This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
UA-Net99.47 1199.40 1499.70 299.49 8399.29 1499.80 399.72 899.82 399.04 10999.81 398.05 6799.96 898.85 3899.99 599.86 6
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1199.69 499.58 2699.90 299.86 799.78 599.58 399.95 1499.00 3199.95 1599.78 14
DTE-MVSNet99.43 1599.35 1799.66 499.71 2999.30 1399.31 1899.51 5399.64 1199.56 2699.46 4098.23 5199.97 398.78 4299.93 2499.72 24
WR-MVS_H99.33 2399.22 2799.65 599.71 2999.24 2099.32 1599.55 4399.46 2699.50 3799.34 5897.30 11999.93 2698.90 3599.93 2499.77 16
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5699.34 1399.69 1298.93 7499.65 2299.72 1198.93 1899.95 1499.11 25100.00 199.82 9
PS-CasMVS99.40 1899.33 2099.62 699.71 2999.10 5399.29 2399.53 4999.53 2299.46 4199.41 4998.23 5199.95 1498.89 3799.95 1599.81 11
PEN-MVS99.41 1799.34 1999.62 699.73 2399.14 4599.29 2399.54 4799.62 1699.56 2699.42 4798.16 6099.96 898.78 4299.93 2499.77 16
DVP-MVS98.40 12298.00 15199.61 999.57 5399.25 1998.57 7899.35 10897.55 15699.31 6897.71 27394.61 23099.88 6296.14 20299.19 23899.70 28
zzz-MVS98.79 6198.52 8199.61 999.67 3999.36 697.33 20199.20 16198.83 8098.89 13398.90 14196.98 13999.92 3297.16 12299.70 11899.56 69
MTAPA98.88 5398.64 6999.61 999.67 3999.36 698.43 9599.20 16198.83 8098.89 13398.90 14196.98 13999.92 3297.16 12299.70 11899.56 69
abl_698.99 3798.78 5199.61 999.45 9799.46 398.60 7499.50 5598.59 8899.24 7899.04 10998.54 3399.89 5496.45 18499.62 14999.50 99
test_0728_SECOND99.60 1399.50 7699.23 2198.02 13499.32 12199.88 6296.99 13499.63 14699.68 30
MP-MVS-pluss98.57 9898.23 12699.60 1399.69 3799.35 897.16 21899.38 9594.87 26698.97 12198.99 12298.01 6999.88 6297.29 11699.70 11899.58 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs699.67 399.70 399.60 1399.90 499.27 1799.53 799.76 699.64 1199.84 899.83 299.50 599.87 7899.36 1499.92 3399.64 38
APDe-MVS98.99 3798.79 5099.60 1399.21 13499.15 4298.87 5999.48 6597.57 15399.35 5899.24 7097.83 8099.89 5497.88 8999.70 11899.75 22
HPM-MVScopyleft98.79 6198.53 8099.59 1799.65 4299.29 1499.16 3899.43 8496.74 21798.61 17098.38 23098.62 2899.87 7896.47 18299.67 13599.59 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS98.71 7398.43 9999.57 1899.18 14599.35 898.36 10099.29 13898.29 10498.88 13798.85 15697.53 10499.87 7896.14 20299.31 21799.48 109
DPE-MVS98.59 9798.26 12299.57 1899.27 12299.15 4297.01 22399.39 9397.67 14499.44 4498.99 12297.53 10499.89 5495.40 23399.68 12999.66 33
ACMMP_NAP98.75 6898.48 8999.57 1899.58 4999.29 1497.82 15699.25 15096.94 20998.78 15199.12 9298.02 6899.84 11197.13 12699.67 13599.59 53
HPM-MVS_fast99.01 3598.82 4799.57 1899.71 2999.35 899.00 5099.50 5597.33 17998.94 12898.86 15398.75 2399.82 13697.53 10699.71 11499.56 69
CP-MVSNet99.21 2899.09 3399.56 2299.65 4298.96 6199.13 4199.34 11499.42 2999.33 6199.26 6797.01 13799.94 2298.74 4699.93 2499.79 13
LTVRE_ROB98.40 199.67 399.71 299.56 2299.85 1399.11 5299.90 199.78 499.63 1399.78 1099.67 1699.48 699.81 14999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PGM-MVS98.66 8498.37 10999.55 2499.53 6999.18 3298.23 10799.49 6397.01 20798.69 16098.88 15098.00 7099.89 5495.87 21399.59 15999.58 59
MIMVSNet199.38 2099.32 2199.55 2499.86 1199.19 3199.41 1099.59 2499.59 1999.71 1499.57 2797.12 13099.90 4599.21 2199.87 5099.54 81
TDRefinement99.42 1699.38 1599.55 2499.76 2199.33 1299.68 599.71 999.38 3299.53 3199.61 2398.64 2799.80 15998.24 6999.84 5499.52 91
ZNCC-MVS98.68 8198.40 10399.54 2799.57 5399.21 2398.46 9299.29 13897.28 18598.11 20998.39 22898.00 7099.87 7896.86 15099.64 14399.55 77
nrg03099.40 1899.35 1799.54 2799.58 4999.13 4898.98 5399.48 6599.68 899.46 4199.26 6798.62 2899.73 21199.17 2499.92 3399.76 20
region2R98.69 7898.40 10399.54 2799.53 6999.17 3398.52 8399.31 12697.46 16798.44 18798.51 21497.83 8099.88 6296.46 18399.58 16599.58 59
ACMMPR98.70 7698.42 10199.54 2799.52 7199.14 4598.52 8399.31 12697.47 16298.56 17798.54 21197.75 8799.88 6296.57 17399.59 15999.58 59
MP-MVScopyleft98.46 11598.09 14299.54 2799.57 5399.22 2298.50 8899.19 16697.61 15097.58 24298.66 19197.40 11599.88 6294.72 24699.60 15799.54 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.64 8798.34 11399.54 2799.54 6799.17 3398.63 7199.24 15597.47 16298.09 21198.68 18697.62 9699.89 5496.22 19699.62 14999.57 64
SteuartSystems-ACMMP98.79 6198.54 7999.54 2799.73 2399.16 3798.23 10799.31 12697.92 12998.90 13198.90 14198.00 7099.88 6296.15 20199.72 11099.58 59
Skip Steuart: Steuart Systems R&D Blog.
