This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 599.90 799.97 699.87 3199.81 599.95 4599.54 2699.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
UA-Net99.78 1399.76 1499.86 1699.72 10799.71 6399.91 399.95 499.96 299.71 9999.91 1999.15 5299.97 1799.50 32100.00 199.90 4
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9299.93 499.95 1099.89 2599.71 999.96 3599.51 3099.97 3099.84 14
TDRefinement99.72 1799.70 1799.77 3999.90 1999.85 1299.86 599.92 599.69 5099.78 6899.92 1699.37 2999.88 15598.93 10899.95 4999.60 117
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 899.85 2099.94 1199.95 1199.73 899.90 12699.65 1699.97 3099.69 52
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2199.83 699.85 2399.80 3299.93 1499.93 1398.54 13299.93 6999.59 2099.98 2199.76 37
v7n99.82 1099.80 1099.88 1199.96 499.84 1799.82 899.82 3699.84 2399.94 1199.91 1999.13 5699.96 3599.83 999.99 1299.83 18
Anonymous2023121199.62 3399.57 3899.76 4599.61 14599.60 10299.81 999.73 8099.82 2899.90 2299.90 2197.97 19399.86 18899.42 4199.96 4299.80 24
ab-mvs99.33 9699.28 9399.47 16499.57 16399.39 14899.78 1099.43 23598.87 17999.57 14799.82 4998.06 18599.87 16898.69 12799.73 18999.15 264
MVSFormer99.41 7199.44 5799.31 21399.57 16398.40 26099.77 1199.80 4699.73 3999.63 12499.30 26498.02 18899.98 799.43 3799.69 20499.55 143
test_djsdf99.84 899.81 999.91 299.94 1099.84 1799.77 1199.80 4699.73 3999.97 699.92 1699.77 799.98 799.43 37100.00 199.90 4
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2199.76 1399.87 1799.73 3999.89 2699.87 3199.63 1499.87 16899.54 2699.92 7499.63 95
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1299.75 1499.86 1999.70 4799.91 2099.89 2599.60 1899.87 16899.59 2099.74 18299.71 46
K. test v398.87 19998.60 20999.69 8499.93 1399.46 12799.74 1594.97 35699.78 3599.88 3299.88 2893.66 29699.97 1799.61 1899.95 4999.64 90
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 799.73 1699.85 2399.70 4799.92 1899.93 1399.45 2199.97 1799.36 47100.00 199.85 13
NR-MVSNet99.40 7499.31 8199.68 8599.43 22599.55 11499.73 1699.50 21199.46 9699.88 3299.36 25097.54 22399.87 16898.97 10099.87 10899.63 95
IS-MVSNet99.03 17098.85 18799.55 14299.80 5699.25 18099.73 1699.15 29699.37 10899.61 13799.71 10094.73 28699.81 25997.70 20399.88 10099.58 131
FC-MVSNet-test99.70 1999.65 2299.86 1699.88 2499.86 1199.72 1999.78 5799.90 799.82 5099.83 4398.45 14799.87 16899.51 3099.97 3099.86 11
mvs_tets99.90 299.90 299.90 499.96 499.79 3599.72 1999.88 1599.92 699.98 399.93 1399.94 199.98 799.77 12100.00 199.92 3
Gipumacopyleft99.57 3799.59 3299.49 15899.98 399.71 6399.72 1999.84 2999.81 2999.94 1199.78 6698.91 8199.71 29598.41 13999.95 4999.05 287
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
GG-mvs-BLEND97.36 32597.59 35896.87 31699.70 2288.49 36694.64 36097.26 36380.66 36099.12 35591.50 34796.50 35596.08 357
jajsoiax99.89 399.89 399.89 799.96 499.78 3899.70 2299.86 1999.89 1199.98 399.90 2199.94 199.98 799.75 13100.00 199.90 4
SixPastTwentyTwo99.42 6799.30 8699.76 4599.92 1499.67 7999.70 2299.14 29799.65 6099.89 2699.90 2196.20 26999.94 5699.42 4199.92 7499.67 65
UGNet99.38 8099.34 7599.49 15898.90 31898.90 23099.70 2299.35 25999.86 1698.57 30399.81 5298.50 14299.93 6999.38 4499.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet99.17 14299.00 16099.66 9499.80 5699.43 13899.70 2299.24 28599.48 8799.56 15499.77 7394.89 28399.93 6998.72 12499.89 9299.63 95
3Dnovator99.15 299.43 6499.36 7399.65 9999.39 23699.42 14199.70 2299.56 17799.23 12999.35 20899.80 5499.17 5099.95 4598.21 15799.84 12299.59 126
gg-mvs-nofinetune95.87 32595.17 32997.97 30998.19 35296.95 31399.69 2889.23 36599.89 1196.24 35599.94 1281.19 35899.51 34893.99 34098.20 33697.44 349
MIMVSNet199.66 2499.62 2599.80 2999.94 1099.87 899.69 2899.77 6099.78 3599.93 1499.89 2597.94 19499.92 8899.65 1699.98 2199.62 106
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8199.69 2899.92 599.67 5499.77 7399.75 8099.61 1699.98 799.35 4899.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4099.68 3199.85 2399.95 399.98 399.92 1699.28 4099.98 799.75 13100.00 199.94 2
GBi-Net99.42 6799.31 8199.73 6999.49 20199.77 4099.68 3199.70 9699.44 9899.62 13199.83 4397.21 23899.90 12698.96 10299.90 8499.53 156
test199.42 6799.31 8199.73 6999.49 20199.77 4099.68 3199.70 9699.44 9899.62 13199.83 4397.21 23899.90 12698.96 10299.90 8499.53 156
FMVSNet199.66 2499.63 2499.73 6999.78 7299.77 4099.68 3199.70 9699.67 5499.82 5099.83 4398.98 7299.90 12699.24 6499.97 3099.53 156
test_part198.63 22398.26 24599.75 5599.40 23499.49 11999.67 3599.68 10599.86 1699.88 3299.86 3686.73 34999.93 6999.34 4999.97 3099.81 23
DTE-MVSNet99.68 2299.61 2999.88 1199.80 5699.87 899.67 3599.71 9299.72 4299.84 4399.78 6698.67 11599.97 1799.30 5799.95 4999.80 24
WR-MVS_H99.61 3599.53 4799.87 1499.80 5699.83 2199.67 3599.75 7299.58 7999.85 4099.69 11398.18 17899.94 5699.28 6299.95 4999.83 18
QAPM98.40 25297.99 26399.65 9999.39 23699.47 12399.67 3599.52 20491.70 35298.78 28799.80 5498.55 13099.95 4594.71 33099.75 17499.53 156
FIs99.65 2999.58 3599.84 1999.84 3499.85 1299.66 3999.75 7299.86 1699.74 8899.79 6098.27 16799.85 20699.37 4699.93 7099.83 18
v899.68 2299.69 1899.65 9999.80 5699.40 14699.66 3999.76 6599.64 6299.93 1499.85 3798.66 11799.84 22299.88 699.99 1299.71 46
v1099.69 2199.69 1899.66 9499.81 5199.39 14899.66 3999.75 7299.60 7699.92 1899.87 3198.75 10699.86 18899.90 299.99 1299.73 42
PS-CasMVS99.66 2499.58 3599.89 799.80 5699.85 1299.66 3999.73 8099.62 6699.84 4399.71 10098.62 12199.96 3599.30 5799.96 4299.86 11
PEN-MVS99.66 2499.59 3299.89 799.83 3899.87 899.66 3999.73 8099.70 4799.84 4399.73 8798.56 12999.96 3599.29 6099.94 6299.83 18
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 44100.00 199.90 7100.00 199.97 999.61 1699.97 1799.75 13100.00 199.84 14
OpenMVScopyleft98.12 1098.23 26597.89 27799.26 22299.19 28799.26 17699.65 4499.69 10291.33 35398.14 32599.77 7398.28 16699.96 3595.41 31999.55 24598.58 318
Anonymous2024052999.42 6799.34 7599.65 9999.53 18099.60 10299.63 4699.39 24899.47 9299.76 7599.78 6698.13 18099.86 18898.70 12599.68 20799.49 179
Anonymous2024052199.44 6399.42 6299.49 15899.89 2198.96 22099.62 4799.76 6599.85 2099.82 5099.88 2896.39 26499.97 1799.59 2099.98 2199.55 143
LFMVS98.46 24698.19 25399.26 22299.24 27898.52 25299.62 4796.94 34899.87 1499.31 21899.58 18491.04 32099.81 25998.68 12899.42 27199.45 195
VDDNet98.97 18298.82 19299.42 17999.71 11098.81 23499.62 4798.68 31699.81 2999.38 20499.80 5494.25 29099.85 20698.79 11799.32 28699.59 126
