This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4399.97 699.92 1799.77 799.98 799.43 41100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 50100.00 199.90 7100.00 199.97 1099.61 1799.97 1799.75 13100.00 199.84 14
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2699.71 999.96 3599.51 3399.97 3399.84 14
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 2099.85 2699.70 5299.92 1899.93 1499.45 2399.97 1799.36 53100.00 199.85 13
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2399.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4399.68 3799.85 2699.95 399.98 399.92 1799.28 4199.98 799.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2899.86 2299.89 1199.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
PS-CasMVS99.66 2699.58 3799.89 799.80 5799.85 1499.66 4599.73 8399.62 7399.84 4599.71 10498.62 12699.96 3599.30 6399.96 4599.86 11
PEN-MVS99.66 2699.59 3499.89 799.83 3899.87 1099.66 4599.73 8399.70 5299.84 4599.73 9198.56 13599.96 3599.29 6699.94 6599.83 18
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2799.94 1199.91 2099.13 5999.96 3599.83 999.99 1299.83 18
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5799.87 1099.67 4199.71 9599.72 4699.84 4599.78 7098.67 12099.97 1799.30 6399.95 5299.80 24
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3299.81 599.95 4599.54 2899.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CP-MVSNet99.54 4799.43 6299.87 1499.76 8599.82 2899.57 6899.61 14799.54 8799.80 6299.64 14597.79 21399.95 4599.21 7399.94 6599.84 14
WR-MVS_H99.61 3799.53 4999.87 1499.80 5799.83 2499.67 4199.75 7599.58 8699.85 4299.69 11798.18 18499.94 5799.28 6899.95 5299.83 18
UA-Net99.78 1399.76 1499.86 1699.72 10999.71 7099.91 399.95 599.96 299.71 10399.91 2099.15 5599.97 1799.50 35100.00 199.90 4
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2499.86 1399.72 2399.78 6099.90 799.82 5299.83 4798.45 15399.87 17799.51 3399.97 3399.86 11
APDe-MVS99.48 5499.36 7799.85 1899.55 18199.81 3199.50 7499.69 10698.99 17199.75 8399.71 10498.79 10399.93 7198.46 14699.85 12399.80 24
FIs99.65 3199.58 3799.84 1999.84 3499.85 1499.66 4599.75 7599.86 1999.74 9299.79 6498.27 17399.85 21699.37 5299.93 7399.83 18
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3699.93 1499.93 1498.54 13899.93 7199.59 2199.98 2499.76 39
test_0728_SECOND99.83 2199.70 12099.79 3899.14 16699.61 14799.92 9197.88 19399.72 20199.77 35
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2499.94 1199.95 1299.73 899.90 13299.65 1699.97 3399.69 55
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 17099.77 4398.74 24199.60 15998.55 22199.76 7799.69 11798.23 17899.92 9196.39 29799.75 18099.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
nrg03099.70 1999.66 2299.82 2399.76 8599.84 1999.61 5899.70 10099.93 499.78 7099.68 12899.10 6099.78 28199.45 3999.96 4599.83 18
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22599.86 2299.68 5799.65 12499.88 2997.67 22199.87 17799.03 10199.86 11999.76 39
MSP-MVS99.04 17398.79 20099.81 2699.78 7399.73 6399.35 10199.57 17798.54 22499.54 16898.99 32396.81 25899.93 7196.97 26499.53 26499.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 5299.91 2099.89 2699.60 1999.87 17799.59 2199.74 18899.71 48
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6799.59 6599.82 3999.39 11599.82 5299.84 4699.38 2999.91 11299.38 5099.93 7399.80 24
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3899.83 2498.61 24899.63 13796.84 32499.44 19199.58 19098.81 9699.91 11297.70 21499.82 14699.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.30 10699.14 11899.80 2999.81 5299.81 3198.73 24399.53 20399.27 13099.42 19799.63 15598.21 17999.95 4597.83 20299.79 16499.65 86
MTAPA99.35 9299.20 11099.80 2999.81 5299.81 3199.33 10499.53 20399.27 13099.42 19799.63 15598.21 17999.95 4597.83 20299.79 16499.65 86
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3899.81 3199.52 7299.70 10098.35 24699.51 18099.50 22299.31 3799.88 16498.18 17099.84 12799.69 55
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3499.77 6399.78 3999.93 1499.89 2697.94 20099.92 9199.65 1699.98 2499.62 111
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9699.81 3198.95 21199.53 20398.27 25599.53 17399.73 9198.75 11199.87 17797.70 21499.83 13799.68 61
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13299.75 5499.62 5399.69 10699.85 2499.80 6299.81 5698.81 9699.91 11299.47 3799.88 10399.70 51
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8899.69 3499.92 799.67 6199.77 7599.75 8499.61 1799.98 799.35 5499.98 2499.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE99.69 2199.66 2299.78 3799.76 8599.76 5099.60 6399.82 3999.46 10499.75 8399.56 20199.63 1499.95 4599.43 4199.88 10399.62 111
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4399.89 2699.87 3299.63 1499.87 17799.54 2899.92 7799.63 100
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5299.75 5499.61 5899.67 11497.72 28699.35 21699.25 28699.23 4799.92 9197.21 25399.82 14699.67 68
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS++.99.38 8499.25 10499.77 4099.03 32099.77 4399.74 1799.61 14799.18 14599.76 7799.61 17399.00 7499.92 9197.72 21099.60 24599.62 111
SED-MVS99.40 7799.28 9799.77 4099.69 12399.82 2899.20 14599.54 19499.13 15799.82 5299.63 15598.91 8699.92 9197.85 19999.70 20799.58 140
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8599.73 6399.28 12299.56 18298.19 26099.14 25899.29 27798.84 9599.92 9197.53 23099.80 15999.64 95
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12399.80 3699.14 16699.31 27599.16 15199.62 13899.61 17398.35 16599.91 11297.88 19399.72 20199.61 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
region2R99.23 12099.05 14999.77 4099.76 8599.70 7799.31 11199.59 16698.41 23599.32 22399.36 26098.73 11499.93 7197.29 24299.74 18899.67 68
PGM-MVS99.20 13699.01 16199.77 4099.75 9699.71 7099.16 16299.72 9297.99 27099.42 19799.60 18298.81 9699.93 7196.91 26799.74 18899.66 78
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5599.78 7099.92 1799.37 3199.88 16498.93 11699.95 5299.60 126
KD-MVS_self_test99.63 3299.59 3499.76 4799.84 3499.90 599.37 9699.79 5599.83 3099.88 3299.85 4198.42 15699.90 13299.60 2099.73 19599.49 188
Anonymous2023121199.62 3599.57 4099.76 4799.61 14999.60 10999.81 999.73 8399.82 3299.90 2299.90 2297.97 19999.86 19799.42 4699.96 4599.80 24
HFP-MVS99.25 11699.08 13999.76 4799.73 10599.70 7799.31 11199.59 16698.36 24199.36 21499.37 25598.80 10099.91 11297.43 23599.75 18099.68 61
#test#99.12 15698.90 18699.76 4799.73 10599.70 7799.10 17999.59 16697.60 29199.36 21499.37 25598.80 10099.91 11296.84 27399.75 18099.68 61
ACMMPR99.23 12099.06 14599.76 4799.74 10299.69 8199.31 11199.59 16698.36 24199.35 21699.38 25498.61 12899.93 7197.43 23599.75 18099.67 68
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8599.71 7099.32 10799.50 21898.35 24698.97 27499.48 23098.37 16399.92 9195.95 31799.75 18099.63 100
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 16099.64 9599.30 11499.63 13799.61 7799.71 10399.56 20198.76 10999.96 3599.14 9399.92 7799.68 61
mPP-MVS99.19 13999.00 16499.76 4799.76 8599.68 8499.38 9299.54 19498.34 25099.01 27299.50 22298.53 14299.93 7197.18 25599.78 17099.66 78
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8699.70 2899.14 30699.65 6799.89 2699.90 2296.20 27599.94 5799.42 4699.92 7799.67 68
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2899.66 8899.18 15199.60 15998.55 22199.57 15499.67 13499.03 7399.94 5797.01 26299.80 15999.69 55
Skip Steuart: Steuart Systems R&D Blog.
