.71 28399.82 4396.62 31898.55 24799.75 7199.50 8399.88 3299.87 3099.31 3599.88 15399.43 36100.00 199.62 105
v192192099.56 4099.57 3899.55 14299.75 9399.11 20399.05 17999.61 14299.15 14299.88 3299.71 9999.08 6299.87 16699.90 299.97 2999.66 75
NR-MVSNet99.40 7399.31 8099.68 8599.43 22399.55 11499.73 1699.50 21099.46 9499.88 3299.36 24897.54 22399.87 16698.97 9899.87 10799.63 94
K. test v398.87 19898.60 20899.69 8499.93 1399.46 12799.74 1594.97 35499.78 3499.88 3299.88 2893.66 29599.97 1699.61 1899.95 4899.64 89
v119299.57 3799.57 3899.57 13599.77 7999.22 18999.04 18199.60 15399.18 13399.87 3899.72 9299.08 6299.85 20499.89 599.98 2199.66 75
V4299.56 4099.54 4399.63 11099.79 6599.46 12799.39 8299.59 16099.24 12599.86 3999.70 10698.55 13099.82 24199.79 1199.95 4899.60 116
mvs_anonymous99.28 10399.39 6498.94 25599.19 28597.81 28999.02 18499.55 18199.78 3499.85 4099.80 5398.24 16999.86 18699.57 2399.50 25799.15 262
WR-MVS_H99.61 3599.53 4799.87 1499.80 5599.83 2199.67 3599.75 7199.58 7799.85 4099.69 11298.18 17899.94 5499.28 6199.95 4899.83 18
IterMVS98.97 18199.16 10898.42 29299.74 9995.64 33198.06 29399.83 3199.83 2599.85 4099.74 8296.10 27199.99 499.27 62100.00 199.63 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114499.54 4599.53 4799.59 12699.79 6599.28 17299.10 16999.61 14299.20 13199.84 4399.73 8698.67 11599.84 22099.86 899.98 2199.64 89
RRT_MVS98.75 21098.54 21899.41 18598.14 35498.61 24698.98 19799.66 11399.31 11499.84 4399.75 7991.98 30799.98 699.20 6799.95 4899.62 105
PS-CasMVS99.66 2499.58 3599.89 799.80 5599.85 1299.66 3999.73 7999.62 6499.84 4399.71 9998.62 12199.96 3399.30 5699.96 4199.86 11
PEN-MVS99.66 2499.59 3299.89 799.83 3799.87 899.66 3999.73 7999.70 4699.84 4399.73 8698.56 12999.96 3399.29 5999.94 6199.83 18
DTE-MVSNet99.68 2299.61 2999.88 1199.80 5599.87 899.67 3599.71 9199.72 4199.84 4399.78 6598.67 11599.97 1699.30 5699.95 4899.80 24
RRT_test8_iter0597.35 29497.25 29197.63 31798.81 32993.13 34799.26 11799.89 1299.51 8299.83 4899.68 12379.03 36499.88 15399.53 2799.72 19499.89 8
IterMVS-LS99.41 7099.47 5199.25 22399.81 5098.09 27798.85 21299.76 6599.62 6499.83 4899.64 14098.54 13299.97 1699.15 7899.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SED-MVS99.40 7399.28 9299.77 3999.69 11999.82 2599.20 13599.54 18699.13 14499.82 5099.63 15098.91 8199.92 8697.85 18999.70 20099.58 130
test_241102_ONE99.69 11999.82 2599.54 18699.12 14799.82 5099.49 21898.91 8199.52 345
FC-MVSNet-test99.70 1999.65 2299.86 1699.88 2399.86 1199.72 1999.78 5799.90 799.82 5099.83 4298.45 14799.87 16699.51 2999.97 2999.86 11
test20.0399.55 4399.54 4399.58 13099.79 6599.37 15499.02 18499.89 1299.60 7499.82 5099.62 15998.81 9199.89 13899.43 3699.86 11499.47 187
FMVSNet199.66 2499.63 2499.73 6999.78 7199.77 4099.68 3199.70 9599.67 5299.82 5099.83 4298.98 7299.90 12499.24 6399.97 2999.53 154
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6199.59 5699.82 3699.39 10499.82 5099.84 4199.38 2799.91 10499.38 4399.93 6999.80 24
v14899.40 7399.41 6299.39 19099.76 8398.94 22199.09 17399.59 16099.17 13699.81 5699.61 16898.41 15199.69 30199.32 5399.94 6199.53 154
v2v48299.50 4899.47 5199.58 13099.78 7199.25 18099.14 15699.58 16999.25 12399.81 5699.62 15998.24 16999.84 22099.83 999.97 2999.64 89
PM-MVS99.36 8499.29 9099.58 13099.83 3799.66 8198.95 20199.86 1998.85 17999.81 5699.73 8698.40 15599.92 8698.36 14099.83 13199.17 258
EI-MVSNet-UG-set99.48 5299.50 4999.42 17799.57 16198.65 24599.24 12599.46 22599.68 5099.80 5999.66 13398.99 7199.89 13899.19 6999.90 8399.72 43
VPA-MVSNet99.66 2499.62 2599.79 3499.68 12899.75 4899.62 4799.69 10199.85 2099.80 5999.81 5198.81 9199.91 10499.47 3399.88 9999.70 49
CP-MVSNet99.54 4599.43 6099.87 1499.76 8399.82 2599.57 5999.61 14299.54 7899.80 5999.64 14097.79 20799.95 4399.21 6499.94 6199.84 14
EG-PatchMatch MVS99.57 3799.56 4299.62 11999.77 7999.33 16499.26 11799.76 6599.32 11399.80 5999.78 6599.29 3899.87 16699.15 7899.91 8299.66 75
ACMH98.42 699.59 3699.54 4399.72 7599.86 2999.62 9499.56 6199.79 5298.77 19099.80 5999.85 3699.64 1399.85 20498.70 12399.89 9199.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set99.47 5899.49 5099.42 17799.57 16198.66 24299.24 12599.46 22599.67 5299.79 6499.65 13898.97 7499.89 13899.15 7899.89 9199.71 46
PVSNet_Blended_VisFu99.40 7399.38 6699.44 17299.90 1998.66 24298.94 20399.91 897.97 26099.79 6499.73 8699.05 6799.97 1699.15 7899.99 1299.68 58
N_pmnet98.73 21498.53 22099.35 20199.72 10698.67 24198.34 26594.65 35598.35 23499.79 6499.68 12398.03 18699.93 6798.28 14999.92 7399.44 198
ppachtmachnet_test98.89 19599.12 11998.20 30299.66 13495.24 33597.63 32199.68 10499.08 15099.78 6799.62 15998.65 11999.88 15398.02 17099.96 4199.48 182
nrg03099.70 1999.66 2199.82 2399.76 8399.84 1799.61 5199.70 9599.93 499.78 6799.68 12399.10 5799.78 26899.45 3499.96 4199.83 18
PMMVS299.48 5299.45 5599.57 13599.76 8398.99 21598.09 28899.90 1198.95 16599.78 6799.58 18399.57 1999.93 6799.48 3299.95 4899.79 30
TAMVS99.49 5099.45 5599.63 11099.48 20599.42 14199.45 7299.57 17199.66 5699.78 6799.83 4297.85 20399.86 18699.44 3599.96 4199.61 112
TDRefinement99.72 1799.70 1799.77 3999.90 1999.85 1299.86 599.92 599.69 4999.78 6799.92 1699.37 2999.88 15398.93 10699.95 4899.60 116
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2399.66 8199.69 2899.92 599.67 5299.77 7299.75 7999.61 1699.98 699.35 4799.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+98.40 899.50 4899.43 6099.71 7999.86 2999.76 4699.32 9899.77 6099.53 8099.77 7299.76 7599.26 4499.78 26897.77 19499.88 9999.60 116
