This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6399.34 1599.69 1598.93 8499.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 13099.20 3899.65 2099.48 2499.92 399.71 1298.07 6699.96 899.53 9100.00 199.93 1
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
ANet_high99.57 799.67 599.28 8399.89 698.09 13499.14 4699.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
UA-Net99.47 1199.40 1499.70 299.49 8699.29 1899.80 399.72 1099.82 399.04 11699.81 398.05 6999.96 898.85 4299.99 599.86 6
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9299.28 3099.66 1999.09 6799.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
mvs_tets99.63 599.67 599.49 4999.88 798.61 9299.34 1599.71 1199.27 4499.90 499.74 899.68 299.97 399.55 899.99 599.88 3
v1098.97 4599.11 3398.55 19499.44 10296.21 23898.90 6699.55 4698.73 9399.48 4099.60 2596.63 17199.83 14299.70 399.99 599.61 51
v899.01 3899.16 3098.57 18999.47 9696.31 23698.90 6699.47 7699.03 7399.52 3599.57 2896.93 15199.81 16799.60 499.98 999.60 52
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8199.39 1399.56 4299.11 5799.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
pmmvs-eth3d98.47 12098.34 12098.86 15099.30 12797.76 17497.16 23599.28 15495.54 27199.42 4999.19 8297.27 13299.63 27597.89 9799.97 1199.20 214
IterMVS-LS98.55 10998.70 6598.09 23199.48 9494.73 27597.22 22899.39 9998.97 7999.38 5699.31 6896.00 19699.93 2898.58 5899.97 1199.60 52
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5999.90 199.78 699.63 1499.78 1099.67 1699.48 699.81 16799.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2024052198.69 8398.87 4598.16 22999.77 2095.11 26999.08 5099.44 8499.34 3899.33 6599.55 3294.10 25699.94 2399.25 2099.96 1499.42 145
v7n99.53 899.57 899.41 6199.88 798.54 10099.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
test250692.39 33191.89 33493.89 34499.38 11282.28 37399.32 1766.03 38099.08 6998.77 16699.57 2866.26 37799.84 12798.71 5399.95 1699.54 86
test111196.49 26796.82 23895.52 32799.42 10787.08 35899.22 3587.14 37299.11 5799.46 4399.58 2788.69 30399.86 9498.80 4599.95 1699.62 46
ECVR-MVScopyleft96.42 27096.61 25195.85 31899.38 11288.18 35399.22 3586.00 37499.08 6999.36 6099.57 2888.47 30899.82 15398.52 6499.95 1699.54 86
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3499.95 1699.78 14
D2MVS97.84 18397.84 17297.83 24799.14 16694.74 27496.94 24498.88 24395.84 26598.89 14598.96 14094.40 24799.69 24597.55 11599.95 1699.05 236
test_part197.91 17097.46 20099.27 8698.80 24098.18 12799.07 5399.36 10999.75 599.63 2599.49 4282.20 34899.89 5998.87 4199.95 1699.74 24
PS-CasMVS99.40 1899.33 2099.62 699.71 3299.10 6099.29 2699.53 5499.53 2399.46 4399.41 5598.23 5299.95 1598.89 4099.95 1699.81 11
CHOSEN 1792x268897.49 20597.14 22098.54 19799.68 4196.09 24196.50 27199.62 2291.58 33598.84 15598.97 13792.36 28099.88 7096.76 17399.95 1699.67 35
IterMVS-SCA-FT97.85 18298.18 14096.87 29799.27 13191.16 34395.53 31499.25 16399.10 6499.41 5099.35 6293.10 26999.96 898.65 5699.94 2499.49 109
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11199.30 2599.57 3599.61 1999.40 5399.50 3997.12 14099.85 10999.02 3399.94 2499.80 12
UGNet98.53 11498.45 10298.79 16097.94 32296.96 21899.08 5098.54 28399.10 6496.82 30599.47 4596.55 17499.84 12798.56 6399.94 2499.55 82
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS97.73 18998.11 15096.57 30499.24 13690.28 34495.52 31699.21 17298.86 8799.33 6599.33 6693.11 26899.94 2398.49 6599.94 2499.48 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42095.51 29295.47 28395.65 32498.25 30588.27 35293.25 35998.88 24393.53 31294.65 35097.15 32486.17 31899.93 2897.41 12399.93 2898.73 288
CANet97.87 17697.76 17598.19 22797.75 33095.51 25496.76 25899.05 21397.74 15796.93 29398.21 26095.59 21499.89 5997.86 10299.93 2899.19 219
v114498.60 10098.66 7198.41 20999.36 11795.90 24497.58 19799.34 12197.51 17599.27 7699.15 9496.34 18799.80 17699.47 1299.93 2899.51 101
PEN-MVS99.41 1799.34 1999.62 699.73 2599.14 5299.29 2699.54 5099.62 1799.56 2899.42 5298.16 6299.96 898.78 4699.93 2899.77 16
DTE-MVSNet99.43 1599.35 1799.66 499.71 3299.30 1799.31 2199.51 5899.64 1299.56 2899.46 4698.23 5299.97 398.78 4699.93 2899.72 25
CP-MVSNet99.21 2999.09 3499.56 2499.65 4598.96 6999.13 4799.34 12199.42 3199.33 6599.26 7397.01 14799.94 2398.74 5199.93 2899.79 13
WR-MVS_H99.33 2399.22 2799.65 599.71 3299.24 2499.32 1799.55 4699.46 2799.50 3999.34 6497.30 12999.93 2898.90 3899.93 2899.77 16
PVSNet_BlendedMVS97.55 20197.53 19297.60 26198.92 21293.77 30596.64 26499.43 9094.49 29297.62 25799.18 8496.82 15899.67 25794.73 26599.93 2899.36 173
Vis-MVSNetpermissive99.34 2299.36 1699.27 8699.73 2598.26 11899.17 4399.78 699.11 5799.27 7699.48 4498.82 2199.95 1598.94 3699.93 2899.59 58
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 899.64 1299.84 899.83 299.50 599.87 8799.36 1499.92 3799.64 41
nrg03099.40 1899.35 1799.54 2999.58 5399.13 5598.98 6299.48 7099.68 999.46 4399.26 7398.62 3099.73 23099.17 2699.92 3799.76 20
v119298.60 10098.66 7198.41 20999.27 13195.88 24597.52 20399.36 10997.41 19099.33 6599.20 8196.37 18599.82 15399.57 699.92 3799.55 82
bset_n11_16_dypcd96.99 24796.56 25698.27 22299.00 19595.25 26192.18 36594.05 35798.75 9299.01 12098.38 24488.98 30199.93 2898.77 4999.92 3799.64 41
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6599.63 699.58 2899.44 2999.78 1099.76 696.39 18299.92 3599.44 1399.92 3799.68 33
DeepC-MVS97.60 498.97 4598.93 4399.10 11199.35 12197.98 15098.01 15399.46 7897.56 17299.54 3099.50 3998.97 1699.84 12798.06 8999.92 3799.49 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Anonymous2023121199.27 2599.27 2499.26 8999.29 12898.18 12799.49 899.51 5899.70 899.80 999.68 1496.84 15599.83 14299.21 2399.91 4399.77 16
