This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 999.82 399.04 11199.81 398.05 6799.96 898.85 4199.99 599.86 6
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5799.64 1299.56 2899.46 4398.23 5299.97 398.78 4599.93 2599.72 25
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4699.46 2799.50 3999.34 6097.30 12499.93 2898.90 3799.93 2599.77 16
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1498.93 7999.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5399.53 2399.46 4399.41 5198.23 5299.95 1598.89 3999.95 1699.81 11
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 5099.62 1799.56 2899.42 4998.16 6099.96 898.78 4599.93 2599.77 16
MSP-MVS98.40 12798.00 15899.61 999.57 5599.25 2298.57 8399.35 11497.55 16699.31 7097.71 28694.61 23899.88 6796.14 21599.19 24899.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS98.79 6498.52 8699.61 999.67 4099.36 997.33 21299.20 17098.83 8598.89 14098.90 14696.98 14599.92 3597.16 13199.70 12399.56 71
MTAPA98.88 5498.64 7299.61 999.67 4099.36 998.43 10299.20 17098.83 8598.89 14098.90 14696.98 14599.92 3597.16 13199.70 12399.56 71
abl_698.99 3998.78 5499.61 999.45 9899.46 398.60 7999.50 5998.59 9699.24 8099.04 11198.54 3499.89 5896.45 19599.62 15499.50 100
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14399.32 12799.88 6796.99 14399.63 15199.68 31
MP-MVS-pluss98.57 10398.23 13299.60 1399.69 3899.35 1197.16 22999.38 10094.87 28198.97 12498.99 12598.01 6999.88 6797.29 12599.70 12399.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 799.64 1299.84 899.83 299.50 599.87 8499.36 1499.92 3499.64 39
APDe-MVS98.99 3998.79 5399.60 1399.21 13699.15 4598.87 6299.48 6997.57 16399.35 5999.24 7297.83 8099.89 5897.88 9799.70 12399.75 22
HPM-MVScopyleft98.79 6498.53 8599.59 1799.65 4399.29 1799.16 3899.43 8996.74 22898.61 17798.38 23798.62 2999.87 8496.47 19399.67 14099.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test117298.76 7098.49 9399.57 1899.18 15099.37 898.39 10599.31 13298.43 10498.90 13798.88 15597.49 11399.86 9196.43 19799.37 21799.48 112
SR-MVS-dyc-post98.81 6298.55 8399.57 1899.20 14099.38 598.48 9799.30 14198.64 9098.95 12798.96 13497.49 11399.86 9196.56 18599.39 21399.45 126
SR-MVS98.71 7798.43 10599.57 1899.18 15099.35 1198.36 10899.29 14898.29 11498.88 14498.85 16297.53 10699.87 8496.14 21599.31 22699.48 112
DPE-MVScopyleft98.59 10298.26 12899.57 1899.27 12499.15 4597.01 23499.39 9897.67 15499.44 4698.99 12597.53 10699.89 5895.40 24699.68 13499.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP98.75 7298.48 9599.57 1899.58 5199.29 1797.82 16599.25 15996.94 21998.78 15899.12 9498.02 6899.84 12297.13 13599.67 14099.59 55
HPM-MVS_fast99.01 3798.82 4999.57 1899.71 3099.35 1199.00 5299.50 5997.33 19098.94 13398.86 15998.75 2499.82 14697.53 11599.71 11899.56 71
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 12099.42 3099.33 6299.26 6997.01 14299.94 2398.74 5099.93 2599.79 13
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 599.63 1499.78 1099.67 1699.48 699.81 15999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PGM-MVS98.66 8998.37 11599.55 2699.53 7099.18 3598.23 11699.49 6797.01 21798.69 16798.88 15598.00 7099.89 5895.87 22699.59 16599.58 61
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2699.59 2099.71 1499.57 2797.12 13599.90 4999.21 2399.87 5299.54 83
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 1099.38 3399.53 3399.61 2398.64 2899.80 16898.24 7599.84 5699.52 93
ZNCC-MVS98.68 8698.40 10999.54 2999.57 5599.21 2698.46 9999.29 14897.28 19698.11 21998.39 23598.00 7099.87 8496.86 15999.64 14899.55 79
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5699.48 6999.68 999.46 4399.26 6998.62 2999.73 22399.17 2699.92 3499.76 20
region2R98.69 8298.40 10999.54 2999.53 7099.17 3698.52 8899.31 13297.46 17798.44 19798.51 22197.83 8099.88 6796.46 19499.58 17199.58 61
ACMMPR98.70 8098.42 10799.54 2999.52 7299.14 4898.52 8899.31 13297.47 17298.56 18798.54 21897.75 8799.88 6796.57 18299.59 16599.58 61
MP-MVScopyleft98.46 12098.09 14999.54 2999.57 5599.22 2598.50 9399.19 17597.61 16097.58 25498.66 19897.40 11999.88 6794.72 25999.60 16399.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.64 9298.34 11999.54 2999.54 6899.17 3698.63 7699.24 16497.47 17298.09 22198.68 19397.62 9899.89 5896.22 20999.62 15499.57 66
SteuartSystems-ACMMP98.79 6498.54 8499.54 2999.73 2499.16 4098.23 11699.31 13297.92 13998.90 13798.90 14698.00 7099.88 6796.15 21499.72 11399.58 61
Skip Steuart: Steuart Systems R&D Blog.
XVS98.72 7698.45 10199.53 3699.46 9599.21 2698.65 7499.34 12098.62 9497.54 25898.63 20797.50 11099.83 13696.79 16299.53 18799.56 71
X-MVStestdata94.32 30592.59 32399.53 3699.46 9599.21 2698.65 7499.34 12098.62 9497.54 25845.85 36597.50 11099.83 13696.79 16299.53 18799.56 71
APD-MVS_3200maxsize98.84 5998.61 7799.53 3699.19 14399.27 2098.49 9499.33 12598.64 9099.03 11498.98 12997.89 7799.85 10596.54 18999.42 20999.46 122
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4299.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2899.44 2999.78 1099.76 696.39 17899.92 3599.44 1399.92 3499.68 31
DVP-MVS98.77 6998.52 8699.52 4199.50 7799.21 2698.02 14398.84 24897.97 13599.08 10199.02 11597.61 9999.88 6796.99 14399.63 15199.48 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GST-MVS98.61 9798.30 12499.52 4199.51 7499.20 3298.26 11499.25 15997.44 18198.67 16998.39 23597.68 9199.85 10596.00 21899.51 19399.52 93
CP-MVS98.70 8098.42 10799.52 4199.36 11199.12 5398.72 7199.36 10897.54 16798.30 20798.40 23397.86 7999.89 5896.53 19099.72 11399.56 71
ACMMPcopyleft98.75 7298.50 9099.52 4199.56 6299.16 4098.87 6299.37 10497.16 21098.82 15599.01 12297.71 9099.87 8496.29 20699.69 12999.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 12798.03 15699.51 4599.16 15499.21 2698.05 13899.22 16794.16 29798.98 12199.10 9897.52 10899.79 18396.45 19599.64 14899.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 7798.44 10399.51 4599.49 8499.16 4098.52 8899.31 13297.47 17298.58 18398.50 22497.97 7499.85 10596.57 18299.59 16599.53 89
#test#98.50 11698.16 14299.51 4599.49 8499.16 4098.03 14199.31 13296.30 24598.58 18398.50 22497.97 7499.85 10595.68 23699.59 16599.53 89
SED-MVS98.91 5198.72 6099.49 4899.49 8499.17 3698.10 13099.31 13298.03 13299.66 2099.02 11598.36 4499.88 6796.91 14999.62 15499.41 141
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 1099.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1899.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
HPM-MVS++copyleft98.10 15597.64 18599.48 5099.09 16999.13 5197.52 19798.75 26497.46 17796.90 29297.83 28096.01 19199.84 12295.82 23099.35 22099.46 122
ACMM96.08 1298.91 5198.73 5899.48 5099.55 6599.14 4898.07 13499.37 10497.62 15899.04 11198.96 13498.84 2099.79 18397.43 11999.65 14699.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test98.71 7798.46 9999.47 5399.57 5598.97 6298.23 11699.48 6996.60 23399.10 9899.06 10198.71 2699.83 13695.58 24299.78 8699.62 44