GST-MVS99.16 14898.96 17599.75 5799.73 10599.73 6399.20 14599.55 18898.22 25799.32 22399.35 26598.65 12499.91 11296.86 27099.74 18899.62 111
test_part198.63 22798.26 25099.75 5799.40 24299.49 12899.67 4199.68 10999.86 1999.88 3299.86 3886.73 35999.93 7199.34 5599.97 3399.81 23
XVS99.27 11399.11 12899.75 5799.71 11299.71 7099.37 9699.61 14799.29 12698.76 30199.47 23598.47 14999.88 16497.62 22299.73 19599.67 68
X-MVStestdata96.09 32794.87 33799.75 5799.71 11299.71 7099.37 9699.61 14799.29 12698.76 30161.30 37998.47 14999.88 16497.62 22299.73 19599.67 68
abl_699.36 9099.23 10899.75 5799.71 11299.74 6099.33 10499.76 6899.07 16499.65 12499.63 15599.09 6299.92 9197.13 25899.76 17799.58 140
CP-MVS99.23 12099.05 14999.75 5799.66 13899.66 8899.38 9299.62 14098.38 23999.06 27099.27 28198.79 10399.94 5797.51 23199.82 14699.66 78
MSC_two_6792asdad99.74 6399.03 32099.53 12399.23 29399.92 9197.77 20499.69 21099.78 32
No_MVS99.74 6399.03 32099.53 12399.23 29399.92 9197.77 20499.69 21099.78 32
test117299.23 12099.05 14999.74 6399.52 19299.75 5499.20 14599.61 14798.97 17399.48 18499.58 19098.41 15799.91 11297.15 25799.55 25699.57 146
SR-MVS99.19 13999.00 16499.74 6399.51 19799.72 6799.18 15199.60 15998.85 19199.47 18699.58 19098.38 16299.92 9196.92 26699.54 26299.57 146
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 19299.71 7098.86 22099.19 30198.47 23198.59 31399.06 31298.08 19099.91 11296.94 26599.60 24599.60 126
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18799.75 5499.27 12599.61 14799.19 14499.57 15499.64 14598.76 10999.90 13297.29 24299.62 23599.56 149
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4599.63 9999.16 16299.73 8397.56 29299.64 12699.69 11799.37 3199.89 14996.66 28399.87 11299.69 55
LGP-MVS_train99.74 6399.82 4599.63 9999.73 8397.56 29299.64 12699.69 11799.37 3199.89 14996.66 28399.87 11299.69 55
DP-MVS99.48 5499.39 6999.74 6399.57 17099.62 10199.29 12199.61 14799.87 1799.74 9299.76 8098.69 11699.87 17798.20 16699.80 15999.75 42
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6799.68 8499.50 7499.65 12998.07 26699.52 17599.69 11798.57 13399.92 9197.18 25599.79 16499.63 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 18299.74 6099.26 12799.62 14099.16 15199.52 17599.64 14598.41 15799.91 11297.27 24599.61 24299.54 160
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22599.73 6399.13 17299.52 21197.40 30399.57 15499.64 14598.93 8399.83 24497.61 22499.79 16499.63 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GBi-Net99.42 7099.31 8599.73 7399.49 20999.77 4399.68 3799.70 10099.44 10799.62 13899.83 4797.21 24499.90 13298.96 11099.90 8799.53 165
test199.42 7099.31 8599.73 7399.49 20999.77 4399.68 3799.70 10099.44 10799.62 13899.83 4797.21 24499.90 13298.96 11099.90 8799.53 165
FMVSNet199.66 2699.63 2699.73 7399.78 7399.77 4399.68 3799.70 10099.67 6199.82 5299.83 4798.98 7799.90 13299.24 7099.97 3399.53 165
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3399.47 13198.07 30299.83 3498.64 21299.89 2699.60 18292.57 313100.00 199.33 5899.97 3399.72 45
testtj98.56 23798.17 26099.72 7999.45 22899.60 10998.88 21699.50 21896.88 32199.18 25399.48 23097.08 25199.92 9193.69 35499.38 28699.63 100
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 22099.56 11898.97 20999.61 14799.43 11299.67 11699.28 27997.85 20999.95 4599.17 8399.81 15499.65 86
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5799.69 8199.13 17299.65 12998.99 17199.64 12699.72 9799.39 2599.86 19798.23 16399.81 15499.60 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH98.42 699.59 3899.54 4599.72 7999.86 3099.62 10199.56 7099.79 5598.77 20299.80 6299.85 4199.64 1399.85 21698.70 13499.89 9599.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 6199.37 7499.71 8399.82 4599.59 11299.48 7899.70 10099.81 3399.69 10999.58 19097.66 22599.86 19799.17 8399.44 27799.67 68
DU-MVS99.33 10199.21 10999.71 8399.43 23399.56 11898.83 22599.53 20399.38 11699.67 11699.36 26097.67 22199.95 4599.17 8399.81 15499.63 100
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20499.62 10199.01 19699.57 17796.80 32699.54 16899.63 15598.29 17199.91 11295.24 33499.71 20599.61 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3099.76 5099.32 10799.77 6399.53 8999.77 7599.76 8099.26 4599.78 28197.77 20499.88 10399.60 126
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3899.70 7799.38 9299.78 6099.53 8999.67 11699.78 7099.19 5199.86 19797.32 24099.87 11299.55 152
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13599.74 1794.97 36699.78 3999.88 3299.88 2993.66 30499.97 1799.61 1999.95 5299.64 95
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19799.58 11598.98 20799.60 15999.43 11299.70 10699.36 26097.70 21699.88 16499.20 7699.87 11299.59 135
NR-MVSNet99.40 7799.31 8599.68 8999.43 23399.55 12199.73 2099.50 21899.46 10499.88 3299.36 26097.54 22999.87 17798.97 10899.87 11299.63 100
DROMVSNet99.69 2199.69 1899.68 8999.71 11299.91 299.76 1399.96 499.86 1999.51 18099.39 25299.57 2099.93 7199.64 1899.86 11999.20 263
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 26999.76 5099.34 10299.97 298.93 18199.91 2099.79 6498.68 11799.93 7196.80 27599.56 25299.30 244
casdiffmvs99.63 3299.61 3199.67 9299.79 6799.59 11299.13 17299.85 2699.79 3899.76 7799.72 9799.33 3699.82 25499.21 7399.94 6599.59 135
1112_ss99.05 17098.84 19399.67 9299.66 13899.29 17898.52 26399.82 3997.65 28999.43 19599.16 30096.42 26799.91 11299.07 9999.84 12799.80 24
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 28999.75 5497.25 35099.47 22998.72 20799.66 12099.70 11199.29 3999.63 34498.07 17999.81 15499.62 111
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 10999.44 14299.24 13599.71 9599.27 13099.93 1499.90 2299.70 1199.93 7198.99 10499.99 1299.64 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7399.55 12198.88 21699.66 11897.11 31899.47 18699.60 18299.07 6899.89 14996.18 30699.85 12399.58 140
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25499.47 13199.62 5399.50 21899.44 10799.12 26199.78 7098.77 10899.94 5797.87 19699.72 20199.62 111
v1099.69 2199.69 1899.66 9999.81 5299.39 15699.66 4599.75 7599.60 8399.92 1899.87 3298.75 11199.86 19799.90 299.99 1299.73 44
WR-MVS99.11 16098.93 17899.66 9999.30 27599.42 14998.42 27399.37 26299.04 16999.57 15499.20 29796.89 25699.86 19798.66 13899.87 11299.70 51
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3499.64 9598.25 28599.73 8398.39 23899.63 13099.43 24399.70 1199.90 13297.34 23998.64 33699.44 209
baseline99.63 3299.62 2799.66 9999.80 5799.62 10199.44 8499.80 4999.71 4799.72 9899.69 11799.15 5599.83 24499.32 6099.94 6599.53 165
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5799.43 14699.70 2899.24 29299.48 9599.56 16199.77 7794.89 28999.93 7198.72 13399.89 9599.63 100
