This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.19 199.88 599.87 599.88 1299.91 1599.90 599.96 199.92 599.90 899.97 799.87 3199.81 599.95 4399.54 2599.99 1399.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 10
test_part199.89 399.88 499.94 299.91 1599.92 299.92 399.90 1199.98 299.99 399.97 999.50 2199.98 699.73 16100.00 199.92 3
UA-Net99.78 1499.76 1599.86 1799.72 10799.71 6399.91 499.95 499.96 399.71 9799.91 2099.15 5399.97 1799.50 31100.00 199.90 5
UniMVSNet_ETH3D99.85 899.83 899.90 599.89 2299.91 399.89 599.71 9199.93 599.95 1199.89 2699.71 999.96 3499.51 2999.97 3099.84 15
TDRefinement99.72 1899.70 1899.77 4099.90 2099.85 1299.86 699.92 599.69 4799.78 6799.92 1799.37 3099.88 15198.93 10599.95 4899.60 116
pmmvs699.86 799.86 799.83 2299.94 1099.90 599.83 799.91 899.85 2099.94 1299.95 1299.73 899.90 12399.65 1799.97 3099.69 51
OurMVSNet-221017-099.75 1699.71 1799.84 2099.96 499.83 2199.83 799.85 2499.80 3099.93 1599.93 1498.54 13499.93 6799.59 2099.98 2299.76 36
v7n99.82 1199.80 1199.88 1299.96 499.84 1799.82 999.82 3799.84 2299.94 1299.91 2099.13 5899.96 3499.83 999.99 1399.83 19
Anonymous2023121199.62 3399.57 3899.76 4699.61 14499.60 10299.81 1099.73 7999.82 2699.90 2399.90 2297.97 19499.86 18499.42 4099.96 4199.80 24
ab-mvs99.33 9699.28 9399.47 16399.57 16199.39 14899.78 1199.43 23198.87 17699.57 14599.82 4798.06 18699.87 16498.69 12499.73 18899.15 261
MVSFormer99.41 7199.44 5899.31 21099.57 16198.40 25599.77 1299.80 4799.73 3799.63 12299.30 26198.02 18999.98 699.43 3699.69 20299.55 142
test_djsdf99.84 999.81 1099.91 399.94 1099.84 1799.77 1299.80 4799.73 3799.97 799.92 1799.77 799.98 699.43 36100.00 199.90 5
pm-mvs199.79 1399.79 1299.78 3899.91 1599.83 2199.76 1499.87 1899.73 3799.89 2799.87 3199.63 1499.87 16499.54 2599.92 7399.63 93
TransMVSNet (Re)99.78 1499.77 1399.81 2799.91 1599.85 1299.75 1599.86 2099.70 4499.91 2199.89 2699.60 1899.87 16499.59 2099.74 18199.71 45
K. test v398.87 19998.60 20999.69 8399.93 1399.46 12699.74 1694.97 34999.78 3399.88 3399.88 2993.66 29499.97 1799.61 1999.95 4899.64 88
anonymousdsp99.80 1299.77 1399.90 599.96 499.88 799.73 1799.85 2499.70 4499.92 1999.93 1499.45 2299.97 1799.36 45100.00 199.85 14
NR-MVSNet99.40 7499.31 8199.68 8499.43 22399.55 11499.73 1799.50 20899.46 9399.88 3399.36 24797.54 22499.87 16498.97 9799.87 10799.63 93
IS-MVSNet99.03 17098.85 18799.55 14299.80 5699.25 18099.73 1799.15 29199.37 10599.61 13599.71 9994.73 28499.81 25497.70 19899.88 9999.58 130
FC-MVSNet-test99.70 2099.65 2399.86 1799.88 2499.86 1199.72 2099.78 5799.90 899.82 4999.83 4198.45 14999.87 16499.51 2999.97 3099.86 12
mvs_tets99.90 299.90 299.90 599.96 499.79 3599.72 2099.88 1699.92 799.98 499.93 1499.94 199.98 699.77 12100.00 199.92 3
Gipumacopyleft99.57 3899.59 3399.49 15899.98 399.71 6399.72 2099.84 3099.81 2799.94 1299.78 6598.91 8399.71 29098.41 13599.95 4899.05 284
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
GG-mvs-BLEND97.36 32097.59 35396.87 31199.70 2388.49 35994.64 35397.26 35680.66 35599.12 34891.50 34096.50 34896.08 350
jajsoiax99.89 399.89 399.89 899.96 499.78 3899.70 2399.86 2099.89 1299.98 499.90 2299.94 199.98 699.75 13100.00 199.90 5
SixPastTwentyTwo99.42 6799.30 8699.76 4699.92 1499.67 7999.70 2399.14 29299.65 5799.89 2799.90 2296.20 26899.94 5499.42 4099.92 7399.67 64
UGNet99.38 8099.34 7599.49 15898.90 31398.90 22999.70 2399.35 25699.86 1798.57 29799.81 5098.50 14499.93 6799.38 4299.98 2299.66 74
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet99.17 14299.00 16099.66 9399.80 5699.43 13899.70 2399.24 28299.48 8499.56 15299.77 7294.89 28199.93 6798.72 12199.89 9199.63 93
3Dnovator99.15 299.43 6499.36 7399.65 9899.39 23399.42 14199.70 2399.56 17599.23 12699.35 20599.80 5299.17 5199.95 4398.21 15399.84 12199.59 125
gg-mvs-nofinetune95.87 31895.17 32297.97 30498.19 34796.95 30899.69 2989.23 35899.89 1296.24 34899.94 1381.19 35399.51 34193.99 33398.20 33397.44 342
MIMVSNet199.66 2599.62 2699.80 3099.94 1099.87 899.69 2999.77 6099.78 3399.93 1599.89 2697.94 19599.92 8599.65 1799.98 2299.62 105
Vis-MVSNetpermissive99.75 1699.74 1699.79 3599.88 2499.66 8199.69 2999.92 599.67 5199.77 7299.75 7999.61 1699.98 699.35 4699.98 2299.72 42
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-MVSNAJss99.84 999.82 999.89 899.96 499.77 4099.68 3299.85 2499.95 499.98 499.92 1799.28 4199.98 699.75 13100.00 199.94 2
GBi-Net99.42 6799.31 8199.73 6899.49 19999.77 4099.68 3299.70 9599.44 9599.62 12999.83 4197.21 23999.90 12398.96 9999.90 8399.53 154
test199.42 6799.31 8199.73 6899.49 19999.77 4099.68 3299.70 9599.44 9599.62 12999.83 4197.21 23999.90 12398.96 9999.90 8399.53 154
FMVSNet199.66 2599.63 2599.73 6899.78 7299.77 4099.68 3299.70 9599.67 5199.82 4999.83 4198.98 7499.90 12399.24 6299.97 3099.53 154
DTE-MVSNet99.68 2399.61 3099.88 1299.80 5699.87 899.67 3699.71 9199.72 4099.84 4299.78 6598.67 11799.97 1799.30 5599.95 4899.80 24
WR-MVS_H99.61 3599.53 4899.87 1599.80 5699.83 2199.67 3699.75 7199.58 7699.85 3999.69 11298.18 17999.94 5499.28 6099.95 4899.83 19
QAPM98.40 24897.99 25999.65 9899.39 23399.47 12299.67 3699.52 20291.70 34598.78 28199.80 5298.55 13299.95 4394.71 32399.75 17399.53 154
FIs99.65 3099.58 3599.84 2099.84 3499.85 1299.66 3999.75 7199.86 1799.74 8799.79 5898.27 16899.85 20299.37 4499.93 6999.83 19
v899.68 2399.69 1999.65 9899.80 5699.40 14699.66 3999.76 6599.64 5999.93 1599.85 3698.66 11999.84 21799.88 699.99 1399.71 45
v1099.69 2299.69 1999.66 9399.81 5099.39 14899.66 3999.75 7199.60 7399.92 1999.87 3198.75 10899.86 18499.90 299.99 1399.73 41
PS-CasMVS99.66 2599.58 3599.89 899.80 5699.85 1299.66 3999.73 7999.62 6399.84 4299.71 9998.62 12399.96 3499.30 5599.96 4199.86 12
PEN-MVS99.66 2599.59 3399.89 899.83 3799.87 899.66 3999.73 7999.70 4499.84 4299.73 8698.56 13199.96 3499.29 5899.94 6199.83 19
ANet_high99.88 599.87 599.91 399.99 199.91 399.65 44100.00 199.90 8100.00 199.97 999.61 1699.97 1799.75 13100.00 199.84 15
OpenMVScopyleft98.12 1098.23 26197.89 27399.26 21999.19 28299.26 17699.65 4499.69 10191.33 34698.14 31999.77 7298.28 16799.96 3495.41 31299.55 24398.58 313
Anonymous2024052999.42 6799.34 7599.65 9899.53 17899.60 10299.63 4699.39 24599.47 8999.76 7499.78 6598.13 18199.86 18498.70 12299.68 20599.49 177
LFMVS98.46 24298.19 24999.26 21999.24 27498.52 24899.62 4796.94 34299.87 1599.31 21499.58 18391.04 31799.81 25498.68 12599.42 26999.45 192
VDDNet98.97 18298.82 19299.42 17799.71 11098.81 23399.62 4798.68 31099.81 2799.38 20199.80 5294.25 28899.85 20298.79 11499.32 28499.59 125