v14419298.54 11298.57 8398.45 20699.21 14395.98 24297.63 19099.36 10997.15 21999.32 7199.18 8495.84 20799.84 12799.50 1099.91 4399.54 86
PVSNet_Blended_VisFu98.17 15498.15 14698.22 22599.73 2595.15 26697.36 21699.68 1694.45 29698.99 12499.27 7196.87 15499.94 2397.13 14099.91 4399.57 69
test_040298.76 7198.71 6298.93 14099.56 6498.14 13298.45 10899.34 12199.28 4398.95 13298.91 14998.34 4899.79 19095.63 24699.91 4398.86 269
v192192098.54 11298.60 8098.38 21299.20 14795.76 25097.56 19999.36 10997.23 21299.38 5699.17 8896.02 19499.84 12799.57 699.90 4799.54 86
RRT_MVS97.07 23896.57 25598.58 18695.89 37096.33 23497.36 21698.77 26697.85 15299.08 10699.12 9882.30 34599.96 898.82 4499.90 4799.45 133
v2v48298.56 10598.62 7598.37 21399.42 10795.81 24897.58 19799.16 19297.90 14899.28 7499.01 12895.98 20099.79 19099.33 1599.90 4799.51 101
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 11698.87 7298.39 11299.42 9399.42 3199.36 6099.06 10598.38 4399.95 1598.34 7599.90 4799.57 69
FMVSNet199.17 3099.17 2999.17 9999.55 6798.24 12099.20 3899.44 8499.21 4699.43 4899.55 3297.82 8699.86 9498.42 7099.89 5199.41 148
FIs99.14 3299.09 3499.29 8199.70 3898.28 11799.13 4799.52 5799.48 2499.24 8599.41 5596.79 16199.82 15398.69 5599.88 5299.76 20
v124098.55 10998.62 7598.32 21699.22 14195.58 25197.51 20599.45 8197.16 21799.45 4699.24 7696.12 19199.85 10999.60 499.88 5299.55 82
TAMVS98.24 14798.05 15698.80 15899.07 18097.18 20997.88 16498.81 26096.66 23899.17 9699.21 7994.81 23799.77 20896.96 15499.88 5299.44 138
EU-MVSNet97.66 19498.50 9195.13 33399.63 5085.84 36298.35 11698.21 29798.23 12499.54 3099.46 4695.02 22999.68 25498.24 7899.87 5599.87 4
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3799.41 1299.59 2699.59 2099.71 1499.57 2897.12 14099.90 4999.21 2399.87 5599.54 86
v14898.45 12298.60 8098.00 24099.44 10294.98 27097.44 21299.06 20998.30 11699.32 7198.97 13796.65 17099.62 27798.37 7299.85 5799.39 157
WR-MVS98.40 12998.19 13999.03 12899.00 19597.65 18296.85 25298.94 23298.57 10598.89 14598.50 23195.60 21399.85 10997.54 11799.85 5799.59 58
CANet_DTU97.26 22397.06 22297.84 24697.57 33794.65 27996.19 28898.79 26397.23 21295.14 34798.24 25793.22 26699.84 12797.34 12699.84 5999.04 240
V4298.78 6898.78 5498.76 16699.44 10297.04 21498.27 12099.19 17997.87 15099.25 8499.16 9096.84 15599.78 20299.21 2399.84 5999.46 129
VPA-MVSNet99.30 2499.30 2399.28 8399.49 8698.36 11499.00 5999.45 8199.63 1499.52 3599.44 5198.25 5099.88 7099.09 2899.84 5999.62 46
SixPastTwentyTwo98.75 7398.62 7599.16 10299.83 1597.96 15599.28 3098.20 29899.37 3599.70 1599.65 1992.65 27899.93 2899.04 3299.84 5999.60 52
HyFIR lowres test97.19 23096.60 25398.96 13699.62 5297.28 20095.17 32499.50 6094.21 30199.01 12098.32 25386.61 31499.99 297.10 14299.84 5999.60 52
TDRefinement99.42 1699.38 1599.55 2699.76 2399.33 1699.68 599.71 1199.38 3499.53 3399.61 2398.64 2999.80 17698.24 7899.84 5999.52 98
pm-mvs199.44 1399.48 1199.33 7699.80 1798.63 8999.29 2699.63 2199.30 4299.65 2299.60 2599.16 1499.82 15399.07 2999.83 6599.56 74
Baseline_NR-MVSNet98.98 4498.86 4799.36 6599.82 1698.55 9797.47 20999.57 3599.37 3599.21 8999.61 2396.76 16499.83 14298.06 8999.83 6599.71 26
Patchmtry97.35 21696.97 22798.50 20297.31 34996.47 23198.18 12898.92 23798.95 8398.78 16399.37 5885.44 32699.85 10995.96 22899.83 6599.17 225
ppachtmachnet_test97.50 20397.74 17796.78 30298.70 25691.23 34294.55 34399.05 21396.36 24799.21 8998.79 18296.39 18299.78 20296.74 17599.82 6899.34 179
EI-MVSNet98.40 12998.51 8998.04 23899.10 17394.73 27597.20 22998.87 24598.97 7999.06 10999.02 11996.00 19699.80 17698.58 5899.82 6899.60 52
NR-MVSNet98.95 4898.82 5099.36 6599.16 16198.72 8699.22 3599.20 17499.10 6499.72 1398.76 18796.38 18499.86 9498.00 9499.82 6899.50 105
MVSTER96.86 25196.55 25797.79 24997.91 32494.21 28797.56 19998.87 24597.49 17899.06 10999.05 11280.72 35099.80 17698.44 6899.82 6899.37 167
cl____97.02 24396.83 23797.58 26397.82 32894.04 29194.66 33899.16 19297.04 22298.63 18098.71 19388.68 30599.69 24597.00 14899.81 7299.00 247
DIV-MVS_self_test97.02 24396.84 23697.58 26397.82 32894.03 29294.66 33899.16 19297.04 22298.63 18098.71 19388.69 30399.69 24597.00 14899.81 7299.01 244
eth_miper_zixun_eth97.23 22797.25 21197.17 28498.00 32092.77 31994.71 33599.18 18397.27 20498.56 19498.74 18991.89 28599.69 24597.06 14699.81 7299.05 236
MVS_030497.64 19597.35 20698.52 19897.87 32696.69 22898.59 8898.05 30697.44 18893.74 36198.85 16893.69 26399.88 7098.11 8499.81 7298.98 249
PMMVS298.07 16098.08 15498.04 23899.41 10994.59 28194.59 34299.40 9797.50 17698.82 16098.83 17496.83 15799.84 12797.50 12099.81 7299.71 26
K. test v398.00 16597.66 18499.03 12899.79 1997.56 18699.19 4292.47 36299.62 1799.52 3599.66 1789.61 29699.96 899.25 2099.81 7299.56 74
CDS-MVSNet97.69 19197.35 20698.69 17398.73 24797.02 21696.92 24898.75 27095.89 26498.59 18898.67 20192.08 28499.74 22696.72 17899.81 7299.32 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG98.68 8798.50 9199.20 9699.45 10098.63 8998.56 9199.57 3597.87 15098.85 15398.04 27497.66 9699.84 12796.72 17899.81 7299.13 229
miper_lstm_enhance97.18 23197.16 21797.25 28298.16 31192.85 31795.15 32699.31 13497.25 20698.74 17198.78 18390.07 29399.78 20297.19 13299.80 8099.11 232
UniMVSNet (Re)98.87 5798.71 6299.35 7099.24 13698.73 8497.73 18199.38 10198.93 8499.12 9898.73 19096.77 16299.86 9498.63 5799.80 8099.46 129
FMVSNet298.49 11898.40 11098.75 16898.90 21697.14 21398.61 8599.13 19998.59 10199.19 9199.28 6994.14 25299.82 15397.97 9599.80 8099.29 198
