This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1298.93 7699.65 2299.72 1198.93 1899.95 1499.11 26100.00 199.82 9
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12199.20 3299.65 1799.48 2499.92 399.71 1298.07 6399.96 899.53 9100.00 199.93 1
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
ANet_high99.57 799.67 599.28 7999.89 698.09 12599.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2299.31 16100.00 199.82 9
UA-Net99.47 1199.40 1499.70 299.49 8399.29 1799.80 399.72 899.82 399.04 11099.81 398.05 6699.96 898.85 4099.99 599.86 6
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1699.09 6299.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 999.27 4299.90 499.74 899.68 299.97 399.55 899.99 599.88 3
v1098.97 4399.11 3398.55 18599.44 9996.21 22798.90 5899.55 4398.73 8599.48 4099.60 2596.63 16499.83 13399.70 399.99 599.61 48
v899.01 3699.16 3098.57 18099.47 9396.31 22598.90 5899.47 7299.03 6599.52 3599.57 2796.93 14499.81 15699.60 499.98 999.60 49
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5599.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
pmmvs-eth3d98.47 11698.34 11698.86 14399.30 11997.76 16597.16 22399.28 14695.54 25999.42 4899.19 7797.27 12599.63 26297.89 8899.97 1199.20 204
IterMVS-LS98.55 10598.70 6298.09 22299.48 9194.73 26397.22 21699.39 9498.97 7199.38 5499.31 6396.00 18999.93 2698.58 5499.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15699.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2199.66 1199.68 1999.66 1798.44 3899.95 1499.73 299.96 1499.75 22
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1499.00 3299.95 1599.78 14
D2MVS97.84 17797.84 16697.83 23799.14 15694.74 26296.94 23298.88 23595.84 25398.89 13898.96 13294.40 24099.69 23297.55 10599.95 1599.05 226
test_part197.91 16497.46 19599.27 8298.80 22998.18 11899.07 4599.36 10499.75 599.63 2599.49 3882.20 33599.89 5598.87 3999.95 1599.74 24
PS-CasMVS99.40 1899.33 2099.62 699.71 2999.10 5699.29 2399.53 5099.53 2399.46 4399.41 5098.23 5199.95 1498.89 3899.95 1599.81 11
CHOSEN 1792x268897.49 19997.14 21498.54 18899.68 3896.09 23096.50 25999.62 1991.58 32298.84 14898.97 12992.36 27299.88 6496.76 15999.95 1599.67 33
IterMVS-SCA-FT97.85 17698.18 13496.87 28799.27 12291.16 33195.53 30299.25 15599.10 5999.41 4999.35 5793.10 26199.96 898.65 5299.94 2099.49 104
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3597.12 13399.85 10199.02 3199.94 2099.80 12
UGNet98.53 11098.45 9898.79 15397.94 30796.96 20799.08 4498.54 27299.10 5996.82 29199.47 4196.55 16799.84 11898.56 5999.94 2099.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS97.73 18398.11 14496.57 29499.24 12790.28 33295.52 30499.21 16498.86 7999.33 6299.33 6193.11 26099.94 2298.49 6099.94 2099.48 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42095.51 28395.47 27495.65 31398.25 29088.27 34093.25 34798.88 23593.53 30094.65 33797.15 30986.17 30699.93 2697.41 11399.93 2498.73 274
CANet97.87 17097.76 16998.19 21997.75 31595.51 24396.76 24699.05 20597.74 14596.93 28098.21 24995.59 20799.89 5597.86 9399.93 2499.19 209
v114498.60 9698.66 6798.41 20199.36 10995.90 23397.58 18699.34 11697.51 16399.27 7299.15 8996.34 18099.80 16599.47 1299.93 2499.51 96
PEN-MVS99.41 1799.34 1999.62 699.73 2399.14 4899.29 2399.54 4799.62 1799.56 2899.42 4898.16 5999.96 898.78 4399.93 2499.77 16
DTE-MVSNet99.43 1599.35 1799.66 499.71 2999.30 1699.31 1899.51 5499.64 1299.56 2899.46 4298.23 5199.97 398.78 4399.93 2499.72 25
CP-MVSNet99.21 2999.09 3499.56 2499.65 4298.96 6599.13 4199.34 11699.42 3099.33 6299.26 6897.01 14099.94 2298.74 4899.93 2499.79 13
WR-MVS_H99.33 2399.22 2799.65 599.71 2999.24 2399.32 1599.55 4399.46 2799.50 3999.34 5997.30 12299.93 2698.90 3699.93 2499.77 16
PVSNet_BlendedMVS97.55 19597.53 18797.60 25198.92 20293.77 29396.64 25299.43 8594.49 28097.62 24599.18 7996.82 15199.67 24494.73 25199.93 2499.36 163
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2398.26 10999.17 3799.78 499.11 5599.27 7299.48 4098.82 2099.95 1498.94 3499.93 2499.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 699.64 1299.84 899.83 299.50 599.87 8099.36 1499.92 3399.64 39
nrg03099.40 1899.35 1799.54 2999.58 5099.13 5198.98 5499.48 6699.68 999.46 4399.26 6898.62 2899.73 21799.17 2599.92 3399.76 20
v119298.60 9698.66 6798.41 20199.27 12295.88 23497.52 19299.36 10497.41 17799.33 6299.20 7696.37 17899.82 14399.57 699.92 3399.55 79
bset_n11_16_dypcd96.99 24096.56 24798.27 21499.00 18595.25 25092.18 35394.05 34498.75 8499.01 11498.38 23488.98 29399.93 2698.77 4699.92 3399.64 39
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17599.92 3399.44 1399.92 3399.68 31
DeepC-MVS97.60 498.97 4398.93 4199.10 10599.35 11397.98 14298.01 14299.46 7497.56 16099.54 3099.50 3598.97 1699.84 11898.06 8099.92 3399.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Anonymous2023121199.27 2599.27 2499.26 8599.29 12098.18 11899.49 899.51 5499.70 899.80 999.68 1496.84 14899.83 13399.21 2299.91 3999.77 16
v14419298.54 10898.57 7998.45 19899.21 13495.98 23197.63 17999.36 10497.15 20699.32 6799.18 7995.84 20099.84 11899.50 1099.91 3999.54 83
PVSNet_Blended_VisFu98.17 14998.15 14098.22 21799.73 2395.15 25597.36 20499.68 1394.45 28498.99 11899.27 6696.87 14799.94 2297.13 12899.91 3999.57 66
test_040298.76 6898.71 5998.93 13399.56 6198.14 12398.45 9899.34 11699.28 4198.95 12698.91 14198.34 4699.79 17895.63 23399.91 3998.86 258
v192192098.54 10898.60 7698.38 20499.20 13795.76 23997.56 18899.36 10497.23 19999.38 5499.17 8396.02 18799.84 11899.57 699.90 4399.54 83
RRT_MVS97.07 23196.57 24698.58 17795.89 35596.33 22397.36 20498.77 25697.85 14099.08 10099.12 9382.30 33299.96 898.82 4299.90 4399.45 124
v2v48298.56 10198.62 7198.37 20599.42 10395.81 23797.58 18699.16 18497.90 13699.28 7099.01 12095.98 19399.79 17899.33 1599.90 4399.51 96
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 10898.87 6798.39 10299.42 8899.42 3099.36 5899.06 10098.38 4199.95 1498.34 6899.90 4399.57 66
FMVSNet199.17 3099.17 2999.17 9399.55 6498.24 11199.20 3299.44 8099.21 4499.43 4799.55 2997.82 8299.86 8798.42 6599.89 4799.41 138
FIs99.14 3299.09 3499.29 7799.70 3598.28 10899.13 4199.52 5399.48 2499.24 7999.41 5096.79 15499.82 14398.69 5199.88 4899.76 20
v124098.55 10598.62 7198.32 20899.22 13295.58 24097.51 19499.45 7797.16 20499.45 4599.24 7196.12 18499.85 10199.60 499.88 4899.55 79
TAMVS98.24 14298.05 15098.80 15199.07 17097.18 19997.88 15398.81 25096.66 22699.17 9099.21 7494.81 23099.77 19596.96 14099.88 4899.44 129
EU-MVSNet97.66 18898.50 8795.13 32199.63 4785.84 34898.35 10698.21 28598.23 11499.54 3099.46 4295.02 22299.68 24198.24 7199.87 5199.87 4
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13399.90 4699.21 2299.87 5199.54 83
v14898.45 11898.60 7698.00 23199.44 9994.98 25897.44 20099.06 20198.30 10699.32 6798.97 12996.65 16399.62 26498.37 6799.85 5399.39 147
WR-MVS98.40 12498.19 13399.03 12199.00 18597.65 17396.85 24098.94 22498.57 9798.89 13898.50 22195.60 20699.85 10197.54 10799.85 5399.59 55
CANet_DTU97.26 21697.06 21597.84 23697.57 32294.65 26796.19 27698.79 25397.23 19995.14 33498.24 24693.22 25899.84 11897.34 11699.84 5599.04 230
V4298.78 6598.78 5198.76 15999.44 9997.04 20498.27 10999.19 17197.87 13899.25 7899.16 8596.84 14899.78 18999.21 2299.84 5599.46 120
