This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 45100.00 199.90 7100.00 199.97 999.61 1799.97 1799.75 13100.00 199.84 14
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4299.68 3199.85 2699.95 399.98 399.92 1699.28 4199.98 799.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 3999.70 2299.86 2299.89 1199.98 399.90 2199.94 199.98 799.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 499.96 499.79 3699.72 1999.88 1899.92 699.98 399.93 1399.94 199.98 799.77 12100.00 199.92 3
test_djsdf99.84 899.81 999.91 299.94 1099.84 1899.77 1199.80 4999.73 4099.97 699.92 1699.77 799.98 799.43 38100.00 199.90 4
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 699.90 799.97 699.87 3199.81 599.95 4599.54 2699.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CHOSEN 1792x268899.39 8199.30 8999.65 10099.88 2499.25 18398.78 23299.88 1898.66 20499.96 899.79 6097.45 22999.93 7199.34 5299.99 1299.78 32
wuyk23d97.58 29299.13 12092.93 34899.69 12199.49 12399.52 6699.77 6397.97 26699.96 899.79 6099.84 399.94 5795.85 31299.82 14279.36 363
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2599.71 999.96 3599.51 3199.97 3099.84 14
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 999.85 2099.94 1199.95 1199.73 899.90 12999.65 1699.97 3099.69 52
v7n99.82 1099.80 1099.88 1199.96 499.84 1899.82 899.82 3999.84 2399.94 1199.91 1999.13 5899.96 3599.83 999.99 1299.83 18
Gipumacopyleft99.57 3999.59 3499.49 16099.98 399.71 6799.72 1999.84 3299.81 2999.94 1199.78 6698.91 8399.71 30098.41 14599.95 4999.05 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.68 2399.69 1899.65 10099.80 5699.40 14999.66 4099.76 6899.64 6599.93 1499.85 3798.66 12099.84 22799.88 699.99 1299.71 46
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2299.83 699.85 2699.80 3299.93 1499.93 1398.54 13599.93 7199.59 2099.98 2199.76 37
MIMVSNet199.66 2599.62 2699.80 2999.94 1099.87 999.69 2899.77 6399.78 3599.93 1499.89 2597.94 19799.92 9099.65 1699.98 2199.62 106
DeepC-MVS98.90 499.62 3499.61 3199.67 8899.72 10899.44 13799.24 13099.71 9599.27 12699.93 1499.90 2199.70 1199.93 7198.99 10199.99 1299.64 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 899.73 1699.85 2699.70 4999.92 1899.93 1399.45 2399.97 1799.36 50100.00 199.85 13
v1099.69 2199.69 1899.66 9599.81 5199.39 15199.66 4099.75 7599.60 7999.92 1899.87 3198.75 10999.86 19199.90 299.99 1299.73 42
LCM-MVSNet-Re99.28 10799.15 11699.67 8899.33 26399.76 4899.34 9799.97 298.93 17599.91 2099.79 6098.68 11599.93 7196.80 26999.56 24499.30 237
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1399.75 1499.86 2299.70 4999.91 2099.89 2599.60 1999.87 17099.59 2099.74 18599.71 46
tfpnnormal99.43 6699.38 7099.60 12599.87 2899.75 5199.59 5999.78 6099.71 4499.90 2299.69 11398.85 9199.90 12997.25 24499.78 16799.15 266
Anonymous2023121199.62 3499.57 4099.76 4699.61 14799.60 10699.81 999.73 8399.82 2899.90 2299.90 2197.97 19699.86 19199.42 4399.96 4299.80 24
v124099.56 4299.58 3799.51 15499.80 5699.00 21799.00 19399.65 12899.15 14999.90 2299.75 8099.09 6199.88 15799.90 299.96 4299.67 65
EU-MVSNet99.39 8199.62 2698.72 28799.88 2496.44 32699.56 6499.85 2699.90 799.90 2299.85 3798.09 18599.83 23899.58 2399.95 4999.90 4
IterMVS-SCA-FT99.00 18199.16 11398.51 29499.75 9595.90 33498.07 29799.84 3299.84 2399.89 2699.73 8796.01 27699.99 599.33 55100.00 199.63 95
v14419299.55 4599.54 4599.58 13299.78 7299.20 19899.11 17399.62 13999.18 14099.89 2699.72 9398.66 12099.87 17099.88 699.97 3099.66 75
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2299.76 1399.87 2099.73 4099.89 2699.87 3199.63 1499.87 17099.54 2699.92 7499.63 95
lessismore_v099.64 10799.86 3099.38 15490.66 36899.89 2699.83 4394.56 29199.97 1799.56 2599.92 7499.57 139
SixPastTwentyTwo99.42 6999.30 8999.76 4699.92 1499.67 8399.70 2299.14 30199.65 6399.89 2699.90 2196.20 27299.94 5799.42 4399.92 7499.67 65
HyFIR lowres test98.91 19498.64 20999.73 7099.85 3399.47 12698.07 29799.83 3498.64 20699.89 2699.60 17692.57 308100.00 199.33 5599.97 3099.72 43
DIV-MVS_2432*160099.63 3199.59 3499.76 4699.84 3499.90 499.37 9099.79 5599.83 2699.88 3299.85 3798.42 15399.90 12999.60 1999.73 19299.49 181
test_part198.63 22698.26 24999.75 5699.40 23699.49 12399.67 3699.68 10899.86 1699.88 3299.86 3686.73 35499.93 7199.34 5299.97 3099.81 23
new-patchmatchnet99.35 9099.57 4098.71 28999.82 4496.62 32498.55 25399.75 7599.50 8899.88 3299.87 3199.31 3799.88 15799.43 38100.00 199.62 106
v192192099.56 4299.57 4099.55 14499.75 9599.11 20699.05 18499.61 14699.15 14999.88 3299.71 10099.08 6499.87 17099.90 299.97 3099.66 75
NR-MVSNet99.40 7699.31 8499.68 8699.43 22799.55 11899.73 1699.50 21599.46 10099.88 3299.36 25297.54 22699.87 17098.97 10599.87 10999.63 95
K. test v398.87 20298.60 21299.69 8599.93 1399.46 13099.74 1594.97 36199.78 3599.88 3299.88 2893.66 30099.97 1799.61 1899.95 4999.64 90
v119299.57 3999.57 4099.57 13799.77 8099.22 19299.04 18699.60 15799.18 14099.87 3899.72 9399.08 6499.85 21099.89 599.98 2199.66 75
V4299.56 4299.54 4599.63 11199.79 6699.46 13099.39 8499.59 16499.24 13299.86 3999.70 10798.55 13399.82 24899.79 1199.95 4999.60 119
mvs_anonymous99.28 10799.39 6898.94 26199.19 29197.81 29599.02 18999.55 18699.78 3599.85 4099.80 5498.24 17299.86 19199.57 2499.50 26299.15 266
WR-MVS_H99.61 3699.53 4999.87 1499.80 5699.83 2299.67 3699.75 7599.58 8299.85 4099.69 11398.18 18199.94 5799.28 6599.95 4999.83 18
IterMVS98.97 18599.16 11398.42 29899.74 10195.64 33798.06 29999.83 3499.83 2699.85 4099.74 8396.10 27599.99 599.27 66100.00 199.63 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114499.54 4799.53 4999.59 12799.79 6699.28 17599.10 17499.61 14699.20 13899.84 4399.73 8798.67 11899.84 22799.86 899.98 2199.64 90
RRT_MVS98.75 21498.54 22299.41 18998.14 36098.61 25198.98 20299.66 11799.31 12199.84 4399.75 8091.98 31499.98 799.20 7399.95 4999.62 106
PS-CasMVS99.66 2599.58 3799.89 799.80 5699.85 1399.66 4099.73 8399.62 6999.84 4399.71 10098.62 12499.96 3599.30 6099.96 4299.86 11
PEN-MVS99.66 2599.59 3499.89 799.83 3899.87 999.66 4099.73 8399.70 4999.84 4399.73 8798.56 13299.96 3599.29 6399.94 6299.83 18
DTE-MVSNet99.68 2399.61 3199.88 1199.80 5699.87 999.67 3699.71 9599.72 4399.84 4399.78 6698.67 11899.97 1799.30 6099.95 4999.80 24
