This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3299.81 599.95 4599.54 2899.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
UA-Net99.78 1399.76 1499.86 1699.72 10999.71 7099.91 399.95 599.96 299.71 10399.91 2099.15 5599.97 1799.50 35100.00 199.90 4
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2699.71 999.96 3599.51 3399.97 3399.84 14
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5599.78 7099.92 1799.37 3199.88 16498.93 11699.95 5299.60 126
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2499.94 1199.95 1299.73 899.90 13299.65 1699.97 3399.69 55
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3699.93 1499.93 1498.54 13899.93 7199.59 2199.98 2499.76 39
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2799.94 1199.91 2099.13 5999.96 3599.83 999.99 1299.83 18
Anonymous2023121199.62 3599.57 4099.76 4799.61 14999.60 10999.81 999.73 8399.82 3299.90 2299.90 2297.97 19999.86 19799.42 4699.96 4599.80 24
ab-mvs99.33 10199.28 9799.47 17099.57 17099.39 15699.78 1099.43 24298.87 18999.57 15499.82 5398.06 19199.87 17798.69 13699.73 19599.15 274
MVSFormer99.41 7499.44 5999.31 21999.57 17098.40 26999.77 1199.80 4999.73 4399.63 13099.30 27498.02 19499.98 799.43 4199.69 21099.55 152
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4399.97 699.92 1799.77 799.98 799.43 41100.00 199.90 4
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4399.89 2699.87 3299.63 1499.87 17799.54 2899.92 7799.63 100
DROMVSNet99.69 2199.69 1899.68 8999.71 11299.91 299.76 1399.96 499.86 1999.51 18099.39 25299.57 2099.93 7199.64 1899.86 11999.20 263
test250694.73 33894.59 34095.15 35399.59 15585.90 37899.75 1574.01 37999.89 1199.71 10399.86 3879.00 37799.90 13299.52 3299.99 1299.65 86
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 5299.91 2099.89 2699.60 1999.87 17799.59 2199.74 18899.71 48
DVP-MVS++99.38 8499.25 10499.77 4099.03 32099.77 4399.74 1799.61 14799.18 14599.76 7799.61 17399.00 7499.92 9197.72 21099.60 24599.62 111
FOURS199.83 3899.89 899.74 1799.71 9599.69 5599.63 130
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13599.74 1794.97 36699.78 3999.88 3299.88 2993.66 30499.97 1799.61 1999.95 5299.64 95
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 2099.85 2699.70 5299.92 1899.93 1499.45 2399.97 1799.36 53100.00 199.85 13
NR-MVSNet99.40 7799.31 8599.68 8999.43 23399.55 12199.73 2099.50 21899.46 10499.88 3299.36 26097.54 22999.87 17798.97 10899.87 11299.63 100
IS-MVSNet99.03 17498.85 19199.55 14799.80 5799.25 18899.73 2099.15 30599.37 11799.61 14499.71 10494.73 29299.81 27097.70 21499.88 10399.58 140
ECVR-MVScopyleft97.73 28898.04 26796.78 34099.59 15590.81 37299.72 2390.43 37599.89 1199.86 4099.86 3893.60 30599.89 14999.46 3899.99 1299.65 86
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2499.86 1399.72 2399.78 6099.90 799.82 5299.83 4798.45 15399.87 17799.51 3399.97 3399.86 11
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2399.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
Gipumacopyleft99.57 3999.59 3499.49 16499.98 399.71 7099.72 2399.84 3299.81 3399.94 1199.78 7098.91 8699.71 30698.41 14899.95 5299.05 297
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test111197.74 28798.16 26196.49 34799.60 15189.86 37699.71 2791.21 37399.89 1199.88 3299.87 3293.73 30399.90 13299.56 2699.99 1299.70 51
GG-mvs-BLEND97.36 33297.59 37096.87 32599.70 2888.49 37894.64 37297.26 37580.66 37099.12 36691.50 35996.50 36796.08 369
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2899.86 2299.89 1199.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8699.70 2899.14 30699.65 6799.89 2699.90 2296.20 27599.94 5799.42 4699.92 7799.67 68
UGNet99.38 8499.34 7999.49 16498.90 33098.90 23899.70 2899.35 26699.86 1998.57 31599.81 5698.50 14899.93 7199.38 5099.98 2499.66 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5799.43 14699.70 2899.24 29299.48 9599.56 16199.77 7794.89 28999.93 7198.72 13399.89 9599.63 100
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24499.42 14999.70 2899.56 18299.23 13899.35 21699.80 5899.17 5399.95 4598.21 16599.84 12799.59 135
gg-mvs-nofinetune95.87 33295.17 33697.97 31698.19 36496.95 32299.69 3489.23 37799.89 1196.24 36699.94 1381.19 36899.51 35993.99 35298.20 34797.44 361
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3499.77 6399.78 3999.93 1499.89 2697.94 20099.92 9199.65 1699.98 2499.62 111
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8899.69 3499.92 799.67 6199.77 7599.75 8499.61 1799.98 799.35 5499.98 2499.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4399.68 3799.85 2699.95 399.98 399.92 1799.28 4199.98 799.75 13100.00 199.94 2
GBi-Net99.42 7099.31 8599.73 7399.49 20999.77 4399.68 3799.70 10099.44 10799.62 13899.83 4797.21 24499.90 13298.96 11099.90 8799.53 165
test199.42 7099.31 8599.73 7399.49 20999.77 4399.68 3799.70 10099.44 10799.62 13899.83 4797.21 24499.90 13298.96 11099.90 8799.53 165
FMVSNet199.66 2699.63 2699.73 7399.78 7399.77 4399.68 3799.70 10099.67 6199.82 5299.83 4798.98 7799.90 13299.24 7099.97 3399.53 165
test_part198.63 22798.26 25099.75 5799.40 24299.49 12899.67 4199.68 10999.86 1999.88 3299.86 3886.73 35999.93 7199.34 5599.97 3399.81 23
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5799.87 1099.67 4199.71 9599.72 4699.84 4599.78 7098.67 12099.97 1799.30 6399.95 5299.80 24
WR-MVS_H99.61 3799.53 4999.87 1499.80 5799.83 2499.67 4199.75 7599.58 8699.85 4299.69 11798.18 18499.94 5799.28 6899.95 5299.83 18
QAPM98.40 25797.99 27099.65 10499.39 24499.47 13199.67 4199.52 21191.70 36398.78 29999.80 5898.55 13699.95 4594.71 34299.75 18099.53 165
FIs99.65 3199.58 3799.84 1999.84 3499.85 1499.66 4599.75 7599.86 1999.74 9299.79 6498.27 17399.85 21699.37 5299.93 7399.83 18
v899.68 2499.69 1899.65 10499.80 5799.40 15499.66 4599.76 6899.64 6999.93 1499.85 4198.66 12299.84 23399.88 699.99 1299.71 48
v1099.69 2199.69 1899.66 9999.81 5299.39 15699.66 4599.75 7599.60 8399.92 1899.87 3298.75 11199.86 19799.90 299.99 1299.73 44
PS-CasMVS99.66 2699.58 3799.89 799.80 5799.85 1499.66 4599.73 8399.62 7399.84 4599.71 10498.62 12699.96 3599.30 6399.96 4599.86 11
PEN-MVS99.66 2699.59 3499.89 799.83 3899.87 1099.66 4599.73 8399.70 5299.84 4599.73 9198.56 13599.96 3599.29 6699.94 6599.83 18
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 50100.00 199.90 7100.00 199.97 1099.61 1799.97 1799.75 13100.00 199.84 14
OpenMVScopyleft98.12 1098.23 27097.89 28499.26 22999.19 29699.26 18499.65 5099.69 10691.33 36498.14 33799.77 7798.28 17299.96 3595.41 33199.55 25698.58 330
Anonymous2024052999.42 7099.34 7999.65 10499.53 18799.60 10999.63 5299.39 25599.47 10099.76 7799.78 7098.13 18699.86 19798.70 13499.68 21599.49 188