Anonymous2024052999.42 7099.34 7999.65 10499.53 18799.60 10999.63 5299.39 25599.47 10099.76 7799.78 7098.13 18699.86 19798.70 13499.68 21599.49 188
v899.68 2499.69 1899.65 10499.80 5799.40 15499.66 4599.76 6899.64 6999.93 1499.85 4198.66 12299.84 23399.88 699.99 1299.71 48
MCST-MVS99.02 17698.81 19799.65 10499.58 16099.49 12898.58 25299.07 30998.40 23799.04 27199.25 28698.51 14799.80 27597.31 24199.51 26799.65 86
XVG-OURS99.21 13499.06 14599.65 10499.82 4599.62 10197.87 32399.74 8098.36 24199.66 12099.68 12899.71 999.90 13296.84 27399.88 10399.43 215
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2499.25 18898.78 23799.88 1898.66 21099.96 899.79 6497.45 23299.93 7199.34 5599.99 1299.78 32
QAPM98.40 25797.99 27099.65 10499.39 24499.47 13199.67 4199.52 21191.70 36398.78 29999.80 5898.55 13699.95 4594.71 34299.75 18099.53 165
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24499.42 14999.70 2899.56 18299.23 13899.35 21699.80 5899.17 5399.95 4598.21 16599.84 12799.59 135
lessismore_v099.64 11199.86 3099.38 15990.66 37499.89 2699.83 4794.56 29499.97 1799.56 2699.92 7799.57 146
114514_t98.49 24898.11 26499.64 11199.73 10599.58 11599.24 13599.76 6889.94 36699.42 19799.56 20197.76 21599.86 19797.74 20999.82 14699.47 198
CPTT-MVS98.74 21798.44 23299.64 11199.61 14999.38 15999.18 15199.55 18896.49 32999.27 23599.37 25597.11 25099.92 9195.74 32499.67 22299.62 111
RPSCF99.18 14399.02 15899.64 11199.83 3899.85 1499.44 8499.82 3998.33 25199.50 18299.78 7097.90 20399.65 34196.78 27699.83 13799.44 209
Anonymous20240521198.75 21598.46 22999.63 11599.34 26499.66 8899.47 8097.65 35199.28 12999.56 16199.50 22293.15 30899.84 23398.62 13999.58 25099.40 221
TSAR-MVS + MP.99.34 9799.24 10699.63 11599.82 4599.37 16299.26 12799.35 26698.77 20299.57 15499.70 11199.27 4499.88 16497.71 21299.75 18099.65 86
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS99.26 11599.13 12199.63 11599.70 12099.61 10798.58 25299.48 22598.50 22799.52 17599.63 15599.14 5799.76 29197.89 19299.77 17499.51 177
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest99.21 13499.07 14399.63 11599.78 7399.64 9599.12 17699.83 3498.63 21399.63 13099.72 9798.68 11799.75 29596.38 29899.83 13799.51 177
TestCases99.63 11599.78 7399.64 9599.83 3498.63 21399.63 13099.72 9798.68 11799.75 29596.38 29899.83 13799.51 177
V4299.56 4299.54 4599.63 11599.79 6799.46 13599.39 9099.59 16699.24 13699.86 4099.70 11198.55 13699.82 25499.79 1199.95 5299.60 126
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11599.82 4599.58 11598.83 22599.72 9298.36 24199.60 14699.71 10498.92 8499.91 11297.08 26099.84 12799.40 221
Test_1112_low_res98.95 19298.73 20299.63 11599.68 13299.15 20898.09 29999.80 4997.14 31699.46 18999.40 24896.11 27799.89 14999.01 10399.84 12799.84 14
TAMVS99.49 5299.45 5799.63 11599.48 21599.42 14999.45 8199.57 17799.66 6599.78 7099.83 4797.85 20999.86 19799.44 4099.96 4599.61 122
SF-MVS99.10 16498.93 17899.62 12499.58 16099.51 12699.13 17299.65 12997.97 27299.42 19799.61 17398.86 9299.87 17796.45 29599.68 21599.49 188
EG-PatchMatch MVS99.57 3999.56 4499.62 12499.77 8199.33 17299.26 12799.76 6899.32 12499.80 6299.78 7099.29 3999.87 17799.15 8799.91 8699.66 78
F-COLMAP98.74 21798.45 23099.62 12499.57 17099.47 13198.84 22399.65 12996.31 33398.93 27899.19 29997.68 22099.87 17796.52 29099.37 29099.53 165
CDPH-MVS98.56 23798.20 25599.61 12799.50 20499.46 13598.32 27999.41 24595.22 34799.21 24799.10 30998.34 16799.82 25495.09 33799.66 22699.56 149
LS3D99.24 11999.11 12899.61 12798.38 35999.79 3899.57 6899.68 10999.61 7799.15 25699.71 10498.70 11599.91 11297.54 22899.68 21599.13 281
tfpnnormal99.43 6699.38 7199.60 12999.87 2899.75 5499.59 6599.78 6099.71 4799.90 2299.69 11798.85 9499.90 13297.25 25099.78 17099.15 274
CSCG99.37 8799.29 9599.60 12999.71 11299.46 13599.43 8699.85 2698.79 19999.41 20599.60 18298.92 8499.92 9198.02 18099.92 7799.43 215
ETH3D-3000-0.198.77 21298.50 22799.59 13199.47 22099.53 12398.77 23899.60 15997.33 30799.23 24199.50 22297.91 20299.83 24495.02 33899.67 22299.41 219
v114499.54 4799.53 4999.59 13199.79 6799.28 18099.10 17999.61 14799.20 14399.84 4599.73 9198.67 12099.84 23399.86 899.98 2499.64 95
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13199.68 13299.45 14098.99 20399.67 11499.48 9599.55 16699.36 26094.92 28899.86 19798.95 11496.57 36599.45 204
PHI-MVS99.11 16098.95 17799.59 13199.13 30499.59 11299.17 15699.65 12997.88 27899.25 23799.46 23898.97 7999.80 27597.26 24799.82 14699.37 229
v14419299.55 4599.54 4599.58 13599.78 7399.20 20399.11 17899.62 14099.18 14599.89 2699.72 9798.66 12299.87 17799.88 699.97 3399.66 78
v2v48299.50 5099.47 5399.58 13599.78 7399.25 18899.14 16699.58 17599.25 13499.81 5999.62 16498.24 17599.84 23399.83 999.97 3399.64 95
test20.0399.55 4599.54 4599.58 13599.79 6799.37 16299.02 19499.89 1599.60 8399.82 5299.62 16498.81 9699.89 14999.43 4199.86 11999.47 198
PM-MVS99.36 9099.29 9599.58 13599.83 3899.66 8898.95 21199.86 2298.85 19199.81 5999.73 9198.40 16199.92 9198.36 15199.83 13799.17 270
NCCC98.82 20898.57 21999.58 13599.21 29199.31 17598.61 24899.25 28998.65 21198.43 32399.26 28497.86 20799.81 27096.55 28899.27 30399.61 122
train_agg98.35 26297.95 27499.57 14099.35 25499.35 16998.11 29799.41 24594.90 35197.92 34498.99 32398.02 19499.85 21695.38 33299.44 27799.50 183
agg_prior198.33 26497.92 28099.57 14099.35 25499.36 16597.99 31199.39 25594.85 35497.76 35398.98 32698.03 19299.85 21695.49 32899.44 27799.51 177
v119299.57 3999.57 4099.57 14099.77 8199.22 19799.04 19199.60 15999.18 14599.87 3999.72 9799.08 6699.85 21699.89 599.98 2499.66 78
PMMVS299.48 5499.45 5799.57 14099.76 8598.99 22398.09 29999.90 1498.95 17799.78 7099.58 19099.57 2099.93 7199.48 3699.95 5299.79 30
VNet99.18 14399.06 14599.56 14499.24 28799.36 16599.33 10499.31 27599.67 6199.47 18699.57 19896.48 26499.84 23399.15 8799.30 29899.47 198
CNVR-MVS98.99 18598.80 19999.56 14499.25 28599.43 14698.54 26199.27 28498.58 21898.80 29699.43 24398.53 14299.70 30897.22 25299.59 24999.54 160
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14499.28 28099.22 19798.99 20399.40 25299.08 16299.58 15199.64 14598.90 8999.83 24497.44 23499.75 18099.63 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v192192099.56 4299.57 4099.55 14799.75 9699.11 21199.05 18999.61 14799.15 15599.88 3299.71 10499.08 6699.87 17799.90 299.97 3399.66 78
HQP_MVS98.90 19798.68 20999.55 14799.58 16099.24 19398.80 23399.54 19498.94 17899.14 25899.25 28697.24 24299.82 25495.84 32099.78 17099.60 126
FMVSNet299.35 9299.28 9799.55 14799.49 20999.35 16999.45 8199.57 17799.44 10799.70 10699.74 8797.21 24499.87 17799.03 10199.94 6599.44 209
IS-MVSNet99.03 17498.85 19199.55 14799.80 5799.25 18899.73 2099.15 30599.37 11799.61 14499.71 10494.73 29299.81 27097.70 21499.88 10399.58 140
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15199.53 18799.25 18898.29 28199.76 6899.07 16499.42 19799.61 17398.86 9299.87 17796.45 29599.68 21599.49 188