RRT_test8_iter0597.35 30097.25 29797.63 32398.81 33593.13 35399.26 12299.89 1599.51 8799.83 4899.68 12479.03 37199.88 15799.53 2999.72 19899.89 8
IterMVS-LS99.41 7399.47 5399.25 22899.81 5198.09 28398.85 21799.76 6899.62 6999.83 4899.64 14198.54 13599.97 1799.15 8499.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052199.44 6599.42 6599.49 16099.89 2198.96 22399.62 4899.76 6899.85 2099.82 5099.88 2896.39 26799.97 1799.59 2099.98 2199.55 145
SED-MVS99.40 7699.28 9699.77 4099.69 12199.82 2699.20 14099.54 19199.13 15199.82 5099.63 15198.91 8399.92 9097.85 19699.70 20499.58 133
test_241102_ONE99.69 12199.82 2699.54 19199.12 15499.82 5099.49 22198.91 8399.52 352
FC-MVSNet-test99.70 1999.65 2399.86 1699.88 2499.86 1299.72 1999.78 6099.90 799.82 5099.83 4398.45 15099.87 17099.51 3199.97 3099.86 11
test20.0399.55 4599.54 4599.58 13299.79 6699.37 15799.02 18999.89 1599.60 7999.82 5099.62 16098.81 9499.89 14399.43 3899.86 11699.47 191
FMVSNet199.66 2599.63 2599.73 7099.78 7299.77 4299.68 3199.70 9999.67 5799.82 5099.83 4398.98 7499.90 12999.24 6799.97 3099.53 158
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6499.59 5999.82 3999.39 11199.82 5099.84 4299.38 2999.91 10899.38 4799.93 7099.80 24
v14899.40 7699.41 6699.39 19499.76 8498.94 22599.09 17899.59 16499.17 14399.81 5799.61 16998.41 15499.69 30899.32 5799.94 6299.53 158
v2v48299.50 5099.47 5399.58 13299.78 7299.25 18399.14 16199.58 17399.25 13099.81 5799.62 16098.24 17299.84 22799.83 999.97 3099.64 90
PM-MVS99.36 8899.29 9499.58 13299.83 3899.66 8598.95 20699.86 2298.85 18599.81 5799.73 8798.40 15899.92 9098.36 14899.83 13399.17 262
EI-MVSNet-UG-set99.48 5499.50 5199.42 18199.57 16598.65 25099.24 13099.46 23099.68 5399.80 6099.66 13498.99 7399.89 14399.19 7599.90 8499.72 43
VPA-MVSNet99.66 2599.62 2699.79 3499.68 13099.75 5199.62 4899.69 10599.85 2099.80 6099.81 5298.81 9499.91 10899.47 3599.88 10099.70 49
CP-MVSNet99.54 4799.43 6299.87 1499.76 8499.82 2699.57 6299.61 14699.54 8399.80 6099.64 14197.79 21099.95 4599.21 7099.94 6299.84 14
EG-PatchMatch MVS99.57 3999.56 4499.62 12099.77 8099.33 16799.26 12299.76 6899.32 12099.80 6099.78 6699.29 3999.87 17099.15 8499.91 8399.66 75
ACMH98.42 699.59 3899.54 4599.72 7699.86 3099.62 9899.56 6499.79 5598.77 19699.80 6099.85 3799.64 1399.85 21098.70 13199.89 9299.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18199.57 16598.66 24799.24 13099.46 23099.67 5799.79 6599.65 13998.97 7699.89 14399.15 8499.89 9299.71 46
PVSNet_Blended_VisFu99.40 7699.38 7099.44 17599.90 1998.66 24798.94 20899.91 997.97 26699.79 6599.73 8799.05 6999.97 1799.15 8499.99 1299.68 58
N_pmnet98.73 21898.53 22499.35 20599.72 10898.67 24598.34 27194.65 36298.35 24099.79 6599.68 12498.03 18999.93 7198.28 15699.92 7499.44 202
ppachtmachnet_test98.89 19999.12 12498.20 30899.66 13695.24 34197.63 32799.68 10899.08 15699.78 6899.62 16098.65 12299.88 15798.02 17799.96 4299.48 186
nrg03099.70 1999.66 2199.82 2399.76 8499.84 1899.61 5399.70 9999.93 499.78 6899.68 12499.10 5999.78 27599.45 3699.96 4299.83 18
PMMVS299.48 5499.45 5799.57 13799.76 8498.99 21898.09 29499.90 1398.95 17199.78 6899.58 18499.57 2099.93 7199.48 3499.95 4999.79 30
TAMVS99.49 5299.45 5799.63 11199.48 20999.42 14499.45 7599.57 17599.66 6199.78 6899.83 4397.85 20699.86 19199.44 3799.96 4299.61 115
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1399.86 599.92 699.69 5299.78 6899.92 1699.37 3199.88 15798.93 11399.95 4999.60 119
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8599.69 2899.92 699.67 5799.77 7399.75 8099.61 1799.98 799.35 5199.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+98.40 899.50 5099.43 6299.71 8099.86 3099.76 4899.32 10299.77 6399.53 8599.77 7399.76 7699.26 4599.78 27597.77 20199.88 10099.60 119
test_241102_TWO99.54 19199.13 15199.76 7599.63 15198.32 16799.92 9097.85 19699.69 20799.75 40
Anonymous2024052999.42 6999.34 7899.65 10099.53 18299.60 10699.63 4799.39 25299.47 9599.76 7599.78 6698.13 18399.86 19198.70 13199.68 21099.49 181
DPE-MVScopyleft99.14 15198.92 18199.82 2399.57 16599.77 4298.74 23699.60 15798.55 21599.76 7599.69 11398.23 17599.92 9096.39 29099.75 17799.76 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Regformer-499.45 6399.44 5999.50 15799.52 18798.94 22599.17 15199.53 20099.64 6599.76 7599.60 17698.96 7999.90 12998.91 11499.84 12399.67 65
casdiffmvs99.63 3199.61 3199.67 8899.79 6699.59 10999.13 16799.85 2699.79 3499.76 7599.72 9399.33 3699.82 24899.21 7099.94 6299.59 128
GeoE99.69 2199.66 2199.78 3799.76 8499.76 4899.60 5899.82 3999.46 10099.75 8099.56 19599.63 1499.95 4599.43 3899.88 10099.62 106
pmmvs-eth3d99.48 5499.47 5399.51 15499.77 8099.41 14898.81 22599.66 11799.42 11099.75 8099.66 13499.20 4999.76 28598.98 10399.99 1299.36 225
Regformer-399.41 7399.41 6699.40 19199.52 18798.70 24399.17 15199.44 23599.62 6999.75 8099.60 17698.90 8699.85 21098.89 11599.84 12399.65 83
SD-MVS99.01 17999.30 8998.15 30999.50 19899.40 14998.94 20899.61 14699.22 13799.75 8099.82 4999.54 2195.51 36797.48 22699.87 10999.54 153
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS99.48 5499.36 7699.85 1899.55 17699.81 2999.50 6899.69 10598.99 16599.75 8099.71 10098.79 10199.93 7198.46 14399.85 11999.80 24
EI-MVSNet99.38 8399.44 5999.21 23399.58 15598.09 28399.26 12299.46 23099.62 6999.75 8099.67 13098.54 13599.85 21099.15 8499.92 7499.68 58
testgi99.29 10699.26 10199.37 20199.75 9598.81 23798.84 21899.89 1598.38 23399.75 8099.04 30999.36 3499.86 19199.08 9599.25 29799.45 197
MVSTER98.47 24998.22 25299.24 23099.06 31198.35 26999.08 18199.46 23099.27 12699.75 8099.66 13488.61 34499.85 21099.14 9099.92 7499.52 168
USDC98.96 18898.93 17799.05 25499.54 17797.99 28797.07 35199.80 4998.21 25299.75 8099.77 7398.43 15199.64 33797.90 18899.88 10099.51 170
Patchmatch-RL test98.60 23098.36 23999.33 20899.77 8099.07 21498.27 27899.87 2098.91 17899.74 8999.72 9390.57 33499.79 27298.55 13999.85 11999.11 274
FIs99.65 3099.58 3799.84 1999.84 3499.85 1399.66 4099.75 7599.86 1699.74 8999.79 6098.27 17099.85 21099.37 4999.93 7099.83 18
jason99.16 14799.11 12799.32 21299.75 9598.44 26198.26 27999.39 25298.70 20299.74 8999.30 26698.54 13599.97 1798.48 14299.82 14299.55 145
jason: jason.