Anonymous2024052199.44 6599.42 6599.49 16499.89 2198.96 22899.62 5399.76 6899.85 2499.82 5299.88 2996.39 27099.97 1799.59 2199.98 2499.55 152
LFMVS98.46 25198.19 25899.26 22999.24 28798.52 26199.62 5396.94 35899.87 1799.31 22799.58 19091.04 33099.81 27098.68 13799.42 28299.45 204
VDDNet98.97 18698.82 19699.42 18599.71 11298.81 24299.62 5398.68 32699.81 3399.38 21299.80 5894.25 29699.85 21698.79 12599.32 29699.59 135
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13299.75 5499.62 5399.69 10699.85 2499.80 6299.81 5698.81 9699.91 11299.47 3799.88 10399.70 51
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25499.47 13199.62 5399.50 21899.44 10799.12 26199.78 7098.77 10899.94 5797.87 19699.72 20199.62 111
canonicalmvs99.02 17699.00 16499.09 25199.10 31298.70 24899.61 5899.66 11899.63 7298.64 30997.65 36999.04 7299.54 35498.79 12598.92 32199.04 298
nrg03099.70 1999.66 2299.82 2399.76 8599.84 1999.61 5899.70 10099.93 499.78 7099.68 12899.10 6099.78 28199.45 3999.96 4599.83 18
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5299.75 5499.61 5899.67 11497.72 28699.35 21699.25 28699.23 4799.92 9197.21 25399.82 14699.67 68
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS98.23 998.21 27297.95 27498.99 26099.03 32098.24 27699.61 5898.72 32596.81 32598.73 30399.51 21994.06 29799.86 19796.91 26798.20 34798.86 315
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21099.78 7398.88 23999.61 5899.56 18299.11 16199.24 24099.56 20193.00 31199.78 28197.43 23599.89 9599.35 235
GeoE99.69 2199.66 2299.78 3799.76 8599.76 5099.60 6399.82 3999.46 10499.75 8399.56 20199.63 1499.95 4599.43 4199.88 10399.62 111
CS-MVS-test99.43 6699.40 6899.53 15399.51 19799.84 1999.60 6399.94 699.52 9199.10 26498.89 33899.24 4699.90 13299.11 9599.66 22698.84 318
tfpnnormal99.43 6699.38 7199.60 12999.87 2899.75 5499.59 6599.78 6099.71 4799.90 2299.69 11798.85 9499.90 13297.25 25099.78 17099.15 274
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6799.59 6599.82 3999.39 11599.82 5299.84 4699.38 2999.91 11299.38 5099.93 7399.80 24
MIMVSNet98.43 25398.20 25599.11 24999.53 18798.38 27299.58 6798.61 33098.96 17699.33 22199.76 8090.92 33299.81 27097.38 23899.76 17799.15 274
CP-MVSNet99.54 4799.43 6299.87 1499.76 8599.82 2899.57 6899.61 14799.54 8799.80 6299.64 14597.79 21399.95 4599.21 7399.94 6599.84 14
LS3D99.24 11999.11 12899.61 12798.38 35999.79 3899.57 6899.68 10999.61 7799.15 25699.71 10498.70 11599.91 11297.54 22899.68 21599.13 281
EU-MVSNet99.39 8299.62 2798.72 29099.88 2496.44 33199.56 7099.85 2699.90 799.90 2299.85 4198.09 18899.83 24499.58 2499.95 5299.90 4
ACMH98.42 699.59 3899.54 4599.72 7999.86 3099.62 10199.56 7099.79 5598.77 20299.80 6299.85 4199.64 1399.85 21698.70 13499.89 9599.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3899.81 3199.52 7299.70 10098.35 24699.51 18099.50 22299.31 3799.88 16498.18 17099.84 12799.69 55
wuyk23d97.58 29599.13 12192.93 35499.69 12399.49 12899.52 7299.77 6397.97 27299.96 899.79 6499.84 399.94 5795.85 31999.82 14679.36 370
VDD-MVS99.20 13699.11 12899.44 17999.43 23398.98 22499.50 7498.32 34299.80 3699.56 16199.69 11796.99 25499.85 21698.99 10499.73 19599.50 183
APDe-MVS99.48 5499.36 7799.85 1899.55 18199.81 3199.50 7499.69 10698.99 17199.75 8399.71 10498.79 10399.93 7198.46 14699.85 12399.80 24
DSMNet-mixed99.48 5499.65 2498.95 26399.71 11297.27 31599.50 7499.82 3999.59 8599.41 20599.85 4199.62 16100.00 199.53 3099.89 9599.59 135
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6799.68 8499.50 7499.65 12998.07 26699.52 17599.69 11798.57 13399.92 9197.18 25599.79 16499.63 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tttt051797.62 29397.20 30298.90 27699.76 8597.40 31299.48 7894.36 36899.06 16899.70 10699.49 22784.55 36599.94 5798.73 13299.65 23099.36 232
VPNet99.46 6199.37 7499.71 8399.82 4599.59 11299.48 7899.70 10099.81 3399.69 10999.58 19097.66 22599.86 19799.17 8399.44 27799.67 68
Anonymous20240521198.75 21598.46 22999.63 11599.34 26499.66 8899.47 8097.65 35199.28 12999.56 16199.50 22293.15 30899.84 23398.62 13999.58 25099.40 221
MVS_030498.88 20198.71 20499.39 19898.85 33798.91 23799.45 8199.30 27898.56 21997.26 35999.68 12896.18 27699.96 3599.17 8399.94 6599.29 247
FMVSNet299.35 9299.28 9799.55 14799.49 20999.35 16999.45 8199.57 17799.44 10799.70 10699.74 8797.21 24499.87 17799.03 10199.94 6599.44 209
TAMVS99.49 5299.45 5799.63 11599.48 21599.42 14999.45 8199.57 17799.66 6599.78 7099.83 4797.85 20999.86 19799.44 4099.96 4599.61 122
baseline99.63 3299.62 2799.66 9999.80 5799.62 10199.44 8499.80 4999.71 4799.72 9899.69 11799.15 5599.83 24499.32 6099.94 6599.53 165
RPSCF99.18 14399.02 15899.64 11199.83 3899.85 1499.44 8499.82 3998.33 25199.50 18299.78 7097.90 20399.65 34196.78 27699.83 13799.44 209
CSCG99.37 8799.29 9599.60 12999.71 11299.46 13599.43 8699.85 2698.79 19999.41 20599.60 18298.92 8499.92 9198.02 18099.92 7799.43 215
CostFormer96.71 31696.79 31596.46 34898.90 33090.71 37399.41 8798.68 32694.69 35698.14 33799.34 26886.32 36299.80 27597.60 22598.07 35398.88 313
Patchmatch-test98.10 27597.98 27298.48 29999.27 28296.48 33099.40 8899.07 30998.81 19699.23 24199.57 19890.11 34399.87 17796.69 28099.64 23299.09 287
baseline197.73 28897.33 29798.96 26299.30 27597.73 30399.40 8898.42 33899.33 12399.46 18999.21 29591.18 32899.82 25498.35 15391.26 37199.32 241
V4299.56 4299.54 4599.63 11599.79 6799.46 13599.39 9099.59 16699.24 13699.86 4099.70 11198.55 13699.82 25499.79 1199.95 5299.60 126
EPMVS96.53 31996.32 31797.17 33898.18 36592.97 36099.39 9089.95 37698.21 25898.61 31199.59 18886.69 36199.72 30296.99 26399.23 30898.81 320
mPP-MVS99.19 13999.00 16499.76 4799.76 8599.68 8499.38 9299.54 19498.34 25099.01 27299.50 22298.53 14299.93 7197.18 25599.78 17099.66 78
CP-MVS99.23 12099.05 14999.75 5799.66 13899.66 8899.38 9299.62 14098.38 23999.06 27099.27 28198.79 10399.94 5797.51 23199.82 14699.66 78
FMVSNet597.80 28497.25 30099.42 18598.83 33998.97 22699.38 9299.80 4998.87 18999.25 23799.69 11780.60 37199.91 11298.96 11099.90 8799.38 226
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3899.70 7799.38 9299.78 6099.53 8999.67 11699.78 7099.19 5199.86 19797.32 24099.87 11299.55 152
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
KD-MVS_self_test99.63 3299.59 3499.76 4799.84 3499.90 599.37 9699.79 5599.83 3099.88 3299.85 4198.42 15699.90 13299.60 2099.73 19599.49 188
XVS99.27 11399.11 12899.75 5799.71 11299.71 7099.37 9699.61 14799.29 12698.76 30199.47 23598.47 14999.88 16497.62 22299.73 19599.67 68
X-MVStestdata96.09 32794.87 33799.75 5799.71 11299.71 7099.37 9699.61 14799.29 12698.76 30161.30 37998.47 14999.88 16497.62 22299.73 19599.67 68
CS-MVS99.40 7799.43 6299.29 22299.44 23099.72 6799.36 9999.91 1099.71 4799.28 23398.83 34299.22 4899.86 19799.40 4899.77 17498.29 344
