This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 10
test_part199.89 399.88 499.94 299.91 1599.92 299.92 399.90 1199.98 299.99 399.97 999.50 2199.98 699.73 16100.00 199.92 3
test_djsdf99.84 999.81 1099.91 399.94 1099.84 1899.77 1299.80 4799.73 3899.97 799.92 1799.77 799.98 699.43 37100.00 199.90 5
ANet_high99.88 599.87 599.91 399.99 199.91 399.65 44100.00 199.90 8100.00 199.97 999.61 1699.97 1799.75 13100.00 199.84 15
UniMVSNet_ETH3D99.85 899.83 899.90 599.89 2299.91 399.89 599.71 9299.93 599.95 1199.89 2699.71 999.96 3499.51 3099.97 3099.84 15
anonymousdsp99.80 1299.77 1399.90 599.96 499.88 899.73 1799.85 2499.70 4599.92 1999.93 1499.45 2299.97 1799.36 46100.00 199.85 14
mvs_tets99.90 299.90 299.90 599.96 499.79 3699.72 2099.88 1699.92 799.98 499.93 1499.94 199.98 699.77 12100.00 199.92 3
PS-MVSNAJss99.84 999.82 999.89 899.96 499.77 4199.68 3299.85 2499.95 499.98 499.92 1799.28 4199.98 699.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 899.96 499.78 3999.70 2399.86 2099.89 1299.98 499.90 2299.94 199.98 699.75 13100.00 199.90 5
PS-CasMVS99.66 2599.58 3699.89 899.80 5799.85 1399.66 3999.73 8099.62 6499.84 4399.71 10098.62 12399.96 3499.30 5699.96 4199.86 12
PEN-MVS99.66 2599.59 3399.89 899.83 3899.87 999.66 3999.73 8099.70 4599.84 4399.73 8798.56 13199.96 3499.29 5999.94 6199.83 19
v7n99.82 1199.80 1199.88 1299.96 499.84 1899.82 999.82 3799.84 2299.94 1299.91 2099.13 5899.96 3499.83 999.99 1399.83 19
DTE-MVSNet99.68 2399.61 3099.88 1299.80 5799.87 999.67 3699.71 9299.72 4199.84 4399.78 6698.67 11799.97 1799.30 5699.95 4899.80 24
LTVRE_ROB99.19 199.88 599.87 599.88 1299.91 1599.90 599.96 199.92 599.90 899.97 799.87 3199.81 599.95 4399.54 2699.99 1399.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CP-MVSNet99.54 4799.43 6299.87 1599.76 8599.82 2699.57 5999.61 14299.54 7899.80 6099.64 14197.79 20999.95 4399.21 6499.94 6199.84 15
WR-MVS_H99.61 3699.53 4999.87 1599.80 5799.83 2299.67 3699.75 7299.58 7799.85 4099.69 11398.18 18099.94 5499.28 6199.95 4899.83 19
UA-Net99.78 1499.76 1599.86 1799.72 10899.71 6499.91 499.95 499.96 399.71 9899.91 2099.15 5399.97 1799.50 32100.00 199.90 5
FC-MVSNet-test99.70 2099.65 2399.86 1799.88 2499.86 1299.72 2099.78 5899.90 899.82 5099.83 4298.45 14999.87 16599.51 3099.97 3099.86 12
APDe-MVS99.48 5499.36 7499.85 1999.55 17399.81 2999.50 6599.69 10298.99 15999.75 8099.71 10098.79 10099.93 6798.46 13599.85 11799.80 24
FIs99.65 3099.58 3699.84 2099.84 3499.85 1399.66 3999.75 7299.86 1799.74 8899.79 5998.27 16999.85 20399.37 4599.93 6999.83 19
OurMVSNet-221017-099.75 1699.71 1799.84 2099.96 499.83 2299.83 799.85 2499.80 3199.93 1599.93 1498.54 13499.93 6799.59 2199.98 2299.76 36
test_0728_SECOND99.83 2299.70 11899.79 3699.14 15699.61 14299.92 8597.88 18299.72 19499.77 32
pmmvs699.86 799.86 799.83 2299.94 1099.90 599.83 799.91 899.85 2099.94 1299.95 1299.73 899.90 12399.65 1799.97 3099.69 51
DPE-MVS99.14 14898.92 17999.82 2499.57 16299.77 4198.74 23199.60 15398.55 20999.76 7599.69 11398.23 17499.92 8596.39 28299.75 17399.76 36
nrg03099.70 2099.66 2299.82 2499.76 8599.84 1899.61 5199.70 9699.93 599.78 6899.68 12499.10 5999.78 26899.45 3599.96 4199.83 19
Baseline_NR-MVSNet99.49 5299.37 7199.82 2499.91 1599.84 1898.83 21699.86 2099.68 5099.65 11799.88 2997.67 21799.87 16599.03 9199.86 11499.76 36
MSP-MVS99.04 17098.79 19799.81 2799.78 7399.73 5899.35 9299.57 17198.54 21299.54 16098.99 30796.81 25399.93 6796.97 25099.53 25299.77 32
TransMVSNet (Re)99.78 1499.77 1399.81 2799.91 1599.85 1399.75 1599.86 2099.70 4599.91 2199.89 2699.60 1899.87 16599.59 2199.74 18199.71 45
XXY-MVS99.71 1999.67 2199.81 2799.89 2299.72 6299.59 5699.82 3799.39 10499.82 5099.84 4199.38 2899.91 10399.38 4399.93 6999.80 24
MP-MVS-pluss99.14 14898.92 17999.80 3099.83 3899.83 2298.61 23899.63 13296.84 30899.44 18199.58 18498.81 9399.91 10397.70 20099.82 14099.67 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.30 10299.14 11499.80 3099.81 5199.81 2998.73 23399.53 19599.27 11999.42 18799.63 15198.21 17599.95 4397.83 19199.79 15899.65 82
MTAPA99.35 8899.20 10699.80 3099.81 5199.81 2999.33 9599.53 19599.27 11999.42 18799.63 15198.21 17599.95 4397.83 19199.79 15899.65 82
HPM-MVS_fast99.43 6599.30 8799.80 3099.83 3899.81 2999.52 6399.70 9698.35 23499.51 17199.50 21399.31 3699.88 15298.18 15999.84 12199.69 51
MIMVSNet199.66 2599.62 2699.80 3099.94 1099.87 999.69 2999.77 6199.78 3499.93 1599.89 2697.94 19699.92 8599.65 1799.98 2299.62 105
ACMMP_NAP99.28 10599.11 12499.79 3599.75 9599.81 2998.95 20299.53 19598.27 24399.53 16499.73 8798.75 10899.87 16597.70 20099.83 13199.68 57
VPA-MVSNet99.66 2599.62 2699.79 3599.68 12999.75 4999.62 4799.69 10299.85 2099.80 6099.81 5198.81 9399.91 10399.47 3499.88 9999.70 48
Vis-MVSNetpermissive99.75 1699.74 1699.79 3599.88 2499.66 8299.69 2999.92 599.67 5299.77 7399.75 8099.61 1699.98 699.35 4799.98 2299.72 42
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
pm-mvs199.79 1399.79 1299.78 3899.91 1599.83 2299.76 1499.87 1899.73 3899.89 2799.87 3199.63 1499.87 16599.54 2699.92 7399.63 93
HPM-MVScopyleft99.25 11299.07 13999.78 3899.81 5199.75 4999.61 5199.67 10997.72 27399.35 20699.25 27399.23 4699.92 8597.21 23999.82 14099.67 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SED-MVS99.40 7599.28 9499.77 4099.69 12199.82 2699.20 13599.54 18699.13 14499.82 5099.63 15198.91 8399.92 8597.85 18899.70 20099.58 130
ZNCC-MVS99.22 12599.04 15199.77 4099.76 8599.73 5899.28 11399.56 17698.19 24899.14 24499.29 26598.84 9299.92 8597.53 21699.80 15399.64 88
DVP-MVS99.32 9999.17 10999.77 4099.69 12199.80 3499.14 15699.31 26699.16 13899.62 13099.61 16998.35 16199.91 10397.88 18299.72 19499.61 112
region2R99.23 11699.05 14599.77 4099.76 8599.70 7199.31 10299.59 16098.41 22399.32 21399.36 24898.73 11199.93 6797.29 22899.74 18199.67 64
PGM-MVS99.20 13299.01 15899.77 4099.75 9599.71 6499.16 15299.72 8997.99 25799.42 18799.60 17698.81 9399.93 6796.91 25399.74 18199.66 74
TDRefinement99.72 1899.70 1899.77 4099.90 2099.85 1399.86 699.92 599.69 4899.78 6899.92 1799.37 3099.88 15298.93 10699.95 4899.60 116
CL-MVSNet_2432*160099.63 3199.59 3399.76 4699.84 3499.90 599.37 8899.79 5399.83 2599.88 3399.85 3698.42 15299.90 12399.60 2099.73 18899.49 177
Anonymous2023121199.62 3499.57 3999.76 4699.61 14599.60 10399.81 1099.73 8099.82 2799.90 2399.90 2297.97 19599.86 18599.42 4199.96 4199.80 24
HFP-MVS99.25 11299.08 13599.76 4699.73 10499.70 7199.31 10299.59 16098.36 22999.36 20499.37 24398.80 9799.91 10397.43 22199.75 17399.68 57
#test#99.12 15298.90 18399.76 4699.73 10499.70 7199.10 17099.59 16097.60 27899.36 20499.37 24398.80 9799.91 10396.84 25999.75 17399.68 57
ACMMPR99.23 11699.06 14199.76 4699.74 10199.69 7599.31 10299.59 16098.36 22999.35 20699.38 24298.61 12599.93 6797.43 22199.75 17399.67 64
MP-MVScopyleft99.06 16498.83 19299.76 4699.76 8599.71 6499.32 9899.50 20998.35 23498.97 25999.48 22098.37 15999.92 8595.95 30099.75 17399.63 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4699.58 15299.64 8999.30 10599.63 13299.61 6899.71 9899.56 19598.76 10699.96 3499.14 8499.92 7399.68 57
mPP-MVS99.19 13599.00 16199.76 4699.76 8599.68 7899.38 8499.54 18698.34 23899.01 25799.50 21398.53 13899.93 6797.18 24199.78 16499.66 74
SixPastTwentyTwo99.42 6899.30 8799.76 4699.92 1499.67 8099.70 2399.14 29399.65 5899.89 2799.90 2296.20 26999.94 5499.42 4199.92 7399.67 64
SteuartSystems-ACMMP99.30 10299.14 11499.76 4699.87 2899.66 8299.18 14199.60 15398.55 20999.57 14699.67 13099.03 7199.94 5497.01 24899.80 15399.69 51
Skip Steuart: Steuart Systems R&D Blog.