XVS98.72 7298.45 9599.53 3499.46 9499.21 2398.65 6999.34 11498.62 8697.54 24698.63 20097.50 10899.83 12696.79 15399.53 18199.56 69
X-MVStestdata94.32 29392.59 31099.53 3499.46 9499.21 2398.65 6999.34 11498.62 8697.54 24645.85 34897.50 10899.83 12696.79 15399.53 18199.56 69
APD-MVS_3200maxsize98.84 5798.61 7499.53 3499.19 13899.27 1798.49 8999.33 11998.64 8499.03 11298.98 12697.89 7799.85 9496.54 17899.42 20399.46 118
test_djsdf99.52 999.51 999.53 3499.86 1198.74 7199.39 1199.56 4099.11 5399.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
OurMVSNet-221017-099.37 2199.31 2299.53 3499.91 398.98 5799.63 699.58 2699.44 2899.78 1099.76 696.39 17299.92 3299.44 1399.92 3399.68 30
MSP-MVS98.77 6698.52 8199.52 3999.50 7699.21 2398.02 13498.84 23997.97 12599.08 9999.02 11397.61 9799.88 6296.99 13499.63 14699.48 109
GST-MVS98.61 9298.30 11899.52 3999.51 7399.20 2998.26 10599.25 15097.44 17098.67 16298.39 22897.68 8999.85 9496.00 20599.51 18799.52 91
CP-MVS98.70 7698.42 10199.52 3999.36 10999.12 5098.72 6799.36 10397.54 15798.30 19798.40 22697.86 7999.89 5496.53 17999.72 11099.56 69
ACMMPcopyleft98.75 6898.50 8599.52 3999.56 6199.16 3798.87 5999.37 9997.16 19998.82 14899.01 11997.71 8899.87 7896.29 19399.69 12499.54 81
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVS98.40 12298.03 14999.51 4399.16 14899.21 2398.05 12999.22 15894.16 28298.98 11899.10 9697.52 10699.79 17296.45 18499.64 14399.53 87
HFP-MVS98.71 7398.44 9799.51 4399.49 8399.16 3798.52 8399.31 12697.47 16298.58 17598.50 21797.97 7499.85 9496.57 17399.59 15999.53 87
#test#98.50 11198.16 13599.51 4399.49 8399.16 3798.03 13299.31 12696.30 23398.58 17598.50 21797.97 7499.85 9495.68 22399.59 15999.53 87
SED-MVS98.91 5098.72 5799.49 4699.49 8399.17 3398.10 12299.31 12698.03 12299.66 2099.02 11398.36 4299.88 6296.91 14099.62 14999.41 134
mvs_tets99.63 599.67 599.49 4699.88 798.61 8299.34 1399.71 999.27 4099.90 499.74 899.68 299.97 399.55 899.99 599.88 3
jajsoiax99.58 699.61 799.48 4899.87 1098.61 8299.28 2799.66 1699.09 6099.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
HPM-MVS++copyleft98.10 14997.64 17799.48 4899.09 16399.13 4897.52 18898.75 25497.46 16796.90 27797.83 26796.01 18499.84 11195.82 21799.35 21199.46 118
ACMM96.08 1298.91 5098.73 5599.48 4899.55 6499.14 4598.07 12599.37 9997.62 14899.04 10998.96 13198.84 1999.79 17297.43 11099.65 14199.49 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test98.71 7398.46 9399.47 5199.57 5398.97 5898.23 10799.48 6596.60 22299.10 9699.06 9998.71 2599.83 12695.58 22999.78 8499.62 42
LGP-MVS_train99.47 5199.57 5398.97 5899.48 6596.60 22299.10 9699.06 9998.71 2599.83 12695.58 22999.78 8499.62 42
TranMVSNet+NR-MVSNet99.17 2999.07 3599.46 5399.37 10898.87 6398.39 9899.42 8799.42 2999.36 5799.06 9998.38 4199.95 1498.34 6699.90 4299.57 64
testtj97.79 17997.25 20199.42 5499.03 17798.85 6497.78 15899.18 17095.83 24798.12 20898.50 21795.50 20799.86 8492.23 30699.07 25499.54 81
APD-MVScopyleft98.10 14997.67 17299.42 5499.11 15698.93 6297.76 16399.28 14094.97 26398.72 15998.77 17297.04 13399.85 9493.79 27799.54 17799.49 103
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
RPSCF98.62 9198.36 11099.42 5499.65 4299.42 498.55 8099.57 3397.72 14298.90 13199.26 6796.12 18099.52 28995.72 22099.71 11499.32 172
v7n99.53 899.57 899.41 5799.88 798.54 9099.45 999.61 2199.66 1099.68 1999.66 1798.44 3899.95 1499.73 299.96 1499.75 22
COLMAP_ROBcopyleft96.50 1098.99 3798.85 4599.41 5799.58 4999.10 5398.74 6599.56 4099.09 6099.33 6199.19 7698.40 4099.72 21995.98 20799.76 9799.42 132
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UniMVSNet_NR-MVSNet98.86 5698.68 6499.40 5999.17 14698.74 7197.68 17099.40 9199.14 5199.06 10298.59 20796.71 15899.93 2698.57 5499.77 8899.53 87
DU-MVS98.82 5898.63 7099.39 6099.16 14898.74 7197.54 18699.25 15098.84 7999.06 10298.76 17496.76 15499.93 2698.57 5499.77 8899.50 99
TransMVSNet (Re)99.44 1399.47 1299.36 6199.80 1798.58 8599.27 2999.57 3399.39 3199.75 1299.62 2199.17 1299.83 12699.06 2899.62 14999.66 33
NR-MVSNet98.95 4598.82 4799.36 6199.16 14898.72 7699.22 3199.20 16199.10 5799.72 1398.76 17496.38 17499.86 8498.00 8399.82 6399.50 99
Baseline_NR-MVSNet98.98 4198.86 4499.36 6199.82 1698.55 8797.47 19499.57 3399.37 3399.21 8299.61 2396.76 15499.83 12698.06 7899.83 6099.71 25
ACMP95.32 1598.41 12098.09 14299.36 6199.51 7398.79 6997.68 17099.38 9595.76 24998.81 15098.82 16598.36 4299.82 13694.75 24399.77 8899.48 109
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LS3D98.63 8998.38 10899.36 6197.25 32799.38 599.12 4399.32 12199.21 4298.44 18798.88 15097.31 11899.80 15996.58 17199.34 21398.92 245
Effi-MVS+-dtu98.26 13797.90 15999.35 6698.02 29599.49 298.02 13499.16 17998.29 10497.64 23797.99 25896.44 17099.95 1496.66 16798.93 27198.60 275
PS-MVSNAJss99.46 1299.49 1099.35 6699.90 498.15 11599.20 3299.65 1799.48 2399.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
UniMVSNet (Re)98.87 5498.71 5999.35 6699.24 12798.73 7497.73 16699.38 9598.93 7499.12 9198.73 17796.77 15299.86 8498.63 5199.80 7599.46 118
FC-MVSNet-test99.27 2599.25 2599.34 6999.77 2098.37 10099.30 2299.57 3399.61 1899.40 5199.50 3497.12 13099.85 9499.02 3099.94 1999.80 12
PHI-MVS98.29 13497.95 15499.34 6998.44 27299.16 3798.12 11999.38 9596.01 24298.06 21398.43 22497.80 8499.67 23895.69 22299.58 16599.20 199
pm-mvs199.44 1399.48 1199.33 7199.80 1798.63 7999.29 2399.63 1899.30 3899.65 2299.60 2599.16 1499.82 13699.07 2799.83 6099.56 69
ACMH+96.62 999.08 3399.00 3899.33 7199.71 2998.83 6598.60 7499.58 2699.11 5399.53 3199.18 7898.81 2199.67 23896.71 16499.77 8899.50 99
SF-MVS98.53 10898.27 12199.32 7399.31 11698.75 7098.19 11299.41 8896.77 21698.83 14498.90 14197.80 8499.82 13695.68 22399.52 18499.38 149
ETH3D-3000-0.198.03 15397.62 17999.29 7499.11 15698.80 6897.47 19499.32 12195.54 25298.43 19098.62 20296.61 16299.77 18893.95 27199.49 19599.30 179
FIs99.14 3199.09 3399.29 7499.70 3598.28 10399.13 4199.52 5299.48 2399.24 7899.41 4996.79 15199.82 13698.69 4999.88 4799.76 20
VPA-MVSNet99.30 2499.30 2399.28 7699.49 8398.36 10199.00 5099.45 7699.63 1399.52 3399.44 4598.25 4999.88 6299.09 2699.84 5499.62 42
DP-MVS98.93 4798.81 4999.28 7699.21 13498.45 9698.46 9299.33 11999.63 1399.48 3899.15 8897.23 12799.75 20297.17 12199.66 14099.63 41
ANet_high99.57 799.67 599.28 7699.89 698.09 11999.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2299.31 16100.00 199.82 9
CPTT-MVS97.84 17497.36 19699.27 7999.31 11698.46 9598.29 10299.27 14494.90 26597.83 22598.37 23194.90 22099.84 11193.85 27699.54 17799.51 94
Vis-MVSNetpermissive99.34 2299.36 1699.27 7999.73 2398.26 10499.17 3799.78 499.11 5399.27 7199.48 3898.82 2099.95 1498.94 3399.93 2499.59 53
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2023121199.27 2599.27 2499.26 8199.29 12098.18 11399.49 899.51 5399.70 799.80 999.68 1496.84 14599.83 12699.21 2199.91 3899.77 16
ACMH96.65 799.25 2799.24 2699.26 8199.72 2898.38 9999.07 4599.55 4398.30 10199.65 2299.45 4499.22 999.76 19598.44 6199.77 8899.64 38
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS98.56 9998.32 11799.25 8399.41 10498.73 7497.13 22099.18 17097.10 20298.75 15698.92 13798.18 5899.65 25196.68 16699.56 17499.37 152
3Dnovator+97.89 398.69 7898.51 8399.24 8498.81 22298.40 9799.02 4799.19 16698.99 6698.07 21299.28 6397.11 13299.84 11196.84 15199.32 21599.47 116
