This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5699.34 1399.69 1298.93 7499.65 2299.72 1198.93 1899.95 1499.11 25100.00 199.82 9
PS-MVSNAJss99.46 1299.49 1099.35 6699.90 498.15 11599.20 3299.65 1799.48 2399.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
ANet_high99.57 799.67 599.28 7699.89 698.09 11999.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2299.31 16100.00 199.82 9
UA-Net99.47 1199.40 1499.70 299.49 8399.29 1499.80 399.72 899.82 399.04 10999.81 398.05 6799.96 898.85 3899.99 599.86 6
jajsoiax99.58 699.61 799.48 4899.87 1098.61 8299.28 2799.66 1699.09 6099.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
mvs_tets99.63 599.67 599.49 4699.88 798.61 8299.34 1399.71 999.27 4099.90 499.74 899.68 299.97 399.55 899.99 599.88 3
v1098.97 4299.11 3298.55 18199.44 9996.21 22198.90 5799.55 4398.73 8299.48 3899.60 2596.63 16199.83 12699.70 399.99 599.61 46
v899.01 3599.16 2998.57 17699.47 9396.31 21998.90 5799.47 7199.03 6399.52 3399.57 2796.93 14199.81 14999.60 499.98 999.60 47
test_djsdf99.52 999.51 999.53 3499.86 1198.74 7199.39 1199.56 4099.11 5399.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
pmmvs-eth3d98.47 11498.34 11398.86 13999.30 11997.76 15997.16 21899.28 14095.54 25299.42 4799.19 7697.27 12299.63 25597.89 8699.97 1199.20 199
IterMVS-LS98.55 10398.70 6298.09 21799.48 9194.73 25597.22 21199.39 9398.97 6999.38 5399.31 6296.00 18599.93 2698.58 5299.97 1199.60 47
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB98.40 199.67 399.71 299.56 2299.85 1399.11 5299.90 199.78 499.63 1399.78 1099.67 1699.48 699.81 14999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.53 899.57 899.41 5799.88 798.54 9099.45 999.61 2199.66 1099.68 1999.66 1798.44 3899.95 1499.73 299.96 1499.75 22
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1199.69 499.58 2699.90 299.86 799.78 599.58 399.95 1499.00 3199.95 1599.78 14
D2MVS97.84 17497.84 16397.83 23199.14 15394.74 25496.94 22798.88 23095.84 24698.89 13398.96 13194.40 23599.69 22697.55 10399.95 1599.05 221
PS-CasMVS99.40 1899.33 2099.62 699.71 2999.10 5399.29 2399.53 4999.53 2299.46 4199.41 4998.23 5199.95 1498.89 3799.95 1599.81 11
CHOSEN 1792x268897.49 19697.14 20998.54 18499.68 3896.09 22496.50 25499.62 1991.58 31298.84 14398.97 12892.36 26799.88 6296.76 15799.95 1599.67 32
IterMVS-SCA-FT97.85 17398.18 13196.87 28199.27 12291.16 32395.53 29799.25 15099.10 5799.41 4899.35 5693.10 25699.96 898.65 5099.94 1999.49 103
FC-MVSNet-test99.27 2599.25 2599.34 6999.77 2098.37 10099.30 2299.57 3399.61 1899.40 5199.50 3497.12 13099.85 9499.02 3099.94 1999.80 12
testing_298.93 4798.99 4098.76 15599.57 5397.03 19897.85 15399.13 18698.46 9599.44 4499.44 4598.22 5499.74 20698.85 3899.94 1999.51 94
UGNet98.53 10898.45 9598.79 14997.94 29996.96 20199.08 4498.54 26699.10 5796.82 28299.47 3996.55 16499.84 11198.56 5799.94 1999.55 77
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS97.73 18098.11 14196.57 28899.24 12790.28 32495.52 29999.21 15998.86 7799.33 6199.33 6093.11 25599.94 2298.49 5899.94 1999.48 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42095.51 27795.47 26895.65 30798.25 28288.27 33093.25 33998.88 23093.53 29094.65 32797.15 30186.17 30099.93 2697.41 11199.93 2498.73 267
CANet97.87 16797.76 16698.19 21497.75 30795.51 23696.76 24199.05 20097.74 14096.93 27198.21 24495.59 20399.89 5497.86 9199.93 2499.19 204
v114498.60 9498.66 6798.41 19799.36 10995.90 22797.58 18299.34 11497.51 15899.27 7199.15 8896.34 17699.80 15999.47 1299.93 2499.51 94
PEN-MVS99.41 1799.34 1999.62 699.73 2399.14 4599.29 2399.54 4799.62 1699.56 2699.42 4798.16 6099.96 898.78 4299.93 2499.77 16
DTE-MVSNet99.43 1599.35 1799.66 499.71 2999.30 1399.31 1899.51 5399.64 1199.56 2699.46 4098.23 5199.97 398.78 4299.93 2499.72 24
CP-MVSNet99.21 2899.09 3399.56 2299.65 4298.96 6199.13 4199.34 11499.42 2999.33 6199.26 6797.01 13799.94 2298.74 4699.93 2499.79 13
WR-MVS_H99.33 2399.22 2799.65 599.71 2999.24 2099.32 1599.55 4399.46 2699.50 3799.34 5897.30 11999.93 2698.90 3599.93 2499.77 16
PVSNet_BlendedMVS97.55 19297.53 18497.60 24598.92 19793.77 28596.64 24799.43 8494.49 27197.62 23899.18 7896.82 14899.67 23894.73 24499.93 2499.36 158
Vis-MVSNetpermissive99.34 2299.36 1699.27 7999.73 2398.26 10499.17 3799.78 499.11 5399.27 7199.48 3898.82 2099.95 1498.94 3399.93 2499.59 53
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
pmmvs699.67 399.70 399.60 1399.90 499.27 1799.53 799.76 699.64 1199.84 899.83 299.50 599.87 7899.36 1499.92 3399.64 38
nrg03099.40 1899.35 1799.54 2799.58 4999.13 4898.98 5399.48 6599.68 899.46 4199.26 6798.62 2899.73 21199.17 2499.92 3399.76 20
v119298.60 9498.66 6798.41 19799.27 12295.88 22897.52 18899.36 10397.41 17299.33 6199.20 7596.37 17599.82 13699.57 699.92 3399.55 77
OurMVSNet-221017-099.37 2199.31 2299.53 3499.91 398.98 5799.63 699.58 2699.44 2899.78 1099.76 696.39 17299.92 3299.44 1399.92 3399.68 30
DeepC-MVS97.60 498.97 4298.93 4199.10 10199.35 11397.98 13698.01 13799.46 7397.56 15599.54 2899.50 3498.97 1699.84 11198.06 7899.92 3399.49 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Anonymous2023121199.27 2599.27 2499.26 8199.29 12098.18 11399.49 899.51 5399.70 799.80 999.68 1496.84 14599.83 12699.21 2199.91 3899.77 16
v14419298.54 10698.57 7898.45 19499.21 13495.98 22597.63 17599.36 10397.15 20199.32 6699.18 7895.84 19699.84 11199.50 1099.91 3899.54 81
PVSNet_Blended_VisFu98.17 14798.15 13798.22 21299.73 2395.15 24797.36 19999.68 1394.45 27598.99 11699.27 6596.87 14499.94 2297.13 12699.91 3899.57 64
test_040298.76 6798.71 5998.93 12999.56 6198.14 11798.45 9499.34 11499.28 3998.95 12498.91 13898.34 4699.79 17295.63 22699.91 3898.86 253
v192192098.54 10698.60 7698.38 20099.20 13795.76 23297.56 18499.36 10397.23 19499.38 5399.17 8296.02 18399.84 11199.57 699.90 4299.54 81
RRT_MVS97.07 22796.57 24198.58 17395.89 34796.33 21797.36 19998.77 25097.85 13599.08 9999.12 9282.30 32699.96 898.82 4199.90 4299.45 122
v2v48298.56 9998.62 7198.37 20199.42 10395.81 23197.58 18299.16 17997.90 13199.28 6999.01 11995.98 18999.79 17299.33 1599.90 4299.51 94
TranMVSNet+NR-MVSNet99.17 2999.07 3599.46 5399.37 10898.87 6398.39 9899.42 8799.42 2999.36 5799.06 9998.38 4199.95 1498.34 6699.90 4299.57 64
FMVSNet199.17 2999.17 2899.17 8999.55 6498.24 10699.20 3299.44 7999.21 4299.43 4699.55 2997.82 8399.86 8498.42 6399.89 4699.41 134
FIs99.14 3199.09 3399.29 7499.70 3598.28 10399.13 4199.52 5299.48 2399.24 7899.41 4996.79 15199.82 13698.69 4999.88 4799.76 20
