This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
DSMNet-mixed99.48 5299.65 2298.95 25499.71 10997.27 30499.50 6599.82 3699.59 7699.41 19699.85 3699.62 15100.00 199.53 2799.89 9199.59 125
HyFIR lowres test98.91 19098.64 20599.73 6999.85 3299.47 12398.07 29199.83 3198.64 20099.89 2699.60 17592.57 303100.00 199.33 5199.97 2999.72 43
IterMVS-SCA-FT99.00 17799.16 10898.51 28899.75 9395.90 32898.07 29199.84 2999.84 2299.89 2699.73 8696.01 27299.99 499.33 51100.00 199.63 94
IterMVS98.97 18199.16 10898.42 29299.74 9995.64 33198.06 29399.83 3199.83 2599.85 4099.74 8296.10 27199.99 499.27 62100.00 199.63 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42098.41 24898.41 23098.40 29399.34 25495.89 32996.94 34799.44 23098.80 18699.25 22499.52 20793.51 29699.98 698.94 10599.98 2199.32 230
Fast-Effi-MVS+-dtu99.20 13099.12 11999.43 17599.25 27499.69 7499.05 17999.82 3699.50 8398.97 26099.05 30198.98 7299.98 698.20 15699.24 29598.62 312
Effi-MVS+-dtu99.07 16198.92 17799.52 14998.89 31999.78 3899.15 15499.66 11399.34 10998.92 26799.24 27997.69 21299.98 698.11 16699.28 28998.81 306
RRT_MVS98.75 21098.54 21899.41 18598.14 35498.61 24698.98 19799.66 11399.31 11499.84 4399.75 7991.98 30799.98 699.20 6799.95 4899.62 105
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4099.68 3199.85 2399.95 399.98 399.92 1699.28 4099.98 699.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 3899.70 2299.86 1999.89 1199.98 399.90 2199.94 199.98 699.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 499.96 499.79 3599.72 1999.88 1599.92 699.98 399.93 1399.94 199.98 699.77 12100.00 199.92 3
MVSFormer99.41 7099.44 5799.31 21199.57 16198.40 25899.77 1199.80 4699.73 3899.63 12399.30 26298.02 18899.98 699.43 3699.69 20399.55 142
test_djsdf99.84 899.81 999.91 299.94 1099.84 1799.77 1199.80 4699.73 3899.97 699.92 1699.77 799.98 699.43 36100.00 199.90 4
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2399.66 8199.69 2899.92 599.67 5299.77 7299.75 7999.61 1699.98 699.35 4799.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
xiu_mvs_v1_base_debu99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
xiu_mvs_v2_base99.02 17199.11 12298.77 27899.37 24098.09 27798.13 28399.51 20699.47 9099.42 18898.54 34199.38 2799.97 1698.83 11199.33 28498.24 333
xiu_mvs_v1_base99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
xiu_mvs_v1_base_debi99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 799.73 1699.85 2399.70 4699.92 1899.93 1399.45 2199.97 1699.36 46100.00 199.85 13
UA-Net99.78 1399.76 1499.86 1699.72 10699.71 6399.91 399.95 499.96 299.71 9899.91 1999.15 5299.97 1699.50 31100.00 199.90 4
PS-MVSNAJ99.00 17799.08 13398.76 27999.37 24098.10 27698.00 29899.51 20699.47 9099.41 19698.50 34399.28 4099.97 1698.83 11199.34 28298.20 337
pmmvs398.08 26997.80 27698.91 26199.41 22997.69 29497.87 31299.66 11395.87 32599.50 17399.51 21090.35 32999.97 1698.55 13199.47 26299.08 278
DTE-MVSNet99.68 2299.61 2999.88 1199.80 5599.87 899.67 3599.71 9199.72 4199.84 4399.78 6598.67 11599.97 1699.30 5699.95 4899.80 24
jason99.16 14299.11 12299.32 20899.75 9398.44 25598.26 27399.39 24698.70 19699.74 8799.30 26298.54 13299.97 1698.48 13499.82 14099.55 142
jason: jason.
lupinMVS98.96 18498.87 18499.24 22699.57 16198.40 25898.12 28499.18 29198.28 24299.63 12399.13 29098.02 18899.97 1698.22 15499.69 20399.35 224
K. test v398.87 19898.60 20899.69 8499.93 1399.46 12799.74 1594.97 35499.78 3499.88 3299.88 2893.66 29599.97 1699.61 1899.95 4899.64 89
lessismore_v099.64 10699.86 2999.38 15190.66 36199.89 2699.83 4294.56 28799.97 1699.56 2499.92 7399.57 136
EPNet98.13 26697.77 27999.18 23494.57 36297.99 28199.24 12597.96 33499.74 3797.29 34599.62 15993.13 29999.97 1698.59 12999.83 13199.58 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu99.40 7399.38 6699.44 17299.90 1998.66 24298.94 20399.91 897.97 26099.79 6499.73 8699.05 6799.97 1699.15 7899.99 1299.68 58
IterMVS-LS99.41 7099.47 5199.25 22399.81 5098.09 27798.85 21299.76 6599.62 6499.83 4899.64 14098.54 13299.97 1699.15 7899.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 44100.00 199.90 7100.00 199.97 999.61 1699.97 1699.75 13100.00 199.84 14
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9199.93 499.95 1099.89 2599.71 999.96 3399.51 2999.97 2999.84 14
MVS_030498.88 19698.71 19999.39 19098.85 32398.91 22899.45 7299.30 26998.56 20797.26 34699.68 12396.18 26999.96 3399.17 7499.94 6199.29 236
mvs-test198.83 20198.70 20299.22 22898.89 31999.65 8698.88 20699.66 11399.34 10998.29 31298.94 32097.69 21299.96 3398.11 16698.54 32998.04 341
v7n99.82 1099.80 1099.88 1199.96 499.84 1799.82 899.82 3699.84 2299.94 1199.91 1999.13 5699.96 3399.83 999.99 1299.83 18
bset_n11_16_dypcd98.69 21898.45 22599.42 17799.69 11998.52 25096.06 35396.80 34799.71 4299.73 9199.54 20295.14 28099.96 3399.39 4299.95 4899.79 30
PS-CasMVS99.66 2499.58 3599.89 799.80 5599.85 1299.66 3999.73 7999.62 6499.84 4399.71 9998.62 12199.96 3399.30 5699.96 4199.86 11
PEN-MVS99.66 2499.59 3299.89 799.83 3799.87 899.66 3999.73 7999.70 4699.84 4399.73 8698.56 12999.96 3399.29 5999.94 6199.83 18
TranMVSNet+NR-MVSNet99.54 4599.47 5199.76 4599.58 15199.64 8899.30 10599.63 13299.61 6899.71 9899.56 19498.76 10499.96 3399.14 8499.92 7399.68 58
IB-MVS95.41 2095.30 32894.46 33197.84 31198.76 33595.33 33497.33 33696.07 35096.02 32395.37 35797.41 35876.17 36599.96 3397.54 21595.44 35698.22 334
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft98.12 1098.23 26397.89 27599.26 22099.19 28599.26 17699.65 4499.69 10191.33 35198.14 32399.77 7298.28 16699.96 3395.41 31799.55 24498.58 316
CANet_DTU98.91 19098.85 18699.09 24298.79 33198.13 27298.18 27799.31 26699.48 8598.86 27599.51 21096.56 25599.95 4399.05 9099.95 4899.19 254
zzz-MVS99.30 10099.14 11299.80 2999.81 5099.81 2898.73 23299.53 19599.27 11999.42 18899.63 15098.21 17399.95 4397.83 19299.79 15899.65 83
Fast-Effi-MVS+99.02 17198.87 18499.46 16699.38 23799.50 11899.04 18199.79 5297.17 30198.62 29698.74 33399.34 3399.95 4398.32 14599.41 27198.92 297
MTAPA99.35 8699.20 10499.80 2999.81 5099.81 2899.33 9599.53 19599.27 11999.42 18899.63 15098.21 17399.95 4397.83 19299.79 15899.65 83
UniMVSNet_NR-MVSNet99.37 8199.25 9999.72 7599.47 21099.56 11198.97 19999.61 14299.43 10199.67 10999.28 26797.85 20399.95 4399.17 7499.81 14899.65 83
DU-MVS99.33 9599.21 10399.71 7999.43 22399.56 11198.83 21599.53 19599.38 10599.67 10999.36 24897.67 21599.95 4399.17 7499.81 14899.63 94
CP-MVSNet99.54 4599.43 6099.87 1499.76 8399.82 2599.57 5999.61 14299.54 7899.80 5999.64 14097.79 20799.95 4399.21 6499.94 6199.84 14
Patchmtry98.78 20698.54 21899.49 15898.89 31999.19 19699.32 9899.67 10999.65 5899.72 9399.79 5991.87 31099.95 4398.00 17499.97 2999.33 227
QAPM98.40 25097.99 26199.65 9999.39 23499.47 12399.67 3599.52 20391.70 35098.78 28599.80 5398.55 13099.95 4394.71 32899.75 17399.53 154
3Dnovator99.15 299.43 6399.36 7299.65 9999.39 23499.42 14199.70 2299.56 17699.23 12799.35 20799.80 5399.17 5099.95 4398.21 15599.84 12199.59 125
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 599.90 799.97 699.87 3099.81 599.95 4399.54 2599.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tttt051797.62 28497.20 29398.90 26799.76 8397.40 30199.48 6994.36 35699.06 15699.70 10099.49 21884.55 35399.94 5498.73 12199.65 22099.36 221
CANet99.11 15499.05 14399.28 21698.83 32598.56 24798.71 23599.41 23699.25 12399.23 22899.22 28197.66 21999.94 5499.19 6999.97 2999.33 227
patchmatchnet-post99.62 15990.58 32699.94 54
SCA98.11 26798.36 23597.36 32399.20 28392.99 34898.17 27998.49 32498.24 24499.10 25199.57 19196.01 27299.94 5496.86 25799.62 22599.14 266
ADS-MVSNet297.78 27897.66 28498.12 30599.14 29195.36 33399.22 13298.75 31296.97 30698.25 31599.64 14090.90 32199.94 5496.51 27799.56 24099.08 278
WR-MVS_H99.61 3599.53 4799.87 1499.80 5599.83 2199.67 3599.75 7199.58 7799.85 4099.69 11298.18 17899.94 5499.28 6199.95 4899.83 18
SixPastTwentyTwo99.42 6699.30 8599.76 4599.92 1499.67 7999.70 2299.14 29599.65 5899.89 2699.90 2196.20 26899.94 5499.42 4099.92 7399.67 65
CP-MVS99.23 11499.05 14399.75 5599.66 13499.66 8199.38 8499.62 13598.38 22799.06 25699.27 26998.79 9899.94 5497.51 21899.82 14099.66 75
SteuartSystems-ACMMP99.30 10099.14 11299.76 4599.87 2799.66 8199.18 14199.60 15398.55 20999.57 14699.67 12999.03 6999.94 5497.01 24999.80 15399.69 52
Skip Steuart: Steuart Systems R&D Blog.