VPA-MVSNet99.66 2599.62 2699.79 3599.68 12899.75 4899.62 4799.69 10199.85 2099.80 5999.81 5098.81 9399.91 10399.47 3399.88 9999.70 48
3Dnovator+98.92 399.35 8799.24 10199.67 8699.35 24399.47 12299.62 4799.50 20899.44 9599.12 24699.78 6598.77 10599.94 5497.87 18399.72 19399.62 105
canonicalmvs99.02 17299.00 16099.09 23999.10 29898.70 23999.61 5199.66 11299.63 6298.64 29197.65 35099.04 7099.54 33898.79 11498.92 30899.04 285
nrg03099.70 2099.66 2299.82 2499.76 8499.84 1799.61 5199.70 9599.93 599.78 6799.68 12399.10 5999.78 26699.45 3499.96 4199.83 19
HPM-MVScopyleft99.25 11199.07 13899.78 3899.81 5099.75 4899.61 5199.67 10897.72 27199.35 20599.25 27299.23 4699.92 8597.21 23799.82 14099.67 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS98.23 998.21 26397.95 26398.99 24899.03 30698.24 26299.61 5198.72 30996.81 30798.73 28599.51 20994.06 28999.86 18496.91 25198.20 33398.86 299
Vis-MVSNet (Re-imp)98.77 20898.58 21499.34 20199.78 7298.88 23099.61 5199.56 17599.11 14799.24 22599.56 19493.00 30099.78 26697.43 21999.89 9199.35 223
tfpnnormal99.43 6499.38 6799.60 12499.87 2899.75 4899.59 5699.78 5799.71 4199.90 2399.69 11298.85 9199.90 12397.25 23499.78 16499.15 261
XXY-MVS99.71 1999.67 2199.81 2799.89 2299.72 6199.59 5699.82 3799.39 10399.82 4999.84 4099.38 2899.91 10399.38 4299.93 6999.80 24
MIMVSNet98.43 24498.20 24699.11 23799.53 17898.38 25899.58 5898.61 31498.96 16399.33 21099.76 7590.92 31999.81 25497.38 22299.76 17099.15 261
CP-MVSNet99.54 4699.43 6199.87 1599.76 8499.82 2599.57 5999.61 14199.54 7799.80 5999.64 14097.79 20899.95 4399.21 6399.94 6199.84 15
LS3D99.24 11499.11 12399.61 12298.38 34299.79 3599.57 5999.68 10499.61 6799.15 24199.71 9998.70 11299.91 10397.54 21299.68 20599.13 268
EU-MVSNet99.39 7899.62 2698.72 27899.88 2496.44 31799.56 6199.85 2499.90 899.90 2399.85 3698.09 18399.83 22899.58 2299.95 4899.90 5
ACMH98.42 699.59 3699.54 4499.72 7499.86 3099.62 9499.56 6199.79 5398.77 18999.80 5999.85 3699.64 1399.85 20298.70 12299.89 9199.70 48
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast99.43 6499.30 8699.80 3099.83 3799.81 2899.52 6399.70 9598.35 23399.51 17099.50 21299.31 3699.88 15198.18 15899.84 12199.69 51
wuyk23d97.58 28399.13 11692.93 33799.69 12099.49 11999.52 6399.77 6097.97 25799.96 999.79 5899.84 399.94 5495.85 30099.82 14079.36 351
VDD-MVS99.20 13199.11 12399.44 17299.43 22398.98 21699.50 6598.32 32699.80 3099.56 15299.69 11296.99 24999.85 20298.99 9399.73 18899.50 172
APDe-MVS99.48 5399.36 7399.85 1999.55 17299.81 2899.50 6599.69 10198.99 15899.75 7999.71 9998.79 10099.93 6798.46 13499.85 11799.80 24
DSMNet-mixed99.48 5399.65 2398.95 25199.71 11097.27 30199.50 6599.82 3799.59 7599.41 19499.85 3699.62 15100.00 199.53 2799.89 9199.59 125
ACMMPcopyleft99.25 11199.08 13499.74 6099.79 6699.68 7799.50 6599.65 12398.07 25199.52 16599.69 11298.57 12999.92 8597.18 23999.79 15899.63 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tttt051797.62 28197.20 29098.90 26499.76 8497.40 29899.48 6994.36 35199.06 15599.70 9999.49 21784.55 35099.94 5498.73 12099.65 21999.36 220
VPNet99.46 6099.37 7099.71 7899.82 4399.59 10599.48 6999.70 9599.81 2799.69 10299.58 18397.66 22099.86 18499.17 7399.44 26499.67 64
Anonymous20240521198.75 21198.46 22499.63 10999.34 25399.66 8199.47 7197.65 33599.28 11799.56 15299.50 21293.15 29799.84 21798.62 12799.58 23799.40 209
MVS_030498.88 19798.71 20099.39 18998.85 32098.91 22899.45 7299.30 26898.56 20697.26 34299.68 12396.18 26999.96 3499.17 7399.94 6199.29 235
FMVSNet299.35 8799.28 9399.55 14299.49 19999.35 16199.45 7299.57 17099.44 9599.70 9999.74 8297.21 23999.87 16499.03 9099.94 6199.44 197
TAMVS99.49 5199.45 5699.63 10999.48 20599.42 14199.45 7299.57 17099.66 5599.78 6799.83 4197.85 20499.86 18499.44 3599.96 4199.61 112
baseline99.63 3199.62 2699.66 9399.80 5699.62 9499.44 7599.80 4799.71 4199.72 9299.69 11299.15 5399.83 22899.32 5199.94 6199.53 154
RPSCF99.18 13899.02 15499.64 10599.83 3799.85 1299.44 7599.82 3798.33 23899.50 17199.78 6597.90 19899.65 32596.78 26099.83 13199.44 197
CSCG99.37 8299.29 9199.60 12499.71 11099.46 12699.43 7799.85 2498.79 18699.41 19499.60 17598.92 8199.92 8598.02 16899.92 7399.43 203
CS-MVS99.09 16099.03 15299.25 22299.45 21899.49 11999.41 7899.82 3799.10 14898.03 32498.48 33999.30 3899.89 13698.30 14599.41 27098.35 323
CostFormer96.71 30496.79 30396.46 33298.90 31390.71 35699.41 7898.68 31094.69 33898.14 31999.34 25586.32 34799.80 25997.60 20998.07 33998.88 297
Patchmatch-test98.10 26697.98 26198.48 28799.27 27096.48 31699.40 8099.07 29598.81 18399.23 22699.57 19190.11 33099.87 16496.69 26499.64 22199.09 274
baseline197.73 27797.33 28598.96 25099.30 26497.73 28999.40 8098.42 32299.33 11199.46 17899.21 28191.18 31599.82 23898.35 14091.26 35299.32 229
V4299.56 4199.54 4499.63 10999.79 6699.46 12699.39 8299.59 15999.24 12499.86 3899.70 10698.55 13299.82 23899.79 1199.95 4899.60 116
EPMVS96.53 30796.32 30597.17 32498.18 34892.97 34499.39 8289.95 35798.21 24598.61 29399.59 18186.69 34699.72 28696.99 24799.23 29698.81 303
mPP-MVS99.19 13499.00 16099.76 4699.76 8499.68 7799.38 8499.54 18598.34 23799.01 25699.50 21298.53 13899.93 6797.18 23999.78 16499.66 74
CP-MVS99.23 11599.05 14499.75 5599.66 13499.66 8199.38 8499.62 13498.38 22699.06 25499.27 26898.79 10099.94 5497.51 21599.82 14099.66 74
FMVSNet597.80 27497.25 28899.42 17798.83 32298.97 21899.38 8499.80 4798.87 17699.25 22299.69 11280.60 35699.91 10398.96 9999.90 8399.38 214
COLMAP_ROBcopyleft98.06 1299.45 6299.37 7099.70 8299.83 3799.70 7099.38 8499.78 5799.53 7999.67 10899.78 6599.19 4999.86 18497.32 22499.87 10799.55 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVS99.27 10899.11 12399.75 5599.71 11099.71 6399.37 8899.61 14199.29 11498.76 28399.47 22498.47 14599.88 15197.62 20699.73 18899.67 64
X-MVStestdata96.09 31594.87 32399.75 5599.71 11099.71 6399.37 8899.61 14199.29 11498.76 28361.30 36098.47 14599.88 15197.62 20699.73 18899.67 64
MVS_Test99.28 10499.31 8199.19 23199.35 24398.79 23599.36 9099.49 21399.17 13599.21 23299.67 12998.78 10299.66 31899.09 8699.66 21699.10 271
MSP-MVS99.04 16998.79 19699.81 2799.78 7299.73 5799.35 9199.57 17098.54 21199.54 15998.99 30596.81 25299.93 6796.97 24899.53 25199.77 32
EIA-MVS99.12 15199.01 15799.45 17099.36 24199.62 9499.34 9299.79 5398.41 22298.84 27398.89 32098.75 10899.84 21798.15 16299.51 25498.89 296
LCM-MVSNet-Re99.28 10499.15 11299.67 8699.33 25899.76 4699.34 9299.97 298.93 16899.91 2199.79 5898.68 11499.93 6796.80 25999.56 23999.30 232