v124098.55 10398.62 7198.32 20499.22 13295.58 23397.51 19099.45 7697.16 19999.45 4399.24 7096.12 18099.85 9499.60 499.88 4799.55 77
TAMVS98.24 14098.05 14798.80 14799.07 16797.18 19297.88 14898.81 24596.66 22199.17 8999.21 7394.81 22699.77 18896.96 13899.88 4799.44 125
EU-MVSNet97.66 18598.50 8595.13 31399.63 4785.84 33898.35 10198.21 27998.23 10999.54 2899.46 4095.02 21899.68 23598.24 6999.87 5099.87 4
MIMVSNet199.38 2099.32 2199.55 2499.86 1199.19 3199.41 1099.59 2499.59 1999.71 1499.57 2797.12 13099.90 4599.21 2199.87 5099.54 81
v14898.45 11698.60 7698.00 22599.44 9994.98 25097.44 19699.06 19698.30 10199.32 6698.97 12896.65 16099.62 25798.37 6599.85 5299.39 143
WR-MVS98.40 12298.19 13099.03 11799.00 18197.65 16796.85 23598.94 21998.57 9298.89 13398.50 21795.60 20299.85 9497.54 10599.85 5299.59 53
CANet_DTU97.26 21297.06 21097.84 23097.57 31494.65 25996.19 27198.79 24897.23 19495.14 32498.24 24193.22 25399.84 11197.34 11499.84 5499.04 225
V4298.78 6498.78 5198.76 15599.44 9997.04 19798.27 10499.19 16697.87 13399.25 7799.16 8496.84 14599.78 18299.21 2199.84 5499.46 118
VPA-MVSNet99.30 2499.30 2399.28 7699.49 8398.36 10199.00 5099.45 7699.63 1399.52 3399.44 4598.25 4999.88 6299.09 2699.84 5499.62 42
SixPastTwentyTwo98.75 6898.62 7199.16 9299.83 1597.96 14199.28 2798.20 28099.37 3399.70 1599.65 1992.65 26599.93 2699.04 2999.84 5499.60 47
HyFIR lowres test97.19 21996.60 23998.96 12599.62 4897.28 18495.17 30799.50 5594.21 28099.01 11398.32 23786.61 29699.99 297.10 12899.84 5499.60 47
TDRefinement99.42 1699.38 1599.55 2499.76 2199.33 1299.68 599.71 999.38 3299.53 3199.61 2398.64 2799.80 15998.24 6999.84 5499.52 91
pm-mvs199.44 1399.48 1199.33 7199.80 1798.63 7999.29 2399.63 1899.30 3899.65 2299.60 2599.16 1499.82 13699.07 2799.83 6099.56 69
Baseline_NR-MVSNet98.98 4198.86 4499.36 6199.82 1698.55 8797.47 19499.57 3399.37 3399.21 8299.61 2396.76 15499.83 12698.06 7899.83 6099.71 25
Patchmtry97.35 20596.97 21598.50 19097.31 32696.47 21498.18 11398.92 22498.95 7398.78 15199.37 5285.44 30899.85 9495.96 20899.83 6099.17 210
ppachtmachnet_test97.50 19497.74 16896.78 28698.70 23991.23 32294.55 32699.05 20096.36 22999.21 8298.79 16996.39 17299.78 18296.74 15999.82 6399.34 164
EI-MVSNet98.40 12298.51 8398.04 22399.10 16094.73 25597.20 21298.87 23298.97 6999.06 10299.02 11396.00 18599.80 15998.58 5299.82 6399.60 47
NR-MVSNet98.95 4598.82 4799.36 6199.16 14898.72 7699.22 3199.20 16199.10 5799.72 1398.76 17496.38 17499.86 8498.00 8399.82 6399.50 99
MVSTER96.86 23896.55 24297.79 23397.91 30194.21 26797.56 18498.87 23297.49 16199.06 10299.05 10680.72 32999.80 15998.44 6199.82 6399.37 152
cl-mvsnet_97.02 23296.83 22497.58 24797.82 30594.04 27194.66 32199.16 17997.04 20598.63 16698.71 18088.68 29099.69 22697.00 13299.81 6799.00 232
cl-mvsnet197.02 23296.84 22397.58 24797.82 30594.03 27294.66 32199.16 17997.04 20598.63 16698.71 18088.69 28999.69 22697.00 13299.81 6799.01 229
eth_miper_zixun_eth97.23 21697.25 20197.17 26898.00 29792.77 29994.71 31899.18 17097.27 18698.56 17798.74 17691.89 27299.69 22697.06 13099.81 6799.05 221
MVS_030497.64 18697.35 19798.52 18597.87 30396.69 21198.59 7698.05 28697.44 17093.74 33898.85 15693.69 25099.88 6298.11 7599.81 6798.98 234
PMMVS298.07 15298.08 14598.04 22399.41 10494.59 26194.59 32599.40 9197.50 15998.82 14898.83 16296.83 14799.84 11197.50 10899.81 6799.71 25
K. test v398.00 15797.66 17599.03 11799.79 1997.56 17199.19 3692.47 34099.62 1699.52 3399.66 1789.61 28399.96 899.25 2099.81 6799.56 69
CDS-MVSNet97.69 18297.35 19798.69 16298.73 23197.02 20096.92 23198.75 25495.89 24598.59 17398.67 18892.08 27199.74 20696.72 16299.81 6799.32 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG98.68 8198.50 8599.20 8799.45 9798.63 7998.56 7999.57 3397.87 13398.85 14198.04 25697.66 9199.84 11196.72 16299.81 6799.13 214
miper_lstm_enhance97.18 22097.16 20697.25 26698.16 28892.85 29795.15 30999.31 12697.25 18898.74 15898.78 17090.07 28099.78 18297.19 12099.80 7599.11 217
UniMVSNet (Re)98.87 5498.71 5999.35 6699.24 12798.73 7497.73 16699.38 9598.93 7499.12 9198.73 17796.77 15299.86 8498.63 5199.80 7599.46 118
FMVSNet298.49 11298.40 10398.75 15898.90 20197.14 19698.61 7399.13 18698.59 8899.19 8499.28 6394.14 24099.82 13697.97 8499.80 7599.29 183
XXY-MVS99.14 3199.15 3199.10 10199.76 2197.74 16298.85 6299.62 1998.48 9499.37 5599.49 3798.75 2399.86 8498.20 7299.80 7599.71 25
IS-MVSNet98.19 14497.90 15999.08 10499.57 5397.97 13799.31 1898.32 27599.01 6598.98 11899.03 11291.59 27399.79 17295.49 23199.80 7599.48 109
EI-MVSNet-UG-set98.69 7898.71 5998.62 16999.10 16096.37 21697.23 20898.87 23299.20 4599.19 8498.99 12297.30 11999.85 9498.77 4599.79 8099.65 37
pmmvs497.58 19197.28 20098.51 18898.84 21596.93 20395.40 30398.52 26893.60 28998.61 17098.65 19395.10 21799.60 26496.97 13799.79 8098.99 233
test20.0398.78 6498.77 5398.78 15299.46 9497.20 19097.78 15899.24 15599.04 6299.41 4898.90 14197.65 9299.76 19597.70 10099.79 8099.39 143
Vis-MVSNet (Re-imp)97.46 19997.16 20698.34 20399.55 6496.10 22298.94 5598.44 27198.32 10098.16 20498.62 20288.76 28899.73 21193.88 27499.79 8099.18 206
EI-MVSNet-Vis-set98.68 8198.70 6298.63 16799.09 16396.40 21597.23 20898.86 23799.20 4599.18 8898.97 12897.29 12199.85 9498.72 4799.78 8499.64 38
LPG-MVS_test98.71 7398.46 9399.47 5199.57 5398.97 5898.23 10799.48 6596.60 22299.10 9699.06 9998.71 2599.83 12695.58 22999.78 8499.62 42
LGP-MVS_train99.47 5199.57 5398.97 5899.48 6596.60 22299.10 9699.06 9998.71 2599.83 12695.58 22999.78 8499.62 42
CLD-MVS97.49 19697.16 20698.48 19199.07 16797.03 19894.71 31899.21 15994.46 27398.06 21397.16 30097.57 10099.48 29894.46 25299.78 8498.95 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
new-patchmatchnet98.35 12798.74 5497.18 26799.24 12792.23 30896.42 25999.48 6598.30 10199.69 1799.53 3297.44 11399.82 13698.84 4099.77 8899.49 103
Patchmatch-RL test97.26 21297.02 21297.99 22699.52 7195.53 23596.13 27299.71 997.47 16299.27 7199.16 8484.30 31699.62 25797.89 8699.77 8898.81 258
UniMVSNet_NR-MVSNet98.86 5698.68 6499.40 5999.17 14698.74 7197.68 17099.40 9199.14 5199.06 10298.59 20796.71 15899.93 2698.57 5499.77 8899.53 87
DU-MVS98.82 5898.63 7099.39 6099.16 14898.74 7197.54 18699.25 15098.84 7999.06 10298.76 17496.76 15499.93 2698.57 5499.77 8899.50 99
ACMMP++_ref99.77 88
wuyk23d96.06 26397.62 17991.38 33298.65 25398.57 8698.85 6296.95 30896.86 21399.90 499.16 8499.18 1198.40 34489.23 32799.77 8877.18 347