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8398.36 10699.00 5199.45 7799.63 1499.52 3599.44 4798.25 4999.88 6499.09 2799.84 5599.62 44
SixPastTwentyTwo98.75 7098.62 7199.16 9699.83 1597.96 14799.28 2798.20 28699.37 3499.70 1599.65 1992.65 27099.93 2699.04 3099.84 5599.60 49
HyFIR lowres test97.19 22396.60 24498.96 12999.62 4997.28 19095.17 31299.50 5694.21 28999.01 11498.32 24286.61 30299.99 297.10 13099.84 5599.60 49
TDRefinement99.42 1699.38 1599.55 2699.76 2199.33 1599.68 599.71 999.38 3399.53 3399.61 2398.64 2799.80 16598.24 7199.84 5599.52 93
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1899.30 4099.65 2299.60 2599.16 1499.82 14399.07 2899.83 6199.56 71
Baseline_NR-MVSNet98.98 4298.86 4499.36 6499.82 1698.55 9297.47 19899.57 3399.37 3499.21 8399.61 2396.76 15799.83 13398.06 8099.83 6199.71 26
Patchmtry97.35 20996.97 22098.50 19497.31 33496.47 22098.18 11898.92 22998.95 7598.78 15699.37 5385.44 31499.85 10195.96 21599.83 6199.17 215
ppachtmachnet_test97.50 19797.74 17196.78 29298.70 24591.23 33094.55 33199.05 20596.36 23599.21 8398.79 17396.39 17599.78 18996.74 16199.82 6499.34 169
EI-MVSNet98.40 12498.51 8598.04 22999.10 16394.73 26397.20 21798.87 23798.97 7199.06 10399.02 11496.00 18999.80 16598.58 5499.82 6499.60 49
NR-MVSNet98.95 4698.82 4799.36 6499.16 15198.72 8199.22 3199.20 16699.10 5999.72 1398.76 17896.38 17799.86 8798.00 8599.82 6499.50 100
MVSTER96.86 24496.55 24897.79 23997.91 30994.21 27597.56 18898.87 23797.49 16699.06 10399.05 10780.72 33799.80 16598.44 6399.82 6499.37 157
cl-mvsnet_97.02 23696.83 23097.58 25397.82 31394.04 27994.66 32699.16 18497.04 21098.63 17198.71 18488.68 29699.69 23297.00 13499.81 6899.00 237
cl-mvsnet197.02 23696.84 22997.58 25397.82 31394.03 28094.66 32699.16 18497.04 21098.63 17198.71 18488.69 29599.69 23297.00 13499.81 6899.01 234
eth_miper_zixun_eth97.23 22097.25 20597.17 27498.00 30592.77 30794.71 32399.18 17597.27 19198.56 18398.74 18091.89 27799.69 23297.06 13299.81 6899.05 226
MVS_030497.64 18997.35 20198.52 18997.87 31196.69 21798.59 7898.05 29497.44 17593.74 34898.85 16093.69 25599.88 6498.11 7799.81 6898.98 239
PMMVS298.07 15498.08 14898.04 22999.41 10494.59 26994.59 33099.40 9297.50 16498.82 15398.83 16696.83 15099.84 11897.50 11099.81 6899.71 26
K. test v398.00 15997.66 17899.03 12199.79 1997.56 17799.19 3692.47 34999.62 1799.52 3599.66 1789.61 28899.96 899.25 2099.81 6899.56 71
CDS-MVSNet97.69 18597.35 20198.69 16598.73 23797.02 20696.92 23698.75 26095.89 25298.59 17998.67 19292.08 27699.74 21396.72 16499.81 6899.32 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG98.68 8398.50 8799.20 9199.45 9798.63 8498.56 8199.57 3397.87 13898.85 14698.04 26397.66 9199.84 11896.72 16499.81 6899.13 219
miper_lstm_enhance97.18 22497.16 21197.25 27298.16 29692.85 30595.15 31499.31 12897.25 19398.74 16398.78 17490.07 28599.78 18997.19 12299.80 7699.11 222
UniMVSNet (Re)98.87 5498.71 5999.35 6999.24 12798.73 7997.73 17099.38 9698.93 7699.12 9298.73 18196.77 15599.86 8798.63 5399.80 7699.46 120
FMVSNet298.49 11498.40 10698.75 16198.90 20697.14 20398.61 7599.13 19198.59 9399.19 8599.28 6494.14 24599.82 14397.97 8699.80 7699.29 188
XXY-MVS99.14 3299.15 3299.10 10599.76 2197.74 16898.85 6399.62 1998.48 9999.37 5699.49 3898.75 2399.86 8798.20 7499.80 7699.71 26
IS-MVSNet98.19 14697.90 16299.08 10899.57 5497.97 14399.31 1898.32 28199.01 6798.98 12099.03 11391.59 27899.79 17895.49 23899.80 7699.48 110
EI-MVSNet-UG-set98.69 8098.71 5998.62 17299.10 16396.37 22297.23 21398.87 23799.20 4799.19 8598.99 12397.30 12299.85 10198.77 4699.79 8199.65 38
pmmvs497.58 19497.28 20498.51 19298.84 22096.93 20995.40 30898.52 27493.60 29998.61 17598.65 19795.10 22199.60 27196.97 13999.79 8198.99 238
test20.0398.78 6598.77 5398.78 15699.46 9497.20 19797.78 16299.24 16099.04 6499.41 4998.90 14497.65 9299.76 20297.70 10299.79 8199.39 147
Vis-MVSNet (Re-imp)97.46 20297.16 21198.34 20799.55 6496.10 22898.94 5698.44 27798.32 10598.16 21098.62 20688.76 29499.73 21793.88 28199.79 8199.18 211
EI-MVSNet-Vis-set98.68 8398.70 6298.63 17099.09 16696.40 22197.23 21398.86 24299.20 4799.18 8998.97 12997.29 12499.85 10198.72 4999.78 8599.64 39
LPG-MVS_test98.71 7598.46 9699.47 5399.57 5498.97 6298.23 11299.48 6696.60 22799.10 9799.06 10098.71 2599.83 13395.58 23699.78 8599.62 44
LGP-MVS_train99.47 5399.57 5498.97 6299.48 6696.60 22799.10 9799.06 10098.71 2599.83 13395.58 23699.78 8599.62 44
CLD-MVS97.49 19997.16 21198.48 19599.07 17097.03 20594.71 32399.21 16494.46 28298.06 21997.16 30897.57 10099.48 30594.46 25999.78 8598.95 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
new-patchmatchnet98.35 12998.74 5497.18 27399.24 12792.23 31696.42 26499.48 6698.30 10699.69 1799.53 3297.44 11599.82 14398.84 4199.77 8999.49 104
Patchmatch-RL test97.26 21697.02 21797.99 23299.52 7195.53 24296.13 27799.71 997.47 16799.27 7299.16 8584.30 32299.62 26497.89 8899.77 8998.81 264
UniMVSNet_NR-MVSNet98.86 5698.68 6499.40 6299.17 14998.74 7697.68 17499.40 9299.14 5399.06 10398.59 21196.71 16199.93 2698.57 5699.77 8999.53 89
DU-MVS98.82 5898.63 7099.39 6399.16 15198.74 7697.54 19099.25 15598.84 8199.06 10398.76 17896.76 15799.93 2698.57 5699.77 8999.50 100
ACMMP++_ref99.77 89
wuyk23d96.06 26997.62 18291.38 34098.65 26098.57 9198.85 6396.95 31796.86 21899.90 499.16 8599.18 1198.40 35389.23 33799.77 8977.18 356
ACMP95.32 1598.41 12298.09 14599.36 6499.51 7398.79 7497.68 17499.38 9695.76 25698.81 15598.82 16998.36 4299.82 14394.75 25099.77 8999.48 110
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+96.62 999.08 3499.00 3999.33 7499.71 2998.83 7098.60 7699.58 2699.11 5599.53 3399.18 7998.81 2199.67 24496.71 16699.77 8999.50 100
ACMH96.65 799.25 2799.24 2699.26 8599.72 2898.38 10499.07 4599.55 4398.30 10699.65 2299.45 4699.22 999.76 20298.44 6399.77 8999.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl_fuxian97.36 20897.37 19997.31 26898.09 30093.25 29895.01 31799.16 18497.05 20998.77 15998.72 18392.88 26699.64 25996.93 14199.76 9899.05 226
pmmvs597.64 18997.49 19098.08 22599.14 15695.12 25796.70 25099.05 20593.77 29798.62 17398.83 16693.23 25799.75 20998.33 7099.76 9899.36 163
baseline98.96 4599.02 3798.76 15999.38 10697.26 19198.49 9199.50 5698.86 7999.19 8599.06 10098.23 5199.69 23298.71 5099.76 9899.33 175
COLMAP_ROBcopyleft96.50 1098.99 3898.85 4599.41 6099.58 5099.10 5698.74 6699.56 4099.09 6299.33 6299.19 7798.40 4099.72 22595.98 21499.76 9899.42 136
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SD-MVS98.40 12498.68 6497.54 25898.96 19397.99 13897.88 15399.36 10498.20 11899.63 2599.04 11098.76 2295.33 35896.56 17899.74 10299.31 181
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS98.82 5898.72 5799.12 10199.64 4598.54 9597.98 14599.68 1397.62 15399.34 6199.18 7997.54 10299.77 19597.79 9499.74 10299.04 230
XVG-ACMP-BASELINE98.56 10198.34 11699.22 9099.54 6798.59 8997.71 17199.46 7497.25 19398.98 12098.99 12397.54 10299.84 11895.88 21799.74 10299.23 199
Anonymous2023120698.21 14498.21 13098.20 21899.51 7395.43 24798.13 12299.32 12396.16 24298.93 13398.82 16996.00 18999.83 13397.32 11799.73 10599.36 163
casdiffmvs98.95 4699.00 3998.81 14999.38 10697.33 18797.82 16099.57 3399.17 5299.35 5999.17 8398.35 4599.69 23298.46 6299.73 10599.41 138
jason97.45 20397.35 20197.76 24199.24 12793.93 28595.86 28998.42 27894.24 28898.50 19098.13 25394.82 22899.91 4397.22 12199.73 10599.43 133
jason: jason.