MTAPA99.35 8799.20 10599.80 3099.81 5099.81 2899.33 9499.53 19499.27 11899.42 18699.63 15098.21 17499.95 4397.83 18999.79 15899.65 82
VNet99.18 13899.06 14099.56 13999.24 27499.36 15799.33 9499.31 26599.67 5199.47 17599.57 19196.48 25899.84 21799.15 7799.30 28699.47 186
abl_699.36 8599.23 10399.75 5599.71 11099.74 5499.33 9499.76 6599.07 15199.65 11699.63 15099.09 6199.92 8597.13 24299.76 17099.58 130
MP-MVScopyleft99.06 16398.83 19199.76 4699.76 8499.71 6399.32 9799.50 20898.35 23398.97 25899.48 21998.37 15899.92 8595.95 29899.75 17399.63 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Patchmtry98.78 20798.54 21899.49 15898.89 31699.19 19699.32 9799.67 10899.65 5799.72 9299.79 5891.87 30999.95 4398.00 17299.97 3099.33 226
tpm97.15 29396.95 29797.75 31198.91 31294.24 33899.32 9797.96 33097.71 27298.29 30899.32 25786.72 34599.92 8598.10 16696.24 34999.09 274
ACMH+98.40 899.50 4999.43 6199.71 7899.86 3099.76 4699.32 9799.77 6099.53 7999.77 7299.76 7599.26 4599.78 26697.77 19199.88 9999.60 116
HFP-MVS99.25 11199.08 13499.76 4699.73 10399.70 7099.31 10199.59 15998.36 22899.36 20399.37 24298.80 9799.91 10397.43 21999.75 17399.68 57
region2R99.23 11599.05 14499.77 4099.76 8499.70 7099.31 10199.59 15998.41 22299.32 21299.36 24798.73 11199.93 6797.29 22699.74 18199.67 64
ACMMPR99.23 11599.06 14099.76 4699.74 10099.69 7499.31 10199.59 15998.36 22899.35 20599.38 24198.61 12599.93 6797.43 21999.75 17399.67 64
131498.00 27197.90 27298.27 29898.90 31397.45 29799.30 10499.06 29794.98 33297.21 34399.12 29298.43 15099.67 31495.58 30898.56 32697.71 340
112198.56 22998.24 24299.52 14999.49 19999.24 18599.30 10499.22 28495.77 32298.52 30099.29 26497.39 23199.85 20295.79 30399.34 28199.46 190
MVS95.72 32194.63 32598.99 24898.56 33897.98 28399.30 10498.86 30272.71 35497.30 34099.08 29698.34 16299.74 28289.21 34498.33 33199.26 238
tpmvs97.39 28897.69 27996.52 33198.41 34191.76 34999.30 10498.94 30197.74 27097.85 33299.55 20092.40 30599.73 28496.25 28698.73 32198.06 335
TranMVSNet+NR-MVSNet99.54 4699.47 5299.76 4699.58 15199.64 8899.30 10499.63 13199.61 6799.71 9799.56 19498.76 10699.96 3499.14 8399.92 7399.68 57
CR-MVSNet98.35 25398.20 24698.83 27099.05 30398.12 27099.30 10499.67 10897.39 28899.16 23999.79 5891.87 30999.91 10398.78 11798.77 31598.44 320
RPMNet98.60 22398.53 22098.83 27099.05 30398.12 27099.30 10499.62 13499.86 1799.16 23999.74 8292.53 30499.92 8598.75 11898.77 31598.44 320
DP-MVS99.48 5399.39 6599.74 6099.57 16199.62 9499.29 11199.61 14199.87 1599.74 8799.76 7598.69 11399.87 16498.20 15499.80 15399.75 39
ZNCC-MVS99.22 12499.04 15099.77 4099.76 8499.73 5799.28 11299.56 17598.19 24799.14 24399.29 26498.84 9299.92 8597.53 21499.80 15399.64 88
Anonymous2023120699.35 8799.31 8199.47 16399.74 10099.06 21399.28 11299.74 7699.23 12699.72 9299.53 20497.63 22299.88 15199.11 8599.84 12199.48 181
test_040299.22 12499.14 11399.45 17099.79 6699.43 13899.28 11299.68 10499.54 7799.40 19999.56 19499.07 6699.82 23896.01 29299.96 4199.11 269
APD-MVS_3200maxsize99.31 10099.16 10999.74 6099.53 17899.75 4899.27 11599.61 14199.19 13199.57 14599.64 14098.76 10699.90 12397.29 22699.62 22499.56 139
SR-MVS-dyc-post99.27 10899.11 12399.73 6899.54 17399.74 5499.26 11699.62 13499.16 13799.52 16599.64 14098.41 15299.91 10397.27 22999.61 23199.54 149
RE-MVS-def99.13 11699.54 17399.74 5499.26 11699.62 13499.16 13799.52 16599.64 14098.57 12997.27 22999.61 23199.54 149
TSAR-MVS + MP.99.34 9299.24 10199.63 10999.82 4399.37 15499.26 11699.35 25698.77 18999.57 14599.70 10699.27 4499.88 15197.71 19699.75 17399.65 82
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet99.38 8099.44 5899.21 22899.58 15198.09 27499.26 11699.46 22399.62 6399.75 7999.67 12998.54 13499.85 20299.15 7799.92 7399.68 57
CVMVSNet98.61 22298.88 18497.80 30999.58 15193.60 34099.26 11699.64 12999.66 5599.72 9299.67 12993.26 29699.93 6799.30 5599.81 14899.87 10
RRT_test8_iter0597.35 29197.25 28897.63 31498.81 32693.13 34299.26 11699.89 1399.51 8199.83 4799.68 12379.03 35999.88 15199.53 2799.72 19399.89 9
EG-PatchMatch MVS99.57 3899.56 4299.62 11899.77 8099.33 16499.26 11699.76 6599.32 11299.80 5999.78 6599.29 3999.87 16499.15 7799.91 8299.66 74
DWT-MVSNet_test96.03 31795.80 31696.71 33098.50 34091.93 34899.25 12397.87 33395.99 31996.81 34597.61 35181.02 35499.66 31897.20 23897.98 34098.54 315
test072699.69 12099.80 3399.24 12499.57 17099.16 13799.73 9199.65 13898.35 160
EI-MVSNet-UG-set99.48 5399.50 5099.42 17799.57 16198.65 24499.24 12499.46 22399.68 4999.80 5999.66 13398.99 7399.89 13699.19 6899.90 8399.72 42
EI-MVSNet-Vis-set99.47 5999.49 5199.42 17799.57 16198.66 24299.24 12499.46 22399.67 5199.79 6499.65 13898.97 7699.89 13699.15 7799.89 9199.71 45
EPNet98.13 26497.77 27799.18 23394.57 35797.99 27899.24 12497.96 33099.74 3697.29 34199.62 15993.13 29899.97 1798.59 12899.83 13199.58 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.49 23998.11 25499.64 10599.73 10399.58 10899.24 12499.76 6589.94 34899.42 18699.56 19497.76 21099.86 18497.74 19499.82 14099.47 186
PatchT98.45 24398.32 23998.83 27098.94 31198.29 26199.24 12498.82 30599.84 2299.08 25099.76 7591.37 31299.94 5498.82 11299.00 30598.26 327
DeepC-MVS98.90 499.62 3399.61 3099.67 8699.72 10799.44 13399.24 12499.71 9199.27 11899.93 1599.90 2299.70 1199.93 6798.99 9399.99 1399.64 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ADS-MVSNet297.78 27597.66 28298.12 30299.14 28895.36 33099.22 13198.75 30896.97 30198.25 31199.64 14090.90 32099.94 5496.51 27499.56 23999.08 277
ADS-MVSNet97.72 27997.67 28197.86 30799.14 28894.65 33699.22 13198.86 30296.97 30198.25 31199.64 14090.90 32099.84 21796.51 27499.56 23999.08 277
tpm296.35 31096.22 30796.73 32898.88 31991.75 35099.21 13398.51 31893.27 34197.89 32999.21 28184.83 34999.70 29296.04 29198.18 33698.75 306
test117299.23 11599.05 14499.74 6099.52 18399.75 4899.20 13499.61 14198.97 16099.48 17399.58 18398.41 15299.91 10397.15 24199.55 24399.57 136
SED-MVS99.40 7499.28 9399.77 4099.69 12099.82 2599.20 13499.54 18599.13 14399.82 4999.63 15098.91 8399.92 8597.85 18699.70 19999.58 130
OPU-MVS99.29 21399.12 29299.44 13399.20 13499.40 23699.00 7298.84 35196.54 27299.60 23499.58 130
GST-MVS99.16 14398.96 17199.75 5599.73 10399.73 5799.20 13499.55 18098.22 24499.32 21299.35 25298.65 12199.91 10396.86 25499.74 18199.62 105
PMVScopyleft92.94 2198.82 20498.81 19398.85 26699.84 3497.99 27899.20 13499.47 21999.71 4199.42 18699.82 4798.09 18399.47 34393.88 33499.85 11799.07 282