MVS_Test99.28 10999.31 8599.19 24099.35 25498.79 24499.36 9999.49 22399.17 14999.21 24799.67 13498.78 10599.66 33499.09 9799.66 22699.10 284
MSP-MVS99.04 17398.79 20099.81 2699.78 7399.73 6399.35 10199.57 17798.54 22499.54 16898.99 32396.81 25899.93 7196.97 26499.53 26499.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EIA-MVS99.12 15699.01 16199.45 17799.36 25299.62 10199.34 10299.79 5598.41 23598.84 29198.89 33898.75 11199.84 23398.15 17499.51 26798.89 312
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 26999.76 5099.34 10299.97 298.93 18199.91 2099.79 6498.68 11799.93 7196.80 27599.56 25299.30 244
MTAPA99.35 9299.20 11099.80 2999.81 5299.81 3199.33 10499.53 20399.27 13099.42 19799.63 15598.21 17999.95 4597.83 20299.79 16499.65 86
VNet99.18 14399.06 14599.56 14499.24 28799.36 16599.33 10499.31 27599.67 6199.47 18699.57 19896.48 26499.84 23399.15 8799.30 29899.47 198
abl_699.36 9099.23 10899.75 5799.71 11299.74 6099.33 10499.76 6899.07 16499.65 12499.63 15599.09 6299.92 9197.13 25899.76 17799.58 140
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8599.71 7099.32 10799.50 21898.35 24698.97 27499.48 23098.37 16399.92 9195.95 31799.75 18099.63 100
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Patchmtry98.78 21198.54 22399.49 16498.89 33399.19 20499.32 10799.67 11499.65 6799.72 9899.79 6491.87 32299.95 4598.00 18499.97 3399.33 238
tpm97.15 30596.95 30997.75 32398.91 32994.24 35299.32 10797.96 34697.71 28798.29 32699.32 27086.72 36099.92 9198.10 17896.24 36899.09 287
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3099.76 5099.32 10799.77 6399.53 8999.77 7599.76 8099.26 4599.78 28197.77 20499.88 10399.60 126
HFP-MVS99.25 11699.08 13999.76 4799.73 10599.70 7799.31 11199.59 16698.36 24199.36 21499.37 25598.80 10099.91 11297.43 23599.75 18099.68 61
region2R99.23 12099.05 14999.77 4099.76 8599.70 7799.31 11199.59 16698.41 23599.32 22399.36 26098.73 11499.93 7197.29 24299.74 18899.67 68
ACMMPR99.23 12099.06 14599.76 4799.74 10299.69 8199.31 11199.59 16698.36 24199.35 21699.38 25498.61 12899.93 7197.43 23599.75 18099.67 68
131498.00 28097.90 28398.27 31098.90 33097.45 31199.30 11499.06 31194.98 35097.21 36099.12 30698.43 15499.67 33095.58 32798.56 33997.71 359
112198.56 23798.24 25199.52 15599.49 20999.24 19399.30 11499.22 29695.77 34098.52 31899.29 27797.39 23699.85 21695.79 32299.34 29399.46 202
MVS95.72 33594.63 33998.99 26098.56 35597.98 29799.30 11498.86 31872.71 37297.30 35799.08 31098.34 16799.74 29789.21 36398.33 34499.26 250
tpmvs97.39 30097.69 29096.52 34698.41 35891.76 36599.30 11498.94 31797.74 28597.85 34999.55 20892.40 31899.73 30096.25 30398.73 33498.06 354
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 16099.64 9599.30 11499.63 13799.61 7799.71 10399.56 20198.76 10999.96 3599.14 9399.92 7799.68 61
CR-MVSNet98.35 26298.20 25598.83 28299.05 31798.12 28499.30 11499.67 11497.39 30499.16 25499.79 6491.87 32299.91 11298.78 12898.77 32898.44 339
RPMNet98.60 23198.53 22598.83 28299.05 31798.12 28499.30 11499.62 14099.86 1999.16 25499.74 8792.53 31599.92 9198.75 13098.77 32898.44 339
DP-MVS99.48 5499.39 6999.74 6399.57 17099.62 10199.29 12199.61 14799.87 1799.74 9299.76 8098.69 11699.87 17798.20 16699.80 15999.75 42
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8599.73 6399.28 12299.56 18298.19 26099.14 25899.29 27798.84 9599.92 9197.53 23099.80 15999.64 95
Anonymous2023120699.35 9299.31 8599.47 17099.74 10299.06 22199.28 12299.74 8099.23 13899.72 9899.53 21397.63 22799.88 16499.11 9599.84 12799.48 193
test_040299.22 12999.14 11899.45 17799.79 6799.43 14699.28 12299.68 10999.54 8799.40 21099.56 20199.07 6899.82 25496.01 31199.96 4599.11 282
h-mvs3398.61 22998.34 24399.44 17999.60 15198.67 25099.27 12599.44 23899.68 5799.32 22399.49 22792.50 316100.00 199.24 7096.51 36699.65 86
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18799.75 5499.27 12599.61 14799.19 14499.57 15499.64 14598.76 10999.90 13297.29 24299.62 23599.56 149
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 18299.74 6099.26 12799.62 14099.16 15199.52 17599.64 14598.41 15799.91 11297.27 24599.61 24299.54 160
RE-MVS-def99.13 12199.54 18299.74 6099.26 12799.62 14099.16 15199.52 17599.64 14598.57 13397.27 24599.61 24299.54 160
TSAR-MVS + MP.99.34 9799.24 10699.63 11599.82 4599.37 16299.26 12799.35 26698.77 20299.57 15499.70 11199.27 4499.88 16497.71 21299.75 18099.65 86
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet99.38 8499.44 5999.21 23799.58 16098.09 28899.26 12799.46 23399.62 7399.75 8399.67 13498.54 13899.85 21699.15 8799.92 7799.68 61
CVMVSNet98.61 22998.88 18897.80 32199.58 16093.60 35699.26 12799.64 13599.66 6599.72 9899.67 13493.26 30799.93 7199.30 6399.81 15499.87 9
RRT_test8_iter0597.35 30397.25 30097.63 32698.81 34393.13 35899.26 12799.89 1599.51 9299.83 5099.68 12879.03 37699.88 16499.53 3099.72 20199.89 8
EG-PatchMatch MVS99.57 3999.56 4499.62 12499.77 8199.33 17299.26 12799.76 6899.32 12499.80 6299.78 7099.29 3999.87 17799.15 8799.91 8699.66 78
DWT-MVSNet_test96.03 32995.80 32896.71 34598.50 35791.93 36499.25 13497.87 34995.99 33796.81 36397.61 37081.02 36999.66 33497.20 25497.98 35498.54 332
test072699.69 12399.80 3699.24 13599.57 17799.16 15199.73 9699.65 14398.35 165
EI-MVSNet-UG-set99.48 5499.50 5199.42 18599.57 17098.65 25599.24 13599.46 23399.68 5799.80 6299.66 13898.99 7699.89 14999.19 7899.90 8799.72 45
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18599.57 17098.66 25299.24 13599.46 23399.67 6199.79 6799.65 14398.97 7999.89 14999.15 8799.89 9599.71 48
EPNet98.13 27397.77 28899.18 24294.57 37697.99 29299.24 13597.96 34699.74 4297.29 35899.62 16493.13 30999.97 1798.59 14099.83 13799.58 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.49 24898.11 26499.64 11199.73 10599.58 11599.24 13599.76 6889.94 36699.42 19799.56 20197.76 21599.86 19797.74 20999.82 14699.47 198
PatchT98.45 25298.32 24698.83 28298.94 32898.29 27599.24 13598.82 32199.84 2799.08 26699.76 8091.37 32599.94 5798.82 12399.00 31798.26 346
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 10999.44 14299.24 13599.71 9599.27 13099.93 1499.90 2299.70 1199.93 7198.99 10499.99 1299.64 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ADS-MVSNet297.78 28597.66 29398.12 31499.14 30295.36 34499.22 14298.75 32496.97 31998.25 32999.64 14590.90 33399.94 5796.51 29199.56 25299.08 290
ADS-MVSNet97.72 29197.67 29297.86 31999.14 30294.65 35099.22 14298.86 31896.97 31998.25 32999.64 14590.90 33399.84 23396.51 29199.56 25299.08 290
tpm296.35 32296.22 31996.73 34398.88 33691.75 36699.21 14498.51 33493.27 35997.89 34699.21 29584.83 36499.70 30896.04 31098.18 35098.75 323