test_241102_TWO99.54 18699.13 14499.76 7499.63 15098.32 16499.92 8697.85 18999.69 20399.75 40
Anonymous2024052999.42 6699.34 7499.65 9999.53 17899.60 10299.63 4699.39 24699.47 9099.76 7499.78 6598.13 18099.86 18698.70 12399.68 20699.49 177
DPE-MVScopyleft99.14 14698.92 17799.82 2399.57 16199.77 4098.74 23099.60 15398.55 20999.76 7499.69 11298.23 17299.92 8696.39 28399.75 17399.76 37
Regformer-499.45 6199.44 5799.50 15599.52 18398.94 22199.17 14699.53 19599.64 6099.76 7499.60 17598.96 7799.90 12498.91 10799.84 12199.67 65
casdiffmvs99.63 3099.61 2999.67 8799.79 6599.59 10599.13 16299.85 2399.79 3399.76 7499.72 9299.33 3499.82 24199.21 6499.94 6199.59 125
pmmvs-eth3d99.48 5299.47 5199.51 15299.77 7999.41 14598.81 22099.66 11399.42 10399.75 7999.66 13399.20 4799.76 27898.98 9699.99 1299.36 221
Regformer-399.41 7099.41 6299.40 18799.52 18398.70 23999.17 14699.44 23099.62 6499.75 7999.60 17598.90 8499.85 20498.89 10899.84 12199.65 83
SD-MVS99.01 17599.30 8598.15 30399.50 19499.40 14698.94 20399.61 14299.22 13099.75 7999.82 4899.54 2095.51 36097.48 21999.87 10799.54 149
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS99.48 5299.36 7299.85 1899.55 17299.81 2899.50 6599.69 10198.99 15999.75 7999.71 9998.79 9899.93 6798.46 13599.85 11799.80 24
EI-MVSNet99.38 7999.44 5799.21 22999.58 15198.09 27799.26 11799.46 22599.62 6499.75 7999.67 12998.54 13299.85 20499.15 7899.92 7399.68 58
testgi99.29 10299.26 9799.37 19799.75 9398.81 23398.84 21399.89 1298.38 22799.75 7999.04 30499.36 3299.86 18699.08 8899.25 29399.45 193
MVSTER98.47 24398.22 24699.24 22699.06 30598.35 26399.08 17699.46 22599.27 11999.75 7999.66 13388.61 33799.85 20499.14 8499.92 7399.52 164
USDC98.96 18498.93 17399.05 24899.54 17397.99 28197.07 34599.80 4698.21 24699.75 7999.77 7298.43 14899.64 33097.90 18199.88 9999.51 166
Patchmatch-RL test98.60 22598.36 23599.33 20499.77 7999.07 21198.27 27299.87 1798.91 17299.74 8799.72 9290.57 32799.79 26598.55 13199.85 11799.11 270
FIs99.65 2999.58 3599.84 1999.84 3399.85 1299.66 3999.75 7199.86 1699.74 8799.79 5998.27 16799.85 20499.37 4599.93 6999.83 18
jason99.16 14299.11 12299.32 20899.75 9398.44 25598.26 27399.39 24698.70 19699.74 8799.30 26298.54 13299.97 1698.48 13499.82 14099.55 142
jason: jason.
DP-MVS99.48 5299.39 6499.74 6199.57 16199.62 9499.29 11299.61 14299.87 1499.74 8799.76 7598.69 11199.87 16698.20 15699.80 15399.75 40
test072699.69 11999.80 3399.24 12599.57 17199.16 13899.73 9199.65 13898.35 159
bset_n11_16_dypcd98.69 21898.45 22599.42 17799.69 11998.52 25096.06 35396.80 34799.71 4299.73 9199.54 20295.14 28099.96 3399.39 4299.95 4899.79 30
pmmvs599.19 13399.11 12299.42 17799.76 8398.88 23098.55 24799.73 7998.82 18399.72 9399.62 15996.56 25599.82 24199.32 5399.95 4899.56 139
Anonymous2023120699.35 8699.31 8099.47 16399.74 9999.06 21399.28 11399.74 7699.23 12799.72 9399.53 20597.63 22199.88 15399.11 8699.84 12199.48 182
CVMVSNet98.61 22498.88 18397.80 31299.58 15193.60 34599.26 11799.64 13099.66 5699.72 9399.67 12993.26 29799.93 6799.30 5699.81 14899.87 9
baseline99.63 3099.62 2599.66 9499.80 5599.62 9499.44 7599.80 4699.71 4299.72 9399.69 11299.15 5299.83 23199.32 5399.94 6199.53 154
Patchmtry98.78 20698.54 21899.49 15898.89 31999.19 19699.32 9899.67 10999.65 5899.72 9399.79 5991.87 31099.95 4398.00 17499.97 2999.33 227
UA-Net99.78 1399.76 1499.86 1699.72 10699.71 6399.91 399.95 499.96 299.71 9899.91 1999.15 5299.97 1699.50 31100.00 199.90 4
TranMVSNet+NR-MVSNet99.54 4599.47 5199.76 4599.58 15199.64 8899.30 10599.63 13299.61 6899.71 9899.56 19498.76 10499.96 3399.14 8499.92 7399.68 58
tttt051797.62 28497.20 29398.90 26799.76 8397.40 30199.48 6994.36 35699.06 15699.70 10099.49 21884.55 35399.94 5498.73 12199.65 22099.36 221
UniMVSNet (Re)99.37 8199.26 9799.68 8599.51 18899.58 10898.98 19799.60 15399.43 10199.70 10099.36 24897.70 21099.88 15399.20 6799.87 10799.59 125
FMVSNet299.35 8699.28 9299.55 14299.49 19999.35 16199.45 7299.57 17199.44 9699.70 10099.74 8297.21 23899.87 16699.03 9199.94 6199.44 198
IU-MVS99.69 11999.77 4099.22 28597.50 28599.69 10397.75 19699.70 20099.77 33
VPNet99.46 5999.37 6999.71 7999.82 4399.59 10599.48 6999.70 9599.81 2899.69 10399.58 18397.66 21999.86 18699.17 7499.44 26599.67 65
D2MVS99.22 12399.19 10599.29 21499.69 11998.74 23798.81 22099.41 23698.55 20999.68 10599.69 11298.13 18099.87 16698.82 11399.98 2199.24 242
xiu_mvs_v1_base_debu99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
xiu_mvs_v1_base99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
xiu_mvs_v1_base_debi99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
ambc99.20 23199.35 24498.53 24899.17 14699.46 22599.67 10999.80 5398.46 14699.70 29597.92 18099.70 20099.38 215
UniMVSNet_NR-MVSNet99.37 8199.25 9999.72 7599.47 21099.56 11198.97 19999.61 14299.43 10199.67 10999.28 26797.85 20399.95 4399.17 7499.81 14899.65 83
DU-MVS99.33 9599.21 10399.71 7999.43 22399.56 11198.83 21599.53 19599.38 10599.67 10999.36 24897.67 21599.95 4399.17 7499.81 14899.63 94
COLMAP_ROBcopyleft98.06 1299.45 6199.37 6999.70 8399.83 3799.70 7099.38 8499.78 5799.53 8099.67 10999.78 6599.19 4899.86 18697.32 22799.87 10799.55 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Regformer-199.32 9799.27 9599.47 16399.41 22998.95 22098.99 19399.48 21799.48 8599.66 11399.52 20798.78 10099.87 16698.36 14099.74 18199.60 116