N_pmnet97.63 19197.17 21098.99 12799.27 12297.86 15595.98 28093.41 34695.25 26899.47 4298.90 14495.63 20599.85 10196.91 14299.73 10599.27 191
USDC97.41 20697.40 19697.44 26498.94 19693.67 29595.17 31299.53 5094.03 29498.97 12399.10 9795.29 21699.34 32295.84 22399.73 10599.30 184
Gipumacopyleft99.03 3599.16 3098.64 16899.94 298.51 9799.32 1599.75 799.58 2298.60 17799.62 2198.22 5499.51 30097.70 10299.73 10597.89 309
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
lessismore_v098.97 12899.73 2397.53 17986.71 35999.37 5699.52 3489.93 28699.92 3398.99 3399.72 11199.44 129
CP-MVS98.70 7898.42 10499.52 4199.36 10999.12 5398.72 6899.36 10497.54 16298.30 20398.40 23097.86 7899.89 5596.53 18399.72 11199.56 71
SteuartSystems-ACMMP98.79 6298.54 8199.54 2999.73 2399.16 4098.23 11299.31 12897.92 13498.90 13598.90 14498.00 6999.88 6496.15 20899.72 11199.58 61
Skip Steuart: Steuart Systems R&D Blog.
LF4IMVS97.90 16597.69 17498.52 18999.17 14997.66 17297.19 22099.47 7296.31 23897.85 23198.20 25096.71 16199.52 29694.62 25499.72 11198.38 293
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4799.06 6098.69 7099.54 4799.31 3899.62 2799.53 3297.36 12099.86 8799.24 2199.71 11599.39 147
test_0728_THIRD98.17 12199.08 10099.02 11497.89 7699.88 6497.07 13199.71 11599.70 29
HPM-MVS_fast99.01 3698.82 4799.57 1899.71 2999.35 1199.00 5199.50 5697.33 18498.94 13298.86 15798.75 2399.82 14397.53 10899.71 11599.56 71
FMVSNet596.01 27095.20 28598.41 20197.53 32596.10 22898.74 6699.50 5697.22 20298.03 22399.04 11069.80 35799.88 6497.27 11999.71 11599.25 195
RPSCF98.62 9398.36 11399.42 5799.65 4299.42 498.55 8299.57 3397.72 14798.90 13599.26 6896.12 18499.52 29695.72 22799.71 11599.32 177
MP-MVS-pluss98.57 10098.23 12999.60 1399.69 3799.35 1197.16 22399.38 9694.87 27598.97 12398.99 12398.01 6899.88 6497.29 11899.70 12099.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS98.79 6298.52 8399.61 999.67 3999.36 997.33 20699.20 16698.83 8298.89 13898.90 14496.98 14299.92 3397.16 12499.70 12099.56 71
MTAPA98.88 5398.64 6999.61 999.67 3999.36 998.43 9999.20 16698.83 8298.89 13898.90 14496.98 14299.92 3397.16 12499.70 12099.56 71
Regformer-398.61 9498.61 7498.63 17099.02 18296.53 21997.17 22198.84 24499.13 5499.10 9798.85 16097.24 12999.79 17898.41 6699.70 12099.57 66
Regformer-498.73 7398.68 6498.89 13999.02 18297.22 19497.17 22199.06 20199.21 4499.17 9098.85 16097.45 11499.86 8798.48 6199.70 12099.60 49
APDe-MVS98.99 3898.79 5099.60 1399.21 13499.15 4598.87 6099.48 6697.57 15899.35 5999.24 7197.83 7999.89 5597.88 9199.70 12099.75 22
tfpnnormal98.90 5298.90 4298.91 13699.67 3997.82 16099.00 5199.44 8099.45 2899.51 3899.24 7198.20 5699.86 8795.92 21699.69 12699.04 230
GBi-Net98.65 8798.47 9499.17 9398.90 20698.24 11199.20 3299.44 8098.59 9398.95 12699.55 2994.14 24599.86 8797.77 9699.69 12699.41 138
test198.65 8798.47 9499.17 9398.90 20698.24 11199.20 3299.44 8098.59 9398.95 12699.55 2994.14 24599.86 8797.77 9699.69 12699.41 138
FMVSNet397.50 19797.24 20798.29 21298.08 30195.83 23697.86 15698.91 23197.89 13798.95 12698.95 13687.06 29999.81 15697.77 9699.69 12699.23 199
ACMMPcopyleft98.75 7098.50 8799.52 4199.56 6199.16 4098.87 6099.37 10097.16 20498.82 15399.01 12097.71 8899.87 8096.29 20099.69 12699.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVS98.59 9998.26 12599.57 1899.27 12299.15 4597.01 22899.39 9497.67 14999.44 4698.99 12397.53 10499.89 5595.40 24099.68 13199.66 34
XVG-OURS98.53 11098.34 11699.11 10399.50 7698.82 7295.97 28199.50 5697.30 18899.05 10898.98 12799.35 799.32 32595.72 22799.68 13199.18 211
EPNet96.14 26895.44 27798.25 21590.76 36295.50 24497.92 14994.65 33698.97 7192.98 34998.85 16089.12 29299.87 8095.99 21399.68 13199.39 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS98.99 3899.01 3898.94 13299.50 7697.47 18198.04 13699.59 2498.15 12399.40 5299.36 5698.58 3199.76 20298.78 4399.68 13199.59 55
ACMMP++99.68 131
EPP-MVSNet98.30 13398.04 15199.07 11199.56 6197.83 15799.29 2398.07 29299.03 6598.59 17999.13 9292.16 27499.90 4696.87 15099.68 13199.49 104
our_test_397.39 20797.73 17396.34 29898.70 24589.78 33494.61 32998.97 22396.50 23099.04 11098.85 16095.98 19399.84 11897.26 12099.67 13799.41 138
ACMMP_NAP98.75 7098.48 9299.57 1899.58 5099.29 1797.82 16099.25 15596.94 21498.78 15699.12 9398.02 6799.84 11897.13 12899.67 13799.59 55
HPM-MVScopyleft98.79 6298.53 8299.59 1799.65 4299.29 1799.16 3899.43 8596.74 22298.61 17598.38 23498.62 2899.87 8096.47 18699.67 13799.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator98.27 298.81 6098.73 5599.05 11898.76 23297.81 16299.25 3099.30 13798.57 9798.55 18599.33 6197.95 7599.90 4697.16 12499.67 13799.44 129
PMVScopyleft91.26 2097.86 17197.94 15997.65 24799.71 2997.94 15098.52 8598.68 26698.99 6897.52 25599.35 5797.41 11698.18 35491.59 32199.67 13796.82 338
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DP-MVS98.93 4898.81 4999.28 7999.21 13498.45 10198.46 9699.33 12199.63 1499.48 4099.15 8997.23 13099.75 20997.17 12399.66 14299.63 43
MVS_111021_LR98.30 13398.12 14398.83 14699.16 15198.03 13696.09 27899.30 13797.58 15798.10 21698.24 24698.25 4999.34 32296.69 16799.65 14399.12 220
ACMM96.08 1298.91 5098.73 5599.48 5099.55 6499.14 4898.07 13099.37 10097.62 15399.04 11098.96 13298.84 1999.79 17897.43 11299.65 14399.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS98.68 8398.40 10699.54 2999.57 5499.21 2698.46 9699.29 14497.28 19098.11 21598.39 23298.00 6999.87 8096.86 15299.64 14599.55 79
SMA-MVScopyleft98.40 12498.03 15299.51 4599.16 15199.21 2698.05 13499.22 16394.16 29198.98 12099.10 9797.52 10699.79 17896.45 18899.64 14599.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
diffmvs98.22 14398.24 12798.17 22099.00 18595.44 24696.38 26699.58 2697.79 14498.53 18898.50 22196.76 15799.74 21397.95 8799.64 14599.34 169
DVP-MVS98.77 6798.52 8399.52 4199.50 7699.21 2698.02 13998.84 24497.97 13099.08 10099.02 11497.61 9799.88 6496.99 13699.63 14899.48 110
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1399.50 7699.23 2498.02 13999.32 12399.88 6496.99 13699.63 14899.68 31
VDD-MVS98.56 10198.39 10999.07 11199.13 15898.07 13198.59 7897.01 31599.59 2099.11 9499.27 6694.82 22899.79 17898.34 6899.63 14899.34 169
SED-MVS98.91 5098.72 5799.49 4899.49 8399.17 3698.10 12799.31 12898.03 12799.66 2099.02 11498.36 4299.88 6496.91 14299.62 15199.41 138