VPA-MVSNet99.66 2499.62 2599.79 3499.68 12999.75 4899.62 4799.69 10299.85 2099.80 6099.81 5298.81 9199.91 10699.47 3499.88 10099.70 49
3Dnovator+98.92 399.35 8799.24 10199.67 8799.35 24699.47 12399.62 4799.50 21199.44 9899.12 25099.78 6698.77 10399.94 5697.87 18899.72 19599.62 106
canonicalmvs99.02 17299.00 16099.09 24499.10 30398.70 24099.61 5299.66 11499.63 6598.64 29797.65 35799.04 6899.54 34398.79 11798.92 31199.04 288
nrg03099.70 1999.66 2199.82 2399.76 8499.84 1799.61 5299.70 9699.93 499.78 6899.68 12499.10 5799.78 27099.45 3599.96 4299.83 18
HPM-MVScopyleft99.25 11199.07 13899.78 3799.81 5199.75 4899.61 5299.67 11097.72 27699.35 20899.25 27699.23 4599.92 8897.21 24299.82 14199.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS98.23 998.21 26797.95 26798.99 25399.03 31198.24 26799.61 5298.72 31596.81 31498.73 29199.51 21194.06 29199.86 18896.91 25698.20 33698.86 304
Vis-MVSNet (Re-imp)98.77 20898.58 21499.34 20499.78 7298.88 23199.61 5299.56 17799.11 15099.24 22999.56 19593.00 30299.78 27097.43 22499.89 9299.35 226
tfpnnormal99.43 6499.38 6799.60 12499.87 2899.75 4899.59 5799.78 5799.71 4399.90 2299.69 11398.85 8999.90 12697.25 23999.78 16599.15 264
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6199.59 5799.82 3699.39 10699.82 5099.84 4299.38 2799.91 10699.38 4499.93 7099.80 24
MIMVSNet98.43 24898.20 25099.11 24299.53 18098.38 26399.58 5998.61 32098.96 16699.33 21399.76 7690.92 32299.81 25997.38 22799.76 17199.15 264
CP-MVSNet99.54 4599.43 6099.87 1499.76 8499.82 2599.57 6099.61 14399.54 8099.80 6099.64 14197.79 20799.95 4599.21 6699.94 6299.84 14
LS3D99.24 11499.11 12399.61 12298.38 34799.79 3599.57 6099.68 10599.61 7099.15 24599.71 10098.70 11099.91 10697.54 21799.68 20799.13 271
EU-MVSNet99.39 7899.62 2598.72 28399.88 2496.44 32299.56 6299.85 2399.90 799.90 2299.85 3798.09 18299.83 23399.58 2399.95 4999.90 4
ACMH98.42 699.59 3699.54 4399.72 7599.86 3099.62 9499.56 6299.79 5298.77 19299.80 6099.85 3799.64 1399.85 20698.70 12599.89 9299.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast99.43 6499.30 8699.80 2999.83 3899.81 2899.52 6499.70 9698.35 23699.51 17399.50 21499.31 3599.88 15598.18 16299.84 12299.69 52
wuyk23d97.58 28899.13 11692.93 34499.69 12099.49 11999.52 6499.77 6097.97 26299.96 899.79 6099.84 399.94 5695.85 30799.82 14179.36 358
VDD-MVS99.20 13199.11 12399.44 17399.43 22598.98 21699.50 6698.32 33299.80 3299.56 15499.69 11396.99 24899.85 20698.99 9699.73 18999.50 174
APDe-MVS99.48 5299.36 7399.85 1899.55 17499.81 2899.50 6699.69 10298.99 16199.75 8099.71 10098.79 9899.93 6998.46 13799.85 11899.80 24
DSMNet-mixed99.48 5299.65 2298.95 25699.71 11097.27 30699.50 6699.82 3699.59 7899.41 19799.85 3799.62 15100.00 199.53 2899.89 9299.59 126
ACMMPcopyleft99.25 11199.08 13499.74 6199.79 6699.68 7799.50 6699.65 12598.07 25699.52 16899.69 11398.57 12799.92 8897.18 24499.79 15999.63 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tttt051797.62 28697.20 29598.90 26999.76 8497.40 30399.48 7094.36 35899.06 15899.70 10199.49 21984.55 35599.94 5698.73 12399.65 22199.36 223
VPNet99.46 5999.37 7099.71 7999.82 4499.59 10599.48 7099.70 9699.81 2999.69 10499.58 18497.66 21999.86 18899.17 7699.44 26699.67 65
Anonymous20240521198.75 21198.46 22599.63 11099.34 25699.66 8199.47 7297.65 34199.28 12099.56 15499.50 21493.15 29999.84 22298.62 13099.58 23999.40 212
MVS_030498.88 19798.71 20099.39 19298.85 32598.91 22999.45 7399.30 27198.56 20997.26 34899.68 12496.18 27099.96 3599.17 7699.94 6299.29 238
FMVSNet299.35 8799.28 9399.55 14299.49 20199.35 16199.45 7399.57 17299.44 9899.70 10199.74 8397.21 23899.87 16899.03 9399.94 6299.44 200
TAMVS99.49 5099.45 5599.63 11099.48 20799.42 14199.45 7399.57 17299.66 5899.78 6899.83 4397.85 20399.86 18899.44 3699.96 4299.61 113
baseline99.63 3099.62 2599.66 9499.80 5699.62 9499.44 7699.80 4699.71 4399.72 9499.69 11399.15 5299.83 23399.32 5499.94 6299.53 156
RPSCF99.18 13899.02 15499.64 10699.83 3899.85 1299.44 7699.82 3698.33 24199.50 17499.78 6697.90 19799.65 33096.78 26599.83 13299.44 200
CSCG99.37 8299.29 9199.60 12499.71 11099.46 12799.43 7899.85 2398.79 18999.41 19799.60 17698.92 7999.92 8898.02 17299.92 7499.43 206
CS-MVS99.09 16099.03 15299.25 22599.45 22099.49 11999.41 7999.82 3699.10 15198.03 33098.48 34699.30 3799.89 14098.30 14999.41 27298.35 330
CostFormer96.71 30996.79 30896.46 33998.90 31890.71 36399.41 7998.68 31694.69 34598.14 32599.34 25886.32 35299.80 26497.60 21498.07 34298.88 302
Patchmatch-test98.10 27097.98 26598.48 29299.27 27396.48 32199.40 8199.07 30098.81 18699.23 23099.57 19290.11 33399.87 16896.69 26999.64 22399.09 277
baseline197.73 28297.33 29098.96 25599.30 26797.73 29499.40 8198.42 32899.33 11499.46 18199.21 28591.18 31899.82 24398.35 14491.26 35999.32 232
V4299.56 4099.54 4399.63 11099.79 6699.46 12799.39 8399.59 16199.24 12799.86 3999.70 10798.55 13099.82 24399.79 1199.95 4999.60 117
EPMVS96.53 31296.32 31097.17 33198.18 35392.97 35199.39 8389.95 36498.21 24898.61 29999.59 18286.69 35199.72 29196.99 25299.23 29898.81 308
mPP-MVS99.19 13499.00 16099.76 4599.76 8499.68 7799.38 8599.54 18798.34 24099.01 26099.50 21498.53 13699.93 6997.18 24499.78 16599.66 75
CP-MVS99.23 11599.05 14499.75 5599.66 13599.66 8199.38 8599.62 13698.38 22999.06 25899.27 27198.79 9899.94 5697.51 22099.82 14199.66 75
FMVSNet597.80 27997.25 29399.42 17998.83 32798.97 21899.38 8599.80 4698.87 17999.25 22699.69 11380.60 36199.91 10698.96 10299.90 8499.38 217
COLMAP_ROBcopyleft98.06 1299.45 6199.37 7099.70 8399.83 3899.70 7099.38 8599.78 5799.53 8299.67 11099.78 6699.19 4899.86 18897.32 22999.87 10899.55 143
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DIV-MVS_2432*160099.63 3099.59 3299.76 4599.84 3499.90 499.37 8999.79 5299.83 2699.88 3299.85 3798.42 15099.90 12699.60 1999.73 18999.49 179
XVS99.27 10899.11 12399.75 5599.71 11099.71 6399.37 8999.61 14399.29 11798.76 28999.47 22798.47 14399.88 15597.62 21199.73 18999.67 65
X-MVStestdata96.09 32094.87 33099.75 5599.71 11099.71 6399.37 8999.61 14399.29 11798.76 28961.30 36798.47 14399.88 15597.62 21199.73 18999.67 65
MVS_Test99.28 10499.31 8199.19 23499.35 24698.79 23699.36 9299.49 21699.17 13899.21 23699.67 13098.78 10099.66 32399.09 8999.66 21899.10 274
MSP-MVS99.04 16998.79 19699.81 2699.78 7299.73 5799.35 9399.57 17298.54 21499.54 16198.99 31296.81 25299.93 6996.97 25399.53 25399.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EIA-MVS99.12 15199.01 15799.45 17199.36 24499.62 9499.34 9499.79 5298.41 22598.84 27998.89 32798.75 10699.84 22298.15 16699.51 25698.89 301