DeepPCF-MVS96.93 598.32 12998.01 15099.23 8598.39 27598.97 5895.03 31199.18 17096.88 21299.33 6198.78 17098.16 6099.28 32496.74 15999.62 14999.44 125
XVG-ACMP-BASELINE98.56 9998.34 11399.22 8699.54 6798.59 8497.71 16799.46 7397.25 18898.98 11898.99 12297.54 10299.84 11195.88 21099.74 10199.23 194
CSCG98.68 8198.50 8599.20 8799.45 9798.63 7998.56 7999.57 3397.87 13398.85 14198.04 25697.66 9199.84 11196.72 16299.81 6799.13 214
ETH3D cwj APD-0.1697.55 19297.00 21399.19 8898.51 26698.64 7896.85 23599.13 18694.19 28197.65 23698.40 22695.78 19799.81 14993.37 28899.16 24199.12 215
GBi-Net98.65 8598.47 9199.17 8998.90 20198.24 10699.20 3299.44 7998.59 8898.95 12499.55 2994.14 24099.86 8497.77 9499.69 12499.41 134
test198.65 8598.47 9199.17 8998.90 20198.24 10699.20 3299.44 7998.59 8898.95 12499.55 2994.14 24099.86 8497.77 9499.69 12499.41 134
FMVSNet199.17 2999.17 2899.17 8999.55 6498.24 10699.20 3299.44 7999.21 4299.43 4699.55 2997.82 8399.86 8498.42 6399.89 4699.41 134
AllTest98.44 11798.20 12899.16 9299.50 7698.55 8798.25 10699.58 2696.80 21498.88 13799.06 9997.65 9299.57 27494.45 25399.61 15599.37 152
TestCases99.16 9299.50 7698.55 8799.58 2696.80 21498.88 13799.06 9997.65 9299.57 27494.45 25399.61 15599.37 152
SixPastTwentyTwo98.75 6898.62 7199.16 9299.83 1597.96 14199.28 2798.20 28099.37 3399.70 1599.65 1992.65 26599.93 2699.04 2999.84 5499.60 47
XVG-OURS-SEG-HR98.49 11298.28 12099.14 9599.49 8398.83 6596.54 25099.48 6597.32 18199.11 9398.61 20599.33 899.30 32196.23 19598.38 29199.28 184
F-COLMAP97.30 20996.68 23299.14 9599.19 13898.39 9897.27 20799.30 13492.93 29696.62 28898.00 25795.73 19999.68 23592.62 30198.46 29099.35 162
Anonymous2024052998.93 4798.87 4399.12 9799.19 13898.22 11199.01 4898.99 21699.25 4199.54 2899.37 5297.04 13399.80 15997.89 8699.52 18499.35 162
PM-MVS98.82 5898.72 5799.12 9799.64 4598.54 9097.98 14099.68 1397.62 14899.34 6099.18 7897.54 10299.77 18897.79 9299.74 10199.04 225
LCM-MVSNet-Re98.64 8798.48 8999.11 9998.85 21298.51 9298.49 8999.83 398.37 9699.69 1799.46 4098.21 5699.92 3294.13 26699.30 22098.91 248
XVG-OURS98.53 10898.34 11399.11 9999.50 7698.82 6795.97 27699.50 5597.30 18399.05 10798.98 12699.35 799.32 31895.72 22099.68 12999.18 206
MCST-MVS98.00 15797.63 17899.10 10199.24 12798.17 11496.89 23498.73 25795.66 25097.92 21897.70 27497.17 12999.66 24696.18 20099.23 23099.47 116
XXY-MVS99.14 3199.15 3199.10 10199.76 2197.74 16298.85 6299.62 1998.48 9499.37 5599.49 3798.75 2399.86 8498.20 7299.80 7599.71 25
DeepC-MVS97.60 498.97 4298.93 4199.10 10199.35 11397.98 13698.01 13799.46 7397.56 15599.54 2899.50 3498.97 1699.84 11198.06 7899.92 3399.49 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3 D test640096.46 25695.59 26699.08 10498.88 20798.21 11296.53 25199.18 17088.87 33297.08 26597.79 26893.64 25199.77 18888.92 32899.40 20699.28 184
Anonymous20240521197.90 16297.50 18699.08 10498.90 20198.25 10598.53 8296.16 31998.87 7699.11 9398.86 15390.40 27999.78 18297.36 11399.31 21799.19 204
IS-MVSNet98.19 14497.90 15999.08 10499.57 5397.97 13799.31 1898.32 27599.01 6598.98 11899.03 11291.59 27399.79 17295.49 23199.80 7599.48 109
train_agg97.10 22496.45 24599.07 10798.71 23598.08 12395.96 27899.03 20591.64 31095.85 30997.53 28296.47 16899.76 19593.67 27999.16 24199.36 158
VDD-MVS98.56 9998.39 10699.07 10799.13 15598.07 12598.59 7697.01 30699.59 1999.11 9399.27 6594.82 22499.79 17298.34 6699.63 14699.34 164
CDPH-MVS97.26 21296.66 23599.07 10799.00 18198.15 11596.03 27499.01 21291.21 31897.79 22897.85 26696.89 14399.69 22692.75 29999.38 20899.39 143
CNVR-MVS98.17 14797.87 16199.07 10798.67 24798.24 10697.01 22398.93 22197.25 18897.62 23898.34 23497.27 12299.57 27496.42 18699.33 21499.39 143
EPP-MVSNet98.30 13198.04 14899.07 10799.56 6197.83 15199.29 2398.07 28499.03 6398.59 17399.13 9192.16 26999.90 4596.87 14899.68 12999.49 103
xxxxxxxxxxxxxcwj98.44 11798.24 12499.06 11299.11 15697.97 13796.53 25199.54 4798.24 10798.83 14498.90 14197.80 8499.82 13695.68 22399.52 18499.38 149
TSAR-MVS + MP.98.63 8998.49 8899.06 11299.64 4597.90 14698.51 8798.94 21996.96 20899.24 7898.89 14997.83 8099.81 14996.88 14799.49 19599.48 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC97.86 16897.47 19199.05 11498.61 25498.07 12596.98 22598.90 22797.63 14797.04 26897.93 26295.99 18899.66 24695.31 23498.82 27499.43 129
3Dnovator98.27 298.81 6098.73 5599.05 11498.76 22697.81 15699.25 3099.30 13498.57 9298.55 17999.33 6097.95 7699.90 4597.16 12299.67 13599.44 125
OMC-MVS97.88 16697.49 18799.04 11698.89 20698.63 7996.94 22799.25 15095.02 26198.53 18298.51 21497.27 12299.47 30093.50 28599.51 18799.01 229
agg_prior197.06 22896.40 24699.03 11798.68 24597.99 13295.76 28899.01 21291.73 30995.59 31297.50 28596.49 16799.77 18893.71 27899.14 24599.34 164
WR-MVS98.40 12298.19 13099.03 11799.00 18197.65 16796.85 23598.94 21998.57 9298.89 13398.50 21795.60 20299.85 9497.54 10599.85 5299.59 53
K. test v398.00 15797.66 17599.03 11799.79 1997.56 17199.19 3692.47 34099.62 1699.52 3399.66 1789.61 28399.96 899.25 2099.81 6799.56 69
Regformer-298.60 9498.46 9399.02 12098.85 21297.71 16496.91 23299.09 19398.98 6899.01 11398.64 19697.37 11799.84 11197.75 9999.57 16999.52 91
VDDNet98.21 14297.95 15499.01 12199.58 4997.74 16299.01 4897.29 30299.67 998.97 12199.50 3490.45 27899.80 15997.88 8999.20 23499.48 109
VPNet98.87 5498.83 4699.01 12199.70 3597.62 17098.43 9599.35 10899.47 2599.28 6999.05 10696.72 15799.82 13698.09 7699.36 20999.59 53
N_pmnet97.63 18897.17 20598.99 12399.27 12297.86 14995.98 27593.41 33795.25 25999.47 4098.90 14195.63 20199.85 9496.91 14099.73 10499.27 186
lessismore_v098.97 12499.73 2397.53 17386.71 35099.37 5599.52 3389.93 28199.92 3298.99 3299.72 11099.44 125
HyFIR lowres test97.19 21996.60 23998.96 12599.62 4897.28 18495.17 30799.50 5594.21 28099.01 11398.32 23786.61 29699.99 297.10 12899.84 5499.60 47
test_prior397.48 19897.00 21398.95 12698.69 24297.95 14295.74 29099.03 20596.48 22596.11 30297.63 27895.92 19399.59 26894.16 26199.20 23499.30 179
test_prior98.95 12698.69 24297.95 14299.03 20599.59 26899.30 179
EG-PatchMatch MVS98.99 3799.01 3798.94 12899.50 7697.47 17598.04 13199.59 2498.15 11899.40 5199.36 5598.58 3199.76 19598.78 4299.68 12999.59 53
test1298.93 12998.58 25997.83 15198.66 26196.53 29195.51 20699.69 22699.13 24899.27 186
HQP_MVS97.99 16097.67 17298.93 12999.19 13897.65 16797.77 16199.27 14498.20 11397.79 22897.98 25994.90 22099.70 22294.42 25599.51 18799.45 122
test_040298.76 6798.71 5998.93 12999.56 6198.14 11798.45 9499.34 11499.28 3998.95 12498.91 13898.34 4699.79 17295.63 22699.91 3898.86 253
tfpnnormal98.90 5298.90 4298.91 13299.67 3997.82 15499.00 5099.44 7999.45 2799.51 3699.24 7098.20 5799.86 8495.92 20999.69 12499.04 225
新几何198.91 13298.94 19197.76 15998.76 25187.58 33796.75 28498.10 25194.80 22799.78 18292.73 30099.00 26599.20 199
112196.73 24496.00 25498.91 13298.95 19097.76 15998.07 12598.73 25787.65 33696.54 29098.13 24794.52 23299.73 21192.38 30499.02 26299.24 193
mvs-test197.83 17697.48 19098.89 13598.02 29599.20 2997.20 21299.16 17998.29 10496.46 29797.17 29996.44 17099.92 3296.66 16797.90 30997.54 320
Regformer-498.73 7198.68 6498.89 13599.02 17997.22 18897.17 21699.06 19699.21 4299.17 8998.85 15697.45 11299.86 8498.48 5999.70 11899.60 47