DP-MVS99.48 5499.39 6899.74 6299.57 16599.62 9899.29 11699.61 14699.87 1499.74 8999.76 7698.69 11499.87 17098.20 16399.80 15699.75 40
test072699.69 12199.80 3499.24 13099.57 17599.16 14599.73 9399.65 13998.35 162
bset_n11_16_dypcd98.69 22298.45 22999.42 18199.69 12198.52 25696.06 35996.80 35499.71 4499.73 9399.54 20495.14 28499.96 3599.39 4699.95 4999.79 30
pmmvs599.19 13899.11 12799.42 18199.76 8498.88 23498.55 25399.73 8398.82 18999.72 9599.62 16096.56 25899.82 24899.32 5799.95 4999.56 142
Anonymous2023120699.35 9099.31 8499.47 16699.74 10199.06 21699.28 11799.74 8099.23 13499.72 9599.53 20797.63 22499.88 15799.11 9299.84 12399.48 186
CVMVSNet98.61 22898.88 18797.80 31899.58 15593.60 35199.26 12299.64 13499.66 6199.72 9599.67 13093.26 30299.93 7199.30 6099.81 15199.87 9
baseline99.63 3199.62 2699.66 9599.80 5699.62 9899.44 7899.80 4999.71 4499.72 9599.69 11399.15 5499.83 23899.32 5799.94 6299.53 158
Patchmtry98.78 21098.54 22299.49 16098.89 32599.19 19999.32 10299.67 11399.65 6399.72 9599.79 6091.87 31799.95 4598.00 18199.97 3099.33 231
UA-Net99.78 1399.76 1499.86 1699.72 10899.71 6799.91 399.95 499.96 299.71 10099.91 1999.15 5499.97 1799.50 33100.00 199.90 4
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4699.58 15599.64 9299.30 10999.63 13699.61 7399.71 10099.56 19598.76 10799.96 3599.14 9099.92 7499.68 58
tttt051797.62 29097.20 29998.90 27399.76 8497.40 30799.48 7294.36 36399.06 16299.70 10299.49 22184.55 36099.94 5798.73 12999.65 22499.36 225
UniMVSNet (Re)99.37 8599.26 10199.68 8699.51 19299.58 11298.98 20299.60 15799.43 10899.70 10299.36 25297.70 21399.88 15799.20 7399.87 10999.59 128
FMVSNet299.35 9099.28 9699.55 14499.49 20399.35 16499.45 7599.57 17599.44 10399.70 10299.74 8397.21 24199.87 17099.03 9899.94 6299.44 202
IU-MVS99.69 12199.77 4299.22 29197.50 29199.69 10597.75 20399.70 20499.77 33
VPNet99.46 6199.37 7399.71 8099.82 4499.59 10999.48 7299.70 9999.81 2999.69 10599.58 18497.66 22299.86 19199.17 8099.44 27099.67 65
D2MVS99.22 12799.19 11099.29 21899.69 12198.74 24198.81 22599.41 24298.55 21599.68 10799.69 11398.13 18399.87 17098.82 12099.98 2199.24 246
xiu_mvs_v1_base_debu99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
xiu_mvs_v1_base99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
xiu_mvs_v1_base_debi99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
ambc99.20 23599.35 24898.53 25499.17 15199.46 23099.67 11199.80 5498.46 14999.70 30297.92 18799.70 20499.38 219
UniMVSNet_NR-MVSNet99.37 8599.25 10399.72 7699.47 21499.56 11598.97 20499.61 14699.43 10899.67 11199.28 27197.85 20699.95 4599.17 8099.81 15199.65 83
DU-MVS99.33 9999.21 10899.71 8099.43 22799.56 11598.83 22099.53 20099.38 11299.67 11199.36 25297.67 21899.95 4599.17 8099.81 15199.63 95
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7399.70 8499.83 3899.70 7499.38 8699.78 6099.53 8599.67 11199.78 6699.19 5099.86 19197.32 23499.87 10999.55 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Regformer-199.32 10199.27 9999.47 16699.41 23398.95 22498.99 19899.48 22299.48 9099.66 11599.52 20998.78 10399.87 17098.36 14899.74 18599.60 119
Regformer-299.34 9599.27 9999.53 15099.41 23399.10 21098.99 19899.53 20099.47 9599.66 11599.52 20998.80 9899.89 14398.31 15499.74 18599.60 119
XVG-OURS99.21 13299.06 14499.65 10099.82 4499.62 9897.87 31899.74 8098.36 23599.66 11599.68 12499.71 999.90 12996.84 26799.88 10099.43 208
DeepPCF-MVS98.42 699.18 14299.02 15799.67 8899.22 28499.75 5197.25 34599.47 22698.72 20199.66 11599.70 10799.29 3999.63 33898.07 17699.81 15199.62 106
Baseline_NR-MVSNet99.49 5299.37 7399.82 2399.91 1599.84 1898.83 22099.86 2299.68 5399.65 11999.88 2897.67 21899.87 17099.03 9899.86 11699.76 37
abl_699.36 8899.23 10699.75 5699.71 11199.74 5799.33 9999.76 6899.07 15899.65 11999.63 15199.09 6199.92 9097.13 25299.76 17499.58 133
our_test_398.85 20499.09 13698.13 31099.66 13694.90 34497.72 32399.58 17399.07 15899.64 12199.62 16098.19 17999.93 7198.41 14599.95 4999.55 145
LPG-MVS_test99.22 12799.05 14899.74 6299.82 4499.63 9699.16 15799.73 8397.56 28699.64 12199.69 11399.37 3199.89 14396.66 27799.87 10999.69 52
LGP-MVS_train99.74 6299.82 4499.63 9699.73 8397.56 28699.64 12199.69 11399.37 3199.89 14396.66 27799.87 10999.69 52
ACMM98.09 1199.46 6199.38 7099.72 7699.80 5699.69 7899.13 16799.65 12898.99 16599.64 12199.72 9399.39 2599.86 19198.23 16099.81 15199.60 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AllTest99.21 13299.07 14299.63 11199.78 7299.64 9299.12 17199.83 3498.63 20799.63 12599.72 9398.68 11599.75 28996.38 29199.83 13399.51 170
TestCases99.63 11199.78 7299.64 9299.83 3498.63 20799.63 12599.72 9398.68 11599.75 28996.38 29199.83 13399.51 170
MDA-MVSNet-bldmvs99.06 16699.05 14899.07 25299.80 5697.83 29498.89 21099.72 9299.29 12299.63 12599.70 10796.47 26299.89 14398.17 16999.82 14299.50 176
TSAR-MVS + GP.99.12 15599.04 15499.38 19899.34 25899.16 20198.15 28699.29 27798.18 25599.63 12599.62 16099.18 5199.68 31998.20 16399.74 18599.30 237
XVG-OURS-SEG-HR99.16 14798.99 16899.66 9599.84 3499.64 9298.25 28099.73 8398.39 23299.63 12599.43 23799.70 1199.90 12997.34 23398.64 32999.44 202
MVSFormer99.41 7399.44 5999.31 21599.57 16598.40 26499.77 1199.80 4999.73 4099.63 12599.30 26698.02 19199.98 799.43 3899.69 20799.55 145
lupinMVS98.96 18898.87 18899.24 23099.57 16598.40 26498.12 29099.18 29798.28 24899.63 12599.13 29598.02 19199.97 1798.22 16199.69 20799.35 228
DVP-MVS99.32 10199.17 11299.77 4099.69 12199.80 3499.14 16199.31 27299.16 14599.62 13299.61 16998.35 16299.91 10897.88 19099.72 19899.61 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 14099.62 13299.61 16998.58 12999.91 10897.72 20599.80 15699.77 33
GBi-Net99.42 6999.31 8499.73 7099.49 20399.77 4299.68 3199.70 9999.44 10399.62 13299.83 4397.21 24199.90 12998.96 10799.90 8499.53 158
test199.42 6999.31 8499.73 7099.49 20399.77 4299.68 3199.70 9999.44 10399.62 13299.83 4397.21 24199.90 12998.96 10799.90 8499.53 158
new_pmnet98.88 20098.89 18698.84 27799.70 11897.62 30198.15 28699.50 21597.98 26599.62 13299.54 20498.15 18299.94 5797.55 22199.84 12398.95 300
FMVSNet398.80 20998.63 21199.32 21299.13 29998.72 24299.10 17499.48 22299.23 13499.62 13299.64 14192.57 30899.86 19198.96 10799.90 8499.39 217
CDS-MVSNet99.22 12799.13 12099.50 15799.35 24899.11 20698.96 20599.54 19199.46 10099.61 13899.70 10796.31 26999.83 23899.34 5299.88 10099.55 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet99.03 17398.85 19099.55 14499.80 5699.25 18399.73 1699.15 30099.37 11399.61 13899.71 10094.73 28999.81 26497.70 20899.88 10099.58 133
cl-mvsnet____98.54 24098.41 23498.92 26599.03 31597.80 29697.46 33799.59 16498.90 17999.60 14099.46 23293.85 29799.78 27597.97 18499.89 9299.17 262
cl-mvsnet198.54 24098.42 23398.92 26599.03 31597.80 29697.46 33799.59 16498.90 17999.60 14099.46 23293.87 29699.78 27597.97 18499.89 9299.18 260
XVG-ACMP-BASELINE99.23 11899.10 13599.63 11199.82 4499.58 11298.83 22099.72 9298.36 23599.60 14099.71 10098.92 8199.91 10897.08 25499.84 12399.40 214
miper_lstm_enhance98.65 22598.60 21298.82 28299.20 28997.33 30997.78 32199.66 11799.01 16499.59 14399.50 21694.62 29099.85 21098.12 17299.90 8499.26 243
YYNet198.95 19198.99 16898.84 27799.64 14097.14 31498.22 28299.32 26898.92 17799.59 14399.66 13497.40 23199.83 23898.27 15799.90 8499.55 145
eth_miper_zixun_eth98.68 22398.71 20398.60 29199.10 30796.84 32197.52 33599.54 19198.94 17299.58 14599.48 22496.25 27199.76 28598.01 18099.93 7099.21 253
pmmvs499.13 15399.06 14499.36 20499.57 16599.10 21098.01 30299.25 28698.78 19599.58 14599.44 23698.24 17299.76 28598.74 12899.93 7099.22 251
DeepC-MVS_fast98.47 599.23 11899.12 12499.56 14199.28 27599.22 19298.99 19899.40 24999.08 15699.58 14599.64 14198.90 8699.83 23897.44 22899.75 17799.63 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft99.19 13899.00 16399.73 7099.46 21999.73 6099.13 16799.52 20897.40 29699.57 14899.64 14198.93 8099.83 23897.61 21899.79 16199.63 95
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.99.34 9599.24 10499.63 11199.82 4499.37 15799.26 12299.35 26398.77 19699.57 14899.70 10799.27 4499.88 15797.71 20699.75 17799.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVS_3200maxsize99.31 10399.16 11399.74 6299.53 18299.75 5199.27 12099.61 14699.19 13999.57 14899.64 14198.76 10799.90 12997.29 23699.62 22999.56 142
WR-MVS99.11 15998.93 17799.66 9599.30 26999.42 14498.42 26899.37 25999.04 16399.57 14899.20 29096.89 25399.86 19198.66 13599.87 10999.70 49
SteuartSystems-ACMMP99.30 10499.14 11799.76 4699.87 2899.66 8599.18 14699.60 15798.55 21599.57 14899.67 13099.03 7199.94 5797.01 25699.80 15699.69 52
Skip Steuart: Steuart Systems R&D Blog.