PatchT98.45 24598.32 24098.83 27398.94 31498.29 26499.24 12598.82 30999.84 2299.08 25299.76 7591.37 31399.94 5498.82 11399.00 30698.26 332
new_pmnet98.88 19698.89 18298.84 27199.70 11697.62 29598.15 28099.50 21097.98 25999.62 13099.54 20298.15 17999.94 5497.55 21499.84 12198.95 294
wuyk23d97.58 28699.13 11592.93 34299.69 11999.49 11999.52 6399.77 6097.97 26099.96 899.79 5999.84 399.94 5495.85 30599.82 14079.36 356
3Dnovator+98.92 399.35 8699.24 10099.67 8799.35 24499.47 12399.62 4799.50 21099.44 9699.12 24899.78 6598.77 10399.94 5497.87 18699.72 19499.62 105
ETV-MVS99.18 13799.18 10699.16 23599.34 25499.28 17299.12 16699.79 5299.48 8598.93 26498.55 34099.40 2299.93 6798.51 13399.52 25498.28 331
thisisatest053097.45 28996.95 30098.94 25599.68 12897.73 29299.09 17394.19 35898.61 20499.56 15399.30 26284.30 35499.93 6798.27 15099.54 25099.16 260
our_test_398.85 20099.09 13198.13 30499.66 13494.90 33897.72 31799.58 16999.07 15299.64 11999.62 15998.19 17699.93 6798.41 13799.95 4899.55 142
test_part198.63 22298.26 24399.75 5599.40 23299.49 11999.67 3599.68 10499.86 1699.88 3299.86 3586.73 34799.93 6799.34 4899.97 2999.81 23
MSP-MVS99.04 16898.79 19599.81 2699.78 7199.73 5799.35 9299.57 17198.54 21299.54 16098.99 31096.81 25299.93 6796.97 25199.53 25299.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R99.23 11499.05 14399.77 3999.76 8399.70 7099.31 10299.59 16098.41 22399.32 21499.36 24898.73 10999.93 6797.29 22999.74 18199.67 65
APDe-MVS99.48 5299.36 7299.85 1899.55 17299.81 2899.50 6599.69 10198.99 15999.75 7999.71 9998.79 9899.93 6798.46 13599.85 11799.80 24
CVMVSNet98.61 22498.88 18397.80 31299.58 15193.60 34599.26 11799.64 13099.66 5699.72 9399.67 12993.26 29799.93 6799.30 5699.81 14899.87 9
ACMMPR99.23 11499.06 13999.76 4599.74 9999.69 7499.31 10299.59 16098.36 22999.35 20799.38 24298.61 12399.93 6797.43 22299.75 17399.67 65
PGM-MVS99.20 13099.01 15699.77 3999.75 9399.71 6399.16 15299.72 8897.99 25899.42 18899.60 17598.81 9199.93 6796.91 25499.74 18199.66 75
LCM-MVSNet-Re99.28 10399.15 11199.67 8799.33 25999.76 4699.34 9399.97 298.93 16999.91 2099.79 5998.68 11299.93 6796.80 26299.56 24099.30 233
PMMVS299.48 5299.45 5599.57 13599.76 8398.99 21598.09 28899.90 1198.95 16599.78 6799.58 18399.57 1999.93 6799.48 3299.95 4899.79 30
mPP-MVS99.19 13399.00 15999.76 4599.76 8399.68 7799.38 8499.54 18698.34 23899.01 25899.50 21398.53 13699.93 6797.18 24299.78 16499.66 75
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2199.83 699.85 2399.80 3199.93 1499.93 1398.54 13299.93 6799.59 2099.98 2199.76 37
CHOSEN 1792x268899.39 7799.30 8599.65 9999.88 2399.25 18098.78 22799.88 1598.66 19899.96 899.79 5997.45 22699.93 6799.34 4899.99 1299.78 32
N_pmnet98.73 21498.53 22099.35 20199.72 10698.67 24198.34 26594.65 35598.35 23499.79 6499.68 12398.03 18699.93 6798.28 14999.92 7399.44 198
UGNet99.38 7999.34 7499.49 15898.90 31698.90 22999.70 2299.35 25799.86 1698.57 30199.81 5198.50 14299.93 6799.38 4399.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet99.17 14199.00 15999.66 9499.80 5599.43 13899.70 2299.24 28399.48 8599.56 15399.77 7294.89 28299.93 6798.72 12299.89 9199.63 94
DeepC-MVS98.90 499.62 3399.61 2999.67 8799.72 10699.44 13499.24 12599.71 9199.27 11999.93 1499.90 2199.70 1199.93 6798.99 9499.99 1299.64 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZD-MVS99.43 22399.61 10099.43 23396.38 31899.11 24999.07 29997.86 20199.92 8694.04 33699.49 259
SED-MVS99.40 7399.28 9299.77 3999.69 11999.82 2599.20 13599.54 18699.13 14499.82 5099.63 15098.91 8199.92 8697.85 18999.70 20099.58 130
test_241102_TWO99.54 18699.13 14499.76 7499.63 15098.32 16499.92 8697.85 18999.69 20399.75 40
ZNCC-MVS99.22 12399.04 14999.77 3999.76 8399.73 5799.28 11399.56 17698.19 24899.14 24599.29 26598.84 9099.92 8697.53 21799.80 15399.64 89
testtj98.56 23198.17 25399.72 7599.45 21899.60 10298.88 20699.50 21096.88 30899.18 24099.48 22097.08 24599.92 8693.69 34099.38 27599.63 94
test_0728_SECOND99.83 2199.70 11699.79 3599.14 15699.61 14299.92 8697.88 18399.72 19499.77 33
SR-MVS99.19 13399.00 15999.74 6199.51 18899.72 6199.18 14199.60 15398.85 17999.47 17799.58 18398.38 15699.92 8696.92 25399.54 25099.57 136
DPE-MVS99.14 14698.92 17799.82 2399.57 16199.77 4098.74 23099.60 15398.55 20999.76 7499.69 11298.23 17299.92 8696.39 28399.75 17399.76 37
MP-MVScopyleft99.06 16298.83 19099.76 4599.76 8399.71 6399.32 9899.50 21098.35 23498.97 26099.48 22098.37 15799.92 8695.95 30399.75 17399.63 94
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PM-MVS99.36 8499.29 9099.58 13099.83 3799.66 8198.95 20199.86 1998.85 17999.81 5699.73 8698.40 15599.92 8698.36 14099.83 13199.17 258
abl_699.36 8499.23 10299.75 5599.71 10999.74 5499.33 9599.76 6599.07 15299.65 11799.63 15099.09 5999.92 8697.13 24599.76 17099.58 130
HPM-MVScopyleft99.25 11099.07 13799.78 3799.81 5099.75 4899.61 5199.67 10997.72 27499.35 20799.25 27499.23 4599.92 8697.21 24099.82 14099.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm97.15 29696.95 30097.75 31498.91 31594.24 34199.32 9897.96 33497.71 27598.29 31299.32 25886.72 34899.92 8698.10 16896.24 35499.09 275
RPMNet98.60 22598.53 22098.83 27399.05 30698.12 27399.30 10599.62 13599.86 1699.16 24199.74 8292.53 30599.92 8698.75 11998.77 31798.44 325
CPTT-MVS98.74 21298.44 22799.64 10699.61 14499.38 15199.18 14199.55 18196.49 31699.27 22299.37 24397.11 24499.92 8695.74 31099.67 21399.62 105
MIMVSNet199.66 2499.62 2599.80 2999.94 1099.87 899.69 2899.77 6099.78 3499.93 1499.89 2597.94 19499.92 8699.65 1699.98 2199.62 105
CSCG99.37 8199.29 9099.60 12499.71 10999.46 12799.43 7799.85 2398.79 18799.41 19699.60 17598.92 7999.92 8698.02 17099.92 7399.43 204
ACMMPcopyleft99.25 11099.08 13399.74 6199.79 6599.68 7799.50 6599.65 12498.07 25499.52 16799.69 11298.57 12799.92 8697.18 24299.79 15899.63 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117299.23 11499.05 14399.74 6199.52 18399.75 4899.20 13599.61 14298.97 16199.48 17599.58 18398.41 15199.91 10497.15 24499.55 24499.57 136
SR-MVS-dyc-post99.27 10799.11 12299.73 6999.54 17399.74 5499.26 11799.62 13599.16 13899.52 16799.64 14098.41 15199.91 10497.27 23299.61 23299.54 149
DVP-MVS99.32 9799.17 10799.77 3999.69 11999.80 3399.14 15699.31 26699.16 13899.62 13099.61 16898.35 15999.91 10497.88 18399.72 19499.61 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 13399.62 13099.61 16898.58 12699.91 10497.72 19899.80 15399.77 33