Regformer-299.34 9199.27 9599.53 14899.41 22999.10 20798.99 19399.53 19599.47 9099.66 11399.52 20798.80 9599.89 13898.31 14699.74 18199.60 116
XVG-OURS99.21 12899.06 13999.65 9999.82 4399.62 9497.87 31299.74 7698.36 22999.66 11399.68 12399.71 999.90 12496.84 26099.88 9999.43 204
DeepPCF-MVS98.42 699.18 13799.02 15399.67 8799.22 27899.75 4897.25 33999.47 22198.72 19599.66 11399.70 10699.29 3899.63 33198.07 16999.81 14899.62 105
Baseline_NR-MVSNet99.49 5099.37 6999.82 2399.91 1599.84 1798.83 21599.86 1999.68 5099.65 11799.88 2897.67 21599.87 16699.03 9199.86 11499.76 37
abl_699.36 8499.23 10299.75 5599.71 10999.74 5499.33 9599.76 6599.07 15299.65 11799.63 15099.09 5999.92 8697.13 24599.76 17099.58 130
our_test_398.85 20099.09 13198.13 30499.66 13494.90 33897.72 31799.58 16999.07 15299.64 11999.62 15998.19 17699.93 6798.41 13799.95 4899.55 142
LPG-MVS_test99.22 12399.05 14399.74 6199.82 4399.63 9299.16 15299.73 7997.56 28099.64 11999.69 11299.37 2999.89 13896.66 27099.87 10799.69 52
LGP-MVS_train99.74 6199.82 4399.63 9299.73 7997.56 28099.64 11999.69 11299.37 2999.89 13896.66 27099.87 10799.69 52
ACMM98.09 1199.46 5999.38 6699.72 7599.80 5599.69 7499.13 16299.65 12498.99 15999.64 11999.72 9299.39 2399.86 18698.23 15399.81 14899.60 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AllTest99.21 12899.07 13799.63 11099.78 7199.64 8899.12 16699.83 3198.63 20199.63 12399.72 9298.68 11299.75 28296.38 28499.83 13199.51 166
TestCases99.63 11099.78 7199.64 8899.83 3198.63 20199.63 12399.72 9298.68 11299.75 28296.38 28499.83 13199.51 166
MDA-MVSNet-bldmvs99.06 16299.05 14399.07 24699.80 5597.83 28898.89 20599.72 8899.29 11599.63 12399.70 10696.47 25999.89 13898.17 16299.82 14099.50 172
TSAR-MVS + GP.99.12 15099.04 14999.38 19499.34 25499.16 19898.15 28099.29 27198.18 24999.63 12399.62 15999.18 4999.68 31298.20 15699.74 18199.30 233
XVG-OURS-SEG-HR99.16 14298.99 16499.66 9499.84 3399.64 8898.25 27499.73 7998.39 22699.63 12399.43 23399.70 1199.90 12497.34 22698.64 32599.44 198
MVSFormer99.41 7099.44 5799.31 21199.57 16198.40 25899.77 1199.80 4699.73 3899.63 12399.30 26298.02 18899.98 699.43 3699.69 20399.55 142
lupinMVS98.96 18498.87 18499.24 22699.57 16198.40 25898.12 28499.18 29198.28 24299.63 12399.13 29098.02 18899.97 1698.22 15499.69 20399.35 224
DVP-MVS99.32 9799.17 10799.77 3999.69 11999.80 3399.14 15699.31 26699.16 13899.62 13099.61 16898.35 15999.91 10497.88 18399.72 19499.61 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 13399.62 13099.61 16898.58 12699.91 10497.72 19899.80 15399.77 33
GBi-Net99.42 6699.31 8099.73 6999.49 19999.77 4099.68 3199.70 9599.44 9699.62 13099.83 4297.21 23899.90 12498.96 10099.90 8399.53 154
test199.42 6699.31 8099.73 6999.49 19999.77 4099.68 3199.70 9599.44 9699.62 13099.83 4297.21 23899.90 12498.96 10099.90 8399.53 154
new_pmnet98.88 19698.89 18298.84 27199.70 11697.62 29598.15 28099.50 21097.98 25999.62 13099.54 20298.15 17999.94 5497.55 21499.84 12198.95 294
FMVSNet398.80 20598.63 20799.32 20899.13 29398.72 23899.10 16999.48 21799.23 12799.62 13099.64 14092.57 30399.86 18698.96 10099.90 8399.39 213
CDS-MVSNet99.22 12399.13 11599.50 15599.35 24499.11 20398.96 20099.54 18699.46 9499.61 13699.70 10696.31 26599.83 23199.34 4899.88 9999.55 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet99.03 16998.85 18699.55 14299.80 5599.25 18099.73 1699.15 29499.37 10699.61 13699.71 9994.73 28599.81 25797.70 20199.88 9999.58 130
cl-mvsnet_98.54 23598.41 23098.92 25999.03 30997.80 29097.46 33199.59 16098.90 17399.60 13899.46 22893.85 29299.78 26897.97 17799.89 9199.17 258
cl-mvsnet198.54 23598.42 22998.92 25999.03 30997.80 29097.46 33199.59 16098.90 17399.60 13899.46 22893.87 29199.78 26897.97 17799.89 9199.18 256
XVG-ACMP-BASELINE99.23 11499.10 13099.63 11099.82 4399.58 10898.83 21599.72 8898.36 22999.60 13899.71 9998.92 7999.91 10497.08 24799.84 12199.40 210
miper_lstm_enhance98.65 22198.60 20898.82 27699.20 28397.33 30397.78 31599.66 11399.01 15899.59 14199.50 21394.62 28699.85 20498.12 16599.90 8399.26 239
YYNet198.95 18798.99 16498.84 27199.64 13897.14 30898.22 27699.32 26298.92 17199.59 14199.66 13397.40 22899.83 23198.27 15099.90 8399.55 142
eth_miper_zixun_eth98.68 21998.71 19998.60 28599.10 30196.84 31597.52 32999.54 18698.94 16699.58 14399.48 22096.25 26799.76 27898.01 17399.93 6999.21 249
pmmvs499.13 14899.06 13999.36 20099.57 16199.10 20798.01 29699.25 28098.78 18999.58 14399.44 23298.24 16999.76 27898.74 12099.93 6999.22 247
DeepC-MVS_fast98.47 599.23 11499.12 11999.56 13999.28 26999.22 18998.99 19399.40 24399.08 15099.58 14399.64 14098.90 8499.83 23197.44 22199.75 17399.63 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft99.19 13399.00 15999.73 6999.46 21599.73 5799.13 16299.52 20397.40 29099.57 14699.64 14098.93 7899.83 23197.61 21199.79 15899.63 94
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.99.34 9199.24 10099.63 11099.82 4399.37 15499.26 11799.35 25798.77 19099.57 14699.70 10699.27 4399.88 15397.71 19999.75 17399.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVS_3200maxsize99.31 9999.16 10899.74 6199.53 17899.75 4899.27 11699.61 14299.19 13299.57 14699.64 14098.76 10499.90 12497.29 22999.62 22599.56 139
WR-MVS99.11 15498.93 17399.66 9499.30 26599.42 14198.42 26299.37 25399.04 15799.57 14699.20 28596.89 25099.86 18698.66 12799.87 10799.70 49
SteuartSystems-ACMMP99.30 10099.14 11299.76 4599.87 2799.66 8199.18 14199.60 15398.55 20999.57 14699.67 12999.03 6999.94 5497.01 24999.80 15399.69 52
Skip Steuart: Steuart Systems R&D Blog.