LCM-MVSNet-Re99.28 10499.15 11299.67 8799.33 26199.76 4699.34 9499.97 298.93 17199.91 2099.79 6098.68 11299.93 6996.80 26499.56 24199.30 235
MTAPA99.35 8799.20 10599.80 2999.81 5199.81 2899.33 9699.53 19699.27 12199.42 18999.63 15198.21 17399.95 4597.83 19499.79 15999.65 83
VNet99.18 13899.06 14099.56 13999.24 27899.36 15799.33 9699.31 26899.67 5499.47 17899.57 19296.48 25899.84 22299.15 8099.30 28899.47 189
abl_699.36 8599.23 10399.75 5599.71 11099.74 5499.33 9699.76 6599.07 15499.65 11899.63 15199.09 5999.92 8897.13 24799.76 17199.58 131
MP-MVScopyleft99.06 16398.83 19199.76 4599.76 8499.71 6399.32 9999.50 21198.35 23698.97 26299.48 22298.37 15799.92 8895.95 30599.75 17499.63 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Patchmtry98.78 20798.54 21999.49 15898.89 32199.19 19699.32 9999.67 11099.65 6099.72 9499.79 6091.87 31299.95 4598.00 17699.97 3099.33 229
tpm97.15 29896.95 30297.75 31698.91 31794.24 34399.32 9997.96 33697.71 27798.29 31499.32 26086.72 35099.92 8898.10 17096.24 35699.09 277
ACMH+98.40 899.50 4899.43 6099.71 7999.86 3099.76 4699.32 9999.77 6099.53 8299.77 7399.76 7699.26 4499.78 27097.77 19699.88 10099.60 117
HFP-MVS99.25 11199.08 13499.76 4599.73 10399.70 7099.31 10399.59 16198.36 23199.36 20699.37 24598.80 9599.91 10697.43 22499.75 17499.68 58
region2R99.23 11599.05 14499.77 3999.76 8499.70 7099.31 10399.59 16198.41 22599.32 21599.36 25098.73 10999.93 6997.29 23199.74 18299.67 65
ACMMPR99.23 11599.06 14099.76 4599.74 10099.69 7499.31 10399.59 16198.36 23199.35 20899.38 24498.61 12399.93 6997.43 22499.75 17499.67 65
131498.00 27597.90 27698.27 30398.90 31897.45 30299.30 10699.06 30294.98 33997.21 34999.12 29698.43 14899.67 31995.58 31598.56 32997.71 347
112198.56 23398.24 24699.52 14999.49 20199.24 18599.30 10699.22 28795.77 32998.52 30699.29 26797.39 23099.85 20695.79 31099.34 28399.46 193
MVS95.72 32894.63 33298.99 25398.56 34397.98 28899.30 10698.86 30872.71 36197.30 34699.08 30098.34 16199.74 28689.21 35198.33 33499.26 241
tpmvs97.39 29397.69 28396.52 33898.41 34691.76 35699.30 10698.94 30797.74 27597.85 33899.55 20192.40 30899.73 28996.25 29198.73 32498.06 342
TranMVSNet+NR-MVSNet99.54 4599.47 5199.76 4599.58 15399.64 8899.30 10699.63 13399.61 7099.71 9999.56 19598.76 10499.96 3599.14 8699.92 7499.68 58
CR-MVSNet98.35 25798.20 25098.83 27599.05 30898.12 27599.30 10699.67 11097.39 29399.16 24399.79 6091.87 31299.91 10698.78 12098.77 31898.44 327
RPMNet98.60 22798.53 22198.83 27599.05 30898.12 27599.30 10699.62 13699.86 1699.16 24399.74 8392.53 30699.92 8898.75 12198.77 31898.44 327
DP-MVS99.48 5299.39 6599.74 6199.57 16399.62 9499.29 11399.61 14399.87 1499.74 8899.76 7698.69 11199.87 16898.20 15899.80 15499.75 40
ZNCC-MVS99.22 12499.04 15099.77 3999.76 8499.73 5799.28 11499.56 17798.19 25099.14 24799.29 26798.84 9099.92 8897.53 21999.80 15499.64 90
Anonymous2023120699.35 8799.31 8199.47 16499.74 10099.06 21399.28 11499.74 7799.23 12999.72 9499.53 20697.63 22199.88 15599.11 8899.84 12299.48 184
test_040299.22 12499.14 11399.45 17199.79 6699.43 13899.28 11499.68 10599.54 8099.40 20299.56 19599.07 6499.82 24396.01 29999.96 4299.11 272
hse-mvs398.61 22598.34 23999.44 17399.60 14798.67 24299.27 11799.44 23199.68 5199.32 21599.49 21992.50 307100.00 199.24 6496.51 35499.65 83
APD-MVS_3200maxsize99.31 10099.16 10999.74 6199.53 18099.75 4899.27 11799.61 14399.19 13499.57 14799.64 14198.76 10499.90 12697.29 23199.62 22699.56 140
SR-MVS-dyc-post99.27 10899.11 12399.73 6999.54 17599.74 5499.26 11999.62 13699.16 14099.52 16899.64 14198.41 15199.91 10697.27 23499.61 23399.54 151
RE-MVS-def99.13 11699.54 17599.74 5499.26 11999.62 13699.16 14099.52 16899.64 14198.57 12797.27 23499.61 23399.54 151
TSAR-MVS + MP.99.34 9299.24 10199.63 11099.82 4499.37 15499.26 11999.35 25998.77 19299.57 14799.70 10799.27 4399.88 15597.71 20199.75 17499.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet99.38 8099.44 5799.21 23199.58 15398.09 27999.26 11999.46 22699.62 6699.75 8099.67 13098.54 13299.85 20699.15 8099.92 7499.68 58
CVMVSNet98.61 22598.88 18497.80 31499.58 15393.60 34799.26 11999.64 13199.66 5899.72 9499.67 13093.26 29899.93 6999.30 5799.81 14999.87 9
RRT_test8_iter0597.35 29697.25 29397.63 31998.81 33193.13 34999.26 11999.89 1299.51 8499.83 4899.68 12479.03 36699.88 15599.53 2899.72 19599.89 8
EG-PatchMatch MVS99.57 3799.56 4299.62 11999.77 8099.33 16499.26 11999.76 6599.32 11599.80 6099.78 6699.29 3899.87 16899.15 8099.91 8399.66 75
DWT-MVSNet_test96.03 32295.80 32196.71 33798.50 34591.93 35599.25 12697.87 33995.99 32696.81 35297.61 35881.02 35999.66 32397.20 24397.98 34398.54 320
test072699.69 12099.80 3399.24 12799.57 17299.16 14099.73 9299.65 13998.35 159
EI-MVSNet-UG-set99.48 5299.50 4999.42 17999.57 16398.65 24799.24 12799.46 22699.68 5199.80 6099.66 13498.99 7199.89 14099.19 7199.90 8499.72 43
EI-MVSNet-Vis-set99.47 5899.49 5099.42 17999.57 16398.66 24499.24 12799.46 22699.67 5499.79 6599.65 13998.97 7499.89 14099.15 8099.89 9299.71 46
EPNet98.13 26897.77 28199.18 23694.57 36497.99 28399.24 12797.96 33699.74 3897.29 34799.62 16093.13 30099.97 1798.59 13199.83 13299.58 131
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.49 24398.11 25899.64 10699.73 10399.58 10899.24 12799.76 6589.94 35599.42 18999.56 19597.76 20999.86 18897.74 19999.82 14199.47 189
PatchT98.45 24798.32 24298.83 27598.94 31698.29 26699.24 12798.82 31199.84 2399.08 25499.76 7691.37 31599.94 5698.82 11599.00 30798.26 334
DeepC-MVS98.90 499.62 3399.61 2999.67 8799.72 10799.44 13499.24 12799.71 9299.27 12199.93 1499.90 2199.70 1199.93 6998.99 9699.99 1299.64 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ADS-MVSNet297.78 28097.66 28698.12 30799.14 29395.36 33599.22 13498.75 31496.97 30898.25 31799.64 14190.90 32399.94 5696.51 27999.56 24199.08 280
ADS-MVSNet97.72 28497.67 28597.86 31299.14 29394.65 34199.22 13498.86 30896.97 30898.25 31799.64 14190.90 32399.84 22296.51 27999.56 24199.08 280
tpm296.35 31596.22 31296.73 33598.88 32491.75 35799.21 13698.51 32493.27 34897.89 33599.21 28584.83 35499.70 29796.04 29898.18 33998.75 311
test117299.23 11599.05 14499.74 6199.52 18599.75 4899.20 13799.61 14398.97 16399.48 17699.58 18498.41 15199.91 10697.15 24699.55 24599.57 137
SED-MVS99.40 7499.28 9399.77 3999.69 12099.82 2599.20 13799.54 18799.13 14699.82 5099.63 15198.91 8199.92 8897.85 19199.70 20199.58 131
OPU-MVS99.29 21699.12 29799.44 13499.20 13799.40 23999.00 7098.84 35896.54 27799.60 23699.58 131
GST-MVS99.16 14398.96 17199.75 5599.73 10399.73 5799.20 13799.55 18298.22 24799.32 21599.35 25598.65 11999.91 10696.86 25999.74 18299.62 106