GST-MVS99.16 14498.96 17299.75 5699.73 10499.73 5899.20 13599.55 18198.22 24599.32 21399.35 25398.65 12199.91 10396.86 25699.74 18199.62 105
XVS99.27 10999.11 12499.75 5699.71 11199.71 6499.37 8899.61 14299.29 11598.76 28499.47 22598.47 14599.88 15297.62 20899.73 18899.67 64
X-MVStestdata96.09 31794.87 32599.75 5699.71 11199.71 6499.37 8899.61 14299.29 11598.76 28461.30 36298.47 14599.88 15297.62 20899.73 18899.67 64
abl_699.36 8699.23 10499.75 5699.71 11199.74 5599.33 9599.76 6699.07 15299.65 11799.63 15199.09 6199.92 8597.13 24499.76 17099.58 130
CP-MVS99.23 11699.05 14599.75 5699.66 13599.66 8299.38 8499.62 13598.38 22799.06 25599.27 26998.79 10099.94 5497.51 21799.82 14099.66 74
test117299.23 11699.05 14599.74 6199.52 18499.75 4999.20 13599.61 14298.97 16199.48 17499.58 18498.41 15399.91 10397.15 24399.55 24499.57 136
SR-MVS99.19 13599.00 16199.74 6199.51 18999.72 6299.18 14199.60 15398.85 17999.47 17699.58 18498.38 15899.92 8596.92 25299.54 25099.57 136
HPM-MVS++copyleft98.96 18698.70 20499.74 6199.52 18499.71 6498.86 21199.19 28898.47 21998.59 29699.06 29998.08 18699.91 10396.94 25199.60 23599.60 116
APD-MVS_3200maxsize99.31 10199.16 11099.74 6199.53 17999.75 4999.27 11699.61 14299.19 13299.57 14699.64 14198.76 10699.90 12397.29 22899.62 22599.56 139
LPG-MVS_test99.22 12599.05 14599.74 6199.82 4499.63 9399.16 15299.73 8097.56 27999.64 11999.69 11399.37 3099.89 13796.66 26999.87 10799.69 51
LGP-MVS_train99.74 6199.82 4499.63 9399.73 8097.56 27999.64 11999.69 11399.37 3099.89 13796.66 26999.87 10799.69 51
DP-MVS99.48 5499.39 6699.74 6199.57 16299.62 9599.29 11299.61 14299.87 1599.74 8899.76 7698.69 11399.87 16598.20 15599.80 15399.75 39
ACMMPcopyleft99.25 11299.08 13599.74 6199.79 6799.68 7899.50 6599.65 12498.07 25399.52 16699.69 11398.57 12999.92 8597.18 24199.79 15899.63 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.27 10999.11 12499.73 6999.54 17499.74 5599.26 11799.62 13599.16 13899.52 16699.64 14198.41 15399.91 10397.27 23199.61 23299.54 149
SMA-MVScopyleft99.19 13599.00 16199.73 6999.46 21699.73 5899.13 16399.52 20397.40 28999.57 14699.64 14198.93 8099.83 23097.61 21099.79 15899.63 93
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GBi-Net99.42 6899.31 8299.73 6999.49 20099.77 4199.68 3299.70 9699.44 9699.62 13099.83 4297.21 24099.90 12398.96 10099.90 8399.53 154
test199.42 6899.31 8299.73 6999.49 20099.77 4199.68 3299.70 9699.44 9699.62 13099.83 4297.21 24099.90 12398.96 10099.90 8399.53 154
FMVSNet199.66 2599.63 2599.73 6999.78 7399.77 4199.68 3299.70 9699.67 5299.82 5099.83 4298.98 7499.90 12399.24 6399.97 3099.53 154
HyFIR lowres test98.91 19298.64 20799.73 6999.85 3399.47 12398.07 29299.83 3298.64 20099.89 2799.60 17692.57 303100.00 199.33 5099.97 3099.72 42
testtj98.56 23098.17 25299.72 7599.45 21999.60 10398.88 20799.50 20996.88 30599.18 23999.48 22097.08 24799.92 8593.69 33799.38 27599.63 93
UniMVSNet_NR-MVSNet99.37 8399.25 10199.72 7599.47 21199.56 11298.97 20099.61 14299.43 10199.67 10999.28 26797.85 20599.95 4399.17 7499.81 14899.65 82
ACMM98.09 1199.46 6199.38 6899.72 7599.80 5799.69 7599.13 16399.65 12498.99 15999.64 11999.72 9399.39 2499.86 18598.23 15299.81 14899.60 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH98.42 699.59 3799.54 4599.72 7599.86 3099.62 9599.56 6199.79 5398.77 19099.80 6099.85 3699.64 1399.85 20398.70 12399.89 9199.70 48
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 6199.37 7199.71 7999.82 4499.59 10699.48 6999.70 9699.81 2899.69 10399.58 18497.66 22199.86 18599.17 7499.44 26599.67 64
DU-MVS99.33 9799.21 10599.71 7999.43 22499.56 11298.83 21699.53 19599.38 10599.67 10999.36 24897.67 21799.95 4399.17 7499.81 14899.63 93
APD-MVScopyleft98.87 20098.59 21299.71 7999.50 19599.62 9599.01 18799.57 17196.80 31099.54 16099.63 15198.29 16799.91 10395.24 31799.71 19899.61 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH+98.40 899.50 5099.43 6299.71 7999.86 3099.76 4799.32 9899.77 6199.53 8099.77 7399.76 7699.26 4599.78 26897.77 19399.88 9999.60 116
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7199.70 8399.83 3899.70 7199.38 8499.78 5899.53 8099.67 10999.78 6699.19 4999.86 18597.32 22699.87 10799.55 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v398.87 20098.60 21099.69 8499.93 1399.46 12799.74 1694.97 35199.78 3499.88 3399.88 2993.66 29599.97 1799.61 1999.95 4899.64 88
UniMVSNet (Re)99.37 8399.26 9999.68 8599.51 18999.58 10998.98 19899.60 15399.43 10199.70 10099.36 24897.70 21299.88 15299.20 6799.87 10799.59 125
NR-MVSNet99.40 7599.31 8299.68 8599.43 22499.55 11599.73 1799.50 20999.46 9499.88 3399.36 24897.54 22599.87 16598.97 9899.87 10799.63 93
LCM-MVSNet-Re99.28 10599.15 11399.67 8799.33 25999.76 4799.34 9399.97 298.93 16999.91 2199.79 5998.68 11499.93 6796.80 26199.56 24099.30 233
casdiffmvs99.63 3199.61 3099.67 8799.79 6799.59 10699.13 16399.85 2499.79 3399.76 7599.72 9399.33 3599.82 24099.21 6499.94 6199.59 125
1112_ss99.05 16798.84 19099.67 8799.66 13599.29 17198.52 25399.82 3797.65 27699.43 18599.16 28796.42 26299.91 10399.07 8999.84 12199.80 24
DeepPCF-MVS98.42 699.18 13999.02 15599.67 8799.22 27899.75 4997.25 34099.47 22098.72 19599.66 11399.70 10799.29 3999.63 33098.07 16899.81 14899.62 105
DeepC-MVS98.90 499.62 3499.61 3099.67 8799.72 10899.44 13499.24 12599.71 9299.27 11999.93 1599.90 2299.70 1199.93 6798.99 9499.99 1399.64 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP97.51 1499.05 16798.84 19099.67 8799.78 7399.55 11598.88 20799.66 11397.11 30299.47 17699.60 17699.07 6699.89 13796.18 28999.85 11799.58 130
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator+98.92 399.35 8899.24 10299.67 8799.35 24499.47 12399.62 4799.50 20999.44 9699.12 24799.78 6698.77 10599.94 5497.87 18599.72 19499.62 105
v1099.69 2299.69 1999.66 9499.81 5199.39 14999.66 3999.75 7299.60 7499.92 1999.87 3198.75 10899.86 18599.90 299.99 1399.73 41
WR-MVS99.11 15698.93 17599.66 9499.30 26599.42 14298.42 26399.37 25399.04 15799.57 14699.20 28496.89 25299.86 18598.66 12799.87 10799.70 48
XVG-OURS-SEG-HR99.16 14498.99 16699.66 9499.84 3499.64 8998.25 27599.73 8098.39 22699.63 12399.43 23399.70 1199.90 12397.34 22598.64 32499.44 198
baseline99.63 3199.62 2699.66 9499.80 5799.62 9599.44 7599.80 4799.71 4299.72 9399.69 11399.15 5399.83 23099.32 5299.94 6199.53 154
EPP-MVSNet99.17 14399.00 16199.66 9499.80 5799.43 13999.70 2399.24 28399.48 8599.56 15399.77 7394.89 28299.93 6798.72 12299.89 9199.63 93
Anonymous2024052999.42 6899.34 7699.65 9999.53 17999.60 10399.63 4699.39 24699.47 9099.76 7599.78 6698.13 18299.86 18598.70 12399.68 20699.49 177