ab-mvs99.33 9599.28 9299.47 16399.57 16199.39 14899.78 1099.43 23398.87 17799.57 14699.82 4898.06 18599.87 16698.69 12599.73 18899.15 262
CMPMVSbinary77.52 2398.50 23898.19 25199.41 18598.33 34799.56 11199.01 18699.59 16095.44 33199.57 14699.80 5395.64 27699.46 35096.47 28099.92 7399.21 249
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053097.45 28996.95 30098.94 25599.68 12897.73 29299.09 17394.19 35898.61 20499.56 15399.30 26284.30 35499.93 6798.27 15099.54 25099.16 260
Anonymous20240521198.75 21098.46 22499.63 11099.34 25499.66 8199.47 7197.65 33999.28 11899.56 15399.50 21393.15 29899.84 22098.62 12899.58 23899.40 210
VDD-MVS99.20 13099.11 12299.44 17299.43 22398.98 21699.50 6598.32 33099.80 3199.56 15399.69 11296.99 24899.85 20498.99 9499.73 18899.50 172
MDA-MVSNet_test_wron98.95 18798.99 16498.85 26999.64 13897.16 30798.23 27599.33 26098.93 16999.56 15399.66 13397.39 23099.83 23198.29 14899.88 9999.55 142
EPP-MVSNet99.17 14199.00 15999.66 9499.80 5599.43 13899.70 2299.24 28399.48 8599.56 15399.77 7294.89 28299.93 6798.72 12299.89 9199.63 94
test_part299.62 14399.67 7999.55 158
UnsupCasMVSNet_eth98.83 20198.57 21499.59 12699.68 12899.45 13298.99 19399.67 10999.48 8599.55 15899.36 24894.92 28199.86 18698.95 10496.57 35299.45 193
CL-MVSNet_2432*160098.71 21698.56 21799.15 23699.22 27898.66 24297.14 34299.51 20698.09 25399.54 16099.27 26996.87 25199.74 28498.43 13698.96 30799.03 287
cl_fuxian98.72 21598.71 19998.72 28199.12 29597.22 30697.68 32099.56 17698.90 17399.54 16099.48 22096.37 26499.73 28797.88 18399.88 9999.21 249
MSP-MVS99.04 16898.79 19599.81 2699.78 7199.73 5799.35 9299.57 17198.54 21299.54 16098.99 31096.81 25299.93 6796.97 25199.53 25299.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 19898.59 21099.71 7999.50 19499.62 9499.01 18699.57 17196.80 31399.54 16099.63 15098.29 16599.91 10495.24 32099.71 19899.61 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TinyColmap98.97 18198.93 17399.07 24699.46 21598.19 26997.75 31699.75 7198.79 18799.54 16099.70 10698.97 7499.62 33296.63 27299.83 13199.41 208
ACMMP_NAP99.28 10399.11 12299.79 3499.75 9399.81 2898.95 20199.53 19598.27 24399.53 16599.73 8698.75 10699.87 16697.70 20199.83 13199.68 58
MSDG99.08 16098.98 16799.37 19799.60 14699.13 20197.54 32599.74 7698.84 18299.53 16599.55 20099.10 5799.79 26597.07 24899.86 11499.18 256
SR-MVS-dyc-post99.27 10799.11 12299.73 6999.54 17399.74 5499.26 11799.62 13599.16 13899.52 16799.64 14098.41 15199.91 10497.27 23299.61 23299.54 149
RE-MVS-def99.13 11599.54 17399.74 5499.26 11799.62 13599.16 13899.52 16799.64 14098.57 12797.27 23299.61 23299.54 149
miper_ehance_all_eth98.59 22898.59 21098.59 28698.98 31297.07 30997.49 33099.52 20398.50 21599.52 16799.37 24396.41 26399.71 29397.86 18799.62 22599.00 292
OPM-MVS99.26 10999.13 11599.63 11099.70 11699.61 10098.58 24199.48 21798.50 21599.52 16799.63 15099.14 5499.76 27897.89 18299.77 16899.51 166
ACMMPcopyleft99.25 11099.08 13399.74 6199.79 6599.68 7799.50 6599.65 12498.07 25499.52 16799.69 11298.57 12799.92 8697.18 24299.79 15899.63 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast99.43 6399.30 8599.80 2999.83 3799.81 2899.52 6399.70 9598.35 23499.51 17299.50 21399.31 3599.88 15398.18 16099.84 12199.69 52
pmmvs398.08 26997.80 27698.91 26199.41 22997.69 29497.87 31299.66 11395.87 32599.50 17399.51 21090.35 32999.97 1698.55 13199.47 26299.08 278
RPSCF99.18 13799.02 15399.64 10699.83 3799.85 1299.44 7599.82 3698.33 23999.50 17399.78 6597.90 19799.65 32896.78 26399.83 13199.44 198
test117299.23 11499.05 14399.74 6199.52 18399.75 4899.20 13599.61 14298.97 16199.48 17599.58 18398.41 15199.91 10497.15 24499.55 24499.57 136
diffmvs99.34 9199.32 7999.39 19099.67 13398.77 23698.57 24599.81 4599.61 6899.48 17599.41 23598.47 14399.86 18698.97 9899.90 8399.53 154
SR-MVS99.19 13399.00 15999.74 6199.51 18899.72 6199.18 14199.60 15398.85 17999.47 17799.58 18398.38 15699.92 8696.92 25399.54 25099.57 136
VNet99.18 13799.06 13999.56 13999.24 27699.36 15799.33 9599.31 26699.67 5299.47 17799.57 19196.48 25899.84 22099.15 7899.30 28799.47 187
ACMP97.51 1499.05 16598.84 18899.67 8799.78 7199.55 11498.88 20699.66 11397.11 30599.47 17799.60 17599.07 6499.89 13896.18 29299.85 11799.58 130
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline197.73 28097.33 28898.96 25399.30 26597.73 29299.40 8098.42 32699.33 11299.46 18099.21 28391.18 31699.82 24198.35 14291.26 35799.32 230
Test_1112_low_res98.95 18798.73 19799.63 11099.68 12899.15 20098.09 28899.80 4697.14 30399.46 18099.40 23796.11 27099.89 13899.01 9399.84 12199.84 14
MP-MVS-pluss99.14 14698.92 17799.80 2999.83 3799.83 2198.61 23799.63 13296.84 31199.44 18299.58 18398.81 9199.91 10497.70 20199.82 14099.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MS-PatchMatch99.00 17798.97 16899.09 24299.11 30098.19 26998.76 22999.33 26098.49 21799.44 18299.58 18398.21 17399.69 30198.20 15699.62 22599.39 213
OMC-MVS98.90 19298.72 19899.44 17299.39 23499.42 14198.58 24199.64 13097.31 29599.44 18299.62 15998.59 12599.69 30196.17 29399.79 15899.22 247
OpenMVS_ROBcopyleft97.31 1797.36 29396.84 30498.89 26899.29 26799.45 13298.87 20999.48 21786.54 35699.44 18299.74 8297.34 23399.86 18691.61 34499.28 28997.37 349
miper_enhance_ethall98.03 27197.94 26998.32 29798.27 34896.43 32196.95 34699.41 23696.37 31999.43 18698.96 31894.74 28499.69 30197.71 19999.62 22598.83 305
1112_ss99.05 16598.84 18899.67 8799.66 13499.29 17098.52 25299.82 3697.65 27799.43 18699.16 28896.42 26199.91 10499.07 8999.84 12199.80 24
xxxxxxxxxxxxxcwj99.11 15498.96 17099.54 14699.53 17899.25 18098.29 27099.76 6599.07 15299.42 18899.61 16898.86 8799.87 16696.45 28199.68 20699.49 177
SF-MVS99.10 15898.93 17399.62 11999.58 15199.51 11799.13 16299.65 12497.97 26099.42 18899.61 16898.86 8799.87 16696.45 28199.68 20699.49 177
zzz-MVS99.30 10099.14 11299.80 2999.81 5099.81 2898.73 23299.53 19599.27 11999.42 18899.63 15098.21 17399.95 4397.83 19299.79 15899.65 83
xiu_mvs_v2_base99.02 17199.11 12298.77 27899.37 24098.09 27798.13 28399.51 20699.47 9099.42 18898.54 34199.38 2799.97 1698.83 11199.33 28498.24 333
MTAPA99.35 8699.20 10499.80 2999.81 5099.81 2899.33 9599.53 19599.27 11999.42 18899.63 15098.21 17399.95 4397.83 19299.79 15899.65 83
PGM-MVS99.20 13099.01 15699.77 3999.75 9399.71 6399.16 15299.72 8897.99 25899.42 18899.60 17598.81 9199.93 6796.91 25499.74 18199.66 75
114514_t98.49 24198.11 25699.64 10699.73 10299.58 10899.24 12599.76 6589.94 35399.42 18899.56 19497.76 20999.86 18697.74 19799.82 14099.47 187