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp96.86 29997.07 29396.24 33498.68 33690.30 35899.19 13998.38 32597.35 29098.23 31399.59 18187.23 33899.82 23896.27 28598.73 32198.59 311
SR-MVS99.19 13499.00 16099.74 6099.51 18899.72 6199.18 14099.60 15298.85 17899.47 17599.58 18398.38 15799.92 8596.92 25099.54 24999.57 136
thres100view90096.39 30996.03 31197.47 31799.63 14095.93 32499.18 14097.57 33698.75 19398.70 28897.31 35587.04 34099.67 31487.62 34898.51 32896.81 346
thres600view796.60 30696.16 30897.93 30599.63 14096.09 32399.18 14097.57 33698.77 18998.72 28697.32 35487.04 34099.72 28688.57 34598.62 32497.98 337
SteuartSystems-ACMMP99.30 10199.14 11399.76 4699.87 2899.66 8199.18 14099.60 15298.55 20899.57 14599.67 12999.03 7199.94 5497.01 24699.80 15399.69 51
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS98.74 21398.44 22699.64 10599.61 14499.38 15199.18 14099.55 18096.49 31199.27 22099.37 24297.11 24599.92 8595.74 30599.67 21299.62 105
ambc99.20 23099.35 24398.53 24799.17 14599.46 22399.67 10899.80 5298.46 14899.70 29297.92 17799.70 19999.38 214
Regformer-399.41 7199.41 6399.40 18699.52 18398.70 23999.17 14599.44 22899.62 6399.75 7999.60 17598.90 8699.85 20298.89 10799.84 12199.65 82
Regformer-499.45 6299.44 5899.50 15599.52 18398.94 22199.17 14599.53 19499.64 5999.76 7499.60 17598.96 7999.90 12398.91 10699.84 12199.67 64
PatchmatchNetpermissive97.65 28097.80 27497.18 32398.82 32592.49 34599.17 14598.39 32498.12 24998.79 27999.58 18390.71 32499.89 13697.23 23599.41 27099.16 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.11 15598.95 17399.59 12699.13 29099.59 10599.17 14599.65 12397.88 26399.25 22299.46 22798.97 7699.80 25997.26 23199.82 14099.37 217
MAR-MVS98.24 26097.92 26999.19 23198.78 33099.65 8699.17 14599.14 29295.36 32798.04 32398.81 32597.47 22699.72 28695.47 31199.06 30098.21 330
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PGM-MVS99.20 13199.01 15799.77 4099.75 9499.71 6399.16 15199.72 8897.99 25599.42 18699.60 17598.81 9399.93 6796.91 25199.74 18199.66 74
LPG-MVS_test99.22 12499.05 14499.74 6099.82 4399.63 9299.16 15199.73 7997.56 27799.64 11899.69 11299.37 3099.89 13696.66 26799.87 10799.69 51
Effi-MVS+-dtu99.07 16298.92 17899.52 14998.89 31699.78 3899.15 15399.66 11299.34 10898.92 26599.24 27797.69 21399.98 698.11 16499.28 28898.81 303
MDTV_nov1_ep1397.73 27898.70 33590.83 35599.15 15398.02 32998.51 21398.82 27599.61 16890.98 31899.66 31896.89 25398.92 308
DVP-MVS99.32 9899.17 10899.77 4099.69 12099.80 3399.14 15599.31 26599.16 13799.62 12999.61 16898.35 16099.91 10397.88 18099.72 19399.61 112
test_0728_SECOND99.83 2299.70 11799.79 3599.14 15599.61 14199.92 8597.88 18099.72 19399.77 32
test_post199.14 15551.63 36289.54 33499.82 23896.86 254
testing_299.58 3799.56 4299.62 11899.81 5099.44 13399.14 15599.43 23199.69 4799.82 4999.79 5899.14 5599.79 26299.31 5499.95 4899.63 93
v2v48299.50 4999.47 5299.58 13099.78 7299.25 18099.14 15599.58 16899.25 12299.81 5699.62 15998.24 17099.84 21799.83 999.97 3099.64 88
MDTV_nov1_ep13_2view91.44 35399.14 15597.37 28999.21 23291.78 31196.75 26199.03 286
API-MVS98.38 24998.39 23198.35 29298.83 32299.26 17699.14 15599.18 28898.59 20498.66 29098.78 32698.61 12599.57 33794.14 32999.56 23996.21 348
SF-MVS99.10 15998.93 17499.62 11899.58 15199.51 11799.13 16299.65 12397.97 25799.42 18699.61 16898.86 8999.87 16496.45 27899.68 20599.49 177
SMA-MVScopyleft99.19 13499.00 16099.73 6899.46 21599.73 5799.13 16299.52 20297.40 28799.57 14599.64 14098.93 8099.83 22897.61 20899.79 15899.63 93
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
casdiffmvs99.63 3199.61 3099.67 8699.79 6699.59 10599.13 16299.85 2499.79 3299.76 7499.72 9299.33 3599.82 23899.21 6399.94 6199.59 125
ACMM98.09 1199.46 6099.38 6799.72 7499.80 5699.69 7499.13 16299.65 12398.99 15899.64 11899.72 9299.39 2499.86 18498.23 15199.81 14899.60 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS99.18 13899.18 10799.16 23499.34 25399.28 17299.12 16699.79 5399.48 8498.93 26298.55 33599.40 2399.93 6798.51 13299.52 25398.28 326
AllTest99.21 12999.07 13899.63 10999.78 7299.64 8899.12 16699.83 3298.63 20099.63 12299.72 9298.68 11499.75 28096.38 28199.83 13199.51 166
v14419299.55 4499.54 4499.58 13099.78 7299.20 19599.11 16899.62 13499.18 13299.89 2799.72 9298.66 11999.87 16499.88 699.97 3099.66 74
v114499.54 4699.53 4899.59 12699.79 6699.28 17299.10 16999.61 14199.20 13099.84 4299.73 8698.67 11799.84 21799.86 899.98 2299.64 88
#test#99.12 15198.90 18299.76 4699.73 10399.70 7099.10 16999.59 15997.60 27699.36 20399.37 24298.80 9799.91 10396.84 25799.75 17399.68 57
tpmrst97.73 27798.07 25696.73 32898.71 33492.00 34799.10 16998.86 30298.52 21298.92 26599.54 20291.90 30799.82 23898.02 16899.03 30398.37 322
FMVSNet398.80 20698.63 20899.32 20799.13 29098.72 23899.10 16999.48 21599.23 12699.62 12999.64 14092.57 30299.86 18498.96 9999.90 8399.39 212
thisisatest053097.45 28696.95 29798.94 25299.68 12897.73 28999.09 17394.19 35398.61 20399.56 15299.30 26184.30 35199.93 6798.27 14899.54 24999.16 259
MTMP99.09 17398.59 316
v14899.40 7499.41 6399.39 18999.76 8498.94 22199.09 17399.59 15999.17 13599.81 5699.61 16898.41 15299.69 29899.32 5199.94 6199.53 154
MVP-Stereo99.16 14399.08 13499.43 17599.48 20599.07 21199.08 17699.55 18098.63 20099.31 21499.68 12398.19 17799.78 26698.18 15899.58 23799.45 192
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat196.78 30196.98 29696.16 33598.85 32090.59 35799.08 17699.32 26192.37 34397.73 33899.46 22791.15 31699.69 29896.07 29098.80 31298.21 330
MVSTER98.47 24198.22 24499.24 22599.06 30298.35 26099.08 17699.46 22399.27 11899.75 7999.66 13388.61 33599.85 20299.14 8399.92 7399.52 164
Fast-Effi-MVS+-dtu99.20 13199.12 12099.43 17599.25 27299.69 7499.05 17999.82 3799.50 8298.97 25899.05 29998.98 7499.98 698.20 15499.24 29498.62 309
v192192099.56 4199.57 3899.55 14299.75 9499.11 20399.05 17999.61 14199.15 14199.88 3399.71 9999.08 6499.87 16499.90 299.97 3099.66 74
Fast-Effi-MVS+99.02 17298.87 18599.46 16699.38 23699.50 11899.04 18199.79 5397.17 29698.62 29298.74 32899.34 3499.95 4398.32 14399.41 27098.92 294
v119299.57 3899.57 3899.57 13599.77 8099.22 18999.04 18199.60 15299.18 13299.87 3799.72 9299.08 6499.85 20299.89 599.98 2299.66 74
alignmvs98.28 25697.96 26299.25 22299.12 29298.93 22599.03 18398.42 32299.64 5998.72 28697.85 34890.86 32299.62 32998.88 10899.13 29799.19 253
test20.0399.55 4499.54 4499.58 13099.79 6699.37 15499.02 18499.89 1399.60 7399.82 4999.62 15998.81 9399.89 13699.43 3699.86 11499.47 186