PMVScopyleft92.94 2198.82 20498.81 19398.85 27199.84 3497.99 28399.20 13799.47 22299.71 4399.42 18999.82 4998.09 18299.47 35093.88 34199.85 11899.07 285
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp96.86 30497.07 29896.24 34198.68 34190.30 36599.19 14298.38 33197.35 29598.23 31999.59 18287.23 34299.82 24396.27 29098.73 32498.59 316
SR-MVS99.19 13499.00 16099.74 6199.51 19099.72 6199.18 14399.60 15498.85 18199.47 17899.58 18498.38 15699.92 8896.92 25599.54 25199.57 137
thres100view90096.39 31496.03 31697.47 32299.63 14195.93 32999.18 14397.57 34298.75 19698.70 29497.31 36287.04 34499.67 31987.62 35598.51 33196.81 353
thres600view796.60 31196.16 31397.93 31099.63 14196.09 32899.18 14397.57 34298.77 19298.72 29297.32 36187.04 34499.72 29188.57 35298.62 32797.98 344
SteuartSystems-ACMMP99.30 10199.14 11399.76 4599.87 2899.66 8199.18 14399.60 15498.55 21199.57 14799.67 13099.03 6999.94 5697.01 25199.80 15499.69 52
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS98.74 21398.44 22899.64 10699.61 14599.38 15199.18 14399.55 18296.49 31899.27 22499.37 24597.11 24499.92 8895.74 31299.67 21499.62 106
ambc99.20 23399.35 24698.53 25099.17 14899.46 22699.67 11099.80 5498.46 14699.70 29797.92 18299.70 20199.38 217
Regformer-399.41 7199.41 6399.40 18999.52 18598.70 24099.17 14899.44 23199.62 6699.75 8099.60 17698.90 8499.85 20698.89 11099.84 12299.65 83
Regformer-499.45 6199.44 5799.50 15599.52 18598.94 22299.17 14899.53 19699.64 6299.76 7599.60 17698.96 7799.90 12698.91 10999.84 12299.67 65
PatchmatchNetpermissive97.65 28597.80 27897.18 33098.82 33092.49 35299.17 14898.39 33098.12 25298.79 28599.58 18490.71 32799.89 14097.23 24099.41 27299.16 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.11 15598.95 17399.59 12699.13 29599.59 10599.17 14899.65 12597.88 26899.25 22699.46 23098.97 7499.80 26497.26 23699.82 14199.37 220
MAR-MVS98.24 26497.92 27399.19 23498.78 33599.65 8699.17 14899.14 29795.36 33498.04 32998.81 33297.47 22599.72 29195.47 31899.06 30298.21 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PGM-MVS99.20 13199.01 15799.77 3999.75 9499.71 6399.16 15499.72 8997.99 26099.42 18999.60 17698.81 9199.93 6996.91 25699.74 18299.66 75
LPG-MVS_test99.22 12499.05 14499.74 6199.82 4499.63 9299.16 15499.73 8097.56 28299.64 12099.69 11399.37 2999.89 14096.66 27299.87 10899.69 52
Effi-MVS+-dtu99.07 16298.92 17899.52 14998.89 32199.78 3899.15 15699.66 11499.34 11198.92 26999.24 28197.69 21299.98 798.11 16899.28 29098.81 308
MDTV_nov1_ep1397.73 28298.70 34090.83 36299.15 15698.02 33598.51 21698.82 28199.61 16990.98 32199.66 32396.89 25898.92 311
DVP-MVS99.32 9899.17 10899.77 3999.69 12099.80 3399.14 15899.31 26899.16 14099.62 13199.61 16998.35 15999.91 10697.88 18599.72 19599.61 113
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 2199.70 11799.79 3599.14 15899.61 14399.92 8897.88 18599.72 19599.77 33
test_post199.14 15851.63 36989.54 33799.82 24396.86 259
v2v48299.50 4899.47 5199.58 13099.78 7299.25 18099.14 15899.58 17099.25 12599.81 5799.62 16098.24 16999.84 22299.83 999.97 3099.64 90
MDTV_nov1_ep13_2view91.44 36099.14 15897.37 29499.21 23691.78 31496.75 26699.03 289
API-MVS98.38 25398.39 23398.35 29798.83 32799.26 17699.14 15899.18 29398.59 20798.66 29698.78 33398.61 12399.57 34294.14 33699.56 24196.21 355
SF-MVS99.10 15998.93 17499.62 11999.58 15399.51 11799.13 16499.65 12597.97 26299.42 18999.61 16998.86 8799.87 16896.45 28399.68 20799.49 179
SMA-MVScopyleft99.19 13499.00 16099.73 6999.46 21799.73 5799.13 16499.52 20497.40 29299.57 14799.64 14198.93 7899.83 23397.61 21399.79 15999.63 95
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
casdiffmvs99.63 3099.61 2999.67 8799.79 6699.59 10599.13 16499.85 2399.79 3499.76 7599.72 9399.33 3499.82 24399.21 6699.94 6299.59 126
ACMM98.09 1199.46 5999.38 6799.72 7599.80 5699.69 7499.13 16499.65 12598.99 16199.64 12099.72 9399.39 2399.86 18898.23 15599.81 14999.60 117
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS99.18 13899.18 10799.16 23799.34 25699.28 17299.12 16899.79 5299.48 8798.93 26698.55 34299.40 2299.93 6998.51 13599.52 25598.28 333
AllTest99.21 12999.07 13899.63 11099.78 7299.64 8899.12 16899.83 3198.63 20399.63 12499.72 9398.68 11299.75 28496.38 28699.83 13299.51 168
v14419299.55 4399.54 4399.58 13099.78 7299.20 19599.11 17099.62 13699.18 13599.89 2699.72 9398.66 11799.87 16899.88 699.97 3099.66 75
v114499.54 4599.53 4799.59 12699.79 6699.28 17299.10 17199.61 14399.20 13399.84 4399.73 8798.67 11599.84 22299.86 899.98 2199.64 90
#test#99.12 15198.90 18299.76 4599.73 10399.70 7099.10 17199.59 16197.60 28199.36 20699.37 24598.80 9599.91 10696.84 26299.75 17499.68 58
tpmrst97.73 28298.07 26096.73 33598.71 33992.00 35499.10 17198.86 30898.52 21598.92 26999.54 20391.90 31099.82 24398.02 17299.03 30598.37 329
FMVSNet398.80 20698.63 20899.32 21099.13 29598.72 23999.10 17199.48 21899.23 12999.62 13199.64 14192.57 30499.86 18898.96 10299.90 8499.39 215
thisisatest053097.45 29196.95 30298.94 25799.68 12997.73 29499.09 17594.19 36098.61 20699.56 15499.30 26484.30 35699.93 6998.27 15299.54 25199.16 262
MTMP99.09 17598.59 322
v14899.40 7499.41 6399.39 19299.76 8498.94 22299.09 17599.59 16199.17 13899.81 5799.61 16998.41 15199.69 30399.32 5499.94 6299.53 156
MVP-Stereo99.16 14399.08 13499.43 17799.48 20799.07 21199.08 17899.55 18298.63 20399.31 21899.68 12498.19 17699.78 27098.18 16299.58 23999.45 195
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat196.78 30696.98 30196.16 34298.85 32590.59 36499.08 17899.32 26492.37 35097.73 34499.46 23091.15 31999.69 30396.07 29798.80 31598.21 337
MVSTER98.47 24598.22 24899.24 22899.06 30798.35 26599.08 17899.46 22699.27 12199.75 8099.66 13488.61 33999.85 20699.14 8699.92 7499.52 166
Fast-Effi-MVS+-dtu99.20 13199.12 12099.43 17799.25 27699.69 7499.05 18199.82 3699.50 8598.97 26299.05 30398.98 7299.98 798.20 15899.24 29698.62 314
v192192099.56 4099.57 3899.55 14299.75 9499.11 20399.05 18199.61 14399.15 14499.88 3299.71 10099.08 6299.87 16899.90 299.97 3099.66 75
Fast-Effi-MVS+99.02 17298.87 18599.46 16799.38 23999.50 11899.04 18399.79 5297.17 30398.62 29898.74 33599.34 3399.95 4598.32 14799.41 27298.92 299
v119299.57 3799.57 3899.57 13599.77 8099.22 18999.04 18399.60 15499.18 13599.87 3899.72 9399.08 6299.85 20699.89 599.98 2199.66 75
alignmvs98.28 26097.96 26699.25 22599.12 29798.93 22699.03 18598.42 32899.64 6298.72 29297.85 35590.86 32599.62 33498.88 11199.13 29999.19 256
test20.0399.55 4399.54 4399.58 13099.79 6699.37 15499.02 18699.89 1299.60 7699.82 5099.62 16098.81 9199.89 14099.43 3799.86 11599.47 189