ACMP95.32 1598.41 12098.09 14299.36 6199.51 7398.79 6997.68 17099.38 9595.76 24998.81 15098.82 16598.36 4299.82 13694.75 24399.77 8899.48 109
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+96.62 999.08 3399.00 3899.33 7199.71 2998.83 6598.60 7499.58 2699.11 5399.53 3199.18 7898.81 2199.67 23896.71 16499.77 8899.50 99
ACMH96.65 799.25 2799.24 2699.26 8199.72 2898.38 9999.07 4599.55 4398.30 10199.65 2299.45 4499.22 999.76 19598.44 6199.77 8899.64 38
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl_fuxian97.36 20497.37 19597.31 26298.09 29293.25 29095.01 31299.16 17997.05 20498.77 15498.72 17992.88 26199.64 25396.93 13999.76 9799.05 221
pmmvs597.64 18697.49 18798.08 22099.14 15395.12 24996.70 24599.05 20093.77 28798.62 16898.83 16293.23 25299.75 20298.33 6899.76 9799.36 158
baseline98.96 4499.02 3698.76 15599.38 10697.26 18598.49 8999.50 5598.86 7799.19 8499.06 9998.23 5199.69 22698.71 4899.76 9799.33 170
COLMAP_ROBcopyleft96.50 1098.99 3798.85 4599.41 5799.58 4999.10 5398.74 6599.56 4099.09 6099.33 6199.19 7698.40 4099.72 21995.98 20799.76 9799.42 132
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SD-MVS98.40 12298.68 6497.54 25298.96 18897.99 13297.88 14899.36 10398.20 11399.63 2599.04 10998.76 2295.33 34996.56 17699.74 10199.31 176
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS98.82 5898.72 5799.12 9799.64 4598.54 9097.98 14099.68 1397.62 14899.34 6099.18 7897.54 10299.77 18897.79 9299.74 10199.04 225
XVG-ACMP-BASELINE98.56 9998.34 11399.22 8699.54 6798.59 8497.71 16799.46 7397.25 18898.98 11898.99 12297.54 10299.84 11195.88 21099.74 10199.23 194
Anonymous2023120698.21 14298.21 12798.20 21399.51 7395.43 24098.13 11799.32 12196.16 23698.93 12998.82 16596.00 18599.83 12697.32 11599.73 10499.36 158
casdiffmvs98.95 4599.00 3898.81 14599.38 10697.33 18197.82 15699.57 3399.17 5099.35 5899.17 8298.35 4599.69 22698.46 6099.73 10499.41 134
jason97.45 20097.35 19797.76 23599.24 12793.93 27795.86 28498.42 27294.24 27998.50 18498.13 24794.82 22499.91 4297.22 11999.73 10499.43 129
jason: jason.
N_pmnet97.63 18897.17 20598.99 12399.27 12297.86 14995.98 27593.41 33795.25 25999.47 4098.90 14195.63 20199.85 9496.91 14099.73 10499.27 186
USDC97.41 20297.40 19297.44 25898.94 19193.67 28795.17 30799.53 4994.03 28498.97 12199.10 9695.29 21299.34 31595.84 21699.73 10499.30 179
Gipumacopyleft99.03 3499.16 2998.64 16599.94 298.51 9299.32 1599.75 799.58 2198.60 17299.62 2198.22 5499.51 29397.70 10099.73 10497.89 300
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
lessismore_v098.97 12499.73 2397.53 17386.71 35099.37 5599.52 3389.93 28199.92 3298.99 3299.72 11099.44 125
CP-MVS98.70 7698.42 10199.52 3999.36 10999.12 5098.72 6799.36 10397.54 15798.30 19798.40 22697.86 7999.89 5496.53 17999.72 11099.56 69
SteuartSystems-ACMMP98.79 6198.54 7999.54 2799.73 2399.16 3798.23 10799.31 12697.92 12998.90 13198.90 14198.00 7099.88 6296.15 20199.72 11099.58 59
Skip Steuart: Steuart Systems R&D Blog.
LF4IMVS97.90 16297.69 17198.52 18599.17 14697.66 16697.19 21599.47 7196.31 23297.85 22498.20 24596.71 15899.52 28994.62 24799.72 11098.38 286
test_0728_THIRD98.17 11699.08 9999.02 11397.89 7799.88 6297.07 12999.71 11499.70 28
HPM-MVS_fast99.01 3598.82 4799.57 1899.71 2999.35 899.00 5099.50 5597.33 17998.94 12898.86 15398.75 2399.82 13697.53 10699.71 11499.56 69
FMVSNet596.01 26495.20 27898.41 19797.53 31796.10 22298.74 6599.50 5597.22 19798.03 21699.04 10969.80 34999.88 6297.27 11799.71 11499.25 190
RPSCF98.62 9198.36 11099.42 5499.65 4299.42 498.55 8099.57 3397.72 14298.90 13199.26 6796.12 18099.52 28995.72 22099.71 11499.32 172
MP-MVS-pluss98.57 9898.23 12699.60 1399.69 3799.35 897.16 21899.38 9594.87 26698.97 12198.99 12298.01 6999.88 6297.29 11699.70 11899.58 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS98.79 6198.52 8199.61 999.67 3999.36 697.33 20199.20 16198.83 8098.89 13398.90 14196.98 13999.92 3297.16 12299.70 11899.56 69
MTAPA98.88 5398.64 6999.61 999.67 3999.36 698.43 9599.20 16198.83 8098.89 13398.90 14196.98 13999.92 3297.16 12299.70 11899.56 69
Regformer-398.61 9298.61 7498.63 16799.02 17996.53 21397.17 21698.84 23999.13 5299.10 9698.85 15697.24 12699.79 17298.41 6499.70 11899.57 64
Regformer-498.73 7198.68 6498.89 13599.02 17997.22 18897.17 21699.06 19699.21 4299.17 8998.85 15697.45 11299.86 8498.48 5999.70 11899.60 47
APDe-MVS98.99 3798.79 5099.60 1399.21 13499.15 4298.87 5999.48 6597.57 15399.35 5899.24 7097.83 8099.89 5497.88 8999.70 11899.75 22
tfpnnormal98.90 5298.90 4298.91 13299.67 3997.82 15499.00 5099.44 7999.45 2799.51 3699.24 7098.20 5799.86 8495.92 20999.69 12499.04 225
GBi-Net98.65 8598.47 9199.17 8998.90 20198.24 10699.20 3299.44 7998.59 8898.95 12499.55 2994.14 24099.86 8497.77 9499.69 12499.41 134
test198.65 8598.47 9199.17 8998.90 20198.24 10699.20 3299.44 7998.59 8898.95 12499.55 2994.14 24099.86 8497.77 9499.69 12499.41 134
FMVSNet397.50 19497.24 20398.29 20898.08 29395.83 23097.86 15198.91 22697.89 13298.95 12498.95 13387.06 29399.81 14997.77 9499.69 12499.23 194
ACMMPcopyleft98.75 6898.50 8599.52 3999.56 6199.16 3798.87 5999.37 9997.16 19998.82 14899.01 11997.71 8899.87 7896.29 19399.69 12499.54 81
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVS98.59 9798.26 12299.57 1899.27 12299.15 4297.01 22399.39 9397.67 14499.44 4498.99 12297.53 10499.89 5495.40 23399.68 12999.66 33
XVG-OURS98.53 10898.34 11399.11 9999.50 7698.82 6795.97 27699.50 5597.30 18399.05 10798.98 12699.35 799.32 31895.72 22099.68 12999.18 206
EPNet96.14 26295.44 27098.25 21090.76 35295.50 23797.92 14494.65 32898.97 6992.98 33998.85 15689.12 28799.87 7895.99 20699.68 12999.39 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS98.99 3799.01 3798.94 12899.50 7697.47 17598.04 13199.59 2498.15 11899.40 5199.36 5598.58 3199.76 19598.78 4299.68 12999.59 53
ACMMP++99.68 129
EPP-MVSNet98.30 13198.04 14899.07 10799.56 6197.83 15199.29 2398.07 28499.03 6398.59 17399.13 9192.16 26999.90 4596.87 14899.68 12999.49 103
our_test_397.39 20397.73 17096.34 29298.70 23989.78 32694.61 32498.97 21896.50 22499.04 10998.85 15695.98 18999.84 11197.26 11899.67 13599.41 134
ACMMP_NAP98.75 6898.48 8999.57 1899.58 4999.29 1497.82 15699.25 15096.94 20998.78 15199.12 9298.02 6899.84 11197.13 12699.67 13599.59 53
HPM-MVScopyleft98.79 6198.53 8099.59 1799.65 4299.29 1499.16 3899.43 8496.74 21798.61 17098.38 23098.62 2899.87 7896.47 18299.67 13599.59 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator98.27 298.81 6098.73 5599.05 11498.76 22697.81 15699.25 3099.30 13498.57 9298.55 17999.33 6097.95 7699.90 4597.16 12299.67 13599.44 125