mvs_anonymous99.28 10499.39 6598.94 25299.19 28297.81 28699.02 18499.55 18099.78 3399.85 3999.80 5298.24 17099.86 18499.57 2399.50 25699.15 261
APD-MVScopyleft98.87 19998.59 21199.71 7899.50 19499.62 9499.01 18699.57 17096.80 30899.54 15999.63 15098.29 16699.91 10395.24 31599.71 19799.61 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CMPMVSbinary77.52 2398.50 23698.19 24999.41 18498.33 34499.56 11199.01 18699.59 15995.44 32699.57 14599.80 5295.64 27699.46 34596.47 27799.92 7399.21 248
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_yl98.25 25897.95 26399.13 23599.17 28598.47 24999.00 18898.67 31298.97 16099.22 23099.02 30391.31 31399.69 29897.26 23198.93 30699.24 241
DCV-MVSNet98.25 25897.95 26399.13 23599.17 28598.47 24999.00 18898.67 31298.97 16099.22 23099.02 30391.31 31399.69 29897.26 23198.93 30699.24 241
tfpn200view996.30 31295.89 31297.53 31599.58 15196.11 32199.00 18897.54 33998.43 21998.52 30096.98 35786.85 34299.67 31487.62 34898.51 32896.81 346
v124099.56 4199.58 3599.51 15299.80 5699.00 21499.00 18899.65 12399.15 14199.90 2399.75 7999.09 6199.88 15199.90 299.96 4199.67 64
thres40096.40 30895.89 31297.92 30699.58 15196.11 32199.00 18897.54 33998.43 21998.52 30096.98 35786.85 34299.67 31487.62 34898.51 32897.98 337
Regformer-199.32 9899.27 9699.47 16399.41 22998.95 22098.99 19399.48 21599.48 8499.66 11299.52 20698.78 10299.87 16498.36 13899.74 18199.60 116
Regformer-299.34 9299.27 9699.53 14899.41 22999.10 20798.99 19399.53 19499.47 8999.66 11299.52 20698.80 9799.89 13698.31 14499.74 18199.60 116
UnsupCasMVSNet_eth98.83 20298.57 21599.59 12699.68 12899.45 13198.99 19399.67 10899.48 8499.55 15799.36 24794.92 28099.86 18498.95 10396.57 34799.45 192
DeepC-MVS_fast98.47 599.23 11599.12 12099.56 13999.28 26899.22 18998.99 19399.40 24299.08 14999.58 14299.64 14098.90 8699.83 22897.44 21899.75 17399.63 93
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RRT_MVS98.75 21198.54 21899.41 18498.14 35198.61 24598.98 19799.66 11299.31 11399.84 4299.75 7991.98 30699.98 699.20 6699.95 4899.62 105
UniMVSNet (Re)99.37 8299.26 9899.68 8499.51 18899.58 10898.98 19799.60 15299.43 10099.70 9999.36 24797.70 21199.88 15199.20 6699.87 10799.59 125
UniMVSNet_NR-MVSNet99.37 8299.25 10099.72 7499.47 21099.56 11198.97 19999.61 14199.43 10099.67 10899.28 26697.85 20499.95 4399.17 7399.81 14899.65 82
CDS-MVSNet99.22 12499.13 11699.50 15599.35 24399.11 20398.96 20099.54 18599.46 9399.61 13599.70 10696.31 26599.83 22899.34 4799.88 9999.55 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP_NAP99.28 10499.11 12399.79 3599.75 9499.81 2898.95 20199.53 19498.27 24299.53 16399.73 8698.75 10899.87 16497.70 19899.83 13199.68 57
PM-MVS99.36 8599.29 9199.58 13099.83 3799.66 8198.95 20199.86 2098.85 17899.81 5699.73 8698.40 15699.92 8598.36 13899.83 13199.17 257
SD-MVS99.01 17699.30 8698.15 30099.50 19499.40 14698.94 20399.61 14199.22 12999.75 7999.82 4799.54 2095.51 35597.48 21699.87 10799.54 149
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_Blended_VisFu99.40 7499.38 6799.44 17299.90 2098.66 24298.94 20399.91 897.97 25799.79 6499.73 8699.05 6999.97 1799.15 7799.99 1399.68 57
MDA-MVSNet-bldmvs99.06 16399.05 14499.07 24399.80 5697.83 28598.89 20599.72 8899.29 11499.63 12299.70 10696.47 25999.89 13698.17 16099.82 14099.50 172
testtj98.56 22998.17 25199.72 7499.45 21899.60 10298.88 20699.50 20896.88 30399.18 23899.48 21997.08 24699.92 8593.69 33599.38 27499.63 93
mvs-test198.83 20298.70 20399.22 22798.89 31699.65 8698.88 20699.66 11299.34 10898.29 30898.94 31597.69 21399.96 3498.11 16498.54 32798.04 336
ACMP97.51 1499.05 16698.84 18999.67 8699.78 7299.55 11498.88 20699.66 11297.11 30099.47 17599.60 17599.07 6699.89 13696.18 28799.85 11799.58 130
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVS_ROBcopyleft97.31 1797.36 29096.84 30198.89 26599.29 26699.45 13198.87 20999.48 21586.54 35199.44 18099.74 8297.34 23499.86 18491.61 33999.28 28897.37 344
tmp_tt95.75 32095.42 32096.76 32689.90 35894.42 33798.86 21097.87 33378.01 35299.30 21899.69 11297.70 21195.89 35499.29 5898.14 33799.95 1
HPM-MVS++copyleft98.96 18598.70 20399.74 6099.52 18399.71 6398.86 21099.19 28798.47 21898.59 29599.06 29898.08 18599.91 10396.94 24999.60 23499.60 116
IterMVS-LS99.41 7199.47 5299.25 22299.81 5098.09 27498.85 21299.76 6599.62 6399.83 4799.64 14098.54 13499.97 1799.15 7799.99 1399.68 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testgi99.29 10399.26 9899.37 19699.75 9498.81 23398.84 21399.89 1398.38 22699.75 7999.04 30299.36 3399.86 18499.08 8799.25 29299.45 192
F-COLMAP98.74 21398.45 22599.62 11899.57 16199.47 12298.84 21399.65 12396.31 31598.93 26299.19 28597.68 21599.87 16496.52 27399.37 27899.53 154
baseline296.83 30096.28 30698.46 28899.09 30096.91 31098.83 21593.87 35497.23 29596.23 34998.36 34188.12 33699.90 12396.68 26598.14 33798.57 314
DU-MVS99.33 9699.21 10499.71 7899.43 22399.56 11198.83 21599.53 19499.38 10499.67 10899.36 24797.67 21699.95 4399.17 7399.81 14899.63 93
Baseline_NR-MVSNet99.49 5199.37 7099.82 2499.91 1599.84 1798.83 21599.86 2099.68 4999.65 11699.88 2997.67 21699.87 16499.03 9099.86 11499.76 36
XVG-ACMP-BASELINE99.23 11599.10 13199.63 10999.82 4399.58 10898.83 21599.72 8898.36 22899.60 13799.71 9998.92 8199.91 10397.08 24499.84 12199.40 209
MSLP-MVS++99.05 16699.09 13298.91 25899.21 27798.36 25998.82 21999.47 21998.85 17898.90 26899.56 19498.78 10299.09 34998.57 12999.68 20599.26 238
9.1498.64 20699.45 21898.81 22099.60 15297.52 28199.28 21999.56 19498.53 13899.83 22895.36 31499.64 221
D2MVS99.22 12499.19 10699.29 21399.69 12098.74 23798.81 22099.41 23598.55 20899.68 10499.69 11298.13 18199.87 16498.82 11299.98 2299.24 241
pmmvs-eth3d99.48 5399.47 5299.51 15299.77 8099.41 14598.81 22099.66 11299.42 10299.75 7999.66 13399.20 4899.76 27698.98 9599.99 1399.36 220
HQP_MVS98.90 19398.68 20599.55 14299.58 15199.24 18598.80 22399.54 18598.94 16599.14 24399.25 27297.24 23799.82 23895.84 30199.78 16499.60 116
plane_prior298.80 22398.94 165
JIA-IIPM98.06 26897.92 26998.50 28698.59 33797.02 30798.80 22398.51 31899.88 1497.89 32999.87 3191.89 30899.90 12398.16 16197.68 34398.59 311
PAPM_NR98.36 25098.04 25799.33 20399.48 20598.93 22598.79 22699.28 27397.54 27998.56 29898.57 33397.12 24499.69 29894.09 33098.90 31099.38 214
CHOSEN 1792x268899.39 7899.30 8699.65 9899.88 2499.25 18098.78 22799.88 1698.66 19799.96 999.79 5897.45 22799.93 6799.34 4799.99 1399.78 31