v899.68 2399.69 1999.65 9999.80 5799.40 14799.66 3999.76 6699.64 6099.93 1599.85 3698.66 11999.84 21999.88 699.99 1399.71 45
MCST-MVS99.02 17398.81 19499.65 9999.58 15299.49 12098.58 24299.07 29698.40 22599.04 25699.25 27398.51 14399.80 26197.31 22799.51 25599.65 82
XVG-OURS99.21 13099.06 14199.65 9999.82 4499.62 9597.87 31399.74 7798.36 22999.66 11399.68 12499.71 999.90 12396.84 25999.88 9999.43 204
CHOSEN 1792x268899.39 7999.30 8799.65 9999.88 2499.25 18198.78 22899.88 1698.66 19899.96 999.79 5997.45 22899.93 6799.34 4899.99 1399.78 31
QAPM98.40 24997.99 26099.65 9999.39 23499.47 12399.67 3699.52 20391.70 34798.78 28299.80 5398.55 13299.95 4394.71 32599.75 17399.53 154
3Dnovator99.15 299.43 6599.36 7499.65 9999.39 23499.42 14299.70 2399.56 17699.23 12799.35 20699.80 5399.17 5199.95 4398.21 15499.84 12199.59 125
lessismore_v099.64 10699.86 3099.38 15290.66 35899.89 2799.83 4294.56 28799.97 1799.56 2599.92 7399.57 136
114514_t98.49 24098.11 25599.64 10699.73 10499.58 10999.24 12599.76 6689.94 35099.42 18799.56 19597.76 21199.86 18597.74 19699.82 14099.47 187
CPTT-MVS98.74 21498.44 22799.64 10699.61 14599.38 15299.18 14199.55 18196.49 31399.27 22199.37 24397.11 24699.92 8595.74 30799.67 21399.62 105
RPSCF99.18 13999.02 15599.64 10699.83 3899.85 1399.44 7599.82 3798.33 23999.50 17299.78 6697.90 19999.65 32796.78 26299.83 13199.44 198
Anonymous20240521198.75 21298.46 22599.63 11099.34 25499.66 8299.47 7197.65 33799.28 11899.56 15399.50 21393.15 29899.84 21998.62 12899.58 23899.40 210
TSAR-MVS + MP.99.34 9399.24 10299.63 11099.82 4499.37 15599.26 11799.35 25798.77 19099.57 14699.70 10799.27 4499.88 15297.71 19899.75 17399.65 82
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS99.26 11199.13 11799.63 11099.70 11899.61 10198.58 24299.48 21698.50 21599.52 16699.63 15199.14 5599.76 27897.89 18199.77 16899.51 166
AllTest99.21 13099.07 13999.63 11099.78 7399.64 8999.12 16799.83 3298.63 20199.63 12399.72 9398.68 11499.75 28296.38 28399.83 13199.51 166
TestCases99.63 11099.78 7399.64 8999.83 3298.63 20199.63 12399.72 9398.68 11499.75 28296.38 28399.83 13199.51 166
V4299.56 4299.54 4599.63 11099.79 6799.46 12799.39 8299.59 16099.24 12599.86 3999.70 10798.55 13299.82 24099.79 1199.95 4899.60 116
XVG-ACMP-BASELINE99.23 11699.10 13299.63 11099.82 4499.58 10998.83 21699.72 8998.36 22999.60 13899.71 10098.92 8199.91 10397.08 24699.84 12199.40 210
Test_1112_low_res98.95 18998.73 19999.63 11099.68 12999.15 20198.09 28999.80 4797.14 30099.46 17999.40 23796.11 27199.89 13799.01 9399.84 12199.84 15
TAMVS99.49 5299.45 5799.63 11099.48 20699.42 14299.45 7299.57 17199.66 5699.78 6899.83 4297.85 20599.86 18599.44 3699.96 4199.61 112
SF-MVS99.10 16098.93 17599.62 11999.58 15299.51 11899.13 16399.65 12497.97 25999.42 18799.61 16998.86 8999.87 16596.45 28099.68 20699.49 177
testing_299.58 3899.56 4399.62 11999.81 5199.44 13499.14 15699.43 23299.69 4899.82 5099.79 5999.14 5599.79 26499.31 5599.95 4899.63 93
EG-PatchMatch MVS99.57 3999.56 4399.62 11999.77 8199.33 16599.26 11799.76 6699.32 11399.80 6099.78 6699.29 3999.87 16599.15 7899.91 8299.66 74
F-COLMAP98.74 21498.45 22699.62 11999.57 16299.47 12398.84 21499.65 12496.31 31798.93 26399.19 28697.68 21699.87 16596.52 27599.37 27999.53 154
CDPH-MVS98.56 23098.20 24799.61 12399.50 19599.46 12798.32 26999.41 23695.22 33199.21 23399.10 29698.34 16399.82 24095.09 32099.66 21799.56 139
LS3D99.24 11599.11 12499.61 12398.38 34499.79 3699.57 5999.68 10599.61 6899.15 24299.71 10098.70 11299.91 10397.54 21499.68 20699.13 269
tfpnnormal99.43 6599.38 6899.60 12599.87 2899.75 4999.59 5699.78 5899.71 4299.90 2399.69 11398.85 9199.90 12397.25 23699.78 16499.15 262
CSCG99.37 8399.29 9299.60 12599.71 11199.46 12799.43 7799.85 2498.79 18799.41 19599.60 17698.92 8199.92 8598.02 16999.92 7399.43 204
ETH3D-3000-0.198.77 20998.50 22399.59 12799.47 21199.53 11798.77 22999.60 15397.33 29399.23 22799.50 21397.91 19899.83 23095.02 32199.67 21399.41 208
v114499.54 4799.53 4999.59 12799.79 6799.28 17399.10 17099.61 14299.20 13199.84 4399.73 8798.67 11799.84 21999.86 899.98 2299.64 88
UnsupCasMVSNet_eth98.83 20398.57 21699.59 12799.68 12999.45 13298.99 19499.67 10999.48 8599.55 15899.36 24894.92 28199.86 18598.95 10496.57 34999.45 193
PHI-MVS99.11 15698.95 17499.59 12799.13 29299.59 10699.17 14699.65 12497.88 26599.25 22399.46 22898.97 7699.80 26197.26 23399.82 14099.37 218
v14419299.55 4599.54 4599.58 13199.78 7399.20 19699.11 16999.62 13599.18 13399.89 2799.72 9398.66 11999.87 16599.88 699.97 3099.66 74
v2v48299.50 5099.47 5399.58 13199.78 7399.25 18199.14 15699.58 16999.25 12399.81 5799.62 16098.24 17199.84 21999.83 999.97 3099.64 88
test20.0399.55 4599.54 4599.58 13199.79 6799.37 15599.02 18599.89 1399.60 7499.82 5099.62 16098.81 9399.89 13799.43 3799.86 11499.47 187
PM-MVS99.36 8699.29 9299.58 13199.83 3899.66 8298.95 20299.86 2098.85 17999.81 5799.73 8798.40 15799.92 8598.36 13999.83 13199.17 258
NCCC98.82 20598.57 21699.58 13199.21 27999.31 16898.61 23899.25 28098.65 19998.43 30699.26 27197.86 20399.81 25696.55 27399.27 29299.61 112
train_agg98.35 25497.95 26499.57 13699.35 24499.35 16298.11 28799.41 23694.90 33597.92 32898.99 30798.02 19099.85 20395.38 31599.44 26599.50 172
agg_prior198.33 25697.92 27099.57 13699.35 24499.36 15897.99 30199.39 24694.85 33897.76 33798.98 31098.03 18899.85 20395.49 31199.44 26599.51 166
v119299.57 3999.57 3999.57 13699.77 8199.22 19099.04 18299.60 15399.18 13399.87 3899.72 9399.08 6499.85 20399.89 599.98 2299.66 74
PMMVS299.48 5499.45 5799.57 13699.76 8598.99 21698.09 28999.90 1198.95 16599.78 6899.58 18499.57 1999.93 6799.48 3399.95 4899.79 30
VNet99.18 13999.06 14199.56 14099.24 27699.36 15899.33 9599.31 26699.67 5299.47 17699.57 19296.48 25999.84 21999.15 7899.30 28799.47 187
CNVR-MVS98.99 18298.80 19699.56 14099.25 27499.43 13998.54 25199.27 27598.58 20698.80 27999.43 23398.53 13899.70 29497.22 23899.59 23799.54 149
DeepC-MVS_fast98.47 599.23 11699.12 12199.56 14099.28 26999.22 19098.99 19499.40 24399.08 15099.58 14399.64 14198.90 8699.83 23097.44 22099.75 17399.63 93
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v192192099.56 4299.57 3999.55 14399.75 9599.11 20499.05 18099.61 14299.15 14299.88 3399.71 10099.08 6499.87 16599.90 299.97 3099.66 74
HQP_MVS98.90 19498.68 20699.55 14399.58 15299.24 18698.80 22499.54 18698.94 16699.14 24499.25 27397.24 23899.82 24095.84 30399.78 16499.60 116
FMVSNet299.35 8899.28 9499.55 14399.49 20099.35 16299.45 7299.57 17199.44 9699.70 10099.74 8397.21 24099.87 16599.03 9199.94 6199.44 198