GST-MVS99.16 14298.96 17099.75 5599.73 10299.73 5799.20 13599.55 18198.22 24599.32 21499.35 25398.65 11999.91 10496.86 25799.74 18199.62 105
MP-MVS-pluss99.14 14698.92 17799.80 2999.83 3799.83 2198.61 23799.63 13296.84 31199.44 18299.58 18398.81 9199.91 10497.70 20199.82 14099.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS99.25 11099.08 13399.76 4599.73 10299.70 7099.31 10299.59 16098.36 22999.36 20599.37 24398.80 9599.91 10497.43 22299.75 17399.68 58
#test#99.12 15098.90 18199.76 4599.73 10299.70 7099.10 16999.59 16097.60 27999.36 20599.37 24398.80 9599.91 10496.84 26099.75 17399.68 58
HPM-MVS++copyleft98.96 18498.70 20299.74 6199.52 18399.71 6398.86 21099.19 29098.47 21998.59 29999.06 30098.08 18499.91 10496.94 25299.60 23599.60 116
test-LLR97.15 29696.95 30097.74 31598.18 35195.02 33697.38 33396.10 34898.00 25697.81 33798.58 33690.04 33299.91 10497.69 20798.78 31598.31 329
test-mter96.23 31795.73 32097.74 31598.18 35195.02 33697.38 33396.10 34897.90 26597.81 33798.58 33679.12 36399.91 10497.69 20798.78 31598.31 329
VPA-MVSNet99.66 2499.62 2599.79 3499.68 12899.75 4899.62 4799.69 10199.85 2099.80 5999.81 5198.81 9199.91 10499.47 3399.88 9999.70 49
XVG-ACMP-BASELINE99.23 11499.10 13099.63 11099.82 4399.58 10898.83 21599.72 8898.36 22999.60 13899.71 9998.92 7999.91 10497.08 24799.84 12199.40 210
APD-MVScopyleft98.87 19898.59 21099.71 7999.50 19499.62 9499.01 18699.57 17196.80 31399.54 16099.63 15098.29 16599.91 10495.24 32099.71 19899.61 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CR-MVSNet98.35 25598.20 24898.83 27399.05 30698.12 27399.30 10599.67 10997.39 29199.16 24199.79 5991.87 31099.91 10498.78 11898.77 31798.44 325
FMVSNet597.80 27797.25 29199.42 17798.83 32598.97 21899.38 8499.80 4698.87 17799.25 22499.69 11280.60 35999.91 10498.96 10099.90 8399.38 215
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6199.59 5699.82 3699.39 10499.82 5099.84 4199.38 2799.91 10499.38 4399.93 6999.80 24
sss98.90 19298.77 19699.27 21899.48 20598.44 25598.72 23399.32 26297.94 26499.37 20499.35 25396.31 26599.91 10498.85 11099.63 22499.47 187
1112_ss99.05 16598.84 18899.67 8799.66 13499.29 17098.52 25299.82 3697.65 27799.43 18699.16 28896.42 26199.91 10499.07 8999.84 12199.80 24
LS3D99.24 11399.11 12299.61 12298.38 34599.79 3599.57 5999.68 10499.61 6899.15 24399.71 9998.70 11099.91 10497.54 21599.68 20699.13 269
DIV-MVS_2432*160099.63 3099.59 3299.76 4599.84 3399.90 499.37 8899.79 5299.83 2599.88 3299.85 3698.42 15099.90 12499.60 1999.73 18899.49 177
ET-MVSNet_ETH3D96.78 30496.07 31398.91 26199.26 27397.92 28797.70 31996.05 35197.96 26392.37 35998.43 34587.06 34199.90 12498.27 15097.56 34798.91 298
tfpnnormal99.43 6399.38 6699.60 12499.87 2799.75 4899.59 5699.78 5799.71 4299.90 2299.69 11298.85 8999.90 12497.25 23799.78 16499.15 262
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 899.85 2099.94 1199.95 1199.73 899.90 12499.65 1699.97 2999.69 52
Regformer-499.45 6199.44 5799.50 15599.52 18398.94 22199.17 14699.53 19599.64 6099.76 7499.60 17598.96 7799.90 12498.91 10799.84 12199.67 65
APD-MVS_3200maxsize99.31 9999.16 10899.74 6199.53 17899.75 4899.27 11699.61 14299.19 13299.57 14699.64 14098.76 10499.90 12497.29 22999.62 22599.56 139
baseline296.83 30396.28 30998.46 29199.09 30396.91 31398.83 21593.87 35997.23 29896.23 35498.36 34688.12 33899.90 12496.68 26898.14 33998.57 317
XVG-OURS-SEG-HR99.16 14298.99 16499.66 9499.84 3399.64 8898.25 27499.73 7998.39 22699.63 12399.43 23399.70 1199.90 12497.34 22698.64 32599.44 198
XVG-OURS99.21 12899.06 13999.65 9999.82 4399.62 9497.87 31299.74 7698.36 22999.66 11399.68 12399.71 999.90 12496.84 26099.88 9999.43 204
JIA-IIPM98.06 27097.92 27198.50 28998.59 34097.02 31098.80 22398.51 32299.88 1397.89 33399.87 3091.89 30999.90 12498.16 16397.68 34698.59 314
GBi-Net99.42 6699.31 8099.73 6999.49 19999.77 4099.68 3199.70 9599.44 9699.62 13099.83 4297.21 23899.90 12498.96 10099.90 8399.53 154
test199.42 6699.31 8099.73 6999.49 19999.77 4099.68 3199.70 9599.44 9699.62 13099.83 4297.21 23899.90 12498.96 10099.90 8399.53 154
FMVSNet199.66 2499.63 2499.73 6999.78 7199.77 4099.68 3199.70 9599.67 5299.82 5099.83 4298.98 7299.90 12499.24 6399.97 2999.53 154
WTY-MVS98.59 22898.37 23499.26 22099.43 22398.40 25898.74 23099.13 29798.10 25199.21 23499.24 27994.82 28399.90 12497.86 18798.77 31799.49 177
CS-MVS99.09 15999.03 15199.25 22399.45 21899.49 11999.41 7899.82 3699.10 14998.03 32898.48 34499.30 3799.89 13898.30 14799.41 27198.35 328
EI-MVSNet-UG-set99.48 5299.50 4999.42 17799.57 16198.65 24599.24 12599.46 22599.68 5099.80 5999.66 13398.99 7199.89 13899.19 6999.90 8399.72 43
EI-MVSNet-Vis-set99.47 5899.49 5099.42 17799.57 16198.66 24299.24 12599.46 22599.67 5299.79 6499.65 13898.97 7499.89 13899.15 7899.89 9199.71 46
Regformer-299.34 9199.27 9599.53 14899.41 22999.10 20798.99 19399.53 19599.47 9099.66 11399.52 20798.80 9599.89 13898.31 14699.74 18199.60 116
新几何199.52 14999.50 19499.22 18999.26 27795.66 33098.60 29899.28 26797.67 21599.89 13895.95 30399.32 28599.45 193
testdata299.89 13895.99 299
testdata99.42 17799.51 18898.93 22599.30 26996.20 32198.87 27499.40 23798.33 16399.89 13896.29 28799.28 28999.44 198
TESTMET0.1,196.24 31695.84 31897.41 32298.24 34993.84 34497.38 33395.84 35298.43 22097.81 33798.56 33979.77 36099.89 13897.77 19498.77 31798.52 319
test20.0399.55 4399.54 4399.58 13099.79 6599.37 15499.02 18499.89 1299.60 7499.82 5099.62 15998.81 9199.89 13899.43 3699.86 11499.47 187
MDA-MVSNet-bldmvs99.06 16299.05 14399.07 24699.80 5597.83 28898.89 20599.72 8899.29 11599.63 12399.70 10696.47 25999.89 13898.17 16299.82 14099.50 172
LPG-MVS_test99.22 12399.05 14399.74 6199.82 4399.63 9299.16 15299.73 7997.56 28099.64 11999.69 11299.37 2999.89 13896.66 27099.87 10799.69 52
LGP-MVS_train99.74 6199.82 4399.63 9299.73 7997.56 28099.64 11999.69 11299.37 2999.89 13896.66 27099.87 10799.69 52
Test_1112_low_res98.95 18798.73 19799.63 11099.68 12899.15 20098.09 28899.80 4697.14 30399.46 18099.40 23796.11 27099.89 13899.01 9399.84 12199.84 14
PatchmatchNetpermissive97.65 28397.80 27697.18 32898.82 32892.49 35099.17 14698.39 32898.12 25098.79 28399.58 18390.71 32599.89 13897.23 23899.41 27199.16 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMP97.51 1499.05 16598.84 18899.67 8799.78 7199.55 11498.88 20699.66 11397.11 30599.47 17799.60 17599.07 6499.89 13896.18 29299.85 11799.58 130