PMVScopyleft91.26 2097.86 16897.94 15697.65 24199.71 2997.94 14498.52 8398.68 26098.99 6697.52 24899.35 5697.41 11498.18 34591.59 31399.67 13596.82 329
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DP-MVS98.93 4798.81 4999.28 7699.21 13498.45 9698.46 9299.33 11999.63 1399.48 3899.15 8897.23 12799.75 20297.17 12199.66 14099.63 41
MVS_111021_LR98.30 13198.12 14098.83 14299.16 14898.03 13096.09 27399.30 13497.58 15298.10 21098.24 24198.25 4999.34 31596.69 16599.65 14199.12 215
ACMM96.08 1298.91 5098.73 5599.48 4899.55 6499.14 4598.07 12599.37 9997.62 14899.04 10998.96 13198.84 1999.79 17297.43 11099.65 14199.49 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS98.68 8198.40 10399.54 2799.57 5399.21 2398.46 9299.29 13897.28 18598.11 20998.39 22898.00 7099.87 7896.86 15099.64 14399.55 77
SMA-MVS98.40 12298.03 14999.51 4399.16 14899.21 2398.05 12999.22 15894.16 28298.98 11899.10 9697.52 10699.79 17296.45 18499.64 14399.53 87
diffmvs98.22 14198.24 12498.17 21599.00 18195.44 23996.38 26199.58 2697.79 13998.53 18298.50 21796.76 15499.74 20697.95 8599.64 14399.34 164
MSP-MVS98.77 6698.52 8199.52 3999.50 7699.21 2398.02 13498.84 23997.97 12599.08 9999.02 11397.61 9799.88 6296.99 13499.63 14699.48 109
test_0728_SECOND99.60 1399.50 7699.23 2198.02 13499.32 12199.88 6296.99 13499.63 14699.68 30
VDD-MVS98.56 9998.39 10699.07 10799.13 15598.07 12598.59 7697.01 30699.59 1999.11 9399.27 6594.82 22499.79 17298.34 6699.63 14699.34 164
SED-MVS98.91 5098.72 5799.49 4699.49 8399.17 3398.10 12299.31 12698.03 12299.66 2099.02 11398.36 4299.88 6296.91 14099.62 14999.41 134
IU-MVS99.49 8399.15 4298.87 23292.97 29599.41 4896.76 15799.62 14999.66 33
TransMVSNet (Re)99.44 1399.47 1299.36 6199.80 1798.58 8599.27 2999.57 3399.39 3199.75 1299.62 2199.17 1299.83 12699.06 2899.62 14999.66 33
abl_698.99 3798.78 5199.61 999.45 9799.46 398.60 7499.50 5598.59 8899.24 7899.04 10998.54 3399.89 5496.45 18499.62 14999.50 99
mPP-MVS98.64 8798.34 11399.54 2799.54 6799.17 3398.63 7199.24 15597.47 16298.09 21198.68 18697.62 9699.89 5496.22 19699.62 14999.57 64
DeepPCF-MVS96.93 598.32 12998.01 15099.23 8598.39 27598.97 5895.03 31199.18 17096.88 21299.33 6198.78 17098.16 6099.28 32496.74 15999.62 14999.44 125
AllTest98.44 11798.20 12899.16 9299.50 7698.55 8798.25 10699.58 2696.80 21498.88 13799.06 9997.65 9299.57 27494.45 25399.61 15599.37 152
TestCases99.16 9299.50 7698.55 8799.58 2696.80 21498.88 13799.06 9997.65 9299.57 27494.45 25399.61 15599.37 152
test_241102_TWO99.30 13498.03 12299.26 7599.02 11397.51 10799.88 6296.91 14099.60 15799.66 33
MP-MVScopyleft98.46 11598.09 14299.54 2799.57 5399.22 2298.50 8899.19 16697.61 15097.58 24298.66 19197.40 11599.88 6294.72 24699.60 15799.54 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS98.71 7398.44 9799.51 4399.49 8399.16 3798.52 8399.31 12697.47 16298.58 17598.50 21797.97 7499.85 9496.57 17399.59 15999.53 87
#test#98.50 11198.16 13599.51 4399.49 8399.16 3798.03 13299.31 12696.30 23398.58 17598.50 21797.97 7499.85 9495.68 22399.59 15999.53 87
CVMVSNet96.25 26197.21 20493.38 32999.10 16080.56 35197.20 21298.19 28296.94 20999.00 11599.02 11389.50 28599.80 15996.36 18999.59 15999.78 14
ACMMPR98.70 7698.42 10199.54 2799.52 7199.14 4598.52 8399.31 12697.47 16298.56 17798.54 21197.75 8799.88 6296.57 17399.59 15999.58 59
PGM-MVS98.66 8498.37 10999.55 2499.53 6999.18 3298.23 10799.49 6397.01 20798.69 16098.88 15098.00 7099.89 5495.87 21399.59 15999.58 59
DELS-MVS98.27 13598.20 12898.48 19198.86 21096.70 21095.60 29599.20 16197.73 14198.45 18698.71 18097.50 10899.82 13698.21 7199.59 15998.93 244
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 7898.40 10399.54 2799.53 6999.17 3398.52 8399.31 12697.46 16798.44 18798.51 21497.83 8099.88 6296.46 18399.58 16599.58 59
114514_t96.50 25495.77 25898.69 16299.48 9197.43 17897.84 15499.55 4381.42 34596.51 29398.58 20895.53 20499.67 23893.41 28799.58 16598.98 234
PHI-MVS98.29 13497.95 15499.34 6998.44 27299.16 3798.12 11999.38 9596.01 24298.06 21398.43 22497.80 8499.67 23895.69 22299.58 16599.20 199
TinyColmap97.89 16497.98 15297.60 24598.86 21094.35 26496.21 26999.44 7997.45 16999.06 10298.88 15097.99 7399.28 32494.38 25999.58 16599.18 206
Regformer-198.55 10398.44 9798.87 13798.85 21297.29 18296.91 23298.99 21698.97 6998.99 11698.64 19697.26 12599.81 14997.79 9299.57 16999.51 94
Regformer-298.60 9498.46 9399.02 12098.85 21297.71 16496.91 23299.09 19398.98 6899.01 11398.64 19697.37 11799.84 11197.75 9999.57 16999.52 91
MVSFormer98.26 13798.43 9997.77 23498.88 20793.89 28199.39 1199.56 4099.11 5398.16 20498.13 24793.81 24699.97 399.26 1899.57 16999.43 129
lupinMVS97.06 22896.86 22197.65 24198.88 20793.89 28195.48 30097.97 28793.53 29098.16 20497.58 28093.81 24699.91 4296.77 15699.57 16999.17 210
MVS_111021_HR98.25 13998.08 14598.75 15899.09 16397.46 17695.97 27699.27 14497.60 15197.99 21798.25 24098.15 6299.38 31296.87 14899.57 16999.42 132
OPM-MVS98.56 9998.32 11799.25 8399.41 10498.73 7497.13 22099.18 17097.10 20298.75 15698.92 13798.18 5899.65 25196.68 16699.56 17499.37 152
PVSNet_Blended96.88 23796.68 23297.47 25698.92 19793.77 28594.71 31899.43 8490.98 32097.62 23897.36 29596.82 14899.67 23894.73 24499.56 17498.98 234
DeepC-MVS_fast96.85 698.30 13198.15 13798.75 15898.61 25497.23 18697.76 16399.09 19397.31 18298.75 15698.66 19197.56 10199.64 25396.10 20499.55 17699.39 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft98.10 14997.67 17299.42 5499.11 15698.93 6297.76 16399.28 14094.97 26398.72 15998.77 17297.04 13399.85 9493.79 27799.54 17799.49 103
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DSMNet-mixed97.42 20197.60 18196.87 28199.15 15291.46 31498.54 8199.12 18992.87 29897.58 24299.63 2096.21 17899.90 4595.74 21999.54 17799.27 186
CPTT-MVS97.84 17497.36 19699.27 7999.31 11698.46 9598.29 10299.27 14494.90 26597.83 22598.37 23194.90 22099.84 11193.85 27699.54 17799.51 94
1112_ss97.29 21196.86 22198.58 17399.34 11596.32 21896.75 24299.58 2693.14 29496.89 27897.48 28792.11 27099.86 8496.91 14099.54 17799.57 64
XVS98.72 7298.45 9599.53 3499.46 9499.21 2398.65 6999.34 11498.62 8697.54 24698.63 20097.50 10899.83 12696.79 15399.53 18199.56 69
X-MVStestdata94.32 29392.59 31099.53 3499.46 9499.21 2398.65 6999.34 11498.62 8697.54 24645.85 34897.50 10899.83 12696.79 15399.53 18199.56 69