ab-mvs99.33 9999.28 9699.47 16699.57 16599.39 15199.78 1099.43 23998.87 18399.57 14899.82 4998.06 18899.87 17098.69 13399.73 19299.15 266
CMPMVSbinary77.52 2398.50 24498.19 25799.41 18998.33 35399.56 11599.01 19199.59 16495.44 33799.57 14899.80 5495.64 28099.46 35796.47 28799.92 7499.21 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053097.45 29596.95 30698.94 26199.68 13097.73 29899.09 17894.19 36598.61 21099.56 15599.30 26684.30 36199.93 7198.27 15799.54 25599.16 264
Anonymous20240521198.75 21498.46 22899.63 11199.34 25899.66 8599.47 7497.65 34699.28 12599.56 15599.50 21693.15 30399.84 22798.62 13699.58 24299.40 214
VDD-MVS99.20 13499.11 12799.44 17599.43 22798.98 21999.50 6898.32 33799.80 3299.56 15599.69 11396.99 25199.85 21098.99 10199.73 19299.50 176
MDA-MVSNet_test_wron98.95 19198.99 16898.85 27599.64 14097.16 31398.23 28199.33 26698.93 17599.56 15599.66 13497.39 23399.83 23898.29 15599.88 10099.55 145
EPP-MVSNet99.17 14699.00 16399.66 9599.80 5699.43 14199.70 2299.24 28999.48 9099.56 15599.77 7394.89 28699.93 7198.72 13099.89 9299.63 95
test_part299.62 14699.67 8399.55 160
UnsupCasMVSNet_eth98.83 20598.57 21899.59 12799.68 13099.45 13598.99 19899.67 11399.48 9099.55 16099.36 25294.92 28599.86 19198.95 11196.57 35899.45 197
CL-MVSNet_2432*160098.71 22098.56 22199.15 24199.22 28498.66 24797.14 34899.51 21198.09 25999.54 16299.27 27396.87 25499.74 29198.43 14498.96 31199.03 291
cl_fuxian98.72 21998.71 20398.72 28799.12 30197.22 31297.68 32699.56 18098.90 17999.54 16299.48 22496.37 26899.73 29497.88 19099.88 10099.21 253
MSP-MVS99.04 17298.79 19999.81 2699.78 7299.73 6099.35 9599.57 17598.54 21899.54 16298.99 31696.81 25599.93 7196.97 25899.53 25799.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 20298.59 21499.71 8099.50 19899.62 9899.01 19199.57 17596.80 31999.54 16299.63 15198.29 16899.91 10895.24 32799.71 20299.61 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TinyColmap98.97 18598.93 17799.07 25299.46 21998.19 27597.75 32299.75 7598.79 19399.54 16299.70 10798.97 7699.62 33996.63 27999.83 13399.41 212
ACMMP_NAP99.28 10799.11 12799.79 3499.75 9599.81 2998.95 20699.53 20098.27 24999.53 16799.73 8798.75 10999.87 17097.70 20899.83 13399.68 58
MSDG99.08 16498.98 17199.37 20199.60 14999.13 20497.54 33199.74 8098.84 18899.53 16799.55 20299.10 5999.79 27297.07 25599.86 11699.18 260
SR-MVS-dyc-post99.27 11199.11 12799.73 7099.54 17799.74 5799.26 12299.62 13999.16 14599.52 16999.64 14198.41 15499.91 10897.27 23999.61 23699.54 153
RE-MVS-def99.13 12099.54 17799.74 5799.26 12299.62 13999.16 14599.52 16999.64 14198.57 13097.27 23999.61 23699.54 153
miper_ehance_all_eth98.59 23398.59 21498.59 29298.98 31897.07 31597.49 33699.52 20898.50 22199.52 16999.37 24796.41 26699.71 30097.86 19499.62 22999.00 297
OPM-MVS99.26 11399.13 12099.63 11199.70 11899.61 10498.58 24799.48 22298.50 22199.52 16999.63 15199.14 5699.76 28597.89 18999.77 17199.51 170
ACMMPcopyleft99.25 11499.08 13899.74 6299.79 6699.68 8199.50 6899.65 12898.07 26099.52 16999.69 11398.57 13099.92 9097.18 24999.79 16199.63 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast99.43 6699.30 8999.80 2999.83 3899.81 2999.52 6699.70 9998.35 24099.51 17499.50 21699.31 3799.88 15798.18 16799.84 12399.69 52
pmmvs398.08 27597.80 28298.91 26799.41 23397.69 30097.87 31899.66 11795.87 33199.50 17599.51 21390.35 33699.97 1798.55 13999.47 26799.08 282
RPSCF99.18 14299.02 15799.64 10799.83 3899.85 1399.44 7899.82 3998.33 24599.50 17599.78 6697.90 20099.65 33596.78 27099.83 13399.44 202
test117299.23 11899.05 14899.74 6299.52 18799.75 5199.20 14099.61 14698.97 16799.48 17799.58 18498.41 15499.91 10897.15 25199.55 24899.57 139
diffmvs99.34 9599.32 8399.39 19499.67 13598.77 24098.57 25199.81 4899.61 7399.48 17799.41 23998.47 14699.86 19198.97 10599.90 8499.53 158
SR-MVS99.19 13899.00 16399.74 6299.51 19299.72 6499.18 14699.60 15798.85 18599.47 17999.58 18498.38 15999.92 9096.92 26099.54 25599.57 139
VNet99.18 14299.06 14499.56 14199.24 28299.36 16099.33 9999.31 27299.67 5799.47 17999.57 19296.48 26199.84 22799.15 8499.30 29199.47 191
ACMP97.51 1499.05 16998.84 19299.67 8899.78 7299.55 11898.88 21199.66 11797.11 31199.47 17999.60 17699.07 6699.89 14396.18 29999.85 11999.58 133
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline197.73 28697.33 29498.96 25999.30 26997.73 29899.40 8298.42 33399.33 11999.46 18299.21 28891.18 32399.82 24898.35 15091.26 36499.32 234
Test_1112_low_res98.95 19198.73 20199.63 11199.68 13099.15 20398.09 29499.80 4997.14 30999.46 18299.40 24196.11 27499.89 14399.01 10099.84 12399.84 14
MP-MVS-pluss99.14 15198.92 18199.80 2999.83 3899.83 2298.61 24399.63 13696.84 31799.44 18499.58 18498.81 9499.91 10897.70 20899.82 14299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MS-PatchMatch99.00 18198.97 17299.09 24899.11 30698.19 27598.76 23599.33 26698.49 22399.44 18499.58 18498.21 17699.69 30898.20 16399.62 22999.39 217
OMC-MVS98.90 19698.72 20299.44 17599.39 23899.42 14498.58 24799.64 13497.31 30199.44 18499.62 16098.59 12899.69 30896.17 30099.79 16199.22 251
OpenMVS_ROBcopyleft97.31 1797.36 29996.84 31098.89 27499.29 27299.45 13598.87 21499.48 22286.54 36299.44 18499.74 8397.34 23699.86 19191.61 35199.28 29397.37 356
miper_enhance_ethall98.03 27797.94 27598.32 30398.27 35496.43 32796.95 35299.41 24296.37 32599.43 18898.96 32494.74 28899.69 30897.71 20699.62 22998.83 311
1112_ss99.05 16998.84 19299.67 8899.66 13699.29 17398.52 25899.82 3997.65 28399.43 18899.16 29396.42 26499.91 10899.07 9699.84 12399.80 24
xxxxxxxxxxxxxcwj99.11 15998.96 17499.54 14899.53 18299.25 18398.29 27699.76 6899.07 15899.42 19099.61 16998.86 8999.87 17096.45 28899.68 21099.49 181
SF-MVS99.10 16398.93 17799.62 12099.58 15599.51 12199.13 16799.65 12897.97 26699.42 19099.61 16998.86 8999.87 17096.45 28899.68 21099.49 181
zzz-MVS99.30 10499.14 11799.80 2999.81 5199.81 2998.73 23899.53 20099.27 12699.42 19099.63 15198.21 17699.95 4597.83 19999.79 16199.65 83
xiu_mvs_v2_base99.02 17599.11 12798.77 28499.37 24498.09 28398.13 28999.51 21199.47 9599.42 19098.54 34899.38 2999.97 1798.83 11899.33 28898.24 339
MTAPA99.35 9099.20 10999.80 2999.81 5199.81 2999.33 9999.53 20099.27 12699.42 19099.63 15198.21 17699.95 4597.83 19999.79 16199.65 83
PGM-MVS99.20 13499.01 16099.77 4099.75 9599.71 6799.16 15799.72 9297.99 26499.42 19099.60 17698.81 9499.93 7196.91 26199.74 18599.66 75
114514_t98.49 24798.11 26299.64 10799.73 10499.58 11299.24 13099.76 6889.94 35999.42 19099.56 19597.76 21299.86 19197.74 20499.82 14299.47 191
PMVScopyleft92.94 2198.82 20798.81 19698.85 27599.84 3497.99 28799.20 14099.47 22699.71 4499.42 19099.82 4998.09 18599.47 35593.88 34699.85 11999.07 287