XXY-MVS99.14 3299.15 3299.10 11199.76 2397.74 17798.85 7199.62 2298.48 10899.37 5899.49 4298.75 2499.86 9498.20 8199.80 8099.71 26
IS-MVSNet98.19 15197.90 16899.08 11599.57 5797.97 15199.31 2198.32 29399.01 7598.98 12699.03 11891.59 28699.79 19095.49 25199.80 8099.48 119
EI-MVSNet-UG-set98.69 8398.71 6298.62 18199.10 17396.37 23397.23 22598.87 24599.20 4999.19 9198.99 13197.30 12999.85 10998.77 4999.79 8599.65 40
pmmvs497.58 20097.28 21098.51 20098.84 23096.93 22095.40 32098.52 28593.60 31198.61 18498.65 20695.10 22899.60 28496.97 15399.79 8598.99 248
test20.0398.78 6898.77 5698.78 16399.46 9797.20 20797.78 17399.24 16899.04 7299.41 5098.90 15297.65 9799.76 21597.70 11299.79 8599.39 157
Vis-MVSNet (Re-imp)97.46 20897.16 21798.34 21599.55 6796.10 23998.94 6498.44 28898.32 11598.16 22198.62 21588.76 30299.73 23093.88 29599.79 8599.18 221
EI-MVSNet-Vis-set98.68 8798.70 6598.63 17999.09 17696.40 23297.23 22598.86 25099.20 4999.18 9598.97 13797.29 13199.85 10998.72 5299.78 8999.64 41
LPG-MVS_test98.71 7898.46 10099.47 5499.57 5798.97 6698.23 12399.48 7096.60 23999.10 10399.06 10598.71 2799.83 14295.58 24999.78 8999.62 46
LGP-MVS_train99.47 5499.57 5798.97 6699.48 7096.60 23999.10 10399.06 10598.71 2799.83 14295.58 24999.78 8999.62 46
CLD-MVS97.49 20597.16 21798.48 20399.07 18097.03 21594.71 33599.21 17294.46 29498.06 23197.16 32397.57 10699.48 31894.46 27399.78 8998.95 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
new-patchmatchnet98.35 13498.74 5797.18 28399.24 13692.23 32896.42 27699.48 7098.30 11699.69 1799.53 3697.44 12299.82 15398.84 4399.77 9399.49 109
Patchmatch-RL test97.26 22397.02 22497.99 24199.52 7495.53 25396.13 28999.71 1197.47 17999.27 7699.16 9084.30 33599.62 27797.89 9799.77 9398.81 275
UniMVSNet_NR-MVSNet98.86 5998.68 6899.40 6399.17 15998.74 8197.68 18599.40 9799.14 5599.06 10998.59 22096.71 16899.93 2898.57 6099.77 9399.53 94
DU-MVS98.82 6198.63 7499.39 6499.16 16198.74 8197.54 20199.25 16398.84 8999.06 10998.76 18796.76 16499.93 2898.57 6099.77 9399.50 105
DROMVSNet99.09 3499.05 3799.20 9699.28 12998.93 7099.24 3499.84 399.08 6998.12 22598.37 24698.72 2699.90 4999.05 3199.77 9398.77 283
ACMMP++_ref99.77 93
wuyk23d96.06 27897.62 18891.38 35398.65 27198.57 9698.85 7196.95 33096.86 23099.90 499.16 9099.18 1198.40 36689.23 35299.77 9377.18 371
ACMP95.32 1598.41 12698.09 15199.36 6599.51 7698.79 7997.68 18599.38 10195.76 26898.81 16298.82 17798.36 4499.82 15394.75 26499.77 9399.48 119
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+96.62 999.08 3599.00 4099.33 7699.71 3298.83 7598.60 8699.58 2899.11 5799.53 3399.18 8498.81 2299.67 25796.71 18099.77 9399.50 105
ACMH96.65 799.25 2799.24 2699.26 8999.72 3198.38 11099.07 5399.55 4698.30 11699.65 2299.45 5099.22 999.76 21598.44 6899.77 9399.64 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
c3_l97.36 21597.37 20497.31 27898.09 31593.25 31095.01 32999.16 19297.05 22198.77 16698.72 19292.88 27499.64 27296.93 15599.76 10399.05 236
pmmvs597.64 19597.49 19598.08 23499.14 16695.12 26896.70 26299.05 21393.77 30998.62 18298.83 17493.23 26599.75 22298.33 7799.76 10399.36 173
baseline98.96 4799.02 3898.76 16699.38 11297.26 20198.49 10199.50 6098.86 8799.19 9199.06 10598.23 5299.69 24598.71 5399.76 10399.33 185
COLMAP_ROBcopyleft96.50 1098.99 4098.85 4899.41 6199.58 5399.10 6098.74 7499.56 4299.09 6799.33 6599.19 8298.40 4299.72 23895.98 22799.76 10399.42 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SD-MVS98.40 12998.68 6897.54 26898.96 20397.99 14697.88 16499.36 10998.20 12899.63 2599.04 11598.76 2395.33 37396.56 19299.74 10799.31 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS98.82 6198.72 6099.12 10799.64 4898.54 10097.98 15699.68 1697.62 16599.34 6499.18 8497.54 10999.77 20897.79 10499.74 10799.04 240
XVG-ACMP-BASELINE98.56 10598.34 12099.22 9599.54 7098.59 9497.71 18299.46 7897.25 20698.98 12698.99 13197.54 10999.84 12795.88 23099.74 10799.23 209
GeoE99.05 3698.99 4299.25 9199.44 10298.35 11598.73 7699.56 4298.42 11098.91 14198.81 17998.94 1899.91 4598.35 7499.73 11099.49 109
Anonymous2023120698.21 14998.21 13698.20 22699.51 7695.43 25898.13 13299.32 12896.16 25498.93 13998.82 17796.00 19699.83 14297.32 12799.73 11099.36 173
casdiffmvs98.95 4899.00 4098.81 15699.38 11297.33 19697.82 17199.57 3599.17 5499.35 6299.17 8898.35 4799.69 24598.46 6799.73 11099.41 148
jason97.45 21097.35 20697.76 25199.24 13693.93 29795.86 30198.42 28994.24 30098.50 20198.13 26494.82 23599.91 4597.22 13199.73 11099.43 142
jason: jason.
N_pmnet97.63 19797.17 21698.99 13499.27 13197.86 16395.98 29293.41 35995.25 28099.47 4298.90 15295.63 21299.85 10996.91 15699.73 11099.27 201
USDC97.41 21397.40 20197.44 27498.94 20693.67 30795.17 32499.53 5494.03 30698.97 12999.10 10295.29 22399.34 33595.84 23699.73 11099.30 194
Gipumacopyleft99.03 3799.16 3098.64 17699.94 298.51 10299.32 1799.75 999.58 2298.60 18699.62 2198.22 5599.51 31397.70 11299.73 11097.89 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EGC-MVSNET85.24 33880.54 34199.34 7399.77 2099.20 3399.08 5099.29 15112.08 37420.84 37599.42 5297.55 10899.85 10997.08 14399.72 11798.96 254
lessismore_v098.97 13599.73 2597.53 18886.71 37399.37 5899.52 3889.93 29499.92 3598.99 3599.72 11799.44 138
CP-MVS98.70 8198.42 10899.52 4199.36 11799.12 5798.72 7799.36 10997.54 17498.30 21498.40 24097.86 8199.89 5996.53 19799.72 11799.56 74
SteuartSystems-ACMMP98.79 6598.54 8599.54 2999.73 2599.16 4398.23 12399.31 13497.92 14698.90 14298.90 15298.00 7299.88 7096.15 22199.72 11799.58 64
Skip Steuart: Steuart Systems R&D Blog.