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6996.60 23399.10 9899.06 10198.71 2699.83 13695.58 24299.78 8699.62 44
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 11098.87 6798.39 10599.42 9299.42 3099.36 5899.06 10198.38 4399.95 1598.34 7299.90 4499.57 66
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7399.54 5099.31 3999.62 2799.53 3397.36 12299.86 9199.24 2299.71 11899.39 150
testtj97.79 18597.25 21099.42 5799.03 18498.85 6897.78 16799.18 17995.83 26098.12 21898.50 22495.50 21499.86 9192.23 32099.07 26499.54 83
APD-MVScopyleft98.10 15597.67 18099.42 5799.11 16298.93 6697.76 17299.28 15094.97 27898.72 16698.77 17997.04 13899.85 10593.79 29099.54 18399.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
RPSCF98.62 9698.36 11699.42 5799.65 4399.42 498.55 8599.57 3597.72 15298.90 13799.26 6996.12 18799.52 30295.72 23399.71 11899.32 180
v7n99.53 899.57 899.41 6099.88 798.54 9699.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
COLMAP_ROBcopyleft96.50 1098.99 3998.85 4799.41 6099.58 5199.10 5698.74 6899.56 4299.09 6599.33 6299.19 7898.40 4299.72 23195.98 22099.76 9999.42 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UniMVSNet_NR-MVSNet98.86 5798.68 6799.40 6299.17 15298.74 7697.68 17999.40 9699.14 5499.06 10498.59 21496.71 16499.93 2898.57 5899.77 9099.53 89
DU-MVS98.82 6098.63 7399.39 6399.16 15498.74 7697.54 19599.25 15998.84 8499.06 10498.76 18196.76 16099.93 2898.57 5899.77 9099.50 100
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9199.27 2999.57 3599.39 3299.75 1299.62 2199.17 1299.83 13699.06 3099.62 15499.66 34
NR-MVSNet98.95 4798.82 4999.36 6499.16 15498.72 8199.22 3199.20 17099.10 6299.72 1398.76 18196.38 18099.86 9198.00 9199.82 6599.50 100
Baseline_NR-MVSNet98.98 4398.86 4699.36 6499.82 1698.55 9397.47 20399.57 3599.37 3499.21 8499.61 2396.76 16099.83 13698.06 8699.83 6299.71 26
ACMP95.32 1598.41 12598.09 14999.36 6499.51 7498.79 7497.68 17999.38 10095.76 26298.81 15798.82 17198.36 4499.82 14694.75 25699.77 9099.48 112
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LS3D98.63 9498.38 11499.36 6497.25 34199.38 599.12 4399.32 12799.21 4598.44 19798.88 15597.31 12399.80 16896.58 18099.34 22298.92 253
Effi-MVS+-dtu98.26 14297.90 16699.35 6998.02 30999.49 298.02 14399.16 18898.29 11497.64 24997.99 26996.44 17699.95 1596.66 17698.93 28198.60 287
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12399.20 3299.65 1999.48 2499.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
UniMVSNet (Re)98.87 5598.71 6299.35 6999.24 12998.73 7997.73 17599.38 10098.93 7999.12 9398.73 18496.77 15899.86 9198.63 5599.80 7799.46 122
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10699.30 2299.57 3599.61 1999.40 5299.50 3697.12 13599.85 10599.02 3299.94 2199.80 12
PHI-MVS98.29 13997.95 16199.34 7298.44 28599.16 4098.12 12799.38 10096.01 25498.06 22398.43 23197.80 8499.67 25095.69 23599.58 17199.20 207
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 2199.30 4199.65 2299.60 2599.16 1499.82 14699.07 2999.83 6299.56 71
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7999.58 2899.11 5699.53 3399.18 8098.81 2299.67 25096.71 17399.77 9099.50 100
SF-MVS98.53 11398.27 12799.32 7699.31 11898.75 7598.19 12099.41 9396.77 22798.83 15198.90 14697.80 8499.82 14695.68 23699.52 19099.38 157
ETH3D-3000-0.198.03 15997.62 18799.29 7799.11 16298.80 7397.47 20399.32 12795.54 26598.43 20098.62 20996.61 16899.77 20193.95 28499.49 20199.30 187
FIs99.14 3299.09 3499.29 7799.70 3698.28 11099.13 4199.52 5699.48 2499.24 8099.41 5196.79 15799.82 14698.69 5399.88 4999.76 20
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10799.00 5299.45 8099.63 1499.52 3599.44 4898.25 5099.88 6799.09 2899.84 5699.62 44
DP-MVS98.93 4998.81 5199.28 7999.21 13698.45 10298.46 9999.33 12599.63 1499.48 4099.15 9097.23 13299.75 21597.17 13099.66 14599.63 43
ANet_high99.57 799.67 599.28 7999.89 698.09 12799.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
test_part197.91 16897.46 19999.27 8298.80 23398.18 12099.07 4699.36 10899.75 599.63 2599.49 3982.20 34299.89 5898.87 4099.95 1699.74 24
CPTT-MVS97.84 18197.36 20499.27 8299.31 11898.46 10198.29 11199.27 15394.90 28097.83 23698.37 23994.90 22799.84 12293.85 28999.54 18399.51 96
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 11199.17 3799.78 599.11 5699.27 7399.48 4198.82 2199.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2023121199.27 2599.27 2499.26 8599.29 12298.18 12099.49 899.51 5799.70 899.80 999.68 1496.84 15199.83 13699.21 2399.91 4099.77 16
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10599.07 4699.55 4698.30 11199.65 2299.45 4799.22 999.76 20898.44 6599.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GeoE99.05 3598.99 4199.25 8799.44 10098.35 10898.73 7099.56 4298.42 10598.91 13698.81 17398.94 1899.91 4598.35 7199.73 10699.49 104
OPM-MVS98.56 10498.32 12399.25 8799.41 10698.73 7997.13 23199.18 17997.10 21398.75 16398.92 14298.18 5899.65 26396.68 17599.56 18099.37 160
3Dnovator+97.89 398.69 8298.51 8899.24 8998.81 23198.40 10399.02 4999.19 17598.99 7198.07 22299.28 6597.11 13799.84 12296.84 16099.32 22499.47 120
DeepPCF-MVS96.93 598.32 13498.01 15799.23 9098.39 28898.97 6295.03 32299.18 17996.88 22399.33 6298.78 17798.16 6099.28 33796.74 16899.62 15499.44 131
XVG-ACMP-BASELINE98.56 10498.34 11999.22 9199.54 6898.59 9097.71 17699.46 7797.25 19998.98 12198.99 12597.54 10499.84 12295.88 22399.74 10399.23 202
CSCG98.68 8698.50 9099.20 9299.45 9898.63 8498.56 8499.57 3597.87 14398.85 14898.04 26797.66 9399.84 12296.72 17199.81 6999.13 222
ETH3D cwj APD-0.1697.55 20097.00 22499.19 9398.51 27998.64 8396.85 24699.13 19594.19 29697.65 24898.40 23395.78 20499.81 15993.37 30199.16 25199.12 223
GBi-Net98.65 9098.47 9799.17 9498.90 21098.24 11399.20 3299.44 8398.59 9698.95 12799.55 2994.14 24899.86 9197.77 10299.69 12999.41 141
test198.65 9098.47 9799.17 9498.90 21098.24 11399.20 3299.44 8398.59 9698.95 12799.55 2994.14 24899.86 9197.77 10299.69 12999.41 141
FMVSNet199.17 3099.17 2999.17 9499.55 6598.24 11399.20 3299.44 8399.21 4599.43 4799.55 2997.82 8399.86 9198.42 6799.89 4899.41 141
AllTest98.44 12298.20 13599.16 9799.50 7798.55 9398.25 11599.58 2896.80 22598.88 14499.06 10197.65 9499.57 28794.45 26699.61 16199.37 160
TestCases99.16 9799.50 7798.55 9399.58 2896.80 22598.88 14499.06 10197.65 9499.57 28794.45 26699.61 16199.37 160
SixPastTwentyTwo98.75 7298.62 7499.16 9799.83 1597.96 14899.28 2798.20 29299.37 3499.70 1599.65 1992.65 27499.93 2899.04 3199.84 5699.60 49
XVG-OURS-SEG-HR98.49 11798.28 12699.14 10099.49 8498.83 7096.54 26199.48 6997.32 19299.11 9598.61 21299.33 899.30 33496.23 20898.38 30299.28 192
F-COLMAP97.30 21996.68 24499.14 10099.19 14398.39 10497.27 21899.30 14192.93 31296.62 30398.00 26895.73 20699.68 24792.62 31598.46 30199.35 170
Anonymous2024052998.93 4998.87 4499.12 10299.19 14398.22 11899.01 5098.99 22599.25 4499.54 3099.37 5497.04 13899.80 16897.89 9499.52 19099.35 170
PM-MVS98.82 6098.72 6099.12 10299.64 4698.54 9697.98 14999.68 1597.62 15899.34 6199.18 8097.54 10499.77 20197.79 10099.74 10399.04 233