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
cl-mvsnet297.56 29397.28 29598.40 29998.37 35296.75 32297.24 34699.37 25997.31 30199.41 19899.22 28687.30 34699.37 35997.70 20899.62 22999.08 282
PS-MVSNAJ99.00 18199.08 13898.76 28599.37 24498.10 28298.00 30499.51 21199.47 9599.41 19898.50 35199.28 4199.97 1798.83 11899.34 28698.20 343
DSMNet-mixed99.48 5499.65 2398.95 26099.71 11197.27 31099.50 6899.82 3999.59 8199.41 19899.85 3799.62 16100.00 199.53 2999.89 9299.59 128
DELS-MVS99.34 9599.30 8999.48 16499.51 19299.36 16098.12 29099.53 20099.36 11599.41 19899.61 16999.22 4799.87 17099.21 7099.68 21099.20 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.37 8599.29 9499.60 12599.71 11199.46 13099.43 8099.85 2698.79 19399.41 19899.60 17698.92 8199.92 9098.02 17799.92 7499.43 208
DROMVSNet99.61 3699.62 2699.59 12799.63 14299.89 799.68 3199.95 499.77 3899.40 20399.27 27399.48 2299.91 10899.54 2699.82 14298.98 298
test_040299.22 12799.14 11799.45 17399.79 6699.43 14199.28 11799.68 10899.54 8399.40 20399.56 19599.07 6699.82 24896.01 30499.96 4299.11 274
LF4IMVS99.01 17998.92 18199.27 22399.71 11199.28 17598.59 24699.77 6398.32 24699.39 20599.41 23998.62 12499.84 22796.62 28099.84 12398.69 316
VDDNet98.97 18598.82 19599.42 18199.71 11198.81 23799.62 4898.68 32199.81 2999.38 20699.80 5494.25 29399.85 21098.79 12299.32 28999.59 128
sss98.90 19698.77 20099.27 22399.48 20998.44 26198.72 23999.32 26897.94 27099.37 20799.35 25796.31 26999.91 10898.85 11799.63 22899.47 191
HFP-MVS99.25 11499.08 13899.76 4699.73 10499.70 7499.31 10699.59 16498.36 23599.36 20899.37 24798.80 9899.91 10897.43 22999.75 17799.68 58
#test#99.12 15598.90 18599.76 4699.73 10499.70 7499.10 17499.59 16497.60 28599.36 20899.37 24798.80 9899.91 10896.84 26799.75 17799.68 58
ACMMPR99.23 11899.06 14499.76 4699.74 10199.69 7899.31 10699.59 16498.36 23599.35 21099.38 24698.61 12699.93 7197.43 22999.75 17799.67 65
HPM-MVScopyleft99.25 11499.07 14299.78 3799.81 5199.75 5199.61 5399.67 11397.72 28099.35 21099.25 27999.23 4699.92 9097.21 24799.82 14299.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator99.15 299.43 6699.36 7699.65 10099.39 23899.42 14499.70 2299.56 18099.23 13499.35 21099.80 5499.17 5299.95 4598.21 16299.84 12399.59 128
PVSNet_BlendedMVS99.03 17399.01 16099.09 24899.54 17797.99 28798.58 24799.82 3997.62 28499.34 21399.71 10098.52 14299.77 28397.98 18299.97 3099.52 168
PVSNet_Blended98.70 22198.59 21499.02 25699.54 17797.99 28797.58 33099.82 3995.70 33599.34 21398.98 31998.52 14299.77 28397.98 18299.83 13399.30 237
MIMVSNet98.43 25298.20 25499.11 24699.53 18298.38 26799.58 6198.61 32598.96 17099.33 21599.76 7690.92 32799.81 26497.38 23299.76 17499.15 266
ITE_SJBPF99.38 19899.63 14299.44 13799.73 8398.56 21399.33 21599.53 20798.88 8899.68 31996.01 30499.65 22499.02 295
hse-mvs398.61 22898.34 24299.44 17599.60 14998.67 24599.27 12099.44 23599.68 5399.32 21799.49 22192.50 311100.00 199.24 6796.51 35999.65 83
hse-mvs298.52 24298.30 24699.16 23999.29 27298.60 25298.77 23399.02 30899.68 5399.32 21799.04 30992.50 31199.85 21099.24 6797.87 35099.03 291
GST-MVS99.16 14798.96 17499.75 5699.73 10499.73 6099.20 14099.55 18698.22 25199.32 21799.35 25798.65 12299.91 10896.86 26499.74 18599.62 106
region2R99.23 11899.05 14899.77 4099.76 8499.70 7499.31 10699.59 16498.41 22999.32 21799.36 25298.73 11299.93 7197.29 23699.74 18599.67 65
MVP-Stereo99.16 14799.08 13899.43 17999.48 20999.07 21499.08 18199.55 18698.63 20799.31 22199.68 12498.19 17999.78 27598.18 16799.58 24299.45 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LFMVS98.46 25098.19 25799.26 22599.24 28298.52 25699.62 4896.94 35399.87 1499.31 22199.58 18491.04 32599.81 26498.68 13499.42 27599.45 197
MVS_111021_LR99.13 15399.03 15699.42 18199.58 15599.32 16997.91 31799.73 8398.68 20399.31 22199.48 22499.09 6199.66 32897.70 20899.77 17199.29 240
MVS-HIRNet97.86 28198.22 25296.76 33799.28 27591.53 36398.38 27092.60 36799.13 15199.31 22199.96 1097.18 24599.68 31998.34 15199.83 13399.07 287
tmp_tt95.75 33195.42 32996.76 33789.90 37094.42 34698.86 21597.87 34478.01 36399.30 22599.69 11397.70 21395.89 36699.29 6398.14 34499.95 1
9.1498.64 20999.45 22298.81 22599.60 15797.52 29099.28 22699.56 19598.53 13999.83 23895.36 32699.64 226
CS-MVS99.40 7699.43 6299.29 21899.44 22499.72 6499.36 9399.91 999.71 4499.28 22698.83 33499.22 4799.86 19199.40 4599.77 17198.29 336
CPTT-MVS98.74 21698.44 23199.64 10799.61 14799.38 15499.18 14699.55 18696.49 32299.27 22899.37 24797.11 24799.92 9095.74 31799.67 21799.62 106
CLD-MVS98.76 21398.57 21899.33 20899.57 16598.97 22197.53 33399.55 18696.41 32399.27 22899.13 29599.07 6699.78 27596.73 27399.89 9299.23 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42098.41 25498.41 23498.40 29999.34 25895.89 33596.94 35399.44 23598.80 19299.25 23099.52 20993.51 30199.98 798.94 11299.98 2199.32 234
FMVSNet597.80 28397.25 29799.42 18198.83 33198.97 22199.38 8699.80 4998.87 18399.25 23099.69 11380.60 36699.91 10898.96 10799.90 8499.38 219
PHI-MVS99.11 15998.95 17699.59 12799.13 29999.59 10999.17 15199.65 12897.88 27299.25 23099.46 23298.97 7699.80 26997.26 24199.82 14299.37 222
Vis-MVSNet (Re-imp)98.77 21198.58 21799.34 20699.78 7298.88 23499.61 5399.56 18099.11 15599.24 23399.56 19593.00 30699.78 27597.43 22999.89 9299.35 228
ETH3D-3000-0.198.77 21198.50 22699.59 12799.47 21499.53 12098.77 23399.60 15797.33 30099.23 23499.50 21697.91 19999.83 23895.02 33199.67 21799.41 212
CANet99.11 15999.05 14899.28 22198.83 33198.56 25398.71 24199.41 24299.25 13099.23 23499.22 28697.66 22299.94 5799.19 7599.97 3099.33 231
Patchmatch-test98.10 27497.98 26998.48 29699.27 27796.48 32599.40 8299.07 30498.81 19099.23 23499.57 19290.11 33899.87 17096.69 27499.64 22699.09 279
MG-MVS98.52 24298.39 23698.94 26199.15 29697.39 30898.18 28399.21 29598.89 18299.23 23499.63 15197.37 23599.74 29194.22 34099.61 23699.69 52
test_yl98.25 26697.95 27199.13 24399.17 29498.47 25899.00 19398.67 32398.97 16799.22 23899.02 31491.31 32199.69 30897.26 24198.93 31299.24 246
DCV-MVSNet98.25 26697.95 27199.13 24399.17 29498.47 25899.00 19398.67 32398.97 16799.22 23899.02 31491.31 32199.69 30897.26 24198.93 31299.24 246
test0.0.03 197.37 29896.91 30998.74 28697.72 36197.57 30297.60 32997.36 35298.00 26299.21 24098.02 35890.04 33999.79 27298.37 14795.89 36298.86 308
MVS_Test99.28 10799.31 8499.19 23699.35 24898.79 23999.36 9399.49 22099.17 14399.21 24099.67 13098.78 10399.66 32899.09 9499.66 22199.10 276
CDPH-MVS98.56 23698.20 25499.61 12399.50 19899.46 13098.32 27499.41 24295.22 34099.21 24099.10 30298.34 16499.82 24895.09 33099.66 22199.56 142