mvs_anonymous99.28 10499.39 6598.94 25799.19 28797.81 29199.02 18699.55 18299.78 3599.85 4099.80 5498.24 16999.86 18899.57 2499.50 25899.15 264
APD-MVScopyleft98.87 19998.59 21199.71 7999.50 19699.62 9499.01 18899.57 17296.80 31599.54 16199.63 15198.29 16599.91 10695.24 32299.71 19999.61 113
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CMPMVSbinary77.52 2398.50 24098.19 25399.41 18798.33 34999.56 11199.01 18899.59 16195.44 33399.57 14799.80 5495.64 27799.46 35296.47 28299.92 7499.21 251
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_yl98.25 26297.95 26799.13 24099.17 29098.47 25499.00 19098.67 31898.97 16399.22 23499.02 31091.31 31699.69 30397.26 23698.93 30999.24 244
DCV-MVSNet98.25 26297.95 26799.13 24099.17 29098.47 25499.00 19098.67 31898.97 16399.22 23499.02 31091.31 31699.69 30397.26 23698.93 30999.24 244
tfpn200view996.30 31795.89 31797.53 32099.58 15396.11 32699.00 19097.54 34598.43 22298.52 30696.98 36486.85 34699.67 31987.62 35598.51 33196.81 353
v124099.56 4099.58 3599.51 15299.80 5699.00 21499.00 19099.65 12599.15 14499.90 2299.75 8099.09 5999.88 15599.90 299.96 4299.67 65
thres40096.40 31395.89 31797.92 31199.58 15396.11 32699.00 19097.54 34598.43 22298.52 30696.98 36486.85 34699.67 31987.62 35598.51 33197.98 344
Regformer-199.32 9899.27 9699.47 16499.41 23198.95 22198.99 19599.48 21899.48 8799.66 11499.52 20898.78 10099.87 16898.36 14299.74 18299.60 117
Regformer-299.34 9299.27 9699.53 14899.41 23199.10 20798.99 19599.53 19699.47 9299.66 11499.52 20898.80 9599.89 14098.31 14899.74 18299.60 117
UnsupCasMVSNet_eth98.83 20298.57 21599.59 12699.68 12999.45 13298.99 19599.67 11099.48 8799.55 15999.36 25094.92 28299.86 18898.95 10696.57 35399.45 195
DeepC-MVS_fast98.47 599.23 11599.12 12099.56 13999.28 27199.22 18998.99 19599.40 24599.08 15299.58 14499.64 14198.90 8499.83 23397.44 22399.75 17499.63 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RRT_MVS98.75 21198.54 21999.41 18798.14 35698.61 24898.98 19999.66 11499.31 11699.84 4399.75 8091.98 30999.98 799.20 6999.95 4999.62 106
UniMVSNet (Re)99.37 8299.26 9899.68 8599.51 19099.58 10898.98 19999.60 15499.43 10399.70 10199.36 25097.70 21099.88 15599.20 6999.87 10899.59 126
UniMVSNet_NR-MVSNet99.37 8299.25 10099.72 7599.47 21299.56 11198.97 20199.61 14399.43 10399.67 11099.28 26997.85 20399.95 4599.17 7699.81 14999.65 83
CDS-MVSNet99.22 12499.13 11699.50 15599.35 24699.11 20398.96 20299.54 18799.46 9699.61 13799.70 10796.31 26699.83 23399.34 4999.88 10099.55 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP_NAP99.28 10499.11 12399.79 3499.75 9499.81 2898.95 20399.53 19698.27 24599.53 16699.73 8798.75 10699.87 16897.70 20399.83 13299.68 58
PM-MVS99.36 8599.29 9199.58 13099.83 3899.66 8198.95 20399.86 1998.85 18199.81 5799.73 8798.40 15599.92 8898.36 14299.83 13299.17 260
SD-MVS99.01 17699.30 8698.15 30599.50 19699.40 14698.94 20599.61 14399.22 13299.75 8099.82 4999.54 2095.51 36297.48 22199.87 10899.54 151
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_Blended_VisFu99.40 7499.38 6799.44 17399.90 1998.66 24498.94 20599.91 897.97 26299.79 6599.73 8799.05 6799.97 1799.15 8099.99 1299.68 58
MDA-MVSNet-bldmvs99.06 16399.05 14499.07 24899.80 5697.83 29098.89 20799.72 8999.29 11799.63 12499.70 10796.47 25999.89 14098.17 16499.82 14199.50 174
testtj98.56 23398.17 25599.72 7599.45 22099.60 10298.88 20899.50 21196.88 31099.18 24299.48 22297.08 24599.92 8893.69 34299.38 27699.63 95
mvs-test198.83 20298.70 20399.22 23098.89 32199.65 8698.88 20899.66 11499.34 11198.29 31498.94 32297.69 21299.96 3598.11 16898.54 33098.04 343
ACMP97.51 1499.05 16698.84 18999.67 8799.78 7299.55 11498.88 20899.66 11497.11 30799.47 17899.60 17699.07 6499.89 14096.18 29499.85 11899.58 131
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVS_ROBcopyleft97.31 1797.36 29596.84 30698.89 27099.29 26999.45 13298.87 21199.48 21886.54 35899.44 18399.74 8397.34 23399.86 18891.61 34699.28 29097.37 351
tmp_tt95.75 32795.42 32596.76 33389.90 36594.42 34298.86 21297.87 33978.01 35999.30 22299.69 11397.70 21095.89 36199.29 6098.14 34099.95 1
HPM-MVS++copyleft98.96 18598.70 20399.74 6199.52 18599.71 6398.86 21299.19 29298.47 22198.59 30199.06 30298.08 18499.91 10696.94 25499.60 23699.60 117
IterMVS-LS99.41 7199.47 5199.25 22599.81 5198.09 27998.85 21499.76 6599.62 6699.83 4899.64 14198.54 13299.97 1799.15 8099.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testgi99.29 10399.26 9899.37 19999.75 9498.81 23498.84 21599.89 1298.38 22999.75 8099.04 30699.36 3299.86 18899.08 9099.25 29499.45 195
F-COLMAP98.74 21398.45 22699.62 11999.57 16399.47 12398.84 21599.65 12596.31 32298.93 26699.19 28997.68 21499.87 16896.52 27899.37 28099.53 156
baseline296.83 30596.28 31198.46 29399.09 30596.91 31598.83 21793.87 36197.23 30096.23 35698.36 34888.12 34099.90 12696.68 27098.14 34098.57 319
DU-MVS99.33 9699.21 10499.71 7999.43 22599.56 11198.83 21799.53 19699.38 10799.67 11099.36 25097.67 21599.95 4599.17 7699.81 14999.63 95
Baseline_NR-MVSNet99.49 5099.37 7099.82 2399.91 1599.84 1798.83 21799.86 1999.68 5199.65 11899.88 2897.67 21599.87 16899.03 9399.86 11599.76 37
XVG-ACMP-BASELINE99.23 11599.10 13199.63 11099.82 4499.58 10898.83 21799.72 8998.36 23199.60 13999.71 10098.92 7999.91 10697.08 24999.84 12299.40 212
MSLP-MVS++99.05 16699.09 13298.91 26399.21 28298.36 26498.82 22199.47 22298.85 18198.90 27299.56 19598.78 10099.09 35698.57 13299.68 20799.26 241
9.1498.64 20699.45 22098.81 22299.60 15497.52 28699.28 22399.56 19598.53 13699.83 23395.36 32199.64 223
D2MVS99.22 12499.19 10699.29 21699.69 12098.74 23898.81 22299.41 23898.55 21199.68 10699.69 11398.13 18099.87 16898.82 11599.98 2199.24 244
pmmvs-eth3d99.48 5299.47 5199.51 15299.77 8099.41 14598.81 22299.66 11499.42 10599.75 8099.66 13499.20 4799.76 28098.98 9899.99 1299.36 223
HQP_MVS98.90 19398.68 20599.55 14299.58 15399.24 18598.80 22599.54 18798.94 16899.14 24799.25 27697.24 23699.82 24395.84 30899.78 16599.60 117
plane_prior298.80 22598.94 168
JIA-IIPM98.06 27297.92 27398.50 29198.59 34297.02 31298.80 22598.51 32499.88 1397.89 33599.87 3191.89 31199.90 12698.16 16597.68 34798.59 316
PAPM_NR98.36 25498.04 26199.33 20699.48 20798.93 22698.79 22899.28 27697.54 28498.56 30498.57 34097.12 24399.69 30394.09 33798.90 31399.38 217
CHOSEN 1792x268899.39 7899.30 8699.65 9999.88 2499.25 18098.78 22999.88 1598.66 20099.96 899.79 6097.45 22699.93 6999.34 4999.99 1299.78 32
ETH3D-3000-0.198.77 20898.50 22399.59 12699.47 21299.53 11698.77 23099.60 15497.33 29699.23 23099.50 21497.91 19699.83 23395.02 32699.67 21499.41 210