LCM-MVSNet-Re98.64 9298.48 9599.11 10498.85 22198.51 9898.49 9499.83 398.37 10699.69 1799.46 4398.21 5699.92 3594.13 27999.30 22998.91 256
XVG-OURS98.53 11398.34 11999.11 10499.50 7798.82 7295.97 28799.50 5997.30 19499.05 10998.98 12999.35 799.32 33195.72 23399.68 13499.18 214
hse-mvs397.77 18697.33 20899.10 10699.21 13697.84 15898.35 10998.57 27699.11 5698.58 18399.02 11588.65 30199.96 898.11 8196.34 34499.49 104
MCST-MVS98.00 16397.63 18699.10 10699.24 12998.17 12296.89 24598.73 26795.66 26397.92 22997.70 28897.17 13499.66 25896.18 21399.23 24099.47 120
XXY-MVS99.14 3299.15 3299.10 10699.76 2297.74 17098.85 6599.62 2298.48 10399.37 5699.49 3998.75 2499.86 9198.20 7899.80 7799.71 26
DeepC-MVS97.60 498.97 4498.93 4299.10 10699.35 11597.98 14398.01 14699.46 7797.56 16599.54 3099.50 3698.97 1699.84 12298.06 8699.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3 D test640096.46 26795.59 27899.08 11098.88 21698.21 11996.53 26299.18 17988.87 34897.08 28097.79 28193.64 26099.77 20188.92 34599.40 21299.28 192
Anonymous20240521197.90 16997.50 19399.08 11098.90 21098.25 11298.53 8796.16 33498.87 8199.11 9598.86 15990.40 28899.78 19597.36 12299.31 22699.19 212
IS-MVSNet98.19 14997.90 16699.08 11099.57 5597.97 14499.31 1898.32 28799.01 7098.98 12199.03 11491.59 28299.79 18395.49 24499.80 7799.48 112
train_agg97.10 23496.45 25799.07 11398.71 24598.08 13195.96 28999.03 21491.64 32695.85 32497.53 29696.47 17499.76 20893.67 29299.16 25199.36 166
VDD-MVS98.56 10498.39 11299.07 11399.13 16198.07 13398.59 8197.01 32299.59 2099.11 9599.27 6794.82 23199.79 18398.34 7299.63 15199.34 172
CDPH-MVS97.26 22296.66 24799.07 11399.00 18998.15 12396.03 28599.01 22191.21 33497.79 23997.85 27996.89 14999.69 23892.75 31299.38 21699.39 150
CNVR-MVS98.17 15297.87 16899.07 11398.67 25898.24 11397.01 23498.93 23097.25 19997.62 25098.34 24297.27 12799.57 28796.42 19899.33 22399.39 150
EPP-MVSNet98.30 13698.04 15599.07 11399.56 6297.83 15999.29 2398.07 29899.03 6898.59 18199.13 9392.16 27899.90 4996.87 15799.68 13499.49 104
xxxxxxxxxxxxxcwj98.44 12298.24 13099.06 11899.11 16297.97 14496.53 26299.54 5098.24 11798.83 15198.90 14697.80 8499.82 14695.68 23699.52 19099.38 157
TSAR-MVS + MP.98.63 9498.49 9399.06 11899.64 4697.90 15398.51 9298.94 22896.96 21899.24 8098.89 15497.83 8099.81 15996.88 15699.49 20199.48 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC97.86 17597.47 19899.05 12098.61 26598.07 13396.98 23698.90 23697.63 15797.04 28397.93 27595.99 19599.66 25895.31 24798.82 28599.43 135
3Dnovator98.27 298.81 6298.73 5899.05 12098.76 23697.81 16499.25 3099.30 14198.57 10098.55 18999.33 6297.95 7699.90 4997.16 13199.67 14099.44 131
OMC-MVS97.88 17397.49 19499.04 12298.89 21598.63 8496.94 23899.25 15995.02 27698.53 19298.51 22197.27 12799.47 31393.50 29899.51 19399.01 237
agg_prior197.06 23896.40 25899.03 12398.68 25697.99 13995.76 29999.01 22191.73 32595.59 32797.50 29996.49 17399.77 20193.71 29199.14 25599.34 172
WR-MVS98.40 12798.19 13799.03 12399.00 18997.65 17696.85 24698.94 22898.57 10098.89 14098.50 22495.60 20999.85 10597.54 11499.85 5499.59 55
K. test v398.00 16397.66 18399.03 12399.79 1997.56 18099.19 3692.47 35699.62 1799.52 3599.66 1789.61 29299.96 899.25 2099.81 6999.56 71
Regformer-298.60 9998.46 9999.02 12698.85 22197.71 17296.91 24399.09 20198.98 7399.01 11598.64 20397.37 12199.84 12297.75 10799.57 17599.52 93
VDDNet98.21 14797.95 16199.01 12799.58 5197.74 17099.01 5097.29 31899.67 1098.97 12499.50 3690.45 28799.80 16897.88 9799.20 24499.48 112
VPNet98.87 5598.83 4899.01 12799.70 3697.62 17998.43 10299.35 11499.47 2699.28 7199.05 10896.72 16399.82 14698.09 8499.36 21899.59 55
N_pmnet97.63 19697.17 21598.99 12999.27 12497.86 15695.98 28693.41 35395.25 27499.47 4298.90 14695.63 20899.85 10596.91 14999.73 10699.27 194
lessismore_v098.97 13099.73 2497.53 18286.71 36699.37 5699.52 3589.93 29099.92 3598.99 3499.72 11399.44 131
DROMVSNet98.85 5898.81 5198.97 13099.08 17398.61 8798.99 5599.81 498.54 10297.73 24398.07 26598.50 3699.88 6798.81 4499.72 11398.42 297
HyFIR lowres test97.19 22996.60 25098.96 13299.62 5097.28 19495.17 31899.50 5994.21 29599.01 11598.32 24586.61 30899.99 297.10 13799.84 5699.60 49
test_prior397.48 20697.00 22498.95 13398.69 25397.95 14995.74 30199.03 21496.48 23796.11 31897.63 29295.92 20099.59 28194.16 27499.20 24499.30 187
test_prior98.95 13398.69 25397.95 14999.03 21499.59 28199.30 187
EG-PatchMatch MVS98.99 3999.01 3898.94 13599.50 7797.47 18498.04 14099.59 2698.15 12899.40 5299.36 5798.58 3299.76 20898.78 4599.68 13499.59 55
test1298.93 13698.58 27097.83 15998.66 27196.53 30695.51 21399.69 23899.13 25899.27 194
HQP_MVS97.99 16697.67 18098.93 13699.19 14397.65 17697.77 17099.27 15398.20 12397.79 23997.98 27094.90 22799.70 23494.42 26899.51 19399.45 126
test_040298.76 7098.71 6298.93 13699.56 6298.14 12598.45 10199.34 12099.28 4298.95 12798.91 14398.34 4899.79 18395.63 23999.91 4098.86 261
tfpnnormal98.90 5398.90 4398.91 13999.67 4097.82 16299.00 5299.44 8399.45 2899.51 3899.24 7298.20 5799.86 9195.92 22299.69 12999.04 233
新几何198.91 13998.94 20097.76 16798.76 26187.58 35396.75 29998.10 26194.80 23499.78 19592.73 31399.00 27599.20 207
112196.73 25596.00 26698.91 13998.95 19997.76 16798.07 13498.73 26787.65 35296.54 30598.13 25694.52 24099.73 22392.38 31899.02 27299.24 201
mvs-test197.83 18397.48 19798.89 14298.02 30999.20 3297.20 22399.16 18898.29 11496.46 31297.17 31496.44 17699.92 3596.66 17697.90 32097.54 334
Regformer-498.73 7598.68 6798.89 14299.02 18697.22 19897.17 22799.06 20599.21 4599.17 9198.85 16297.45 11699.86 9198.48 6399.70 12399.60 49
Regformer-198.55 10898.44 10398.87 14498.85 22197.29 19296.91 24398.99 22598.97 7498.99 11998.64 20397.26 13099.81 15997.79 10099.57 17599.51 96
ITE_SJBPF98.87 14499.22 13498.48 10099.35 11497.50 16998.28 20998.60 21397.64 9799.35 32793.86 28899.27 23498.79 273
pmmvs-eth3d98.47 11998.34 11998.86 14699.30 12197.76 16797.16 22999.28 15095.54 26599.42 4899.19 7897.27 12799.63 26897.89 9499.97 1199.20 207
PLCcopyleft94.65 1696.51 26395.73 27298.85 14798.75 23897.91 15296.42 27099.06 20590.94 33795.59 32797.38 30794.41 24299.59 28190.93 33698.04 31899.05 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CMPMVSbinary75.91 2396.29 27095.44 28398.84 14896.25 35798.69 8297.02 23399.12 19788.90 34797.83 23698.86 15989.51 29398.90 35491.92 32199.51 19398.92 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS_111021_LR98.30 13698.12 14798.83 14999.16 15498.03 13796.09 28499.30 14197.58 16298.10 22098.24 24998.25 5099.34 32896.69 17499.65 14699.12 223
OPU-MVS98.82 15098.59 26998.30 10998.10 13098.52 22098.18 5898.75 35794.62 26099.48 20399.41 141
QAPM97.31 21896.81 23798.82 15098.80 23397.49 18399.06 4899.19 17590.22 34097.69 24699.16 8696.91 14899.90 4990.89 33899.41 21099.07 227
Fast-Effi-MVS+-dtu98.27 14098.09 14998.81 15298.43 28698.11 12697.61 18799.50 5998.64 9097.39 27097.52 29898.12 6399.95 1596.90 15498.71 29198.38 299
casdiffmvs98.95 4799.00 3998.81 15299.38 10897.33 19097.82 16599.57 3599.17 5399.35 5999.17 8498.35 4799.69 23898.46 6499.73 10699.41 141