Regformer-198.55 10398.44 9798.87 13798.85 21297.29 18296.91 23298.99 21698.97 6998.99 11698.64 19697.26 12599.81 14997.79 9299.57 16999.51 94
ITE_SJBPF98.87 13799.22 13298.48 9499.35 10897.50 15998.28 19998.60 20697.64 9599.35 31493.86 27599.27 22498.79 262
pmmvs-eth3d98.47 11498.34 11398.86 13999.30 11997.76 15997.16 21899.28 14095.54 25299.42 4799.19 7697.27 12299.63 25597.89 8699.97 1199.20 199
PLCcopyleft94.65 1696.51 25295.73 26098.85 14098.75 22997.91 14596.42 25999.06 19690.94 32195.59 31297.38 29394.41 23499.59 26890.93 31998.04 30799.05 221
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CMPMVSbinary75.91 2396.29 25995.44 27098.84 14196.25 34398.69 7797.02 22299.12 18988.90 33197.83 22598.86 15389.51 28498.90 33991.92 30799.51 18798.92 245
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS_111021_LR98.30 13198.12 14098.83 14299.16 14898.03 13096.09 27399.30 13497.58 15298.10 21098.24 24198.25 4999.34 31596.69 16599.65 14199.12 215
OPU-MVS98.82 14398.59 25898.30 10298.10 12298.52 21398.18 5898.75 34294.62 24799.48 19799.41 134
QAPM97.31 20896.81 22598.82 14398.80 22497.49 17499.06 4699.19 16690.22 32497.69 23499.16 8496.91 14299.90 4590.89 32199.41 20499.07 219
Fast-Effi-MVS+-dtu98.27 13598.09 14298.81 14598.43 27398.11 11897.61 17899.50 5598.64 8497.39 25897.52 28498.12 6399.95 1496.90 14598.71 28098.38 286
casdiffmvs98.95 4599.00 3898.81 14599.38 10697.33 18197.82 15699.57 3399.17 5099.35 5899.17 8298.35 4599.69 22698.46 6099.73 10499.41 134
EIA-MVS98.00 15797.74 16898.80 14798.72 23298.09 11998.05 12999.60 2397.39 17496.63 28795.55 32597.68 8999.80 15996.73 16199.27 22498.52 278
TAMVS98.24 14098.05 14798.80 14799.07 16797.18 19297.88 14898.81 24596.66 22199.17 8999.21 7394.81 22699.77 18896.96 13899.88 4799.44 125
VNet98.42 11998.30 11898.79 14998.79 22597.29 18298.23 10798.66 26199.31 3798.85 14198.80 16794.80 22799.78 18298.13 7499.13 24899.31 176
UGNet98.53 10898.45 9598.79 14997.94 29996.96 20199.08 4498.54 26699.10 5796.82 28299.47 3996.55 16499.84 11198.56 5799.94 1999.55 77
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 25595.70 26198.79 14997.92 30099.12 5098.28 10398.60 26592.16 30795.54 31996.17 31694.77 22999.52 28989.62 32698.23 29497.72 312
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
alignmvs97.35 20596.88 22098.78 15298.54 26398.09 11997.71 16797.69 29499.20 4597.59 24195.90 32088.12 29299.55 28098.18 7398.96 26998.70 270
test20.0398.78 6498.77 5398.78 15299.46 9497.20 19097.78 15899.24 15599.04 6299.41 4898.90 14197.65 9299.76 19597.70 10099.79 8099.39 143
TSAR-MVS + GP.98.18 14597.98 15298.77 15498.71 23597.88 14796.32 26498.66 26196.33 23099.23 8198.51 21497.48 11199.40 30897.16 12299.46 19999.02 228
testing_298.93 4798.99 4098.76 15599.57 5397.03 19897.85 15399.13 18698.46 9599.44 4499.44 4598.22 5499.74 20698.85 3899.94 1999.51 94
V4298.78 6498.78 5198.76 15599.44 9997.04 19798.27 10499.19 16697.87 13399.25 7799.16 8496.84 14599.78 18299.21 2199.84 5499.46 118
baseline98.96 4499.02 3698.76 15599.38 10697.26 18598.49 8999.50 5598.86 7799.19 8499.06 9998.23 5199.69 22698.71 4899.76 9799.33 170
UnsupCasMVSNet_eth97.89 16497.60 18198.75 15899.31 11697.17 19397.62 17699.35 10898.72 8398.76 15598.68 18692.57 26699.74 20697.76 9895.60 33599.34 164
FMVSNet298.49 11298.40 10398.75 15898.90 20197.14 19698.61 7399.13 18698.59 8899.19 8499.28 6394.14 24099.82 13697.97 8499.80 7599.29 183
MVS_111021_HR98.25 13998.08 14598.75 15899.09 16397.46 17695.97 27699.27 14497.60 15197.99 21798.25 24098.15 6299.38 31296.87 14899.57 16999.42 132
DeepC-MVS_fast96.85 698.30 13198.15 13798.75 15898.61 25497.23 18697.76 16399.09 19397.31 18298.75 15698.66 19197.56 10199.64 25396.10 20499.55 17699.39 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
114514_t96.50 25495.77 25898.69 16299.48 9197.43 17897.84 15499.55 4381.42 34596.51 29398.58 20895.53 20499.67 23893.41 28799.58 16598.98 234
CDS-MVSNet97.69 18297.35 19798.69 16298.73 23197.02 20096.92 23198.75 25495.89 24598.59 17398.67 18892.08 27199.74 20696.72 16299.81 6799.32 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAPA-MVS96.21 1196.63 24995.95 25698.65 16498.93 19398.09 11996.93 22999.28 14083.58 34398.13 20797.78 26996.13 17999.40 30893.52 28399.29 22298.45 282
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LFMVS97.20 21896.72 22998.64 16598.72 23296.95 20298.93 5694.14 33599.74 698.78 15199.01 11984.45 31399.73 21197.44 10999.27 22499.25 190
Gipumacopyleft99.03 3499.16 2998.64 16599.94 298.51 9299.32 1599.75 799.58 2198.60 17299.62 2198.22 5499.51 29397.70 10099.73 10497.89 300
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EI-MVSNet-Vis-set98.68 8198.70 6298.63 16799.09 16396.40 21597.23 20898.86 23799.20 4599.18 8898.97 12897.29 12199.85 9498.72 4799.78 8499.64 38
Regformer-398.61 9298.61 7498.63 16799.02 17996.53 21397.17 21698.84 23999.13 5299.10 9698.85 15697.24 12699.79 17298.41 6499.70 11899.57 64
Effi-MVS+98.02 15597.82 16498.62 16998.53 26597.19 19197.33 20199.68 1397.30 18396.68 28597.46 28998.56 3299.80 15996.63 16998.20 29698.86 253
EI-MVSNet-UG-set98.69 7898.71 5998.62 16999.10 16096.37 21697.23 20898.87 23299.20 4599.19 8498.99 12297.30 11999.85 9498.77 4599.79 8099.65 37
PatchMatch-RL97.24 21596.78 22698.61 17199.03 17797.83 15196.36 26299.06 19693.49 29297.36 26097.78 26995.75 19899.49 29593.44 28698.77 27598.52 278
ab-mvs98.41 12098.36 11098.59 17299.19 13897.23 18699.32 1598.81 24597.66 14598.62 16899.40 5196.82 14899.80 15995.88 21099.51 18798.75 266
canonicalmvs98.34 12898.26 12298.58 17398.46 27097.82 15498.96 5499.46 7399.19 4997.46 25395.46 32898.59 3099.46 30298.08 7798.71 28098.46 280
RRT_MVS97.07 22796.57 24198.58 17395.89 34796.33 21797.36 19998.77 25097.85 13599.08 9999.12 9282.30 32699.96 898.82 4199.90 4299.45 122
1112_ss97.29 21196.86 22198.58 17399.34 11596.32 21896.75 24299.58 2693.14 29496.89 27897.48 28792.11 27099.86 8496.91 14099.54 17799.57 64
Fast-Effi-MVS+97.67 18497.38 19498.57 17698.71 23597.43 17897.23 20899.45 7694.82 26796.13 30196.51 31098.52 3499.91 4296.19 19898.83 27398.37 288
MVP-Stereo98.08 15197.92 15798.57 17698.96 18896.79 20697.90 14799.18 17096.41 22898.46 18598.95 13395.93 19299.60 26496.51 18098.98 26899.31 176
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v899.01 3599.16 2998.57 17699.47 9396.31 21998.90 5799.47 7199.03 6399.52 3399.57 2796.93 14199.81 14999.60 499.98 999.60 47
DP-MVS Recon97.33 20796.92 21798.57 17699.09 16397.99 13296.79 23899.35 10893.18 29397.71 23298.07 25595.00 21999.31 31993.97 26999.13 24898.42 285
ETV-MVS98.03 15397.86 16298.56 18098.69 24298.07 12597.51 19099.50 5598.10 11997.50 25095.51 32698.41 3999.88 6296.27 19499.24 22997.71 313
v1098.97 4299.11 3298.55 18199.44 9996.21 22198.90 5799.55 4398.73 8299.48 3899.60 2596.63 16199.83 12699.70 399.99 599.61 46
HQP-MVS97.00 23496.49 24498.55 18198.67 24796.79 20696.29 26599.04 20396.05 23995.55 31696.84 30593.84 24499.54 28392.82 29699.26 22799.32 172
CNLPA97.17 22196.71 23098.55 18198.56 26198.05 12896.33 26398.93 22196.91 21197.06 26797.39 29294.38 23699.45 30491.66 31099.18 23998.14 294
CHOSEN 1792x268897.49 19697.14 20998.54 18499.68 3896.09 22496.50 25499.62 1991.58 31298.84 14398.97 12892.36 26799.88 6296.76 15799.95 1599.67 32
CS-MVS97.82 17897.59 18398.52 18598.76 22698.04 12998.20 11199.61 2197.10 20296.02 30894.87 33898.27 4899.84 11196.31 19199.17 24097.69 314