LF4IMVS97.90 17197.69 18098.52 19899.17 15997.66 18197.19 23299.47 7696.31 25097.85 24398.20 26196.71 16899.52 30994.62 26899.72 11798.38 307
KD-MVS_self_test99.25 2799.18 2899.44 5799.63 5099.06 6498.69 8099.54 5099.31 4099.62 2799.53 3697.36 12799.86 9499.24 2299.71 12299.39 157
test_0728_THIRD98.17 13199.08 10699.02 11997.89 7999.88 7097.07 14499.71 12299.70 31
HPM-MVS_fast99.01 3898.82 5099.57 1899.71 3299.35 1299.00 5999.50 6097.33 19798.94 13898.86 16598.75 2499.82 15397.53 11899.71 12299.56 74
FMVSNet596.01 27995.20 29498.41 20997.53 34096.10 23998.74 7499.50 6097.22 21598.03 23599.04 11569.80 37099.88 7097.27 12999.71 12299.25 205
RPSCF98.62 9798.36 11799.42 5899.65 4599.42 598.55 9299.57 3597.72 15998.90 14299.26 7396.12 19199.52 30995.72 24099.71 12299.32 187
MP-MVS-pluss98.57 10498.23 13499.60 1399.69 4099.35 1297.16 23599.38 10194.87 28798.97 12998.99 13198.01 7199.88 7097.29 12899.70 12799.58 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS98.79 6598.52 8799.61 999.67 4299.36 1097.33 21899.20 17498.83 9098.89 14598.90 15296.98 14999.92 3597.16 13499.70 12799.56 74
MTAPA98.88 5698.64 7399.61 999.67 4299.36 1098.43 10999.20 17498.83 9098.89 14598.90 15296.98 14999.92 3597.16 13499.70 12799.56 74
Regformer-398.61 9898.61 7898.63 17999.02 19296.53 23097.17 23398.84 25499.13 5699.10 10398.85 16897.24 13699.79 19098.41 7199.70 12799.57 69
Regformer-498.73 7698.68 6898.89 14699.02 19297.22 20497.17 23399.06 20999.21 4699.17 9698.85 16897.45 12199.86 9498.48 6699.70 12799.60 52
APDe-MVS98.99 4098.79 5399.60 1399.21 14399.15 4898.87 6899.48 7097.57 17099.35 6299.24 7697.83 8399.89 5997.88 10099.70 12799.75 22
tfpnnormal98.90 5498.90 4498.91 14399.67 4297.82 16999.00 5999.44 8499.45 2899.51 3899.24 7698.20 5899.86 9495.92 22999.69 13399.04 240
GBi-Net98.65 9198.47 9899.17 9998.90 21698.24 12099.20 3899.44 8498.59 10198.95 13299.55 3294.14 25299.86 9497.77 10699.69 13399.41 148
test198.65 9198.47 9899.17 9998.90 21698.24 12099.20 3899.44 8498.59 10198.95 13299.55 3294.14 25299.86 9497.77 10699.69 13399.41 148
FMVSNet397.50 20397.24 21398.29 22098.08 31695.83 24797.86 16798.91 23997.89 14998.95 13298.95 14487.06 31199.81 16797.77 10699.69 13399.23 209
ACMMPcopyleft98.75 7398.50 9199.52 4199.56 6499.16 4398.87 6899.37 10597.16 21798.82 16099.01 12897.71 9399.87 8796.29 21399.69 13399.54 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft98.59 10398.26 13099.57 1899.27 13199.15 4897.01 24099.39 9997.67 16199.44 4798.99 13197.53 11199.89 5995.40 25399.68 13899.66 36
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-OURS98.53 11498.34 12099.11 10999.50 7998.82 7795.97 29399.50 6097.30 20199.05 11498.98 13599.35 799.32 33895.72 24099.68 13899.18 221
EPNet96.14 27795.44 28698.25 22390.76 37795.50 25597.92 16094.65 34998.97 7992.98 36298.85 16889.12 30099.87 8795.99 22699.68 13899.39 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS98.99 4099.01 3998.94 13999.50 7997.47 19098.04 14799.59 2698.15 13499.40 5399.36 6198.58 3399.76 21598.78 4699.68 13899.59 58
ACMMP++99.68 138
EPP-MVSNet98.30 13898.04 15799.07 11899.56 6497.83 16699.29 2698.07 30499.03 7398.59 18899.13 9792.16 28299.90 4996.87 16499.68 13899.49 109
our_test_397.39 21497.73 17996.34 30898.70 25689.78 34694.61 34198.97 23196.50 24299.04 11698.85 16895.98 20099.84 12797.26 13099.67 14499.41 148
ACMMP_NAP98.75 7398.48 9699.57 1899.58 5399.29 1897.82 17199.25 16396.94 22698.78 16399.12 9898.02 7099.84 12797.13 14099.67 14499.59 58
HPM-MVScopyleft98.79 6598.53 8699.59 1799.65 4599.29 1899.16 4499.43 9096.74 23498.61 18498.38 24498.62 3099.87 8796.47 20099.67 14499.59 58
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator98.27 298.81 6398.73 5899.05 12598.76 24397.81 17199.25 3399.30 14498.57 10598.55 19699.33 6697.95 7899.90 4997.16 13499.67 14499.44 138
PMVScopyleft91.26 2097.86 17797.94 16597.65 25799.71 3297.94 15898.52 9598.68 27698.99 7697.52 26799.35 6297.41 12398.18 36791.59 33599.67 14496.82 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DP-MVS98.93 5098.81 5299.28 8399.21 14398.45 10698.46 10699.33 12699.63 1499.48 4099.15 9497.23 13799.75 22297.17 13399.66 14999.63 45
MVS_111021_LR98.30 13898.12 14998.83 15399.16 16198.03 14496.09 29099.30 14497.58 16998.10 22898.24 25798.25 5099.34 33596.69 18199.65 15099.12 230
ACMM96.08 1298.91 5298.73 5899.48 5199.55 6799.14 5298.07 14199.37 10597.62 16599.04 11698.96 14098.84 2099.79 19097.43 12299.65 15099.49 109
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS98.68 8798.40 11099.54 2999.57 5799.21 2798.46 10699.29 15197.28 20398.11 22798.39 24298.00 7299.87 8796.86 16699.64 15299.55 82
SMA-MVScopyleft98.40 12998.03 15899.51 4599.16 16199.21 2798.05 14599.22 17194.16 30398.98 12699.10 10297.52 11399.79 19096.45 20299.64 15299.53 94
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
diffmvs98.22 14898.24 13298.17 22899.00 19595.44 25796.38 27899.58 2897.79 15698.53 19998.50 23196.76 16499.74 22697.95 9699.64 15299.34 179
DVP-MVScopyleft98.77 7098.52 8799.52 4199.50 7999.21 2798.02 15098.84 25497.97 14299.08 10699.02 11997.61 10399.88 7096.99 15099.63 15599.48 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1399.50 7999.23 2598.02 15099.32 12899.88 7096.99 15099.63 15599.68 33
VDD-MVS98.56 10598.39 11399.07 11899.13 16898.07 14098.59 8897.01 32899.59 2099.11 10099.27 7194.82 23599.79 19098.34 7599.63 15599.34 179
SED-MVS98.91 5298.72 6099.49 4999.49 8699.17 3998.10 13799.31 13498.03 13899.66 2099.02 11998.36 4499.88 7096.91 15699.62 15899.41 148
IU-MVS99.49 8699.15 4898.87 24592.97 31899.41 5096.76 17399.62 15899.66 36
CS-MVS98.16 15698.22 13597.97 24298.56 28097.01 21798.10 13799.70 1497.45 18697.29 28097.19 32097.72 9299.80 17698.37 7299.62 15897.11 349
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9599.27 3299.57 3599.39 3399.75 1299.62 2199.17 1299.83 14299.06 3099.62 15899.66 36
abl_698.99 4098.78 5499.61 999.45 10099.46 498.60 8699.50 6098.59 10199.24 8599.04 11598.54 3599.89 5996.45 20299.62 15899.50 105
mPP-MVS98.64 9398.34 12099.54 2999.54 7099.17 3998.63 8399.24 16897.47 17998.09 22998.68 19997.62 10299.89 5996.22 21699.62 15899.57 69
DeepPCF-MVS96.93 598.32 13698.01 15999.23 9498.39 29898.97 6695.03 32899.18 18396.88 22999.33 6598.78 18398.16 6299.28 34496.74 17599.62 15899.44 138