Test_1112_low_res96.99 23596.55 24298.31 20699.35 11395.47 23895.84 28799.53 4991.51 31496.80 28398.48 22291.36 27499.83 12696.58 17199.53 18199.62 42
xxxxxxxxxxxxxcwj98.44 11798.24 12499.06 11299.11 15697.97 13796.53 25199.54 4798.24 10798.83 14498.90 14197.80 8499.82 13695.68 22399.52 18499.38 149
SF-MVS98.53 10898.27 12199.32 7399.31 11698.75 7098.19 11299.41 8896.77 21698.83 14498.90 14197.80 8499.82 13695.68 22399.52 18499.38 149
Anonymous2024052998.93 4798.87 4399.12 9799.19 13898.22 11199.01 4898.99 21699.25 4199.54 2899.37 5297.04 13399.80 15997.89 8699.52 18499.35 162
GST-MVS98.61 9298.30 11899.52 3999.51 7399.20 2998.26 10599.25 15097.44 17098.67 16298.39 22897.68 8999.85 9496.00 20599.51 18799.52 91
tttt051795.64 27394.98 28397.64 24399.36 10993.81 28398.72 6790.47 34698.08 12098.67 16298.34 23473.88 34699.92 3297.77 9499.51 18799.20 199
HQP_MVS97.99 16097.67 17298.93 12999.19 13897.65 16797.77 16199.27 14498.20 11397.79 22897.98 25994.90 22099.70 22294.42 25599.51 18799.45 122
plane_prior599.27 14499.70 22294.42 25599.51 18799.45 122
ab-mvs98.41 12098.36 11098.59 17299.19 13897.23 18699.32 1598.81 24597.66 14598.62 16899.40 5196.82 14899.80 15995.88 21099.51 18798.75 266
OMC-MVS97.88 16697.49 18799.04 11698.89 20698.63 7996.94 22799.25 15095.02 26198.53 18298.51 21497.27 12299.47 30093.50 28599.51 18799.01 229
CMPMVSbinary75.91 2396.29 25995.44 27098.84 14196.25 34398.69 7797.02 22299.12 18988.90 33197.83 22598.86 15389.51 28498.90 33991.92 30799.51 18798.92 245
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc98.24 21198.82 22095.97 22698.62 7299.00 21599.27 7199.21 7396.99 13899.50 29496.55 17799.50 19499.26 189
ETH3D-3000-0.198.03 15397.62 17999.29 7499.11 15698.80 6897.47 19499.32 12195.54 25298.43 19098.62 20296.61 16299.77 18893.95 27199.49 19599.30 179
TSAR-MVS + MP.98.63 8998.49 8899.06 11299.64 4597.90 14698.51 8798.94 21996.96 20899.24 7898.89 14997.83 8099.81 14996.88 14799.49 19599.48 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPU-MVS98.82 14398.59 25898.30 10298.10 12298.52 21398.18 5898.75 34294.62 24799.48 19799.41 134
RRT_test8_iter0595.24 28195.13 28095.57 30897.32 32587.02 33597.99 13899.41 8898.06 12199.12 9199.05 10666.85 35299.85 9498.93 3499.47 19899.84 8
9.1497.78 16599.07 16797.53 18799.32 12195.53 25498.54 18198.70 18397.58 9999.76 19594.32 26099.46 199
TSAR-MVS + GP.98.18 14597.98 15298.77 15498.71 23597.88 14796.32 26498.66 26196.33 23099.23 8198.51 21497.48 11199.40 30897.16 12299.46 19999.02 228
PCF-MVS92.86 1894.36 29293.00 30898.42 19698.70 23997.56 17193.16 34099.11 19179.59 34697.55 24597.43 29092.19 26899.73 21179.85 34599.45 20197.97 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet96.99 23596.76 22797.67 23998.72 23294.89 25295.95 28098.20 28092.62 30198.55 17998.54 21194.88 22399.52 28993.96 27099.44 20298.59 277
APD-MVS_3200maxsize98.84 5798.61 7499.53 3499.19 13899.27 1798.49 8999.33 11998.64 8499.03 11298.98 12697.89 7799.85 9496.54 17899.42 20399.46 118
MSLP-MVS++98.02 15598.14 13997.64 24398.58 25995.19 24697.48 19299.23 15797.47 16297.90 22098.62 20297.04 13398.81 34197.55 10399.41 20498.94 243
QAPM97.31 20896.81 22598.82 14398.80 22497.49 17499.06 4699.19 16690.22 32497.69 23499.16 8496.91 14299.90 4590.89 32199.41 20499.07 219
ETH3 D test640096.46 25695.59 26699.08 10498.88 20798.21 11296.53 25199.18 17088.87 33297.08 26597.79 26893.64 25199.77 18888.92 32899.40 20699.28 184
MVS-HIRNet94.32 29395.62 26490.42 33398.46 27075.36 35296.29 26589.13 34995.25 25995.38 32199.75 792.88 26199.19 32894.07 26899.39 20796.72 331
CDPH-MVS97.26 21296.66 23599.07 10799.00 18198.15 11596.03 27499.01 21291.21 31897.79 22897.85 26696.89 14399.69 22692.75 29999.38 20899.39 143
VPNet98.87 5498.83 4699.01 12199.70 3597.62 17098.43 9599.35 10899.47 2599.28 6999.05 10696.72 15799.82 13698.09 7699.36 20999.59 53
plane_prior97.65 16797.07 22196.72 21899.36 209
thisisatest053095.27 28094.45 28997.74 23799.19 13894.37 26397.86 15190.20 34797.17 19898.22 20197.65 27673.53 34799.90 4596.90 14599.35 21198.95 239
HPM-MVS++copyleft98.10 14997.64 17799.48 4899.09 16399.13 4897.52 18898.75 25497.46 16796.90 27797.83 26796.01 18499.84 11195.82 21799.35 21199.46 118
LS3D98.63 8998.38 10899.36 6197.25 32799.38 599.12 4399.32 12199.21 4298.44 18798.88 15097.31 11899.80 15996.58 17199.34 21398.92 245
CNVR-MVS98.17 14797.87 16199.07 10798.67 24798.24 10697.01 22398.93 22197.25 18897.62 23898.34 23497.27 12299.57 27496.42 18699.33 21499.39 143
sss97.21 21796.93 21698.06 22198.83 21795.22 24596.75 24298.48 27094.49 27197.27 26197.90 26392.77 26399.80 15996.57 17399.32 21599.16 213
3Dnovator+97.89 398.69 7898.51 8399.24 8498.81 22298.40 9799.02 4799.19 16698.99 6698.07 21299.28 6397.11 13299.84 11196.84 15199.32 21599.47 116
SR-MVS98.71 7398.43 9999.57 1899.18 14599.35 898.36 10099.29 13898.29 10498.88 13798.85 15697.53 10499.87 7896.14 20299.31 21799.48 109
Anonymous20240521197.90 16297.50 18699.08 10498.90 20198.25 10598.53 8296.16 31998.87 7699.11 9398.86 15390.40 27999.78 18297.36 11399.31 21799.19 204
Patchmatch-test96.55 25196.34 24897.17 26898.35 27693.06 29298.40 9797.79 29097.33 17998.41 19198.67 18883.68 32099.69 22695.16 23599.31 21798.77 264
LCM-MVSNet-Re98.64 8798.48 8999.11 9998.85 21298.51 9298.49 8999.83 398.37 9699.69 1799.46 4098.21 5699.92 3294.13 26699.30 22098.91 248
EPNet_dtu94.93 28794.78 28795.38 31193.58 35187.68 33296.78 23995.69 32597.35 17889.14 34798.09 25388.15 29199.49 29594.95 24099.30 22098.98 234
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS96.21 1196.63 24995.95 25698.65 16498.93 19398.09 11996.93 22999.28 14083.58 34398.13 20797.78 26996.13 17999.40 30893.52 28399.29 22298.45 282
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet93.40 1795.67 27295.70 26195.57 30898.83 21788.57 32792.50 34297.72 29292.69 30096.49 29696.44 31493.72 24999.43 30693.61 28099.28 22398.71 268
EIA-MVS98.00 15797.74 16898.80 14798.72 23298.09 11998.05 12999.60 2397.39 17496.63 28795.55 32597.68 8999.80 15996.73 16199.27 22498.52 278
LFMVS97.20 21896.72 22998.64 16598.72 23296.95 20298.93 5694.14 33599.74 698.78 15199.01 11984.45 31399.73 21197.44 10999.27 22499.25 190
ITE_SJBPF98.87 13799.22 13298.48 9499.35 10897.50 15998.28 19998.60 20697.64 9599.35 31493.86 27599.27 22498.79 262
HQP3-MVS99.04 20399.26 227
HQP-MVS97.00 23496.49 24498.55 18198.67 24796.79 20696.29 26599.04 20396.05 23995.55 31696.84 30593.84 24499.54 28392.82 29699.26 22799.32 172