test117299.23 12099.05 14999.74 6399.52 19299.75 5499.20 14599.61 14798.97 17399.48 18499.58 19098.41 15799.91 11297.15 25799.55 25699.57 146
SED-MVS99.40 7799.28 9799.77 4099.69 12399.82 2899.20 14599.54 19499.13 15799.82 5299.63 15598.91 8699.92 9197.85 19999.70 20799.58 140
OPU-MVS99.29 22299.12 30699.44 14299.20 14599.40 24899.00 7498.84 36996.54 28999.60 24599.58 140
GST-MVS99.16 14898.96 17599.75 5799.73 10599.73 6399.20 14599.55 18898.22 25799.32 22399.35 26598.65 12499.91 11296.86 27099.74 18899.62 111
PMVScopyleft92.94 2198.82 20898.81 19798.85 27899.84 3497.99 29299.20 14599.47 22999.71 4799.42 19799.82 5398.09 18899.47 36193.88 35399.85 12399.07 295
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp96.86 31197.07 30596.24 35098.68 35390.30 37599.19 15098.38 34197.35 30698.23 33199.59 18887.23 35299.82 25496.27 30298.73 33498.59 328
SR-MVS99.19 13999.00 16499.74 6399.51 19799.72 6799.18 15199.60 15998.85 19199.47 18699.58 19098.38 16299.92 9196.92 26699.54 26299.57 146
thres100view90096.39 32196.03 32397.47 32999.63 14495.93 33899.18 15197.57 35298.75 20698.70 30697.31 37487.04 35499.67 33087.62 36798.51 34196.81 365
thres600view796.60 31896.16 32097.93 31799.63 14496.09 33799.18 15197.57 35298.77 20298.72 30497.32 37387.04 35499.72 30288.57 36498.62 33797.98 356
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2899.66 8899.18 15199.60 15998.55 22199.57 15499.67 13499.03 7399.94 5797.01 26299.80 15999.69 55
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS98.74 21798.44 23299.64 11199.61 14999.38 15999.18 15199.55 18896.49 32999.27 23599.37 25597.11 25099.92 9195.74 32499.67 22299.62 111
ambc99.20 23999.35 25498.53 25999.17 15699.46 23399.67 11699.80 5898.46 15299.70 30897.92 19099.70 20799.38 226
Regformer-399.41 7499.41 6699.40 19599.52 19298.70 24899.17 15699.44 23899.62 7399.75 8399.60 18298.90 8999.85 21698.89 11899.84 12799.65 86
Regformer-499.45 6399.44 5999.50 16199.52 19298.94 23099.17 15699.53 20399.64 6999.76 7799.60 18298.96 8299.90 13298.91 11799.84 12799.67 68
PatchmatchNetpermissive97.65 29297.80 28597.18 33798.82 34292.49 36199.17 15698.39 34098.12 26298.79 29799.58 19090.71 33799.89 14997.23 25199.41 28399.16 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.11 16098.95 17799.59 13199.13 30499.59 11299.17 15699.65 12997.88 27899.25 23799.46 23898.97 7999.80 27597.26 24799.82 14699.37 229
MAR-MVS98.24 26997.92 28099.19 24098.78 34799.65 9399.17 15699.14 30695.36 34598.04 34198.81 34597.47 23199.72 30295.47 33099.06 31298.21 349
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PGM-MVS99.20 13699.01 16199.77 4099.75 9699.71 7099.16 16299.72 9297.99 27099.42 19799.60 18298.81 9699.93 7196.91 26799.74 18899.66 78
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4599.63 9999.16 16299.73 8397.56 29299.64 12699.69 11799.37 3199.89 14996.66 28399.87 11299.69 55
Effi-MVS+-dtu99.07 16698.92 18299.52 15598.89 33399.78 4199.15 16499.66 11899.34 12098.92 28199.24 29197.69 21899.98 798.11 17699.28 30098.81 320
MDTV_nov1_ep1397.73 28998.70 35290.83 37199.15 16498.02 34598.51 22698.82 29399.61 17390.98 33199.66 33496.89 26998.92 321
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12399.80 3699.14 16699.31 27599.16 15199.62 13899.61 17398.35 16599.91 11297.88 19399.72 20199.61 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 2199.70 12099.79 3899.14 16699.61 14799.92 9197.88 19399.72 20199.77 35
test_post199.14 16651.63 38189.54 34799.82 25496.86 270
v2v48299.50 5099.47 5399.58 13599.78 7399.25 18899.14 16699.58 17599.25 13499.81 5999.62 16498.24 17599.84 23399.83 999.97 3399.64 95
MDTV_nov1_ep13_2view91.44 36999.14 16697.37 30599.21 24791.78 32496.75 27799.03 299
API-MVS98.38 25898.39 23798.35 30498.83 33999.26 18499.14 16699.18 30298.59 21798.66 30898.78 34698.61 12899.57 35394.14 34899.56 25296.21 367
SF-MVS99.10 16498.93 17899.62 12499.58 16099.51 12699.13 17299.65 12997.97 27299.42 19799.61 17398.86 9299.87 17796.45 29599.68 21599.49 188
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22599.73 6399.13 17299.52 21197.40 30399.57 15499.64 14598.93 8399.83 24497.61 22499.79 16499.63 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
casdiffmvs99.63 3299.61 3199.67 9299.79 6799.59 11299.13 17299.85 2699.79 3899.76 7799.72 9799.33 3699.82 25499.21 7399.94 6599.59 135
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5799.69 8199.13 17299.65 12998.99 17199.64 12699.72 9799.39 2599.86 19798.23 16399.81 15499.60 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS99.18 14399.18 11299.16 24399.34 26499.28 18099.12 17699.79 5599.48 9598.93 27898.55 35599.40 2499.93 7198.51 14499.52 26698.28 345
AllTest99.21 13499.07 14399.63 11599.78 7399.64 9599.12 17699.83 3498.63 21399.63 13099.72 9798.68 11799.75 29596.38 29899.83 13799.51 177
v14419299.55 4599.54 4599.58 13599.78 7399.20 20399.11 17899.62 14099.18 14599.89 2699.72 9798.66 12299.87 17799.88 699.97 3399.66 78
v114499.54 4799.53 4999.59 13199.79 6799.28 18099.10 17999.61 14799.20 14399.84 4599.73 9198.67 12099.84 23399.86 899.98 2499.64 95
#test#99.12 15698.90 18699.76 4799.73 10599.70 7799.10 17999.59 16697.60 29199.36 21499.37 25598.80 10099.91 11296.84 27399.75 18099.68 61
tpmrst97.73 28898.07 26696.73 34398.71 35192.00 36399.10 17998.86 31898.52 22598.92 28199.54 21091.90 32099.82 25498.02 18099.03 31598.37 341
FMVSNet398.80 21098.63 21299.32 21699.13 30498.72 24799.10 17999.48 22599.23 13899.62 13899.64 14592.57 31399.86 19798.96 11099.90 8799.39 224
thisisatest053097.45 29896.95 30998.94 26499.68 13297.73 30399.09 18394.19 37098.61 21699.56 16199.30 27484.30 36699.93 7198.27 16099.54 26299.16 272
MTMP99.09 18398.59 332
v14899.40 7799.41 6699.39 19899.76 8598.94 23099.09 18399.59 16699.17 14999.81 5999.61 17398.41 15799.69 31499.32 6099.94 6599.53 165
MVP-Stereo99.16 14899.08 13999.43 18399.48 21599.07 21999.08 18699.55 18898.63 21399.31 22799.68 12898.19 18299.78 28198.18 17099.58 25099.45 204
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat196.78 31396.98 30896.16 35198.85 33790.59 37499.08 18699.32 27192.37 36197.73 35599.46 23891.15 32999.69 31496.07 30998.80 32598.21 349
MVSTER98.47 25098.22 25399.24 23499.06 31698.35 27499.08 18699.46 23399.27 13099.75 8399.66 13888.61 34999.85 21699.14 9399.92 7799.52 175
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18399.25 28599.69 8199.05 18999.82 3999.50 9398.97 27499.05 31398.98 7799.98 798.20 16699.24 30698.62 326
v192192099.56 4299.57 4099.55 14799.75 9699.11 21199.05 18999.61 14799.15 15599.88 3299.71 10499.08 6699.87 17799.90 299.97 3399.66 78
Fast-Effi-MVS+99.02 17698.87 18999.46 17399.38 24799.50 12799.04 19199.79 5597.17 31498.62 31098.74 34899.34 3599.95 4598.32 15699.41 28398.92 310