ETH3D-3000-0.198.77 20898.50 22299.59 12699.47 21099.53 11698.77 22899.60 15297.33 29199.23 22699.50 21297.91 19799.83 22895.02 31999.67 21299.41 207
MS-PatchMatch99.00 17898.97 16999.09 23999.11 29798.19 26698.76 22999.33 25998.49 21699.44 18099.58 18398.21 17499.69 29898.20 15499.62 22499.39 212
DPE-MVS99.14 14798.92 17899.82 2499.57 16199.77 4098.74 23099.60 15298.55 20899.76 7499.69 11298.23 17399.92 8596.39 28099.75 17399.76 36
WTY-MVS98.59 22698.37 23399.26 21999.43 22398.40 25598.74 23099.13 29498.10 25099.21 23299.24 27794.82 28299.90 12397.86 18498.77 31599.49 177
zzz-MVS99.30 10199.14 11399.80 3099.81 5099.81 2898.73 23299.53 19499.27 11899.42 18699.63 15098.21 17499.95 4397.83 18999.79 15899.65 82
sss98.90 19398.77 19799.27 21799.48 20598.44 25298.72 23399.32 26197.94 26199.37 20299.35 25296.31 26599.91 10398.85 10999.63 22399.47 186
CANet99.11 15599.05 14499.28 21598.83 32298.56 24698.71 23499.41 23599.25 12299.23 22699.22 27997.66 22099.94 5499.19 6899.97 3099.33 226
AdaColmapbinary98.60 22398.35 23699.38 19399.12 29299.22 18998.67 23599.42 23497.84 26898.81 27699.27 26897.32 23599.81 25495.14 31699.53 25199.10 271
MP-MVS-pluss99.14 14798.92 17899.80 3099.83 3799.83 2198.61 23699.63 13196.84 30699.44 18099.58 18398.81 9399.91 10397.70 19899.82 14099.67 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC98.82 20498.57 21599.58 13099.21 27799.31 16798.61 23699.25 27998.65 19898.43 30599.26 27097.86 20299.81 25496.55 27199.27 29199.61 112
BH-RMVSNet98.41 24698.14 25399.21 22899.21 27798.47 24998.60 23898.26 32798.35 23398.93 26299.31 25997.20 24299.66 31894.32 32699.10 29999.51 166
LF4IMVS99.01 17698.92 17899.27 21799.71 11099.28 17298.59 23999.77 6098.32 23999.39 20099.41 23498.62 12399.84 21796.62 27099.84 12198.69 307
OPM-MVS99.26 11099.13 11699.63 10999.70 11799.61 10098.58 24099.48 21598.50 21499.52 16599.63 15099.14 5599.76 27697.89 17999.77 16899.51 166
MCST-MVS99.02 17298.81 19399.65 9899.58 15199.49 11998.58 24099.07 29598.40 22499.04 25599.25 27298.51 14399.80 25997.31 22599.51 25499.65 82
PVSNet_BlendedMVS99.03 17099.01 15799.09 23999.54 17397.99 27898.58 24099.82 3797.62 27599.34 20899.71 9998.52 14199.77 27497.98 17399.97 3099.52 164
OMC-MVS98.90 19398.72 19999.44 17299.39 23399.42 14198.58 24099.64 12997.31 29299.44 18099.62 15998.59 12799.69 29896.17 28899.79 15899.22 246
diffmvs99.34 9299.32 8099.39 18999.67 13398.77 23698.57 24499.81 4699.61 6799.48 17399.41 23498.47 14599.86 18498.97 9799.90 8399.53 154
DP-MVS Recon98.50 23698.23 24399.31 21099.49 19999.46 12698.56 24599.63 13194.86 33598.85 27299.37 24297.81 20699.59 33596.08 28999.44 26498.88 297
new-patchmatchnet99.35 8799.57 3898.71 28099.82 4396.62 31598.55 24699.75 7199.50 8299.88 3399.87 3199.31 3699.88 15199.43 36100.00 199.62 105
pmmvs599.19 13499.11 12399.42 17799.76 8498.88 23098.55 24699.73 7998.82 18299.72 9299.62 15996.56 25599.82 23899.32 5199.95 4899.56 139
BH-untuned98.22 26298.09 25598.58 28499.38 23697.24 30298.55 24698.98 30097.81 26999.20 23798.76 32797.01 24899.65 32594.83 32098.33 33198.86 299
CNVR-MVS98.99 18198.80 19599.56 13999.25 27299.43 13898.54 24999.27 27498.58 20598.80 27899.43 23298.53 13899.70 29297.22 23699.59 23699.54 149
thres20096.09 31595.68 31897.33 32299.48 20596.22 32098.53 25097.57 33698.06 25298.37 30796.73 35986.84 34499.61 33386.99 35198.57 32596.16 349
1112_ss99.05 16698.84 18999.67 8699.66 13499.29 17098.52 25199.82 3797.65 27499.43 18499.16 28696.42 26199.91 10399.07 8899.84 12199.80 24
EPNet_dtu97.62 28197.79 27697.11 32596.67 35692.31 34698.51 25298.04 32899.24 12495.77 35099.47 22493.78 29399.66 31898.98 9599.62 22499.37 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft97.35 1698.36 25097.99 25999.48 16199.32 25999.24 18598.50 25399.51 20595.19 33198.58 29698.96 31396.95 25099.83 22895.63 30699.25 29299.37 217
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.92 1398.03 26997.55 28399.46 16699.47 21099.44 13398.50 25399.62 13486.79 34999.07 25399.26 27098.26 16999.62 32997.28 22899.73 18899.31 231
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3D cwj APD-0.1698.50 23698.16 25299.51 15299.04 30599.39 14898.47 25599.47 21996.70 31098.78 28199.33 25697.62 22399.86 18494.69 32499.38 27499.28 237
xiu_mvs_v1_base_debu99.23 11599.34 7598.91 25899.59 14898.23 26398.47 25599.66 11299.61 6799.68 10498.94 31599.39 2499.97 1799.18 7099.55 24398.51 317
xiu_mvs_v1_base99.23 11599.34 7598.91 25899.59 14898.23 26398.47 25599.66 11299.61 6799.68 10498.94 31599.39 2499.97 1799.18 7099.55 24398.51 317
xiu_mvs_v1_base_debi99.23 11599.34 7598.91 25899.59 14898.23 26398.47 25599.66 11299.61 6799.68 10498.94 31599.39 2499.97 1799.18 7099.55 24398.51 317
TR-MVS97.44 28797.15 29298.32 29498.53 33997.46 29698.47 25597.91 33296.85 30598.21 31498.51 33796.42 26199.51 34192.16 33897.29 34597.98 337
FPMVS96.32 31195.50 31998.79 27499.60 14698.17 26898.46 26098.80 30697.16 29796.28 34699.63 15082.19 35299.09 34988.45 34698.89 31199.10 271
plane_prior99.24 18598.42 26197.87 26499.71 197
WR-MVS99.11 15598.93 17499.66 9399.30 26499.42 14198.42 26199.37 25299.04 15699.57 14599.20 28396.89 25199.86 18498.66 12699.87 10799.70 48
MVS-HIRNet97.86 27398.22 24496.76 32699.28 26891.53 35298.38 26392.60 35599.13 14399.31 21499.96 1197.18 24399.68 30998.34 14199.83 13199.07 282
ETH3 D test640097.76 27697.19 29199.50 15599.38 23699.26 17698.34 26499.49 21392.99 34298.54 29999.20 28395.92 27499.82 23891.14 34299.66 21699.40 209
N_pmnet98.73 21598.53 22099.35 20099.72 10798.67 24198.34 26494.65 35098.35 23399.79 6499.68 12398.03 18799.93 6798.28 14799.92 7399.44 197
CNLPA98.57 22898.34 23799.28 21599.18 28499.10 20798.34 26499.41 23598.48 21798.52 30098.98 30897.05 24799.78 26695.59 30799.50 25698.96 290
CDPH-MVS98.56 22998.20 24699.61 12299.50 19499.46 12698.32 26799.41 23595.22 32999.21 23299.10 29598.34 16299.82 23895.09 31899.66 21699.56 139
Effi-MVS+99.06 16398.97 16999.34 20199.31 26098.98 21698.31 26899.91 898.81 18398.79 27998.94 31599.14 5599.84 21798.79 11498.74 31999.20 251
xxxxxxxxxxxxxcwj99.11 15598.96 17199.54 14699.53 17899.25 18098.29 26999.76 6599.07 15199.42 18699.61 16898.86 8999.87 16496.45 27899.68 20599.49 177
save fliter99.53 17899.25 18098.29 26999.38 25199.07 151
Patchmatch-RL test98.60 22398.36 23499.33 20399.77 8099.07 21198.27 27199.87 1898.91 17199.74 8799.72 9290.57 32699.79 26298.55 13099.85 11799.11 269
jason99.16 14399.11 12399.32 20799.75 9498.44 25298.26 27299.39 24598.70 19599.74 8799.30 26198.54 13499.97 1798.48 13399.82 14099.55 142
jason: jason.