WTY-MVS98.59 23398.37 23899.26 22599.43 22798.40 26498.74 23699.13 30398.10 25799.21 24099.24 28494.82 28799.90 12997.86 19498.77 32199.49 181
MDTV_nov1_ep13_2view91.44 36499.14 16197.37 29899.21 24091.78 31996.75 27199.03 291
BH-untuned98.22 27098.09 26398.58 29399.38 24197.24 31198.55 25398.98 31197.81 27899.20 24598.76 33997.01 25099.65 33594.83 33298.33 33798.86 308
testtj98.56 23698.17 25999.72 7699.45 22299.60 10698.88 21199.50 21596.88 31499.18 24699.48 22497.08 24899.92 9093.69 34799.38 27999.63 95
CR-MVSNet98.35 26198.20 25498.83 27999.05 31298.12 27999.30 10999.67 11397.39 29799.16 24799.79 6091.87 31799.91 10898.78 12598.77 32198.44 331
RPMNet98.60 23098.53 22498.83 27999.05 31298.12 27999.30 10999.62 13999.86 1699.16 24799.74 8392.53 31099.92 9098.75 12798.77 32198.44 331
thisisatest051596.98 30696.42 31398.66 29099.42 23297.47 30497.27 34494.30 36497.24 30399.15 24998.86 33385.01 35899.87 17097.10 25399.39 27898.63 317
LS3D99.24 11799.11 12799.61 12398.38 35199.79 3699.57 6299.68 10899.61 7399.15 24999.71 10098.70 11399.91 10897.54 22299.68 21099.13 273
ZNCC-MVS99.22 12799.04 15499.77 4099.76 8499.73 6099.28 11799.56 18098.19 25499.14 25199.29 26998.84 9299.92 9097.53 22499.80 15699.64 90
HQP_MVS98.90 19698.68 20899.55 14499.58 15599.24 18898.80 22899.54 19198.94 17299.14 25199.25 27997.24 23999.82 24895.84 31399.78 16799.60 119
plane_prior399.31 17098.36 23599.14 251
3Dnovator+98.92 399.35 9099.24 10499.67 8899.35 24899.47 12699.62 4899.50 21599.44 10399.12 25499.78 6698.77 10699.94 5797.87 19399.72 19899.62 106
ZD-MVS99.43 22799.61 10499.43 23996.38 32499.11 25599.07 30497.86 20499.92 9094.04 34399.49 264
PatchMatch-RL98.68 22398.47 22799.30 21799.44 22499.28 17598.14 28899.54 19197.12 31099.11 25599.25 27997.80 20999.70 30296.51 28499.30 29198.93 302
SCA98.11 27398.36 23997.36 32999.20 28992.99 35498.17 28598.49 33198.24 25099.10 25799.57 19296.01 27699.94 5796.86 26499.62 22999.14 270
PatchT98.45 25198.32 24598.83 27998.94 32098.29 27099.24 13098.82 31699.84 2399.08 25899.76 7691.37 32099.94 5798.82 12099.00 31098.26 338
UnsupCasMVSNet_bld98.55 23998.27 24899.40 19199.56 17599.37 15797.97 31099.68 10897.49 29299.08 25899.35 25795.41 28399.82 24897.70 20898.19 34299.01 296
MVS_111021_HR99.12 15599.02 15799.40 19199.50 19899.11 20697.92 31599.71 9598.76 19999.08 25899.47 22999.17 5299.54 34897.85 19699.76 17499.54 153
TAPA-MVS97.92 1398.03 27797.55 29199.46 16999.47 21499.44 13798.50 26099.62 13986.79 36099.07 26199.26 27798.26 17199.62 33997.28 23899.73 19299.31 236
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CP-MVS99.23 11899.05 14899.75 5699.66 13699.66 8599.38 8699.62 13998.38 23399.06 26299.27 27398.79 10199.94 5797.51 22599.82 14299.66 75
MCST-MVS99.02 17598.81 19699.65 10099.58 15599.49 12398.58 24799.07 30498.40 23199.04 26399.25 27998.51 14499.80 26997.31 23599.51 26099.65 83
mPP-MVS99.19 13899.00 16399.76 4699.76 8499.68 8199.38 8699.54 19198.34 24499.01 26499.50 21698.53 13999.93 7197.18 24999.78 16799.66 75
PVSNet97.47 1598.42 25398.44 23198.35 30199.46 21996.26 32896.70 35699.34 26597.68 28299.00 26599.13 29597.40 23199.72 29697.59 22099.68 21099.08 282
CS-MVS-test99.20 13499.22 10799.12 24599.30 26999.78 3999.35 9599.90 1399.47 9598.98 26698.52 34998.83 9399.87 17099.10 9399.55 24897.72 351
Fast-Effi-MVS+-dtu99.20 13499.12 12499.43 17999.25 28099.69 7899.05 18499.82 3999.50 8898.97 26799.05 30698.98 7499.98 798.20 16399.24 29998.62 318
MP-MVScopyleft99.06 16698.83 19499.76 4699.76 8499.71 6799.32 10299.50 21598.35 24098.97 26799.48 22498.37 16099.92 9095.95 31099.75 17799.63 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PCF-MVS96.03 1896.73 31295.86 32399.33 20899.44 22499.16 20196.87 35499.44 23586.58 36198.95 26999.40 24194.38 29299.88 15787.93 35999.80 15698.95 300
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
旧先验297.94 31395.33 33998.94 27099.88 15796.75 271
ETV-MVS99.18 14299.18 11199.16 23999.34 25899.28 17599.12 17199.79 5599.48 9098.93 27198.55 34799.40 2499.93 7198.51 14199.52 25998.28 337
BH-RMVSNet98.41 25498.14 26199.21 23399.21 28698.47 25898.60 24598.26 33898.35 24098.93 27199.31 26497.20 24499.66 32894.32 33899.10 30499.51 170
F-COLMAP98.74 21698.45 22999.62 12099.57 16599.47 12698.84 21899.65 12896.31 32698.93 27199.19 29297.68 21799.87 17096.52 28399.37 28399.53 158
Effi-MVS+-dtu99.07 16598.92 18199.52 15198.89 32599.78 3999.15 15999.66 11799.34 11698.92 27499.24 28497.69 21599.98 798.11 17399.28 29398.81 312
EMVS96.96 30797.28 29595.99 34798.76 34191.03 36595.26 36298.61 32599.34 11698.92 27498.88 33293.79 29899.66 32892.87 34899.05 30697.30 357
tpmrst97.73 28698.07 26496.73 33998.71 34392.00 35899.10 17498.86 31398.52 21998.92 27499.54 20491.90 31599.82 24898.02 17799.03 30898.37 333
MSLP-MVS++99.05 16999.09 13698.91 26799.21 28698.36 26898.82 22499.47 22698.85 18598.90 27799.56 19598.78 10399.09 36198.57 13899.68 21099.26 243
KD-MVS_2432*160095.89 32795.41 33097.31 33294.96 36693.89 34897.09 34999.22 29197.23 30498.88 27899.04 30979.23 36899.54 34896.24 29796.81 35698.50 329
miper_refine_blended95.89 32795.41 33097.31 33294.96 36693.89 34897.09 34999.22 29197.23 30498.88 27899.04 30979.23 36899.54 34896.24 29796.81 35698.50 329
E-PMN97.14 30497.43 29296.27 34498.79 33791.62 36295.54 36199.01 31099.44 10398.88 27899.12 29992.78 30799.68 31994.30 33999.03 30897.50 353
testdata99.42 18199.51 19298.93 22999.30 27596.20 32798.87 28199.40 24198.33 16699.89 14396.29 29499.28 29399.44 202
CANet_DTU98.91 19498.85 19099.09 24898.79 33798.13 27898.18 28399.31 27299.48 9098.86 28299.51 21396.56 25899.95 4599.05 9799.95 4999.19 258
DP-MVS Recon98.50 24498.23 25199.31 21599.49 20399.46 13098.56 25299.63 13694.86 34698.85 28399.37 24797.81 20899.59 34596.08 30199.44 27098.88 306
EIA-MVS99.12 15599.01 16099.45 17399.36 24699.62 9899.34 9799.79 5598.41 22998.84 28498.89 33198.75 10999.84 22798.15 17199.51 26098.89 305
DPM-MVS98.28 26497.94 27599.32 21299.36 24699.11 20697.31 34398.78 31896.88 31498.84 28499.11 30197.77 21199.61 34394.03 34499.36 28499.23 249
MDTV_nov1_ep1397.73 28698.70 34490.83 36699.15 15998.02 34098.51 22098.82 28699.61 16990.98 32699.66 32896.89 26398.92 314
GA-MVS97.99 28097.68 28898.93 26499.52 18798.04 28697.19 34799.05 30798.32 24698.81 28798.97 32289.89 34199.41 35898.33 15299.05 30699.34 230
AdaColmapbinary98.60 23098.35 24199.38 19899.12 30199.22 19298.67 24299.42 24197.84 27798.81 28799.27 27397.32 23799.81 26495.14 32899.53 25799.10 276
CNVR-MVS98.99 18498.80 19899.56 14199.25 28099.43 14198.54 25699.27 28198.58 21298.80 28999.43 23798.53 13999.70 30297.22 24699.59 24199.54 153