MVS_030497.64 18697.35 19798.52 18597.87 30396.69 21198.59 7698.05 28697.44 17093.74 33898.85 15693.69 25099.88 6298.11 7599.81 6798.98 234
LF4IMVS97.90 16297.69 17198.52 18599.17 14697.66 16697.19 21599.47 7196.31 23297.85 22498.20 24596.71 15899.52 28994.62 24799.72 11098.38 286
DPM-MVS96.32 25895.59 26698.51 18898.76 22697.21 18994.54 32798.26 27791.94 30896.37 29897.25 29793.06 25899.43 30691.42 31598.74 27698.89 249
pmmvs497.58 19197.28 20098.51 18898.84 21596.93 20395.40 30398.52 26893.60 28998.61 17098.65 19395.10 21799.60 26496.97 13799.79 8098.99 233
Patchmtry97.35 20596.97 21598.50 19097.31 32696.47 21498.18 11398.92 22498.95 7398.78 15199.37 5285.44 30899.85 9495.96 20899.83 6099.17 210
DELS-MVS98.27 13598.20 12898.48 19198.86 21096.70 21095.60 29599.20 16197.73 14198.45 18698.71 18097.50 10899.82 13698.21 7199.59 15998.93 244
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS97.49 19697.16 20698.48 19199.07 16797.03 19894.71 31899.21 15994.46 27398.06 21397.16 30097.57 10099.48 29894.46 25299.78 8498.95 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AdaColmapbinary97.14 22396.71 23098.46 19398.34 27797.80 15796.95 22698.93 22195.58 25196.92 27297.66 27595.87 19599.53 28590.97 31899.14 24598.04 297
v14419298.54 10698.57 7898.45 19499.21 13495.98 22597.63 17599.36 10397.15 20199.32 6699.18 7895.84 19699.84 11199.50 1099.91 3899.54 81
UnsupCasMVSNet_bld97.30 20996.92 21798.45 19499.28 12196.78 20996.20 27099.27 14495.42 25798.28 19998.30 23893.16 25499.71 22094.99 23897.37 31698.87 252
PCF-MVS92.86 1894.36 29293.00 30898.42 19698.70 23997.56 17193.16 34099.11 19179.59 34697.55 24597.43 29092.19 26899.73 21179.85 34599.45 20197.97 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v119298.60 9498.66 6798.41 19799.27 12295.88 22897.52 18899.36 10397.41 17299.33 6199.20 7596.37 17599.82 13699.57 699.92 3399.55 77
v114498.60 9498.66 6798.41 19799.36 10995.90 22797.58 18299.34 11497.51 15899.27 7199.15 8896.34 17699.80 15999.47 1299.93 2499.51 94
FMVSNet596.01 26495.20 27898.41 19797.53 31796.10 22298.74 6599.50 5597.22 19798.03 21699.04 10969.80 34999.88 6297.27 11799.71 11499.25 190
v192192098.54 10698.60 7698.38 20099.20 13795.76 23297.56 18499.36 10397.23 19499.38 5399.17 8296.02 18399.84 11199.57 699.90 4299.54 81
v2v48298.56 9998.62 7198.37 20199.42 10395.81 23197.58 18299.16 17997.90 13199.28 6999.01 11995.98 18999.79 17299.33 1599.90 4299.51 94
原ACMM198.35 20298.90 20196.25 22098.83 24492.48 30296.07 30598.10 25195.39 21199.71 22092.61 30298.99 26699.08 218
Vis-MVSNet (Re-imp)97.46 19997.16 20698.34 20399.55 6496.10 22298.94 5598.44 27198.32 10098.16 20498.62 20288.76 28899.73 21193.88 27499.79 8099.18 206
v124098.55 10398.62 7198.32 20499.22 13295.58 23397.51 19099.45 7697.16 19999.45 4399.24 7096.12 18099.85 9499.60 499.88 4799.55 77
OpenMVScopyleft96.65 797.09 22596.68 23298.32 20498.32 27897.16 19498.86 6199.37 9989.48 32896.29 30099.15 8896.56 16399.90 4592.90 29399.20 23497.89 300
Test_1112_low_res96.99 23596.55 24298.31 20699.35 11395.47 23895.84 28799.53 4991.51 31496.80 28398.48 22291.36 27499.83 12696.58 17199.53 18199.62 42
PAPM_NR96.82 24196.32 24998.30 20799.07 16796.69 21197.48 19298.76 25195.81 24896.61 28996.47 31394.12 24399.17 32990.82 32297.78 31099.06 220
FMVSNet397.50 19497.24 20398.29 20898.08 29395.83 23097.86 15198.91 22697.89 13298.95 12498.95 13387.06 29399.81 14997.77 9499.69 12499.23 194
MSDG97.71 18197.52 18598.28 20998.91 20096.82 20594.42 32899.37 9997.65 14698.37 19698.29 23997.40 11599.33 31794.09 26799.22 23198.68 274
EPNet96.14 26295.44 27098.25 21090.76 35295.50 23797.92 14494.65 32898.97 6992.98 33998.85 15689.12 28799.87 7895.99 20699.68 12999.39 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ambc98.24 21198.82 22095.97 22698.62 7299.00 21599.27 7199.21 7396.99 13899.50 29496.55 17799.50 19499.26 189
PVSNet_Blended_VisFu98.17 14798.15 13798.22 21299.73 2395.15 24797.36 19999.68 1394.45 27598.99 11699.27 6596.87 14499.94 2297.13 12699.91 3899.57 64
Anonymous2023120698.21 14298.21 12798.20 21399.51 7395.43 24098.13 11799.32 12196.16 23698.93 12998.82 16596.00 18599.83 12697.32 11599.73 10499.36 158
CANet97.87 16797.76 16698.19 21497.75 30795.51 23696.76 24199.05 20097.74 14096.93 27198.21 24495.59 20399.89 5497.86 9199.93 2499.19 204
diffmvs98.22 14198.24 12498.17 21599.00 18195.44 23996.38 26199.58 2697.79 13998.53 18298.50 21796.76 15499.74 20697.95 8599.64 14399.34 164
testgi98.32 12998.39 10698.13 21699.57 5395.54 23497.78 15899.49 6397.37 17699.19 8497.65 27698.96 1799.49 29596.50 18198.99 26699.34 164
testdata98.09 21798.93 19395.40 24198.80 24790.08 32697.45 25498.37 23195.26 21399.70 22293.58 28298.95 27099.17 210
IterMVS-LS98.55 10398.70 6298.09 21799.48 9194.73 25597.22 21199.39 9398.97 6999.38 5399.31 6296.00 18599.93 2698.58 5299.97 1199.60 47
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMMVS96.51 25295.98 25598.09 21797.53 31795.84 22994.92 31498.84 23991.58 31296.05 30695.58 32495.68 20099.66 24695.59 22898.09 30398.76 265
pmmvs597.64 18697.49 18798.08 22099.14 15395.12 24996.70 24599.05 20093.77 28798.62 16898.83 16293.23 25299.75 20298.33 6899.76 9799.36 158
MDA-MVSNet-bldmvs97.94 16197.91 15898.06 22199.44 9994.96 25196.63 24899.15 18598.35 9798.83 14499.11 9494.31 23799.85 9496.60 17098.72 27899.37 152
sss97.21 21796.93 21698.06 22198.83 21795.22 24596.75 24298.48 27094.49 27197.27 26197.90 26392.77 26399.80 15996.57 17399.32 21599.16 213
EI-MVSNet98.40 12298.51 8398.04 22399.10 16094.73 25597.20 21298.87 23298.97 6999.06 10299.02 11396.00 18599.80 15998.58 5299.82 6399.60 47
PMMVS298.07 15298.08 14598.04 22399.41 10494.59 26194.59 32599.40 9197.50 15998.82 14898.83 16296.83 14799.84 11197.50 10899.81 6799.71 25
v14898.45 11698.60 7698.00 22599.44 9994.98 25097.44 19699.06 19698.30 10199.32 6698.97 12896.65 16099.62 25798.37 6599.85 5299.39 143
Patchmatch-RL test97.26 21297.02 21297.99 22699.52 7195.53 23596.13 27299.71 997.47 16299.27 7199.16 8484.30 31699.62 25797.89 8699.77 8898.81 258
test_yl96.69 24596.29 25097.90 22798.28 28095.24 24397.29 20497.36 29898.21 11098.17 20297.86 26486.27 29899.55 28094.87 24198.32 29298.89 249
DCV-MVSNet96.69 24596.29 25097.90 22798.28 28095.24 24397.29 20497.36 29898.21 11098.17 20297.86 26486.27 29899.55 28094.87 24198.32 29298.89 249
WTY-MVS96.67 24796.27 25297.87 22998.81 22294.61 26096.77 24097.92 28994.94 26497.12 26297.74 27291.11 27599.82 13693.89 27398.15 30099.18 206
CANet_DTU97.26 21297.06 21097.84 23097.57 31494.65 25996.19 27198.79 24897.23 19495.14 32498.24 24193.22 25399.84 11197.34 11499.84 5499.04 225
D2MVS97.84 17497.84 16397.83 23199.14 15394.74 25496.94 22798.88 23095.84 24698.89 13398.96 13194.40 23599.69 22697.55 10399.95 1599.05 221
OpenMVS_ROBcopyleft95.38 1495.84 26995.18 27997.81 23298.41 27497.15 19597.37 19898.62 26483.86 34298.65 16498.37 23194.29 23899.68 23588.41 32998.62 28696.60 332
MVSTER96.86 23896.55 24297.79 23397.91 30194.21 26797.56 18498.87 23297.49 16199.06 10299.05 10680.72 32999.80 15998.44 6199.82 6399.37 152
MVSFormer98.26 13798.43 9997.77 23498.88 20793.89 28199.39 1199.56 4099.11 5398.16 20498.13 24793.81 24699.97 399.26 1899.57 16999.43 129
jason97.45 20097.35 19797.76 23599.24 12793.93 27795.86 28498.42 27294.24 27998.50 18498.13 24794.82 22499.91 4297.22 11999.73 10499.43 129
jason: jason.