PMVScopyleft92.94 2198.82 20398.81 19298.85 26999.84 3397.99 28199.20 13599.47 22199.71 4299.42 18899.82 4898.09 18299.47 34893.88 33999.85 11799.07 283
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
cl-mvsnet297.56 28797.28 28998.40 29398.37 34696.75 31697.24 34099.37 25397.31 29599.41 19699.22 28187.30 33999.37 35297.70 20199.62 22599.08 278
PS-MVSNAJ99.00 17799.08 13398.76 27999.37 24098.10 27698.00 29899.51 20699.47 9099.41 19698.50 34399.28 4099.97 1698.83 11199.34 28298.20 337
DSMNet-mixed99.48 5299.65 2298.95 25499.71 10997.27 30499.50 6599.82 3699.59 7699.41 19699.85 3699.62 15100.00 199.53 2799.89 9199.59 125
DELS-MVS99.34 9199.30 8599.48 16199.51 18899.36 15798.12 28499.53 19599.36 10899.41 19699.61 16899.22 4699.87 16699.21 6499.68 20699.20 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.37 8199.29 9099.60 12499.71 10999.46 12799.43 7799.85 2398.79 18799.41 19699.60 17598.92 7999.92 8698.02 17099.92 7399.43 204
test_040299.22 12399.14 11299.45 17099.79 6599.43 13899.28 11399.68 10499.54 7899.40 20199.56 19499.07 6499.82 24196.01 29799.96 4199.11 270
LF4IMVS99.01 17598.92 17799.27 21899.71 10999.28 17298.59 24099.77 6098.32 24099.39 20299.41 23598.62 12199.84 22096.62 27399.84 12198.69 310
VDDNet98.97 18198.82 19199.42 17799.71 10998.81 23399.62 4798.68 31499.81 2899.38 20399.80 5394.25 28999.85 20498.79 11599.32 28599.59 125
sss98.90 19298.77 19699.27 21899.48 20598.44 25598.72 23399.32 26297.94 26499.37 20499.35 25396.31 26599.91 10498.85 11099.63 22499.47 187
HFP-MVS99.25 11099.08 13399.76 4599.73 10299.70 7099.31 10299.59 16098.36 22999.36 20599.37 24398.80 9599.91 10497.43 22299.75 17399.68 58
#test#99.12 15098.90 18199.76 4599.73 10299.70 7099.10 16999.59 16097.60 27999.36 20599.37 24398.80 9599.91 10496.84 26099.75 17399.68 58
ACMMPR99.23 11499.06 13999.76 4599.74 9999.69 7499.31 10299.59 16098.36 22999.35 20799.38 24298.61 12399.93 6797.43 22299.75 17399.67 65
HPM-MVScopyleft99.25 11099.07 13799.78 3799.81 5099.75 4899.61 5199.67 10997.72 27499.35 20799.25 27499.23 4599.92 8697.21 24099.82 14099.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator99.15 299.43 6399.36 7299.65 9999.39 23499.42 14199.70 2299.56 17699.23 12799.35 20799.80 5399.17 5099.95 4398.21 15599.84 12199.59 125
PVSNet_BlendedMVS99.03 16999.01 15699.09 24299.54 17397.99 28198.58 24199.82 3697.62 27899.34 21099.71 9998.52 13999.77 27697.98 17599.97 2999.52 164
PVSNet_Blended98.70 21798.59 21099.02 25099.54 17397.99 28197.58 32499.82 3695.70 32999.34 21098.98 31398.52 13999.77 27697.98 17599.83 13199.30 233
MIMVSNet98.43 24698.20 24899.11 24099.53 17898.38 26199.58 5898.61 31898.96 16499.33 21299.76 7590.92 32099.81 25797.38 22599.76 17099.15 262
ITE_SJBPF99.38 19499.63 14099.44 13499.73 7998.56 20799.33 21299.53 20598.88 8699.68 31296.01 29799.65 22099.02 290
GST-MVS99.16 14298.96 17099.75 5599.73 10299.73 5799.20 13599.55 18198.22 24599.32 21499.35 25398.65 11999.91 10496.86 25799.74 18199.62 105
region2R99.23 11499.05 14399.77 3999.76 8399.70 7099.31 10299.59 16098.41 22399.32 21499.36 24898.73 10999.93 6797.29 22999.74 18199.67 65
MVP-Stereo99.16 14299.08 13399.43 17599.48 20599.07 21199.08 17699.55 18198.63 20199.31 21699.68 12398.19 17699.78 26898.18 16099.58 23899.45 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LFMVS98.46 24498.19 25199.26 22099.24 27698.52 25099.62 4796.94 34699.87 1499.31 21699.58 18391.04 31899.81 25798.68 12699.42 27099.45 193
MVS_111021_LR99.13 14899.03 15199.42 17799.58 15199.32 16697.91 31199.73 7998.68 19799.31 21699.48 22099.09 5999.66 32197.70 20199.77 16899.29 236
MVS-HIRNet97.86 27598.22 24696.76 33199.28 26991.53 35798.38 26492.60 36099.13 14499.31 21699.96 1097.18 24299.68 31298.34 14399.83 13199.07 283
tmp_tt95.75 32595.42 32396.76 33189.90 36394.42 34098.86 21097.87 33778.01 35799.30 22099.69 11297.70 21095.89 35999.29 5998.14 33999.95 1
9.1498.64 20599.45 21898.81 22099.60 15397.52 28499.28 22199.56 19498.53 13699.83 23195.36 31999.64 222
CPTT-MVS98.74 21298.44 22799.64 10699.61 14499.38 15199.18 14199.55 18196.49 31699.27 22299.37 24397.11 24499.92 8695.74 31099.67 21399.62 105
CLD-MVS98.76 20998.57 21499.33 20499.57 16198.97 21897.53 32799.55 18196.41 31799.27 22299.13 29099.07 6499.78 26896.73 26699.89 9199.23 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42098.41 24898.41 23098.40 29399.34 25495.89 32996.94 34799.44 23098.80 18699.25 22499.52 20793.51 29699.98 698.94 10599.98 2199.32 230
FMVSNet597.80 27797.25 29199.42 17798.83 32598.97 21899.38 8499.80 4698.87 17799.25 22499.69 11280.60 35999.91 10498.96 10099.90 8399.38 215
PHI-MVS99.11 15498.95 17299.59 12699.13 29399.59 10599.17 14699.65 12497.88 26699.25 22499.46 22898.97 7499.80 26297.26 23499.82 14099.37 218
Vis-MVSNet (Re-imp)98.77 20798.58 21399.34 20299.78 7198.88 23099.61 5199.56 17699.11 14899.24 22799.56 19493.00 30199.78 26897.43 22299.89 9199.35 224
ETH3D-3000-0.198.77 20798.50 22299.59 12699.47 21099.53 11698.77 22899.60 15397.33 29499.23 22899.50 21397.91 19699.83 23195.02 32499.67 21399.41 208
CANet99.11 15499.05 14399.28 21698.83 32598.56 24798.71 23599.41 23699.25 12399.23 22899.22 28197.66 21999.94 5499.19 6999.97 2999.33 227
Patchmatch-test98.10 26897.98 26398.48 29099.27 27196.48 31999.40 8099.07 29898.81 18499.23 22899.57 19190.11 33199.87 16696.69 26799.64 22299.09 275
MG-MVS98.52 23798.39 23298.94 25599.15 29097.39 30298.18 27799.21 28998.89 17699.23 22899.63 15097.37 23299.74 28494.22 33399.61 23299.69 52
test_yl98.25 26097.95 26599.13 23899.17 28898.47 25299.00 18898.67 31698.97 16199.22 23299.02 30891.31 31499.69 30197.26 23498.93 30899.24 242
DCV-MVSNet98.25 26097.95 26599.13 23899.17 28898.47 25299.00 18898.67 31698.97 16199.22 23299.02 30891.31 31499.69 30197.26 23498.93 30899.24 242
test0.0.03 197.37 29296.91 30398.74 28097.72 35597.57 29697.60 32397.36 34598.00 25699.21 23498.02 35190.04 33299.79 26598.37 13995.89 35598.86 302
MVS_Test99.28 10399.31 8099.19 23299.35 24498.79 23599.36 9199.49 21599.17 13699.21 23499.67 12998.78 10099.66 32199.09 8799.66 21799.10 272
CDPH-MVS98.56 23198.20 24899.61 12299.50 19499.46 12798.32 26899.41 23695.22 33499.21 23499.10 29798.34 16199.82 24195.09 32399.66 21799.56 139
WTY-MVS98.59 22898.37 23499.26 22099.43 22398.40 25898.74 23099.13 29798.10 25199.21 23499.24 27994.82 28399.90 12497.86 18798.77 31799.49 177
MDTV_nov1_ep13_2view91.44 35899.14 15697.37 29299.21 23491.78 31296.75 26499.03 287
BH-untuned98.22 26498.09 25798.58 28799.38 23797.24 30598.55 24798.98 30497.81 27299.20 23998.76 33297.01 24799.65 32894.83 32598.33 33398.86 302