XVG-OURS-SEG-HR99.16 14398.99 16599.66 9399.84 3499.64 8898.25 27399.73 7998.39 22599.63 12299.43 23299.70 1199.90 12397.34 22398.64 32399.44 197
MDA-MVSNet_test_wron98.95 18898.99 16598.85 26699.64 13897.16 30498.23 27499.33 25998.93 16899.56 15299.66 13397.39 23199.83 22898.29 14699.88 9999.55 142
YYNet198.95 18898.99 16598.84 26899.64 13897.14 30598.22 27599.32 26198.92 17099.59 14099.66 13397.40 22999.83 22898.27 14899.90 8399.55 142
CANet_DTU98.91 19198.85 18799.09 23998.79 32898.13 26998.18 27699.31 26599.48 8498.86 27199.51 20996.56 25599.95 4399.05 8999.95 4899.19 253
MG-MVS98.52 23598.39 23198.94 25299.15 28797.39 29998.18 27699.21 28698.89 17599.23 22699.63 15097.37 23399.74 28294.22 32899.61 23199.69 51
SCA98.11 26598.36 23497.36 32099.20 28092.99 34398.17 27898.49 32098.24 24399.10 24999.57 19196.01 27299.94 5496.86 25499.62 22499.14 265
TSAR-MVS + GP.99.12 15199.04 15099.38 19399.34 25399.16 19898.15 27999.29 27098.18 24899.63 12299.62 15999.18 5099.68 30998.20 15499.74 18199.30 232
new_pmnet98.88 19798.89 18398.84 26899.70 11797.62 29298.15 27999.50 20897.98 25699.62 12999.54 20298.15 18099.94 5497.55 21199.84 12198.95 291
PatchMatch-RL98.68 21898.47 22399.30 21299.44 22199.28 17298.14 28199.54 18597.12 29999.11 24799.25 27297.80 20799.70 29296.51 27499.30 28698.93 293
xiu_mvs_v2_base99.02 17299.11 12398.77 27599.37 23998.09 27498.13 28299.51 20599.47 8999.42 18698.54 33699.38 2899.97 1798.83 11099.33 28398.24 328
lupinMVS98.96 18598.87 18599.24 22599.57 16198.40 25598.12 28399.18 28898.28 24199.63 12299.13 28898.02 18999.97 1798.22 15299.69 20299.35 223
DELS-MVS99.34 9299.30 8699.48 16199.51 18899.36 15798.12 28399.53 19499.36 10799.41 19499.61 16899.22 4799.87 16499.21 6399.68 20599.20 251
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TEST999.35 24399.35 16198.11 28599.41 23594.83 33797.92 32798.99 30598.02 18999.85 202
train_agg98.35 25397.95 26399.57 13599.35 24399.35 16198.11 28599.41 23594.90 33397.92 32798.99 30598.02 18999.85 20295.38 31399.44 26499.50 172
PMMVS299.48 5399.45 5699.57 13599.76 8498.99 21598.09 28799.90 1198.95 16499.78 6799.58 18399.57 1999.93 6799.48 3299.95 4899.79 30
Test_1112_low_res98.95 18898.73 19899.63 10999.68 12899.15 20098.09 28799.80 4797.14 29899.46 17899.40 23696.11 27099.89 13699.01 9299.84 12199.84 15
test_899.34 25399.31 16798.08 28999.40 24294.90 33397.87 33198.97 31198.02 18999.84 217
IterMVS-SCA-FT99.00 17899.16 10998.51 28599.75 9495.90 32598.07 29099.84 3099.84 2299.89 2799.73 8696.01 27299.99 499.33 49100.00 199.63 93
HyFIR lowres test98.91 19198.64 20699.73 6899.85 3399.47 12298.07 29099.83 3298.64 19999.89 2799.60 17592.57 302100.00 199.33 4999.97 3099.72 42
IterMVS98.97 18299.16 10998.42 28999.74 10095.64 32898.06 29299.83 3299.83 2599.85 3999.74 8296.10 27199.99 499.27 61100.00 199.63 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
新几何298.04 293
BH-w/o97.20 29297.01 29597.76 31099.08 30195.69 32798.03 29498.52 31795.76 32397.96 32698.02 34695.62 27799.47 34392.82 33797.25 34698.12 334
无先验98.01 29599.23 28395.83 32199.85 20295.79 30399.44 197
pmmvs499.13 14999.06 14099.36 19999.57 16199.10 20798.01 29599.25 27998.78 18899.58 14299.44 23198.24 17099.76 27698.74 11999.93 6999.22 246
PS-MVSNAJ99.00 17899.08 13498.76 27699.37 23998.10 27398.00 29799.51 20599.47 8999.41 19498.50 33899.28 4199.97 1798.83 11099.34 28198.20 332
test_prior499.19 19698.00 297
agg_prior198.33 25597.92 26999.57 13599.35 24399.36 15797.99 29999.39 24594.85 33697.76 33698.98 30898.03 18799.85 20295.49 30999.44 26499.51 166
HQP-NCC99.31 26097.98 30097.45 28498.15 315
ACMP_Plane99.31 26097.98 30097.45 28498.15 315
HQP-MVS98.36 25098.02 25899.39 18999.31 26098.94 22197.98 30099.37 25297.45 28498.15 31598.83 32396.67 25399.70 29294.73 32199.67 21299.53 154
UnsupCasMVSNet_bld98.55 23298.27 24199.40 18699.56 17199.37 15497.97 30399.68 10497.49 28399.08 25099.35 25295.41 27999.82 23897.70 19898.19 33599.01 288
test_prior398.62 22198.34 23799.46 16699.35 24399.22 18997.95 30499.39 24597.87 26498.05 32199.05 29997.90 19899.69 29895.99 29499.49 25899.48 181
test_prior297.95 30497.87 26498.05 32199.05 29997.90 19895.99 29499.49 258
旧先验297.94 30695.33 32898.94 26199.88 15196.75 261
MVEpermissive92.54 2296.66 30596.11 30998.31 29699.68 12897.55 29497.94 30695.60 34899.37 10590.68 35598.70 32996.56 25598.61 35386.94 35299.55 24398.77 305
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
原ACMM297.92 308
MVS_111021_HR99.12 15199.02 15499.40 18699.50 19499.11 20397.92 30899.71 9198.76 19299.08 25099.47 22499.17 5199.54 33897.85 18699.76 17099.54 149
MVS_111021_LR99.13 14999.03 15299.42 17799.58 15199.32 16697.91 31099.73 7998.68 19699.31 21499.48 21999.09 6199.66 31897.70 19899.77 16899.29 235
pmmvs398.08 26797.80 27498.91 25899.41 22997.69 29197.87 31199.66 11295.87 32099.50 17199.51 20990.35 32899.97 1798.55 13099.47 26199.08 277
XVG-OURS99.21 12999.06 14099.65 9899.82 4399.62 9497.87 31199.74 7698.36 22899.66 11299.68 12399.71 999.90 12396.84 25799.88 9999.43 203
test22299.51 18899.08 21097.83 31399.29 27095.21 33098.68 28999.31 25997.28 23699.38 27499.43 203
miper_lstm_enhance98.65 22098.60 20998.82 27399.20 28097.33 30097.78 31499.66 11299.01 15799.59 14099.50 21294.62 28599.85 20298.12 16399.90 8399.26 238
TinyColmap98.97 18298.93 17499.07 24399.46 21598.19 26697.75 31599.75 7198.79 18699.54 15999.70 10698.97 7699.62 32996.63 26999.83 13199.41 207
our_test_398.85 20199.09 13298.13 30199.66 13494.90 33597.72 31699.58 16899.07 15199.64 11899.62 15998.19 17799.93 6798.41 13599.95 4899.55 142
testdata197.72 31697.86 267
ET-MVSNet_ETH3D96.78 30196.07 31098.91 25899.26 27197.92 28497.70 31896.05 34697.96 26092.37 35498.43 34087.06 33999.90 12398.27 14897.56 34498.91 295
cl_fuxian98.72 21698.71 20098.72 27899.12 29297.22 30397.68 31999.56 17598.90 17299.54 15999.48 21996.37 26499.73 28497.88 18099.88 9999.21 248
ppachtmachnet_test98.89 19699.12 12098.20 29999.66 13495.24 33297.63 32099.68 10499.08 14999.78 6799.62 15998.65 12199.88 15198.02 16899.96 4199.48 181
PAPR97.56 28497.07 29399.04 24698.80 32798.11 27297.63 32099.25 27994.56 33998.02 32598.25 34497.43 22899.68 30990.90 34398.74 31999.33 226
test0.0.03 197.37 28996.91 30098.74 27797.72 35297.57 29397.60 32297.36 34198.00 25399.21 23298.02 34690.04 33199.79 26298.37 13795.89 35098.86 299
PVSNet_Blended98.70 21798.59 21199.02 24799.54 17397.99 27897.58 32399.82 3795.70 32499.34 20898.98 30898.52 14199.77 27497.98 17399.83 13199.30 232
PMMVS98.49 23998.29 24099.11 23798.96 31098.42 25497.54 32499.32 26197.53 28098.47 30498.15 34597.88 20199.82 23897.46 21799.24 29499.09 274
MSDG99.08 16198.98 16899.37 19699.60 14699.13 20197.54 32499.74 7698.84 18199.53 16399.55 20099.10 5999.79 26297.07 24599.86 11499.18 255
test12329.31 32433.05 32918.08 33825.93 36012.24 36097.53 32610.93 36111.78 35524.21 35650.08 36421.04 3618.60 35623.51 35432.43 35533.39 352