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ppachtmachnet_test98.89 19599.12 11998.20 30299.66 13495.24 33597.63 32199.68 10499.08 15099.78 6799.62 15998.65 11999.88 15398.02 17099.96 4199.48 182
TSAR-MVS + MP.99.34 9199.24 10099.63 11099.82 4399.37 15499.26 11799.35 25798.77 19099.57 14699.70 10699.27 4399.88 15397.71 19999.75 17399.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
new-patchmatchnet99.35 8699.57 3898.71 28399.82 4396.62 31898.55 24799.75 7199.50 8399.88 3299.87 3099.31 3599.88 15399.43 36100.00 199.62 105
Anonymous2023120699.35 8699.31 8099.47 16399.74 9999.06 21399.28 11399.74 7699.23 12799.72 9399.53 20597.63 22199.88 15399.11 8699.84 12199.48 182
XVS99.27 10799.11 12299.75 5599.71 10999.71 6399.37 8899.61 14299.29 11598.76 28799.47 22598.47 14399.88 15397.62 20999.73 18899.67 65
v124099.56 4099.58 3599.51 15299.80 5599.00 21499.00 18899.65 12499.15 14299.90 2299.75 7999.09 5999.88 15399.90 299.96 4199.67 65
X-MVStestdata96.09 31894.87 32899.75 5599.71 10999.71 6399.37 8899.61 14299.29 11598.76 28761.30 36598.47 14399.88 15397.62 20999.73 18899.67 65
旧先验297.94 30795.33 33398.94 26399.88 15396.75 264
UniMVSNet (Re)99.37 8199.26 9799.68 8599.51 18899.58 10898.98 19799.60 15399.43 10199.70 10099.36 24897.70 21099.88 15399.20 6799.87 10799.59 125
HPM-MVS_fast99.43 6399.30 8599.80 2999.83 3799.81 2899.52 6399.70 9598.35 23499.51 17299.50 21399.31 3599.88 15398.18 16099.84 12199.69 52
RRT_test8_iter0597.35 29497.25 29197.63 31798.81 32993.13 34799.26 11799.89 1299.51 8299.83 4899.68 12379.03 36499.88 15399.53 2799.72 19499.89 8
TDRefinement99.72 1799.70 1799.77 3999.90 1999.85 1299.86 599.92 599.69 4999.78 6799.92 1699.37 2999.88 15398.93 10699.95 4899.60 116
PCF-MVS96.03 1896.73 30695.86 31799.33 20499.44 22199.16 19896.87 34899.44 23086.58 35598.95 26299.40 23794.38 28899.88 15387.93 35299.80 15398.95 294
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xxxxxxxxxxxxxcwj99.11 15498.96 17099.54 14699.53 17899.25 18098.29 27099.76 6599.07 15299.42 18899.61 16898.86 8799.87 16696.45 28199.68 20699.49 177
SF-MVS99.10 15898.93 17399.62 11999.58 15199.51 11799.13 16299.65 12497.97 26099.42 18899.61 16898.86 8799.87 16696.45 28199.68 20699.49 177
D2MVS99.22 12399.19 10599.29 21499.69 11998.74 23798.81 22099.41 23698.55 20999.68 10599.69 11298.13 18099.87 16698.82 11399.98 2199.24 242
thisisatest051596.98 30096.42 30798.66 28499.42 22897.47 29897.27 33894.30 35797.24 29799.15 24398.86 32785.01 35199.87 16697.10 24699.39 27498.63 311
ACMMP_NAP99.28 10399.11 12299.79 3499.75 9399.81 2898.95 20199.53 19598.27 24399.53 16599.73 8698.75 10699.87 16697.70 20199.83 13199.68 58
Patchmatch-test98.10 26897.98 26398.48 29099.27 27196.48 31999.40 8099.07 29898.81 18499.23 22899.57 19190.11 33199.87 16696.69 26799.64 22299.09 275
v14419299.55 4399.54 4399.58 13099.78 7199.20 19599.11 16899.62 13599.18 13399.89 2699.72 9298.66 11799.87 16699.88 699.97 2999.66 75
v192192099.56 4099.57 3899.55 14299.75 9399.11 20399.05 17999.61 14299.15 14299.88 3299.71 9999.08 6299.87 16699.90 299.97 2999.66 75
FC-MVSNet-test99.70 1999.65 2299.86 1699.88 2399.86 1199.72 1999.78 5799.90 799.82 5099.83 4298.45 14799.87 16699.51 2999.97 2999.86 11
Regformer-199.32 9799.27 9599.47 16399.41 22998.95 22098.99 19399.48 21799.48 8599.66 11399.52 20798.78 10099.87 16698.36 14099.74 18199.60 116
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2199.76 1399.87 1799.73 3899.89 2699.87 3099.63 1499.87 16699.54 2599.92 7399.63 94
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1299.75 1499.86 1999.70 4699.91 2099.89 2599.60 1899.87 16699.59 2099.74 18199.71 46
NR-MVSNet99.40 7399.31 8099.68 8599.43 22399.55 11499.73 1699.50 21099.46 9499.88 3299.36 24897.54 22399.87 16698.97 9899.87 10799.63 94
Baseline_NR-MVSNet99.49 5099.37 6999.82 2399.91 1599.84 1798.83 21599.86 1999.68 5099.65 11799.88 2897.67 21599.87 16699.03 9199.86 11499.76 37
EG-PatchMatch MVS99.57 3799.56 4299.62 11999.77 7999.33 16499.26 11799.76 6599.32 11399.80 5999.78 6599.29 3899.87 16699.15 7899.91 8299.66 75
DELS-MVS99.34 9199.30 8599.48 16199.51 18899.36 15798.12 28499.53 19599.36 10899.41 19699.61 16899.22 4699.87 16699.21 6499.68 20699.20 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet299.35 8699.28 9299.55 14299.49 19999.35 16199.45 7299.57 17199.44 9699.70 10099.74 8297.21 23899.87 16699.03 9199.94 6199.44 198
ab-mvs99.33 9599.28 9299.47 16399.57 16199.39 14899.78 1099.43 23398.87 17799.57 14699.82 4898.06 18599.87 16698.69 12599.73 18899.15 262
DP-MVS99.48 5299.39 6499.74 6199.57 16199.62 9499.29 11299.61 14299.87 1499.74 8799.76 7598.69 11199.87 16698.20 15699.80 15399.75 40
F-COLMAP98.74 21298.45 22599.62 11999.57 16199.47 12398.84 21399.65 12496.31 32098.93 26499.19 28797.68 21499.87 16696.52 27699.37 27999.53 154
ETH3D cwj APD-0.1698.50 23898.16 25499.51 15299.04 30899.39 14898.47 25699.47 22196.70 31598.78 28599.33 25797.62 22299.86 18694.69 32999.38 27599.28 238
Anonymous2024052999.42 6699.34 7499.65 9999.53 17899.60 10299.63 4699.39 24699.47 9099.76 7499.78 6598.13 18099.86 18698.70 12399.68 20699.49 177
test_post52.41 36690.25 33099.86 186
Anonymous2023121199.62 3399.57 3899.76 4599.61 14499.60 10299.81 999.73 7999.82 2799.90 2299.90 2197.97 19399.86 18699.42 4099.96 4199.80 24
v1099.69 2199.69 1899.66 9499.81 5099.39 14899.66 3999.75 7199.60 7499.92 1899.87 3098.75 10699.86 18699.90 299.99 1299.73 42
VPNet99.46 5999.37 6999.71 7999.82 4399.59 10599.48 6999.70 9599.81 2899.69 10399.58 18397.66 21999.86 18699.17 7499.44 26599.67 65
testgi99.29 10299.26 9799.37 19799.75 9398.81 23398.84 21399.89 1298.38 22799.75 7999.04 30499.36 3299.86 18699.08 8899.25 29399.45 193
mvs_anonymous99.28 10399.39 6498.94 25599.19 28597.81 28999.02 18499.55 18199.78 3499.85 4099.80 5398.24 16999.86 18699.57 2399.50 25799.15 262
diffmvs99.34 9199.32 7999.39 19099.67 13398.77 23698.57 24599.81 4599.61 6899.48 17599.41 23598.47 14399.86 18698.97 9899.90 8399.53 154
WR-MVS99.11 15498.93 17399.66 9499.30 26599.42 14198.42 26299.37 25399.04 15799.57 14699.20 28596.89 25099.86 18698.66 12799.87 10799.70 49
114514_t98.49 24198.11 25699.64 10699.73 10299.58 10899.24 12599.76 6589.94 35399.42 18899.56 19497.76 20999.86 18697.74 19799.82 14099.47 187
UnsupCasMVSNet_eth98.83 20198.57 21499.59 12699.68 12899.45 13298.99 19399.67 10999.48 8599.55 15899.36 24894.92 28199.86 18698.95 10496.57 35299.45 193
FMVSNet398.80 20598.63 20799.32 20899.13 29398.72 23899.10 16999.48 21799.23 12799.62 13099.64 14092.57 30399.86 18698.96 10099.90 8399.39 213