testtj98.56 23198.17 25399.72 7599.45 21899.60 10298.88 20699.50 21096.88 30899.18 24099.48 22097.08 24599.92 8693.69 34099.38 27599.63 94
CR-MVSNet98.35 25598.20 24898.83 27399.05 30698.12 27399.30 10599.67 10997.39 29199.16 24199.79 5991.87 31099.91 10498.78 11898.77 31798.44 325
RPMNet98.60 22598.53 22098.83 27399.05 30698.12 27399.30 10599.62 13599.86 1699.16 24199.74 8292.53 30599.92 8698.75 11998.77 31798.44 325
thisisatest051596.98 30096.42 30798.66 28499.42 22897.47 29897.27 33894.30 35797.24 29799.15 24398.86 32785.01 35199.87 16697.10 24699.39 27498.63 311
LS3D99.24 11399.11 12299.61 12298.38 34599.79 3599.57 5999.68 10499.61 6899.15 24399.71 9998.70 11099.91 10497.54 21599.68 20699.13 269
ZNCC-MVS99.22 12399.04 14999.77 3999.76 8399.73 5799.28 11399.56 17698.19 24899.14 24599.29 26598.84 9099.92 8697.53 21799.80 15399.64 89
HQP_MVS98.90 19298.68 20499.55 14299.58 15199.24 18598.80 22399.54 18698.94 16699.14 24599.25 27497.24 23699.82 24195.84 30699.78 16499.60 116
plane_prior399.31 16798.36 22999.14 245
3Dnovator+98.92 399.35 8699.24 10099.67 8799.35 24499.47 12399.62 4799.50 21099.44 9699.12 24899.78 6598.77 10399.94 5497.87 18699.72 19499.62 105
ZD-MVS99.43 22399.61 10099.43 23396.38 31899.11 24999.07 29997.86 20199.92 8694.04 33699.49 259
PatchMatch-RL98.68 21998.47 22399.30 21399.44 22199.28 17298.14 28299.54 18697.12 30499.11 24999.25 27497.80 20699.70 29596.51 27799.30 28798.93 296
SCA98.11 26798.36 23597.36 32399.20 28392.99 34898.17 27998.49 32498.24 24499.10 25199.57 19196.01 27299.94 5496.86 25799.62 22599.14 266
PatchT98.45 24598.32 24098.83 27398.94 31498.29 26499.24 12598.82 30999.84 2299.08 25299.76 7591.37 31399.94 5498.82 11399.00 30698.26 332
UnsupCasMVSNet_bld98.55 23498.27 24299.40 18799.56 17199.37 15497.97 30499.68 10497.49 28699.08 25299.35 25395.41 27999.82 24197.70 20198.19 33799.01 291
MVS_111021_HR99.12 15099.02 15399.40 18799.50 19499.11 20397.92 30999.71 9198.76 19399.08 25299.47 22599.17 5099.54 34197.85 18999.76 17099.54 149
TAPA-MVS97.92 1398.03 27197.55 28599.46 16699.47 21099.44 13498.50 25499.62 13586.79 35499.07 25599.26 27298.26 16899.62 33297.28 23199.73 18899.31 232
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CP-MVS99.23 11499.05 14399.75 5599.66 13499.66 8199.38 8499.62 13598.38 22799.06 25699.27 26998.79 9899.94 5497.51 21899.82 14099.66 75
MCST-MVS99.02 17198.81 19299.65 9999.58 15199.49 11998.58 24199.07 29898.40 22599.04 25799.25 27498.51 14199.80 26297.31 22899.51 25599.65 83
mPP-MVS99.19 13399.00 15999.76 4599.76 8399.68 7799.38 8499.54 18698.34 23899.01 25899.50 21398.53 13699.93 6797.18 24299.78 16499.66 75
PVSNet97.47 1598.42 24798.44 22798.35 29599.46 21596.26 32296.70 35099.34 25997.68 27699.00 25999.13 29097.40 22899.72 28997.59 21399.68 20699.08 278
Fast-Effi-MVS+-dtu99.20 13099.12 11999.43 17599.25 27499.69 7499.05 17999.82 3699.50 8398.97 26099.05 30198.98 7299.98 698.20 15699.24 29598.62 312
MP-MVScopyleft99.06 16298.83 19099.76 4599.76 8399.71 6399.32 9899.50 21098.35 23498.97 26099.48 22098.37 15799.92 8695.95 30399.75 17399.63 94
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PCF-MVS96.03 1896.73 30695.86 31799.33 20499.44 22199.16 19896.87 34899.44 23086.58 35598.95 26299.40 23794.38 28899.88 15387.93 35299.80 15398.95 294
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
旧先验297.94 30795.33 33398.94 26399.88 15396.75 264
ETV-MVS99.18 13799.18 10699.16 23599.34 25499.28 17299.12 16699.79 5299.48 8598.93 26498.55 34099.40 2299.93 6798.51 13399.52 25498.28 331
BH-RMVSNet98.41 24898.14 25599.21 22999.21 28098.47 25298.60 23998.26 33198.35 23498.93 26499.31 26097.20 24199.66 32194.32 33199.10 30099.51 166
F-COLMAP98.74 21298.45 22599.62 11999.57 16199.47 12398.84 21399.65 12496.31 32098.93 26499.19 28797.68 21499.87 16696.52 27699.37 27999.53 154
Effi-MVS+-dtu99.07 16198.92 17799.52 14998.89 31999.78 3899.15 15499.66 11399.34 10998.92 26799.24 27997.69 21299.98 698.11 16699.28 28998.81 306
EMVS96.96 30197.28 28995.99 34198.76 33591.03 35995.26 35698.61 31899.34 10998.92 26798.88 32693.79 29399.66 32192.87 34199.05 30297.30 350
tpmrst97.73 28098.07 25896.73 33398.71 33792.00 35299.10 16998.86 30698.52 21398.92 26799.54 20291.90 30899.82 24198.02 17099.03 30498.37 327
MSLP-MVS++99.05 16599.09 13198.91 26199.21 28098.36 26298.82 21999.47 22198.85 17998.90 27099.56 19498.78 10099.09 35498.57 13099.68 20699.26 239
KD-MVS_2432*160095.89 32195.41 32497.31 32694.96 36093.89 34297.09 34399.22 28597.23 29898.88 27199.04 30479.23 36199.54 34196.24 29096.81 35098.50 323
miper_refine_blended95.89 32195.41 32497.31 32694.96 36093.89 34297.09 34399.22 28597.23 29898.88 27199.04 30479.23 36199.54 34196.24 29096.81 35098.50 323
E-PMN97.14 29897.43 28696.27 33898.79 33191.62 35695.54 35599.01 30399.44 9698.88 27199.12 29492.78 30299.68 31294.30 33299.03 30497.50 346
testdata99.42 17799.51 18898.93 22599.30 26996.20 32198.87 27499.40 23798.33 16399.89 13896.29 28799.28 28999.44 198
CANet_DTU98.91 19098.85 18699.09 24298.79 33198.13 27298.18 27799.31 26699.48 8598.86 27599.51 21096.56 25599.95 4399.05 9099.95 4899.19 254
DP-MVS Recon98.50 23898.23 24599.31 21199.49 19999.46 12798.56 24699.63 13294.86 34098.85 27699.37 24397.81 20599.59 33896.08 29499.44 26598.88 300
EIA-MVS99.12 15099.01 15699.45 17099.36 24299.62 9499.34 9399.79 5298.41 22398.84 27798.89 32598.75 10699.84 22098.15 16499.51 25598.89 299
DPM-MVS98.28 25897.94 26999.32 20899.36 24299.11 20397.31 33798.78 31196.88 30898.84 27799.11 29697.77 20899.61 33694.03 33799.36 28099.23 245
MDTV_nov1_ep1397.73 28098.70 33890.83 36099.15 15498.02 33398.51 21498.82 27999.61 16890.98 31999.66 32196.89 25698.92 310
GA-MVS97.99 27497.68 28298.93 25899.52 18398.04 28097.19 34199.05 30198.32 24098.81 28098.97 31689.89 33499.41 35198.33 14499.05 30299.34 226
AdaColmapbinary98.60 22598.35 23799.38 19499.12 29599.22 18998.67 23699.42 23597.84 27198.81 28099.27 26997.32 23499.81 25795.14 32199.53 25299.10 272
CNVR-MVS98.99 18098.80 19499.56 13999.25 27499.43 13898.54 25099.27 27598.58 20698.80 28299.43 23398.53 13699.70 29597.22 23999.59 23799.54 149
Effi-MVS+99.06 16298.97 16899.34 20299.31 26198.98 21698.31 26999.91 898.81 18498.79 28398.94 32099.14 5499.84 22098.79 11598.74 32199.20 252
PatchmatchNetpermissive97.65 28397.80 27697.18 32898.82 32892.49 35099.17 14698.39 32898.12 25098.79 28399.58 18390.71 32599.89 13897.23 23899.41 27199.16 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ETH3D cwj APD-0.1698.50 23898.16 25499.51 15299.04 30899.39 14898.47 25699.47 22196.70 31598.78 28599.33 25797.62 22299.86 18694.69 32999.38 27599.28 238