MS-PatchMatch99.00 17898.97 16999.09 24499.11 30298.19 27198.76 23199.33 26298.49 21999.44 18399.58 18498.21 17399.69 30398.20 15899.62 22699.39 215
DPE-MVScopyleft99.14 14798.92 17899.82 2399.57 16399.77 4098.74 23299.60 15498.55 21199.76 7599.69 11398.23 17299.92 8896.39 28599.75 17499.76 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
WTY-MVS98.59 23098.37 23599.26 22299.43 22598.40 26098.74 23299.13 29998.10 25399.21 23699.24 28194.82 28499.90 12697.86 18998.77 31899.49 179
zzz-MVS99.30 10199.14 11399.80 2999.81 5199.81 2898.73 23499.53 19699.27 12199.42 18999.63 15198.21 17399.95 4597.83 19499.79 15999.65 83
AUN-MVS97.82 27897.38 28999.14 23999.27 27398.53 25098.72 23599.02 30498.10 25397.18 35099.03 30989.26 33899.85 20697.94 18197.91 34499.03 289
sss98.90 19398.77 19799.27 22099.48 20798.44 25798.72 23599.32 26497.94 26699.37 20599.35 25596.31 26699.91 10698.85 11299.63 22599.47 189
CANet99.11 15599.05 14499.28 21898.83 32798.56 24998.71 23799.41 23899.25 12599.23 23099.22 28397.66 21999.94 5699.19 7199.97 3099.33 229
AdaColmapbinary98.60 22798.35 23899.38 19699.12 29799.22 18998.67 23899.42 23797.84 27398.81 28299.27 27197.32 23499.81 25995.14 32399.53 25399.10 274
MP-MVS-pluss99.14 14798.92 17899.80 2999.83 3899.83 2198.61 23999.63 13396.84 31399.44 18399.58 18498.81 9199.91 10697.70 20399.82 14199.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC98.82 20498.57 21599.58 13099.21 28299.31 16798.61 23999.25 28298.65 20198.43 31199.26 27497.86 20199.81 25996.55 27699.27 29399.61 113
BH-RMVSNet98.41 25098.14 25799.21 23199.21 28298.47 25498.60 24198.26 33398.35 23698.93 26699.31 26297.20 24199.66 32394.32 33399.10 30199.51 168
LF4IMVS99.01 17698.92 17899.27 22099.71 11099.28 17298.59 24299.77 6098.32 24299.39 20399.41 23798.62 12199.84 22296.62 27599.84 12298.69 312
OPM-MVS99.26 11099.13 11699.63 11099.70 11799.61 10098.58 24399.48 21898.50 21799.52 16899.63 15199.14 5499.76 28097.89 18499.77 16999.51 168
MCST-MVS99.02 17298.81 19399.65 9999.58 15399.49 11998.58 24399.07 30098.40 22799.04 25999.25 27698.51 14199.80 26497.31 23099.51 25699.65 83
PVSNet_BlendedMVS99.03 17099.01 15799.09 24499.54 17597.99 28398.58 24399.82 3697.62 28099.34 21199.71 10098.52 13999.77 27897.98 17799.97 3099.52 166
OMC-MVS98.90 19398.72 19999.44 17399.39 23699.42 14198.58 24399.64 13197.31 29799.44 18399.62 16098.59 12599.69 30396.17 29599.79 15999.22 249
diffmvs99.34 9299.32 8099.39 19299.67 13498.77 23798.57 24799.81 4599.61 7099.48 17699.41 23798.47 14399.86 18898.97 10099.90 8499.53 156
DP-MVS Recon98.50 24098.23 24799.31 21399.49 20199.46 12798.56 24899.63 13394.86 34298.85 27899.37 24597.81 20599.59 34096.08 29699.44 26698.88 302
new-patchmatchnet99.35 8799.57 3898.71 28599.82 4496.62 32098.55 24999.75 7299.50 8599.88 3299.87 3199.31 3599.88 15599.43 37100.00 199.62 106
pmmvs599.19 13499.11 12399.42 17999.76 8498.88 23198.55 24999.73 8098.82 18599.72 9499.62 16096.56 25599.82 24399.32 5499.95 4999.56 140
BH-untuned98.22 26698.09 25998.58 28999.38 23997.24 30798.55 24998.98 30697.81 27499.20 24198.76 33497.01 24799.65 33094.83 32798.33 33498.86 304
CNVR-MVS98.99 18198.80 19599.56 13999.25 27699.43 13898.54 25299.27 27798.58 20898.80 28499.43 23598.53 13699.70 29797.22 24199.59 23899.54 151
thres20096.09 32095.68 32397.33 32799.48 20796.22 32598.53 25397.57 34298.06 25798.37 31396.73 36686.84 34899.61 33886.99 35898.57 32896.16 356
1112_ss99.05 16698.84 18999.67 8799.66 13599.29 17098.52 25499.82 3697.65 27999.43 18799.16 29096.42 26199.91 10699.07 9199.84 12299.80 24
EPNet_dtu97.62 28697.79 28097.11 33296.67 36192.31 35398.51 25598.04 33499.24 12795.77 35799.47 22793.78 29599.66 32398.98 9899.62 22699.37 220
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft97.35 1698.36 25497.99 26399.48 16299.32 26299.24 18598.50 25699.51 20795.19 33898.58 30298.96 32096.95 24999.83 23395.63 31399.25 29499.37 220
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.92 1398.03 27397.55 28799.46 16799.47 21299.44 13498.50 25699.62 13686.79 35699.07 25799.26 27498.26 16899.62 33497.28 23399.73 18999.31 234
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3D cwj APD-0.1698.50 24098.16 25699.51 15299.04 31099.39 14898.47 25899.47 22296.70 31798.78 28799.33 25997.62 22299.86 18894.69 33199.38 27699.28 240
xiu_mvs_v1_base_debu99.23 11599.34 7598.91 26399.59 15098.23 26898.47 25899.66 11499.61 7099.68 10698.94 32299.39 2399.97 1799.18 7399.55 24598.51 322
xiu_mvs_v1_base99.23 11599.34 7598.91 26399.59 15098.23 26898.47 25899.66 11499.61 7099.68 10698.94 32299.39 2399.97 1799.18 7399.55 24598.51 322
xiu_mvs_v1_base_debi99.23 11599.34 7598.91 26399.59 15098.23 26898.47 25899.66 11499.61 7099.68 10698.94 32299.39 2399.97 1799.18 7399.55 24598.51 322
TR-MVS97.44 29297.15 29798.32 29998.53 34497.46 30198.47 25897.91 33896.85 31298.21 32098.51 34496.42 26199.51 34892.16 34597.29 34997.98 344
FPMVS96.32 31695.50 32498.79 27999.60 14798.17 27398.46 26398.80 31297.16 30496.28 35399.63 15182.19 35799.09 35688.45 35398.89 31499.10 274
plane_prior99.24 18598.42 26497.87 26999.71 199
WR-MVS99.11 15598.93 17499.66 9499.30 26799.42 14198.42 26499.37 25599.04 15999.57 14799.20 28796.89 25099.86 18898.66 12999.87 10899.70 49
MVS-HIRNet97.86 27798.22 24896.76 33399.28 27191.53 35998.38 26692.60 36299.13 14699.31 21899.96 1097.18 24299.68 31498.34 14599.83 13299.07 285
ETH3 D test640097.76 28197.19 29699.50 15599.38 23999.26 17698.34 26799.49 21692.99 34998.54 30599.20 28795.92 27599.82 24391.14 34999.66 21899.40 212
N_pmnet98.73 21598.53 22199.35 20399.72 10798.67 24298.34 26794.65 35798.35 23699.79 6599.68 12498.03 18699.93 6998.28 15199.92 7499.44 200
CNLPA98.57 23298.34 23999.28 21899.18 28999.10 20798.34 26799.41 23898.48 22098.52 30698.98 31597.05 24699.78 27095.59 31499.50 25898.96 295
CDPH-MVS98.56 23398.20 25099.61 12299.50 19699.46 12798.32 27099.41 23895.22 33699.21 23699.10 29998.34 16199.82 24395.09 32599.66 21899.56 140
Effi-MVS+99.06 16398.97 16999.34 20499.31 26398.98 21698.31 27199.91 898.81 18698.79 28598.94 32299.14 5499.84 22298.79 11798.74 32299.20 254
xxxxxxxxxxxxxcwj99.11 15598.96 17199.54 14699.53 18099.25 18098.29 27299.76 6599.07 15499.42 18999.61 16998.86 8799.87 16896.45 28399.68 20799.49 179
save fliter99.53 18099.25 18098.29 27299.38 25499.07 154
Patchmatch-RL test98.60 22798.36 23699.33 20699.77 8099.07 21198.27 27499.87 1798.91 17499.74 8899.72 9390.57 32999.79 26798.55 13399.85 11899.11 272
jason99.16 14399.11 12399.32 21099.75 9498.44 25798.26 27599.39 24898.70 19899.74 8899.30 26498.54 13299.97 1798.48 13699.82 14199.55 143
jason: jason.