IU-MVS99.49 8399.15 4598.87 23792.97 30599.41 4996.76 15999.62 15199.66 34
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13399.06 2999.62 15199.66 34
abl_698.99 3898.78 5199.61 999.45 9799.46 398.60 7699.50 5698.59 9399.24 7999.04 11098.54 3399.89 5596.45 18899.62 15199.50 100
mPP-MVS98.64 8998.34 11699.54 2999.54 6799.17 3698.63 7399.24 16097.47 16798.09 21798.68 19097.62 9699.89 5596.22 20399.62 15199.57 66
DeepPCF-MVS96.93 598.32 13198.01 15399.23 8998.39 28398.97 6295.03 31699.18 17596.88 21799.33 6298.78 17498.16 5999.28 33196.74 16199.62 15199.44 129
AllTest98.44 11998.20 13199.16 9699.50 7698.55 9298.25 11199.58 2696.80 21998.88 14299.06 10097.65 9299.57 28194.45 26099.61 15799.37 157
TestCases99.16 9699.50 7698.55 9299.58 2696.80 21998.88 14299.06 10097.65 9299.57 28194.45 26099.61 15799.37 157
test_241102_TWO99.30 13798.03 12799.26 7699.02 11497.51 10799.88 6496.91 14299.60 15999.66 34
MP-MVScopyleft98.46 11798.09 14599.54 2999.57 5499.22 2598.50 9099.19 17197.61 15597.58 24998.66 19597.40 11799.88 6494.72 25399.60 15999.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS98.71 7598.44 10099.51 4599.49 8399.16 4098.52 8599.31 12897.47 16798.58 18198.50 22197.97 7399.85 10196.57 17599.59 16199.53 89
#test#98.50 11398.16 13899.51 4599.49 8399.16 4098.03 13799.31 12896.30 23998.58 18198.50 22197.97 7399.85 10195.68 23099.59 16199.53 89
CVMVSNet96.25 26697.21 20993.38 33799.10 16380.56 36197.20 21798.19 28896.94 21499.00 11799.02 11489.50 29099.80 16596.36 19599.59 16199.78 14
ACMMPR98.70 7898.42 10499.54 2999.52 7199.14 4898.52 8599.31 12897.47 16798.56 18398.54 21597.75 8699.88 6496.57 17599.59 16199.58 61
PGM-MVS98.66 8698.37 11299.55 2699.53 6999.18 3598.23 11299.49 6497.01 21298.69 16598.88 15398.00 6999.89 5595.87 22099.59 16199.58 61
DELS-MVS98.27 13798.20 13198.48 19598.86 21596.70 21695.60 30099.20 16697.73 14698.45 19298.71 18497.50 10899.82 14398.21 7399.59 16198.93 249
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 8098.40 10699.54 2999.53 6999.17 3698.52 8599.31 12897.46 17298.44 19398.51 21897.83 7999.88 6496.46 18799.58 16799.58 61
114514_t96.50 25995.77 26498.69 16599.48 9197.43 18497.84 15899.55 4381.42 35596.51 30298.58 21295.53 20899.67 24493.41 29499.58 16798.98 239
PHI-MVS98.29 13697.95 15799.34 7298.44 28099.16 4098.12 12499.38 9696.01 24898.06 21998.43 22897.80 8399.67 24495.69 22999.58 16799.20 204
TinyColmap97.89 16797.98 15597.60 25198.86 21594.35 27296.21 27499.44 8097.45 17499.06 10398.88 15397.99 7299.28 33194.38 26699.58 16799.18 211
Regformer-198.55 10598.44 10098.87 14198.85 21797.29 18896.91 23798.99 22198.97 7198.99 11898.64 20097.26 12899.81 15697.79 9499.57 17199.51 96
Regformer-298.60 9698.46 9699.02 12498.85 21797.71 17096.91 23799.09 19798.98 7099.01 11498.64 20097.37 11999.84 11897.75 10199.57 17199.52 93
MVSFormer98.26 13998.43 10297.77 24098.88 21293.89 28999.39 1199.56 4099.11 5598.16 21098.13 25393.81 25199.97 399.26 1899.57 17199.43 133
lupinMVS97.06 23296.86 22797.65 24798.88 21293.89 28995.48 30597.97 29593.53 30098.16 21097.58 28893.81 25199.91 4396.77 15899.57 17199.17 215
MVS_111021_HR98.25 14198.08 14898.75 16199.09 16697.46 18295.97 28199.27 14997.60 15697.99 22498.25 24598.15 6199.38 31996.87 15099.57 17199.42 136
OPM-MVS98.56 10198.32 12099.25 8799.41 10498.73 7997.13 22599.18 17597.10 20798.75 16198.92 14098.18 5799.65 25796.68 16899.56 17699.37 157
PVSNet_Blended96.88 24396.68 23897.47 26298.92 20293.77 29394.71 32399.43 8590.98 33097.62 24597.36 30396.82 15199.67 24494.73 25199.56 17698.98 239
DeepC-MVS_fast96.85 698.30 13398.15 14098.75 16198.61 26197.23 19297.76 16799.09 19797.31 18798.75 16198.66 19597.56 10199.64 25996.10 21199.55 17899.39 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft98.10 15197.67 17599.42 5799.11 15998.93 6697.76 16799.28 14694.97 27298.72 16498.77 17697.04 13699.85 10193.79 28499.54 17999.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DSMNet-mixed97.42 20597.60 18496.87 28799.15 15591.46 32298.54 8399.12 19392.87 30897.58 24999.63 2096.21 18299.90 4695.74 22699.54 17999.27 191
CPTT-MVS97.84 17797.36 20099.27 8299.31 11698.46 10098.29 10799.27 14994.90 27497.83 23298.37 23694.90 22499.84 11893.85 28399.54 17999.51 96
1112_ss97.29 21596.86 22798.58 17799.34 11596.32 22496.75 24799.58 2693.14 30496.89 28797.48 29592.11 27599.86 8796.91 14299.54 17999.57 66
XVS98.72 7498.45 9899.53 3699.46 9499.21 2698.65 7199.34 11698.62 9197.54 25398.63 20497.50 10899.83 13396.79 15599.53 18399.56 71
X-MVStestdata94.32 29992.59 31799.53 3699.46 9499.21 2698.65 7199.34 11698.62 9197.54 25345.85 35897.50 10899.83 13396.79 15599.53 18399.56 71
Test_1112_low_res96.99 24096.55 24898.31 21099.35 11395.47 24595.84 29299.53 5091.51 32496.80 29298.48 22691.36 27999.83 13396.58 17399.53 18399.62 44
xxxxxxxxxxxxxcwj98.44 11998.24 12799.06 11699.11 15997.97 14396.53 25699.54 4798.24 11298.83 14998.90 14497.80 8399.82 14395.68 23099.52 18699.38 154
SF-MVS98.53 11098.27 12499.32 7699.31 11698.75 7598.19 11799.41 8996.77 22198.83 14998.90 14497.80 8399.82 14395.68 23099.52 18699.38 154
Anonymous2024052998.93 4898.87 4399.12 10199.19 14098.22 11699.01 4998.99 22199.25 4399.54 3099.37 5397.04 13699.80 16597.89 8899.52 18699.35 167
GST-MVS98.61 9498.30 12199.52 4199.51 7399.20 3298.26 11099.25 15597.44 17598.67 16798.39 23297.68 8999.85 10196.00 21299.51 18999.52 93
tttt051795.64 27994.98 29097.64 24999.36 10993.81 29198.72 6890.47 35598.08 12598.67 16798.34 23973.88 35499.92 3397.77 9699.51 18999.20 204
HQP_MVS97.99 16297.67 17598.93 13399.19 14097.65 17397.77 16599.27 14998.20 11897.79 23597.98 26694.90 22499.70 22894.42 26299.51 18999.45 124
plane_prior599.27 14999.70 22894.42 26299.51 18999.45 124
ab-mvs98.41 12298.36 11398.59 17699.19 14097.23 19299.32 1598.81 25097.66 15098.62 17399.40 5296.82 15199.80 16595.88 21799.51 18998.75 273
OMC-MVS97.88 16997.49 19099.04 12098.89 21198.63 8496.94 23299.25 15595.02 27098.53 18898.51 21897.27 12599.47 30793.50 29299.51 18999.01 234
CMPMVSbinary75.91 2396.29 26495.44 27798.84 14596.25 35198.69 8297.02 22799.12 19388.90 34197.83 23298.86 15789.51 28998.90 34891.92 31599.51 18998.92 250
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc98.24 21698.82 22595.97 23298.62 7499.00 22099.27 7299.21 7496.99 14199.50 30196.55 18199.50 19699.26 194