HY-MVS98.23 998.21 26597.95 26598.99 25199.03 30998.24 26599.61 5198.72 31396.81 31298.73 28999.51 21094.06 29099.86 18696.91 25498.20 33598.86 302
TAMVS99.49 5099.45 5599.63 11099.48 20599.42 14199.45 7299.57 17199.66 5699.78 6799.83 4297.85 20399.86 18699.44 3599.96 4199.61 112
ACMM98.09 1199.46 5999.38 6699.72 7599.80 5599.69 7499.13 16299.65 12498.99 15999.64 11999.72 9299.39 2399.86 18698.23 15399.81 14899.60 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft97.31 1797.36 29396.84 30498.89 26899.29 26799.45 13298.87 20999.48 21786.54 35699.44 18299.74 8297.34 23399.86 18691.61 34499.28 28997.37 349
COLMAP_ROBcopyleft98.06 1299.45 6199.37 6999.70 8399.83 3799.70 7099.38 8499.78 5799.53 8099.67 10999.78 6599.19 4899.86 18697.32 22799.87 10799.55 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS97.82 27697.38 28799.14 23799.27 27198.53 24898.72 23399.02 30298.10 25197.18 34899.03 30789.26 33699.85 20497.94 17997.91 34399.03 287
miper_lstm_enhance98.65 22198.60 20898.82 27699.20 28397.33 30397.78 31599.66 11399.01 15899.59 14199.50 21394.62 28699.85 20498.12 16599.90 8399.26 239
TEST999.35 24499.35 16198.11 28699.41 23694.83 34297.92 33198.99 31098.02 18899.85 204
train_agg98.35 25597.95 26599.57 13599.35 24499.35 16198.11 28699.41 23694.90 33897.92 33198.99 31098.02 18899.85 20495.38 31899.44 26599.50 172
agg_prior198.33 25797.92 27199.57 13599.35 24499.36 15797.99 30099.39 24694.85 34197.76 34098.98 31398.03 18699.85 20495.49 31499.44 26599.51 166
agg_prior99.35 24499.36 15799.39 24697.76 34099.85 204
FIs99.65 2999.58 3599.84 1999.84 3399.85 1299.66 3999.75 7199.86 1699.74 8799.79 5998.27 16799.85 20499.37 4599.93 6999.83 18
v119299.57 3799.57 3899.57 13599.77 7999.22 18999.04 18199.60 15399.18 13399.87 3899.72 9299.08 6299.85 20499.89 599.98 2199.66 75
Regformer-399.41 7099.41 6299.40 18799.52 18398.70 23999.17 14699.44 23099.62 6499.75 7999.60 17598.90 8499.85 20498.89 10899.84 12199.65 83
无先验98.01 29699.23 28495.83 32699.85 20495.79 30899.44 198
112198.56 23198.24 24499.52 14999.49 19999.24 18599.30 10599.22 28595.77 32798.52 30499.29 26597.39 23099.85 20495.79 30899.34 28299.46 191
VDD-MVS99.20 13099.11 12299.44 17299.43 22398.98 21699.50 6598.32 33099.80 3199.56 15399.69 11296.99 24899.85 20498.99 9499.73 18899.50 172
VDDNet98.97 18198.82 19199.42 17799.71 10998.81 23399.62 4798.68 31499.81 2899.38 20399.80 5394.25 28999.85 20498.79 11599.32 28599.59 125
EI-MVSNet99.38 7999.44 5799.21 22999.58 15198.09 27799.26 11799.46 22599.62 6499.75 7999.67 12998.54 13299.85 20499.15 7899.92 7399.68 58
MVSTER98.47 24398.22 24699.24 22699.06 30598.35 26399.08 17699.46 22599.27 11999.75 7999.66 13388.61 33799.85 20499.14 8499.92 7399.52 164
ACMH98.42 699.59 3699.54 4399.72 7599.86 2999.62 9499.56 6199.79 5298.77 19099.80 5999.85 3699.64 1399.85 20498.70 12399.89 9199.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS99.12 15099.01 15699.45 17099.36 24299.62 9499.34 9399.79 5298.41 22398.84 27798.89 32598.75 10699.84 22098.15 16499.51 25598.89 299
Anonymous20240521198.75 21098.46 22499.63 11099.34 25499.66 8199.47 7197.65 33999.28 11899.56 15399.50 21393.15 29899.84 22098.62 12899.58 23899.40 210
Effi-MVS+99.06 16298.97 16899.34 20299.31 26198.98 21698.31 26999.91 898.81 18498.79 28398.94 32099.14 5499.84 22098.79 11598.74 32199.20 252
gm-plane-assit97.59 35689.02 36493.47 34598.30 34799.84 22096.38 284
test_899.34 25499.31 16798.08 29099.40 24394.90 33897.87 33598.97 31698.02 18899.84 220
v114499.54 4599.53 4799.59 12699.79 6599.28 17299.10 16999.61 14299.20 13199.84 4399.73 8698.67 11599.84 22099.86 899.98 2199.64 89
v899.68 2299.69 1899.65 9999.80 5599.40 14699.66 3999.76 6599.64 6099.93 1499.85 3698.66 11799.84 22099.88 699.99 1299.71 46
v2v48299.50 4899.47 5199.58 13099.78 7199.25 18099.14 15699.58 16999.25 12399.81 5699.62 15998.24 16999.84 22099.83 999.97 2999.64 89
VNet99.18 13799.06 13999.56 13999.24 27699.36 15799.33 9599.31 26699.67 5299.47 17799.57 19196.48 25899.84 22099.15 7899.30 28799.47 187
ADS-MVSNet97.72 28297.67 28397.86 31099.14 29194.65 33999.22 13298.86 30696.97 30698.25 31599.64 14090.90 32199.84 22096.51 27799.56 24099.08 278
LF4IMVS99.01 17598.92 17799.27 21899.71 10999.28 17298.59 24099.77 6098.32 24099.39 20299.41 23598.62 12199.84 22096.62 27399.84 12198.69 310
9.1498.64 20599.45 21898.81 22099.60 15397.52 28499.28 22199.56 19498.53 13699.83 23195.36 31999.64 222
ETH3D-3000-0.198.77 20798.50 22299.59 12699.47 21099.53 11698.77 22899.60 15397.33 29499.23 22899.50 21397.91 19699.83 23195.02 32499.67 21399.41 208
SMA-MVScopyleft99.19 13399.00 15999.73 6999.46 21599.73 5799.13 16299.52 20397.40 29099.57 14699.64 14098.93 7899.83 23197.61 21199.79 15899.63 94
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EU-MVSNet99.39 7799.62 2598.72 28199.88 2396.44 32099.56 6199.85 2399.90 799.90 2299.85 3698.09 18299.83 23199.58 2299.95 4899.90 4
YYNet198.95 18798.99 16498.84 27199.64 13897.14 30898.22 27699.32 26298.92 17199.59 14199.66 13397.40 22899.83 23198.27 15099.90 8399.55 142
MDA-MVSNet_test_wron98.95 18798.99 16498.85 26999.64 13897.16 30798.23 27599.33 26098.93 16999.56 15399.66 13397.39 23099.83 23198.29 14899.88 9999.55 142
baseline99.63 3099.62 2599.66 9499.80 5599.62 9499.44 7599.80 4699.71 4299.72 9399.69 11299.15 5299.83 23199.32 5399.94 6199.53 154
CDS-MVSNet99.22 12399.13 11599.50 15599.35 24499.11 20398.96 20099.54 18699.46 9499.61 13699.70 10696.31 26599.83 23199.34 4899.88 9999.55 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DeepC-MVS_fast98.47 599.23 11499.12 11999.56 13999.28 26999.22 18998.99 19399.40 24399.08 15099.58 14399.64 14098.90 8499.83 23197.44 22199.75 17399.63 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft97.35 1698.36 25297.99 26199.48 16199.32 26099.24 18598.50 25499.51 20695.19 33698.58 30098.96 31896.95 24999.83 23195.63 31199.25 29399.37 218
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETH3 D test640097.76 27997.19 29499.50 15599.38 23799.26 17698.34 26599.49 21592.99 34798.54 30399.20 28595.92 27499.82 24191.14 34799.66 21799.40 210
pmmvs599.19 13399.11 12299.42 17799.76 8398.88 23098.55 24799.73 7998.82 18399.72 9399.62 15996.56 25599.82 24199.32 5399.95 4899.56 139
test_post199.14 15651.63 36789.54 33599.82 24196.86 257
原ACMM199.37 19799.47 21098.87 23299.27 27596.74 31498.26 31499.32 25897.93 19599.82 24195.96 30299.38 27599.43 204