XVG-OURS-SEG-HR99.16 14398.99 16599.66 9499.84 3499.64 8898.25 27699.73 8098.39 22899.63 12499.43 23599.70 1199.90 12697.34 22898.64 32699.44 200
MDA-MVSNet_test_wron98.95 18898.99 16598.85 27199.64 13997.16 30998.23 27799.33 26298.93 17199.56 15499.66 13497.39 23099.83 23398.29 15099.88 10099.55 143
YYNet198.95 18898.99 16598.84 27399.64 13997.14 31098.22 27899.32 26498.92 17399.59 14299.66 13497.40 22899.83 23398.27 15299.90 8499.55 143
CANet_DTU98.91 19198.85 18799.09 24498.79 33398.13 27498.18 27999.31 26899.48 8798.86 27799.51 21196.56 25599.95 4599.05 9299.95 4999.19 256
MG-MVS98.52 23998.39 23398.94 25799.15 29297.39 30498.18 27999.21 29198.89 17899.23 23099.63 15197.37 23299.74 28694.22 33599.61 23399.69 52
SCA98.11 26998.36 23697.36 32599.20 28592.99 35098.17 28198.49 32698.24 24699.10 25399.57 19296.01 27399.94 5696.86 25999.62 22699.14 268
TSAR-MVS + GP.99.12 15199.04 15099.38 19699.34 25699.16 19898.15 28299.29 27398.18 25199.63 12499.62 16099.18 4999.68 31498.20 15899.74 18299.30 235
new_pmnet98.88 19798.89 18398.84 27399.70 11797.62 29798.15 28299.50 21197.98 26199.62 13199.54 20398.15 17999.94 5697.55 21699.84 12298.95 296
PatchMatch-RL98.68 22098.47 22499.30 21599.44 22399.28 17298.14 28499.54 18797.12 30699.11 25199.25 27697.80 20699.70 29796.51 27999.30 28898.93 298
xiu_mvs_v2_base99.02 17299.11 12398.77 28099.37 24298.09 27998.13 28599.51 20799.47 9299.42 18998.54 34399.38 2799.97 1798.83 11399.33 28598.24 335
lupinMVS98.96 18598.87 18599.24 22899.57 16398.40 26098.12 28699.18 29398.28 24499.63 12499.13 29298.02 18899.97 1798.22 15699.69 20499.35 226
DELS-MVS99.34 9299.30 8699.48 16299.51 19099.36 15798.12 28699.53 19699.36 11099.41 19799.61 16999.22 4699.87 16899.21 6699.68 20799.20 254
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TEST999.35 24699.35 16198.11 28899.41 23894.83 34497.92 33398.99 31298.02 18899.85 206
train_agg98.35 25797.95 26799.57 13599.35 24699.35 16198.11 28899.41 23894.90 34097.92 33398.99 31298.02 18899.85 20695.38 32099.44 26699.50 174
PMMVS299.48 5299.45 5599.57 13599.76 8498.99 21598.09 29099.90 1198.95 16799.78 6899.58 18499.57 1999.93 6999.48 3399.95 4999.79 30
Test_1112_low_res98.95 18898.73 19899.63 11099.68 12999.15 20098.09 29099.80 4697.14 30599.46 18199.40 23996.11 27199.89 14099.01 9599.84 12299.84 14
test_899.34 25699.31 16798.08 29299.40 24594.90 34097.87 33798.97 31898.02 18899.84 222
IterMVS-SCA-FT99.00 17899.16 10998.51 29099.75 9495.90 33098.07 29399.84 2999.84 2399.89 2699.73 8796.01 27399.99 599.33 52100.00 199.63 95
HyFIR lowres test98.91 19198.64 20699.73 6999.85 3399.47 12398.07 29399.83 3198.64 20299.89 2699.60 17692.57 304100.00 199.33 5299.97 3099.72 43
IterMVS98.97 18299.16 10998.42 29499.74 10095.64 33398.06 29599.83 3199.83 2699.85 4099.74 8396.10 27299.99 599.27 63100.00 199.63 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
新几何298.04 296
BH-w/o97.20 29797.01 30097.76 31599.08 30695.69 33298.03 29798.52 32395.76 33097.96 33298.02 35395.62 27899.47 35092.82 34497.25 35098.12 341
无先验98.01 29899.23 28695.83 32899.85 20695.79 31099.44 200
pmmvs499.13 14999.06 14099.36 20299.57 16399.10 20798.01 29899.25 28298.78 19199.58 14499.44 23498.24 16999.76 28098.74 12299.93 7099.22 249
PS-MVSNAJ99.00 17899.08 13498.76 28199.37 24298.10 27898.00 30099.51 20799.47 9299.41 19798.50 34599.28 4099.97 1798.83 11399.34 28398.20 339
test_prior499.19 19698.00 300
agg_prior198.33 25997.92 27399.57 13599.35 24699.36 15797.99 30299.39 24894.85 34397.76 34298.98 31598.03 18699.85 20695.49 31699.44 26699.51 168
HQP-NCC99.31 26397.98 30397.45 28998.15 321
ACMP_Plane99.31 26397.98 30397.45 28998.15 321
HQP-MVS98.36 25498.02 26299.39 19299.31 26398.94 22297.98 30399.37 25597.45 28998.15 32198.83 33096.67 25399.70 29794.73 32899.67 21499.53 156
UnsupCasMVSNet_bld98.55 23698.27 24499.40 18999.56 17399.37 15497.97 30699.68 10597.49 28899.08 25499.35 25595.41 28099.82 24397.70 20398.19 33899.01 293
test_prior398.62 22498.34 23999.46 16799.35 24699.22 18997.95 30799.39 24897.87 26998.05 32799.05 30397.90 19799.69 30395.99 30199.49 26099.48 184
test_prior297.95 30797.87 26998.05 32799.05 30397.90 19795.99 30199.49 260
旧先验297.94 30995.33 33598.94 26599.88 15596.75 266
MVEpermissive92.54 2296.66 31096.11 31498.31 30199.68 12997.55 29997.94 30995.60 35599.37 10890.68 36298.70 33696.56 25598.61 36086.94 35999.55 24598.77 310
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
原ACMM297.92 311
MVS_111021_HR99.12 15199.02 15499.40 18999.50 19699.11 20397.92 31199.71 9298.76 19599.08 25499.47 22799.17 5099.54 34397.85 19199.76 17199.54 151
MVS_111021_LR99.13 14999.03 15299.42 17999.58 15399.32 16697.91 31399.73 8098.68 19999.31 21899.48 22299.09 5999.66 32397.70 20399.77 16999.29 238
pmmvs398.08 27197.80 27898.91 26399.41 23197.69 29697.87 31499.66 11495.87 32799.50 17499.51 21190.35 33199.97 1798.55 13399.47 26399.08 280
XVG-OURS99.21 12999.06 14099.65 9999.82 4499.62 9497.87 31499.74 7798.36 23199.66 11499.68 12499.71 999.90 12696.84 26299.88 10099.43 206
test22299.51 19099.08 21097.83 31699.29 27395.21 33798.68 29599.31 26297.28 23599.38 27699.43 206
miper_lstm_enhance98.65 22298.60 20998.82 27899.20 28597.33 30597.78 31799.66 11499.01 16099.59 14299.50 21494.62 28799.85 20698.12 16799.90 8499.26 241
TinyColmap98.97 18298.93 17499.07 24899.46 21798.19 27197.75 31899.75 7298.79 18999.54 16199.70 10798.97 7499.62 33496.63 27499.83 13299.41 210
our_test_398.85 20199.09 13298.13 30699.66 13594.90 34097.72 31999.58 17099.07 15499.64 12099.62 16098.19 17699.93 6998.41 13999.95 4999.55 143
testdata197.72 31997.86 272
ET-MVSNet_ETH3D96.78 30696.07 31598.91 26399.26 27597.92 28997.70 32196.05 35397.96 26592.37 36198.43 34787.06 34399.90 12698.27 15297.56 34898.91 300
cl_fuxian98.72 21698.71 20098.72 28399.12 29797.22 30897.68 32299.56 17798.90 17599.54 16199.48 22296.37 26599.73 28997.88 18599.88 10099.21 251
ppachtmachnet_test98.89 19699.12 12098.20 30499.66 13595.24 33797.63 32399.68 10599.08 15299.78 6899.62 16098.65 11999.88 15598.02 17299.96 4299.48 184
PAPR97.56 28997.07 29899.04 25198.80 33298.11 27797.63 32399.25 28294.56 34698.02 33198.25 35197.43 22799.68 31490.90 35098.74 32299.33 229
test0.0.03 197.37 29496.91 30598.74 28297.72 35797.57 29897.60 32597.36 34798.00 25899.21 23698.02 35390.04 33499.79 26798.37 14195.89 35798.86 304
PVSNet_Blended98.70 21898.59 21199.02 25299.54 17597.99 28397.58 32699.82 3695.70 33199.34 21198.98 31598.52 13999.77 27897.98 17799.83 13299.30 235
PMMVS98.49 24398.29 24399.11 24298.96 31598.42 25997.54 32799.32 26497.53 28598.47 31098.15 35297.88 20099.82 24397.46 22299.24 29699.09 277
MSDG99.08 16198.98 16899.37 19999.60 14799.13 20197.54 32799.74 7798.84 18499.53 16699.55 20199.10 5799.79 26797.07 25099.86 11599.18 258
test12329.31 33133.05 33618.08 34525.93 36712.24 36797.53 32910.93 36811.78 36224.21 36350.08 37121.04 3688.60 36323.51 36132.43 36233.39 359
CLD-MVS98.76 21098.57 21599.33 20699.57 16398.97 21897.53 32999.55 18296.41 31999.27 22499.13 29299.07 6499.78 27096.73 26899.89 9299.23 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.68 22098.71 20098.60 28799.10 30396.84 31797.52 33199.54 18798.94 16899.58 14499.48 22296.25 26899.76 28098.01 17599.93 7099.21 251
miper_ehance_all_eth98.59 23098.59 21198.59 28898.98 31497.07 31197.49 33299.52 20498.50 21799.52 16899.37 24596.41 26399.71 29597.86 18999.62 22699.00 294
cl-mvsnet_98.54 23798.41 23198.92 26199.03 31197.80 29297.46 33399.59 16198.90 17599.60 13999.46 23093.85 29399.78 27097.97 17999.89 9299.17 260