ETH3D-3000-0.198.03 15597.62 18299.29 7799.11 15998.80 7397.47 19899.32 12395.54 25998.43 19698.62 20696.61 16599.77 19593.95 27899.49 19799.30 184
TSAR-MVS + MP.98.63 9198.49 9099.06 11699.64 4597.90 15298.51 8998.94 22496.96 21399.24 7998.89 15297.83 7999.81 15696.88 14999.49 19799.48 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPU-MVS98.82 14798.59 26598.30 10798.10 12798.52 21798.18 5798.75 35194.62 25499.48 19999.41 138
RRT_test8_iter0595.24 28795.13 28795.57 31497.32 33387.02 34597.99 14399.41 8998.06 12699.12 9299.05 10766.85 36299.85 10198.93 3599.47 20099.84 8
9.1497.78 16899.07 17097.53 19199.32 12395.53 26198.54 18798.70 18797.58 9999.76 20294.32 26799.46 201
TSAR-MVS + GP.98.18 14797.98 15598.77 15898.71 24197.88 15396.32 26998.66 26796.33 23699.23 8298.51 21897.48 11399.40 31597.16 12499.46 20199.02 233
PCF-MVS92.86 1894.36 29893.00 31598.42 20098.70 24597.56 17793.16 34899.11 19579.59 35697.55 25297.43 29892.19 27399.73 21779.85 35599.45 20397.97 308
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet96.99 24096.76 23397.67 24598.72 23894.89 26095.95 28598.20 28692.62 31198.55 18598.54 21594.88 22799.52 29693.96 27799.44 20498.59 284
APD-MVS_3200maxsize98.84 5798.61 7499.53 3699.19 14099.27 2098.49 9199.33 12198.64 8799.03 11398.98 12797.89 7699.85 10196.54 18299.42 20599.46 120
MSLP-MVS++98.02 15798.14 14297.64 24998.58 26695.19 25497.48 19699.23 16297.47 16797.90 22798.62 20697.04 13698.81 35097.55 10599.41 20698.94 248
QAPM97.31 21296.81 23198.82 14798.80 22997.49 18099.06 4799.19 17190.22 33497.69 24199.16 8596.91 14599.90 4690.89 33199.41 20699.07 224
ETH3 D test640096.46 26195.59 27299.08 10898.88 21298.21 11796.53 25699.18 17588.87 34297.08 27497.79 27693.64 25699.77 19588.92 33899.40 20899.28 189
SR-MVS-dyc-post98.81 6098.55 8099.57 1899.20 13799.38 598.48 9499.30 13798.64 8798.95 12698.96 13297.49 11199.86 8796.56 17899.39 20999.45 124
RE-MVS-def98.58 7899.20 13799.38 598.48 9499.30 13798.64 8798.95 12698.96 13297.75 8696.56 17899.39 20999.45 124
MVS-HIRNet94.32 29995.62 27090.42 34198.46 27875.36 36296.29 27089.13 35895.25 26895.38 33199.75 792.88 26699.19 33794.07 27599.39 20996.72 340
CDPH-MVS97.26 21696.66 24199.07 11199.00 18598.15 12196.03 27999.01 21791.21 32897.79 23597.85 27496.89 14699.69 23292.75 30699.38 21299.39 147
test117298.76 6898.49 9099.57 1899.18 14799.37 898.39 10299.31 12898.43 10098.90 13598.88 15397.49 11199.86 8796.43 19099.37 21399.48 110
VPNet98.87 5498.83 4699.01 12599.70 3597.62 17698.43 9999.35 11099.47 2699.28 7099.05 10796.72 16099.82 14398.09 7899.36 21499.59 55
plane_prior97.65 17397.07 22696.72 22399.36 214
thisisatest053095.27 28694.45 29697.74 24399.19 14094.37 27197.86 15690.20 35697.17 20398.22 20797.65 28473.53 35599.90 4696.90 14799.35 21698.95 244
HPM-MVS++copyleft98.10 15197.64 18099.48 5099.09 16699.13 5197.52 19298.75 26097.46 17296.90 28697.83 27596.01 18899.84 11895.82 22499.35 21699.46 120
LS3D98.63 9198.38 11199.36 6497.25 33599.38 599.12 4399.32 12399.21 4498.44 19398.88 15397.31 12199.80 16596.58 17399.34 21898.92 250
CNVR-MVS98.17 14997.87 16499.07 11198.67 25498.24 11197.01 22898.93 22697.25 19397.62 24598.34 23997.27 12599.57 28196.42 19199.33 21999.39 147
sss97.21 22196.93 22198.06 22798.83 22295.22 25396.75 24798.48 27694.49 28097.27 26897.90 27192.77 26899.80 16596.57 17599.32 22099.16 218
3Dnovator+97.89 398.69 8098.51 8599.24 8898.81 22798.40 10299.02 4899.19 17198.99 6898.07 21899.28 6497.11 13599.84 11896.84 15399.32 22099.47 118
SR-MVS98.71 7598.43 10299.57 1899.18 14799.35 1198.36 10599.29 14498.29 10998.88 14298.85 16097.53 10499.87 8096.14 20999.31 22299.48 110
Anonymous20240521197.90 16597.50 18999.08 10898.90 20698.25 11098.53 8496.16 32798.87 7899.11 9498.86 15790.40 28499.78 18997.36 11599.31 22299.19 209
Patchmatch-test96.55 25696.34 25497.17 27498.35 28493.06 30098.40 10197.79 29897.33 18498.41 19798.67 19283.68 32699.69 23295.16 24299.31 22298.77 271
LCM-MVSNet-Re98.64 8998.48 9299.11 10398.85 21798.51 9798.49 9199.83 398.37 10199.69 1799.46 4298.21 5599.92 3394.13 27399.30 22598.91 253
EPNet_dtu94.93 29394.78 29495.38 31993.58 35987.68 34296.78 24495.69 33397.35 18389.14 35798.09 26088.15 29799.49 30294.95 24799.30 22598.98 239
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS96.21 1196.63 25495.95 26298.65 16798.93 19898.09 12596.93 23499.28 14683.58 35398.13 21397.78 27796.13 18399.40 31593.52 29099.29 22798.45 289
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet93.40 1795.67 27895.70 26795.57 31498.83 22288.57 33792.50 35097.72 30092.69 31096.49 30596.44 32293.72 25499.43 31393.61 28799.28 22898.71 275
EIA-MVS98.00 15997.74 17198.80 15198.72 23898.09 12598.05 13499.60 2397.39 17996.63 29695.55 33597.68 8999.80 16596.73 16399.27 22998.52 285
LFMVS97.20 22296.72 23598.64 16898.72 23896.95 20898.93 5794.14 34399.74 798.78 15699.01 12084.45 31999.73 21797.44 11199.27 22999.25 195
ITE_SJBPF98.87 14199.22 13298.48 9999.35 11097.50 16498.28 20598.60 21097.64 9599.35 32193.86 28299.27 22998.79 269
HQP3-MVS99.04 20899.26 232
HQP-MVS97.00 23996.49 25098.55 18598.67 25496.79 21296.29 27099.04 20896.05 24595.55 32596.84 31393.84 24999.54 29092.82 30399.26 23299.32 177
ETV-MVS98.03 15597.86 16598.56 18498.69 24998.07 13197.51 19499.50 5698.10 12497.50 25795.51 33698.41 3999.88 6496.27 20199.24 23497.71 322
MCST-MVS98.00 15997.63 18199.10 10599.24 12798.17 12096.89 23998.73 26395.66 25797.92 22597.70 28297.17 13299.66 25296.18 20799.23 23599.47 118
SCA96.41 26296.66 24195.67 31198.24 29188.35 33995.85 29196.88 32096.11 24397.67 24298.67 19293.10 26199.85 10194.16 26899.22 23698.81 264
MSDG97.71 18497.52 18898.28 21398.91 20596.82 21194.42 33399.37 10097.65 15198.37 20298.29 24497.40 11799.33 32494.09 27499.22 23698.68 281
MIMVSNet96.62 25596.25 25997.71 24499.04 17794.66 26699.16 3896.92 31997.23 19997.87 22999.10 9786.11 30899.65 25791.65 31999.21 23898.82 261
test_prior397.48 20197.00 21898.95 13098.69 24997.95 14895.74 29599.03 21096.48 23196.11 31197.63 28695.92 19799.59 27594.16 26899.20 23999.30 184
test_prior295.74 29596.48 23196.11 31197.63 28695.92 19794.16 26899.20 239
VDDNet98.21 14497.95 15799.01 12599.58 5097.74 16899.01 4997.29 31199.67 1098.97 12399.50 3590.45 28399.80 16597.88 9199.20 23999.48 110