V4299.56 4099.54 4399.63 11099.79 6599.46 12799.39 8299.59 16099.24 12599.86 3999.70 10698.55 13099.82 24199.79 1199.95 4899.60 116
CDPH-MVS98.56 23198.20 24899.61 12299.50 19499.46 12798.32 26899.41 23695.22 33499.21 23499.10 29798.34 16199.82 24195.09 32399.66 21799.56 139
test1299.54 14699.29 26799.33 16499.16 29398.43 30997.54 22399.82 24199.47 26299.48 182
casdiffmvs99.63 3099.61 2999.67 8799.79 6599.59 10599.13 16299.85 2399.79 3399.76 7499.72 9299.33 3499.82 24199.21 6499.94 6199.59 125
baseline197.73 28097.33 28898.96 25399.30 26597.73 29299.40 8098.42 32699.33 11299.46 18099.21 28391.18 31699.82 24198.35 14291.26 35799.32 230
HQP_MVS98.90 19298.68 20499.55 14299.58 15199.24 18598.80 22399.54 18698.94 16699.14 24599.25 27497.24 23699.82 24195.84 30699.78 16499.60 116
plane_prior599.54 18699.82 24195.84 30699.78 16499.60 116
tpmrst97.73 28098.07 25896.73 33398.71 33792.00 35299.10 16998.86 30698.52 21398.92 26799.54 20291.90 30899.82 24198.02 17099.03 30498.37 327
UnsupCasMVSNet_bld98.55 23498.27 24299.40 18799.56 17199.37 15497.97 30499.68 10497.49 28699.08 25299.35 25395.41 27999.82 24197.70 20198.19 33799.01 291
dp96.86 30297.07 29696.24 33998.68 33990.30 36399.19 14098.38 32997.35 29398.23 31799.59 18187.23 34099.82 24196.27 28898.73 32398.59 314
test_040299.22 12399.14 11299.45 17099.79 6599.43 13899.28 11399.68 10499.54 7899.40 20199.56 19499.07 6499.82 24196.01 29799.96 4199.11 270
PMMVS98.49 24198.29 24199.11 24098.96 31398.42 25797.54 32599.32 26297.53 28398.47 30898.15 35097.88 20099.82 24197.46 22099.24 29599.09 275
LFMVS98.46 24498.19 25199.26 22099.24 27698.52 25099.62 4796.94 34699.87 1499.31 21699.58 18391.04 31899.81 25798.68 12699.42 27099.45 193
NCCC98.82 20398.57 21499.58 13099.21 28099.31 16798.61 23799.25 28098.65 19998.43 30999.26 27297.86 20199.81 25796.55 27499.27 29299.61 112
MIMVSNet98.43 24698.20 24899.11 24099.53 17898.38 26199.58 5898.61 31898.96 16499.33 21299.76 7590.92 32099.81 25797.38 22599.76 17099.15 262
IS-MVSNet99.03 16998.85 18699.55 14299.80 5599.25 18099.73 1699.15 29499.37 10699.61 13699.71 9994.73 28599.81 25797.70 20199.88 9999.58 130
AdaColmapbinary98.60 22598.35 23799.38 19499.12 29599.22 18998.67 23699.42 23597.84 27198.81 28099.27 26997.32 23499.81 25795.14 32199.53 25299.10 272
MCST-MVS99.02 17198.81 19299.65 9999.58 15199.49 11998.58 24199.07 29898.40 22599.04 25799.25 27498.51 14199.80 26297.31 22899.51 25599.65 83
CostFormer96.71 30796.79 30696.46 33798.90 31690.71 36199.41 7898.68 31494.69 34398.14 32399.34 25686.32 35099.80 26297.60 21298.07 34198.88 300
PHI-MVS99.11 15498.95 17299.59 12699.13 29399.59 10599.17 14699.65 12497.88 26699.25 22499.46 22898.97 7499.80 26297.26 23499.82 14099.37 218
Patchmatch-RL test98.60 22598.36 23599.33 20499.77 7999.07 21198.27 27299.87 1798.91 17299.74 8799.72 9290.57 32799.79 26598.55 13199.85 11799.11 270
test0.0.03 197.37 29296.91 30398.74 28097.72 35597.57 29697.60 32397.36 34598.00 25699.21 23498.02 35190.04 33299.79 26598.37 13995.89 35598.86 302
MSDG99.08 16098.98 16799.37 19799.60 14699.13 20197.54 32599.74 7698.84 18299.53 16599.55 20099.10 5799.79 26597.07 24899.86 11499.18 256
cl-mvsnet_98.54 23598.41 23098.92 25999.03 30997.80 29097.46 33199.59 16098.90 17399.60 13899.46 22893.85 29299.78 26897.97 17799.89 9199.17 258
cl-mvsnet198.54 23598.42 22998.92 25999.03 30997.80 29097.46 33199.59 16098.90 17399.60 13899.46 22893.87 29199.78 26897.97 17799.89 9199.18 256
MVP-Stereo99.16 14299.08 13399.43 17599.48 20599.07 21199.08 17699.55 18198.63 20199.31 21699.68 12398.19 17699.78 26898.18 16099.58 23899.45 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
nrg03099.70 1999.66 2199.82 2399.76 8399.84 1799.61 5199.70 9599.93 499.78 6799.68 12399.10 5799.78 26899.45 3499.96 4199.83 18
Vis-MVSNet (Re-imp)98.77 20798.58 21399.34 20299.78 7198.88 23099.61 5199.56 17699.11 14899.24 22799.56 19493.00 30199.78 26897.43 22299.89 9199.35 224
CNLPA98.57 23098.34 23899.28 21699.18 28799.10 20798.34 26599.41 23698.48 21898.52 30498.98 31397.05 24699.78 26895.59 31299.50 25798.96 293
ACMH+98.40 899.50 4899.43 6099.71 7999.86 2999.76 4699.32 9899.77 6099.53 8099.77 7299.76 7599.26 4499.78 26897.77 19499.88 9999.60 116
CLD-MVS98.76 20998.57 21499.33 20499.57 16198.97 21897.53 32799.55 18196.41 31799.27 22299.13 29099.07 6499.78 26896.73 26699.89 9199.23 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_BlendedMVS99.03 16999.01 15699.09 24299.54 17397.99 28198.58 24199.82 3697.62 27899.34 21099.71 9998.52 13999.77 27697.98 17599.97 2999.52 164
PVSNet_Blended98.70 21798.59 21099.02 25099.54 17397.99 28197.58 32499.82 3695.70 32999.34 21098.98 31398.52 13999.77 27697.98 17599.83 13199.30 233
eth_miper_zixun_eth98.68 21998.71 19998.60 28599.10 30196.84 31597.52 32999.54 18698.94 16699.58 14399.48 22096.25 26799.76 27898.01 17399.93 6999.21 249
OPM-MVS99.26 10999.13 11599.63 11099.70 11699.61 10098.58 24199.48 21798.50 21599.52 16799.63 15099.14 5499.76 27897.89 18299.77 16899.51 166
pmmvs-eth3d99.48 5299.47 5199.51 15299.77 7999.41 14598.81 22099.66 11399.42 10399.75 7999.66 13399.20 4799.76 27898.98 9699.99 1299.36 221
pmmvs499.13 14899.06 13999.36 20099.57 16199.10 20798.01 29699.25 28098.78 18999.58 14399.44 23298.24 16999.76 27898.74 12099.93 6999.22 247
AllTest99.21 12899.07 13799.63 11099.78 7199.64 8899.12 16699.83 3198.63 20199.63 12399.72 9298.68 11299.75 28296.38 28499.83 13199.51 166
TestCases99.63 11099.78 7199.64 8899.83 3198.63 20199.63 12399.72 9298.68 11299.75 28296.38 28499.83 13199.51 166
CL-MVSNet_2432*160098.71 21698.56 21799.15 23699.22 27898.66 24297.14 34299.51 20698.09 25399.54 16099.27 26996.87 25199.74 28498.43 13698.96 30799.03 287
MVS95.72 32694.63 33098.99 25198.56 34197.98 28699.30 10598.86 30672.71 35997.30 34499.08 29898.34 16199.74 28489.21 34998.33 33399.26 239
MG-MVS98.52 23798.39 23298.94 25599.15 29097.39 30298.18 27799.21 28998.89 17699.23 22899.63 15097.37 23299.74 28494.22 33399.61 23299.69 52
cl_fuxian98.72 21598.71 19998.72 28199.12 29597.22 30697.68 32099.56 17698.90 17399.54 16099.48 22096.37 26499.73 28797.88 18399.88 9999.21 249
tpmvs97.39 29197.69 28196.52 33698.41 34491.76 35499.30 10598.94 30597.74 27397.85 33699.55 20092.40 30699.73 28796.25 28998.73 32398.06 340
thres600view796.60 30996.16 31197.93 30899.63 14096.09 32699.18 14197.57 34098.77 19098.72 29097.32 35987.04 34299.72 28988.57 35098.62 32697.98 342