QAPM98.40 25097.99 26199.65 9999.39 23499.47 12399.67 3599.52 20391.70 35098.78 28599.80 5398.55 13099.95 4394.71 32899.75 17399.53 154
XVS99.27 10799.11 12299.75 5599.71 10999.71 6399.37 8899.61 14299.29 11598.76 28799.47 22598.47 14399.88 15397.62 20999.73 18899.67 65
X-MVStestdata96.09 31894.87 32899.75 5599.71 10999.71 6399.37 8899.61 14299.29 11598.76 28761.30 36598.47 14399.88 15397.62 20999.73 18899.67 65
HY-MVS98.23 998.21 26597.95 26598.99 25199.03 30998.24 26599.61 5198.72 31396.81 31298.73 28999.51 21094.06 29099.86 18696.91 25498.20 33598.86 302
alignmvs98.28 25897.96 26499.25 22399.12 29598.93 22599.03 18398.42 32699.64 6098.72 29097.85 35390.86 32399.62 33298.88 10999.13 29899.19 254
thres600view796.60 30996.16 31197.93 30899.63 14096.09 32699.18 14197.57 34098.77 19098.72 29097.32 35987.04 34299.72 28988.57 35098.62 32697.98 342
thres100view90096.39 31296.03 31497.47 32099.63 14095.93 32799.18 14197.57 34098.75 19498.70 29297.31 36087.04 34299.67 31787.62 35398.51 33096.81 351
test22299.51 18899.08 21097.83 31499.29 27195.21 33598.68 29399.31 26097.28 23599.38 27599.43 204
API-MVS98.38 25198.39 23298.35 29598.83 32599.26 17699.14 15699.18 29198.59 20598.66 29498.78 33198.61 12399.57 34094.14 33499.56 24096.21 353
canonicalmvs99.02 17199.00 15999.09 24299.10 30198.70 23999.61 5199.66 11399.63 6398.64 29597.65 35599.04 6899.54 34198.79 11598.92 31099.04 286
Fast-Effi-MVS+99.02 17198.87 18499.46 16699.38 23799.50 11899.04 18199.79 5297.17 30198.62 29698.74 33399.34 3399.95 4398.32 14599.41 27198.92 297
EPMVS96.53 31096.32 30897.17 32998.18 35192.97 34999.39 8289.95 36298.21 24698.61 29799.59 18186.69 34999.72 28996.99 25099.23 29798.81 306
新几何199.52 14999.50 19499.22 18999.26 27795.66 33098.60 29899.28 26797.67 21599.89 13895.95 30399.32 28599.45 193
HPM-MVS++copyleft98.96 18498.70 20299.74 6199.52 18399.71 6398.86 21099.19 29098.47 21998.59 29999.06 30098.08 18499.91 10496.94 25299.60 23599.60 116
PLCcopyleft97.35 1698.36 25297.99 26199.48 16199.32 26099.24 18598.50 25499.51 20695.19 33698.58 30098.96 31896.95 24999.83 23195.63 31199.25 29399.37 218
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UGNet99.38 7999.34 7499.49 15898.90 31698.90 22999.70 2299.35 25799.86 1698.57 30199.81 5198.50 14299.93 6799.38 4399.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM_NR98.36 25298.04 25999.33 20499.48 20598.93 22598.79 22699.28 27497.54 28298.56 30298.57 33897.12 24399.69 30194.09 33598.90 31299.38 215
ETH3 D test640097.76 27997.19 29499.50 15599.38 23799.26 17698.34 26599.49 21592.99 34798.54 30399.20 28595.92 27499.82 24191.14 34799.66 21799.40 210
tfpn200view996.30 31595.89 31597.53 31899.58 15196.11 32499.00 18897.54 34398.43 22098.52 30496.98 36286.85 34499.67 31787.62 35398.51 33096.81 351
112198.56 23198.24 24499.52 14999.49 19999.24 18599.30 10599.22 28595.77 32798.52 30499.29 26597.39 23099.85 20495.79 30899.34 28299.46 191
thres40096.40 31195.89 31597.92 30999.58 15196.11 32499.00 18897.54 34398.43 22098.52 30496.98 36286.85 34499.67 31787.62 35398.51 33097.98 342
CNLPA98.57 23098.34 23899.28 21699.18 28799.10 20798.34 26599.41 23698.48 21898.52 30498.98 31397.05 24699.78 26895.59 31299.50 25798.96 293
PMMVS98.49 24198.29 24199.11 24098.96 31398.42 25797.54 32599.32 26297.53 28398.47 30898.15 35097.88 20099.82 24197.46 22099.24 29599.09 275
test1299.54 14699.29 26799.33 16499.16 29398.43 30997.54 22399.82 24199.47 26299.48 182
NCCC98.82 20398.57 21499.58 13099.21 28099.31 16798.61 23799.25 28098.65 19998.43 30999.26 27297.86 20199.81 25796.55 27499.27 29299.61 112
thres20096.09 31895.68 32197.33 32599.48 20596.22 32398.53 25197.57 34098.06 25598.37 31196.73 36486.84 34699.61 33686.99 35698.57 32796.16 354
mvs-test198.83 20198.70 20299.22 22898.89 31999.65 8698.88 20699.66 11399.34 10998.29 31298.94 32097.69 21299.96 3398.11 16698.54 32998.04 341
tpm97.15 29696.95 30097.75 31498.91 31594.24 34199.32 9897.96 33497.71 27598.29 31299.32 25886.72 34899.92 8698.10 16896.24 35499.09 275
原ACMM199.37 19799.47 21098.87 23299.27 27596.74 31498.26 31499.32 25897.93 19599.82 24195.96 30299.38 27599.43 204
ADS-MVSNet297.78 27897.66 28498.12 30599.14 29195.36 33399.22 13298.75 31296.97 30698.25 31599.64 14090.90 32199.94 5496.51 27799.56 24099.08 278
ADS-MVSNet97.72 28297.67 28397.86 31099.14 29194.65 33999.22 13298.86 30696.97 30698.25 31599.64 14090.90 32199.84 22096.51 27799.56 24099.08 278
dp96.86 30297.07 29696.24 33998.68 33990.30 36399.19 14098.38 32997.35 29398.23 31799.59 18187.23 34099.82 24196.27 28898.73 32398.59 314
TR-MVS97.44 29097.15 29598.32 29798.53 34297.46 29998.47 25697.91 33696.85 31098.21 31898.51 34296.42 26199.51 34692.16 34397.29 34897.98 342
HQP-NCC99.31 26197.98 30197.45 28798.15 319
ACMP_Plane99.31 26197.98 30197.45 28798.15 319
HQP4-MVS98.15 31999.70 29599.53 154
HQP-MVS98.36 25298.02 26099.39 19099.31 26198.94 22197.98 30199.37 25397.45 28798.15 31998.83 32896.67 25399.70 29594.73 32699.67 21399.53 154
CostFormer96.71 30796.79 30696.46 33798.90 31690.71 36199.41 7898.68 31494.69 34398.14 32399.34 25686.32 35099.80 26297.60 21298.07 34198.88 300
OpenMVScopyleft98.12 1098.23 26397.89 27599.26 22099.19 28599.26 17699.65 4499.69 10191.33 35198.14 32399.77 7298.28 16699.96 3395.41 31799.55 24498.58 316
test_prior398.62 22398.34 23899.46 16699.35 24499.22 18997.95 30599.39 24697.87 26798.05 32599.05 30197.90 19799.69 30195.99 29999.49 25999.48 182
test_prior297.95 30597.87 26798.05 32599.05 30197.90 19795.99 29999.49 259
MAR-MVS98.24 26297.92 27199.19 23298.78 33399.65 8699.17 14699.14 29595.36 33298.04 32798.81 33097.47 22599.72 28995.47 31699.06 30198.21 335
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CS-MVS99.09 15999.03 15199.25 22399.45 21899.49 11999.41 7899.82 3699.10 14998.03 32898.48 34499.30 3799.89 13898.30 14799.41 27198.35 328
PAPR97.56 28797.07 29699.04 24998.80 33098.11 27597.63 32199.25 28094.56 34498.02 32998.25 34997.43 22799.68 31290.90 34898.74 32199.33 227
BH-w/o97.20 29597.01 29897.76 31399.08 30495.69 33098.03 29598.52 32195.76 32897.96 33098.02 35195.62 27799.47 34892.82 34297.25 34998.12 339
TEST999.35 24499.35 16198.11 28699.41 23694.83 34297.92 33198.99 31098.02 18899.85 204
train_agg98.35 25597.95 26599.57 13599.35 24499.35 16198.11 28699.41 23694.90 33897.92 33198.99 31098.02 18899.85 20495.38 31899.44 26599.50 172