cl-mvsnet198.54 23798.42 23098.92 26199.03 31197.80 29297.46 33399.59 16198.90 17599.60 13999.46 23093.87 29299.78 27097.97 17999.89 9299.18 258
test-LLR97.15 29896.95 30297.74 31798.18 35395.02 33897.38 33596.10 35098.00 25897.81 33998.58 33890.04 33499.91 10697.69 20998.78 31698.31 331
TESTMET0.1,196.24 31895.84 32097.41 32498.24 35193.84 34697.38 33595.84 35498.43 22297.81 33998.56 34179.77 36299.89 14097.77 19698.77 31898.52 321
test-mter96.23 31995.73 32297.74 31798.18 35395.02 33897.38 33596.10 35097.90 26797.81 33998.58 33879.12 36599.91 10697.69 20998.78 31698.31 331
IB-MVS95.41 2095.30 33094.46 33397.84 31398.76 33795.33 33697.33 33896.07 35296.02 32595.37 35997.41 36076.17 36799.96 3597.54 21795.44 35898.22 336
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.28 26097.94 27199.32 21099.36 24499.11 20397.31 33998.78 31396.88 31098.84 27999.11 29897.77 20899.61 33894.03 33999.36 28199.23 247
thisisatest051596.98 30296.42 30998.66 28699.42 23097.47 30097.27 34094.30 35997.24 29999.15 24598.86 32985.01 35399.87 16897.10 24899.39 27598.63 313
DeepPCF-MVS98.42 699.18 13899.02 15499.67 8799.22 28099.75 4897.25 34199.47 22298.72 19799.66 11499.70 10799.29 3899.63 33398.07 17199.81 14999.62 106
cl-mvsnet297.56 28997.28 29198.40 29598.37 34896.75 31897.24 34299.37 25597.31 29799.41 19799.22 28387.30 34199.37 35497.70 20399.62 22699.08 280
GA-MVS97.99 27697.68 28498.93 26099.52 18598.04 28297.19 34399.05 30398.32 24298.81 28298.97 31889.89 33699.41 35398.33 14699.05 30399.34 228
CL-MVSNet_2432*160098.71 21798.56 21899.15 23899.22 28098.66 24497.14 34499.51 20798.09 25599.54 16199.27 27196.87 25199.74 28698.43 13898.96 30899.03 289
KD-MVS_2432*160095.89 32395.41 32697.31 32894.96 36293.89 34497.09 34599.22 28797.23 30098.88 27399.04 30679.23 36399.54 34396.24 29296.81 35198.50 325
miper_refine_blended95.89 32395.41 32697.31 32894.96 36293.89 34497.09 34599.22 28797.23 30098.88 27399.04 30679.23 36399.54 34396.24 29296.81 35198.50 325
USDC98.96 18598.93 17499.05 25099.54 17597.99 28397.07 34799.80 4698.21 24899.75 8099.77 7398.43 14899.64 33297.90 18399.88 10099.51 168
miper_enhance_ethall98.03 27397.94 27198.32 29998.27 35096.43 32396.95 34899.41 23896.37 32199.43 18798.96 32094.74 28599.69 30397.71 20199.62 22698.83 307
CHOSEN 280x42098.41 25098.41 23198.40 29599.34 25695.89 33196.94 34999.44 23198.80 18899.25 22699.52 20893.51 29799.98 798.94 10799.98 2199.32 232
PCF-MVS96.03 1896.73 30895.86 31999.33 20699.44 22399.16 19896.87 35099.44 23186.58 35798.95 26499.40 23994.38 28999.88 15587.93 35499.80 15498.95 296
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testmvs28.94 33233.33 33415.79 34626.03 3669.81 36896.77 35115.67 36711.55 36323.87 36450.74 37019.03 3698.53 36423.21 36233.07 36129.03 360
PVSNet97.47 1598.42 24998.44 22898.35 29799.46 21796.26 32496.70 35299.34 26197.68 27899.00 26199.13 29297.40 22899.72 29197.59 21599.68 20799.08 280
PAPM95.61 32994.71 33198.31 30199.12 29796.63 31996.66 35398.46 32790.77 35496.25 35498.68 33793.01 30199.69 30381.60 36097.86 34698.62 314
cascas96.99 30196.82 30797.48 32197.57 36095.64 33396.43 35499.56 17791.75 35197.13 35197.61 35895.58 27998.63 35996.68 27099.11 30098.18 340
bset_n11_16_dypcd98.69 21998.45 22699.42 17999.69 12098.52 25296.06 35596.80 34999.71 4399.73 9299.54 20395.14 28199.96 3599.39 4399.95 4999.79 30
PVSNet_095.53 1995.85 32695.31 32897.47 32298.78 33593.48 34895.72 35699.40 24596.18 32497.37 34597.73 35695.73 27699.58 34195.49 31681.40 36099.36 223
E-PMN97.14 30097.43 28896.27 34098.79 33391.62 35895.54 35799.01 30599.44 9898.88 27399.12 29692.78 30399.68 31494.30 33499.03 30597.50 348
EMVS96.96 30397.28 29195.99 34398.76 33791.03 36195.26 35898.61 32099.34 11198.92 26998.88 32893.79 29499.66 32392.87 34399.05 30397.30 352
uanet_test8.33 33511.11 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 365100.00 10.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k24.88 33333.17 3350.00 3470.00 3680.00 3690.00 35999.62 1360.00 3640.00 36599.13 29299.82 40.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas16.61 33422.14 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 365100.00 199.28 400.00 3650.00 3630.00 3630.00 361
sosnet-low-res8.33 33511.11 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 365100.00 10.00 3700.00 3650.00 3630.00 3630.00 361
sosnet8.33 33511.11 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 365100.00 10.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet8.33 33511.11 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 365100.00 10.00 3700.00 3650.00 3630.00 3630.00 361
Regformer8.33 33511.11 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 365100.00 10.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.26 34111.02 3440.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36599.16 2900.00 3700.00 3650.00 3630.00 3630.00 361
uanet8.33 33511.11 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 365100.00 10.00 3700.00 3650.00 3630.00 3630.00 361
ZD-MVS99.43 22599.61 10099.43 23596.38 32099.11 25199.07 30197.86 20199.92 8894.04 33899.49 260
IU-MVS99.69 12099.77 4099.22 28797.50 28799.69 10497.75 19899.70 20199.77 33
test_241102_TWO99.54 18799.13 14699.76 7599.63 15198.32 16499.92 8897.85 19199.69 20499.75 40
test_241102_ONE99.69 12099.82 2599.54 18799.12 14999.82 5099.49 21998.91 8199.52 347
test_0728_THIRD99.18 13599.62 13199.61 16998.58 12699.91 10697.72 20099.80 15499.77 33
GSMVS99.14 268
test_part299.62 14499.67 7999.55 159
sam_mvs190.81 32699.14 268
sam_mvs90.52 330
MTGPAbinary99.53 196
test_post52.41 36890.25 33299.86 188
patchmatchnet-post99.62 16090.58 32899.94 56
gm-plane-assit97.59 35889.02 36693.47 34798.30 34999.84 22296.38 286
test9_res95.10 32499.44 26699.50 174
agg_prior294.58 33299.46 26599.50 174
agg_prior99.35 24699.36 15799.39 24897.76 34299.85 206
TestCases99.63 11099.78 7299.64 8899.83 3198.63 20399.63 12499.72 9398.68 11299.75 28496.38 28699.83 13299.51 168
test_prior99.46 16799.35 24699.22 18999.39 24899.69 30399.48 184
新几何199.52 14999.50 19699.22 18999.26 27995.66 33298.60 30099.28 26997.67 21599.89 14095.95 30599.32 28699.45 195
旧先验199.49 20199.29 17099.26 27999.39 24397.67 21599.36 28199.46 193
原ACMM199.37 19999.47 21298.87 23399.27 27796.74 31698.26 31699.32 26097.93 19599.82 24395.96 30499.38 27699.43 206
testdata299.89 14095.99 301
segment_acmp98.37 157
testdata99.42 17999.51 19098.93 22699.30 27196.20 32398.87 27699.40 23998.33 16399.89 14096.29 28999.28 29099.44 200
test1299.54 14699.29 26999.33 16499.16 29598.43 31197.54 22399.82 24399.47 26399.48 184
plane_prior799.58 15399.38 151
plane_prior699.47 21299.26 17697.24 236
plane_prior599.54 18799.82 24395.84 30899.78 16599.60 117
plane_prior499.25 276
plane_prior399.31 16798.36 23199.14 247
plane_prior199.51 190
n20.00 369
nn0.00 369
door-mid99.83 31
lessismore_v099.64 10699.86 3099.38 15190.66 36399.89 2699.83 4394.56 28899.97 1799.56 2599.92 7499.57 137
LGP-MVS_train99.74 6199.82 4499.63 9299.73 8097.56 28299.64 12099.69 11399.37 2999.89 14096.66 27299.87 10899.69 52
test1199.29 273
door99.77 60
HQP5-MVS98.94 222
BP-MVS94.73 328
HQP4-MVS98.15 32199.70 29799.53 156
HQP3-MVS99.37 25599.67 214
HQP2-MVS96.67 253
NP-MVS99.40 23499.13 20198.83 330
ACMMP++_ref99.94 62
ACMMP++99.79 159
Test By Simon98.41 151
ITE_SJBPF99.38 19699.63 14199.44 13499.73 8098.56 20999.33 21399.53 20698.88 8699.68 31496.01 29999.65 22199.02 292
DeepMVS_CXcopyleft97.98 30899.69 12096.95 31399.26 27975.51 36095.74 35898.28 35096.47 25999.62 33491.23 34897.89 34597.38 350