test1299.54 15199.29 27799.33 17299.16 30498.43 32397.54 22999.82 25499.47 27499.48 193
CS-MVS-test99.43 6699.40 6899.53 15399.51 19799.84 1999.60 6399.94 699.52 9199.10 26498.89 33899.24 4699.90 13299.11 9599.66 22698.84 318
Regformer-299.34 9799.27 10099.53 15399.41 23999.10 21598.99 20399.53 20399.47 10099.66 12099.52 21598.80 10099.89 14998.31 15799.74 18899.60 126
Effi-MVS+-dtu99.07 16698.92 18299.52 15598.89 33399.78 4199.15 16499.66 11899.34 12098.92 28199.24 29197.69 21899.98 798.11 17699.28 30098.81 320
新几何199.52 15599.50 20499.22 19799.26 28695.66 34398.60 31299.28 27997.67 22199.89 14995.95 31799.32 29699.45 204
112198.56 23798.24 25199.52 15599.49 20999.24 19399.30 11499.22 29695.77 34098.52 31899.29 27797.39 23699.85 21695.79 32299.34 29399.46 202
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15899.04 31999.39 15698.47 26799.47 22996.70 32898.78 29999.33 26997.62 22899.86 19794.69 34399.38 28699.28 249
pmmvs-eth3d99.48 5499.47 5399.51 15899.77 8199.41 15398.81 23099.66 11899.42 11499.75 8399.66 13899.20 5099.76 29198.98 10699.99 1299.36 232
v124099.56 4299.58 3799.51 15899.80 5799.00 22299.00 19899.65 12999.15 15599.90 2299.75 8499.09 6299.88 16499.90 299.96 4599.67 68
ETH3 D test640097.76 28697.19 30399.50 16199.38 24799.26 18498.34 27699.49 22392.99 36098.54 31799.20 29795.92 28199.82 25491.14 36199.66 22699.40 221
Regformer-499.45 6399.44 5999.50 16199.52 19298.94 23099.17 15699.53 20399.64 6999.76 7799.60 18298.96 8299.90 13298.91 11799.84 12799.67 68
CDS-MVSNet99.22 12999.13 12199.50 16199.35 25499.11 21198.96 21099.54 19499.46 10499.61 14499.70 11196.31 27299.83 24499.34 5599.88 10399.55 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052199.44 6599.42 6599.49 16499.89 2198.96 22899.62 5399.76 6899.85 2499.82 5299.88 2996.39 27099.97 1799.59 2199.98 2499.55 152
Patchmtry98.78 21198.54 22399.49 16498.89 33399.19 20499.32 10799.67 11499.65 6799.72 9899.79 6491.87 32299.95 4598.00 18499.97 3399.33 238
UGNet99.38 8499.34 7999.49 16498.90 33098.90 23899.70 2899.35 26699.86 1998.57 31599.81 5698.50 14899.93 7199.38 5099.98 2499.66 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Gipumacopyleft99.57 3999.59 3499.49 16499.98 399.71 7099.72 2399.84 3299.81 3399.94 1199.78 7098.91 8699.71 30698.41 14899.95 5299.05 297
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DELS-MVS99.34 9799.30 9099.48 16899.51 19799.36 16598.12 29599.53 20399.36 11999.41 20599.61 17399.22 4899.87 17799.21 7399.68 21599.20 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft97.35 1698.36 25997.99 27099.48 16899.32 27099.24 19398.50 26599.51 21495.19 34998.58 31498.96 33196.95 25599.83 24495.63 32599.25 30499.37 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023120699.35 9299.31 8599.47 17099.74 10299.06 22199.28 12299.74 8099.23 13899.72 9899.53 21397.63 22799.88 16499.11 9599.84 12799.48 193
Regformer-199.32 10399.27 10099.47 17099.41 23998.95 22998.99 20399.48 22599.48 9599.66 12099.52 21598.78 10599.87 17798.36 15199.74 18899.60 126
ab-mvs99.33 10199.28 9799.47 17099.57 17099.39 15699.78 1099.43 24298.87 18999.57 15499.82 5398.06 19199.87 17798.69 13699.73 19599.15 274
Fast-Effi-MVS+99.02 17698.87 18999.46 17399.38 24799.50 12799.04 19199.79 5597.17 31498.62 31098.74 34899.34 3599.95 4598.32 15699.41 28398.92 310
test_prior398.62 22898.34 24399.46 17399.35 25499.22 19797.95 31699.39 25597.87 27998.05 33999.05 31397.90 20399.69 31495.99 31399.49 27199.48 193
test_prior99.46 17399.35 25499.22 19799.39 25599.69 31499.48 193
TAPA-MVS97.92 1398.03 27897.55 29499.46 17399.47 22099.44 14298.50 26599.62 14086.79 36799.07 26999.26 28498.26 17499.62 34597.28 24499.73 19599.31 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EIA-MVS99.12 15699.01 16199.45 17799.36 25299.62 10199.34 10299.79 5598.41 23598.84 29198.89 33898.75 11199.84 23398.15 17499.51 26798.89 312
test_040299.22 12999.14 11899.45 17799.79 6799.43 14699.28 12299.68 10999.54 8799.40 21099.56 20199.07 6899.82 25496.01 31199.96 4599.11 282
h-mvs3398.61 22998.34 24399.44 17999.60 15198.67 25099.27 12599.44 23899.68 5799.32 22399.49 22792.50 316100.00 199.24 7096.51 36699.65 86
VDD-MVS99.20 13699.11 12899.44 17999.43 23398.98 22499.50 7498.32 34299.80 3699.56 16199.69 11796.99 25499.85 21698.99 10499.73 19599.50 183
PVSNet_Blended_VisFu99.40 7799.38 7199.44 17999.90 1998.66 25298.94 21399.91 1097.97 27299.79 6799.73 9199.05 7199.97 1799.15 8799.99 1299.68 61
OMC-MVS98.90 19798.72 20399.44 17999.39 24499.42 14998.58 25299.64 13597.31 30899.44 19199.62 16498.59 13099.69 31496.17 30799.79 16499.22 258
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18399.25 28599.69 8199.05 18999.82 3999.50 9398.97 27499.05 31398.98 7799.98 798.20 16699.24 30698.62 326
MVP-Stereo99.16 14899.08 13999.43 18399.48 21599.07 21999.08 18699.55 18898.63 21399.31 22799.68 12898.19 18299.78 28198.18 17099.58 25099.45 204
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs599.19 13999.11 12899.42 18599.76 8598.88 23998.55 25899.73 8398.82 19599.72 9899.62 16496.56 26199.82 25499.32 6099.95 5299.56 149
bset_n11_16_dypcd98.69 22398.45 23099.42 18599.69 12398.52 26196.06 36496.80 35999.71 4799.73 9699.54 21095.14 28799.96 3599.39 4999.95 5299.79 30
EI-MVSNet-UG-set99.48 5499.50 5199.42 18599.57 17098.65 25599.24 13599.46 23399.68 5799.80 6299.66 13898.99 7699.89 14999.19 7899.90 8799.72 45
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18599.57 17098.66 25299.24 13599.46 23399.67 6199.79 6799.65 14398.97 7999.89 14999.15 8799.89 9599.71 48
testdata99.42 18599.51 19798.93 23499.30 27896.20 33498.87 28899.40 24898.33 16999.89 14996.29 30199.28 30099.44 209
VDDNet98.97 18698.82 19699.42 18599.71 11298.81 24299.62 5398.68 32699.81 3399.38 21299.80 5894.25 29699.85 21698.79 12599.32 29699.59 135
FMVSNet597.80 28497.25 30099.42 18598.83 33998.97 22699.38 9299.80 4998.87 18999.25 23799.69 11780.60 37199.91 11298.96 11099.90 8799.38 226
MVS_111021_LR99.13 15499.03 15799.42 18599.58 16099.32 17497.91 32299.73 8398.68 20999.31 22799.48 23099.09 6299.66 33497.70 21499.77 17499.29 247
RRT_MVS98.75 21598.54 22399.41 19398.14 36898.61 25698.98 20799.66 11899.31 12599.84 4599.75 8491.98 31999.98 799.20 7699.95 5299.62 111
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19398.33 36199.56 11899.01 19699.59 16695.44 34499.57 15499.80 5895.64 28399.46 36396.47 29499.92 7799.21 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Regformer-399.41 7499.41 6699.40 19599.52 19298.70 24899.17 15699.44 23899.62 7399.75 8399.60 18298.90 8999.85 21698.89 11899.84 12799.65 86
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19599.56 18099.37 16297.97 31599.68 10997.49 29999.08 26699.35 26595.41 28699.82 25497.70 21498.19 34999.01 304