AllTest98.44 12398.20 13799.16 10299.50 7998.55 9798.25 12299.58 2896.80 23198.88 14999.06 10597.65 9799.57 29494.45 27499.61 16599.37 167
TestCases99.16 10299.50 7998.55 9799.58 2896.80 23198.88 14999.06 10597.65 9799.57 29494.45 27499.61 16599.37 167
MSC_two_6792asdad99.32 7898.43 29398.37 11198.86 25099.89 5997.14 13899.60 16799.71 26
No_MVS99.32 7898.43 29398.37 11198.86 25099.89 5997.14 13899.60 16799.71 26
test_241102_TWO99.30 14498.03 13899.26 8099.02 11997.51 11499.88 7096.91 15699.60 16799.66 36
MP-MVScopyleft98.46 12198.09 15199.54 2999.57 5799.22 2698.50 10099.19 17997.61 16797.58 26198.66 20497.40 12499.88 7094.72 26799.60 16799.54 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS98.71 7898.44 10499.51 4599.49 8699.16 4398.52 9599.31 13497.47 17998.58 19098.50 23197.97 7699.85 10996.57 18999.59 17199.53 94
#test#98.50 11798.16 14499.51 4599.49 8699.16 4398.03 14899.31 13496.30 25198.58 19098.50 23197.97 7699.85 10995.68 24399.59 17199.53 94
CVMVSNet96.25 27597.21 21593.38 35099.10 17380.56 37697.20 22998.19 30096.94 22699.00 12399.02 11989.50 29899.80 17696.36 20999.59 17199.78 14
ACMMPR98.70 8198.42 10899.54 2999.52 7499.14 5298.52 9599.31 13497.47 17998.56 19498.54 22497.75 9099.88 7096.57 18999.59 17199.58 64
PGM-MVS98.66 9098.37 11699.55 2699.53 7299.18 3898.23 12399.49 6897.01 22498.69 17398.88 16198.00 7299.89 5995.87 23399.59 17199.58 64
DELS-MVS98.27 14298.20 13798.48 20398.86 22596.70 22795.60 31299.20 17497.73 15898.45 20398.71 19397.50 11599.82 15398.21 8099.59 17198.93 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 8398.40 11099.54 2999.53 7299.17 3998.52 9599.31 13497.46 18498.44 20498.51 22897.83 8399.88 7096.46 20199.58 17799.58 64
114514_t96.50 26695.77 27398.69 17399.48 9497.43 19397.84 16999.55 4681.42 36896.51 31698.58 22195.53 21599.67 25793.41 30899.58 17798.98 249
PHI-MVS98.29 14197.95 16399.34 7398.44 29299.16 4398.12 13499.38 10196.01 26098.06 23198.43 23897.80 8799.67 25795.69 24299.58 17799.20 214
TinyColmap97.89 17397.98 16197.60 26198.86 22594.35 28496.21 28699.44 8497.45 18699.06 10998.88 16197.99 7599.28 34494.38 28099.58 17799.18 221
Regformer-198.55 10998.44 10498.87 14898.85 22797.29 19896.91 24998.99 22998.97 7998.99 12498.64 20997.26 13599.81 16797.79 10499.57 18199.51 101
Regformer-298.60 10098.46 10099.02 13198.85 22797.71 17996.91 24999.09 20598.98 7899.01 12098.64 20997.37 12699.84 12797.75 11199.57 18199.52 98
MVSFormer98.26 14498.43 10697.77 25098.88 22293.89 30199.39 1399.56 4299.11 5798.16 22198.13 26493.81 25999.97 399.26 1899.57 18199.43 142
lupinMVS97.06 23996.86 23497.65 25798.88 22293.89 30195.48 31797.97 30793.53 31298.16 22197.58 30193.81 25999.91 4596.77 17299.57 18199.17 225
MVS_111021_HR98.25 14698.08 15498.75 16899.09 17697.46 19195.97 29399.27 15797.60 16897.99 23698.25 25698.15 6499.38 33296.87 16499.57 18199.42 145
OPM-MVS98.56 10598.32 12499.25 9199.41 10998.73 8497.13 23799.18 18397.10 22098.75 16998.92 14898.18 5999.65 27096.68 18299.56 18699.37 167
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_Blended96.88 25096.68 24697.47 27298.92 21293.77 30594.71 33599.43 9090.98 34397.62 25797.36 31796.82 15899.67 25794.73 26599.56 18698.98 249
DeepC-MVS_fast96.85 698.30 13898.15 14698.75 16898.61 27297.23 20297.76 17899.09 20597.31 20098.75 16998.66 20497.56 10799.64 27296.10 22499.55 18899.39 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft98.10 15797.67 18199.42 5899.11 16998.93 7097.76 17899.28 15494.97 28498.72 17298.77 18597.04 14399.85 10993.79 29899.54 18999.49 109
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DSMNet-mixed97.42 21297.60 19096.87 29799.15 16591.46 33498.54 9399.12 20192.87 32197.58 26199.63 2096.21 18999.90 4995.74 23999.54 18999.27 201
CPTT-MVS97.84 18397.36 20599.27 8699.31 12498.46 10598.29 11899.27 15794.90 28697.83 24498.37 24694.90 23199.84 12793.85 29799.54 18999.51 101
1112_ss97.29 22296.86 23498.58 18699.34 12396.32 23596.75 25999.58 2893.14 31796.89 30097.48 30892.11 28399.86 9496.91 15699.54 18999.57 69
XVS98.72 7798.45 10299.53 3699.46 9799.21 2798.65 8199.34 12198.62 9997.54 26598.63 21397.50 11599.83 14296.79 16999.53 19399.56 74
X-MVStestdata94.32 30892.59 32699.53 3699.46 9799.21 2798.65 8199.34 12198.62 9997.54 26545.85 37297.50 11599.83 14296.79 16999.53 19399.56 74
Test_1112_low_res96.99 24796.55 25798.31 21899.35 12195.47 25695.84 30499.53 5491.51 33796.80 30698.48 23691.36 28799.83 14296.58 18799.53 19399.62 46
xxxxxxxxxxxxxcwj98.44 12398.24 13299.06 12399.11 16997.97 15196.53 26899.54 5098.24 12298.83 15698.90 15297.80 8799.82 15395.68 24399.52 19699.38 164
SF-MVS98.53 11498.27 12999.32 7899.31 12498.75 8098.19 12799.41 9496.77 23398.83 15698.90 15297.80 8799.82 15395.68 24399.52 19699.38 164
Anonymous2024052998.93 5098.87 4599.12 10799.19 15098.22 12599.01 5798.99 22999.25 4599.54 3099.37 5897.04 14399.80 17697.89 9799.52 19699.35 177
GST-MVS98.61 9898.30 12599.52 4199.51 7699.20 3398.26 12199.25 16397.44 18898.67 17598.39 24297.68 9499.85 10996.00 22599.51 19999.52 98
tttt051795.64 28894.98 29997.64 25999.36 11793.81 30398.72 7790.47 36898.08 13698.67 17598.34 25073.88 36799.92 3597.77 10699.51 19999.20 214
HQP_MVS97.99 16897.67 18198.93 14099.19 15097.65 18297.77 17699.27 15798.20 12897.79 24797.98 27794.90 23199.70 24194.42 27699.51 19999.45 133
plane_prior599.27 15799.70 24194.42 27699.51 19999.45 133
ab-mvs98.41 12698.36 11798.59 18599.19 15097.23 20299.32 1798.81 26097.66 16298.62 18299.40 5796.82 15899.80 17695.88 23099.51 19998.75 286
OMC-MVS97.88 17597.49 19599.04 12798.89 22198.63 8996.94 24499.25 16395.02 28298.53 19998.51 22897.27 13299.47 32093.50 30699.51 19999.01 244
CMPMVSbinary75.91 2396.29 27395.44 28698.84 15296.25 36698.69 8797.02 23999.12 20188.90 35497.83 24498.86 16589.51 29798.90 36191.92 32999.51 19998.92 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc98.24 22498.82 23695.97 24398.62 8499.00 22899.27 7699.21 7996.99 14899.50 31496.55 19599.50 20699.26 204
ETH3D-3000-0.198.03 16197.62 18899.29 8199.11 16998.80 7897.47 20999.32 12895.54 27198.43 20798.62 21596.61 17299.77 20893.95 29299.49 20799.30 194
TSAR-MVS + MP.98.63 9598.49 9499.06 12399.64 4897.90 16098.51 9998.94 23296.96 22599.24 8598.89 16097.83 8399.81 16796.88 16399.49 20799.48 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPU-MVS98.82 15498.59 27698.30 11698.10 13798.52 22798.18 5998.75 36494.62 26899.48 20999.41 148