IS-MVSNet99.03 17198.85 18899.55 14399.80 5799.25 18199.73 1799.15 29299.37 10699.61 13699.71 10094.73 28599.81 25697.70 20099.88 9999.58 130
xxxxxxxxxxxxxcwj99.11 15698.96 17299.54 14799.53 17999.25 18198.29 27199.76 6699.07 15299.42 18799.61 16998.86 8999.87 16596.45 28099.68 20699.49 177
test1299.54 14799.29 26799.33 16599.16 29198.43 30697.54 22599.82 24099.47 26299.48 182
Regformer-299.34 9399.27 9799.53 14999.41 23099.10 20898.99 19499.53 19599.47 9099.66 11399.52 20798.80 9799.89 13798.31 14599.74 18199.60 116
Effi-MVS+-dtu99.07 16398.92 17999.52 15098.89 31899.78 3999.15 15499.66 11399.34 10998.92 26699.24 27897.69 21499.98 698.11 16599.28 28998.81 305
新几何199.52 15099.50 19599.22 19099.26 27795.66 32798.60 29599.28 26797.67 21799.89 13795.95 30099.32 28599.45 193
112198.56 23098.24 24399.52 15099.49 20099.24 18699.30 10599.22 28595.77 32498.52 30199.29 26597.39 23299.85 20395.79 30599.34 28299.46 191
ETH3D cwj APD-0.1698.50 23798.16 25399.51 15399.04 30799.39 14998.47 25799.47 22096.70 31298.78 28299.33 25797.62 22499.86 18594.69 32699.38 27599.28 238
pmmvs-eth3d99.48 5499.47 5399.51 15399.77 8199.41 14698.81 22199.66 11399.42 10399.75 8099.66 13499.20 4899.76 27898.98 9699.99 1399.36 221
v124099.56 4299.58 3699.51 15399.80 5799.00 21599.00 18999.65 12499.15 14299.90 2399.75 8099.09 6199.88 15299.90 299.96 4199.67 64
ETH3 D test640097.76 27897.19 29399.50 15699.38 23799.26 17798.34 26699.49 21492.99 34498.54 30099.20 28495.92 27599.82 24091.14 34499.66 21799.40 210
Regformer-499.45 6399.44 5999.50 15699.52 18498.94 22299.17 14699.53 19599.64 6099.76 7599.60 17698.96 7999.90 12398.91 10799.84 12199.67 64
CDS-MVSNet99.22 12599.13 11799.50 15699.35 24499.11 20498.96 20199.54 18699.46 9499.61 13699.70 10796.31 26699.83 23099.34 4899.88 9999.55 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmtry98.78 20898.54 21999.49 15998.89 31899.19 19799.32 9899.67 10999.65 5899.72 9399.79 5991.87 31099.95 4398.00 17399.97 3099.33 227
UGNet99.38 8199.34 7699.49 15998.90 31598.90 23099.70 2399.35 25799.86 1798.57 29899.81 5198.50 14499.93 6799.38 4399.98 2299.66 74
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Gipumacopyleft99.57 3999.59 3399.49 15999.98 399.71 6499.72 2099.84 3099.81 2899.94 1299.78 6698.91 8399.71 29298.41 13699.95 4899.05 285
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DELS-MVS99.34 9399.30 8799.48 16299.51 18999.36 15898.12 28599.53 19599.36 10899.41 19599.61 16999.22 4799.87 16599.21 6499.68 20699.20 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft97.35 1698.36 25197.99 26099.48 16299.32 26099.24 18698.50 25599.51 20695.19 33398.58 29798.96 31596.95 25199.83 23095.63 30899.25 29399.37 218
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023120699.35 8899.31 8299.47 16499.74 10199.06 21499.28 11399.74 7799.23 12799.72 9399.53 20597.63 22399.88 15299.11 8699.84 12199.48 182
Regformer-199.32 9999.27 9799.47 16499.41 23098.95 22198.99 19499.48 21699.48 8599.66 11399.52 20798.78 10299.87 16598.36 13999.74 18199.60 116
ab-mvs99.33 9799.28 9499.47 16499.57 16299.39 14999.78 1199.43 23298.87 17799.57 14699.82 4898.06 18799.87 16598.69 12599.73 18899.15 262
Fast-Effi-MVS+99.02 17398.87 18699.46 16799.38 23799.50 11999.04 18299.79 5397.17 29898.62 29398.74 33099.34 3499.95 4398.32 14499.41 27198.92 296
test_prior398.62 22298.34 23899.46 16799.35 24499.22 19097.95 30699.39 24697.87 26698.05 32299.05 30097.90 19999.69 30095.99 29699.49 25999.48 182
test_prior99.46 16799.35 24499.22 19099.39 24699.69 30099.48 182
TAPA-MVS97.92 1398.03 27097.55 28499.46 16799.47 21199.44 13498.50 25599.62 13586.79 35199.07 25499.26 27198.26 17099.62 33197.28 23099.73 18899.31 232
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EIA-MVS99.12 15299.01 15899.45 17199.36 24299.62 9599.34 9399.79 5398.41 22398.84 27498.89 32298.75 10899.84 21998.15 16399.51 25598.89 298
test_040299.22 12599.14 11499.45 17199.79 6799.43 13999.28 11399.68 10599.54 7899.40 20099.56 19599.07 6699.82 24096.01 29499.96 4199.11 270
VDD-MVS99.20 13299.11 12499.44 17399.43 22498.98 21799.50 6598.32 32899.80 3199.56 15399.69 11396.99 25099.85 20398.99 9499.73 18899.50 172
PVSNet_Blended_VisFu99.40 7599.38 6899.44 17399.90 2098.66 24398.94 20499.91 897.97 25999.79 6599.73 8799.05 6999.97 1799.15 7899.99 1399.68 57
OMC-MVS98.90 19498.72 20099.44 17399.39 23499.42 14298.58 24299.64 13097.31 29499.44 18199.62 16098.59 12799.69 30096.17 29099.79 15899.22 247
Fast-Effi-MVS+-dtu99.20 13299.12 12199.43 17699.25 27499.69 7599.05 18099.82 3799.50 8398.97 25999.05 30098.98 7499.98 698.20 15599.24 29598.62 311
MVP-Stereo99.16 14499.08 13599.43 17699.48 20699.07 21299.08 17799.55 18198.63 20199.31 21599.68 12498.19 17899.78 26898.18 15999.58 23899.45 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs599.19 13599.11 12499.42 17899.76 8598.88 23198.55 24899.73 8098.82 18399.72 9399.62 16096.56 25699.82 24099.32 5299.95 4899.56 139
EI-MVSNet-UG-set99.48 5499.50 5199.42 17899.57 16298.65 24599.24 12599.46 22499.68 5099.80 6099.66 13498.99 7399.89 13799.19 6999.90 8399.72 42
EI-MVSNet-Vis-set99.47 6099.49 5299.42 17899.57 16298.66 24399.24 12599.46 22499.67 5299.79 6599.65 13998.97 7699.89 13799.15 7899.89 9199.71 45
testdata99.42 17899.51 18998.93 22699.30 26996.20 31898.87 27199.40 23798.33 16599.89 13796.29 28699.28 28999.44 198
VDDNet98.97 18398.82 19399.42 17899.71 11198.81 23499.62 4798.68 31299.81 2899.38 20299.80 5394.25 28999.85 20398.79 11599.32 28599.59 125
FMVSNet597.80 27697.25 29099.42 17898.83 32498.97 21999.38 8499.80 4798.87 17799.25 22399.69 11380.60 35899.91 10398.96 10099.90 8399.38 215
MVS_111021_LR99.13 15099.03 15399.42 17899.58 15299.32 16797.91 31299.73 8098.68 19799.31 21599.48 22099.09 6199.66 32097.70 20099.77 16899.29 236
RRT_MVS98.75 21298.54 21999.41 18598.14 35398.61 24698.98 19899.66 11399.31 11499.84 4399.75 8091.98 30799.98 699.20 6799.95 4899.62 105
CMPMVSbinary77.52 2398.50 23798.19 25099.41 18598.33 34699.56 11299.01 18799.59 16095.44 32899.57 14699.80 5395.64 27799.46 34796.47 27999.92 7399.21 249
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Regformer-399.41 7299.41 6499.40 18799.52 18498.70 24099.17 14699.44 22999.62 6499.75 8099.60 17698.90 8699.85 20398.89 10899.84 12199.65 82
UnsupCasMVSNet_bld98.55 23398.27 24299.40 18799.56 17299.37 15597.97 30599.68 10597.49 28599.08 25199.35 25395.41 28099.82 24097.70 20098.19 33699.01 290
MVS_111021_HR99.12 15299.02 15599.40 18799.50 19599.11 20497.92 31099.71 9298.76 19399.08 25199.47 22599.17 5199.54 34097.85 18899.76 17099.54 149
MVS_030498.88 19898.71 20199.39 19098.85 32298.91 22999.45 7299.30 26998.56 20797.26 34399.68 12496.18 27099.96 3499.17 7499.94 6199.29 236