OpenMVScopyleft96.65 797.09 22996.68 23898.32 20898.32 28697.16 20198.86 6299.37 10089.48 33896.29 30999.15 8996.56 16699.90 4692.90 30099.20 23997.89 309
ZD-MVS99.01 18498.84 6999.07 20094.10 29298.05 22198.12 25696.36 17999.86 8792.70 30899.19 243
MSP-MVS98.40 12498.00 15499.61 999.57 5499.25 2298.57 8099.35 11097.55 16199.31 6997.71 28194.61 23599.88 6496.14 20999.19 24399.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNLPA97.17 22596.71 23698.55 18598.56 26998.05 13496.33 26898.93 22696.91 21697.06 27697.39 30094.38 24199.45 31191.66 31899.18 24598.14 301
CS-MVS97.82 18197.59 18698.52 18998.76 23298.04 13598.20 11699.61 2197.10 20796.02 31794.87 34898.27 4899.84 11896.31 19799.17 24697.69 323
ETH3D cwj APD-0.1697.55 19597.00 21899.19 9298.51 27498.64 8396.85 24099.13 19194.19 29097.65 24398.40 23095.78 20199.81 15693.37 29599.16 24799.12 220
train_agg97.10 22896.45 25199.07 11198.71 24198.08 12995.96 28399.03 21091.64 32095.85 31897.53 29096.47 17199.76 20293.67 28699.16 24799.36 163
agg_prior292.50 31199.16 24799.37 157
test9_res93.28 29799.15 25099.38 154
MS-PatchMatch97.68 18697.75 17097.45 26398.23 29393.78 29297.29 20998.84 24496.10 24498.64 17098.65 19796.04 18699.36 32096.84 15399.14 25199.20 204
agg_prior197.06 23296.40 25299.03 12198.68 25297.99 13895.76 29399.01 21791.73 31995.59 32197.50 29396.49 17099.77 19593.71 28599.14 25199.34 169
AdaColmapbinary97.14 22796.71 23698.46 19798.34 28597.80 16396.95 23198.93 22695.58 25896.92 28197.66 28395.87 19999.53 29290.97 32899.14 25198.04 304
VNet98.42 12198.30 12198.79 15398.79 23197.29 18898.23 11298.66 26799.31 3898.85 14698.80 17194.80 23199.78 18998.13 7699.13 25499.31 181
test1298.93 13398.58 26697.83 15798.66 26796.53 30095.51 21099.69 23299.13 25499.27 191
DP-MVS Recon97.33 21196.92 22398.57 18099.09 16697.99 13896.79 24399.35 11093.18 30397.71 23998.07 26295.00 22399.31 32693.97 27699.13 25498.42 292
thisisatest051594.12 30593.16 31296.97 28298.60 26392.90 30493.77 34490.61 35494.10 29296.91 28395.87 33174.99 35399.80 16594.52 25799.12 25798.20 298
pmmvs395.03 29194.40 29796.93 28397.70 31992.53 31095.08 31597.71 30188.57 34397.71 23998.08 26179.39 34499.82 14396.19 20599.11 25898.43 291
test22298.92 20296.93 20995.54 30198.78 25585.72 35096.86 28998.11 25794.43 23899.10 25999.23 199
testtj97.79 18297.25 20599.42 5799.03 18098.85 6897.78 16299.18 17595.83 25498.12 21498.50 22195.50 21199.86 8792.23 31499.07 26099.54 83
xiu_mvs_v1_base_debu97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
xiu_mvs_v1_base97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
xiu_mvs_v1_base_debi97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
MG-MVS96.77 24896.61 24397.26 27198.31 28793.06 30095.93 28698.12 29196.45 23397.92 22598.73 18193.77 25399.39 31791.19 32799.04 26499.33 175
cl-mvsnet295.79 27695.39 28096.98 28196.77 34392.79 30694.40 33498.53 27394.59 27997.89 22898.17 25282.82 33199.24 33396.37 19399.03 26598.92 250
miper_ehance_all_eth97.06 23297.03 21697.16 27697.83 31293.06 30094.66 32699.09 19795.99 24998.69 16598.45 22792.73 26999.61 27096.79 15599.03 26598.82 261
miper_enhance_ethall96.01 27095.74 26596.81 29196.41 34992.27 31593.69 34598.89 23491.14 32998.30 20397.35 30490.58 28299.58 28096.31 19799.03 26598.60 282
112196.73 24996.00 26098.91 13698.95 19597.76 16598.07 13098.73 26387.65 34696.54 29998.13 25394.52 23799.73 21792.38 31299.02 26899.24 198
API-MVS97.04 23596.91 22597.42 26597.88 31098.23 11598.18 11898.50 27597.57 15897.39 26596.75 31596.77 15599.15 34090.16 33499.02 26894.88 352
旧先验198.82 22597.45 18398.76 25798.34 23995.50 21199.01 27099.23 199
新几何198.91 13698.94 19697.76 16598.76 25787.58 34796.75 29398.10 25894.80 23199.78 18992.73 30799.00 27199.20 204
原ACMM198.35 20698.90 20696.25 22698.83 24992.48 31296.07 31498.10 25895.39 21599.71 22692.61 31098.99 27299.08 223
testgi98.32 13198.39 10998.13 22199.57 5495.54 24197.78 16299.49 6497.37 18199.19 8597.65 28498.96 1799.49 30296.50 18598.99 27299.34 169
MVP-Stereo98.08 15397.92 16098.57 18098.96 19396.79 21297.90 15299.18 17596.41 23498.46 19198.95 13695.93 19699.60 27196.51 18498.98 27499.31 181
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
alignmvs97.35 20996.88 22698.78 15698.54 27198.09 12597.71 17197.69 30299.20 4797.59 24895.90 33088.12 29899.55 28798.18 7598.96 27598.70 277
testdata98.09 22298.93 19895.40 24898.80 25290.08 33697.45 26198.37 23695.26 21799.70 22893.58 28998.95 27699.17 215
Effi-MVS+-dtu98.26 13997.90 16299.35 6998.02 30399.49 298.02 13999.16 18498.29 10997.64 24497.99 26596.44 17399.95 1496.66 16998.93 27798.60 282
MVS_Test98.18 14798.36 11397.67 24598.48 27694.73 26398.18 11899.02 21497.69 14898.04 22299.11 9597.22 13199.56 28498.57 5698.90 27898.71 275
CL-MVSNet_2432*160097.44 20497.22 20898.08 22598.57 26895.78 23894.30 33698.79 25396.58 22998.60 17798.19 25194.74 23499.64 25996.41 19298.84 27998.82 261
Fast-Effi-MVS+97.67 18797.38 19898.57 18098.71 24197.43 18497.23 21399.45 7794.82 27696.13 31096.51 31898.52 3499.91 4396.19 20598.83 28098.37 295
NCCC97.86 17197.47 19499.05 11898.61 26198.07 13196.98 23098.90 23297.63 15297.04 27797.93 27095.99 19299.66 25295.31 24198.82 28199.43 133
PatchMatch-RL97.24 21996.78 23298.61 17499.03 18097.83 15796.36 26799.06 20193.49 30297.36 26797.78 27795.75 20299.49 30293.44 29398.77 28298.52 285
DPM-MVS96.32 26395.59 27298.51 19298.76 23297.21 19694.54 33298.26 28391.94 31896.37 30797.25 30593.06 26399.43 31391.42 32398.74 28398.89 254
YYNet197.60 19297.67 17597.39 26799.04 17793.04 30395.27 30998.38 28097.25 19398.92 13498.95 13695.48 21399.73 21796.99 13698.74 28399.41 138
MDA-MVSNet-bldmvs97.94 16397.91 16198.06 22799.44 9994.96 25996.63 25399.15 19098.35 10298.83 14999.11 9594.31 24299.85 10196.60 17298.72 28599.37 157
MDA-MVSNet_test_wron97.60 19297.66 17897.41 26699.04 17793.09 29995.27 30998.42 27897.26 19298.88 14298.95 13695.43 21499.73 21797.02 13398.72 28599.41 138
Fast-Effi-MVS+-dtu98.27 13798.09 14598.81 14998.43 28198.11 12497.61 18299.50 5698.64 8797.39 26597.52 29298.12 6299.95 1496.90 14798.71 28798.38 293
canonicalmvs98.34 13098.26 12598.58 17798.46 27897.82 16098.96 5599.46 7499.19 5197.46 26095.46 33898.59 3099.46 30998.08 7998.71 28798.46 287
xiu_mvs_v2_base97.16 22697.49 19096.17 30398.54 27192.46 31195.45 30698.84 24497.25 19397.48 25996.49 31998.31 4799.90 4696.34 19698.68 28996.15 346