v119299.57 3999.57 4099.57 14099.77 8199.22 19799.04 19199.60 15999.18 14599.87 3999.72 9799.08 6699.85 21699.89 599.98 2499.66 78
alignmvs98.28 26597.96 27399.25 23299.12 30698.93 23499.03 19398.42 33899.64 6998.72 30497.85 36790.86 33599.62 34598.88 11999.13 30999.19 266
test20.0399.55 4599.54 4599.58 13599.79 6799.37 16299.02 19499.89 1599.60 8399.82 5299.62 16498.81 9699.89 14999.43 4199.86 11999.47 198
mvs_anonymous99.28 10999.39 6998.94 26499.19 29697.81 30099.02 19499.55 18899.78 3999.85 4299.80 5898.24 17599.86 19799.57 2599.50 26999.15 274
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20499.62 10199.01 19699.57 17796.80 32699.54 16899.63 15598.29 17199.91 11295.24 33499.71 20599.61 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19398.33 36199.56 11899.01 19699.59 16695.44 34499.57 15499.80 5895.64 28399.46 36396.47 29499.92 7799.21 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_yl98.25 26797.95 27499.13 24799.17 29998.47 26399.00 19898.67 32898.97 17399.22 24599.02 32191.31 32699.69 31497.26 24798.93 31999.24 253
DCV-MVSNet98.25 26797.95 27499.13 24799.17 29998.47 26399.00 19898.67 32898.97 17399.22 24599.02 32191.31 32699.69 31497.26 24798.93 31999.24 253
tfpn200view996.30 32495.89 32497.53 32799.58 16096.11 33599.00 19897.54 35598.43 23298.52 31896.98 37686.85 35699.67 33087.62 36798.51 34196.81 365
v124099.56 4299.58 3799.51 15899.80 5799.00 22299.00 19899.65 12999.15 15599.90 2299.75 8499.09 6299.88 16499.90 299.96 4599.67 68
thres40096.40 32095.89 32497.92 31899.58 16096.11 33599.00 19897.54 35598.43 23298.52 31896.98 37686.85 35699.67 33087.62 36798.51 34197.98 356
Regformer-199.32 10399.27 10099.47 17099.41 23998.95 22998.99 20399.48 22599.48 9599.66 12099.52 21598.78 10599.87 17798.36 15199.74 18899.60 126
Regformer-299.34 9799.27 10099.53 15399.41 23999.10 21598.99 20399.53 20399.47 10099.66 12099.52 21598.80 10099.89 14998.31 15799.74 18899.60 126
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13199.68 13299.45 14098.99 20399.67 11499.48 9599.55 16699.36 26094.92 28899.86 19798.95 11496.57 36599.45 204
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14499.28 28099.22 19798.99 20399.40 25299.08 16299.58 15199.64 14598.90 8999.83 24497.44 23499.75 18099.63 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RRT_MVS98.75 21598.54 22399.41 19398.14 36898.61 25698.98 20799.66 11899.31 12599.84 4599.75 8491.98 31999.98 799.20 7699.95 5299.62 111
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19799.58 11598.98 20799.60 15999.43 11299.70 10699.36 26097.70 21699.88 16499.20 7699.87 11299.59 135
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 22099.56 11898.97 20999.61 14799.43 11299.67 11699.28 27997.85 20999.95 4599.17 8399.81 15499.65 86
CDS-MVSNet99.22 12999.13 12199.50 16199.35 25499.11 21198.96 21099.54 19499.46 10499.61 14499.70 11196.31 27299.83 24499.34 5599.88 10399.55 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9699.81 3198.95 21199.53 20398.27 25599.53 17399.73 9198.75 11199.87 17797.70 21499.83 13799.68 61
PM-MVS99.36 9099.29 9599.58 13599.83 3899.66 8898.95 21199.86 2298.85 19199.81 5999.73 9198.40 16199.92 9198.36 15199.83 13799.17 270
SD-MVS99.01 18099.30 9098.15 31299.50 20499.40 15498.94 21399.61 14799.22 14299.75 8399.82 5399.54 2295.51 37497.48 23299.87 11299.54 160
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_Blended_VisFu99.40 7799.38 7199.44 17999.90 1998.66 25298.94 21399.91 1097.97 27299.79 6799.73 9199.05 7199.97 1799.15 8799.99 1299.68 61
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25599.80 5797.83 29998.89 21599.72 9299.29 12699.63 13099.70 11196.47 26599.89 14998.17 17299.82 14699.50 183
testtj98.56 23798.17 26099.72 7999.45 22899.60 10998.88 21699.50 21896.88 32199.18 25399.48 23097.08 25199.92 9193.69 35499.38 28699.63 100
mvs-test198.83 20698.70 20799.22 23698.89 33399.65 9398.88 21699.66 11899.34 12098.29 32698.94 33397.69 21899.96 3598.11 17698.54 34098.04 355
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7399.55 12198.88 21699.66 11897.11 31899.47 18699.60 18299.07 6899.89 14996.18 30699.85 12399.58 140
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVS_ROBcopyleft97.31 1797.36 30296.84 31398.89 27799.29 27799.45 14098.87 21999.48 22586.54 36999.44 19199.74 8797.34 23999.86 19791.61 35899.28 30097.37 363
tmp_tt95.75 33495.42 33296.76 34189.90 37894.42 35198.86 22097.87 34978.01 37099.30 23299.69 11797.70 21695.89 37399.29 6698.14 35199.95 1
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 19299.71 7098.86 22099.19 30198.47 23198.59 31399.06 31298.08 19099.91 11296.94 26599.60 24599.60 126
IterMVS-LS99.41 7499.47 5399.25 23299.81 5298.09 28898.85 22299.76 6899.62 7399.83 5099.64 14598.54 13899.97 1799.15 8799.99 1299.68 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testgi99.29 10899.26 10299.37 20599.75 9698.81 24298.84 22399.89 1598.38 23999.75 8399.04 31699.36 3499.86 19799.08 9899.25 30499.45 204
F-COLMAP98.74 21798.45 23099.62 12499.57 17099.47 13198.84 22399.65 12996.31 33398.93 27899.19 29997.68 22099.87 17796.52 29099.37 29099.53 165
baseline296.83 31296.28 31898.46 30099.09 31496.91 32498.83 22593.87 37197.23 31196.23 36798.36 36088.12 35099.90 13296.68 28198.14 35198.57 331
DU-MVS99.33 10199.21 10999.71 8399.43 23399.56 11898.83 22599.53 20399.38 11699.67 11699.36 26097.67 22199.95 4599.17 8399.81 15499.63 100
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22599.86 2299.68 5799.65 12499.88 2997.67 22199.87 17799.03 10199.86 11999.76 39
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11599.82 4599.58 11598.83 22599.72 9298.36 24199.60 14699.71 10498.92 8499.91 11297.08 26099.84 12799.40 221
MSLP-MVS++99.05 17099.09 13798.91 27099.21 29198.36 27398.82 22999.47 22998.85 19198.90 28499.56 20198.78 10599.09 36798.57 14199.68 21599.26 250
9.1498.64 21099.45 22898.81 23099.60 15997.52 29799.28 23399.56 20198.53 14299.83 24495.36 33399.64 232
D2MVS99.22 12999.19 11199.29 22299.69 12398.74 24698.81 23099.41 24598.55 22199.68 11199.69 11798.13 18699.87 17798.82 12399.98 2499.24 253
pmmvs-eth3d99.48 5499.47 5399.51 15899.77 8199.41 15398.81 23099.66 11899.42 11499.75 8399.66 13899.20 5099.76 29198.98 10699.99 1299.36 232
HQP_MVS98.90 19798.68 20999.55 14799.58 16099.24 19398.80 23399.54 19498.94 17899.14 25899.25 28697.24 24299.82 25495.84 32099.78 17099.60 126
plane_prior298.80 23398.94 178
JIA-IIPM98.06 27797.92 28098.50 29898.59 35497.02 32198.80 23398.51 33499.88 1697.89 34699.87 3291.89 32199.90 13298.16 17397.68 35998.59 328
PAPM_NR98.36 25998.04 26799.33 21299.48 21598.93 23498.79 23699.28 28397.54 29598.56 31698.57 35397.12 24999.69 31494.09 34998.90 32399.38 226