v14899.40 7599.41 6499.39 19099.76 8598.94 22299.09 17499.59 16099.17 13699.81 5799.61 16998.41 15399.69 30099.32 5299.94 6199.53 154
diffmvs99.34 9399.32 8199.39 19099.67 13498.77 23798.57 24699.81 4699.61 6899.48 17499.41 23598.47 14599.86 18598.97 9899.90 8399.53 154
HQP-MVS98.36 25198.02 25999.39 19099.31 26198.94 22297.98 30299.37 25397.45 28698.15 31698.83 32596.67 25499.70 29494.73 32399.67 21399.53 154
TSAR-MVS + GP.99.12 15299.04 15199.38 19499.34 25499.16 19998.15 28199.29 27198.18 24999.63 12399.62 16099.18 5099.68 31198.20 15599.74 18199.30 233
AdaColmapbinary98.60 22498.35 23799.38 19499.12 29499.22 19098.67 23799.42 23597.84 27098.81 27799.27 26997.32 23699.81 25695.14 31899.53 25299.10 272
ITE_SJBPF99.38 19499.63 14199.44 13499.73 8098.56 20799.33 21199.53 20598.88 8899.68 31196.01 29499.65 22099.02 289
原ACMM199.37 19799.47 21198.87 23399.27 27596.74 31198.26 31199.32 25897.93 19799.82 24095.96 29999.38 27599.43 204
testgi99.29 10499.26 9999.37 19799.75 9598.81 23498.84 21499.89 1398.38 22799.75 8099.04 30399.36 3399.86 18599.08 8899.25 29399.45 193
MSDG99.08 16298.98 16999.37 19799.60 14799.13 20297.54 32699.74 7798.84 18299.53 16499.55 20199.10 5999.79 26497.07 24799.86 11499.18 256
pmmvs499.13 15099.06 14199.36 20099.57 16299.10 20898.01 29799.25 28098.78 18999.58 14399.44 23298.24 17199.76 27898.74 12099.93 6999.22 247
N_pmnet98.73 21698.53 22199.35 20199.72 10898.67 24298.34 26694.65 35298.35 23499.79 6599.68 12498.03 18899.93 6798.28 14899.92 7399.44 198
Effi-MVS+99.06 16498.97 17099.34 20299.31 26198.98 21798.31 27099.91 898.81 18498.79 28098.94 31799.14 5599.84 21998.79 11598.74 32099.20 252
Vis-MVSNet (Re-imp)98.77 20998.58 21599.34 20299.78 7398.88 23199.61 5199.56 17699.11 14899.24 22699.56 19593.00 30199.78 26897.43 22199.89 9199.35 224
Patchmatch-RL test98.60 22498.36 23599.33 20499.77 8199.07 21298.27 27399.87 1898.91 17299.74 8899.72 9390.57 32799.79 26498.55 13199.85 11799.11 270
PAPM_NR98.36 25198.04 25899.33 20499.48 20698.93 22698.79 22799.28 27497.54 28198.56 29998.57 33597.12 24599.69 30094.09 33298.90 31199.38 215
PCF-MVS96.03 1896.73 30595.86 31699.33 20499.44 22299.16 19996.87 34699.44 22986.58 35298.95 26199.40 23794.38 28899.88 15287.93 34999.80 15398.95 293
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS98.76 21198.57 21699.33 20499.57 16298.97 21997.53 32899.55 18196.41 31499.27 22199.13 28999.07 6699.78 26896.73 26599.89 9199.23 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS98.28 25797.94 26899.32 20899.36 24299.11 20497.31 33898.78 30996.88 30598.84 27499.11 29597.77 21099.61 33594.03 33499.36 28099.23 245
jason99.16 14499.11 12499.32 20899.75 9598.44 25498.26 27499.39 24698.70 19699.74 8899.30 26298.54 13499.97 1798.48 13499.82 14099.55 142
jason: jason.
FMVSNet398.80 20798.63 20999.32 20899.13 29298.72 23999.10 17099.48 21699.23 12799.62 13099.64 14192.57 30399.86 18598.96 10099.90 8399.39 213
MVSFormer99.41 7299.44 5999.31 21199.57 16298.40 25799.77 1299.80 4799.73 3899.63 12399.30 26298.02 19099.98 699.43 3799.69 20399.55 142
DP-MVS Recon98.50 23798.23 24499.31 21199.49 20099.46 12798.56 24799.63 13294.86 33798.85 27399.37 24397.81 20799.59 33796.08 29199.44 26598.88 299
PatchMatch-RL98.68 21998.47 22499.30 21399.44 22299.28 17398.14 28399.54 18697.12 30199.11 24899.25 27397.80 20899.70 29496.51 27699.30 28798.93 295
OPU-MVS99.29 21499.12 29499.44 13499.20 13599.40 23799.00 7298.84 35396.54 27499.60 23599.58 130
D2MVS99.22 12599.19 10799.29 21499.69 12198.74 23898.81 22199.41 23698.55 20999.68 10599.69 11398.13 18299.87 16598.82 11399.98 2299.24 242
CANet99.11 15699.05 14599.28 21698.83 32498.56 24798.71 23699.41 23699.25 12399.23 22799.22 28097.66 22199.94 5499.19 6999.97 3099.33 227
CNLPA98.57 22998.34 23899.28 21699.18 28699.10 20898.34 26699.41 23698.48 21898.52 30198.98 31097.05 24899.78 26895.59 30999.50 25798.96 292
sss98.90 19498.77 19899.27 21899.48 20698.44 25498.72 23499.32 26297.94 26399.37 20399.35 25396.31 26699.91 10398.85 11099.63 22499.47 187
LF4IMVS99.01 17798.92 17999.27 21899.71 11199.28 17398.59 24199.77 6198.32 24099.39 20199.41 23598.62 12399.84 21996.62 27299.84 12198.69 309
LFMVS98.46 24398.19 25099.26 22099.24 27698.52 25099.62 4796.94 34499.87 1599.31 21599.58 18491.04 31899.81 25698.68 12699.42 27099.45 193
WTY-MVS98.59 22798.37 23499.26 22099.43 22498.40 25798.74 23199.13 29598.10 25199.21 23399.24 27894.82 28399.90 12397.86 18698.77 31699.49 177
OpenMVScopyleft98.12 1098.23 26297.89 27499.26 22099.19 28499.26 17799.65 4499.69 10291.33 34898.14 32099.77 7398.28 16899.96 3495.41 31499.55 24498.58 315
CS-MVS99.09 16199.03 15399.25 22399.45 21999.49 12099.41 7899.82 3799.10 14998.03 32598.48 34199.30 3899.89 13798.30 14699.41 27198.35 325
alignmvs98.28 25797.96 26399.25 22399.12 29498.93 22699.03 18498.42 32499.64 6098.72 28797.85 35090.86 32399.62 33198.88 10999.13 29899.19 254
IterMVS-LS99.41 7299.47 5399.25 22399.81 5198.09 27698.85 21399.76 6699.62 6499.83 4899.64 14198.54 13499.97 1799.15 7899.99 1399.68 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lupinMVS98.96 18698.87 18699.24 22699.57 16298.40 25798.12 28599.18 28998.28 24299.63 12399.13 28998.02 19099.97 1798.22 15399.69 20399.35 224
MVSTER98.47 24298.22 24599.24 22699.06 30498.35 26299.08 17799.46 22499.27 11999.75 8099.66 13488.61 33799.85 20399.14 8499.92 7399.52 164
mvs-test198.83 20398.70 20499.22 22898.89 31899.65 8798.88 20799.66 11399.34 10998.29 30998.94 31797.69 21499.96 3498.11 16598.54 32898.04 338
EI-MVSNet99.38 8199.44 5999.21 22999.58 15298.09 27699.26 11799.46 22499.62 6499.75 8099.67 13098.54 13499.85 20399.15 7899.92 7399.68 57
BH-RMVSNet98.41 24798.14 25499.21 22999.21 27998.47 25198.60 24098.26 32998.35 23498.93 26399.31 26097.20 24399.66 32094.32 32899.10 30099.51 166
ambc99.20 23199.35 24498.53 24899.17 14699.46 22499.67 10999.80 5398.46 14899.70 29497.92 17999.70 20099.38 215
MVS_Test99.28 10599.31 8299.19 23299.35 24498.79 23699.36 9199.49 21499.17 13699.21 23399.67 13098.78 10299.66 32099.09 8799.66 21799.10 272
MAR-MVS98.24 26197.92 27099.19 23298.78 33299.65 8799.17 14699.14 29395.36 32998.04 32498.81 32797.47 22799.72 28895.47 31399.06 30198.21 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet98.13 26597.77 27899.18 23494.57 35997.99 28099.24 12597.96 33299.74 3797.29 34299.62 16093.13 29999.97 1798.59 12999.83 13199.58 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETV-MVS99.18 13999.18 10899.16 23599.34 25499.28 17399.12 16799.79 5399.48 8598.93 26398.55 33799.40 2399.93 6798.51 13399.52 25498.28 328