tpm296.35 31396.22 31096.73 33398.88 32291.75 35599.21 13498.51 32293.27 34697.89 33399.21 28384.83 35299.70 29596.04 29698.18 33898.75 309
JIA-IIPM98.06 27097.92 27198.50 28998.59 34097.02 31098.80 22398.51 32299.88 1397.89 33399.87 3091.89 30999.90 12498.16 16397.68 34698.59 314
test_899.34 25499.31 16798.08 29099.40 24394.90 33897.87 33598.97 31698.02 18899.84 220
tpmvs97.39 29197.69 28196.52 33698.41 34491.76 35499.30 10598.94 30597.74 27397.85 33699.55 20092.40 30699.73 28796.25 28998.73 32398.06 340
test-LLR97.15 29696.95 30097.74 31598.18 35195.02 33697.38 33396.10 34898.00 25697.81 33798.58 33690.04 33299.91 10497.69 20798.78 31598.31 329
TESTMET0.1,196.24 31695.84 31897.41 32298.24 34993.84 34497.38 33395.84 35298.43 22097.81 33798.56 33979.77 36099.89 13897.77 19498.77 31798.52 319
test-mter96.23 31795.73 32097.74 31598.18 35195.02 33697.38 33396.10 34897.90 26597.81 33798.58 33679.12 36399.91 10497.69 20798.78 31598.31 329
agg_prior198.33 25797.92 27199.57 13599.35 24499.36 15797.99 30099.39 24694.85 34197.76 34098.98 31398.03 18699.85 20495.49 31499.44 26599.51 166
agg_prior99.35 24499.36 15799.39 24697.76 34099.85 204
tpm cat196.78 30496.98 29996.16 34098.85 32390.59 36299.08 17699.32 26292.37 34897.73 34299.46 22891.15 31799.69 30196.07 29598.80 31498.21 335
PVSNet_095.53 1995.85 32495.31 32697.47 32098.78 33393.48 34695.72 35499.40 24396.18 32297.37 34397.73 35495.73 27599.58 33995.49 31481.40 35899.36 221
MVS95.72 32694.63 33098.99 25198.56 34197.98 28699.30 10598.86 30672.71 35997.30 34499.08 29898.34 16199.74 28489.21 34998.33 33399.26 239
EPNet98.13 26697.77 27999.18 23494.57 36297.99 28199.24 12597.96 33499.74 3797.29 34599.62 15993.13 29999.97 1698.59 12999.83 13199.58 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030498.88 19698.71 19999.39 19098.85 32398.91 22899.45 7299.30 26998.56 20797.26 34699.68 12396.18 26999.96 3399.17 7499.94 6199.29 236
131498.00 27397.90 27498.27 30198.90 31697.45 30099.30 10599.06 30094.98 33797.21 34799.12 29498.43 14899.67 31795.58 31398.56 32897.71 345
AUN-MVS97.82 27697.38 28799.14 23799.27 27198.53 24898.72 23399.02 30298.10 25197.18 34899.03 30789.26 33699.85 20497.94 17997.91 34399.03 287
cascas96.99 29996.82 30597.48 31997.57 35895.64 33196.43 35299.56 17691.75 34997.13 34997.61 35695.58 27898.63 35796.68 26899.11 29998.18 338
DWT-MVSNet_test96.03 32095.80 31996.71 33598.50 34391.93 35399.25 12497.87 33795.99 32496.81 35097.61 35681.02 35799.66 32197.20 24197.98 34298.54 318
FPMVS96.32 31495.50 32298.79 27799.60 14698.17 27198.46 26198.80 31097.16 30296.28 35199.63 15082.19 35599.09 35488.45 35198.89 31399.10 272
PAPM95.61 32794.71 32998.31 29999.12 29596.63 31796.66 35198.46 32590.77 35296.25 35298.68 33593.01 30099.69 30181.60 35897.86 34598.62 312
gg-mvs-nofinetune95.87 32395.17 32797.97 30798.19 35096.95 31199.69 2889.23 36399.89 1196.24 35399.94 1281.19 35699.51 34693.99 33898.20 33597.44 347
baseline296.83 30396.28 30998.46 29199.09 30396.91 31398.83 21593.87 35997.23 29896.23 35498.36 34688.12 33899.90 12496.68 26898.14 33998.57 317
EPNet_dtu97.62 28497.79 27897.11 33096.67 35992.31 35198.51 25398.04 33299.24 12595.77 35599.47 22593.78 29499.66 32198.98 9699.62 22599.37 218
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepMVS_CXcopyleft97.98 30699.69 11996.95 31199.26 27775.51 35895.74 35698.28 34896.47 25999.62 33291.23 34697.89 34497.38 348
IB-MVS95.41 2095.30 32894.46 33197.84 31198.76 33595.33 33497.33 33696.07 35096.02 32395.37 35797.41 35876.17 36599.96 3397.54 21595.44 35698.22 334
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND97.36 32397.59 35696.87 31499.70 2288.49 36494.64 35897.26 36180.66 35899.12 35391.50 34596.50 35396.08 355
ET-MVSNet_ETH3D96.78 30496.07 31398.91 26199.26 27397.92 28797.70 31996.05 35197.96 26392.37 35998.43 34587.06 34199.90 12498.27 15097.56 34798.91 298
MVEpermissive92.54 2296.66 30896.11 31298.31 29999.68 12897.55 29797.94 30795.60 35399.37 10690.68 36098.70 33496.56 25598.61 35886.94 35799.55 24498.77 308
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12329.31 32933.05 33418.08 34325.93 36512.24 36597.53 32710.93 36611.78 36024.21 36150.08 36921.04 3668.60 36123.51 35932.43 36033.39 357
testmvs28.94 33033.33 33215.79 34426.03 3649.81 36696.77 34915.67 36511.55 36123.87 36250.74 36819.03 3678.53 36223.21 36033.07 35929.03 358
uanet_test8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k24.88 33133.17 3330.00 3450.00 3660.00 3670.00 35799.62 1350.00 3620.00 36399.13 29099.82 40.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas16.61 33222.14 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 199.28 400.00 3630.00 3610.00 3610.00 359
sosnet-low-res8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
sosnet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
Regformer8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.26 33911.02 3420.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36399.16 2880.00 3680.00 3630.00 3610.00 3610.00 359
uanet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS99.29 21499.12 29599.44 13499.20 13599.40 23799.00 7098.84 35696.54 27599.60 23599.58 130
save fliter99.53 17899.25 18098.29 27099.38 25299.07 152
test_0728_SECOND99.83 2199.70 11699.79 3599.14 15699.61 14299.92 8697.88 18399.72 19499.77 33
GSMVS99.14 266
sam_mvs190.81 32499.14 266
sam_mvs90.52 328
MTGPAbinary99.53 195
test_post199.14 15651.63 36789.54 33599.82 24196.86 257
test_post52.41 36690.25 33099.86 186
patchmatchnet-post99.62 15990.58 32699.94 54
MTMP99.09 17398.59 320
gm-plane-assit97.59 35689.02 36493.47 34598.30 34799.84 22096.38 284
test9_res95.10 32299.44 26599.50 172
agg_prior294.58 33099.46 26499.50 172
test_prior499.19 19698.00 298
test_prior99.46 16699.35 24499.22 18999.39 24699.69 30199.48 182
新几何298.04 294
旧先验199.49 19999.29 17099.26 27799.39 24197.67 21599.36 28099.46 191
无先验98.01 29699.23 28495.83 32699.85 20495.79 30899.44 198
原ACMM297.92 309
testdata299.89 13895.99 299
segment_acmp98.37 157
testdata197.72 31797.86 270
plane_prior799.58 15199.38 151
plane_prior699.47 21099.26 17697.24 236
plane_prior599.54 18699.82 24195.84 30699.78 16499.60 116
plane_prior499.25 274
plane_prior298.80 22398.94 166
plane_prior199.51 188
plane_prior99.24 18598.42 26297.87 26799.71 198
n20.00 367
nn0.00 367
door-mid99.83 31
test1199.29 271
door99.77 60
HQP5-MVS98.94 221
BP-MVS94.73 326
HQP3-MVS99.37 25399.67 213
HQP2-MVS96.67 253
NP-MVS99.40 23299.13 20198.83 328
ACMMP++_ref99.94 61
ACMMP++99.79 158
Test By Simon98.41 151