MVS_111021_HR99.12 15699.02 15899.40 19599.50 20499.11 21197.92 32099.71 9598.76 20599.08 26699.47 23599.17 5399.54 35497.85 19999.76 17799.54 160
MVS_030498.88 20198.71 20499.39 19898.85 33798.91 23799.45 8199.30 27898.56 21997.26 35999.68 12896.18 27699.96 3599.17 8399.94 6599.29 247
v14899.40 7799.41 6699.39 19899.76 8598.94 23099.09 18399.59 16699.17 14999.81 5999.61 17398.41 15799.69 31499.32 6099.94 6599.53 165
diffmvs99.34 9799.32 8499.39 19899.67 13798.77 24598.57 25699.81 4899.61 7799.48 18499.41 24598.47 14999.86 19798.97 10899.90 8799.53 165
HQP-MVS98.36 25998.02 26999.39 19899.31 27198.94 23097.98 31299.37 26297.45 30098.15 33398.83 34296.67 25999.70 30894.73 34099.67 22299.53 165
TSAR-MVS + GP.99.12 15699.04 15599.38 20299.34 26499.16 20698.15 29199.29 28098.18 26199.63 13099.62 16499.18 5299.68 32598.20 16699.74 18899.30 244
AdaColmapbinary98.60 23198.35 24299.38 20299.12 30699.22 19798.67 24799.42 24497.84 28398.81 29499.27 28197.32 24099.81 27095.14 33599.53 26499.10 284
ITE_SJBPF99.38 20299.63 14499.44 14299.73 8398.56 21999.33 22199.53 21398.88 9199.68 32596.01 31199.65 23099.02 303
原ACMM199.37 20599.47 22098.87 24199.27 28496.74 32798.26 32899.32 27097.93 20199.82 25495.96 31699.38 28699.43 215
testgi99.29 10899.26 10299.37 20599.75 9698.81 24298.84 22399.89 1598.38 23999.75 8399.04 31699.36 3499.86 19799.08 9899.25 30499.45 204
MSDG99.08 16598.98 17299.37 20599.60 15199.13 20997.54 33699.74 8098.84 19499.53 17399.55 20899.10 6099.79 27897.07 26199.86 11999.18 268
pmmvs499.13 15499.06 14599.36 20899.57 17099.10 21598.01 30799.25 28998.78 20199.58 15199.44 24298.24 17599.76 29198.74 13199.93 7399.22 258
N_pmnet98.73 21998.53 22599.35 20999.72 10998.67 25098.34 27694.65 36798.35 24699.79 6799.68 12898.03 19299.93 7198.28 15999.92 7799.44 209
Effi-MVS+99.06 16798.97 17399.34 21099.31 27198.98 22498.31 28099.91 1098.81 19698.79 29798.94 33399.14 5799.84 23398.79 12598.74 33299.20 263
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21099.78 7398.88 23999.61 5899.56 18299.11 16199.24 24099.56 20193.00 31199.78 28197.43 23599.89 9599.35 235
Patchmatch-RL test98.60 23198.36 24099.33 21299.77 8199.07 21998.27 28399.87 2098.91 18499.74 9299.72 9790.57 33999.79 27898.55 14299.85 12399.11 282
PAPM_NR98.36 25998.04 26799.33 21299.48 21598.93 23498.79 23699.28 28397.54 29598.56 31698.57 35397.12 24999.69 31494.09 34998.90 32399.38 226
PCF-MVS96.03 1896.73 31595.86 32699.33 21299.44 23099.16 20696.87 35999.44 23886.58 36898.95 27699.40 24894.38 29599.88 16487.93 36699.80 15998.95 307
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS98.76 21498.57 21999.33 21299.57 17098.97 22697.53 33899.55 18896.41 33099.27 23599.13 30299.07 6899.78 28196.73 27999.89 9599.23 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS98.28 26597.94 27899.32 21699.36 25299.11 21197.31 34898.78 32396.88 32198.84 29199.11 30897.77 21499.61 34994.03 35199.36 29199.23 256
jason99.16 14899.11 12899.32 21699.75 9698.44 26698.26 28499.39 25598.70 20899.74 9299.30 27498.54 13899.97 1798.48 14599.82 14699.55 152
jason: jason.
FMVSNet398.80 21098.63 21299.32 21699.13 30498.72 24799.10 17999.48 22599.23 13899.62 13899.64 14592.57 31399.86 19798.96 11099.90 8799.39 224
MVSFormer99.41 7499.44 5999.31 21999.57 17098.40 26999.77 1199.80 4999.73 4399.63 13099.30 27498.02 19499.98 799.43 4199.69 21099.55 152
DP-MVS Recon98.50 24598.23 25299.31 21999.49 20999.46 13598.56 25799.63 13794.86 35398.85 29099.37 25597.81 21199.59 35196.08 30899.44 27798.88 313
PatchMatch-RL98.68 22498.47 22899.30 22199.44 23099.28 18098.14 29399.54 19497.12 31799.11 26299.25 28697.80 21299.70 30896.51 29199.30 29898.93 309
OPU-MVS99.29 22299.12 30699.44 14299.20 14599.40 24899.00 7498.84 36996.54 28999.60 24599.58 140
CS-MVS99.40 7799.43 6299.29 22299.44 23099.72 6799.36 9999.91 1099.71 4799.28 23398.83 34299.22 4899.86 19799.40 4899.77 17498.29 344
D2MVS99.22 12999.19 11199.29 22299.69 12398.74 24698.81 23099.41 24598.55 22199.68 11199.69 11798.13 18699.87 17798.82 12399.98 2499.24 253
CANet99.11 16099.05 14999.28 22598.83 33998.56 25898.71 24699.41 24599.25 13499.23 24199.22 29397.66 22599.94 5799.19 7899.97 3399.33 238
CNLPA98.57 23698.34 24399.28 22599.18 29899.10 21598.34 27699.41 24598.48 23098.52 31898.98 32697.05 25299.78 28195.59 32699.50 26998.96 306
sss98.90 19798.77 20199.27 22799.48 21598.44 26698.72 24499.32 27197.94 27699.37 21399.35 26596.31 27299.91 11298.85 12099.63 23499.47 198
LF4IMVS99.01 18098.92 18299.27 22799.71 11299.28 18098.59 25199.77 6398.32 25299.39 21199.41 24598.62 12699.84 23396.62 28799.84 12798.69 324
LFMVS98.46 25198.19 25899.26 22999.24 28798.52 26199.62 5396.94 35899.87 1799.31 22799.58 19091.04 33099.81 27098.68 13799.42 28299.45 204
WTY-MVS98.59 23498.37 23999.26 22999.43 23398.40 26998.74 24199.13 30898.10 26399.21 24799.24 29194.82 29099.90 13297.86 19798.77 32899.49 188
OpenMVScopyleft98.12 1098.23 27097.89 28499.26 22999.19 29699.26 18499.65 5099.69 10691.33 36498.14 33799.77 7798.28 17299.96 3595.41 33199.55 25698.58 330
alignmvs98.28 26597.96 27399.25 23299.12 30698.93 23499.03 19398.42 33899.64 6998.72 30497.85 36790.86 33599.62 34598.88 11999.13 30999.19 266
IterMVS-LS99.41 7499.47 5399.25 23299.81 5298.09 28898.85 22299.76 6899.62 7399.83 5099.64 14598.54 13899.97 1799.15 8799.99 1299.68 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lupinMVS98.96 18998.87 18999.24 23499.57 17098.40 26998.12 29599.18 30298.28 25499.63 13099.13 30298.02 19499.97 1798.22 16499.69 21099.35 235
MVSTER98.47 25098.22 25399.24 23499.06 31698.35 27499.08 18699.46 23399.27 13099.75 8399.66 13888.61 34999.85 21699.14 9399.92 7799.52 175
mvs-test198.83 20698.70 20799.22 23698.89 33399.65 9398.88 21699.66 11899.34 12098.29 32698.94 33397.69 21899.96 3598.11 17698.54 34098.04 355
EI-MVSNet99.38 8499.44 5999.21 23799.58 16098.09 28899.26 12799.46 23399.62 7399.75 8399.67 13498.54 13899.85 21699.15 8799.92 7799.68 61
BH-RMVSNet98.41 25598.14 26399.21 23799.21 29198.47 26398.60 25098.26 34398.35 24698.93 27899.31 27297.20 24799.66 33494.32 34599.10 31199.51 177
ambc99.20 23999.35 25498.53 25999.17 15699.46 23399.67 11699.80 5898.46 15299.70 30897.92 19099.70 20799.38 226
MVS_Test99.28 10999.31 8599.19 24099.35 25498.79 24499.36 9999.49 22399.17 14999.21 24799.67 13498.78 10599.66 33499.09 9799.66 22699.10 284
MAR-MVS98.24 26997.92 28099.19 24098.78 34799.65 9399.17 15699.14 30695.36 34598.04 34198.81 34597.47 23199.72 30295.47 33099.06 31298.21 349
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet98.13 27397.77 28899.18 24294.57 37697.99 29299.24 13597.96 34699.74 4297.29 35899.62 16493.13 30999.97 1798.59 14099.83 13799.58 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
hse-mvs298.52 24398.30 24799.16 24399.29 27798.60 25798.77 23899.02 31399.68 5799.32 22399.04 31692.50 31699.85 21699.24 7097.87 35799.03 299