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2499.25 18898.78 23799.88 1898.66 21099.96 899.79 6497.45 23299.93 7199.34 5599.99 1299.78 32
hse-mvs298.52 24398.30 24799.16 24399.29 27798.60 25798.77 23899.02 31399.68 5799.32 22399.04 31692.50 31699.85 21699.24 7097.87 35799.03 299
ETH3D-3000-0.198.77 21298.50 22799.59 13199.47 22099.53 12398.77 23899.60 15997.33 30799.23 24199.50 22297.91 20299.83 24495.02 33899.67 22299.41 219
MS-PatchMatch99.00 18298.97 17399.09 25199.11 31198.19 28098.76 24099.33 26998.49 22999.44 19199.58 19098.21 17999.69 31498.20 16699.62 23599.39 224
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 17099.77 4398.74 24199.60 15998.55 22199.76 7799.69 11798.23 17899.92 9196.39 29799.75 18099.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
WTY-MVS98.59 23498.37 23999.26 22999.43 23398.40 26998.74 24199.13 30898.10 26399.21 24799.24 29194.82 29099.90 13297.86 19798.77 32899.49 188
zzz-MVS99.30 10699.14 11899.80 2999.81 5299.81 3198.73 24399.53 20399.27 13099.42 19799.63 15598.21 17999.95 4597.83 20299.79 16499.65 86
AUN-MVS97.82 28397.38 29699.14 24699.27 28298.53 25998.72 24499.02 31398.10 26397.18 36199.03 32089.26 34899.85 21697.94 18997.91 35599.03 299
sss98.90 19798.77 20199.27 22799.48 21598.44 26698.72 24499.32 27197.94 27699.37 21399.35 26596.31 27299.91 11298.85 12099.63 23499.47 198
CANet99.11 16099.05 14999.28 22598.83 33998.56 25898.71 24699.41 24599.25 13499.23 24199.22 29397.66 22599.94 5799.19 7899.97 3399.33 238
AdaColmapbinary98.60 23198.35 24299.38 20299.12 30699.22 19798.67 24799.42 24497.84 28398.81 29499.27 28197.32 24099.81 27095.14 33599.53 26499.10 284
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3899.83 2498.61 24899.63 13796.84 32499.44 19199.58 19098.81 9699.91 11297.70 21499.82 14699.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC98.82 20898.57 21999.58 13599.21 29199.31 17598.61 24899.25 28998.65 21198.43 32399.26 28497.86 20799.81 27096.55 28899.27 30399.61 122
BH-RMVSNet98.41 25598.14 26399.21 23799.21 29198.47 26398.60 25098.26 34398.35 24698.93 27899.31 27297.20 24799.66 33494.32 34599.10 31199.51 177
LF4IMVS99.01 18098.92 18299.27 22799.71 11299.28 18098.59 25199.77 6398.32 25299.39 21199.41 24598.62 12699.84 23396.62 28799.84 12798.69 324
OPM-MVS99.26 11599.13 12199.63 11599.70 12099.61 10798.58 25299.48 22598.50 22799.52 17599.63 15599.14 5799.76 29197.89 19299.77 17499.51 177
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MCST-MVS99.02 17698.81 19799.65 10499.58 16099.49 12898.58 25299.07 30998.40 23799.04 27199.25 28698.51 14799.80 27597.31 24199.51 26799.65 86
PVSNet_BlendedMVS99.03 17499.01 16199.09 25199.54 18297.99 29298.58 25299.82 3997.62 29099.34 21999.71 10498.52 14599.77 28997.98 18599.97 3399.52 175
OMC-MVS98.90 19798.72 20399.44 17999.39 24499.42 14998.58 25299.64 13597.31 30899.44 19199.62 16498.59 13099.69 31496.17 30799.79 16499.22 258
diffmvs99.34 9799.32 8499.39 19899.67 13798.77 24598.57 25699.81 4899.61 7799.48 18499.41 24598.47 14999.86 19798.97 10899.90 8799.53 165
DP-MVS Recon98.50 24598.23 25299.31 21999.49 20999.46 13598.56 25799.63 13794.86 35398.85 29099.37 25597.81 21199.59 35196.08 30899.44 27798.88 313
new-patchmatchnet99.35 9299.57 4098.71 29299.82 4596.62 32998.55 25899.75 7599.50 9399.88 3299.87 3299.31 3799.88 16499.43 41100.00 199.62 111
pmmvs599.19 13999.11 12899.42 18599.76 8598.88 23998.55 25899.73 8398.82 19599.72 9899.62 16496.56 26199.82 25499.32 6099.95 5299.56 149
BH-untuned98.22 27198.09 26598.58 29699.38 24797.24 31698.55 25898.98 31697.81 28499.20 25298.76 34797.01 25399.65 34194.83 33998.33 34498.86 315
CNVR-MVS98.99 18598.80 19999.56 14499.25 28599.43 14698.54 26199.27 28498.58 21898.80 29699.43 24398.53 14299.70 30897.22 25299.59 24999.54 160
thres20096.09 32795.68 33097.33 33499.48 21596.22 33498.53 26297.57 35298.06 26798.37 32596.73 37886.84 35899.61 34986.99 37098.57 33896.16 368
1112_ss99.05 17098.84 19399.67 9299.66 13899.29 17898.52 26399.82 3997.65 28999.43 19599.16 30096.42 26799.91 11299.07 9999.84 12799.80 24
EPNet_dtu97.62 29397.79 28797.11 33996.67 37392.31 36298.51 26498.04 34499.24 13695.77 36899.47 23593.78 30299.66 33498.98 10699.62 23599.37 229
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft97.35 1698.36 25997.99 27099.48 16899.32 27099.24 19398.50 26599.51 21495.19 34998.58 31498.96 33196.95 25599.83 24495.63 32599.25 30499.37 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.92 1398.03 27897.55 29499.46 17399.47 22099.44 14298.50 26599.62 14086.79 36799.07 26999.26 28498.26 17499.62 34597.28 24499.73 19599.31 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15899.04 31999.39 15698.47 26799.47 22996.70 32898.78 29999.33 26997.62 22899.86 19794.69 34399.38 28699.28 249
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
xiu_mvs_v1_base99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
TR-MVS97.44 29997.15 30498.32 30698.53 35697.46 31098.47 26797.91 34896.85 32398.21 33298.51 35796.42 26799.51 35992.16 35797.29 36197.98 356
FPMVS96.32 32395.50 33198.79 28699.60 15198.17 28298.46 27298.80 32297.16 31596.28 36499.63 15582.19 36799.09 36788.45 36598.89 32499.10 284
plane_prior99.24 19398.42 27397.87 27999.71 205
WR-MVS99.11 16098.93 17899.66 9999.30 27599.42 14998.42 27399.37 26299.04 16999.57 15499.20 29796.89 25699.86 19798.66 13899.87 11299.70 51
MVS-HIRNet97.86 28298.22 25396.76 34199.28 28091.53 36898.38 27592.60 37299.13 15799.31 22799.96 1197.18 24899.68 32598.34 15499.83 13799.07 295
ETH3 D test640097.76 28697.19 30399.50 16199.38 24799.26 18498.34 27699.49 22392.99 36098.54 31799.20 29795.92 28199.82 25491.14 36199.66 22699.40 221
N_pmnet98.73 21998.53 22599.35 20999.72 10998.67 25098.34 27694.65 36798.35 24699.79 6799.68 12898.03 19299.93 7198.28 15999.92 7799.44 209
CNLPA98.57 23698.34 24399.28 22599.18 29899.10 21598.34 27699.41 24598.48 23098.52 31898.98 32697.05 25299.78 28195.59 32699.50 26998.96 306
CDPH-MVS98.56 23798.20 25599.61 12799.50 20499.46 13598.32 27999.41 24595.22 34799.21 24799.10 30998.34 16799.82 25495.09 33799.66 22699.56 149
Effi-MVS+99.06 16798.97 17399.34 21099.31 27198.98 22498.31 28099.91 1098.81 19698.79 29798.94 33399.14 5799.84 23398.79 12598.74 33299.20 263
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15199.53 18799.25 18898.29 28199.76 6899.07 16499.42 19799.61 17398.86 9299.87 17796.45 29599.68 21599.49 188
save fliter99.53 18799.25 18898.29 28199.38 26199.07 164
Patchmatch-RL test98.60 23198.36 24099.33 21299.77 8199.07 21998.27 28399.87 2098.91 18499.74 9299.72 9790.57 33999.79 27898.55 14299.85 12399.11 282
jason99.16 14899.11 12899.32 21699.75 9698.44 26698.26 28499.39 25598.70 20899.74 9299.30 27498.54 13899.97 1798.48 14599.82 14699.55 152
jason: jason.