AUN-MVS97.82 27597.38 28699.14 23699.27 27198.53 24898.72 23499.02 30098.10 25197.18 34599.03 30489.26 33699.85 20397.94 17897.91 34299.03 287
test_yl98.25 25997.95 26499.13 23799.17 28798.47 25199.00 18998.67 31498.97 16199.22 23199.02 30591.31 31499.69 30097.26 23398.93 30799.24 242
DCV-MVSNet98.25 25997.95 26499.13 23799.17 28798.47 25199.00 18998.67 31498.97 16199.22 23199.02 30591.31 31499.69 30097.26 23398.93 30799.24 242
MIMVSNet98.43 24598.20 24799.11 23999.53 17998.38 26099.58 5898.61 31698.96 16499.33 21199.76 7690.92 32099.81 25697.38 22499.76 17099.15 262
PMMVS98.49 24098.29 24199.11 23998.96 31298.42 25697.54 32699.32 26297.53 28298.47 30598.15 34797.88 20299.82 24097.46 21999.24 29599.09 275
CANet_DTU98.91 19298.85 18899.09 24198.79 33098.13 27198.18 27899.31 26699.48 8598.86 27299.51 21096.56 25699.95 4399.05 9099.95 4899.19 254
MS-PatchMatch99.00 17998.97 17099.09 24199.11 29998.19 26898.76 23099.33 26098.49 21799.44 18199.58 18498.21 17599.69 30098.20 15599.62 22599.39 213
canonicalmvs99.02 17399.00 16199.09 24199.10 30098.70 24099.61 5199.66 11399.63 6398.64 29297.65 35299.04 7099.54 34098.79 11598.92 30999.04 286
PVSNet_BlendedMVS99.03 17199.01 15899.09 24199.54 17497.99 28098.58 24299.82 3797.62 27799.34 20999.71 10098.52 14199.77 27697.98 17499.97 3099.52 164
MDA-MVSNet-bldmvs99.06 16499.05 14599.07 24599.80 5797.83 28798.89 20699.72 8999.29 11599.63 12399.70 10796.47 26099.89 13798.17 16199.82 14099.50 172
TinyColmap98.97 18398.93 17599.07 24599.46 21698.19 26897.75 31799.75 7298.79 18799.54 16099.70 10798.97 7699.62 33196.63 27199.83 13199.41 208
USDC98.96 18698.93 17599.05 24799.54 17497.99 28097.07 34399.80 4798.21 24699.75 8099.77 7398.43 15099.64 32997.90 18099.88 9999.51 166
PAPR97.56 28697.07 29599.04 24898.80 32998.11 27497.63 32299.25 28094.56 34198.02 32698.25 34697.43 22999.68 31190.90 34598.74 32099.33 227
PVSNet_Blended98.70 21898.59 21299.02 24999.54 17497.99 28097.58 32599.82 3795.70 32699.34 20998.98 31098.52 14199.77 27697.98 17499.83 13199.30 233
MVS95.72 32394.63 32798.99 25098.56 34097.98 28599.30 10598.86 30472.71 35697.30 34199.08 29798.34 16399.74 28489.21 34698.33 33299.26 239
HY-MVS98.23 998.21 26497.95 26498.99 25099.03 30898.24 26499.61 5198.72 31196.81 30998.73 28699.51 21094.06 29099.86 18596.91 25398.20 33498.86 301
baseline197.73 27997.33 28798.96 25299.30 26597.73 29199.40 8098.42 32499.33 11299.46 17999.21 28291.18 31699.82 24098.35 14191.26 35499.32 230
DSMNet-mixed99.48 5499.65 2398.95 25399.71 11197.27 30399.50 6599.82 3799.59 7699.41 19599.85 3699.62 15100.00 199.53 2899.89 9199.59 125
thisisatest053097.45 28896.95 29998.94 25499.68 12997.73 29199.09 17494.19 35598.61 20499.56 15399.30 26284.30 35399.93 6798.27 14999.54 25099.16 260
mvs_anonymous99.28 10599.39 6698.94 25499.19 28497.81 28899.02 18599.55 18199.78 3499.85 4099.80 5398.24 17199.86 18599.57 2499.50 25799.15 262
MG-MVS98.52 23698.39 23298.94 25499.15 28997.39 30198.18 27899.21 28798.89 17699.23 22799.63 15197.37 23499.74 28494.22 33099.61 23299.69 51
GA-MVS97.99 27397.68 28198.93 25799.52 18498.04 27997.19 34299.05 29998.32 24098.81 27798.97 31389.89 33499.41 34898.33 14399.05 30299.34 226
cl-mvsnet_98.54 23498.41 23098.92 25899.03 30897.80 28997.46 33299.59 16098.90 17399.60 13899.46 22893.85 29299.78 26897.97 17699.89 9199.17 258
cl-mvsnet198.54 23498.42 22998.92 25899.03 30897.80 28997.46 33299.59 16098.90 17399.60 13899.46 22893.87 29199.78 26897.97 17699.89 9199.18 256
ET-MVSNet_ETH3D96.78 30396.07 31298.91 26099.26 27397.92 28697.70 32096.05 34897.96 26292.37 35698.43 34287.06 34199.90 12398.27 14997.56 34698.91 297
xiu_mvs_v1_base_debu99.23 11699.34 7698.91 26099.59 14998.23 26598.47 25799.66 11399.61 6899.68 10598.94 31799.39 2499.97 1799.18 7199.55 24498.51 319
xiu_mvs_v1_base99.23 11699.34 7698.91 26099.59 14998.23 26598.47 25799.66 11399.61 6899.68 10598.94 31799.39 2499.97 1799.18 7199.55 24498.51 319
xiu_mvs_v1_base_debi99.23 11699.34 7698.91 26099.59 14998.23 26598.47 25799.66 11399.61 6899.68 10598.94 31799.39 2499.97 1799.18 7199.55 24498.51 319
MSLP-MVS++99.05 16799.09 13398.91 26099.21 27998.36 26198.82 22099.47 22098.85 17998.90 26999.56 19598.78 10299.09 35198.57 13099.68 20699.26 239
pmmvs398.08 26897.80 27598.91 26099.41 23097.69 29397.87 31399.66 11395.87 32299.50 17299.51 21090.35 32999.97 1798.55 13199.47 26299.08 278
tttt051797.62 28397.20 29298.90 26699.76 8597.40 30099.48 6994.36 35399.06 15699.70 10099.49 21884.55 35299.94 5498.73 12199.65 22099.36 221
OpenMVS_ROBcopyleft97.31 1797.36 29296.84 30398.89 26799.29 26799.45 13298.87 21099.48 21686.54 35399.44 18199.74 8397.34 23599.86 18591.61 34199.28 28997.37 346
MDA-MVSNet_test_wron98.95 18998.99 16698.85 26899.64 13997.16 30698.23 27699.33 26098.93 16999.56 15399.66 13497.39 23299.83 23098.29 14799.88 9999.55 142
PMVScopyleft92.94 2198.82 20598.81 19498.85 26899.84 3497.99 28099.20 13599.47 22099.71 4299.42 18799.82 4898.09 18499.47 34593.88 33699.85 11799.07 283
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
YYNet198.95 18998.99 16698.84 27099.64 13997.14 30798.22 27799.32 26298.92 17199.59 14199.66 13497.40 23099.83 23098.27 14999.90 8399.55 142
new_pmnet98.88 19898.89 18498.84 27099.70 11897.62 29498.15 28199.50 20997.98 25899.62 13099.54 20398.15 18199.94 5497.55 21399.84 12198.95 293
CR-MVSNet98.35 25498.20 24798.83 27299.05 30598.12 27299.30 10599.67 10997.39 29099.16 24099.79 5991.87 31099.91 10398.78 11898.77 31698.44 322
PatchT98.45 24498.32 24098.83 27298.94 31398.29 26399.24 12598.82 30799.84 2299.08 25199.76 7691.37 31399.94 5498.82 11399.00 30698.26 329
RPMNet98.60 22498.53 22198.83 27299.05 30598.12 27299.30 10599.62 13599.86 1799.16 24099.74 8392.53 30599.92 8598.75 11998.77 31698.44 322
miper_lstm_enhance98.65 22198.60 21098.82 27599.20 28297.33 30297.78 31699.66 11399.01 15899.59 14199.50 21394.62 28699.85 20398.12 16499.90 8399.26 239
FPMVS96.32 31395.50 32198.79 27699.60 14798.17 27098.46 26298.80 30897.16 29996.28 34899.63 15182.19 35499.09 35188.45 34898.89 31299.10 272
xiu_mvs_v2_base99.02 17399.11 12498.77 27799.37 24098.09 27698.13 28499.51 20699.47 9099.42 18798.54 33899.38 2899.97 1798.83 11199.33 28498.24 330
PS-MVSNAJ99.00 17999.08 13598.76 27899.37 24098.10 27598.00 29999.51 20699.47 9099.41 19598.50 34099.28 4199.97 1798.83 11199.34 28298.20 334
test0.0.03 197.37 29196.91 30298.74 27997.72 35497.57 29597.60 32497.36 34398.00 25599.21 23398.02 34890.04 33299.79 26498.37 13895.89 35298.86 301