PS-MVSNAJ97.08 23097.39 19796.16 30598.56 26992.46 31195.24 31198.85 24397.25 19397.49 25895.99 32898.07 6399.90 4696.37 19398.67 29096.12 347
PatchmatchNetpermissive95.58 28095.67 26995.30 32097.34 33287.32 34397.65 17896.65 32295.30 26797.07 27598.69 18884.77 31699.75 20994.97 24698.64 29198.83 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVEpermissive83.40 2292.50 32191.92 32494.25 32898.83 22291.64 32092.71 34983.52 36195.92 25186.46 36095.46 33895.20 21895.40 35780.51 35498.64 29195.73 350
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
OpenMVS_ROBcopyleft95.38 1495.84 27595.18 28697.81 23898.41 28297.15 20297.37 20398.62 27083.86 35298.65 16998.37 23694.29 24399.68 24188.41 33998.62 29396.60 341
cascas94.79 29494.33 30096.15 30696.02 35492.36 31492.34 35299.26 15485.34 35195.08 33594.96 34592.96 26598.53 35294.41 26598.59 29497.56 328
BH-RMVSNet96.83 24596.58 24597.58 25398.47 27794.05 27896.67 25197.36 30796.70 22597.87 22997.98 26695.14 22099.44 31290.47 33398.58 29599.25 195
GA-MVS95.86 27495.32 28297.49 26198.60 26394.15 27793.83 34397.93 29695.49 26296.68 29497.42 29983.21 32799.30 32896.22 20398.55 29699.01 234
F-COLMAP97.30 21396.68 23899.14 9999.19 14098.39 10397.27 21299.30 13792.93 30696.62 29798.00 26495.73 20399.68 24192.62 30998.46 29799.35 167
XVG-OURS-SEG-HR98.49 11498.28 12399.14 9999.49 8398.83 7096.54 25599.48 6697.32 18699.11 9498.61 20999.33 899.30 32896.23 20298.38 29899.28 189
test_yl96.69 25096.29 25697.90 23398.28 28895.24 25197.29 20997.36 30798.21 11598.17 20897.86 27286.27 30499.55 28794.87 24898.32 29998.89 254
DCV-MVSNet96.69 25096.29 25697.90 23398.28 28895.24 25197.29 20997.36 30798.21 11598.17 20897.86 27286.27 30499.55 28794.87 24898.32 29998.89 254
thres600view794.45 29793.83 30396.29 29999.06 17491.53 32197.99 14394.24 34198.34 10397.44 26295.01 34279.84 34099.67 24484.33 34798.23 30197.66 324
MAR-MVS96.47 26095.70 26798.79 15397.92 30899.12 5398.28 10898.60 27192.16 31795.54 32896.17 32694.77 23399.52 29689.62 33698.23 30197.72 321
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+98.02 15797.82 16798.62 17298.53 27397.19 19897.33 20699.68 1397.30 18896.68 29497.46 29798.56 3299.80 16596.63 17198.20 30398.86 258
test-LLR93.90 30893.85 30294.04 32996.53 34584.62 35394.05 34092.39 35096.17 24094.12 34295.07 34082.30 33299.67 24495.87 22098.18 30497.82 313
test-mter92.33 32391.76 32694.04 32996.53 34584.62 35394.05 34092.39 35094.00 29594.12 34295.07 34065.63 36599.67 24495.87 22098.18 30497.82 313
mvs_anonymous97.83 17998.16 13896.87 28798.18 29591.89 31897.31 20898.90 23297.37 18198.83 14999.46 4296.28 18199.79 17898.90 3698.16 30698.95 244
WTY-MVS96.67 25296.27 25897.87 23598.81 22794.61 26896.77 24597.92 29794.94 27397.12 27197.74 28091.11 28099.82 14393.89 28098.15 30799.18 211
thres20093.72 31193.14 31395.46 31898.66 25991.29 32796.61 25494.63 33797.39 17996.83 29093.71 35479.88 33999.56 28482.40 35298.13 30895.54 351
TESTMET0.1,192.19 32591.77 32593.46 33596.48 34782.80 35894.05 34091.52 35394.45 28494.00 34594.88 34666.65 36399.56 28495.78 22598.11 30998.02 305
PMMVS96.51 25795.98 26198.09 22297.53 32595.84 23594.92 31998.84 24491.58 32296.05 31595.58 33495.68 20499.66 25295.59 23598.09 31098.76 272
thres100view90094.19 30293.67 30695.75 31099.06 17491.35 32598.03 13794.24 34198.33 10497.40 26494.98 34479.84 34099.62 26483.05 34998.08 31196.29 342
tfpn200view994.03 30693.44 30895.78 30998.93 19891.44 32397.60 18394.29 33997.94 13297.10 27294.31 35179.67 34299.62 26483.05 34998.08 31196.29 342
thres40094.14 30493.44 30896.24 30198.93 19891.44 32397.60 18394.29 33997.94 13297.10 27294.31 35179.67 34299.62 26483.05 34998.08 31197.66 324
PLCcopyleft94.65 1696.51 25795.73 26698.85 14498.75 23597.91 15196.42 26499.06 20190.94 33195.59 32197.38 30194.41 23999.59 27590.93 32998.04 31499.05 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MDTV_nov1_ep1395.22 28497.06 33883.20 35797.74 16996.16 32794.37 28696.99 27998.83 16683.95 32499.53 29293.90 27997.95 315
mvs-test197.83 17997.48 19398.89 13998.02 30399.20 3297.20 21799.16 18498.29 10996.46 30697.17 30796.44 17399.92 3396.66 16997.90 31697.54 329
PAPM_NR96.82 24796.32 25598.30 21199.07 17096.69 21797.48 19698.76 25795.81 25596.61 29896.47 32194.12 24899.17 33890.82 33297.78 31799.06 225
EMVS93.83 30994.02 30193.23 33896.83 34284.96 35189.77 35696.32 32697.92 13497.43 26396.36 32586.17 30698.93 34787.68 34197.73 31895.81 349
E-PMN94.17 30394.37 29893.58 33496.86 34085.71 35090.11 35597.07 31498.17 12197.82 23497.19 30684.62 31898.94 34689.77 33597.68 31996.09 348
PatchT96.65 25396.35 25397.54 25897.40 33095.32 24997.98 14596.64 32399.33 3796.89 28799.42 4884.32 32199.81 15697.69 10497.49 32097.48 330
FPMVS93.44 31492.23 31997.08 27799.25 12697.86 15595.61 29997.16 31392.90 30793.76 34798.65 19775.94 35295.66 35679.30 35697.49 32097.73 320
AUN-MVS96.24 26795.45 27698.60 17598.70 24597.22 19497.38 20297.65 30395.95 25095.53 32997.96 26982.11 33699.79 17896.31 19797.44 32298.80 268
BH-untuned96.83 24596.75 23497.08 27798.74 23693.33 29796.71 24998.26 28396.72 22398.44 19397.37 30295.20 21899.47 30791.89 31697.43 32398.44 290
UnsupCasMVSNet_bld97.30 21396.92 22398.45 19899.28 12196.78 21596.20 27599.27 14995.42 26498.28 20598.30 24393.16 25999.71 22694.99 24597.37 32498.87 257
PAPR95.29 28594.47 29597.75 24297.50 32995.14 25694.89 32098.71 26591.39 32695.35 33295.48 33794.57 23699.14 34184.95 34697.37 32498.97 243
CR-MVSNet96.28 26595.95 26297.28 27097.71 31794.22 27398.11 12598.92 22992.31 31496.91 28399.37 5385.44 31499.81 15697.39 11497.36 32697.81 315
RPMNet97.02 23696.93 22197.30 26997.71 31794.22 27398.11 12599.30 13799.37 3496.91 28399.34 5986.72 30199.87 8097.53 10897.36 32697.81 315
HY-MVS95.94 1395.90 27395.35 28197.55 25797.95 30694.79 26198.81 6596.94 31892.28 31595.17 33398.57 21389.90 28799.75 20991.20 32697.33 32898.10 302
131495.74 27795.60 27196.17 30397.53 32592.75 30898.07 13098.31 28291.22 32794.25 34096.68 31695.53 20899.03 34291.64 32097.18 32996.74 339
gg-mvs-nofinetune92.37 32291.20 32795.85 30895.80 35692.38 31399.31 1881.84 36299.75 591.83 35399.74 868.29 35899.02 34387.15 34297.12 33096.16 345
ET-MVSNet_ETH3D94.30 30193.21 31197.58 25398.14 29794.47 27094.78 32293.24 34894.72 27789.56 35695.87 33178.57 34899.81 15696.91 14297.11 33198.46 287