RRT_test8_iter0595.24 29695.13 29695.57 32597.32 34887.02 35997.99 15499.41 9498.06 13799.12 9899.05 11266.85 37599.85 10998.93 3799.47 21099.84 8
9.1497.78 17499.07 18097.53 20299.32 12895.53 27398.54 19898.70 19697.58 10599.76 21594.32 28199.46 211
CS-MVS-test98.41 12698.30 12598.73 17298.84 23098.39 10898.71 7999.79 597.98 14096.86 30297.38 31497.86 8199.83 14297.81 10399.46 21197.97 322
TSAR-MVS + GP.98.18 15297.98 16198.77 16598.71 25297.88 16196.32 28198.66 27796.33 24899.23 8898.51 22897.48 12099.40 32897.16 13499.46 21199.02 243
DVP-MVS++98.90 5498.70 6599.51 4598.43 29399.15 4899.43 1099.32 12898.17 13199.26 8099.02 11998.18 5999.88 7097.07 14499.45 21499.49 109
PC_three_145293.27 31599.40 5398.54 22498.22 5597.00 37095.17 25599.45 21499.49 109
PCF-MVS92.86 1894.36 30793.00 32498.42 20898.70 25697.56 18693.16 36099.11 20379.59 36997.55 26497.43 31192.19 28199.73 23079.85 37099.45 21497.97 322
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet96.99 24796.76 24197.67 25598.72 24994.89 27295.95 29798.20 29892.62 32498.55 19698.54 22494.88 23499.52 30993.96 29199.44 21798.59 298
APD-MVS_3200maxsize98.84 6098.61 7899.53 3699.19 15099.27 2198.49 10199.33 12698.64 9599.03 11998.98 13597.89 7999.85 10996.54 19699.42 21899.46 129
MSLP-MVS++98.02 16398.14 14897.64 25998.58 27795.19 26597.48 20799.23 17097.47 17997.90 23998.62 21597.04 14398.81 36397.55 11599.41 21998.94 259
QAPM97.31 21996.81 23998.82 15498.80 24097.49 18999.06 5599.19 17990.22 34797.69 25399.16 9096.91 15299.90 4990.89 34699.41 21999.07 234
ETH3 D test640096.46 26995.59 28199.08 11598.88 22298.21 12696.53 26899.18 18388.87 35597.08 28797.79 28893.64 26499.77 20888.92 35399.40 22199.28 199
SR-MVS-dyc-post98.81 6398.55 8499.57 1899.20 14799.38 698.48 10499.30 14498.64 9598.95 13298.96 14097.49 11899.86 9496.56 19299.39 22299.45 133
RE-MVS-def98.58 8299.20 14799.38 698.48 10499.30 14498.64 9598.95 13298.96 14097.75 9096.56 19299.39 22299.45 133
MVS-HIRNet94.32 30895.62 27990.42 35498.46 29075.36 37796.29 28289.13 37195.25 28095.38 34499.75 792.88 27499.19 35094.07 28999.39 22296.72 355
CDPH-MVS97.26 22396.66 24999.07 11899.00 19598.15 13096.03 29199.01 22591.21 34197.79 24797.85 28696.89 15399.69 24592.75 32099.38 22599.39 157
test117298.76 7198.49 9499.57 1899.18 15799.37 998.39 11299.31 13498.43 10998.90 14298.88 16197.49 11899.86 9496.43 20499.37 22699.48 119
VPNet98.87 5798.83 4999.01 13299.70 3897.62 18598.43 10999.35 11599.47 2699.28 7499.05 11296.72 16799.82 15398.09 8799.36 22799.59 58
plane_prior97.65 18297.07 23896.72 23599.36 227
thisisatest053095.27 29594.45 30597.74 25399.19 15094.37 28397.86 16790.20 36997.17 21698.22 21897.65 29773.53 36899.90 4996.90 16199.35 22998.95 255
HPM-MVS++copyleft98.10 15797.64 18699.48 5199.09 17699.13 5597.52 20398.75 27097.46 18496.90 29997.83 28796.01 19599.84 12795.82 23799.35 22999.46 129
LS3D98.63 9598.38 11599.36 6597.25 35099.38 699.12 4999.32 12899.21 4698.44 20498.88 16197.31 12899.80 17696.58 18799.34 23198.92 261
CNVR-MVS98.17 15497.87 17099.07 11898.67 26598.24 12097.01 24098.93 23497.25 20697.62 25798.34 25097.27 13299.57 29496.42 20599.33 23299.39 157
sss97.21 22896.93 22898.06 23698.83 23395.22 26496.75 25998.48 28794.49 29297.27 28197.90 28392.77 27699.80 17696.57 18999.32 23399.16 228
3Dnovator+97.89 398.69 8398.51 8999.24 9398.81 23898.40 10799.02 5699.19 17998.99 7698.07 23099.28 6997.11 14299.84 12796.84 16799.32 23399.47 127
SR-MVS98.71 7898.43 10699.57 1899.18 15799.35 1298.36 11599.29 15198.29 11998.88 14998.85 16897.53 11199.87 8796.14 22299.31 23599.48 119
Anonymous20240521197.90 17197.50 19499.08 11598.90 21698.25 11998.53 9496.16 34098.87 8699.11 10098.86 16590.40 29299.78 20297.36 12599.31 23599.19 219
Patchmatch-test96.55 26396.34 26397.17 28498.35 29993.06 31298.40 11197.79 31097.33 19798.41 20898.67 20183.68 33999.69 24595.16 25699.31 23598.77 283
LCM-MVSNet-Re98.64 9398.48 9699.11 10998.85 22798.51 10298.49 10199.83 498.37 11199.69 1799.46 4698.21 5799.92 3594.13 28799.30 23898.91 264
EPNet_dtu94.93 30294.78 30395.38 33193.58 37487.68 35596.78 25695.69 34697.35 19689.14 37098.09 27188.15 30999.49 31594.95 26199.30 23898.98 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS96.21 1196.63 26195.95 27198.65 17598.93 20898.09 13496.93 24699.28 15483.58 36698.13 22497.78 28996.13 19099.40 32893.52 30499.29 24098.45 303
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet93.40 1795.67 28795.70 27695.57 32598.83 23388.57 34992.50 36297.72 31292.69 32396.49 31996.44 33793.72 26299.43 32693.61 30199.28 24198.71 289
EIA-MVS98.00 16597.74 17798.80 15898.72 24998.09 13498.05 14599.60 2597.39 19296.63 31095.55 35097.68 9499.80 17696.73 17799.27 24298.52 299
LFMVS97.20 22996.72 24398.64 17698.72 24996.95 21998.93 6594.14 35699.74 798.78 16399.01 12884.45 33299.73 23097.44 12199.27 24299.25 205
ITE_SJBPF98.87 14899.22 14198.48 10499.35 11597.50 17698.28 21698.60 21997.64 10099.35 33493.86 29699.27 24298.79 281
HQP3-MVS99.04 21699.26 245
HQP-MVS97.00 24696.49 25998.55 19498.67 26596.79 22396.29 28299.04 21696.05 25795.55 33896.84 32893.84 25799.54 30392.82 31799.26 24599.32 187
ETV-MVS98.03 16197.86 17198.56 19398.69 26098.07 14097.51 20599.50 6098.10 13597.50 26995.51 35198.41 4199.88 7096.27 21499.24 24797.71 337
MCST-MVS98.00 16597.63 18799.10 11199.24 13698.17 12996.89 25198.73 27395.66 26997.92 23797.70 29597.17 13999.66 26596.18 22099.23 24899.47 127
SCA96.41 27196.66 24995.67 32298.24 30688.35 35195.85 30396.88 33396.11 25597.67 25498.67 20193.10 26999.85 10994.16 28299.22 24998.81 275
MSDG97.71 19097.52 19398.28 22198.91 21596.82 22294.42 34599.37 10597.65 16398.37 21398.29 25597.40 12499.33 33794.09 28899.22 24998.68 295
MIMVSNet96.62 26296.25 26897.71 25499.04 18794.66 27899.16 4496.92 33297.23 21297.87 24199.10 10286.11 32099.65 27091.65 33399.21 25198.82 272
test_prior397.48 20797.00 22598.95 13798.69 26097.95 15695.74 30799.03 21896.48 24396.11 32597.63 29995.92 20499.59 28894.16 28299.20 25299.30 194
test_prior295.74 30796.48 24396.11 32597.63 29995.92 20494.16 28299.20 252
VDDNet98.21 14997.95 16399.01 13299.58 5397.74 17799.01 5797.29 32499.67 1098.97 12999.50 3990.45 29199.80 17697.88 10099.20 25299.48 119
OpenMVScopyleft96.65 797.09 23696.68 24698.32 21698.32 30197.16 21198.86 7099.37 10589.48 35196.29 32399.15 9496.56 17399.90 4992.90 31499.20 25297.89 324