cl_fuxian98.72 21798.71 20198.72 28099.12 29497.22 30597.68 32199.56 17698.90 17399.54 16099.48 22096.37 26599.73 28697.88 18299.88 9999.21 249
EU-MVSNet99.39 7999.62 2698.72 28099.88 2496.44 31999.56 6199.85 2499.90 899.90 2399.85 3698.09 18499.83 23099.58 2399.95 4899.90 5
new-patchmatchnet99.35 8899.57 3998.71 28299.82 4496.62 31798.55 24899.75 7299.50 8399.88 3399.87 3199.31 3699.88 15299.43 37100.00 199.62 105
thisisatest051596.98 29996.42 30698.66 28399.42 22997.47 29797.27 33994.30 35497.24 29699.15 24298.86 32485.01 35099.87 16597.10 24599.39 27498.63 310
eth_miper_zixun_eth98.68 21998.71 20198.60 28499.10 30096.84 31497.52 33099.54 18698.94 16699.58 14399.48 22096.25 26899.76 27898.01 17299.93 6999.21 249
miper_ehance_all_eth98.59 22798.59 21298.59 28598.98 31197.07 30897.49 33199.52 20398.50 21599.52 16699.37 24396.41 26499.71 29297.86 18699.62 22599.00 291
BH-untuned98.22 26398.09 25698.58 28699.38 23797.24 30498.55 24898.98 30297.81 27199.20 23898.76 32997.01 24999.65 32794.83 32298.33 33298.86 301
IterMVS-SCA-FT99.00 17999.16 11098.51 28799.75 9595.90 32798.07 29299.84 3099.84 2299.89 2799.73 8796.01 27399.99 499.33 50100.00 199.63 93
JIA-IIPM98.06 26997.92 27098.50 28898.59 33997.02 30998.80 22498.51 32099.88 1497.89 33099.87 3191.89 30999.90 12398.16 16297.68 34598.59 313
Patchmatch-test98.10 26797.98 26298.48 28999.27 27196.48 31899.40 8099.07 29698.81 18499.23 22799.57 19290.11 33199.87 16596.69 26699.64 22299.09 275
baseline296.83 30296.28 30898.46 29099.09 30296.91 31298.83 21693.87 35697.23 29796.23 35198.36 34388.12 33899.90 12396.68 26798.14 33898.57 316
IterMVS98.97 18399.16 11098.42 29199.74 10195.64 33098.06 29499.83 3299.83 2599.85 4099.74 8396.10 27299.99 499.27 62100.00 199.63 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet297.56 28697.28 28898.40 29298.37 34596.75 31597.24 34199.37 25397.31 29499.41 19599.22 28087.30 33999.37 34997.70 20099.62 22599.08 278
CHOSEN 280x42098.41 24798.41 23098.40 29299.34 25495.89 32896.94 34599.44 22998.80 18699.25 22399.52 20793.51 29699.98 698.94 10599.98 2299.32 230
API-MVS98.38 25098.39 23298.35 29498.83 32499.26 17799.14 15699.18 28998.59 20598.66 29198.78 32898.61 12599.57 33994.14 33199.56 24096.21 350
PVSNet97.47 1598.42 24698.44 22798.35 29499.46 21696.26 32196.70 34899.34 25997.68 27599.00 25899.13 28997.40 23099.72 28897.59 21299.68 20699.08 278
miper_enhance_ethall98.03 27097.94 26898.32 29698.27 34796.43 32096.95 34499.41 23696.37 31699.43 18598.96 31594.74 28499.69 30097.71 19899.62 22598.83 304
TR-MVS97.44 28997.15 29498.32 29698.53 34197.46 29898.47 25797.91 33496.85 30798.21 31598.51 33996.42 26299.51 34392.16 34097.29 34797.98 339
PAPM95.61 32494.71 32698.31 29899.12 29496.63 31696.66 34998.46 32390.77 34996.25 34998.68 33293.01 30099.69 30081.60 35597.86 34498.62 311
MVEpermissive92.54 2296.66 30796.11 31198.31 29899.68 12997.55 29697.94 30895.60 35099.37 10690.68 35798.70 33196.56 25698.61 35586.94 35499.55 24498.77 307
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131498.00 27297.90 27398.27 30098.90 31597.45 29999.30 10599.06 29894.98 33497.21 34499.12 29398.43 15099.67 31695.58 31098.56 32797.71 342
ppachtmachnet_test98.89 19799.12 12198.20 30199.66 13595.24 33497.63 32299.68 10599.08 15099.78 6899.62 16098.65 12199.88 15298.02 16999.96 4199.48 182
SD-MVS99.01 17799.30 8798.15 30299.50 19599.40 14798.94 20499.61 14299.22 13099.75 8099.82 4899.54 2095.51 35797.48 21899.87 10799.54 149
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
our_test_398.85 20299.09 13398.13 30399.66 13594.90 33797.72 31899.58 16999.07 15299.64 11999.62 16098.19 17899.93 6798.41 13699.95 4899.55 142
ADS-MVSNet297.78 27797.66 28398.12 30499.14 29095.36 33299.22 13298.75 31096.97 30398.25 31299.64 14190.90 32199.94 5496.51 27699.56 24099.08 278
DeepMVS_CXcopyleft97.98 30599.69 12196.95 31099.26 27775.51 35595.74 35398.28 34596.47 26099.62 33191.23 34397.89 34397.38 345
gg-mvs-nofinetune95.87 32095.17 32497.97 30698.19 34996.95 31099.69 2989.23 36099.89 1296.24 35099.94 1381.19 35599.51 34393.99 33598.20 33497.44 344
thres600view796.60 30896.16 31097.93 30799.63 14196.09 32599.18 14197.57 33898.77 19098.72 28797.32 35687.04 34299.72 28888.57 34798.62 32597.98 339
thres40096.40 31095.89 31497.92 30899.58 15296.11 32399.00 18997.54 34198.43 22098.52 30196.98 35986.85 34499.67 31687.62 35098.51 32997.98 339
ADS-MVSNet97.72 28197.67 28297.86 30999.14 29094.65 33899.22 13298.86 30496.97 30398.25 31299.64 14190.90 32199.84 21996.51 27699.56 24099.08 278
IB-MVS95.41 2095.30 32594.46 32897.84 31098.76 33495.33 33397.33 33796.07 34796.02 32095.37 35497.41 35576.17 36299.96 3497.54 21495.44 35398.22 331
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet98.61 22398.88 18597.80 31199.58 15293.60 34299.26 11799.64 13099.66 5699.72 9399.67 13093.26 29799.93 6799.30 5699.81 14899.87 10
BH-w/o97.20 29497.01 29797.76 31299.08 30395.69 32998.03 29698.52 31995.76 32597.96 32798.02 34895.62 27899.47 34592.82 33997.25 34898.12 336
tpm97.15 29596.95 29997.75 31398.91 31494.24 34099.32 9897.96 33297.71 27498.29 30999.32 25886.72 34799.92 8598.10 16796.24 35199.09 275
test-LLR97.15 29596.95 29997.74 31498.18 35095.02 33597.38 33496.10 34598.00 25597.81 33498.58 33390.04 33299.91 10397.69 20698.78 31498.31 326
test-mter96.23 31695.73 31997.74 31498.18 35095.02 33597.38 33496.10 34597.90 26497.81 33498.58 33379.12 36099.91 10397.69 20698.78 31498.31 326
RRT_test8_iter0597.35 29397.25 29097.63 31698.81 32893.13 34499.26 11799.89 1399.51 8299.83 4899.68 12479.03 36199.88 15299.53 2899.72 19499.89 9
tfpn200view996.30 31495.89 31497.53 31799.58 15296.11 32399.00 18997.54 34198.43 22098.52 30196.98 35986.85 34499.67 31687.62 35098.51 32996.81 348
cascas96.99 29896.82 30497.48 31897.57 35795.64 33096.43 35099.56 17691.75 34697.13 34697.61 35395.58 27998.63 35496.68 26799.11 29998.18 335
thres100view90096.39 31196.03 31397.47 31999.63 14195.93 32699.18 14197.57 33898.75 19498.70 28997.31 35787.04 34299.67 31687.62 35098.51 32996.81 348
PVSNet_095.53 1995.85 32195.31 32397.47 31998.78 33293.48 34395.72 35199.40 24396.18 31997.37 34097.73 35195.73 27699.58 33895.49 31181.40 35599.36 221
TESTMET0.1,196.24 31595.84 31797.41 32198.24 34893.84 34197.38 33495.84 34998.43 22097.81 33498.56 33679.77 35999.89 13797.77 19398.77 31698.52 318
GG-mvs-BLEND97.36 32297.59 35596.87 31399.70 2388.49 36194.64 35597.26 35880.66 35799.12 35091.50 34296.50 35096.08 352
SCA98.11 26698.36 23597.36 32299.20 28292.99 34598.17 28098.49 32298.24 24499.10 25099.57 19296.01 27399.94 5496.86 25699.62 22599.14 266