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3499.64 9598.25 28599.73 8398.39 23899.63 13099.43 24399.70 1199.90 13297.34 23998.64 33699.44 209
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27899.64 14297.16 31898.23 28699.33 26998.93 18199.56 16199.66 13897.39 23699.83 24498.29 15899.88 10399.55 152
YYNet198.95 19298.99 16998.84 28099.64 14297.14 31998.22 28799.32 27198.92 18399.59 14999.66 13897.40 23499.83 24498.27 16099.90 8799.55 152
CANet_DTU98.91 19598.85 19199.09 25198.79 34598.13 28398.18 28899.31 27599.48 9598.86 28999.51 21996.56 26199.95 4599.05 10099.95 5299.19 266
MG-MVS98.52 24398.39 23798.94 26499.15 30197.39 31398.18 28899.21 30098.89 18899.23 24199.63 15597.37 23899.74 29794.22 34799.61 24299.69 55
SCA98.11 27498.36 24097.36 33299.20 29492.99 35998.17 29098.49 33698.24 25699.10 26499.57 19896.01 27999.94 5796.86 27099.62 23599.14 278
TSAR-MVS + GP.99.12 15699.04 15599.38 20299.34 26499.16 20698.15 29199.29 28098.18 26199.63 13099.62 16499.18 5299.68 32598.20 16699.74 18899.30 244
new_pmnet98.88 20198.89 18798.84 28099.70 12097.62 30698.15 29199.50 21897.98 27199.62 13899.54 21098.15 18599.94 5797.55 22799.84 12798.95 307
PatchMatch-RL98.68 22498.47 22899.30 22199.44 23099.28 18098.14 29399.54 19497.12 31799.11 26299.25 28697.80 21299.70 30896.51 29199.30 29898.93 309
xiu_mvs_v2_base99.02 17699.11 12898.77 28799.37 25098.09 28898.13 29499.51 21499.47 10099.42 19798.54 35699.38 2999.97 1798.83 12199.33 29598.24 347
lupinMVS98.96 18998.87 18999.24 23499.57 17098.40 26998.12 29599.18 30298.28 25499.63 13099.13 30298.02 19499.97 1798.22 16499.69 21099.35 235
DELS-MVS99.34 9799.30 9099.48 16899.51 19799.36 16598.12 29599.53 20399.36 11999.41 20599.61 17399.22 4899.87 17799.21 7399.68 21599.20 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TEST999.35 25499.35 16998.11 29799.41 24594.83 35597.92 34498.99 32398.02 19499.85 216
train_agg98.35 26297.95 27499.57 14099.35 25499.35 16998.11 29799.41 24594.90 35197.92 34498.99 32398.02 19499.85 21695.38 33299.44 27799.50 183
PMMVS299.48 5499.45 5799.57 14099.76 8598.99 22398.09 29999.90 1498.95 17799.78 7099.58 19099.57 2099.93 7199.48 3699.95 5299.79 30
Test_1112_low_res98.95 19298.73 20299.63 11599.68 13299.15 20898.09 29999.80 4997.14 31699.46 18999.40 24896.11 27799.89 14999.01 10399.84 12799.84 14
test_899.34 26499.31 17598.08 30199.40 25294.90 35197.87 34898.97 32998.02 19499.84 233
IterMVS-SCA-FT99.00 18299.16 11498.51 29799.75 9695.90 33998.07 30299.84 3299.84 2799.89 2699.73 9196.01 27999.99 599.33 58100.00 199.63 100
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3399.47 13198.07 30299.83 3498.64 21299.89 2699.60 18292.57 313100.00 199.33 5899.97 3399.72 45
IterMVS98.97 18699.16 11498.42 30199.74 10295.64 34298.06 30499.83 3499.83 3099.85 4299.74 8796.10 27899.99 599.27 69100.00 199.63 100
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
新几何298.04 305
BH-w/o97.20 30497.01 30797.76 32299.08 31595.69 34198.03 30698.52 33395.76 34197.96 34398.02 36595.62 28499.47 36192.82 35697.25 36298.12 353
无先验98.01 30799.23 29395.83 33999.85 21695.79 32299.44 209
pmmvs499.13 15499.06 14599.36 20899.57 17099.10 21598.01 30799.25 28998.78 20199.58 15199.44 24298.24 17599.76 29198.74 13199.93 7399.22 258
PS-MVSNAJ99.00 18299.08 13998.76 28899.37 25098.10 28798.00 30999.51 21499.47 10099.41 20598.50 35899.28 4199.97 1798.83 12199.34 29398.20 351
test_prior499.19 20498.00 309
agg_prior198.33 26497.92 28099.57 14099.35 25499.36 16597.99 31199.39 25594.85 35497.76 35398.98 32698.03 19299.85 21695.49 32899.44 27799.51 177
HQP-NCC99.31 27197.98 31297.45 30098.15 333
ACMP_Plane99.31 27197.98 31297.45 30098.15 333
HQP-MVS98.36 25998.02 26999.39 19899.31 27198.94 23097.98 31299.37 26297.45 30098.15 33398.83 34296.67 25999.70 30894.73 34099.67 22299.53 165
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19599.56 18099.37 16297.97 31599.68 10997.49 29999.08 26699.35 26595.41 28699.82 25497.70 21498.19 34999.01 304
test_prior398.62 22898.34 24399.46 17399.35 25499.22 19797.95 31699.39 25597.87 27998.05 33999.05 31397.90 20399.69 31495.99 31399.49 27199.48 193
test_prior297.95 31697.87 27998.05 33999.05 31397.90 20395.99 31399.49 271
旧先验297.94 31895.33 34698.94 27799.88 16496.75 277
MVEpermissive92.54 2296.66 31796.11 32198.31 30899.68 13297.55 30897.94 31895.60 36599.37 11790.68 37498.70 34996.56 26198.61 37186.94 37199.55 25698.77 322
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
原ACMM297.92 320
MVS_111021_HR99.12 15699.02 15899.40 19599.50 20499.11 21197.92 32099.71 9598.76 20599.08 26699.47 23599.17 5399.54 35497.85 19999.76 17799.54 160
MVS_111021_LR99.13 15499.03 15799.42 18599.58 16099.32 17497.91 32299.73 8398.68 20999.31 22799.48 23099.09 6299.66 33497.70 21499.77 17499.29 247
pmmvs398.08 27697.80 28598.91 27099.41 23997.69 30597.87 32399.66 11895.87 33899.50 18299.51 21990.35 34199.97 1798.55 14299.47 27499.08 290
XVG-OURS99.21 13499.06 14599.65 10499.82 4599.62 10197.87 32399.74 8098.36 24199.66 12099.68 12899.71 999.90 13296.84 27399.88 10399.43 215
test22299.51 19799.08 21897.83 32599.29 28095.21 34898.68 30799.31 27297.28 24199.38 28699.43 215
miper_lstm_enhance98.65 22698.60 21398.82 28599.20 29497.33 31497.78 32699.66 11899.01 17099.59 14999.50 22294.62 29399.85 21698.12 17599.90 8799.26 250
TinyColmap98.97 18698.93 17899.07 25599.46 22598.19 28097.75 32799.75 7598.79 19999.54 16899.70 11198.97 7999.62 34596.63 28699.83 13799.41 219
our_test_398.85 20599.09 13798.13 31399.66 13894.90 34997.72 32899.58 17599.07 16499.64 12699.62 16498.19 18299.93 7198.41 14899.95 5299.55 152
testdata197.72 32897.86 282
ET-MVSNet_ETH3D96.78 31396.07 32298.91 27099.26 28497.92 29897.70 33096.05 36397.96 27592.37 37398.43 35987.06 35399.90 13298.27 16097.56 36098.91 311
c3_l98.72 22098.71 20498.72 29099.12 30697.22 31797.68 33199.56 18298.90 18599.54 16899.48 23096.37 27199.73 30097.88 19399.88 10399.21 260
ppachtmachnet_test98.89 20099.12 12598.20 31199.66 13895.24 34697.63 33299.68 10999.08 16299.78 7099.62 16498.65 12499.88 16498.02 18099.96 4599.48 193
PAPR97.56 29697.07 30599.04 25898.80 34498.11 28697.63 33299.25 28994.56 35798.02 34298.25 36397.43 23399.68 32590.90 36298.74 33299.33 238
test0.0.03 197.37 30196.91 31298.74 28997.72 36997.57 30797.60 33497.36 35798.00 26899.21 24798.02 36590.04 34499.79 27898.37 15095.89 36998.86 315
PVSNet_Blended98.70 22298.59 21599.02 25999.54 18297.99 29297.58 33599.82 3995.70 34299.34 21998.98 32698.52 14599.77 28997.98 18599.83 13799.30 244
PMMVS98.49 24898.29 24899.11 24998.96 32798.42 26897.54 33699.32 27197.53 29698.47 32298.15 36497.88 20699.82 25497.46 23399.24 30699.09 287
MSDG99.08 16598.98 17299.37 20599.60 15199.13 20997.54 33699.74 8098.84 19499.53 17399.55 20899.10 6099.79 27897.07 26199.86 11999.18 268
test12329.31 34033.05 34518.08 35625.93 38012.24 38097.53 33810.93 38111.78 37424.21 37550.08 38321.04 3798.60 37523.51 37332.43 37433.39 371
CLD-MVS98.76 21498.57 21999.33 21299.57 17098.97 22697.53 33899.55 18896.41 33099.27 23599.13 30299.07 6899.78 28196.73 27999.89 9599.23 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.68 22498.71 20498.60 29499.10 31296.84 32697.52 34099.54 19498.94 17899.58 15199.48 23096.25 27499.76 29198.01 18399.93 7399.21 260
miper_ehance_all_eth98.59 23498.59 21598.59 29598.98 32697.07 32097.49 34199.52 21198.50 22799.52 17599.37 25596.41 26999.71 30697.86 19799.62 23599.00 305
cl____98.54 24198.41 23598.92 26899.03 32097.80 30197.46 34299.59 16698.90 18599.60 14699.46 23893.85 30099.78 28197.97 18799.89 9599.17 270