ETV-MVS99.18 14399.18 11299.16 24399.34 26499.28 18099.12 17699.79 5599.48 9598.93 27898.55 35599.40 2499.93 7198.51 14499.52 26698.28 345
CL-MVSNet_self_test98.71 22198.56 22299.15 24599.22 28998.66 25297.14 35399.51 21498.09 26599.54 16899.27 28196.87 25799.74 29798.43 14798.96 31899.03 299
AUN-MVS97.82 28397.38 29699.14 24699.27 28298.53 25998.72 24499.02 31398.10 26397.18 36199.03 32089.26 34899.85 21697.94 18997.91 35599.03 299
test_yl98.25 26797.95 27499.13 24799.17 29998.47 26399.00 19898.67 32898.97 17399.22 24599.02 32191.31 32699.69 31497.26 24798.93 31999.24 253
DCV-MVSNet98.25 26797.95 27499.13 24799.17 29998.47 26399.00 19898.67 32898.97 17399.22 24599.02 32191.31 32699.69 31497.26 24798.93 31999.24 253
MIMVSNet98.43 25398.20 25599.11 24999.53 18798.38 27299.58 6798.61 33098.96 17699.33 22199.76 8090.92 33299.81 27097.38 23899.76 17799.15 274
PMMVS98.49 24898.29 24899.11 24998.96 32798.42 26897.54 33699.32 27197.53 29698.47 32298.15 36497.88 20699.82 25497.46 23399.24 30699.09 287
CANet_DTU98.91 19598.85 19199.09 25198.79 34598.13 28398.18 28899.31 27599.48 9598.86 28999.51 21996.56 26199.95 4599.05 10099.95 5299.19 266
MS-PatchMatch99.00 18298.97 17399.09 25199.11 31198.19 28098.76 24099.33 26998.49 22999.44 19199.58 19098.21 17999.69 31498.20 16699.62 23599.39 224
canonicalmvs99.02 17699.00 16499.09 25199.10 31298.70 24899.61 5899.66 11899.63 7298.64 30997.65 36999.04 7299.54 35498.79 12598.92 32199.04 298
PVSNet_BlendedMVS99.03 17499.01 16199.09 25199.54 18297.99 29298.58 25299.82 3997.62 29099.34 21999.71 10498.52 14599.77 28997.98 18599.97 3399.52 175
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25599.80 5797.83 29998.89 21599.72 9299.29 12699.63 13099.70 11196.47 26599.89 14998.17 17299.82 14699.50 183
TinyColmap98.97 18698.93 17899.07 25599.46 22598.19 28097.75 32799.75 7598.79 19999.54 16899.70 11198.97 7999.62 34596.63 28699.83 13799.41 219
USDC98.96 18998.93 17899.05 25799.54 18297.99 29297.07 35699.80 4998.21 25899.75 8399.77 7798.43 15499.64 34397.90 19199.88 10399.51 177
PAPR97.56 29697.07 30599.04 25898.80 34498.11 28697.63 33299.25 28994.56 35798.02 34298.25 36397.43 23399.68 32590.90 36298.74 33299.33 238
PVSNet_Blended98.70 22298.59 21599.02 25999.54 18297.99 29297.58 33599.82 3995.70 34299.34 21998.98 32698.52 14599.77 28997.98 18599.83 13799.30 244
MVS95.72 33594.63 33998.99 26098.56 35597.98 29799.30 11498.86 31872.71 37297.30 35799.08 31098.34 16799.74 29789.21 36398.33 34499.26 250
HY-MVS98.23 998.21 27297.95 27498.99 26099.03 32098.24 27699.61 5898.72 32596.81 32598.73 30399.51 21994.06 29799.86 19796.91 26798.20 34798.86 315
baseline197.73 28897.33 29798.96 26299.30 27597.73 30399.40 8898.42 33899.33 12399.46 18999.21 29591.18 32899.82 25498.35 15391.26 37199.32 241
DSMNet-mixed99.48 5499.65 2498.95 26399.71 11297.27 31599.50 7499.82 3999.59 8599.41 20599.85 4199.62 16100.00 199.53 3099.89 9599.59 135
thisisatest053097.45 29896.95 30998.94 26499.68 13297.73 30399.09 18394.19 37098.61 21699.56 16199.30 27484.30 36699.93 7198.27 16099.54 26299.16 272
mvs_anonymous99.28 10999.39 6998.94 26499.19 29697.81 30099.02 19499.55 18899.78 3999.85 4299.80 5898.24 17599.86 19799.57 2599.50 26999.15 274
MG-MVS98.52 24398.39 23798.94 26499.15 30197.39 31398.18 28899.21 30098.89 18899.23 24199.63 15597.37 23899.74 29794.22 34799.61 24299.69 55
GA-MVS97.99 28197.68 29198.93 26799.52 19298.04 29197.19 35299.05 31298.32 25298.81 29498.97 32989.89 34699.41 36498.33 15599.05 31399.34 237
cl____98.54 24198.41 23598.92 26899.03 32097.80 30197.46 34299.59 16698.90 18599.60 14699.46 23893.85 30099.78 28197.97 18799.89 9599.17 270
DIV-MVS_self_test98.54 24198.42 23498.92 26899.03 32097.80 30197.46 34299.59 16698.90 18599.60 14699.46 23893.87 29999.78 28197.97 18799.89 9599.18 268
ET-MVSNet_ETH3D96.78 31396.07 32298.91 27099.26 28497.92 29897.70 33096.05 36397.96 27592.37 37398.43 35987.06 35399.90 13298.27 16097.56 36098.91 311
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
xiu_mvs_v1_base99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
MSLP-MVS++99.05 17099.09 13798.91 27099.21 29198.36 27398.82 22999.47 22998.85 19198.90 28499.56 20198.78 10599.09 36798.57 14199.68 21599.26 250
pmmvs398.08 27697.80 28598.91 27099.41 23997.69 30597.87 32399.66 11895.87 33899.50 18299.51 21990.35 34199.97 1798.55 14299.47 27499.08 290
tttt051797.62 29397.20 30298.90 27699.76 8597.40 31299.48 7894.36 36899.06 16899.70 10699.49 22784.55 36599.94 5798.73 13299.65 23099.36 232
OpenMVS_ROBcopyleft97.31 1797.36 30296.84 31398.89 27799.29 27799.45 14098.87 21999.48 22586.54 36999.44 19199.74 8797.34 23999.86 19791.61 35899.28 30097.37 363
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27899.64 14297.16 31898.23 28699.33 26998.93 18199.56 16199.66 13897.39 23699.83 24498.29 15899.88 10399.55 152
PMVScopyleft92.94 2198.82 20898.81 19798.85 27899.84 3497.99 29299.20 14599.47 22999.71 4799.42 19799.82 5398.09 18899.47 36193.88 35399.85 12399.07 295
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
YYNet198.95 19298.99 16998.84 28099.64 14297.14 31998.22 28799.32 27198.92 18399.59 14999.66 13897.40 23499.83 24498.27 16099.90 8799.55 152
new_pmnet98.88 20198.89 18798.84 28099.70 12097.62 30698.15 29199.50 21897.98 27199.62 13899.54 21098.15 18599.94 5797.55 22799.84 12798.95 307
CR-MVSNet98.35 26298.20 25598.83 28299.05 31798.12 28499.30 11499.67 11497.39 30499.16 25499.79 6491.87 32299.91 11298.78 12898.77 32898.44 339
PatchT98.45 25298.32 24698.83 28298.94 32898.29 27599.24 13598.82 32199.84 2799.08 26699.76 8091.37 32599.94 5798.82 12399.00 31798.26 346
RPMNet98.60 23198.53 22598.83 28299.05 31798.12 28499.30 11499.62 14099.86 1999.16 25499.74 8792.53 31599.92 9198.75 13098.77 32898.44 339
miper_lstm_enhance98.65 22698.60 21398.82 28599.20 29497.33 31497.78 32699.66 11899.01 17099.59 14999.50 22294.62 29399.85 21698.12 17599.90 8799.26 250
FPMVS96.32 32395.50 33198.79 28699.60 15198.17 28298.46 27298.80 32297.16 31596.28 36499.63 15582.19 36799.09 36788.45 36598.89 32499.10 284
xiu_mvs_v2_base99.02 17699.11 12898.77 28799.37 25098.09 28898.13 29499.51 21499.47 10099.42 19798.54 35699.38 2999.97 1798.83 12199.33 29598.24 347
PS-MVSNAJ99.00 18299.08 13998.76 28899.37 25098.10 28798.00 30999.51 21499.47 10099.41 20598.50 35899.28 4199.97 1798.83 12199.34 29398.20 351
test0.0.03 197.37 30196.91 31298.74 28997.72 36997.57 30797.60 33497.36 35798.00 26899.21 24798.02 36590.04 34499.79 27898.37 15095.89 36998.86 315
c3_l98.72 22098.71 20498.72 29099.12 30697.22 31797.68 33199.56 18298.90 18599.54 16899.48 23096.37 27199.73 30097.88 19399.88 10399.21 260
EU-MVSNet99.39 8299.62 2798.72 29099.88 2496.44 33199.56 7099.85 2699.90 799.90 2299.85 4198.09 18899.83 24499.58 2499.95 5299.90 4