PAPR95.29 27994.47 28897.75 23697.50 32195.14 24894.89 31598.71 25991.39 31695.35 32295.48 32794.57 23199.14 33284.95 33697.37 31698.97 238
thisisatest053095.27 28094.45 28997.74 23799.19 13894.37 26397.86 15190.20 34797.17 19898.22 20197.65 27673.53 34799.90 4596.90 14599.35 21198.95 239
MIMVSNet96.62 25096.25 25397.71 23899.04 17494.66 25899.16 3896.92 31097.23 19497.87 22299.10 9686.11 30299.65 25191.65 31199.21 23398.82 256
MVS_Test98.18 14598.36 11097.67 23998.48 26894.73 25598.18 11399.02 20997.69 14398.04 21599.11 9497.22 12899.56 27798.57 5498.90 27298.71 268
new_pmnet96.99 23596.76 22797.67 23998.72 23294.89 25295.95 28098.20 28092.62 30198.55 17998.54 21194.88 22399.52 28993.96 27099.44 20298.59 277
lupinMVS97.06 22896.86 22197.65 24198.88 20793.89 28195.48 30097.97 28793.53 29098.16 20497.58 28093.81 24699.91 4296.77 15699.57 16999.17 210
PMVScopyleft91.26 2097.86 16897.94 15697.65 24199.71 2997.94 14498.52 8398.68 26098.99 6697.52 24899.35 5697.41 11498.18 34591.59 31399.67 13596.82 329
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tttt051795.64 27394.98 28397.64 24399.36 10993.81 28398.72 6790.47 34698.08 12098.67 16298.34 23473.88 34699.92 3297.77 9499.51 18799.20 199
MSLP-MVS++98.02 15598.14 13997.64 24398.58 25995.19 24697.48 19299.23 15797.47 16297.90 22098.62 20297.04 13398.81 34197.55 10399.41 20498.94 243
PVSNet_BlendedMVS97.55 19297.53 18497.60 24598.92 19793.77 28596.64 24799.43 8494.49 27197.62 23899.18 7896.82 14899.67 23894.73 24499.93 2499.36 158
TinyColmap97.89 16497.98 15297.60 24598.86 21094.35 26496.21 26999.44 7997.45 16999.06 10298.88 15097.99 7399.28 32494.38 25999.58 16599.18 206
cl-mvsnet_97.02 23296.83 22497.58 24797.82 30594.04 27194.66 32199.16 17997.04 20598.63 16698.71 18088.68 29099.69 22697.00 13299.81 6799.00 232
cl-mvsnet197.02 23296.84 22397.58 24797.82 30594.03 27294.66 32199.16 17997.04 20598.63 16698.71 18088.69 28999.69 22697.00 13299.81 6799.01 229
ET-MVSNet_ETH3D94.30 29593.21 30497.58 24798.14 28994.47 26294.78 31793.24 33994.72 26889.56 34695.87 32178.57 34099.81 14996.91 14097.11 32398.46 280
BH-RMVSNet96.83 23996.58 24097.58 24798.47 26994.05 27096.67 24697.36 29896.70 22097.87 22297.98 25995.14 21699.44 30590.47 32398.58 28899.25 190
HY-MVS95.94 1395.90 26795.35 27497.55 25197.95 29894.79 25398.81 6496.94 30992.28 30595.17 32398.57 20989.90 28299.75 20291.20 31697.33 32098.10 295
SD-MVS98.40 12298.68 6497.54 25298.96 18897.99 13297.88 14899.36 10398.20 11399.63 2599.04 10998.76 2295.33 34996.56 17699.74 10199.31 176
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PatchT96.65 24896.35 24797.54 25297.40 32295.32 24297.98 14096.64 31599.33 3696.89 27899.42 4784.32 31599.81 14997.69 10297.49 31397.48 321
baseline195.96 26695.44 27097.52 25498.51 26693.99 27598.39 9896.09 32198.21 11098.40 19597.76 27186.88 29499.63 25595.42 23289.27 34798.95 239
GA-MVS95.86 26895.32 27597.49 25598.60 25694.15 26993.83 33597.93 28895.49 25596.68 28597.42 29183.21 32199.30 32196.22 19698.55 28999.01 229
PVSNet_Blended96.88 23796.68 23297.47 25698.92 19793.77 28594.71 31899.43 8490.98 32097.62 23897.36 29596.82 14899.67 23894.73 24499.56 17498.98 234
MS-PatchMatch97.68 18397.75 16797.45 25798.23 28593.78 28497.29 20498.84 23996.10 23898.64 16598.65 19396.04 18299.36 31396.84 15199.14 24599.20 199
USDC97.41 20297.40 19297.44 25898.94 19193.67 28795.17 30799.53 4994.03 28498.97 12199.10 9695.29 21299.34 31595.84 21699.73 10499.30 179
API-MVS97.04 23196.91 21997.42 25997.88 30298.23 11098.18 11398.50 26997.57 15397.39 25896.75 30796.77 15299.15 33190.16 32499.02 26294.88 343
MDA-MVSNet_test_wron97.60 18997.66 17597.41 26099.04 17493.09 29195.27 30498.42 27297.26 18798.88 13798.95 13395.43 21099.73 21197.02 13198.72 27899.41 134
YYNet197.60 18997.67 17297.39 26199.04 17493.04 29595.27 30498.38 27497.25 18898.92 13098.95 13395.48 20999.73 21196.99 13498.74 27699.41 134
cl_fuxian97.36 20497.37 19597.31 26298.09 29293.25 29095.01 31299.16 17997.05 20498.77 15498.72 17992.88 26199.64 25396.93 13999.76 9799.05 221
CR-MVSNet96.28 26095.95 25697.28 26397.71 30994.22 26598.11 12098.92 22492.31 30496.91 27499.37 5285.44 30899.81 14997.39 11297.36 31897.81 306
RPMNet96.82 24196.66 23597.28 26397.71 30994.22 26598.11 12096.90 31199.37 3396.91 27499.34 5886.72 29599.81 14997.53 10697.36 31897.81 306
MG-MVS96.77 24396.61 23897.26 26598.31 27993.06 29295.93 28198.12 28396.45 22797.92 21898.73 17793.77 24899.39 31091.19 31799.04 25899.33 170
miper_lstm_enhance97.18 22097.16 20697.25 26698.16 28892.85 29795.15 30999.31 12697.25 18898.74 15898.78 17090.07 28099.78 18297.19 12099.80 7599.11 217
new-patchmatchnet98.35 12798.74 5497.18 26799.24 12792.23 30896.42 25999.48 6598.30 10199.69 1799.53 3297.44 11399.82 13698.84 4099.77 8899.49 103
eth_miper_zixun_eth97.23 21697.25 20197.17 26898.00 29792.77 29994.71 31899.18 17097.27 18698.56 17798.74 17691.89 27299.69 22697.06 13099.81 6799.05 221
Patchmatch-test96.55 25196.34 24897.17 26898.35 27693.06 29298.40 9797.79 29097.33 17998.41 19198.67 18883.68 32099.69 22695.16 23599.31 21798.77 264
miper_ehance_all_eth97.06 22897.03 21197.16 27097.83 30493.06 29294.66 32199.09 19395.99 24398.69 16098.45 22392.73 26499.61 26396.79 15399.03 25998.82 256
BH-untuned96.83 23996.75 22897.08 27198.74 23093.33 28996.71 24498.26 27796.72 21898.44 18797.37 29495.20 21499.47 30091.89 30897.43 31598.44 283
FPMVS93.44 30892.23 31297.08 27199.25 12697.86 14995.61 29497.16 30492.90 29793.76 33798.65 19375.94 34495.66 34779.30 34697.49 31397.73 311
JIA-IIPM95.52 27695.03 28297.00 27396.85 33394.03 27296.93 22995.82 32399.20 4594.63 32899.71 1283.09 32299.60 26494.42 25594.64 33997.36 323
test0.0.03 194.51 29093.69 29896.99 27496.05 34493.61 28894.97 31393.49 33696.17 23497.57 24494.88 33682.30 32699.01 33693.60 28194.17 34398.37 288
cl-mvsnet295.79 27095.39 27396.98 27596.77 33592.79 29894.40 32998.53 26794.59 27097.89 22198.17 24682.82 32599.24 32696.37 18799.03 25998.92 245