ZD-MVS99.01 19498.84 7499.07 20894.10 30498.05 23398.12 26796.36 18699.86 9492.70 32299.19 256
MSP-MVS98.40 12998.00 16099.61 999.57 5799.25 2398.57 9099.35 11597.55 17399.31 7397.71 29394.61 24299.88 7096.14 22299.19 25699.70 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNLPA97.17 23296.71 24498.55 19498.56 28098.05 14396.33 28098.93 23496.91 22897.06 28997.39 31394.38 24899.45 32491.66 33299.18 25898.14 315
ETH3D cwj APD-0.1697.55 20197.00 22599.19 9898.51 28698.64 8896.85 25299.13 19994.19 30297.65 25598.40 24095.78 20899.81 16793.37 30999.16 25999.12 230
train_agg97.10 23596.45 26099.07 11898.71 25298.08 13895.96 29599.03 21891.64 33395.85 33197.53 30396.47 17899.76 21593.67 30099.16 25999.36 173
agg_prior292.50 32599.16 25999.37 167
test9_res93.28 31199.15 26299.38 164
MS-PatchMatch97.68 19297.75 17697.45 27398.23 30893.78 30497.29 22198.84 25496.10 25698.64 17998.65 20696.04 19399.36 33396.84 16799.14 26399.20 214
agg_prior197.06 23996.40 26199.03 12898.68 26397.99 14695.76 30599.01 22591.73 33295.59 33497.50 30696.49 17799.77 20893.71 29999.14 26399.34 179
AdaColmapbinary97.14 23496.71 24498.46 20598.34 30097.80 17296.95 24398.93 23495.58 27096.92 29497.66 29695.87 20699.53 30590.97 34399.14 26398.04 318
VNet98.42 12598.30 12598.79 16098.79 24297.29 19898.23 12398.66 27799.31 4098.85 15398.80 18094.80 23899.78 20298.13 8399.13 26699.31 191
test1298.93 14098.58 27797.83 16698.66 27796.53 31495.51 21799.69 24599.13 26699.27 201
DP-MVS Recon97.33 21896.92 23098.57 18999.09 17697.99 14696.79 25599.35 11593.18 31697.71 25198.07 27395.00 23099.31 33993.97 29099.13 26698.42 306
thisisatest051594.12 31493.16 32196.97 29298.60 27492.90 31693.77 35690.61 36794.10 30496.91 29695.87 34674.99 36699.80 17694.52 27199.12 26998.20 312
pmmvs395.03 30094.40 30696.93 29397.70 33492.53 32295.08 32797.71 31388.57 35697.71 25198.08 27279.39 35799.82 15396.19 21899.11 27098.43 305
test22298.92 21296.93 22095.54 31398.78 26585.72 36396.86 30298.11 26894.43 24599.10 27199.23 209
testtj97.79 18797.25 21199.42 5899.03 19098.85 7397.78 17399.18 18395.83 26698.12 22598.50 23195.50 21899.86 9492.23 32899.07 27299.54 86
xiu_mvs_v1_base_debu97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
xiu_mvs_v1_base97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
xiu_mvs_v1_base_debi97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
MG-MVS96.77 25596.61 25197.26 28198.31 30293.06 31295.93 29898.12 30396.45 24597.92 23798.73 19093.77 26199.39 33091.19 34299.04 27699.33 185
cl2295.79 28595.39 28996.98 29196.77 35892.79 31894.40 34698.53 28494.59 29197.89 24098.17 26382.82 34499.24 34696.37 20799.03 27798.92 261
miper_ehance_all_eth97.06 23997.03 22397.16 28697.83 32793.06 31294.66 33899.09 20595.99 26198.69 17398.45 23792.73 27799.61 28396.79 16999.03 27798.82 272
miper_enhance_ethall96.01 27995.74 27496.81 30196.41 36492.27 32793.69 35798.89 24291.14 34298.30 21497.35 31890.58 29099.58 29396.31 21199.03 27798.60 296
112196.73 25696.00 26998.91 14398.95 20597.76 17498.07 14198.73 27387.65 35996.54 31398.13 26494.52 24499.73 23092.38 32699.02 28099.24 208
API-MVS97.04 24296.91 23297.42 27597.88 32598.23 12498.18 12898.50 28697.57 17097.39 27796.75 33096.77 16299.15 35390.16 34999.02 28094.88 367
旧先验198.82 23697.45 19298.76 26798.34 25095.50 21899.01 28299.23 209
新几何198.91 14398.94 20697.76 17498.76 26787.58 36096.75 30798.10 26994.80 23899.78 20292.73 32199.00 28399.20 214
原ACMM198.35 21498.90 21696.25 23798.83 25992.48 32596.07 32898.10 26995.39 22299.71 23992.61 32498.99 28499.08 233
testgi98.32 13698.39 11398.13 23099.57 5795.54 25297.78 17399.49 6897.37 19499.19 9197.65 29798.96 1799.49 31596.50 19998.99 28499.34 179
MVP-Stereo98.08 15997.92 16698.57 18998.96 20396.79 22397.90 16399.18 18396.41 24698.46 20298.95 14495.93 20399.60 28496.51 19898.98 28699.31 191
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
alignmvs97.35 21696.88 23398.78 16398.54 28398.09 13497.71 18297.69 31499.20 4997.59 26095.90 34588.12 31099.55 30098.18 8298.96 28798.70 291
testdata98.09 23198.93 20895.40 25998.80 26290.08 34997.45 27398.37 24695.26 22499.70 24193.58 30398.95 28899.17 225
Effi-MVS+-dtu98.26 14497.90 16899.35 7098.02 31899.49 398.02 15099.16 19298.29 11997.64 25697.99 27696.44 18099.95 1596.66 18398.93 28998.60 296
MVS_Test98.18 15298.36 11797.67 25598.48 28894.73 27598.18 12899.02 22297.69 16098.04 23499.11 10097.22 13899.56 29798.57 6098.90 29098.71 289
CL-MVSNet_self_test97.44 21197.22 21498.08 23498.57 27995.78 24994.30 34898.79 26396.58 24198.60 18698.19 26294.74 24199.64 27296.41 20698.84 29198.82 272
Fast-Effi-MVS+97.67 19397.38 20398.57 18998.71 25297.43 19397.23 22599.45 8194.82 28896.13 32496.51 33398.52 3699.91 4596.19 21898.83 29298.37 309
NCCC97.86 17797.47 19999.05 12598.61 27298.07 14096.98 24298.90 24097.63 16497.04 29097.93 28295.99 19999.66 26595.31 25498.82 29399.43 142
PatchMatch-RL97.24 22696.78 24098.61 18399.03 19097.83 16696.36 27999.06 20993.49 31497.36 27997.78 28995.75 20999.49 31593.44 30798.77 29498.52 299
DPM-MVS96.32 27295.59 28198.51 20098.76 24397.21 20694.54 34498.26 29591.94 33196.37 32197.25 31993.06 27199.43 32691.42 33898.74 29598.89 265
YYNet197.60 19897.67 18197.39 27799.04 18793.04 31595.27 32198.38 29297.25 20698.92 14098.95 14495.48 22099.73 23096.99 15098.74 29599.41 148
MDA-MVSNet-bldmvs97.94 16997.91 16798.06 23699.44 10294.96 27196.63 26599.15 19898.35 11298.83 15699.11 10094.31 24999.85 10996.60 18698.72 29799.37 167
MDA-MVSNet_test_wron97.60 19897.66 18497.41 27699.04 18793.09 31195.27 32198.42 28997.26 20598.88 14998.95 14495.43 22199.73 23097.02 14798.72 29799.41 148
Fast-Effi-MVS+-dtu98.27 14298.09 15198.81 15698.43 29398.11 13397.61 19399.50 6098.64 9597.39 27797.52 30598.12 6599.95 1596.90 16198.71 29998.38 307
canonicalmvs98.34 13598.26 13098.58 18698.46 29097.82 16998.96 6399.46 7899.19 5397.46 27295.46 35398.59 3299.46 32298.08 8898.71 29998.46 301
xiu_mvs_v2_base97.16 23397.49 19596.17 31398.54 28392.46 32395.45 31898.84 25497.25 20697.48 27196.49 33498.31 4999.90 4996.34 21098.68 30196.15 361
PS-MVSNAJ97.08 23797.39 20296.16 31598.56 28092.46 32395.24 32398.85 25397.25 20697.49 27095.99 34398.07 6699.90 4996.37 20798.67 30296.12 362