new-patchmatchnet99.35 9299.57 4098.71 29299.82 4596.62 32998.55 25899.75 7599.50 9399.88 3299.87 3299.31 3799.88 16499.43 41100.00 199.62 111
thisisatest051596.98 30996.42 31698.66 29399.42 23897.47 30997.27 34994.30 36997.24 31099.15 25698.86 34185.01 36399.87 17797.10 25999.39 28598.63 325
eth_miper_zixun_eth98.68 22498.71 20498.60 29499.10 31296.84 32697.52 34099.54 19498.94 17899.58 15199.48 23096.25 27499.76 29198.01 18399.93 7399.21 260
miper_ehance_all_eth98.59 23498.59 21598.59 29598.98 32697.07 32097.49 34199.52 21198.50 22799.52 17599.37 25596.41 26999.71 30697.86 19799.62 23599.00 305
BH-untuned98.22 27198.09 26598.58 29699.38 24797.24 31698.55 25898.98 31697.81 28499.20 25298.76 34797.01 25399.65 34194.83 33998.33 34498.86 315
IterMVS-SCA-FT99.00 18299.16 11498.51 29799.75 9695.90 33998.07 30299.84 3299.84 2799.89 2699.73 9196.01 27999.99 599.33 58100.00 199.63 100
JIA-IIPM98.06 27797.92 28098.50 29898.59 35497.02 32198.80 23398.51 33499.88 1697.89 34699.87 3291.89 32199.90 13298.16 17397.68 35998.59 328
Patchmatch-test98.10 27597.98 27298.48 29999.27 28296.48 33099.40 8899.07 30998.81 19699.23 24199.57 19890.11 34399.87 17796.69 28099.64 23299.09 287
baseline296.83 31296.28 31898.46 30099.09 31496.91 32498.83 22593.87 37197.23 31196.23 36798.36 36088.12 35099.90 13296.68 28198.14 35198.57 331
IterMVS98.97 18699.16 11498.42 30199.74 10295.64 34298.06 30499.83 3499.83 3099.85 4299.74 8796.10 27899.99 599.27 69100.00 199.63 100
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2297.56 29697.28 29898.40 30298.37 36096.75 32797.24 35199.37 26297.31 30899.41 20599.22 29387.30 35199.37 36597.70 21499.62 23599.08 290
CHOSEN 280x42098.41 25598.41 23598.40 30299.34 26495.89 34096.94 35899.44 23898.80 19899.25 23799.52 21593.51 30699.98 798.94 11599.98 2499.32 241
API-MVS98.38 25898.39 23798.35 30498.83 33999.26 18499.14 16699.18 30298.59 21798.66 30898.78 34698.61 12899.57 35394.14 34899.56 25296.21 367
PVSNet97.47 1598.42 25498.44 23298.35 30499.46 22596.26 33396.70 36199.34 26897.68 28899.00 27399.13 30297.40 23499.72 30297.59 22699.68 21599.08 290
miper_enhance_ethall98.03 27897.94 27898.32 30698.27 36296.43 33296.95 35799.41 24596.37 33299.43 19598.96 33194.74 29199.69 31497.71 21299.62 23598.83 319
TR-MVS97.44 29997.15 30498.32 30698.53 35697.46 31098.47 26797.91 34896.85 32398.21 33298.51 35796.42 26799.51 35992.16 35797.29 36197.98 356
PAPM95.61 33694.71 33898.31 30899.12 30696.63 32896.66 36298.46 33790.77 36596.25 36598.68 35093.01 31099.69 31481.60 37297.86 35898.62 326
MVEpermissive92.54 2296.66 31796.11 32198.31 30899.68 13297.55 30897.94 31895.60 36599.37 11790.68 37498.70 34996.56 26198.61 37186.94 37199.55 25698.77 322
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131498.00 28097.90 28398.27 31098.90 33097.45 31199.30 11499.06 31194.98 35097.21 36099.12 30698.43 15499.67 33095.58 32798.56 33997.71 359
ppachtmachnet_test98.89 20099.12 12598.20 31199.66 13895.24 34697.63 33299.68 10999.08 16299.78 7099.62 16498.65 12499.88 16498.02 18099.96 4599.48 193
SD-MVS99.01 18099.30 9098.15 31299.50 20499.40 15498.94 21399.61 14799.22 14299.75 8399.82 5399.54 2295.51 37497.48 23299.87 11299.54 160
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
our_test_398.85 20599.09 13798.13 31399.66 13894.90 34997.72 32899.58 17599.07 16499.64 12699.62 16498.19 18299.93 7198.41 14899.95 5299.55 152
ADS-MVSNet297.78 28597.66 29398.12 31499.14 30295.36 34499.22 14298.75 32496.97 31998.25 32999.64 14590.90 33399.94 5796.51 29199.56 25299.08 290
DeepMVS_CXcopyleft97.98 31599.69 12396.95 32299.26 28675.51 37195.74 36998.28 36296.47 26599.62 34591.23 36097.89 35697.38 362
gg-mvs-nofinetune95.87 33295.17 33697.97 31698.19 36496.95 32299.69 3489.23 37799.89 1196.24 36699.94 1381.19 36899.51 35993.99 35298.20 34797.44 361
thres600view796.60 31896.16 32097.93 31799.63 14496.09 33799.18 15197.57 35298.77 20298.72 30497.32 37387.04 35499.72 30288.57 36498.62 33797.98 356
thres40096.40 32095.89 32497.92 31899.58 16096.11 33599.00 19897.54 35598.43 23298.52 31896.98 37686.85 35699.67 33087.62 36798.51 34197.98 356
ADS-MVSNet97.72 29197.67 29297.86 31999.14 30294.65 35099.22 14298.86 31896.97 31998.25 32999.64 14590.90 33399.84 23396.51 29199.56 25299.08 290
IB-MVS95.41 2095.30 33794.46 34197.84 32098.76 34995.33 34597.33 34796.07 36296.02 33695.37 37197.41 37276.17 37899.96 3597.54 22895.44 37098.22 348
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet98.61 22998.88 18897.80 32199.58 16093.60 35699.26 12799.64 13599.66 6599.72 9899.67 13493.26 30799.93 7199.30 6399.81 15499.87 9
BH-w/o97.20 30497.01 30797.76 32299.08 31595.69 34198.03 30698.52 33395.76 34197.96 34398.02 36595.62 28499.47 36192.82 35697.25 36298.12 353
tpm97.15 30596.95 30997.75 32398.91 32994.24 35299.32 10797.96 34697.71 28798.29 32699.32 27086.72 36099.92 9198.10 17896.24 36899.09 287
test-LLR97.15 30596.95 30997.74 32498.18 36595.02 34797.38 34496.10 36098.00 26897.81 35098.58 35190.04 34499.91 11297.69 22098.78 32698.31 342
test-mter96.23 32695.73 32997.74 32498.18 36595.02 34797.38 34496.10 36097.90 27797.81 35098.58 35179.12 37599.91 11297.69 22098.78 32698.31 342
RRT_test8_iter0597.35 30397.25 30097.63 32698.81 34393.13 35899.26 12799.89 1599.51 9299.83 5099.68 12879.03 37699.88 16499.53 3099.72 20199.89 8
tfpn200view996.30 32495.89 32497.53 32799.58 16096.11 33599.00 19897.54 35598.43 23298.52 31896.98 37686.85 35699.67 33087.62 36798.51 34196.81 365
cascas96.99 30896.82 31497.48 32897.57 37295.64 34296.43 36399.56 18291.75 36297.13 36297.61 37095.58 28598.63 37096.68 28199.11 31098.18 352
thres100view90096.39 32196.03 32397.47 32999.63 14495.93 33899.18 15197.57 35298.75 20698.70 30697.31 37487.04 35499.67 33087.62 36798.51 34196.81 365
PVSNet_095.53 1995.85 33395.31 33597.47 32998.78 34793.48 35795.72 36599.40 25296.18 33597.37 35697.73 36895.73 28299.58 35295.49 32881.40 37299.36 232
TESTMET0.1,196.24 32595.84 32797.41 33198.24 36393.84 35597.38 34495.84 36498.43 23297.81 35098.56 35479.77 37299.89 14997.77 20498.77 32898.52 333
GG-mvs-BLEND97.36 33297.59 37096.87 32599.70 2888.49 37894.64 37297.26 37580.66 37099.12 36691.50 35996.50 36796.08 369
SCA98.11 27498.36 24097.36 33299.20 29492.99 35998.17 29098.49 33698.24 25699.10 26499.57 19896.01 27999.94 5796.86 27099.62 23599.14 278
thres20096.09 32795.68 33097.33 33499.48 21596.22 33498.53 26297.57 35298.06 26798.37 32596.73 37886.84 35899.61 34986.99 37098.57 33896.16 368
KD-MVS_2432*160095.89 33095.41 33397.31 33594.96 37493.89 35397.09 35499.22 29697.23 31198.88 28599.04 31679.23 37399.54 35496.24 30496.81 36398.50 337
miper_refine_blended95.89 33095.41 33397.31 33594.96 37493.89 35397.09 35499.22 29697.23 31198.88 28599.04 31679.23 37399.54 35496.24 30496.81 36398.50 337