ETV-MVS98.03 15397.86 16298.56 18098.69 24298.07 12597.51 19099.50 5598.10 11997.50 25095.51 32698.41 3999.88 6296.27 19499.24 22997.71 313
MCST-MVS98.00 15797.63 17899.10 10199.24 12798.17 11496.89 23498.73 25795.66 25097.92 21897.70 27497.17 12999.66 24696.18 20099.23 23099.47 116
SCA96.41 25796.66 23595.67 30598.24 28388.35 32995.85 28696.88 31296.11 23797.67 23598.67 18893.10 25699.85 9494.16 26199.22 23198.81 258
MSDG97.71 18197.52 18598.28 20998.91 20096.82 20594.42 32899.37 9997.65 14698.37 19698.29 23997.40 11599.33 31794.09 26799.22 23198.68 274
MIMVSNet96.62 25096.25 25397.71 23899.04 17494.66 25899.16 3896.92 31097.23 19497.87 22299.10 9686.11 30299.65 25191.65 31199.21 23398.82 256
test_prior397.48 19897.00 21398.95 12698.69 24297.95 14295.74 29099.03 20596.48 22596.11 30297.63 27895.92 19399.59 26894.16 26199.20 23499.30 179
test_prior295.74 29096.48 22596.11 30297.63 27895.92 19394.16 26199.20 234
VDDNet98.21 14297.95 15499.01 12199.58 4997.74 16299.01 4897.29 30299.67 998.97 12199.50 3490.45 27899.80 15997.88 8999.20 23499.48 109
OpenMVScopyleft96.65 797.09 22596.68 23298.32 20498.32 27897.16 19498.86 6199.37 9989.48 32896.29 30099.15 8896.56 16399.90 4592.90 29399.20 23497.89 300
DVP-MVS98.40 12298.00 15199.61 999.57 5399.25 1998.57 7899.35 10897.55 15699.31 6897.71 27394.61 23099.88 6296.14 20299.19 23899.70 28
CNLPA97.17 22196.71 23098.55 18198.56 26198.05 12896.33 26398.93 22196.91 21197.06 26797.39 29294.38 23699.45 30491.66 31099.18 23998.14 294
CS-MVS97.82 17897.59 18398.52 18598.76 22698.04 12998.20 11199.61 2197.10 20296.02 30894.87 33898.27 4899.84 11196.31 19199.17 24097.69 314
ETH3D cwj APD-0.1697.55 19297.00 21399.19 8898.51 26698.64 7896.85 23599.13 18694.19 28197.65 23698.40 22695.78 19799.81 14993.37 28899.16 24199.12 215
train_agg97.10 22496.45 24599.07 10798.71 23598.08 12395.96 27899.03 20591.64 31095.85 30997.53 28296.47 16899.76 19593.67 27999.16 24199.36 158
agg_prior292.50 30399.16 24199.37 152
test9_res93.28 29099.15 24499.38 149
MS-PatchMatch97.68 18397.75 16797.45 25798.23 28593.78 28497.29 20498.84 23996.10 23898.64 16598.65 19396.04 18299.36 31396.84 15199.14 24599.20 199
agg_prior197.06 22896.40 24699.03 11798.68 24597.99 13295.76 28899.01 21291.73 30995.59 31297.50 28596.49 16799.77 18893.71 27899.14 24599.34 164
AdaColmapbinary97.14 22396.71 23098.46 19398.34 27797.80 15796.95 22698.93 22195.58 25196.92 27297.66 27595.87 19599.53 28590.97 31899.14 24598.04 297
VNet98.42 11998.30 11898.79 14998.79 22597.29 18298.23 10798.66 26199.31 3798.85 14198.80 16794.80 22799.78 18298.13 7499.13 24899.31 176
test1298.93 12998.58 25997.83 15198.66 26196.53 29195.51 20699.69 22699.13 24899.27 186
DP-MVS Recon97.33 20796.92 21798.57 17699.09 16397.99 13296.79 23899.35 10893.18 29397.71 23298.07 25595.00 21999.31 31993.97 26999.13 24898.42 285
thisisatest051594.12 29993.16 30596.97 27698.60 25692.90 29693.77 33690.61 34594.10 28396.91 27495.87 32174.99 34599.80 15994.52 25099.12 25198.20 291
pmmvs395.03 28594.40 29096.93 27797.70 31192.53 30295.08 31097.71 29388.57 33397.71 23298.08 25479.39 33699.82 13696.19 19899.11 25298.43 284
test22298.92 19796.93 20395.54 29698.78 24985.72 34096.86 28098.11 25094.43 23399.10 25399.23 194
testtj97.79 17997.25 20199.42 5499.03 17798.85 6497.78 15899.18 17095.83 24798.12 20898.50 21795.50 20799.86 8492.23 30699.07 25499.54 81
xiu_mvs_v1_base_debu97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
xiu_mvs_v1_base97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
xiu_mvs_v1_base_debi97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
MG-MVS96.77 24396.61 23897.26 26598.31 27993.06 29295.93 28198.12 28396.45 22797.92 21898.73 17793.77 24899.39 31091.19 31799.04 25899.33 170
cl-mvsnet295.79 27095.39 27396.98 27596.77 33592.79 29894.40 32998.53 26794.59 27097.89 22198.17 24682.82 32599.24 32696.37 18799.03 25998.92 245
miper_ehance_all_eth97.06 22897.03 21197.16 27097.83 30493.06 29294.66 32199.09 19395.99 24398.69 16098.45 22392.73 26499.61 26396.79 15399.03 25998.82 256
miper_enhance_ethall96.01 26495.74 25996.81 28596.41 34192.27 30793.69 33798.89 22991.14 31998.30 19797.35 29690.58 27799.58 27396.31 19199.03 25998.60 275
112196.73 24496.00 25498.91 13298.95 19097.76 15998.07 12598.73 25787.65 33696.54 29098.13 24794.52 23299.73 21192.38 30499.02 26299.24 193
API-MVS97.04 23196.91 21997.42 25997.88 30298.23 11098.18 11398.50 26997.57 15397.39 25896.75 30796.77 15299.15 33190.16 32499.02 26294.88 343
旧先验198.82 22097.45 17798.76 25198.34 23495.50 20799.01 26499.23 194
新几何198.91 13298.94 19197.76 15998.76 25187.58 33796.75 28498.10 25194.80 22799.78 18292.73 30099.00 26599.20 199
原ACMM198.35 20298.90 20196.25 22098.83 24492.48 30296.07 30598.10 25195.39 21199.71 22092.61 30298.99 26699.08 218
testgi98.32 12998.39 10698.13 21699.57 5395.54 23497.78 15899.49 6397.37 17699.19 8497.65 27698.96 1799.49 29596.50 18198.99 26699.34 164
MVP-Stereo98.08 15197.92 15798.57 17698.96 18896.79 20697.90 14799.18 17096.41 22898.46 18598.95 13395.93 19299.60 26496.51 18098.98 26899.31 176
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
alignmvs97.35 20596.88 22098.78 15298.54 26398.09 11997.71 16797.69 29499.20 4597.59 24195.90 32088.12 29299.55 28098.18 7398.96 26998.70 270
testdata98.09 21798.93 19395.40 24198.80 24790.08 32697.45 25498.37 23195.26 21399.70 22293.58 28298.95 27099.17 210
Effi-MVS+-dtu98.26 13797.90 15999.35 6698.02 29599.49 298.02 13499.16 17998.29 10497.64 23797.99 25896.44 17099.95 1496.66 16798.93 27198.60 275
MVS_Test98.18 14598.36 11097.67 23998.48 26894.73 25598.18 11399.02 20997.69 14398.04 21599.11 9497.22 12899.56 27798.57 5498.90 27298.71 268
Fast-Effi-MVS+97.67 18497.38 19498.57 17698.71 23597.43 17897.23 20899.45 7694.82 26796.13 30196.51 31098.52 3499.91 4296.19 19898.83 27398.37 288
NCCC97.86 16897.47 19199.05 11498.61 25498.07 12596.98 22598.90 22797.63 14797.04 26897.93 26295.99 18899.66 24695.31 23498.82 27499.43 129
PatchMatch-RL97.24 21596.78 22698.61 17199.03 17797.83 15196.36 26299.06 19693.49 29297.36 26097.78 26995.75 19899.49 29593.44 28698.77 27598.52 278
DPM-MVS96.32 25895.59 26698.51 18898.76 22697.21 18994.54 32798.26 27791.94 30896.37 29897.25 29793.06 25899.43 30691.42 31598.74 27698.89 249
YYNet197.60 18997.67 17297.39 26199.04 17493.04 29595.27 30498.38 27497.25 18898.92 13098.95 13395.48 20999.73 21196.99 13498.74 27699.41 134
MDA-MVSNet-bldmvs97.94 16197.91 15898.06 22199.44 9994.96 25196.63 24899.15 18598.35 9798.83 14499.11 9494.31 23799.85 9496.60 17098.72 27899.37 152