EPMVS96.53 31096.32 30897.17 32998.18 35192.97 34999.39 8289.95 36298.21 24698.61 29799.59 18186.69 34999.72 28996.99 25099.23 29798.81 306
PVSNet97.47 1598.42 24798.44 22798.35 29599.46 21596.26 32296.70 35099.34 25997.68 27699.00 25999.13 29097.40 22899.72 28997.59 21399.68 20699.08 278
MAR-MVS98.24 26297.92 27199.19 23298.78 33399.65 8699.17 14699.14 29595.36 33298.04 32798.81 33097.47 22599.72 28995.47 31699.06 30198.21 335
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_ehance_all_eth98.59 22898.59 21098.59 28698.98 31297.07 30997.49 33099.52 20398.50 21599.52 16799.37 24396.41 26399.71 29397.86 18799.62 22599.00 292
Gipumacopyleft99.57 3799.59 3299.49 15899.98 399.71 6399.72 1999.84 2999.81 2899.94 1199.78 6598.91 8199.71 29398.41 13799.95 4899.05 285
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc99.20 23199.35 24498.53 24899.17 14699.46 22599.67 10999.80 5398.46 14699.70 29597.92 18099.70 20099.38 215
HQP4-MVS98.15 31999.70 29599.53 154
CNVR-MVS98.99 18098.80 19499.56 13999.25 27499.43 13898.54 25099.27 27598.58 20698.80 28299.43 23398.53 13699.70 29597.22 23999.59 23799.54 149
tpm296.35 31396.22 31096.73 33398.88 32291.75 35599.21 13498.51 32293.27 34697.89 33399.21 28384.83 35299.70 29596.04 29698.18 33898.75 309
HQP-MVS98.36 25298.02 26099.39 19099.31 26198.94 22197.98 30199.37 25397.45 28798.15 31998.83 32896.67 25399.70 29594.73 32699.67 21399.53 154
PatchMatch-RL98.68 21998.47 22399.30 21399.44 22199.28 17298.14 28299.54 18697.12 30499.11 24999.25 27497.80 20699.70 29596.51 27799.30 28798.93 296
miper_enhance_ethall98.03 27197.94 26998.32 29798.27 34896.43 32196.95 34699.41 23696.37 31999.43 18698.96 31894.74 28499.69 30197.71 19999.62 22598.83 305
test_yl98.25 26097.95 26599.13 23899.17 28898.47 25299.00 18898.67 31698.97 16199.22 23299.02 30891.31 31499.69 30197.26 23498.93 30899.24 242
DCV-MVSNet98.25 26097.95 26599.13 23899.17 28898.47 25299.00 18898.67 31698.97 16199.22 23299.02 30891.31 31499.69 30197.26 23498.93 30899.24 242
MS-PatchMatch99.00 17798.97 16899.09 24299.11 30098.19 26998.76 22999.33 26098.49 21799.44 18299.58 18398.21 17399.69 30198.20 15699.62 22599.39 213
v14899.40 7399.41 6299.39 19099.76 8398.94 22199.09 17399.59 16099.17 13699.81 5699.61 16898.41 15199.69 30199.32 5399.94 6199.53 154
test_prior398.62 22398.34 23899.46 16699.35 24499.22 18997.95 30599.39 24697.87 26798.05 32599.05 30197.90 19799.69 30195.99 29999.49 25999.48 182
test_prior99.46 16699.35 24499.22 18999.39 24699.69 30199.48 182
tpm cat196.78 30496.98 29996.16 34098.85 32390.59 36299.08 17699.32 26292.37 34897.73 34299.46 22891.15 31799.69 30196.07 29598.80 31498.21 335
PAPM_NR98.36 25298.04 25999.33 20499.48 20598.93 22598.79 22699.28 27497.54 28298.56 30298.57 33897.12 24399.69 30194.09 33598.90 31299.38 215
PAPM95.61 32794.71 32998.31 29999.12 29596.63 31796.66 35198.46 32590.77 35296.25 35298.68 33593.01 30099.69 30181.60 35897.86 34598.62 312
OMC-MVS98.90 19298.72 19899.44 17299.39 23499.42 14198.58 24199.64 13097.31 29599.44 18299.62 15998.59 12599.69 30196.17 29399.79 15899.22 247
E-PMN97.14 29897.43 28696.27 33898.79 33191.62 35695.54 35599.01 30399.44 9698.88 27199.12 29492.78 30299.68 31294.30 33299.03 30497.50 346
TSAR-MVS + GP.99.12 15099.04 14999.38 19499.34 25499.16 19898.15 28099.29 27198.18 24999.63 12399.62 15999.18 4999.68 31298.20 15699.74 18199.30 233
MVS-HIRNet97.86 27598.22 24696.76 33199.28 26991.53 35798.38 26492.60 36099.13 14499.31 21699.96 1097.18 24299.68 31298.34 14399.83 13199.07 283
PAPR97.56 28797.07 29699.04 24998.80 33098.11 27597.63 32199.25 28094.56 34498.02 32998.25 34997.43 22799.68 31290.90 34898.74 32199.33 227
ITE_SJBPF99.38 19499.63 14099.44 13499.73 7998.56 20799.33 21299.53 20598.88 8699.68 31296.01 29799.65 22099.02 290
thres100view90096.39 31296.03 31497.47 32099.63 14095.93 32799.18 14197.57 34098.75 19498.70 29297.31 36087.04 34299.67 31787.62 35398.51 33096.81 351
tfpn200view996.30 31595.89 31597.53 31899.58 15196.11 32499.00 18897.54 34398.43 22098.52 30496.98 36286.85 34499.67 31787.62 35398.51 33096.81 351
131498.00 27397.90 27498.27 30198.90 31697.45 30099.30 10599.06 30094.98 33797.21 34799.12 29498.43 14899.67 31795.58 31398.56 32897.71 345
thres40096.40 31195.89 31597.92 30999.58 15196.11 32499.00 18897.54 34398.43 22098.52 30496.98 36286.85 34499.67 31787.62 35398.51 33097.98 342
EMVS96.96 30197.28 28995.99 34198.76 33591.03 35995.26 35698.61 31899.34 10998.92 26798.88 32693.79 29399.66 32192.87 34199.05 30297.30 350
MVS_Test99.28 10399.31 8099.19 23299.35 24498.79 23599.36 9199.49 21599.17 13699.21 23499.67 12998.78 10099.66 32199.09 8799.66 21799.10 272
DWT-MVSNet_test96.03 32095.80 31996.71 33598.50 34391.93 35399.25 12497.87 33795.99 32496.81 35097.61 35681.02 35799.66 32197.20 24197.98 34298.54 318
EPNet_dtu97.62 28497.79 27897.11 33096.67 35992.31 35198.51 25398.04 33299.24 12595.77 35599.47 22593.78 29499.66 32198.98 9699.62 22599.37 218
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-RMVSNet98.41 24898.14 25599.21 22999.21 28098.47 25298.60 23998.26 33198.35 23498.93 26499.31 26097.20 24199.66 32194.32 33199.10 30099.51 166
MDTV_nov1_ep1397.73 28098.70 33890.83 36099.15 15498.02 33398.51 21498.82 27999.61 16890.98 31999.66 32196.89 25698.92 310
MVS_111021_LR99.13 14899.03 15199.42 17799.58 15199.32 16697.91 31199.73 7998.68 19799.31 21699.48 22099.09 5999.66 32197.70 20199.77 16899.29 236
BH-untuned98.22 26498.09 25798.58 28799.38 23797.24 30598.55 24798.98 30497.81 27299.20 23998.76 33297.01 24799.65 32894.83 32598.33 33398.86 302
RPSCF99.18 13799.02 15399.64 10699.83 3799.85 1299.44 7599.82 3698.33 23999.50 17399.78 6597.90 19799.65 32896.78 26399.83 13199.44 198
USDC98.96 18498.93 17399.05 24899.54 17397.99 28197.07 34599.80 4698.21 24699.75 7999.77 7298.43 14899.64 33097.90 18199.88 9999.51 166
DeepPCF-MVS98.42 699.18 13799.02 15399.67 8799.22 27899.75 4897.25 33999.47 22198.72 19599.66 11399.70 10699.29 3899.63 33198.07 16999.81 14899.62 105
alignmvs98.28 25897.96 26499.25 22399.12 29598.93 22599.03 18398.42 32699.64 6098.72 29097.85 35390.86 32399.62 33298.88 10999.13 29899.19 254
DeepMVS_CXcopyleft97.98 30699.69 11996.95 31199.26 27775.51 35895.74 35698.28 34896.47 25999.62 33291.23 34697.89 34497.38 348
TinyColmap98.97 18198.93 17399.07 24699.46 21598.19 26997.75 31699.75 7198.79 18799.54 16099.70 10698.97 7499.62 33296.63 27299.83 13199.41 208