PatchmatchNetpermissive97.65 29297.80 28597.18 33798.82 34292.49 36199.17 15698.39 34098.12 26298.79 29799.58 19090.71 33799.89 14997.23 25199.41 28399.16 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.53 31996.32 31797.17 33898.18 36592.97 36099.39 9089.95 37698.21 25898.61 31199.59 18886.69 36199.72 30296.99 26399.23 30898.81 320
EPNet_dtu97.62 29397.79 28797.11 33996.67 37392.31 36298.51 26498.04 34499.24 13695.77 36899.47 23593.78 30299.66 33498.98 10699.62 23599.37 229
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ECVR-MVScopyleft97.73 28898.04 26796.78 34099.59 15590.81 37299.72 2390.43 37599.89 1199.86 4099.86 3893.60 30599.89 14999.46 3899.99 1299.65 86
tmp_tt95.75 33495.42 33296.76 34189.90 37894.42 35198.86 22097.87 34978.01 37099.30 23299.69 11797.70 21695.89 37399.29 6698.14 35199.95 1
MVS-HIRNet97.86 28298.22 25396.76 34199.28 28091.53 36898.38 27592.60 37299.13 15799.31 22799.96 1197.18 24899.68 32598.34 15499.83 13799.07 295
tpm296.35 32296.22 31996.73 34398.88 33691.75 36699.21 14498.51 33493.27 35997.89 34699.21 29584.83 36499.70 30896.04 31098.18 35098.75 323
tpmrst97.73 28898.07 26696.73 34398.71 35192.00 36399.10 17998.86 31898.52 22598.92 28199.54 21091.90 32099.82 25498.02 18099.03 31598.37 341
DWT-MVSNet_test96.03 32995.80 32896.71 34598.50 35791.93 36499.25 13497.87 34995.99 33796.81 36397.61 37081.02 36999.66 33497.20 25497.98 35498.54 332
tpmvs97.39 30097.69 29096.52 34698.41 35891.76 36599.30 11498.94 31797.74 28597.85 34999.55 20892.40 31899.73 30096.25 30398.73 33498.06 354
test111197.74 28798.16 26196.49 34799.60 15189.86 37699.71 2791.21 37399.89 1199.88 3299.87 3293.73 30399.90 13299.56 2699.99 1299.70 51
CostFormer96.71 31696.79 31596.46 34898.90 33090.71 37399.41 8798.68 32694.69 35698.14 33799.34 26886.32 36299.80 27597.60 22598.07 35398.88 313
E-PMN97.14 30797.43 29596.27 34998.79 34591.62 36795.54 36699.01 31599.44 10798.88 28599.12 30692.78 31299.68 32594.30 34699.03 31597.50 360
dp96.86 31197.07 30596.24 35098.68 35390.30 37599.19 15098.38 34197.35 30698.23 33199.59 18887.23 35299.82 25496.27 30298.73 33498.59 328
tpm cat196.78 31396.98 30896.16 35198.85 33790.59 37499.08 18699.32 27192.37 36197.73 35599.46 23891.15 32999.69 31496.07 30998.80 32598.21 349
EMVS96.96 31097.28 29895.99 35298.76 34991.03 37095.26 36798.61 33099.34 12098.92 28198.88 34093.79 30199.66 33492.87 35599.05 31397.30 364
test250694.73 33894.59 34095.15 35399.59 15585.90 37899.75 1574.01 37999.89 1199.71 10399.86 3879.00 37799.90 13299.52 3299.99 1299.65 86
wuyk23d97.58 29599.13 12192.93 35499.69 12399.49 12899.52 7299.77 6397.97 27299.96 899.79 6499.84 399.94 5795.85 31999.82 14679.36 370
test_method91.72 33992.32 34289.91 35593.49 37770.18 37990.28 36899.56 18261.71 37395.39 37099.52 21593.90 29899.94 5798.76 12998.27 34699.62 111
test12329.31 34033.05 34518.08 35625.93 38012.24 38097.53 33810.93 38111.78 37424.21 37550.08 38321.04 3798.60 37523.51 37332.43 37433.39 371
testmvs28.94 34133.33 34315.79 35726.03 3799.81 38196.77 36015.67 38011.55 37523.87 37650.74 38219.03 3808.53 37623.21 37433.07 37329.03 372
test_blank8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
cdsmvs_eth3d_5k24.88 34233.17 3440.00 3580.00 3810.00 3820.00 36999.62 1400.00 3760.00 37799.13 30299.82 40.00 3770.00 3750.00 3750.00 373
pcd_1.5k_mvsjas16.61 34322.14 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 199.28 410.00 3770.00 3750.00 3750.00 373
sosnet-low-res8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
sosnet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
Regformer8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
ab-mvs-re8.26 35111.02 3540.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37799.16 3000.00 3810.00 3770.00 3750.00 3750.00 373
uanet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
FOURS199.83 3899.89 899.74 1799.71 9599.69 5599.63 130
PC_three_145297.56 29299.68 11199.41 24599.09 6297.09 37296.66 28399.60 24599.62 111
test_one_060199.63 14499.76 5099.55 18899.23 13899.31 22799.61 17398.59 130
eth-test20.00 381
eth-test0.00 381
ZD-MVS99.43 23399.61 10799.43 24296.38 33199.11 26299.07 31197.86 20799.92 9194.04 35099.49 271
RE-MVS-def99.13 12199.54 18299.74 6099.26 12799.62 14099.16 15199.52 17599.64 14598.57 13397.27 24599.61 24299.54 160
IU-MVS99.69 12399.77 4399.22 29697.50 29899.69 10997.75 20899.70 20799.77 35
test_241102_TWO99.54 19499.13 15799.76 7799.63 15598.32 17099.92 9197.85 19999.69 21099.75 42
test_241102_ONE99.69 12399.82 2899.54 19499.12 16099.82 5299.49 22798.91 8699.52 358
9.1498.64 21099.45 22898.81 23099.60 15997.52 29799.28 23399.56 20198.53 14299.83 24495.36 33399.64 232
save fliter99.53 18799.25 18898.29 28199.38 26199.07 164
test_0728_THIRD99.18 14599.62 13899.61 17398.58 13299.91 11297.72 21099.80 15999.77 35
test072699.69 12399.80 3699.24 13599.57 17799.16 15199.73 9699.65 14398.35 165
GSMVS99.14 278
test_part299.62 14899.67 8699.55 166
sam_mvs190.81 33699.14 278
sam_mvs90.52 340
MTGPAbinary99.53 203
test_post199.14 16651.63 38189.54 34799.82 25496.86 270
test_post52.41 38090.25 34299.86 197
patchmatchnet-post99.62 16490.58 33899.94 57
MTMP99.09 18398.59 332
gm-plane-assit97.59 37089.02 37793.47 35898.30 36199.84 23396.38 298
test9_res95.10 33699.44 27799.50 183
TEST999.35 25499.35 16998.11 29799.41 24594.83 35597.92 34498.99 32398.02 19499.85 216
test_899.34 26499.31 17598.08 30199.40 25294.90 35197.87 34898.97 32998.02 19499.84 233
agg_prior294.58 34499.46 27699.50 183
agg_prior99.35 25499.36 16599.39 25597.76 35399.85 216
test_prior499.19 20498.00 309
test_prior297.95 31697.87 27998.05 33999.05 31397.90 20395.99 31399.49 271
旧先验297.94 31895.33 34698.94 27799.88 16496.75 277
新几何298.04 305
旧先验199.49 20999.29 17899.26 28699.39 25297.67 22199.36 29199.46 202
无先验98.01 30799.23 29395.83 33999.85 21695.79 32299.44 209
原ACMM297.92 320
test22299.51 19799.08 21897.83 32599.29 28095.21 34898.68 30799.31 27297.28 24199.38 28699.43 215
testdata299.89 14995.99 313
segment_acmp98.37 163
testdata197.72 32897.86 282
plane_prior799.58 16099.38 159
plane_prior699.47 22099.26 18497.24 242
plane_prior599.54 19499.82 25495.84 32099.78 17099.60 126
plane_prior499.25 286
plane_prior399.31 17598.36 24199.14 258
plane_prior298.80 23398.94 178
plane_prior199.51 197
plane_prior99.24 19398.42 27397.87 27999.71 205
n20.00 382
nn0.00 382
door-mid99.83 34
test1199.29 280
door99.77 63
HQP5-MVS98.94 230
HQP-NCC99.31 27197.98 31297.45 30098.15 333
ACMP_Plane99.31 27197.98 31297.45 30098.15 333
BP-MVS94.73 340
HQP4-MVS98.15 33399.70 30899.53 165
HQP3-MVS99.37 26299.67 222
HQP2-MVS96.67 259
NP-MVS99.40 24299.13 20998.83 342
MDTV_nov1_ep13_2view91.44 36999.14 16697.37 30599.21 24791.78 32496.75 27799.03 299
MDTV_nov1_ep1397.73 28998.70 35290.83 37199.15 16498.02 34598.51 22698.82 29399.61 17390.98 33199.66 33496.89 26998.92 321
ACMMP++_ref99.94 65
ACMMP++99.79 164
Test By Simon98.41 157