thisisatest051594.12 29993.16 30596.97 27698.60 25692.90 29693.77 33690.61 34594.10 28396.91 27495.87 32174.99 34599.80 15994.52 25099.12 25198.20 291
pmmvs395.03 28594.40 29096.93 27797.70 31192.53 30295.08 31097.71 29388.57 33397.71 23298.08 25479.39 33699.82 13696.19 19899.11 25298.43 284
xiu_mvs_v1_base_debu97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
xiu_mvs_v1_base97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
xiu_mvs_v1_base_debi97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
IterMVS-SCA-FT97.85 17398.18 13196.87 28199.27 12291.16 32395.53 29799.25 15099.10 5799.41 4899.35 5693.10 25699.96 898.65 5099.94 1999.49 103
mvs_anonymous97.83 17698.16 13596.87 28198.18 28791.89 31097.31 20398.90 22797.37 17698.83 14499.46 4096.28 17799.79 17298.90 3598.16 29998.95 239
DSMNet-mixed97.42 20197.60 18196.87 28199.15 15291.46 31498.54 8199.12 18992.87 29897.58 24299.63 2096.21 17899.90 4595.74 21999.54 17799.27 186
TR-MVS95.55 27595.12 28196.86 28497.54 31693.94 27696.49 25596.53 31694.36 27897.03 26996.61 30994.26 23999.16 33086.91 33396.31 33197.47 322
miper_enhance_ethall96.01 26495.74 25996.81 28596.41 34192.27 30793.69 33798.89 22991.14 31998.30 19797.35 29690.58 27799.58 27396.31 19199.03 25998.60 275
ppachtmachnet_test97.50 19497.74 16896.78 28698.70 23991.23 32294.55 32699.05 20096.36 22999.21 8298.79 16996.39 17299.78 18296.74 15999.82 6399.34 164
ADS-MVSNet295.43 27894.98 28396.76 28798.14 28991.74 31197.92 14497.76 29190.23 32296.51 29398.91 13885.61 30599.85 9492.88 29496.90 32498.69 271
IterMVS97.73 18098.11 14196.57 28899.24 12790.28 32495.52 29999.21 15998.86 7799.33 6199.33 6093.11 25599.94 2298.49 5899.94 1999.48 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PAPM91.88 31890.34 32096.51 28998.06 29492.56 30192.44 34397.17 30386.35 33890.38 34596.01 31786.61 29699.21 32770.65 34895.43 33697.75 310
MVS93.19 31092.09 31396.50 29096.91 33194.03 27298.07 12598.06 28568.01 34794.56 32996.48 31295.96 19199.30 32183.84 33896.89 32696.17 335
baseline293.73 30492.83 30996.42 29197.70 31191.28 32096.84 23789.77 34893.96 28692.44 34195.93 31979.14 33799.77 18892.94 29296.76 32898.21 290
our_test_397.39 20397.73 17096.34 29298.70 23989.78 32694.61 32498.97 21896.50 22499.04 10998.85 15695.98 18999.84 11197.26 11899.67 13599.41 134
thres600view794.45 29193.83 29696.29 29399.06 17191.53 31397.99 13894.24 33398.34 9897.44 25595.01 33279.84 33299.67 23884.33 33798.23 29497.66 315
IB-MVS91.63 1992.24 31690.90 31996.27 29497.22 32891.24 32194.36 33093.33 33892.37 30392.24 34294.58 34066.20 35499.89 5493.16 29194.63 34097.66 315
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres40094.14 29893.44 30196.24 29598.93 19391.44 31597.60 17994.29 33197.94 12797.10 26394.31 34179.67 33499.62 25783.05 33998.08 30497.66 315
ADS-MVSNet95.24 28194.93 28596.18 29698.14 28990.10 32597.92 14497.32 30190.23 32296.51 29398.91 13885.61 30599.74 20692.88 29496.90 32498.69 271
xiu_mvs_v2_base97.16 22297.49 18796.17 29798.54 26392.46 30395.45 30198.84 23997.25 18897.48 25296.49 31198.31 4799.90 4596.34 19098.68 28296.15 337
131495.74 27195.60 26596.17 29797.53 31792.75 30098.07 12598.31 27691.22 31794.25 33096.68 30895.53 20499.03 33391.64 31297.18 32196.74 330
PS-MVSNAJ97.08 22697.39 19396.16 29998.56 26192.46 30395.24 30698.85 23897.25 18897.49 25195.99 31898.07 6499.90 4596.37 18798.67 28396.12 338
cascas94.79 28894.33 29396.15 30096.02 34692.36 30692.34 34499.26 14985.34 34195.08 32594.96 33592.96 26098.53 34394.41 25898.59 28797.56 319
BH-w/o95.13 28394.89 28695.86 30198.20 28691.31 31895.65 29397.37 29793.64 28896.52 29295.70 32393.04 25999.02 33488.10 33095.82 33497.24 324
gg-mvs-nofinetune92.37 31491.20 31895.85 30295.80 34892.38 30599.31 1881.84 35399.75 591.83 34399.74 868.29 35099.02 33487.15 33297.12 32296.16 336
tfpn200view994.03 30093.44 30195.78 30398.93 19391.44 31597.60 17994.29 33197.94 12797.10 26394.31 34179.67 33499.62 25783.05 33998.08 30496.29 333
thres100view90094.19 29693.67 29995.75 30499.06 17191.35 31798.03 13294.24 33398.33 9997.40 25794.98 33479.84 33299.62 25783.05 33998.08 30496.29 333
SCA96.41 25796.66 23595.67 30598.24 28388.35 32995.85 28696.88 31296.11 23797.67 23598.67 18893.10 25699.85 9494.16 26199.22 23198.81 258
tpm94.67 28994.34 29295.66 30697.68 31388.42 32897.88 14894.90 32794.46 27396.03 30798.56 21078.66 33899.79 17295.88 21095.01 33898.78 263
CHOSEN 280x42095.51 27795.47 26895.65 30798.25 28288.27 33093.25 33998.88 23093.53 29094.65 32797.15 30186.17 30099.93 2697.41 11199.93 2498.73 267
RRT_test8_iter0595.24 28195.13 28095.57 30897.32 32587.02 33597.99 13899.41 8898.06 12199.12 9199.05 10666.85 35299.85 9498.93 3499.47 19899.84 8
PVSNet93.40 1795.67 27295.70 26195.57 30898.83 21788.57 32792.50 34297.72 29292.69 30096.49 29696.44 31493.72 24999.43 30693.61 28099.28 22398.71 268
thres20093.72 30593.14 30695.46 31098.66 25291.29 31996.61 24994.63 32997.39 17496.83 28193.71 34479.88 33199.56 27782.40 34298.13 30195.54 342
EPNet_dtu94.93 28794.78 28795.38 31193.58 35187.68 33296.78 23995.69 32597.35 17889.14 34798.09 25388.15 29199.49 29594.95 24099.30 22098.98 234
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive95.58 27495.67 26395.30 31297.34 32487.32 33397.65 17496.65 31495.30 25897.07 26698.69 18484.77 31099.75 20294.97 23998.64 28498.83 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet97.66 18598.50 8595.13 31399.63 4785.84 33898.35 10198.21 27998.23 10999.54 2899.46 4095.02 21899.68 23598.24 6999.87 5099.87 4
EPMVS93.72 30593.27 30395.09 31496.04 34587.76 33198.13 11785.01 35194.69 26996.92 27298.64 19678.47 34299.31 31995.04 23696.46 33098.20 291
DWT-MVSNet_test92.75 31292.05 31494.85 31596.48 33987.21 33497.83 15594.99 32692.22 30692.72 34094.11 34370.75 34899.46 30295.01 23794.33 34297.87 302
GG-mvs-BLEND94.76 31694.54 35092.13 30999.31 1880.47 35488.73 34891.01 34767.59 35198.16 34682.30 34394.53 34193.98 344