EIA-MVS98.00 16397.74 17598.80 15498.72 24298.09 12798.05 13899.60 2597.39 18596.63 30295.55 34397.68 9199.80 16896.73 17099.27 23498.52 290
TAMVS98.24 14598.05 15498.80 15499.07 17497.18 20397.88 15898.81 25496.66 23299.17 9199.21 7594.81 23399.77 20196.96 14799.88 4999.44 131
VNet98.42 12498.30 12498.79 15698.79 23597.29 19298.23 11698.66 27199.31 3998.85 14898.80 17494.80 23499.78 19598.13 8099.13 25899.31 184
UGNet98.53 11398.45 10198.79 15697.94 31396.96 21299.08 4498.54 27799.10 6296.82 29799.47 4296.55 17099.84 12298.56 6199.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 26695.70 27398.79 15697.92 31499.12 5398.28 11298.60 27592.16 32395.54 33496.17 33494.77 23699.52 30289.62 34398.23 30597.72 327
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
alignmvs97.35 21596.88 23298.78 15998.54 27698.09 12797.71 17697.69 30899.20 4897.59 25395.90 33888.12 30499.55 29398.18 7998.96 27998.70 282
test20.0398.78 6798.77 5698.78 15999.46 9597.20 20197.78 16799.24 16499.04 6799.41 4998.90 14697.65 9499.76 20897.70 10899.79 8299.39 150
TSAR-MVS + GP.98.18 15097.98 15998.77 16198.71 24597.88 15496.32 27598.66 27196.33 24299.23 8398.51 22197.48 11599.40 32197.16 13199.46 20599.02 236
V4298.78 6798.78 5498.76 16299.44 10097.04 20898.27 11399.19 17597.87 14399.25 7999.16 8696.84 15199.78 19599.21 2399.84 5699.46 122
baseline98.96 4699.02 3798.76 16299.38 10897.26 19598.49 9499.50 5998.86 8299.19 8699.06 10198.23 5299.69 23898.71 5299.76 9999.33 178
UnsupCasMVSNet_eth97.89 17197.60 18998.75 16499.31 11897.17 20497.62 18599.35 11498.72 8998.76 16298.68 19392.57 27599.74 21997.76 10695.60 35199.34 172
FMVSNet298.49 11798.40 10998.75 16498.90 21097.14 20798.61 7899.13 19598.59 9699.19 8699.28 6594.14 24899.82 14697.97 9299.80 7799.29 191
MVS_111021_HR98.25 14498.08 15298.75 16499.09 16997.46 18595.97 28799.27 15397.60 16197.99 22898.25 24898.15 6299.38 32596.87 15799.57 17599.42 138
DeepC-MVS_fast96.85 698.30 13698.15 14498.75 16498.61 26597.23 19697.76 17299.09 20197.31 19398.75 16398.66 19897.56 10399.64 26596.10 21799.55 18299.39 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
114514_t96.50 26595.77 27098.69 16899.48 9297.43 18797.84 16399.55 4681.42 36196.51 30898.58 21595.53 21199.67 25093.41 30099.58 17198.98 242
CDS-MVSNet97.69 19097.35 20598.69 16898.73 24097.02 21096.92 24298.75 26495.89 25898.59 18198.67 19592.08 28099.74 21996.72 17199.81 6999.32 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAPA-MVS96.21 1196.63 26095.95 26898.65 17098.93 20298.09 12796.93 24099.28 15083.58 35998.13 21797.78 28296.13 18699.40 32193.52 29699.29 23198.45 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
hse-mvs297.46 20797.07 22098.64 17198.73 24097.33 19097.45 20597.64 31199.11 5698.58 18397.98 27088.65 30199.79 18398.11 8197.39 32898.81 267
LFMVS97.20 22896.72 24198.64 17198.72 24296.95 21398.93 5994.14 35099.74 798.78 15899.01 12284.45 32699.73 22397.44 11899.27 23499.25 198
Gipumacopyleft99.03 3699.16 3098.64 17199.94 298.51 9899.32 1599.75 899.58 2298.60 17999.62 2198.22 5599.51 30697.70 10899.73 10697.89 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EI-MVSNet-Vis-set98.68 8698.70 6598.63 17499.09 16996.40 22697.23 21998.86 24699.20 4899.18 9098.97 13197.29 12699.85 10598.72 5199.78 8699.64 39
Regformer-398.61 9798.61 7798.63 17499.02 18696.53 22497.17 22798.84 24899.13 5599.10 9898.85 16297.24 13199.79 18398.41 6899.70 12399.57 66
Effi-MVS+98.02 16197.82 17198.62 17698.53 27897.19 20297.33 21299.68 1597.30 19496.68 30097.46 30398.56 3399.80 16896.63 17898.20 30798.86 261
EI-MVSNet-UG-set98.69 8298.71 6298.62 17699.10 16696.37 22797.23 21998.87 24199.20 4899.19 8698.99 12597.30 12499.85 10598.77 4899.79 8299.65 38
PatchMatch-RL97.24 22596.78 23898.61 17899.03 18497.83 15996.36 27399.06 20593.49 30897.36 27297.78 28295.75 20599.49 30893.44 29998.77 28698.52 290
AUN-MVS96.24 27395.45 28298.60 17998.70 24997.22 19897.38 20897.65 30995.95 25695.53 33597.96 27482.11 34399.79 18396.31 20497.44 32698.80 272
ab-mvs98.41 12598.36 11698.59 18099.19 14397.23 19699.32 1598.81 25497.66 15598.62 17599.40 5396.82 15499.80 16895.88 22399.51 19398.75 277
canonicalmvs98.34 13398.26 12898.58 18198.46 28397.82 16298.96 5799.46 7799.19 5297.46 26595.46 34698.59 3199.46 31598.08 8598.71 29198.46 292
RRT_MVS97.07 23796.57 25298.58 18195.89 36196.33 22897.36 21098.77 26097.85 14599.08 10199.12 9482.30 33999.96 898.82 4399.90 4499.45 126
1112_ss97.29 22196.86 23398.58 18199.34 11796.32 22996.75 25399.58 2893.14 31096.89 29397.48 30192.11 27999.86 9196.91 14999.54 18399.57 66
Fast-Effi-MVS+97.67 19297.38 20298.57 18498.71 24597.43 18797.23 21999.45 8094.82 28296.13 31796.51 32598.52 3599.91 4596.19 21198.83 28498.37 301
MVP-Stereo98.08 15797.92 16498.57 18498.96 19796.79 21797.90 15799.18 17996.41 24098.46 19598.95 13895.93 19999.60 27796.51 19198.98 27899.31 184
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v899.01 3799.16 3098.57 18499.47 9496.31 23098.90 6099.47 7599.03 6899.52 3599.57 2796.93 14799.81 15999.60 499.98 999.60 49
DP-MVS Recon97.33 21796.92 22998.57 18499.09 16997.99 13996.79 24999.35 11493.18 30997.71 24498.07 26595.00 22699.31 33293.97 28299.13 25898.42 297
ETV-MVS98.03 15997.86 16998.56 18898.69 25398.07 13397.51 19999.50 5998.10 12997.50 26295.51 34498.41 4199.88 6796.27 20799.24 23997.71 328
v1098.97 4499.11 3398.55 18999.44 10096.21 23298.90 6099.55 4698.73 8899.48 4099.60 2596.63 16799.83 13699.70 399.99 599.61 48
HQP-MVS97.00 24596.49 25698.55 18998.67 25896.79 21796.29 27699.04 21296.05 25195.55 33196.84 32093.84 25399.54 29692.82 30999.26 23799.32 180
CNLPA97.17 23196.71 24298.55 18998.56 27398.05 13696.33 27498.93 23096.91 22197.06 28297.39 30694.38 24499.45 31791.66 32499.18 25098.14 307
CHOSEN 1792x268897.49 20497.14 21998.54 19299.68 3996.09 23596.50 26599.62 2291.58 32898.84 15098.97 13192.36 27699.88 6796.76 16699.95 1699.67 33
MVS_030497.64 19497.35 20598.52 19397.87 31796.69 22298.59 8198.05 30097.44 18193.74 35498.85 16293.69 25999.88 6798.11 8199.81 6998.98 242
LF4IMVS97.90 16997.69 17998.52 19399.17 15297.66 17497.19 22699.47 7596.31 24497.85 23598.20 25396.71 16499.52 30294.62 26099.72 11398.38 299
DPM-MVS96.32 26995.59 27898.51 19598.76 23697.21 20094.54 33898.26 28991.94 32496.37 31397.25 31193.06 26799.43 31991.42 33098.74 28798.89 257
pmmvs497.58 19997.28 20998.51 19598.84 22496.93 21495.40 31498.52 27993.60 30598.61 17798.65 20095.10 22499.60 27796.97 14699.79 8298.99 241
Patchmtry97.35 21596.97 22698.50 19797.31 34096.47 22598.18 12198.92 23398.95 7898.78 15899.37 5485.44 32099.85 10595.96 22199.83 6299.17 218
DELS-MVS98.27 14098.20 13598.48 19898.86 21996.70 22195.60 30699.20 17097.73 15198.45 19698.71 18797.50 11099.82 14698.21 7799.59 16598.93 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS97.49 20497.16 21698.48 19899.07 17497.03 20994.71 32999.21 16894.46 28898.06 22397.16 31597.57 10299.48 31194.46 26599.78 8698.95 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AdaColmapbinary97.14 23396.71 24298.46 20098.34 29097.80 16596.95 23798.93 23095.58 26496.92 28797.66 28995.87 20299.53 29890.97 33599.14 25598.04 310