thres20096.09 31795.68 32097.33 32499.48 20696.22 32298.53 25297.57 33898.06 25498.37 30896.73 36186.84 34699.61 33586.99 35398.57 32696.16 351
PatchmatchNetpermissive97.65 28297.80 27597.18 32598.82 32792.49 34799.17 14698.39 32698.12 25098.79 28099.58 18490.71 32599.89 13797.23 23799.41 27199.16 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.53 30996.32 30797.17 32698.18 35092.97 34699.39 8289.95 35998.21 24698.61 29499.59 18286.69 34899.72 28896.99 24999.23 29798.81 305
EPNet_dtu97.62 28397.79 27797.11 32796.67 35892.31 34898.51 25498.04 33099.24 12595.77 35299.47 22593.78 29499.66 32098.98 9699.62 22599.37 218
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tmp_tt95.75 32295.42 32296.76 32889.90 36094.42 33998.86 21197.87 33578.01 35499.30 21999.69 11397.70 21295.89 35699.29 5998.14 33899.95 1
MVS-HIRNet97.86 27498.22 24596.76 32899.28 26991.53 35498.38 26592.60 35799.13 14499.31 21599.96 1197.18 24499.68 31198.34 14299.83 13199.07 283
tpm296.35 31296.22 30996.73 33098.88 32191.75 35299.21 13498.51 32093.27 34397.89 33099.21 28284.83 35199.70 29496.04 29398.18 33798.75 308
tpmrst97.73 27998.07 25796.73 33098.71 33692.00 34999.10 17098.86 30498.52 21398.92 26699.54 20391.90 30899.82 24098.02 16999.03 30498.37 324
DWT-MVSNet_test96.03 31995.80 31896.71 33298.50 34291.93 35099.25 12497.87 33595.99 32196.81 34797.61 35381.02 35699.66 32097.20 24097.98 34198.54 317
tpmvs97.39 29097.69 28096.52 33398.41 34391.76 35199.30 10598.94 30397.74 27297.85 33399.55 20192.40 30699.73 28696.25 28898.73 32298.06 337
CostFormer96.71 30696.79 30596.46 33498.90 31590.71 35899.41 7898.68 31294.69 34098.14 32099.34 25686.32 34999.80 26197.60 21198.07 34098.88 299
E-PMN97.14 29797.43 28596.27 33598.79 33091.62 35395.54 35299.01 30199.44 9698.88 27099.12 29392.78 30299.68 31194.30 32999.03 30497.50 343
dp96.86 30197.07 29596.24 33698.68 33890.30 36099.19 14098.38 32797.35 29298.23 31499.59 18287.23 34099.82 24096.27 28798.73 32298.59 313
tpm cat196.78 30396.98 29896.16 33798.85 32290.59 35999.08 17799.32 26292.37 34597.73 33999.46 22891.15 31799.69 30096.07 29298.80 31398.21 332
EMVS96.96 30097.28 28895.99 33898.76 33491.03 35695.26 35398.61 31699.34 10998.92 26698.88 32393.79 29399.66 32092.87 33899.05 30297.30 347
wuyk23d97.58 28599.13 11792.93 33999.69 12199.49 12099.52 6399.77 6197.97 25999.96 999.79 5999.84 399.94 5495.85 30299.82 14079.36 353
test12329.31 32633.05 33118.08 34025.93 36212.24 36297.53 32810.93 36311.78 35724.21 35850.08 36621.04 3638.60 35823.51 35632.43 35733.39 354
testmvs28.94 32733.33 32915.79 34126.03 3619.81 36396.77 34715.67 36211.55 35823.87 35950.74 36519.03 3648.53 35923.21 35733.07 35629.03 355
uanet_test8.33 33011.11 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 10.00 3650.00 3600.00 3580.00 3580.00 356
cdsmvs_eth3d_5k24.88 32833.17 3300.00 3420.00 3630.00 3640.00 35499.62 1350.00 3590.00 36099.13 28999.82 40.00 3600.00 3580.00 3580.00 356
pcd_1.5k_mvsjas16.61 32922.14 3320.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 199.28 410.00 3600.00 3580.00 3580.00 356
sosnet-low-res8.33 33011.11 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 10.00 3650.00 3600.00 3580.00 3580.00 356
sosnet8.33 33011.11 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 10.00 3650.00 3600.00 3580.00 3580.00 356
uncertanet8.33 33011.11 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 10.00 3650.00 3600.00 3580.00 3580.00 356
Regformer8.33 33011.11 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 10.00 3650.00 3600.00 3580.00 3580.00 356
ab-mvs-re8.26 33611.02 3390.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 36099.16 2870.00 3650.00 3600.00 3580.00 3580.00 356
uanet8.33 33011.11 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 360100.00 10.00 3650.00 3600.00 3580.00 3580.00 356
ZD-MVS99.43 22499.61 10199.43 23296.38 31599.11 24899.07 29897.86 20399.92 8594.04 33399.49 259
RE-MVS-def99.13 11799.54 17499.74 5599.26 11799.62 13599.16 13899.52 16699.64 14198.57 12997.27 23199.61 23299.54 149
IU-MVS99.69 12199.77 4199.22 28597.50 28499.69 10397.75 19599.70 20099.77 32
test_241102_TWO99.54 18699.13 14499.76 7599.63 15198.32 16699.92 8597.85 18899.69 20399.75 39
test_241102_ONE99.69 12199.82 2699.54 18699.12 14799.82 5099.49 21898.91 8399.52 342
9.1498.64 20799.45 21998.81 22199.60 15397.52 28399.28 22099.56 19598.53 13899.83 23095.36 31699.64 222
save fliter99.53 17999.25 18198.29 27199.38 25299.07 152
test_0728_THIRD99.18 13399.62 13099.61 16998.58 12899.91 10397.72 19799.80 15399.77 32
test072699.69 12199.80 3499.24 12599.57 17199.16 13899.73 9299.65 13998.35 161
GSMVS99.14 266
test_part299.62 14499.67 8099.55 158
sam_mvs190.81 32499.14 266
sam_mvs90.52 328
MTGPAbinary99.53 195
test_post199.14 15651.63 36489.54 33599.82 24096.86 256
test_post52.41 36390.25 33099.86 185
patchmatchnet-post99.62 16090.58 32699.94 54
MTMP99.09 17498.59 318
gm-plane-assit97.59 35589.02 36193.47 34298.30 34499.84 21996.38 283
test9_res95.10 31999.44 26599.50 172
TEST999.35 24499.35 16298.11 28799.41 23694.83 33997.92 32898.99 30798.02 19099.85 203
test_899.34 25499.31 16898.08 29199.40 24394.90 33597.87 33298.97 31398.02 19099.84 219
agg_prior294.58 32799.46 26499.50 172
agg_prior99.35 24499.36 15899.39 24697.76 33799.85 203
test_prior499.19 19798.00 299
test_prior297.95 30697.87 26698.05 32299.05 30097.90 19995.99 29699.49 259
旧先验297.94 30895.33 33098.94 26299.88 15296.75 263
新几何298.04 295
旧先验199.49 20099.29 17199.26 27799.39 24197.67 21799.36 28099.46 191
无先验98.01 29799.23 28495.83 32399.85 20395.79 30599.44 198
原ACMM297.92 310
test22299.51 18999.08 21197.83 31599.29 27195.21 33298.68 29099.31 26097.28 23799.38 27599.43 204
testdata299.89 13795.99 296
segment_acmp98.37 159
testdata197.72 31897.86 269
plane_prior799.58 15299.38 152
plane_prior699.47 21199.26 17797.24 238
plane_prior599.54 18699.82 24095.84 30399.78 16499.60 116
plane_prior499.25 273
plane_prior399.31 16898.36 22999.14 244
plane_prior298.80 22498.94 166
plane_prior199.51 189
plane_prior99.24 18698.42 26397.87 26699.71 198
n20.00 364
nn0.00 364
door-mid99.83 32
test1199.29 271
door99.77 61
HQP5-MVS98.94 222
HQP-NCC99.31 26197.98 30297.45 28698.15 316
ACMP_Plane99.31 26197.98 30297.45 28698.15 316
BP-MVS94.73 323
HQP4-MVS98.15 31699.70 29499.53 154
HQP3-MVS99.37 25399.67 213
HQP2-MVS96.67 254
NP-MVS99.40 23399.13 20298.83 325
MDTV_nov1_ep13_2view91.44 35599.14 15697.37 29199.21 23391.78 31296.75 26399.03 287
MDTV_nov1_ep1397.73 27998.70 33790.83 35799.15 15498.02 33198.51 21498.82 27699.61 16990.98 31999.66 32096.89 25598.92 309
ACMMP++_ref99.94 61
ACMMP++99.79 158
Test By Simon98.41 153