CLD-MVS98.76 21098.57 21599.33 20399.57 16198.97 21897.53 32699.55 18096.41 31299.27 22099.13 28899.07 6699.78 26696.73 26399.89 9199.23 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.68 21898.71 20098.60 28299.10 29896.84 31297.52 32899.54 18598.94 16599.58 14299.48 21996.25 26799.76 27698.01 17199.93 6999.21 248
miper_ehance_all_eth98.59 22698.59 21198.59 28398.98 30997.07 30697.49 32999.52 20298.50 21499.52 16599.37 24296.41 26399.71 29097.86 18499.62 22499.00 289
cl-mvsnet_98.54 23398.41 22998.92 25699.03 30697.80 28797.46 33099.59 15998.90 17299.60 13799.46 22793.85 29199.78 26697.97 17599.89 9199.17 257
cl-mvsnet198.54 23398.42 22898.92 25699.03 30697.80 28797.46 33099.59 15998.90 17299.60 13799.46 22793.87 29099.78 26697.97 17599.89 9199.18 255
test-LLR97.15 29396.95 29797.74 31298.18 34895.02 33397.38 33296.10 34398.00 25397.81 33398.58 33190.04 33199.91 10397.69 20498.78 31398.31 324
TESTMET0.1,196.24 31395.84 31597.41 31998.24 34693.84 33997.38 33295.84 34798.43 21997.81 33398.56 33479.77 35799.89 13697.77 19198.77 31598.52 316
test-mter96.23 31495.73 31797.74 31298.18 34895.02 33397.38 33296.10 34397.90 26297.81 33398.58 33179.12 35899.91 10397.69 20498.78 31398.31 324
IB-MVS95.41 2095.30 32394.46 32697.84 30898.76 33295.33 33197.33 33596.07 34596.02 31895.37 35297.41 35376.17 36099.96 3497.54 21295.44 35198.22 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.28 25697.94 26799.32 20799.36 24199.11 20397.31 33698.78 30796.88 30398.84 27399.11 29497.77 20999.61 33394.03 33299.36 27999.23 244
thisisatest051596.98 29796.42 30498.66 28199.42 22897.47 29597.27 33794.30 35297.24 29499.15 24198.86 32285.01 34899.87 16497.10 24399.39 27398.63 308
DeepPCF-MVS98.42 699.18 13899.02 15499.67 8699.22 27699.75 4897.25 33899.47 21998.72 19499.66 11299.70 10699.29 3999.63 32898.07 16799.81 14899.62 105
cl-mvsnet297.56 28497.28 28698.40 29098.37 34396.75 31397.24 33999.37 25297.31 29299.41 19499.22 27987.30 33799.37 34797.70 19899.62 22499.08 277
GA-MVS97.99 27297.68 28098.93 25599.52 18398.04 27797.19 34099.05 29898.32 23998.81 27698.97 31189.89 33399.41 34698.33 14299.05 30199.34 225
USDC98.96 18598.93 17499.05 24599.54 17397.99 27897.07 34199.80 4798.21 24599.75 7999.77 7298.43 15099.64 32797.90 17899.88 9999.51 166
miper_enhance_ethall98.03 26997.94 26798.32 29498.27 34596.43 31896.95 34299.41 23596.37 31499.43 18498.96 31394.74 28399.69 29897.71 19699.62 22498.83 302
CHOSEN 280x42098.41 24698.41 22998.40 29099.34 25395.89 32696.94 34399.44 22898.80 18599.25 22299.52 20693.51 29599.98 698.94 10499.98 2299.32 229
PCF-MVS96.03 1896.73 30395.86 31499.33 20399.44 22199.16 19896.87 34499.44 22886.58 35098.95 26099.40 23694.38 28799.88 15187.93 34799.80 15398.95 291
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testmvs28.94 32533.33 32715.79 33926.03 3599.81 36196.77 34515.67 36011.55 35623.87 35750.74 36319.03 3628.53 35723.21 35533.07 35429.03 353
PVSNet97.47 1598.42 24598.44 22698.35 29299.46 21596.26 31996.70 34699.34 25897.68 27399.00 25799.13 28897.40 22999.72 28697.59 21099.68 20599.08 277
PAPM95.61 32294.71 32498.31 29699.12 29296.63 31496.66 34798.46 32190.77 34796.25 34798.68 33093.01 29999.69 29881.60 35397.86 34298.62 309
cascas96.99 29696.82 30297.48 31697.57 35595.64 32896.43 34899.56 17591.75 34497.13 34497.61 35195.58 27898.63 35296.68 26599.11 29898.18 333
PVSNet_095.53 1995.85 31995.31 32197.47 31798.78 33093.48 34195.72 34999.40 24296.18 31797.37 33997.73 34995.73 27599.58 33695.49 30981.40 35399.36 220
E-PMN97.14 29597.43 28496.27 33398.79 32891.62 35195.54 35099.01 29999.44 9598.88 26999.12 29292.78 30199.68 30994.30 32799.03 30397.50 341
EMVS96.96 29897.28 28695.99 33698.76 33291.03 35495.26 35198.61 31499.34 10898.92 26598.88 32193.79 29299.66 31892.87 33699.05 30197.30 345
uanet_test8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k24.88 32633.17 3280.00 3400.00 3610.00 3620.00 35299.62 1340.00 3570.00 35899.13 28899.82 40.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas16.61 32722.14 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 199.28 410.00 3580.00 3560.00 3560.00 354
sosnet-low-res8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
sosnet8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
Regformer8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.26 33411.02 3370.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35899.16 2860.00 3630.00 3580.00 3560.00 3560.00 354
uanet8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
ZD-MVS99.43 22399.61 10099.43 23196.38 31399.11 24799.07 29797.86 20299.92 8594.04 33199.49 258
IU-MVS99.69 12099.77 4099.22 28497.50 28299.69 10297.75 19399.70 19999.77 32
test_241102_TWO99.54 18599.13 14399.76 7499.63 15098.32 16599.92 8597.85 18699.69 20299.75 39
test_241102_ONE99.69 12099.82 2599.54 18599.12 14699.82 4999.49 21798.91 8399.52 340
test_0728_THIRD99.18 13299.62 12999.61 16898.58 12899.91 10397.72 19599.80 15399.77 32
GSMVS99.14 265
test_part299.62 14399.67 7999.55 157
sam_mvs190.81 32399.14 265
sam_mvs90.52 327
MTGPAbinary99.53 194
test_post52.41 36190.25 32999.86 184
patchmatchnet-post99.62 15990.58 32599.94 54
gm-plane-assit97.59 35389.02 35993.47 34098.30 34299.84 21796.38 281
test9_res95.10 31799.44 26499.50 172
agg_prior294.58 32599.46 26399.50 172
agg_prior99.35 24399.36 15799.39 24597.76 33699.85 202
TestCases99.63 10999.78 7299.64 8899.83 3298.63 20099.63 12299.72 9298.68 11499.75 28096.38 28199.83 13199.51 166
test_prior99.46 16699.35 24399.22 18999.39 24599.69 29899.48 181
新几何199.52 14999.50 19499.22 18999.26 27695.66 32598.60 29499.28 26697.67 21699.89 13695.95 29899.32 28499.45 192
旧先验199.49 19999.29 17099.26 27699.39 24097.67 21699.36 27999.46 190
原ACMM199.37 19699.47 21098.87 23299.27 27496.74 30998.26 31099.32 25797.93 19699.82 23895.96 29799.38 27499.43 203
testdata299.89 13695.99 294
segment_acmp98.37 158
testdata99.42 17799.51 18898.93 22599.30 26896.20 31698.87 27099.40 23698.33 16499.89 13696.29 28499.28 28899.44 197
test1299.54 14699.29 26699.33 16499.16 29098.43 30597.54 22499.82 23899.47 26199.48 181
plane_prior799.58 15199.38 151
plane_prior699.47 21099.26 17697.24 237
plane_prior599.54 18599.82 23895.84 30199.78 16499.60 116
plane_prior499.25 272
plane_prior399.31 16798.36 22899.14 243
plane_prior199.51 188
n20.00 362
nn0.00 362
door-mid99.83 32
lessismore_v099.64 10599.86 3099.38 15190.66 35699.89 2799.83 4194.56 28699.97 1799.56 2499.92 7399.57 136
LGP-MVS_train99.74 6099.82 4399.63 9299.73 7997.56 27799.64 11899.69 11299.37 3099.89 13696.66 26799.87 10799.69 51
test1199.29 270
door99.77 60
HQP5-MVS98.94 221
BP-MVS94.73 321
HQP4-MVS98.15 31599.70 29299.53 154
HQP3-MVS99.37 25299.67 212
HQP2-MVS96.67 253
NP-MVS99.40 23299.13 20198.83 323
ACMMP++_ref99.94 61
ACMMP++99.79 158
Test By Simon98.41 152
ITE_SJBPF99.38 19399.63 14099.44 13399.73 7998.56 20699.33 21099.53 20498.88 8899.68 30996.01 29299.65 21999.02 287
DeepMVS_CXcopyleft97.98 30399.69 12096.95 30899.26 27675.51 35395.74 35198.28 34396.47 25999.62 32991.23 34197.89 34197.38 343