v14419298.54 11198.57 8298.45 20199.21 13695.98 23697.63 18499.36 10897.15 21299.32 6899.18 8095.84 20399.84 12299.50 1099.91 4099.54 83
UnsupCasMVSNet_bld97.30 21996.92 22998.45 20199.28 12396.78 22096.20 28199.27 15395.42 27098.28 20998.30 24693.16 26399.71 23294.99 25197.37 32998.87 260
PCF-MVS92.86 1894.36 30493.00 32198.42 20398.70 24997.56 18093.16 35499.11 19979.59 36297.55 25797.43 30492.19 27799.73 22379.85 36299.45 20797.97 314
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v119298.60 9998.66 7098.41 20499.27 12495.88 23997.52 19799.36 10897.41 18399.33 6299.20 7796.37 18199.82 14699.57 699.92 3499.55 79
v114498.60 9998.66 7098.41 20499.36 11195.90 23897.58 19199.34 12097.51 16899.27 7399.15 9096.34 18399.80 16899.47 1299.93 2599.51 96
FMVSNet596.01 27695.20 29198.41 20497.53 33196.10 23398.74 6899.50 5997.22 20898.03 22799.04 11169.80 36499.88 6797.27 12699.71 11899.25 198
v192192098.54 11198.60 7998.38 20799.20 14095.76 24497.56 19399.36 10897.23 20599.38 5499.17 8496.02 19099.84 12299.57 699.90 4499.54 83
v2v48298.56 10498.62 7498.37 20899.42 10595.81 24297.58 19199.16 18897.90 14199.28 7199.01 12295.98 19699.79 18399.33 1599.90 4499.51 96
原ACMM198.35 20998.90 21096.25 23198.83 25392.48 31896.07 32198.10 26195.39 21899.71 23292.61 31698.99 27699.08 226
Vis-MVSNet (Re-imp)97.46 20797.16 21698.34 21099.55 6596.10 23398.94 5898.44 28298.32 11098.16 21498.62 20988.76 29899.73 22393.88 28799.79 8299.18 214
v124098.55 10898.62 7498.32 21199.22 13495.58 24597.51 19999.45 8097.16 21099.45 4599.24 7296.12 18799.85 10599.60 499.88 4999.55 79
OpenMVScopyleft96.65 797.09 23596.68 24498.32 21198.32 29197.16 20598.86 6499.37 10489.48 34496.29 31599.15 9096.56 16999.90 4992.90 30699.20 24497.89 315
Test_1112_low_res96.99 24696.55 25498.31 21399.35 11595.47 25095.84 29899.53 5391.51 33096.80 29898.48 22991.36 28399.83 13696.58 18099.53 18799.62 44
PAPM_NR96.82 25396.32 26198.30 21499.07 17496.69 22297.48 20198.76 26195.81 26196.61 30496.47 32894.12 25199.17 34490.82 33997.78 32199.06 228
FMVSNet397.50 20297.24 21298.29 21598.08 30795.83 24197.86 16198.91 23597.89 14298.95 12798.95 13887.06 30599.81 15997.77 10299.69 12999.23 202
MSDG97.71 18997.52 19298.28 21698.91 20996.82 21694.42 33999.37 10497.65 15698.37 20698.29 24797.40 11999.33 33094.09 28099.22 24198.68 286
bset_n11_16_dypcd96.99 24696.56 25398.27 21799.00 18995.25 25592.18 35994.05 35198.75 8799.01 11598.38 23788.98 29799.93 2898.77 4899.92 3499.64 39
EPNet96.14 27495.44 28398.25 21890.76 36895.50 24997.92 15494.65 34398.97 7492.98 35598.85 16289.12 29699.87 8495.99 21999.68 13499.39 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ambc98.24 21998.82 22995.97 23798.62 7799.00 22499.27 7399.21 7596.99 14499.50 30796.55 18899.50 20099.26 197
PVSNet_Blended_VisFu98.17 15298.15 14498.22 22099.73 2495.15 26097.36 21099.68 1594.45 29098.99 11999.27 6796.87 15099.94 2397.13 13599.91 4099.57 66
Anonymous2023120698.21 14798.21 13498.20 22199.51 7495.43 25298.13 12599.32 12796.16 24898.93 13498.82 17196.00 19299.83 13697.32 12499.73 10699.36 166
CANet97.87 17497.76 17398.19 22297.75 32195.51 24896.76 25299.05 20997.74 15096.93 28698.21 25295.59 21099.89 5897.86 9999.93 2599.19 212
diffmvs98.22 14698.24 13098.17 22399.00 18995.44 25196.38 27299.58 2897.79 14998.53 19298.50 22496.76 16099.74 21997.95 9399.64 14899.34 172
Anonymous2024052198.69 8298.87 4498.16 22499.77 2095.11 26399.08 4499.44 8399.34 3799.33 6299.55 2994.10 25299.94 2399.25 2099.96 1499.42 138
testgi98.32 13498.39 11298.13 22599.57 5595.54 24697.78 16799.49 6797.37 18799.19 8697.65 29098.96 1799.49 30896.50 19298.99 27699.34 172
testdata98.09 22698.93 20295.40 25398.80 25690.08 34297.45 26698.37 23995.26 22099.70 23493.58 29598.95 28099.17 218
IterMVS-LS98.55 10898.70 6598.09 22699.48 9294.73 26997.22 22299.39 9898.97 7499.38 5499.31 6496.00 19299.93 2898.58 5699.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMMVS96.51 26395.98 26798.09 22697.53 33195.84 24094.92 32598.84 24891.58 32896.05 32295.58 34295.68 20799.66 25895.59 24198.09 31498.76 276
CL-MVSNet_2432*160097.44 21097.22 21398.08 22998.57 27295.78 24394.30 34298.79 25796.58 23598.60 17998.19 25494.74 23799.64 26596.41 19998.84 28398.82 264
pmmvs597.64 19497.49 19498.08 22999.14 15995.12 26296.70 25699.05 20993.77 30398.62 17598.83 16893.23 26199.75 21598.33 7499.76 9999.36 166
MDA-MVSNet-bldmvs97.94 16797.91 16598.06 23199.44 10094.96 26596.63 25999.15 19498.35 10798.83 15199.11 9694.31 24599.85 10596.60 17998.72 28999.37 160
sss97.21 22796.93 22798.06 23198.83 22695.22 25896.75 25398.48 28194.49 28697.27 27497.90 27692.77 27299.80 16896.57 18299.32 22499.16 221
EI-MVSNet98.40 12798.51 8898.04 23399.10 16694.73 26997.20 22398.87 24198.97 7499.06 10499.02 11596.00 19299.80 16898.58 5699.82 6599.60 49
PMMVS298.07 15898.08 15298.04 23399.41 10694.59 27594.59 33699.40 9697.50 16998.82 15598.83 16896.83 15399.84 12297.50 11799.81 6999.71 26
v14898.45 12198.60 7998.00 23599.44 10094.98 26497.44 20699.06 20598.30 11199.32 6898.97 13196.65 16699.62 27098.37 6999.85 5499.39 150
Patchmatch-RL test97.26 22297.02 22397.99 23699.52 7295.53 24796.13 28399.71 1097.47 17299.27 7399.16 8684.30 32999.62 27097.89 9499.77 9098.81 267
CS-MVS98.16 15498.22 13397.97 23798.56 27397.01 21198.10 13099.70 1397.45 17997.29 27397.19 31297.72 8999.80 16898.37 6999.62 15497.11 340
test_yl96.69 25696.29 26297.90 23898.28 29495.24 25697.29 21597.36 31498.21 12098.17 21297.86 27786.27 31099.55 29394.87 25498.32 30398.89 257
DCV-MVSNet96.69 25696.29 26297.90 23898.28 29495.24 25697.29 21597.36 31498.21 12098.17 21297.86 27786.27 31099.55 29394.87 25498.32 30398.89 257
CS-MVS-test97.75 18797.70 17897.90 23898.30 29397.66 17497.93 15299.65 1996.91 22196.27 31696.28 33397.00 14399.80 16897.64 11199.28 23296.24 350
WTY-MVS96.67 25896.27 26497.87 24198.81 23194.61 27496.77 25197.92 30394.94 27997.12 27797.74 28591.11 28499.82 14693.89 28698.15 31199.18 214
CANet_DTU97.26 22297.06 22197.84 24297.57 32894.65 27396.19 28298.79 25797.23 20595.14 34098.24 24993.22 26299.84 12297.34 12399.84 5699.04 233
D2MVS97.84 18197.84 17097.83 24399.14 15994.74 26896.94 23898.88 23995.84 25998.89 14098.96 13494.40 24399.69 23897.55 11299.95 1699.05 229
OpenMVS_ROBcopyleft95.38 1495.84 28195.18 29297.81 24498.41 28797.15 20697.37 20998.62 27483.86 35898.65 17198.37 23994.29 24699.68 24788.41 34698.62 29796.60 347
MVSTER96.86 25096.55 25497.79 24597.91 31594.21 28197.56 19398.87 24197.49 17199.06 10499.05 10880.72 34499.80 16898.44 6599.82 6599.37 160
MVSFormer98.26 14298.43 10597.77 24698.88 21693.89 29599.39 1199.56 4299.11 5698.16 21498.13 25693.81 25599.97 399.26 1899.57 17599.43 135
jason97.45 20997.35 20597.76 24799.24 12993.93 29195.86 29598.42 28394.24 29498.50 19498.13 25694.82 23199.91 4597.22 12899.73 10699.43 135
jason: jason.