Effi-MVS+99.06 16698.97 17299.34 20699.31 26598.98 21998.31 27599.91 998.81 19098.79 29098.94 32699.14 5699.84 22798.79 12298.74 32599.20 256
PatchmatchNetpermissive97.65 28997.80 28297.18 33498.82 33492.49 35699.17 15198.39 33598.12 25698.79 29099.58 18490.71 33299.89 14397.23 24599.41 27699.16 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ETH3D cwj APD-0.1698.50 24498.16 26099.51 15499.04 31499.39 15198.47 26299.47 22696.70 32198.78 29299.33 26197.62 22599.86 19194.69 33699.38 27999.28 242
QAPM98.40 25697.99 26799.65 10099.39 23899.47 12699.67 3699.52 20891.70 35698.78 29299.80 5498.55 13399.95 4594.71 33599.75 17799.53 158
XVS99.27 11199.11 12799.75 5699.71 11199.71 6799.37 9099.61 14699.29 12298.76 29499.47 22998.47 14699.88 15797.62 21699.73 19299.67 65
X-MVStestdata96.09 32494.87 33499.75 5699.71 11199.71 6799.37 9099.61 14699.29 12298.76 29461.30 37298.47 14699.88 15797.62 21699.73 19299.67 65
HY-MVS98.23 998.21 27197.95 27198.99 25799.03 31598.24 27199.61 5398.72 32096.81 31898.73 29699.51 21394.06 29499.86 19196.91 26198.20 34098.86 308
alignmvs98.28 26497.96 27099.25 22899.12 30198.93 22999.03 18898.42 33399.64 6598.72 29797.85 36090.86 33099.62 33998.88 11699.13 30299.19 258
thres600view796.60 31596.16 31797.93 31499.63 14296.09 33299.18 14697.57 34798.77 19698.72 29797.32 36687.04 34999.72 29688.57 35798.62 33097.98 348
thres100view90096.39 31896.03 32097.47 32699.63 14295.93 33399.18 14697.57 34798.75 20098.70 29997.31 36787.04 34999.67 32487.62 36098.51 33496.81 358
test22299.51 19299.08 21397.83 32099.29 27795.21 34198.68 30099.31 26497.28 23899.38 27999.43 208
API-MVS98.38 25798.39 23698.35 30198.83 33199.26 17999.14 16199.18 29798.59 21198.66 30198.78 33898.61 12699.57 34794.14 34199.56 24496.21 360
canonicalmvs99.02 17599.00 16399.09 24899.10 30798.70 24399.61 5399.66 11799.63 6898.64 30297.65 36299.04 7099.54 34898.79 12298.92 31499.04 290
Fast-Effi-MVS+99.02 17598.87 18899.46 16999.38 24199.50 12299.04 18699.79 5597.17 30798.62 30398.74 34099.34 3599.95 4598.32 15399.41 27698.92 303
EPMVS96.53 31696.32 31497.17 33598.18 35792.97 35599.39 8489.95 36998.21 25298.61 30499.59 18286.69 35699.72 29696.99 25799.23 30198.81 312
新几何199.52 15199.50 19899.22 19299.26 28395.66 33698.60 30599.28 27197.67 21899.89 14395.95 31099.32 28999.45 197
HPM-MVS++copyleft98.96 18898.70 20699.74 6299.52 18799.71 6798.86 21599.19 29698.47 22598.59 30699.06 30598.08 18799.91 10896.94 25999.60 23999.60 119
PLCcopyleft97.35 1698.36 25897.99 26799.48 16499.32 26499.24 18898.50 26099.51 21195.19 34298.58 30798.96 32496.95 25299.83 23895.63 31899.25 29799.37 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UGNet99.38 8399.34 7899.49 16098.90 32298.90 23399.70 2299.35 26399.86 1698.57 30899.81 5298.50 14599.93 7199.38 4799.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM_NR98.36 25898.04 26599.33 20899.48 20998.93 22998.79 23199.28 28097.54 28898.56 30998.57 34597.12 24699.69 30894.09 34298.90 31699.38 219
ETH3 D test640097.76 28597.19 30099.50 15799.38 24199.26 17998.34 27199.49 22092.99 35398.54 31099.20 29095.92 27899.82 24891.14 35499.66 22199.40 214
tfpn200view996.30 32195.89 32197.53 32499.58 15596.11 33099.00 19397.54 35098.43 22698.52 31196.98 36986.85 35199.67 32487.62 36098.51 33496.81 358
112198.56 23698.24 25099.52 15199.49 20399.24 18899.30 10999.22 29195.77 33398.52 31199.29 26997.39 23399.85 21095.79 31599.34 28699.46 195
thres40096.40 31795.89 32197.92 31599.58 15596.11 33099.00 19397.54 35098.43 22698.52 31196.98 36986.85 35199.67 32487.62 36098.51 33497.98 348
CNLPA98.57 23598.34 24299.28 22199.18 29399.10 21098.34 27199.41 24298.48 22498.52 31198.98 31997.05 24999.78 27595.59 31999.50 26298.96 299
PMMVS98.49 24798.29 24799.11 24698.96 31998.42 26397.54 33199.32 26897.53 28998.47 31598.15 35797.88 20399.82 24897.46 22799.24 29999.09 279
test1299.54 14899.29 27299.33 16799.16 29998.43 31697.54 22699.82 24899.47 26799.48 186
NCCC98.82 20798.57 21899.58 13299.21 28699.31 17098.61 24399.25 28698.65 20598.43 31699.26 27797.86 20499.81 26496.55 28199.27 29699.61 115
thres20096.09 32495.68 32797.33 33199.48 20996.22 32998.53 25797.57 34798.06 26198.37 31896.73 37186.84 35399.61 34386.99 36398.57 33196.16 361
mvs-test198.83 20598.70 20699.22 23298.89 32599.65 9098.88 21199.66 11799.34 11698.29 31998.94 32697.69 21599.96 3598.11 17398.54 33398.04 347
tpm97.15 30296.95 30697.75 32098.91 32194.24 34799.32 10297.96 34197.71 28198.29 31999.32 26286.72 35599.92 9098.10 17596.24 36199.09 279
原ACMM199.37 20199.47 21498.87 23699.27 28196.74 32098.26 32199.32 26297.93 19899.82 24895.96 30999.38 27999.43 208
ADS-MVSNet297.78 28497.66 29098.12 31199.14 29795.36 33999.22 13798.75 31996.97 31298.25 32299.64 14190.90 32899.94 5796.51 28499.56 24499.08 282
ADS-MVSNet97.72 28897.67 28997.86 31699.14 29794.65 34599.22 13798.86 31396.97 31298.25 32299.64 14190.90 32899.84 22796.51 28499.56 24499.08 282
dp96.86 30897.07 30296.24 34598.68 34590.30 36999.19 14598.38 33697.35 29998.23 32499.59 18287.23 34799.82 24896.27 29598.73 32798.59 320
TR-MVS97.44 29697.15 30198.32 30398.53 34897.46 30598.47 26297.91 34396.85 31698.21 32598.51 35096.42 26499.51 35392.16 35097.29 35497.98 348
HQP-NCC99.31 26597.98 30797.45 29398.15 326
ACMP_Plane99.31 26597.98 30797.45 29398.15 326
HQP4-MVS98.15 32699.70 30299.53 158
HQP-MVS98.36 25898.02 26699.39 19499.31 26598.94 22597.98 30799.37 25997.45 29398.15 32698.83 33496.67 25699.70 30294.73 33399.67 21799.53 158
CostFormer96.71 31396.79 31296.46 34398.90 32290.71 36799.41 8198.68 32194.69 34998.14 33099.34 26086.32 35799.80 26997.60 21998.07 34698.88 306
OpenMVScopyleft98.12 1098.23 26997.89 28199.26 22599.19 29199.26 17999.65 4599.69 10591.33 35798.14 33099.77 7398.28 16999.96 3595.41 32499.55 24898.58 322
test_prior398.62 22798.34 24299.46 16999.35 24899.22 19297.95 31199.39 25297.87 27398.05 33299.05 30697.90 20099.69 30895.99 30699.49 26499.48 186
test_prior297.95 31197.87 27398.05 33299.05 30697.90 20095.99 30699.49 264
MAR-MVS98.24 26897.92 27799.19 23698.78 33999.65 9099.17 15199.14 30195.36 33898.04 33498.81 33797.47 22899.72 29695.47 32399.06 30598.21 341
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR97.56 29397.07 30299.04 25598.80 33698.11 28197.63 32799.25 28694.56 35098.02 33598.25 35697.43 23099.68 31990.90 35598.74 32599.33 231
BH-w/o97.20 30197.01 30497.76 31999.08 31095.69 33698.03 30198.52 32895.76 33497.96 33698.02 35895.62 28199.47 35592.82 34997.25 35598.12 345
TEST999.35 24899.35 16498.11 29299.41 24294.83 34897.92 33798.99 31698.02 19199.85 210
train_agg98.35 26197.95 27199.57 13799.35 24899.35 16498.11 29299.41 24294.90 34497.92 33798.99 31698.02 19199.85 21095.38 32599.44 27099.50 176