TAPA-MVS97.92 1398.03 27197.55 28599.46 16699.47 21099.44 13498.50 25499.62 13586.79 35499.07 25599.26 27298.26 16899.62 33297.28 23199.73 18899.31 232
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPM-MVS98.28 25897.94 26999.32 20899.36 24299.11 20397.31 33798.78 31196.88 30898.84 27799.11 29697.77 20899.61 33694.03 33799.36 28099.23 245
thres20096.09 31895.68 32197.33 32599.48 20596.22 32398.53 25197.57 34098.06 25598.37 31196.73 36486.84 34699.61 33686.99 35698.57 32796.16 354
DP-MVS Recon98.50 23898.23 24599.31 21199.49 19999.46 12798.56 24699.63 13294.86 34098.85 27699.37 24397.81 20599.59 33896.08 29499.44 26598.88 300
PVSNet_095.53 1995.85 32495.31 32697.47 32098.78 33393.48 34695.72 35499.40 24396.18 32297.37 34397.73 35495.73 27599.58 33995.49 31481.40 35899.36 221
API-MVS98.38 25198.39 23298.35 29598.83 32599.26 17699.14 15699.18 29198.59 20598.66 29498.78 33198.61 12399.57 34094.14 33499.56 24096.21 353
KD-MVS_2432*160095.89 32195.41 32497.31 32694.96 36093.89 34297.09 34399.22 28597.23 29898.88 27199.04 30479.23 36199.54 34196.24 29096.81 35098.50 323
miper_refine_blended95.89 32195.41 32497.31 32694.96 36093.89 34297.09 34399.22 28597.23 29898.88 27199.04 30479.23 36199.54 34196.24 29096.81 35098.50 323
canonicalmvs99.02 17199.00 15999.09 24299.10 30198.70 23999.61 5199.66 11399.63 6398.64 29597.65 35599.04 6899.54 34198.79 11598.92 31099.04 286
MVS_111021_HR99.12 15099.02 15399.40 18799.50 19499.11 20397.92 30999.71 9198.76 19399.08 25299.47 22599.17 5099.54 34197.85 18999.76 17099.54 149
test_241102_ONE99.69 11999.82 2599.54 18699.12 14799.82 5099.49 21898.91 8199.52 345
gg-mvs-nofinetune95.87 32395.17 32797.97 30798.19 35096.95 31199.69 2889.23 36399.89 1196.24 35399.94 1281.19 35699.51 34693.99 33898.20 33597.44 347
TR-MVS97.44 29097.15 29598.32 29798.53 34297.46 29998.47 25697.91 33696.85 31098.21 31898.51 34296.42 26199.51 34692.16 34397.29 34897.98 342
BH-w/o97.20 29597.01 29897.76 31399.08 30495.69 33098.03 29598.52 32195.76 32897.96 33098.02 35195.62 27799.47 34892.82 34297.25 34998.12 339
PMVScopyleft92.94 2198.82 20398.81 19298.85 26999.84 3397.99 28199.20 13599.47 22199.71 4299.42 18899.82 4898.09 18299.47 34893.88 33999.85 11799.07 283
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CMPMVSbinary77.52 2398.50 23898.19 25199.41 18598.33 34799.56 11199.01 18699.59 16095.44 33199.57 14699.80 5395.64 27699.46 35096.47 28099.92 7399.21 249
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GA-MVS97.99 27497.68 28298.93 25899.52 18398.04 28097.19 34199.05 30198.32 24098.81 28098.97 31689.89 33499.41 35198.33 14499.05 30299.34 226
cl-mvsnet297.56 28797.28 28998.40 29398.37 34696.75 31697.24 34099.37 25397.31 29599.41 19699.22 28187.30 33999.37 35297.70 20199.62 22599.08 278
GG-mvs-BLEND97.36 32397.59 35696.87 31499.70 2288.49 36494.64 35897.26 36180.66 35899.12 35391.50 34596.50 35396.08 355
MSLP-MVS++99.05 16599.09 13198.91 26199.21 28098.36 26298.82 21999.47 22198.85 17998.90 27099.56 19498.78 10099.09 35498.57 13099.68 20699.26 239
FPMVS96.32 31495.50 32298.79 27799.60 14698.17 27198.46 26198.80 31097.16 30296.28 35199.63 15082.19 35599.09 35488.45 35198.89 31399.10 272
OPU-MVS99.29 21499.12 29599.44 13499.20 13599.40 23799.00 7098.84 35696.54 27599.60 23599.58 130
cascas96.99 29996.82 30597.48 31997.57 35895.64 33196.43 35299.56 17691.75 34997.13 34997.61 35695.58 27898.63 35796.68 26899.11 29998.18 338
MVEpermissive92.54 2296.66 30896.11 31298.31 29999.68 12897.55 29797.94 30795.60 35399.37 10690.68 36098.70 33496.56 25598.61 35886.94 35799.55 24498.77 308
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt95.75 32595.42 32396.76 33189.90 36394.42 34098.86 21097.87 33778.01 35799.30 22099.69 11297.70 21095.89 35999.29 5998.14 33999.95 1
SD-MVS99.01 17599.30 8598.15 30399.50 19499.40 14698.94 20399.61 14299.22 13099.75 7999.82 4899.54 2095.51 36097.48 21999.87 10799.54 149
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test12329.31 32933.05 33418.08 34325.93 36512.24 36597.53 32710.93 36611.78 36024.21 36150.08 36921.04 3668.60 36123.51 35932.43 36033.39 357
testmvs28.94 33033.33 33215.79 34426.03 3649.81 36696.77 34915.67 36511.55 36123.87 36250.74 36819.03 3678.53 36223.21 36033.07 35929.03 358
uanet_test8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k24.88 33133.17 3330.00 3450.00 3660.00 3670.00 35799.62 1350.00 3620.00 36399.13 29099.82 40.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas16.61 33222.14 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 199.28 400.00 3630.00 3610.00 3610.00 359
sosnet-low-res8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
sosnet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
Regformer8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.26 33911.02 3420.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36399.16 2880.00 3680.00 3630.00 3610.00 3610.00 359
uanet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
RE-MVS-def99.13 11599.54 17399.74 5499.26 11799.62 13599.16 13899.52 16799.64 14098.57 12797.27 23299.61 23299.54 149
IU-MVS99.69 11999.77 4099.22 28597.50 28599.69 10397.75 19699.70 20099.77 33
save fliter99.53 17899.25 18098.29 27099.38 25299.07 152
test072699.69 11999.80 3399.24 12599.57 17199.16 13899.73 9199.65 13898.35 159
GSMVS99.14 266
test_part299.62 14399.67 7999.55 158
sam_mvs190.81 32499.14 266
sam_mvs90.52 328
MTGPAbinary99.53 195
MTMP99.09 17398.59 320
test9_res95.10 32299.44 26599.50 172
agg_prior294.58 33099.46 26499.50 172
test_prior499.19 19698.00 298
test_prior297.95 30597.87 26798.05 32599.05 30197.90 19795.99 29999.49 259
新几何298.04 294
旧先验199.49 19999.29 17099.26 27799.39 24197.67 21599.36 28099.46 191
原ACMM297.92 309
test22299.51 18899.08 21097.83 31499.29 27195.21 33598.68 29399.31 26097.28 23599.38 27599.43 204
segment_acmp98.37 157
testdata197.72 31797.86 270
plane_prior799.58 15199.38 151
plane_prior699.47 21099.26 17697.24 236
plane_prior499.25 274
plane_prior399.31 16798.36 22999.14 245
plane_prior298.80 22398.94 166
plane_prior199.51 188
plane_prior99.24 18598.42 26297.87 26799.71 198
n20.00 367
nn0.00 367
door-mid99.83 31
test1199.29 271
door99.77 60
HQP5-MVS98.94 221
HQP-NCC99.31 26197.98 30197.45 28798.15 319
ACMP_Plane99.31 26197.98 30197.45 28798.15 319
BP-MVS94.73 326
HQP3-MVS99.37 25399.67 213
HQP2-MVS96.67 253
NP-MVS99.40 23299.13 20198.83 328
MDTV_nov1_ep13_2view91.44 35899.14 15697.37 29299.21 23491.78 31296.75 26499.03 287
ACMMP++_ref99.94 61
ACMMP++99.79 158
Test By Simon98.41 151