PAPR95.29 29194.47 30197.75 24897.50 33595.14 26194.89 32698.71 26991.39 33295.35 33895.48 34594.57 23999.14 34784.95 35397.37 32998.97 246
thisisatest053095.27 29294.45 30297.74 24999.19 14394.37 27797.86 16190.20 36397.17 20998.22 21197.65 29073.53 36299.90 4996.90 15499.35 22098.95 247
MIMVSNet96.62 26196.25 26597.71 25099.04 18194.66 27299.16 3896.92 32697.23 20597.87 23399.10 9886.11 31499.65 26391.65 32599.21 24398.82 264
MVS_Test98.18 15098.36 11697.67 25198.48 28194.73 26998.18 12199.02 21897.69 15398.04 22699.11 9697.22 13399.56 29098.57 5898.90 28298.71 280
new_pmnet96.99 24696.76 23997.67 25198.72 24294.89 26695.95 29198.20 29292.62 31798.55 18998.54 21894.88 23099.52 30293.96 28399.44 20898.59 289
lupinMVS97.06 23896.86 23397.65 25398.88 21693.89 29595.48 31197.97 30193.53 30698.16 21497.58 29493.81 25599.91 4596.77 16599.57 17599.17 218
PMVScopyleft91.26 2097.86 17597.94 16397.65 25399.71 3097.94 15198.52 8898.68 27098.99 7197.52 26099.35 5897.41 11898.18 36091.59 32799.67 14096.82 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tttt051795.64 28594.98 29697.64 25599.36 11193.81 29798.72 7190.47 36298.08 13098.67 16998.34 24273.88 36199.92 3597.77 10299.51 19399.20 207
MSLP-MVS++98.02 16198.14 14697.64 25598.58 27095.19 25997.48 20199.23 16697.47 17297.90 23198.62 20997.04 13898.81 35697.55 11299.41 21098.94 251
PVSNet_BlendedMVS97.55 20097.53 19197.60 25798.92 20693.77 29996.64 25899.43 8994.49 28697.62 25099.18 8096.82 15499.67 25094.73 25799.93 2599.36 166
TinyColmap97.89 17197.98 15997.60 25798.86 21994.35 27896.21 28099.44 8397.45 17999.06 10498.88 15597.99 7399.28 33794.38 27299.58 17199.18 214
cl-mvsnet____97.02 24296.83 23697.58 25997.82 31994.04 28594.66 33299.16 18897.04 21598.63 17398.71 18788.68 30099.69 23897.00 14199.81 6999.00 240
cl-mvsnet197.02 24296.84 23597.58 25997.82 31994.03 28694.66 33299.16 18897.04 21598.63 17398.71 18788.69 29999.69 23897.00 14199.81 6999.01 237
ET-MVSNet_ETH3D94.30 30793.21 31797.58 25998.14 30394.47 27694.78 32893.24 35594.72 28389.56 36295.87 33978.57 35599.81 15996.91 14997.11 33698.46 292
BH-RMVSNet96.83 25196.58 25197.58 25998.47 28294.05 28496.67 25797.36 31496.70 23197.87 23397.98 27095.14 22399.44 31890.47 34098.58 29999.25 198
HY-MVS95.94 1395.90 27995.35 28797.55 26397.95 31294.79 26798.81 6796.94 32592.28 32195.17 33998.57 21689.90 29199.75 21591.20 33397.33 33398.10 308
SD-MVS98.40 12798.68 6797.54 26498.96 19797.99 13997.88 15899.36 10898.20 12399.63 2599.04 11198.76 2395.33 36596.56 18599.74 10399.31 184
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PatchT96.65 25996.35 25997.54 26497.40 33695.32 25497.98 14996.64 33099.33 3896.89 29399.42 4984.32 32899.81 15997.69 11097.49 32497.48 335
baseline195.96 27895.44 28397.52 26698.51 27993.99 28998.39 10596.09 33698.21 12098.40 20597.76 28486.88 30699.63 26895.42 24589.27 36398.95 247
GA-MVS95.86 28095.32 28897.49 26798.60 26794.15 28393.83 34997.93 30295.49 26896.68 30097.42 30583.21 33499.30 33496.22 20998.55 30099.01 237
PVSNet_Blended96.88 24996.68 24497.47 26898.92 20693.77 29994.71 32999.43 8990.98 33697.62 25097.36 30996.82 15499.67 25094.73 25799.56 18098.98 242
MS-PatchMatch97.68 19197.75 17497.45 26998.23 29993.78 29897.29 21598.84 24896.10 25098.64 17298.65 20096.04 18999.36 32696.84 16099.14 25599.20 207
USDC97.41 21297.40 20097.44 27098.94 20093.67 30195.17 31899.53 5394.03 30098.97 12499.10 9895.29 21999.34 32895.84 22999.73 10699.30 187
API-MVS97.04 24196.91 23197.42 27197.88 31698.23 11798.18 12198.50 28097.57 16397.39 27096.75 32296.77 15899.15 34690.16 34199.02 27294.88 359
MDA-MVSNet_test_wron97.60 19797.66 18397.41 27299.04 18193.09 30595.27 31598.42 28397.26 19898.88 14498.95 13895.43 21799.73 22397.02 14098.72 28999.41 141
YYNet197.60 19797.67 18097.39 27399.04 18193.04 30995.27 31598.38 28697.25 19998.92 13598.95 13895.48 21699.73 22396.99 14398.74 28799.41 141
cl_fuxian97.36 21497.37 20397.31 27498.09 30693.25 30495.01 32399.16 18897.05 21498.77 16198.72 18692.88 27099.64 26596.93 14899.76 9999.05 229
RPMNet97.02 24296.93 22797.30 27597.71 32394.22 27998.11 12899.30 14199.37 3496.91 28999.34 6086.72 30799.87 8497.53 11597.36 33197.81 321
CR-MVSNet96.28 27195.95 26897.28 27697.71 32394.22 27998.11 12898.92 23392.31 32096.91 28999.37 5485.44 32099.81 15997.39 12197.36 33197.81 321
MG-MVS96.77 25496.61 24997.26 27798.31 29293.06 30695.93 29298.12 29796.45 23997.92 22998.73 18493.77 25799.39 32391.19 33499.04 26899.33 178
miper_lstm_enhance97.18 23097.16 21697.25 27898.16 30292.85 31195.15 32099.31 13297.25 19998.74 16598.78 17790.07 28999.78 19597.19 12999.80 7799.11 225
new-patchmatchnet98.35 13298.74 5797.18 27999.24 12992.23 32296.42 27099.48 6998.30 11199.69 1799.53 3397.44 11799.82 14698.84 4299.77 9099.49 104
eth_miper_zixun_eth97.23 22697.25 21097.17 28098.00 31192.77 31394.71 32999.18 17997.27 19798.56 18798.74 18391.89 28199.69 23897.06 13999.81 6999.05 229
Patchmatch-test96.55 26296.34 26097.17 28098.35 28993.06 30698.40 10497.79 30497.33 19098.41 20198.67 19583.68 33399.69 23895.16 24899.31 22698.77 275
miper_ehance_all_eth97.06 23897.03 22297.16 28297.83 31893.06 30694.66 33299.09 20195.99 25598.69 16798.45 23092.73 27399.61 27696.79 16299.03 26998.82 264
BH-untuned96.83 25196.75 24097.08 28398.74 23993.33 30396.71 25598.26 28996.72 22998.44 19797.37 30895.20 22199.47 31391.89 32297.43 32798.44 295
FPMVS93.44 32092.23 32597.08 28399.25 12897.86 15695.61 30597.16 32092.90 31393.76 35398.65 20075.94 35995.66 36379.30 36397.49 32497.73 326
JIA-IIPM95.52 28895.03 29597.00 28596.85 34794.03 28696.93 24095.82 33899.20 4894.63 34499.71 1283.09 33599.60 27794.42 26894.64 35597.36 337
test0.0.03 194.51 30293.69 31196.99 28696.05 35893.61 30294.97 32493.49 35296.17 24697.57 25694.88 35482.30 33999.01 35193.60 29494.17 35998.37 301
cl-mvsnet295.79 28295.39 28696.98 28796.77 34992.79 31294.40 34098.53 27894.59 28597.89 23298.17 25582.82 33899.24 33996.37 20099.03 26998.92 253
thisisatest051594.12 31193.16 31896.97 28898.60 26792.90 31093.77 35090.61 36194.10 29896.91 28995.87 33974.99 36099.80 16894.52 26399.12 26198.20 304