ADS-MVSNet295.43 28494.98 29096.76 29398.14 29791.74 31997.92 14997.76 29990.23 33296.51 30298.91 14185.61 31199.85 10192.88 30196.90 33298.69 278
ADS-MVSNet95.24 28794.93 29296.18 30298.14 29790.10 33397.92 14997.32 31090.23 33296.51 30298.91 14185.61 31199.74 21392.88 30196.90 33298.69 278
MVS93.19 31692.09 32096.50 29696.91 33994.03 28098.07 13098.06 29368.01 35794.56 33996.48 32095.96 19599.30 32883.84 34896.89 33496.17 344
tpm293.09 31792.58 31894.62 32597.56 32386.53 34697.66 17695.79 33286.15 34994.07 34498.23 24875.95 35199.53 29290.91 33096.86 33597.81 315
baseline293.73 31092.83 31696.42 29797.70 31991.28 32896.84 24289.77 35793.96 29692.44 35195.93 32979.14 34599.77 19592.94 29996.76 33698.21 297
CostFormer93.97 30793.78 30494.51 32697.53 32585.83 34997.98 14595.96 33089.29 34094.99 33698.63 20478.63 34799.62 26494.54 25696.50 33798.09 303
EPMVS93.72 31193.27 31095.09 32296.04 35387.76 34198.13 12285.01 36094.69 27896.92 28198.64 20078.47 35099.31 32695.04 24396.46 33898.20 298
TR-MVS95.55 28195.12 28896.86 29097.54 32493.94 28496.49 26096.53 32494.36 28797.03 27896.61 31794.26 24499.16 33986.91 34396.31 33997.47 331
tpmvs95.02 29295.25 28394.33 32796.39 35085.87 34798.08 12996.83 32195.46 26395.51 33098.69 18885.91 30999.53 29294.16 26896.23 34097.58 327
tpmrst95.07 29095.46 27593.91 33197.11 33784.36 35597.62 18096.96 31694.98 27196.35 30898.80 17185.46 31399.59 27595.60 23496.23 34097.79 318
KD-MVS_2432*160092.87 31891.99 32295.51 31691.37 36089.27 33594.07 33898.14 28995.42 26497.25 26996.44 32267.86 35999.24 33391.28 32496.08 34298.02 305
miper_refine_blended92.87 31891.99 32295.51 31691.37 36089.27 33594.07 33898.14 28995.42 26497.25 26996.44 32267.86 35999.24 33391.28 32496.08 34298.02 305
BH-w/o95.13 28994.89 29395.86 30798.20 29491.31 32695.65 29897.37 30693.64 29896.52 30195.70 33393.04 26499.02 34388.10 34095.82 34497.24 333
UnsupCasMVSNet_eth97.89 16797.60 18498.75 16199.31 11697.17 20097.62 18099.35 11098.72 8698.76 16098.68 19092.57 27199.74 21397.76 10095.60 34599.34 169
PAPM91.88 32690.34 32996.51 29598.06 30292.56 30992.44 35197.17 31286.35 34890.38 35596.01 32786.61 30299.21 33670.65 35895.43 34697.75 319
tpm cat193.29 31593.13 31493.75 33297.39 33184.74 35297.39 20197.65 30383.39 35494.16 34198.41 22982.86 33099.39 31791.56 32295.35 34797.14 334
tpm94.67 29594.34 29995.66 31297.68 32188.42 33897.88 15394.90 33594.46 28296.03 31698.56 21478.66 34699.79 17895.88 21795.01 34898.78 270
JIA-IIPM95.52 28295.03 28997.00 27996.85 34194.03 28096.93 23495.82 33199.20 4794.63 33899.71 1283.09 32899.60 27194.42 26294.64 34997.36 332
IB-MVS91.63 1992.24 32490.90 32896.27 30097.22 33691.24 32994.36 33593.33 34792.37 31392.24 35294.58 35066.20 36499.89 5593.16 29894.63 35097.66 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND94.76 32494.54 35892.13 31799.31 1880.47 36388.73 35891.01 35767.59 36198.16 35582.30 35394.53 35193.98 353
DWT-MVSNet_test92.75 32092.05 32194.85 32396.48 34787.21 34497.83 15994.99 33492.22 31692.72 35094.11 35370.75 35699.46 30995.01 24494.33 35297.87 311
test0.0.03 194.51 29693.69 30596.99 28096.05 35293.61 29694.97 31893.49 34596.17 24097.57 25194.88 34682.30 33299.01 34593.60 28894.17 35398.37 295
DeepMVS_CXcopyleft93.44 33698.24 29194.21 27594.34 33864.28 35891.34 35494.87 34889.45 29192.77 35977.54 35793.14 35493.35 354
tmp_tt78.77 32878.73 33178.90 34258.45 36374.76 36494.20 33778.26 36439.16 35986.71 35992.82 35680.50 33875.19 36086.16 34592.29 35586.74 355
dp93.47 31393.59 30793.13 33996.64 34481.62 36097.66 17696.42 32592.80 30996.11 31198.64 20078.55 34999.59 27593.31 29692.18 35698.16 300
baseline195.96 27295.44 27797.52 26098.51 27493.99 28398.39 10296.09 32998.21 11598.40 20197.76 27986.88 30099.63 26295.42 23989.27 35798.95 244
PVSNet_089.98 2191.15 32790.30 33093.70 33397.72 31684.34 35690.24 35497.42 30590.20 33593.79 34693.09 35590.90 28198.89 34986.57 34472.76 35897.87 311
testmvs17.12 33020.53 3336.87 34412.05 3644.20 36693.62 3466.73 3654.62 36110.41 36124.33 3598.28 3673.56 3629.69 36015.07 35912.86 358
test12317.04 33120.11 3347.82 34310.25 3654.91 36594.80 3214.47 3664.93 36010.00 36224.28 3609.69 3663.64 36110.14 35912.43 36014.92 357
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k24.66 32932.88 3320.00 3450.00 3660.00 3670.00 35799.10 1960.00 3620.00 36397.58 28899.21 100.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas8.17 33210.90 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36398.07 630.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.12 33310.83 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36397.48 2950.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
test_241102_ONE99.49 8399.17 3699.31 12897.98 12999.66 2098.90 14498.36 4299.48 305
save fliter99.11 15997.97 14396.53 25699.02 21498.24 112
test072699.50 7699.21 2698.17 12199.35 11097.97 13099.26 7699.06 10097.61 97
GSMVS98.81 264
test_part299.36 10999.10 5699.05 108
sam_mvs184.74 31798.81 264
sam_mvs84.29 323
MTGPAbinary99.20 166
test_post197.59 18520.48 36283.07 32999.66 25294.16 268
test_post21.25 36183.86 32599.70 228
patchmatchnet-post98.77 17684.37 32099.85 101
MTMP97.93 14891.91 352
gm-plane-assit94.83 35781.97 35988.07 34594.99 34399.60 27191.76 317
TEST998.71 24198.08 12995.96 28399.03 21091.40 32595.85 31897.53 29096.52 16899.76 202
test_898.67 25498.01 13795.91 28899.02 21491.64 32095.79 32097.50 29396.47 17199.76 202
agg_prior98.68 25297.99 13899.01 21795.59 32199.77 195
test_prior497.97 14395.86 289
test_prior98.95 13098.69 24997.95 14899.03 21099.59 27599.30 184
旧先验295.76 29388.56 34497.52 25599.66 25294.48 258
新几何295.93 286
无先验95.74 29598.74 26289.38 33999.73 21792.38 31299.22 203
原ACMM295.53 302
testdata299.79 17892.80 305
segment_acmp97.02 139
testdata195.44 30796.32 237
plane_prior799.19 14097.87 154
plane_prior698.99 18997.70 17194.90 224
plane_prior497.98 266
plane_prior397.78 16497.41 17797.79 235
plane_prior297.77 16598.20 118
plane_prior199.05 176
n20.00 367
nn0.00 367
door-mid99.57 33
test1198.87 237
door99.41 89
HQP5-MVS96.79 212
HQP-NCC98.67 25496.29 27096.05 24595.55 325
ACMP_Plane98.67 25496.29 27096.05 24595.55 325
BP-MVS92.82 303
HQP4-MVS95.56 32499.54 29099.32 177
HQP2-MVS93.84 249
NP-MVS98.84 22097.39 18696.84 313
MDTV_nov1_ep13_2view74.92 36397.69 17390.06 33797.75 23885.78 31093.52 29098.69 278
Test By Simon96.52 168