MDA-MVSNet_test_wron97.60 18997.66 17597.41 26099.04 17493.09 29195.27 30498.42 27297.26 18798.88 13798.95 13395.43 21099.73 21197.02 13198.72 27899.41 134
Fast-Effi-MVS+-dtu98.27 13598.09 14298.81 14598.43 27398.11 11897.61 17899.50 5598.64 8497.39 25897.52 28498.12 6399.95 1496.90 14598.71 28098.38 286
canonicalmvs98.34 12898.26 12298.58 17398.46 27097.82 15498.96 5499.46 7399.19 4997.46 25395.46 32898.59 3099.46 30298.08 7798.71 28098.46 280
xiu_mvs_v2_base97.16 22297.49 18796.17 29798.54 26392.46 30395.45 30198.84 23997.25 18897.48 25296.49 31198.31 4799.90 4596.34 19098.68 28296.15 337
PS-MVSNAJ97.08 22697.39 19396.16 29998.56 26192.46 30395.24 30698.85 23897.25 18897.49 25195.99 31898.07 6499.90 4596.37 18798.67 28396.12 338
PatchmatchNetpermissive95.58 27495.67 26395.30 31297.34 32487.32 33397.65 17496.65 31495.30 25897.07 26698.69 18484.77 31099.75 20294.97 23998.64 28498.83 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVEpermissive83.40 2292.50 31391.92 31594.25 32098.83 21791.64 31292.71 34183.52 35295.92 24486.46 35095.46 32895.20 21495.40 34880.51 34498.64 28495.73 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
OpenMVS_ROBcopyleft95.38 1495.84 26995.18 27997.81 23298.41 27497.15 19597.37 19898.62 26483.86 34298.65 16498.37 23194.29 23899.68 23588.41 32998.62 28696.60 332
cascas94.79 28894.33 29396.15 30096.02 34692.36 30692.34 34499.26 14985.34 34195.08 32594.96 33592.96 26098.53 34394.41 25898.59 28797.56 319
BH-RMVSNet96.83 23996.58 24097.58 24798.47 26994.05 27096.67 24697.36 29896.70 22097.87 22297.98 25995.14 21699.44 30590.47 32398.58 28899.25 190
GA-MVS95.86 26895.32 27597.49 25598.60 25694.15 26993.83 33597.93 28895.49 25596.68 28597.42 29183.21 32199.30 32196.22 19698.55 28999.01 229
F-COLMAP97.30 20996.68 23299.14 9599.19 13898.39 9897.27 20799.30 13492.93 29696.62 28898.00 25795.73 19999.68 23592.62 30198.46 29099.35 162
XVG-OURS-SEG-HR98.49 11298.28 12099.14 9599.49 8398.83 6596.54 25099.48 6597.32 18199.11 9398.61 20599.33 899.30 32196.23 19598.38 29199.28 184
test_yl96.69 24596.29 25097.90 22798.28 28095.24 24397.29 20497.36 29898.21 11098.17 20297.86 26486.27 29899.55 28094.87 24198.32 29298.89 249
DCV-MVSNet96.69 24596.29 25097.90 22798.28 28095.24 24397.29 20497.36 29898.21 11098.17 20297.86 26486.27 29899.55 28094.87 24198.32 29298.89 249
thres600view794.45 29193.83 29696.29 29399.06 17191.53 31397.99 13894.24 33398.34 9897.44 25595.01 33279.84 33299.67 23884.33 33798.23 29497.66 315
MAR-MVS96.47 25595.70 26198.79 14997.92 30099.12 5098.28 10398.60 26592.16 30795.54 31996.17 31694.77 22999.52 28989.62 32698.23 29497.72 312
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+98.02 15597.82 16498.62 16998.53 26597.19 19197.33 20199.68 1397.30 18396.68 28597.46 28998.56 3299.80 15996.63 16998.20 29698.86 253
test-LLR93.90 30293.85 29594.04 32196.53 33784.62 34394.05 33292.39 34196.17 23494.12 33295.07 33082.30 32699.67 23895.87 21398.18 29797.82 304
test-mter92.33 31591.76 31794.04 32196.53 33784.62 34394.05 33292.39 34194.00 28594.12 33295.07 33065.63 35599.67 23895.87 21398.18 29797.82 304
mvs_anonymous97.83 17698.16 13596.87 28198.18 28791.89 31097.31 20398.90 22797.37 17698.83 14499.46 4096.28 17799.79 17298.90 3598.16 29998.95 239
WTY-MVS96.67 24796.27 25297.87 22998.81 22294.61 26096.77 24097.92 28994.94 26497.12 26297.74 27291.11 27599.82 13693.89 27398.15 30099.18 206
thres20093.72 30593.14 30695.46 31098.66 25291.29 31996.61 24994.63 32997.39 17496.83 28193.71 34479.88 33199.56 27782.40 34298.13 30195.54 342
TESTMET0.1,192.19 31791.77 31693.46 32796.48 33982.80 34894.05 33291.52 34494.45 27594.00 33594.88 33666.65 35399.56 27795.78 21898.11 30298.02 298
PMMVS96.51 25295.98 25598.09 21797.53 31795.84 22994.92 31498.84 23991.58 31296.05 30695.58 32495.68 20099.66 24695.59 22898.09 30398.76 265
thres100view90094.19 29693.67 29995.75 30499.06 17191.35 31798.03 13294.24 33398.33 9997.40 25794.98 33479.84 33299.62 25783.05 33998.08 30496.29 333
tfpn200view994.03 30093.44 30195.78 30398.93 19391.44 31597.60 17994.29 33197.94 12797.10 26394.31 34179.67 33499.62 25783.05 33998.08 30496.29 333
thres40094.14 29893.44 30196.24 29598.93 19391.44 31597.60 17994.29 33197.94 12797.10 26394.31 34179.67 33499.62 25783.05 33998.08 30497.66 315
PLCcopyleft94.65 1696.51 25295.73 26098.85 14098.75 22997.91 14596.42 25999.06 19690.94 32195.59 31297.38 29394.41 23499.59 26890.93 31998.04 30799.05 221
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MDTV_nov1_ep1395.22 27797.06 33083.20 34797.74 16596.16 31994.37 27796.99 27098.83 16283.95 31899.53 28593.90 27297.95 308
mvs-test197.83 17697.48 19098.89 13598.02 29599.20 2997.20 21299.16 17998.29 10496.46 29797.17 29996.44 17099.92 3296.66 16797.90 30997.54 320
PAPM_NR96.82 24196.32 24998.30 20799.07 16796.69 21197.48 19298.76 25195.81 24896.61 28996.47 31394.12 24399.17 32990.82 32297.78 31099.06 220
EMVS93.83 30394.02 29493.23 33096.83 33484.96 34189.77 34796.32 31897.92 12997.43 25696.36 31586.17 30098.93 33887.68 33197.73 31195.81 340
E-PMN94.17 29794.37 29193.58 32696.86 33285.71 34090.11 34697.07 30598.17 11697.82 22797.19 29884.62 31298.94 33789.77 32597.68 31296.09 339
PatchT96.65 24896.35 24797.54 25297.40 32295.32 24297.98 14096.64 31599.33 3696.89 27899.42 4784.32 31599.81 14997.69 10297.49 31397.48 321
FPMVS93.44 30892.23 31297.08 27199.25 12697.86 14995.61 29497.16 30492.90 29793.76 33798.65 19375.94 34495.66 34779.30 34697.49 31397.73 311
BH-untuned96.83 23996.75 22897.08 27198.74 23093.33 28996.71 24498.26 27796.72 21898.44 18797.37 29495.20 21499.47 30091.89 30897.43 31598.44 283
UnsupCasMVSNet_bld97.30 20996.92 21798.45 19499.28 12196.78 20996.20 27099.27 14495.42 25798.28 19998.30 23893.16 25499.71 22094.99 23897.37 31698.87 252
PAPR95.29 27994.47 28897.75 23697.50 32195.14 24894.89 31598.71 25991.39 31695.35 32295.48 32794.57 23199.14 33284.95 33697.37 31698.97 238
CR-MVSNet96.28 26095.95 25697.28 26397.71 30994.22 26598.11 12098.92 22492.31 30496.91 27499.37 5285.44 30899.81 14997.39 11297.36 31897.81 306
RPMNet96.82 24196.66 23597.28 26397.71 30994.22 26598.11 12096.90 31199.37 3396.91 27499.34 5886.72 29599.81 14997.53 10697.36 31897.81 306
HY-MVS95.94 1395.90 26795.35 27497.55 25197.95 29894.79 25398.81 6496.94 30992.28 30595.17 32398.57 20989.90 28299.75 20291.20 31697.33 32098.10 295
131495.74 27195.60 26596.17 29797.53 31792.75 30098.07 12598.31 27691.22 31794.25 33096.68 30895.53 20499.03 33391.64 31297.18 32196.74 330