pmmvs395.03 29794.40 30396.93 28997.70 32592.53 31695.08 32197.71 30788.57 34997.71 24498.08 26479.39 35199.82 14696.19 21199.11 26298.43 296
xiu_mvs_v1_base_debu97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
xiu_mvs_v1_base97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
xiu_mvs_v1_base_debi97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
IterMVS-SCA-FT97.85 18098.18 13896.87 29399.27 12491.16 33795.53 30899.25 15999.10 6299.41 4999.35 5893.10 26599.96 898.65 5499.94 2199.49 104
mvs_anonymous97.83 18398.16 14296.87 29398.18 30191.89 32497.31 21498.90 23697.37 18798.83 15199.46 4396.28 18499.79 18398.90 3798.16 31098.95 247
DSMNet-mixed97.42 21197.60 18996.87 29399.15 15891.46 32898.54 8699.12 19792.87 31497.58 25499.63 2096.21 18599.90 4995.74 23299.54 18399.27 194
TR-MVS95.55 28795.12 29496.86 29697.54 33093.94 29096.49 26696.53 33194.36 29397.03 28496.61 32494.26 24799.16 34586.91 35096.31 34597.47 336
miper_enhance_ethall96.01 27695.74 27196.81 29796.41 35592.27 32193.69 35198.89 23891.14 33598.30 20797.35 31090.58 28699.58 28696.31 20499.03 26998.60 287
ppachtmachnet_test97.50 20297.74 17596.78 29898.70 24991.23 33694.55 33799.05 20996.36 24199.21 8498.79 17696.39 17899.78 19596.74 16899.82 6599.34 172
ADS-MVSNet295.43 29094.98 29696.76 29998.14 30391.74 32597.92 15497.76 30590.23 33896.51 30898.91 14385.61 31799.85 10592.88 30796.90 33798.69 283
IterMVS97.73 18898.11 14896.57 30099.24 12990.28 33895.52 31099.21 16898.86 8299.33 6299.33 6293.11 26499.94 2398.49 6299.94 2199.48 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PAPM91.88 33290.34 33596.51 30198.06 30892.56 31592.44 35797.17 31986.35 35490.38 36196.01 33586.61 30899.21 34270.65 36595.43 35297.75 325
MVS93.19 32292.09 32696.50 30296.91 34594.03 28698.07 13498.06 29968.01 36394.56 34596.48 32795.96 19899.30 33483.84 35596.89 33996.17 351
baseline293.73 31692.83 32296.42 30397.70 32591.28 33496.84 24889.77 36493.96 30292.44 35795.93 33779.14 35299.77 20192.94 30596.76 34198.21 303
our_test_397.39 21397.73 17796.34 30498.70 24989.78 34094.61 33598.97 22796.50 23699.04 11198.85 16295.98 19699.84 12297.26 12799.67 14099.41 141
thres600view794.45 30393.83 30996.29 30599.06 17891.53 32797.99 14794.24 34898.34 10897.44 26795.01 35079.84 34799.67 25084.33 35498.23 30597.66 329
IB-MVS91.63 1992.24 33090.90 33496.27 30697.22 34291.24 33594.36 34193.33 35492.37 31992.24 35894.58 35766.20 37199.89 5893.16 30494.63 35697.66 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres40094.14 31093.44 31496.24 30798.93 20291.44 32997.60 18894.29 34697.94 13797.10 27894.31 35879.67 34999.62 27083.05 35698.08 31597.66 329
ADS-MVSNet95.24 29394.93 29896.18 30898.14 30390.10 33997.92 15497.32 31790.23 33896.51 30898.91 14385.61 31799.74 21992.88 30796.90 33798.69 283
xiu_mvs_v2_base97.16 23297.49 19496.17 30998.54 27692.46 31795.45 31298.84 24897.25 19997.48 26496.49 32698.31 4999.90 4996.34 20398.68 29396.15 353
131495.74 28395.60 27796.17 30997.53 33192.75 31498.07 13498.31 28891.22 33394.25 34696.68 32395.53 21199.03 34891.64 32697.18 33496.74 345
PS-MVSNAJ97.08 23697.39 20196.16 31198.56 27392.46 31795.24 31798.85 24797.25 19997.49 26395.99 33698.07 6499.90 4996.37 20098.67 29496.12 354
cascas94.79 30094.33 30696.15 31296.02 36092.36 32092.34 35899.26 15885.34 35795.08 34194.96 35392.96 26998.53 35894.41 27198.59 29897.56 333
BH-w/o95.13 29594.89 29995.86 31398.20 30091.31 33295.65 30497.37 31393.64 30496.52 30795.70 34193.04 26899.02 34988.10 34795.82 35097.24 338
gg-mvs-nofinetune92.37 32891.20 33395.85 31495.80 36292.38 31999.31 1881.84 36999.75 591.83 35999.74 868.29 36599.02 34987.15 34997.12 33596.16 352
tfpn200view994.03 31293.44 31495.78 31598.93 20291.44 32997.60 18894.29 34697.94 13797.10 27894.31 35879.67 34999.62 27083.05 35698.08 31596.29 348
thres100view90094.19 30893.67 31295.75 31699.06 17891.35 33198.03 14194.24 34898.33 10997.40 26994.98 35279.84 34799.62 27083.05 35698.08 31596.29 348
SCA96.41 26896.66 24795.67 31798.24 29788.35 34595.85 29796.88 32796.11 24997.67 24798.67 19593.10 26599.85 10594.16 27499.22 24198.81 267
tpm94.67 30194.34 30595.66 31897.68 32788.42 34497.88 15894.90 34294.46 28896.03 32398.56 21778.66 35399.79 18395.88 22395.01 35498.78 274
CHOSEN 280x42095.51 28995.47 28095.65 31998.25 29688.27 34693.25 35398.88 23993.53 30694.65 34397.15 31686.17 31299.93 2897.41 12099.93 2598.73 279
RRT_test8_iter0595.24 29395.13 29395.57 32097.32 33987.02 35197.99 14799.41 9398.06 13199.12 9399.05 10866.85 36999.85 10598.93 3699.47 20499.84 8
PVSNet93.40 1795.67 28495.70 27395.57 32098.83 22688.57 34392.50 35697.72 30692.69 31696.49 31196.44 32993.72 25899.43 31993.61 29399.28 23298.71 280
KD-MVS_2432*160092.87 32491.99 32895.51 32291.37 36689.27 34194.07 34498.14 29595.42 27097.25 27596.44 32967.86 36699.24 33991.28 33196.08 34898.02 311
miper_refine_blended92.87 32491.99 32895.51 32291.37 36689.27 34194.07 34498.14 29595.42 27097.25 27596.44 32967.86 36699.24 33991.28 33196.08 34898.02 311
thres20093.72 31793.14 31995.46 32498.66 26391.29 33396.61 26094.63 34497.39 18596.83 29693.71 36179.88 34699.56 29082.40 35998.13 31295.54 358
EPNet_dtu94.93 29994.78 30095.38 32593.58 36587.68 34896.78 25095.69 34097.35 18989.14 36398.09 26388.15 30399.49 30894.95 25399.30 22998.98 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive95.58 28695.67 27595.30 32697.34 33887.32 34997.65 18396.65 32995.30 27397.07 28198.69 19184.77 32399.75 21594.97 25298.64 29598.83 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet97.66 19398.50 9095.13 32799.63 4885.84 35498.35 10998.21 29198.23 11999.54 3099.46 4395.02 22599.68 24798.24 7599.87 5299.87 4
EPMVS93.72 31793.27 31695.09 32896.04 35987.76 34798.13 12585.01 36794.69 28496.92 28798.64 20378.47 35799.31 33295.04 24996.46 34398.20 304
DWT-MVSNet_test92.75 32692.05 32794.85 32996.48 35387.21 35097.83 16494.99 34192.22 32292.72 35694.11 36070.75 36399.46 31595.01 25094.33 35897.87 317
GG-mvs-BLEND94.76 33094.54 36492.13 32399.31 1880.47 37088.73 36491.01 36467.59 36898.16 36182.30 36094.53 35793.98 360
tpm293.09 32392.58 32494.62 33197.56 32986.53 35297.66 18195.79 33986.15 35594.07 35098.23 25175.95 35899.53 29890.91 33796.86 34097.81 321