tpm293.09 31192.58 31194.62 31797.56 31586.53 33697.66 17295.79 32486.15 33994.07 33498.23 24375.95 34399.53 28590.91 32096.86 32797.81 306
CostFormer93.97 30193.78 29794.51 31897.53 31785.83 33997.98 14095.96 32289.29 33094.99 32698.63 20078.63 33999.62 25794.54 24996.50 32998.09 296
tpmvs95.02 28695.25 27694.33 31996.39 34285.87 33798.08 12496.83 31395.46 25695.51 32098.69 18485.91 30399.53 28594.16 26196.23 33297.58 318
MVEpermissive83.40 2292.50 31391.92 31594.25 32098.83 21791.64 31292.71 34183.52 35295.92 24486.46 35095.46 32895.20 21495.40 34880.51 34498.64 28495.73 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-LLR93.90 30293.85 29594.04 32196.53 33784.62 34394.05 33292.39 34196.17 23494.12 33295.07 33082.30 32699.67 23895.87 21398.18 29797.82 304
test-mter92.33 31591.76 31794.04 32196.53 33784.62 34394.05 33292.39 34194.00 28594.12 33295.07 33065.63 35599.67 23895.87 21398.18 29797.82 304
tpmrst95.07 28495.46 26993.91 32397.11 32984.36 34597.62 17696.96 30794.98 26296.35 29998.80 16785.46 30799.59 26895.60 22796.23 33297.79 309
tpm cat193.29 30993.13 30793.75 32497.39 32384.74 34297.39 19797.65 29583.39 34494.16 33198.41 22582.86 32499.39 31091.56 31495.35 33797.14 325
PVSNet_089.98 2191.15 31990.30 32193.70 32597.72 30884.34 34690.24 34597.42 29690.20 32593.79 33693.09 34590.90 27698.89 34086.57 33472.76 34897.87 302
E-PMN94.17 29794.37 29193.58 32696.86 33285.71 34090.11 34697.07 30598.17 11697.82 22797.19 29884.62 31298.94 33789.77 32597.68 31296.09 339
TESTMET0.1,192.19 31791.77 31693.46 32796.48 33982.80 34894.05 33291.52 34494.45 27594.00 33594.88 33666.65 35399.56 27795.78 21898.11 30298.02 298
DeepMVS_CXcopyleft93.44 32898.24 28394.21 26794.34 33064.28 34891.34 34494.87 33889.45 28692.77 35077.54 34793.14 34493.35 345
CVMVSNet96.25 26197.21 20493.38 32999.10 16080.56 35197.20 21298.19 28296.94 20999.00 11599.02 11389.50 28599.80 15996.36 18999.59 15999.78 14
EMVS93.83 30394.02 29493.23 33096.83 33484.96 34189.77 34796.32 31897.92 12997.43 25696.36 31586.17 30098.93 33887.68 33197.73 31195.81 340
dp93.47 30793.59 30093.13 33196.64 33681.62 35097.66 17296.42 31792.80 29996.11 30298.64 19678.55 34199.59 26893.31 28992.18 34698.16 293
wuyk23d96.06 26397.62 17991.38 33298.65 25398.57 8698.85 6296.95 30896.86 21399.90 499.16 8499.18 1198.40 34489.23 32799.77 8877.18 347
MVS-HIRNet94.32 29395.62 26490.42 33398.46 27075.36 35296.29 26589.13 34995.25 25995.38 32199.75 792.88 26199.19 32894.07 26899.39 20796.72 331
tmp_tt78.77 32078.73 32278.90 33458.45 35374.76 35494.20 33178.26 35539.16 34986.71 34992.82 34680.50 33075.19 35186.16 33592.29 34586.74 346
test12317.04 32320.11 3257.82 33510.25 3554.91 35594.80 3164.47 3574.93 35010.00 35224.28 3509.69 3563.64 35210.14 34912.43 35014.92 348
testmvs17.12 32220.53 3246.87 33612.05 3544.20 35693.62 3386.73 3564.62 35110.41 35124.33 3498.28 3573.56 3539.69 35015.07 34912.86 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34899.28 1400.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k24.66 32132.88 3230.00 3370.00 3560.00 3570.00 34899.10 1920.00 3520.00 35397.58 28099.21 100.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas8.17 32410.90 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35398.07 640.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.12 32510.83 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35397.48 2870.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.49 8399.15 4298.87 23292.97 29599.41 4896.76 15799.62 14999.66 33
test_241102_TWO99.30 13498.03 12299.26 7599.02 11397.51 10799.88 6296.91 14099.60 15799.66 33
test_241102_ONE99.49 8399.17 3399.31 12697.98 12499.66 2098.90 14198.36 4299.48 298
9.1497.78 16599.07 16797.53 18799.32 12195.53 25498.54 18198.70 18397.58 9999.76 19594.32 26099.46 199
save fliter99.11 15697.97 13796.53 25199.02 20998.24 107
test_0728_THIRD98.17 11699.08 9999.02 11397.89 7799.88 6297.07 12999.71 11499.70 28
test072699.50 7699.21 2398.17 11699.35 10897.97 12599.26 7599.06 9997.61 97
GSMVS98.81 258
test_part299.36 10999.10 5399.05 107
sam_mvs184.74 31198.81 258
sam_mvs84.29 317
MTGPAbinary99.20 161
test_post197.59 18120.48 35283.07 32399.66 24694.16 261
test_post21.25 35183.86 31999.70 222
patchmatchnet-post98.77 17284.37 31499.85 94
MTMP97.93 14391.91 343
gm-plane-assit94.83 34981.97 34988.07 33594.99 33399.60 26491.76 309
test9_res93.28 29099.15 24499.38 149
TEST998.71 23598.08 12395.96 27899.03 20591.40 31595.85 30997.53 28296.52 16599.76 195
test_898.67 24798.01 13195.91 28399.02 20991.64 31095.79 31197.50 28596.47 16899.76 195
agg_prior292.50 30399.16 24199.37 152
agg_prior98.68 24597.99 13299.01 21295.59 31299.77 188
test_prior497.97 13795.86 284
test_prior295.74 29096.48 22596.11 30297.63 27895.92 19394.16 26199.20 234
旧先验295.76 28888.56 33497.52 24899.66 24694.48 251
新几何295.93 281
旧先验198.82 22097.45 17798.76 25198.34 23495.50 20799.01 26499.23 194
无先验95.74 29098.74 25689.38 32999.73 21192.38 30499.22 198
原ACMM295.53 297
test22298.92 19796.93 20395.54 29698.78 24985.72 34096.86 28098.11 25094.43 23399.10 25399.23 194
testdata299.79 17292.80 298
segment_acmp97.02 136
testdata195.44 30296.32 231
plane_prior799.19 13897.87 148
plane_prior698.99 18497.70 16594.90 220
plane_prior599.27 14499.70 22294.42 25599.51 18799.45 122
plane_prior497.98 259
plane_prior397.78 15897.41 17297.79 228
plane_prior297.77 16198.20 113
plane_prior199.05 173
plane_prior97.65 16797.07 22196.72 21899.36 209
n20.00 358
nn0.00 358
door-mid99.57 33
test1198.87 232
door99.41 88
HQP5-MVS96.79 206
HQP-NCC98.67 24796.29 26596.05 23995.55 316
ACMP_Plane98.67 24796.29 26596.05 23995.55 316
BP-MVS92.82 296
HQP4-MVS95.56 31599.54 28399.32 172
HQP3-MVS99.04 20399.26 227
HQP2-MVS93.84 244
NP-MVS98.84 21597.39 18096.84 305
MDTV_nov1_ep13_2view74.92 35397.69 16990.06 32797.75 23185.78 30493.52 28398.69 271
MDTV_nov1_ep1395.22 27797.06 33083.20 34797.74 16596.16 31994.37 27796.99 27098.83 16283.95 31899.53 28593.90 27297.95 308
ACMMP++_ref99.77 88
ACMMP++99.68 129
Test By Simon96.52 165