gg-mvs-nofinetune92.37 31491.20 31895.85 30295.80 34892.38 30599.31 1881.84 35399.75 591.83 34399.74 868.29 35099.02 33487.15 33297.12 32296.16 336
ET-MVSNet_ETH3D94.30 29593.21 30497.58 24798.14 28994.47 26294.78 31793.24 33994.72 26889.56 34695.87 32178.57 34099.81 14996.91 14097.11 32398.46 280
ADS-MVSNet295.43 27894.98 28396.76 28798.14 28991.74 31197.92 14497.76 29190.23 32296.51 29398.91 13885.61 30599.85 9492.88 29496.90 32498.69 271
ADS-MVSNet95.24 28194.93 28596.18 29698.14 28990.10 32597.92 14497.32 30190.23 32296.51 29398.91 13885.61 30599.74 20692.88 29496.90 32498.69 271
MVS93.19 31092.09 31396.50 29096.91 33194.03 27298.07 12598.06 28568.01 34794.56 32996.48 31295.96 19199.30 32183.84 33896.89 32696.17 335
tpm293.09 31192.58 31194.62 31797.56 31586.53 33697.66 17295.79 32486.15 33994.07 33498.23 24375.95 34399.53 28590.91 32096.86 32797.81 306
baseline293.73 30492.83 30996.42 29197.70 31191.28 32096.84 23789.77 34893.96 28692.44 34195.93 31979.14 33799.77 18892.94 29296.76 32898.21 290
CostFormer93.97 30193.78 29794.51 31897.53 31785.83 33997.98 14095.96 32289.29 33094.99 32698.63 20078.63 33999.62 25794.54 24996.50 32998.09 296
EPMVS93.72 30593.27 30395.09 31496.04 34587.76 33198.13 11785.01 35194.69 26996.92 27298.64 19678.47 34299.31 31995.04 23696.46 33098.20 291
TR-MVS95.55 27595.12 28196.86 28497.54 31693.94 27696.49 25596.53 31694.36 27897.03 26996.61 30994.26 23999.16 33086.91 33396.31 33197.47 322
tpmvs95.02 28695.25 27694.33 31996.39 34285.87 33798.08 12496.83 31395.46 25695.51 32098.69 18485.91 30399.53 28594.16 26196.23 33297.58 318
tpmrst95.07 28495.46 26993.91 32397.11 32984.36 34597.62 17696.96 30794.98 26296.35 29998.80 16785.46 30799.59 26895.60 22796.23 33297.79 309
BH-w/o95.13 28394.89 28695.86 30198.20 28691.31 31895.65 29397.37 29793.64 28896.52 29295.70 32393.04 25999.02 33488.10 33095.82 33497.24 324
UnsupCasMVSNet_eth97.89 16497.60 18198.75 15899.31 11697.17 19397.62 17699.35 10898.72 8398.76 15598.68 18692.57 26699.74 20697.76 9895.60 33599.34 164
PAPM91.88 31890.34 32096.51 28998.06 29492.56 30192.44 34397.17 30386.35 33890.38 34596.01 31786.61 29699.21 32770.65 34895.43 33697.75 310
tpm cat193.29 30993.13 30793.75 32497.39 32384.74 34297.39 19797.65 29583.39 34494.16 33198.41 22582.86 32499.39 31091.56 31495.35 33797.14 325
tpm94.67 28994.34 29295.66 30697.68 31388.42 32897.88 14894.90 32794.46 27396.03 30798.56 21078.66 33899.79 17295.88 21095.01 33898.78 263
JIA-IIPM95.52 27695.03 28297.00 27396.85 33394.03 27296.93 22995.82 32399.20 4594.63 32899.71 1283.09 32299.60 26494.42 25594.64 33997.36 323
IB-MVS91.63 1992.24 31690.90 31996.27 29497.22 32891.24 32194.36 33093.33 33892.37 30392.24 34294.58 34066.20 35499.89 5493.16 29194.63 34097.66 315
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND94.76 31694.54 35092.13 30999.31 1880.47 35488.73 34891.01 34767.59 35198.16 34682.30 34394.53 34193.98 344
DWT-MVSNet_test92.75 31292.05 31494.85 31596.48 33987.21 33497.83 15594.99 32692.22 30692.72 34094.11 34370.75 34899.46 30295.01 23794.33 34297.87 302
test0.0.03 194.51 29093.69 29896.99 27496.05 34493.61 28894.97 31393.49 33696.17 23497.57 24494.88 33682.30 32699.01 33693.60 28194.17 34398.37 288
DeepMVS_CXcopyleft93.44 32898.24 28394.21 26794.34 33064.28 34891.34 34494.87 33889.45 28692.77 35077.54 34793.14 34493.35 345
tmp_tt78.77 32078.73 32278.90 33458.45 35374.76 35494.20 33178.26 35539.16 34986.71 34992.82 34680.50 33075.19 35186.16 33592.29 34586.74 346
dp93.47 30793.59 30093.13 33196.64 33681.62 35097.66 17296.42 31792.80 29996.11 30298.64 19678.55 34199.59 26893.31 28992.18 34698.16 293
baseline195.96 26695.44 27097.52 25498.51 26693.99 27598.39 9896.09 32198.21 11098.40 19597.76 27186.88 29499.63 25595.42 23289.27 34798.95 239
PVSNet_089.98 2191.15 31990.30 32193.70 32597.72 30884.34 34690.24 34597.42 29690.20 32593.79 33693.09 34590.90 27698.89 34086.57 33472.76 34897.87 302
testmvs17.12 32220.53 3246.87 33612.05 3544.20 35693.62 3386.73 3564.62 35110.41 35124.33 3498.28 3573.56 3539.69 35015.07 34912.86 349
test12317.04 32320.11 3257.82 33510.25 3554.91 35594.80 3164.47 3574.93 35010.00 35224.28 3509.69 3563.64 35210.14 34912.43 35014.92 348
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34899.28 1400.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k24.66 32132.88 3230.00 3370.00 3560.00 3570.00 34899.10 1920.00 3520.00 35397.58 28099.21 100.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas8.17 32410.90 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35398.07 640.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.12 32510.83 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35397.48 2870.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_ONE99.49 8399.17 3399.31 12697.98 12499.66 2098.90 14198.36 4299.48 298
save fliter99.11 15697.97 13796.53 25199.02 20998.24 107
test072699.50 7699.21 2398.17 11699.35 10897.97 12599.26 7599.06 9997.61 97
GSMVS98.81 258
test_part299.36 10999.10 5399.05 107
sam_mvs184.74 31198.81 258
sam_mvs84.29 317
MTGPAbinary99.20 161
test_post197.59 18120.48 35283.07 32399.66 24694.16 261
test_post21.25 35183.86 31999.70 222
patchmatchnet-post98.77 17284.37 31499.85 94
MTMP97.93 14391.91 343
gm-plane-assit94.83 34981.97 34988.07 33594.99 33399.60 26491.76 309
TEST998.71 23598.08 12395.96 27899.03 20591.40 31595.85 30997.53 28296.52 16599.76 195
test_898.67 24798.01 13195.91 28399.02 20991.64 31095.79 31197.50 28596.47 16899.76 195
agg_prior98.68 24597.99 13299.01 21295.59 31299.77 188
test_prior497.97 13795.86 284
test_prior98.95 12698.69 24297.95 14299.03 20599.59 26899.30 179
旧先验295.76 28888.56 33497.52 24899.66 24694.48 251
新几何295.93 281
无先验95.74 29098.74 25689.38 32999.73 21192.38 30499.22 198
原ACMM295.53 297
testdata299.79 17292.80 298
segment_acmp97.02 136
testdata195.44 30296.32 231
plane_prior799.19 13897.87 148
plane_prior698.99 18497.70 16594.90 220
plane_prior497.98 259
plane_prior397.78 15897.41 17297.79 228
plane_prior297.77 16198.20 113
plane_prior199.05 173
n20.00 358
nn0.00 358
door-mid99.57 33
test1198.87 232
door99.41 88
HQP5-MVS96.79 206
HQP-NCC98.67 24796.29 26596.05 23995.55 316
ACMP_Plane98.67 24796.29 26596.05 23995.55 316
BP-MVS92.82 296
HQP4-MVS95.56 31599.54 28399.32 172
HQP2-MVS93.84 244
NP-MVS98.84 21597.39 18096.84 305
MDTV_nov1_ep13_2view74.92 35397.69 16990.06 32797.75 23185.78 30493.52 28398.69 271
Test By Simon96.52 165