CostFormer93.97 31393.78 31094.51 33297.53 33185.83 35597.98 14995.96 33789.29 34694.99 34298.63 20778.63 35499.62 27094.54 26296.50 34298.09 309
tpmvs95.02 29895.25 28994.33 33396.39 35685.87 35398.08 13396.83 32895.46 26995.51 33698.69 19185.91 31599.53 29894.16 27496.23 34697.58 332
MVEpermissive83.40 2292.50 32791.92 33094.25 33498.83 22691.64 32692.71 35583.52 36895.92 25786.46 36695.46 34695.20 22195.40 36480.51 36198.64 29595.73 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-LLR93.90 31493.85 30894.04 33596.53 35184.62 35994.05 34692.39 35796.17 24694.12 34895.07 34882.30 33999.67 25095.87 22698.18 30897.82 319
test-mter92.33 32991.76 33294.04 33596.53 35184.62 35994.05 34692.39 35794.00 30194.12 34895.07 34865.63 37299.67 25095.87 22698.18 30897.82 319
tpmrst95.07 29695.46 28193.91 33797.11 34384.36 36197.62 18596.96 32394.98 27796.35 31498.80 17485.46 31999.59 28195.60 24096.23 34697.79 324
tpm cat193.29 32193.13 32093.75 33897.39 33784.74 35897.39 20797.65 30983.39 36094.16 34798.41 23282.86 33799.39 32391.56 32895.35 35397.14 339
PVSNet_089.98 2191.15 33390.30 33693.70 33997.72 32284.34 36290.24 36097.42 31290.20 34193.79 35293.09 36290.90 28598.89 35586.57 35172.76 36597.87 317
E-PMN94.17 30994.37 30493.58 34096.86 34685.71 35690.11 36197.07 32198.17 12697.82 23897.19 31284.62 32598.94 35289.77 34297.68 32396.09 355
TESTMET0.1,192.19 33191.77 33193.46 34196.48 35382.80 36494.05 34691.52 36094.45 29094.00 35194.88 35466.65 37099.56 29095.78 23198.11 31398.02 311
DeepMVS_CXcopyleft93.44 34298.24 29794.21 28194.34 34564.28 36491.34 36094.87 35689.45 29592.77 36677.54 36493.14 36093.35 361
CVMVSNet96.25 27297.21 21493.38 34399.10 16680.56 36797.20 22398.19 29496.94 21999.00 11899.02 11589.50 29499.80 16896.36 20299.59 16599.78 14
EMVS93.83 31594.02 30793.23 34496.83 34884.96 35789.77 36296.32 33397.92 13997.43 26896.36 33286.17 31298.93 35387.68 34897.73 32295.81 356
dp93.47 31993.59 31393.13 34596.64 35081.62 36697.66 18196.42 33292.80 31596.11 31898.64 20378.55 35699.59 28193.31 30292.18 36298.16 306
wuyk23d96.06 27597.62 18791.38 34698.65 26498.57 9298.85 6596.95 32496.86 22499.90 499.16 8699.18 1198.40 35989.23 34499.77 9077.18 363
MVS-HIRNet94.32 30595.62 27690.42 34798.46 28375.36 36896.29 27689.13 36595.25 27495.38 33799.75 792.88 27099.19 34394.07 28199.39 21396.72 346
test_method79.78 33479.50 33780.62 34880.21 36945.76 37170.82 36398.41 28531.08 36680.89 36797.71 28684.85 32297.37 36291.51 32980.03 36498.75 277
tmp_tt78.77 33578.73 33878.90 34958.45 37074.76 37094.20 34378.26 37139.16 36586.71 36592.82 36380.50 34575.19 36786.16 35292.29 36186.74 362
test12317.04 33820.11 3417.82 35010.25 3724.91 37294.80 3274.47 3734.93 36710.00 36924.28 3679.69 3733.64 36810.14 36612.43 36714.92 364
testmvs17.12 33720.53 3406.87 35112.05 3714.20 37393.62 3526.73 3724.62 36810.41 36824.33 3668.28 3743.56 3699.69 36715.07 36612.86 365
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k24.66 33632.88 3390.00 3520.00 3730.00 3740.00 36499.10 2000.00 3690.00 37097.58 29499.21 100.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas8.17 33910.90 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37098.07 640.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.12 34010.83 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37097.48 3010.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
ZD-MVS99.01 18898.84 6999.07 20494.10 29898.05 22598.12 25996.36 18299.86 9192.70 31499.19 248
RE-MVS-def98.58 8199.20 14099.38 598.48 9799.30 14198.64 9098.95 12798.96 13497.75 8796.56 18599.39 21399.45 126
IU-MVS99.49 8499.15 4598.87 24192.97 31199.41 4996.76 16699.62 15499.66 34
test_241102_TWO99.30 14198.03 13299.26 7799.02 11597.51 10999.88 6796.91 14999.60 16399.66 34
test_241102_ONE99.49 8499.17 3699.31 13297.98 13499.66 2098.90 14698.36 4499.48 311
9.1497.78 17299.07 17497.53 19699.32 12795.53 26798.54 19198.70 19097.58 10199.76 20894.32 27399.46 205
save fliter99.11 16297.97 14496.53 26299.02 21898.24 117
test_0728_THIRD98.17 12699.08 10199.02 11597.89 7799.88 6797.07 13899.71 11899.70 29
test072699.50 7799.21 2698.17 12499.35 11497.97 13599.26 7799.06 10197.61 99
GSMVS98.81 267
test_part299.36 11199.10 5699.05 109
sam_mvs184.74 32498.81 267
sam_mvs84.29 330
MTGPAbinary99.20 170
test_post197.59 19020.48 36983.07 33699.66 25894.16 274
test_post21.25 36883.86 33299.70 234
patchmatchnet-post98.77 17984.37 32799.85 105
MTMP97.93 15291.91 359
gm-plane-assit94.83 36381.97 36588.07 35194.99 35199.60 27791.76 323
test9_res93.28 30399.15 25499.38 157
TEST998.71 24598.08 13195.96 28999.03 21491.40 33195.85 32497.53 29696.52 17199.76 208
test_898.67 25898.01 13895.91 29499.02 21891.64 32695.79 32697.50 29996.47 17499.76 208
agg_prior292.50 31799.16 25199.37 160
agg_prior98.68 25697.99 13999.01 22195.59 32799.77 201
test_prior497.97 14495.86 295
test_prior295.74 30196.48 23796.11 31897.63 29295.92 20094.16 27499.20 244
旧先验295.76 29988.56 35097.52 26099.66 25894.48 264
新几何295.93 292
旧先验198.82 22997.45 18698.76 26198.34 24295.50 21499.01 27499.23 202
无先验95.74 30198.74 26689.38 34599.73 22392.38 31899.22 206
原ACMM295.53 308
test22298.92 20696.93 21495.54 30798.78 25985.72 35696.86 29598.11 26094.43 24199.10 26399.23 202
testdata299.79 18392.80 311
segment_acmp97.02 141
testdata195.44 31396.32 243
plane_prior799.19 14397.87 155
plane_prior698.99 19397.70 17394.90 227
plane_prior599.27 15399.70 23494.42 26899.51 19399.45 126
plane_prior497.98 270
plane_prior397.78 16697.41 18397.79 239
plane_prior297.77 17098.20 123
plane_prior199.05 180
plane_prior97.65 17697.07 23296.72 22999.36 218
n20.00 374
nn0.00 374
door-mid99.57 35
test1198.87 241
door99.41 93
HQP5-MVS96.79 217
HQP-NCC98.67 25896.29 27696.05 25195.55 331
ACMP_Plane98.67 25896.29 27696.05 25195.55 331
BP-MVS92.82 309
HQP4-MVS95.56 33099.54 29699.32 180
HQP3-MVS99.04 21299.26 237
HQP2-MVS93.84 253
NP-MVS98.84 22497.39 18996.84 320
MDTV_nov1_ep13_2view74.92 36997.69 17890.06 34397.75 24285.78 31693.52 29698.69 283
MDTV_nov1_ep1395.22 29097.06 34483.20 36397.74 17496.16 33494.37 29296.99 28598.83 16883.95 33199.53 29893.90 28597.95 319
ACMMP++_ref99.77 90
ACMMP++99.68 134
Test By Simon96.52 171