DIV-MVS_self_test98.54 24198.42 23498.92 26899.03 32097.80 30197.46 34299.59 16698.90 18599.60 14699.46 23893.87 29999.78 28197.97 18799.89 9599.18 268
test-LLR97.15 30596.95 30997.74 32498.18 36595.02 34797.38 34496.10 36098.00 26897.81 35098.58 35190.04 34499.91 11297.69 22098.78 32698.31 342
TESTMET0.1,196.24 32595.84 32797.41 33198.24 36393.84 35597.38 34495.84 36498.43 23297.81 35098.56 35479.77 37299.89 14997.77 20498.77 32898.52 333
test-mter96.23 32695.73 32997.74 32498.18 36595.02 34797.38 34496.10 36097.90 27797.81 35098.58 35179.12 37599.91 11297.69 22098.78 32698.31 342
IB-MVS95.41 2095.30 33794.46 34197.84 32098.76 34995.33 34597.33 34796.07 36296.02 33695.37 37197.41 37276.17 37899.96 3597.54 22895.44 37098.22 348
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.28 26597.94 27899.32 21699.36 25299.11 21197.31 34898.78 32396.88 32198.84 29199.11 30897.77 21499.61 34994.03 35199.36 29199.23 256
thisisatest051596.98 30996.42 31698.66 29399.42 23897.47 30997.27 34994.30 36997.24 31099.15 25698.86 34185.01 36399.87 17797.10 25999.39 28598.63 325
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 28999.75 5497.25 35099.47 22998.72 20799.66 12099.70 11199.29 3999.63 34498.07 17999.81 15499.62 111
cl2297.56 29697.28 29898.40 30298.37 36096.75 32797.24 35199.37 26297.31 30899.41 20599.22 29387.30 35199.37 36597.70 21499.62 23599.08 290
GA-MVS97.99 28197.68 29198.93 26799.52 19298.04 29197.19 35299.05 31298.32 25298.81 29498.97 32989.89 34699.41 36498.33 15599.05 31399.34 237
CL-MVSNet_self_test98.71 22198.56 22299.15 24599.22 28998.66 25297.14 35399.51 21498.09 26599.54 16899.27 28196.87 25799.74 29798.43 14798.96 31899.03 299
KD-MVS_2432*160095.89 33095.41 33397.31 33594.96 37493.89 35397.09 35499.22 29697.23 31198.88 28599.04 31679.23 37399.54 35496.24 30496.81 36398.50 337
miper_refine_blended95.89 33095.41 33397.31 33594.96 37493.89 35397.09 35499.22 29697.23 31198.88 28599.04 31679.23 37399.54 35496.24 30496.81 36398.50 337
USDC98.96 18998.93 17899.05 25799.54 18297.99 29297.07 35699.80 4998.21 25899.75 8399.77 7798.43 15499.64 34397.90 19199.88 10399.51 177
miper_enhance_ethall98.03 27897.94 27898.32 30698.27 36296.43 33296.95 35799.41 24596.37 33299.43 19598.96 33194.74 29199.69 31497.71 21299.62 23598.83 319
CHOSEN 280x42098.41 25598.41 23598.40 30299.34 26495.89 34096.94 35899.44 23898.80 19899.25 23799.52 21593.51 30699.98 798.94 11599.98 2499.32 241
PCF-MVS96.03 1896.73 31595.86 32699.33 21299.44 23099.16 20696.87 35999.44 23886.58 36898.95 27699.40 24894.38 29599.88 16487.93 36699.80 15998.95 307
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testmvs28.94 34133.33 34315.79 35726.03 3799.81 38196.77 36015.67 38011.55 37523.87 37650.74 38219.03 3808.53 37623.21 37433.07 37329.03 372
PVSNet97.47 1598.42 25498.44 23298.35 30499.46 22596.26 33396.70 36199.34 26897.68 28899.00 27399.13 30297.40 23499.72 30297.59 22699.68 21599.08 290
PAPM95.61 33694.71 33898.31 30899.12 30696.63 32896.66 36298.46 33790.77 36596.25 36598.68 35093.01 31099.69 31481.60 37297.86 35898.62 326
cascas96.99 30896.82 31497.48 32897.57 37295.64 34296.43 36399.56 18291.75 36297.13 36297.61 37095.58 28598.63 37096.68 28199.11 31098.18 352
bset_n11_16_dypcd98.69 22398.45 23099.42 18599.69 12398.52 26196.06 36496.80 35999.71 4799.73 9699.54 21095.14 28799.96 3599.39 4999.95 5299.79 30
PVSNet_095.53 1995.85 33395.31 33597.47 32998.78 34793.48 35795.72 36599.40 25296.18 33597.37 35697.73 36895.73 28299.58 35295.49 32881.40 37299.36 232
E-PMN97.14 30797.43 29596.27 34998.79 34591.62 36795.54 36699.01 31599.44 10798.88 28599.12 30692.78 31299.68 32594.30 34699.03 31597.50 360
EMVS96.96 31097.28 29895.99 35298.76 34991.03 37095.26 36798.61 33099.34 12098.92 28198.88 34093.79 30199.66 33492.87 35599.05 31397.30 364
test_method91.72 33992.32 34289.91 35593.49 37770.18 37990.28 36899.56 18261.71 37395.39 37099.52 21593.90 29899.94 5798.76 12998.27 34699.62 111
test_blank8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
cdsmvs_eth3d_5k24.88 34233.17 3440.00 3580.00 3810.00 3820.00 36999.62 1400.00 3760.00 37799.13 30299.82 40.00 3770.00 3750.00 3750.00 373
pcd_1.5k_mvsjas16.61 34322.14 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 199.28 410.00 3770.00 3750.00 3750.00 373
sosnet-low-res8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
sosnet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
Regformer8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
ab-mvs-re8.26 35111.02 3540.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37799.16 3000.00 3810.00 3770.00 3750.00 3750.00 373
uanet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
MSC_two_6792asdad99.74 6399.03 32099.53 12399.23 29399.92 9197.77 20499.69 21099.78 32
PC_three_145297.56 29299.68 11199.41 24599.09 6297.09 37296.66 28399.60 24599.62 111
No_MVS99.74 6399.03 32099.53 12399.23 29399.92 9197.77 20499.69 21099.78 32
test_one_060199.63 14499.76 5099.55 18899.23 13899.31 22799.61 17398.59 130
eth-test20.00 381
eth-test0.00 381
ZD-MVS99.43 23399.61 10799.43 24296.38 33199.11 26299.07 31197.86 20799.92 9194.04 35099.49 271
IU-MVS99.69 12399.77 4399.22 29697.50 29899.69 10997.75 20899.70 20799.77 35
test_241102_TWO99.54 19499.13 15799.76 7799.63 15598.32 17099.92 9197.85 19999.69 21099.75 42
test_241102_ONE99.69 12399.82 2899.54 19499.12 16099.82 5299.49 22798.91 8699.52 358
test_0728_THIRD99.18 14599.62 13899.61 17398.58 13299.91 11297.72 21099.80 15999.77 35
GSMVS99.14 278
test_part299.62 14899.67 8699.55 166
sam_mvs190.81 33699.14 278
sam_mvs90.52 340
MTGPAbinary99.53 203
test_post52.41 38090.25 34299.86 197
patchmatchnet-post99.62 16490.58 33899.94 57
gm-plane-assit97.59 37089.02 37793.47 35898.30 36199.84 23396.38 298
test9_res95.10 33699.44 27799.50 183
agg_prior294.58 34499.46 27699.50 183
agg_prior99.35 25499.36 16599.39 25597.76 35399.85 216
TestCases99.63 11599.78 7399.64 9599.83 3498.63 21399.63 13099.72 9798.68 11799.75 29596.38 29899.83 13799.51 177
test_prior99.46 17399.35 25499.22 19799.39 25599.69 31499.48 193
新几何199.52 15599.50 20499.22 19799.26 28695.66 34398.60 31299.28 27997.67 22199.89 14995.95 31799.32 29699.45 204
旧先验199.49 20999.29 17899.26 28699.39 25297.67 22199.36 29199.46 202
原ACMM199.37 20599.47 22098.87 24199.27 28496.74 32798.26 32899.32 27097.93 20199.82 25495.96 31699.38 28699.43 215
testdata299.89 14995.99 313
segment_acmp98.37 163
testdata99.42 18599.51 19798.93 23499.30 27896.20 33498.87 28899.40 24898.33 16999.89 14996.29 30199.28 30099.44 209
test1299.54 15199.29 27799.33 17299.16 30498.43 32397.54 22999.82 25499.47 27499.48 193
plane_prior799.58 16099.38 159
plane_prior699.47 22099.26 18497.24 242
plane_prior599.54 19499.82 25495.84 32099.78 17099.60 126
plane_prior499.25 286
plane_prior399.31 17598.36 24199.14 258
plane_prior199.51 197
n20.00 382
nn0.00 382
door-mid99.83 34
lessismore_v099.64 11199.86 3099.38 15990.66 37499.89 2699.83 4794.56 29499.97 1799.56 2699.92 7799.57 146
LGP-MVS_train99.74 6399.82 4599.63 9999.73 8397.56 29299.64 12699.69 11799.37 3199.89 14996.66 28399.87 11299.69 55
test1199.29 280
door99.77 63
HQP5-MVS98.94 230
BP-MVS94.73 340
HQP4-MVS98.15 33399.70 30899.53 165
HQP3-MVS99.37 26299.67 222
HQP2-MVS96.67 259
NP-MVS99.40 24299.13 20998.83 342
ACMMP++_ref99.94 65
ACMMP++99.79 164
Test By Simon98.41 157
ITE_SJBPF99.38 20299.63 14499.44 14299.73 8398.56 21999.33 22199.53 21398.88 9199.68 32596.01 31199.65 23099.02 303
DeepMVS_CXcopyleft97.98 31599.69 12396.95 32299.26 28675.51 37195.74 36998.28 36296.47 26599.62 34591.23 36097.89 35697.38 362