tpm296.35 31996.22 31696.73 33998.88 32891.75 36199.21 13998.51 32993.27 35297.89 33999.21 28884.83 35999.70 30296.04 30398.18 34398.75 315
JIA-IIPM98.06 27697.92 27798.50 29598.59 34697.02 31698.80 22898.51 32999.88 1397.89 33999.87 3191.89 31699.90 12998.16 17097.68 35298.59 320
test_899.34 25899.31 17098.08 29699.40 24994.90 34497.87 34198.97 32298.02 19199.84 227
tpmvs97.39 29797.69 28796.52 34298.41 35091.76 36099.30 10998.94 31297.74 27997.85 34299.55 20292.40 31399.73 29496.25 29698.73 32798.06 346
test-LLR97.15 30296.95 30697.74 32198.18 35795.02 34297.38 33996.10 35598.00 26297.81 34398.58 34390.04 33999.91 10897.69 21498.78 31998.31 334
TESTMET0.1,196.24 32295.84 32497.41 32898.24 35593.84 35097.38 33995.84 35998.43 22697.81 34398.56 34679.77 36799.89 14397.77 20198.77 32198.52 325
test-mter96.23 32395.73 32697.74 32198.18 35795.02 34297.38 33996.10 35597.90 27197.81 34398.58 34379.12 37099.91 10897.69 21498.78 31998.31 334
agg_prior198.33 26397.92 27799.57 13799.35 24899.36 16097.99 30699.39 25294.85 34797.76 34698.98 31998.03 18999.85 21095.49 32199.44 27099.51 170
agg_prior99.35 24899.36 16099.39 25297.76 34699.85 210
tpm cat196.78 31096.98 30596.16 34698.85 32990.59 36899.08 18199.32 26892.37 35497.73 34899.46 23291.15 32499.69 30896.07 30298.80 31898.21 341
PVSNet_095.53 1995.85 33095.31 33297.47 32698.78 33993.48 35295.72 36099.40 24996.18 32897.37 34997.73 36195.73 27999.58 34695.49 32181.40 36599.36 225
MVS95.72 33294.63 33698.99 25798.56 34797.98 29299.30 10998.86 31372.71 36597.30 35099.08 30398.34 16499.74 29189.21 35698.33 33799.26 243
EPNet98.13 27297.77 28599.18 23894.57 36897.99 28799.24 13097.96 34199.74 3997.29 35199.62 16093.13 30499.97 1798.59 13799.83 13399.58 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030498.88 20098.71 20399.39 19498.85 32998.91 23299.45 7599.30 27598.56 21397.26 35299.68 12496.18 27399.96 3599.17 8099.94 6299.29 240
131498.00 27997.90 28098.27 30798.90 32297.45 30699.30 10999.06 30694.98 34397.21 35399.12 29998.43 15199.67 32495.58 32098.56 33297.71 352
AUN-MVS97.82 28297.38 29399.14 24299.27 27798.53 25498.72 23999.02 30898.10 25797.18 35499.03 31389.26 34399.85 21097.94 18697.91 34899.03 291
cascas96.99 30596.82 31197.48 32597.57 36495.64 33796.43 35899.56 18091.75 35597.13 35597.61 36395.58 28298.63 36496.68 27599.11 30398.18 344
DWT-MVSNet_test96.03 32695.80 32596.71 34198.50 34991.93 35999.25 12997.87 34495.99 33096.81 35697.61 36381.02 36499.66 32897.20 24897.98 34798.54 324
FPMVS96.32 32095.50 32898.79 28399.60 14998.17 27798.46 26798.80 31797.16 30896.28 35799.63 15182.19 36299.09 36188.45 35898.89 31799.10 276
PAPM95.61 33394.71 33598.31 30599.12 30196.63 32396.66 35798.46 33290.77 35896.25 35898.68 34293.01 30599.69 30881.60 36597.86 35198.62 318
gg-mvs-nofinetune95.87 32995.17 33397.97 31398.19 35696.95 31799.69 2889.23 37099.89 1196.24 35999.94 1281.19 36399.51 35393.99 34598.20 34097.44 354
baseline296.83 30996.28 31598.46 29799.09 30996.91 31998.83 22093.87 36697.23 30496.23 36098.36 35388.12 34599.90 12996.68 27598.14 34498.57 323
EPNet_dtu97.62 29097.79 28497.11 33696.67 36592.31 35798.51 25998.04 33999.24 13295.77 36199.47 22993.78 29999.66 32898.98 10399.62 22999.37 222
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepMVS_CXcopyleft97.98 31299.69 12196.95 31799.26 28375.51 36495.74 36298.28 35596.47 26299.62 33991.23 35397.89 34997.38 355
test_method91.72 33592.32 33889.91 34993.49 36970.18 37190.28 36399.56 18061.71 36695.39 36399.52 20993.90 29599.94 5798.76 12698.27 33999.62 106
IB-MVS95.41 2095.30 33494.46 33797.84 31798.76 34195.33 34097.33 34296.07 35796.02 32995.37 36497.41 36576.17 37299.96 3597.54 22295.44 36398.22 340
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND97.36 32997.59 36296.87 32099.70 2288.49 37194.64 36597.26 36880.66 36599.12 36091.50 35296.50 36096.08 362
ET-MVSNet_ETH3D96.78 31096.07 31998.91 26799.26 27997.92 29397.70 32596.05 35897.96 26992.37 36698.43 35287.06 34899.90 12998.27 15797.56 35398.91 304
MVEpermissive92.54 2296.66 31496.11 31898.31 30599.68 13097.55 30397.94 31395.60 36099.37 11390.68 36798.70 34196.56 25898.61 36586.94 36499.55 24898.77 314
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12329.31 33633.05 34118.08 35025.93 37212.24 37297.53 33310.93 37311.78 36724.21 36850.08 37621.04 3738.60 36823.51 36632.43 36733.39 364
testmvs28.94 33733.33 33915.79 35126.03 3719.81 37396.77 35515.67 37211.55 36823.87 36950.74 37519.03 3748.53 36923.21 36733.07 36629.03 365
uanet_test8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k24.88 33833.17 3400.00 3520.00 3730.00 3740.00 36499.62 1390.00 3690.00 37099.13 29599.82 40.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas16.61 33922.14 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 199.28 410.00 3700.00 3680.00 3680.00 366
sosnet-low-res8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
sosnet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
Regformer8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.26 34611.02 3490.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.16 2930.00 3750.00 3700.00 3680.00 3680.00 366
uanet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS99.29 21899.12 30199.44 13799.20 14099.40 24199.00 7298.84 36396.54 28299.60 23999.58 133
save fliter99.53 18299.25 18398.29 27699.38 25899.07 158
test_0728_SECOND99.83 2199.70 11899.79 3699.14 16199.61 14699.92 9097.88 19099.72 19899.77 33
GSMVS99.14 270
sam_mvs190.81 33199.14 270
sam_mvs90.52 335
MTGPAbinary99.53 200
test_post199.14 16151.63 37489.54 34299.82 24896.86 264
test_post52.41 37390.25 33799.86 191
patchmatchnet-post99.62 16090.58 33399.94 57
MTMP99.09 17898.59 327
gm-plane-assit97.59 36289.02 37093.47 35198.30 35499.84 22796.38 291
test9_res95.10 32999.44 27099.50 176
agg_prior294.58 33799.46 26999.50 176
test_prior499.19 19998.00 304
test_prior99.46 16999.35 24899.22 19299.39 25299.69 30899.48 186
新几何298.04 300
旧先验199.49 20399.29 17399.26 28399.39 24597.67 21899.36 28499.46 195
无先验98.01 30299.23 29095.83 33299.85 21095.79 31599.44 202
原ACMM297.92 315
testdata299.89 14395.99 306
segment_acmp98.37 160
testdata197.72 32397.86 276
plane_prior799.58 15599.38 154
plane_prior699.47 21499.26 17997.24 239
plane_prior599.54 19199.82 24895.84 31399.78 16799.60 119
plane_prior499.25 279
plane_prior298.80 22898.94 172
plane_prior199.51 192
plane_prior99.24 18898.42 26897.87 27399.71 202
n20.00 374
nn0.00 374
door-mid99.83 34
test1199.29 277
door99.77 63
HQP5-MVS98.94 225
BP-MVS94.73 333
HQP3-MVS99.37 25999.67 217
HQP2-MVS96.67 256
NP-MVS99.40 23699.13 20498.83 334
ACMMP++_ref99.94 62
ACMMP++99.79 161
Test By Simon98.41 154