PatchmatchNetpermissive95.58 28995.67 27895.30 33297.34 34787.32 35697.65 18996.65 33595.30 27997.07 28898.69 19784.77 32999.75 22294.97 26098.64 30398.83 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVEpermissive83.40 2292.50 33091.92 33394.25 34098.83 23391.64 33292.71 36183.52 37695.92 26386.46 37395.46 35395.20 22595.40 37280.51 36998.64 30395.73 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
OpenMVS_ROBcopyleft95.38 1495.84 28495.18 29597.81 24898.41 29797.15 21297.37 21598.62 28083.86 36598.65 17898.37 24694.29 25099.68 25488.41 35498.62 30596.60 356
cascas94.79 30394.33 30996.15 31696.02 36992.36 32692.34 36499.26 16285.34 36495.08 34894.96 36092.96 27398.53 36594.41 27998.59 30697.56 342
BH-RMVSNet96.83 25296.58 25497.58 26398.47 28994.05 29096.67 26397.36 32096.70 23797.87 24197.98 27795.14 22799.44 32590.47 34898.58 30799.25 205
GA-MVS95.86 28395.32 29197.49 27198.60 27494.15 28993.83 35597.93 30895.49 27496.68 30897.42 31283.21 34099.30 34196.22 21698.55 30899.01 244
F-COLMAP97.30 22096.68 24699.14 10599.19 15098.39 10897.27 22499.30 14492.93 31996.62 31198.00 27595.73 21099.68 25492.62 32398.46 30999.35 177
XVG-OURS-SEG-HR98.49 11898.28 12899.14 10599.49 8698.83 7596.54 26799.48 7097.32 19999.11 10098.61 21899.33 899.30 34196.23 21598.38 31099.28 199
test_yl96.69 25796.29 26597.90 24398.28 30395.24 26297.29 22197.36 32098.21 12598.17 21997.86 28486.27 31699.55 30094.87 26298.32 31198.89 265
DCV-MVSNet96.69 25796.29 26597.90 24398.28 30395.24 26297.29 22197.36 32098.21 12598.17 21997.86 28486.27 31699.55 30094.87 26298.32 31198.89 265
thres600view794.45 30693.83 31296.29 30999.06 18491.53 33397.99 15494.24 35498.34 11397.44 27495.01 35779.84 35399.67 25784.33 36298.23 31397.66 338
MAR-MVS96.47 26895.70 27698.79 16097.92 32399.12 5798.28 11998.60 28192.16 33095.54 34196.17 34194.77 24099.52 30989.62 35198.23 31397.72 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+98.02 16397.82 17398.62 18198.53 28597.19 20897.33 21899.68 1697.30 20196.68 30897.46 31098.56 3499.80 17696.63 18598.20 31598.86 269
test-LLR93.90 31793.85 31194.04 34196.53 36084.62 36794.05 35292.39 36396.17 25294.12 35595.07 35582.30 34599.67 25795.87 23398.18 31697.82 328
test-mter92.33 33391.76 33694.04 34196.53 36084.62 36794.05 35292.39 36394.00 30794.12 35595.07 35565.63 37999.67 25795.87 23398.18 31697.82 328
mvs_anonymous97.83 18598.16 14496.87 29798.18 31091.89 33097.31 22098.90 24097.37 19498.83 15699.46 4696.28 18899.79 19098.90 3898.16 31898.95 255
WTY-MVS96.67 25996.27 26797.87 24598.81 23894.61 28096.77 25797.92 30994.94 28597.12 28497.74 29291.11 28899.82 15393.89 29498.15 31999.18 221
thres20093.72 32093.14 32295.46 33098.66 27091.29 33996.61 26694.63 35097.39 19296.83 30493.71 36879.88 35299.56 29782.40 36798.13 32095.54 366
TESTMET0.1,192.19 33591.77 33593.46 34896.48 36282.80 37294.05 35291.52 36694.45 29694.00 35894.88 36166.65 37699.56 29795.78 23898.11 32198.02 319
PMMVS96.51 26495.98 27098.09 23197.53 34095.84 24694.92 33198.84 25491.58 33596.05 32995.58 34995.68 21199.66 26595.59 24898.09 32298.76 285
thres100view90094.19 31193.67 31595.75 32199.06 18491.35 33798.03 14894.24 35498.33 11497.40 27694.98 35979.84 35399.62 27783.05 36498.08 32396.29 357
tfpn200view994.03 31593.44 31795.78 32098.93 20891.44 33597.60 19494.29 35297.94 14497.10 28594.31 36579.67 35599.62 27783.05 36498.08 32396.29 357
thres40094.14 31393.44 31796.24 31198.93 20891.44 33597.60 19494.29 35297.94 14497.10 28594.31 36579.67 35599.62 27783.05 36498.08 32397.66 338
PLCcopyleft94.65 1696.51 26495.73 27598.85 15198.75 24597.91 15996.42 27699.06 20990.94 34495.59 33497.38 31494.41 24699.59 28890.93 34498.04 32699.05 236
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MDTV_nov1_ep1395.22 29397.06 35383.20 37197.74 18096.16 34094.37 29896.99 29298.83 17483.95 33799.53 30593.90 29397.95 327
mvs-test197.83 18597.48 19898.89 14698.02 31899.20 3397.20 22999.16 19298.29 11996.46 32097.17 32296.44 18099.92 3596.66 18397.90 32897.54 343
PAPM_NR96.82 25496.32 26498.30 21999.07 18096.69 22897.48 20798.76 26795.81 26796.61 31296.47 33694.12 25599.17 35190.82 34797.78 32999.06 235
EMVS93.83 31894.02 31093.23 35196.83 35784.96 36589.77 36896.32 33997.92 14697.43 27596.36 34086.17 31898.93 36087.68 35697.73 33095.81 364
E-PMN94.17 31294.37 30793.58 34796.86 35585.71 36490.11 36797.07 32798.17 13197.82 24697.19 32084.62 33198.94 35989.77 35097.68 33196.09 363
PatchT96.65 26096.35 26297.54 26897.40 34595.32 26097.98 15696.64 33699.33 3996.89 30099.42 5284.32 33499.81 16797.69 11497.49 33297.48 344
FPMVS93.44 32392.23 32897.08 28799.25 13597.86 16395.61 31197.16 32692.90 32093.76 36098.65 20675.94 36595.66 37179.30 37197.49 33297.73 335
AUN-MVS96.24 27695.45 28598.60 18498.70 25697.22 20497.38 21497.65 31595.95 26295.53 34297.96 28182.11 34999.79 19096.31 21197.44 33498.80 280
BH-untuned96.83 25296.75 24297.08 28798.74 24693.33 30996.71 26198.26 29596.72 23598.44 20497.37 31695.20 22599.47 32091.89 33097.43 33598.44 304
hse-mvs297.46 20897.07 22198.64 17698.73 24797.33 19697.45 21197.64 31799.11 5798.58 19097.98 27788.65 30699.79 19098.11 8497.39 33698.81 275
UnsupCasMVSNet_bld97.30 22096.92 23098.45 20699.28 12996.78 22696.20 28799.27 15795.42 27698.28 21698.30 25493.16 26799.71 23994.99 25997.37 33798.87 268
PAPR95.29 29494.47 30497.75 25297.50 34495.14 26794.89 33298.71 27591.39 33995.35 34595.48 35294.57 24399.14 35484.95 36197.37 33798.97 253
CR-MVSNet96.28 27495.95 27197.28 28097.71 33294.22 28598.11 13598.92 23792.31 32796.91 29699.37 5885.44 32699.81 16797.39 12497.36 33997.81 330
RPMNet97.02 24396.93 22897.30 27997.71 33294.22 28598.11 13599.30 14499.37 3596.91 29699.34 6486.72 31399.87 8797.53 11897.36 33997.81 330
HY-MVS95.94 1395.90 28295.35 29097.55 26797.95 32194.79 27398.81 7396.94 33192.28 32895.17 34698.57 22289.90 29599.75 22291.20 34197.33 34198.10 316
131495.74 28695.60 28096.17 31397.53 34092.75 32098.07 14198.31 29491.22 34094.25 35396.68 33195.53 21599.03 35591.64 33497.18 34296.74 354
gg-mvs-nofinetune92.37 33291.20 33795.85 31895.80 37192.38 32599.31 2181.84 37799.75 591.83 36699.74 868.29 37199.02 35687.15 35797.12 34396.16 360
ET-MVSNet_ETH3D94.30 31093.21 32097.58 26398.14 31294.47 28294.78 33493.24 36194.72 28989.56 36995.87 34678.57 36199.81 16796.91 15697.11 34498.46 301
ADS-MVSNet295.43 29394.98 29996.76 30398.14 31291.74 33197.92 16097.76 31190.23 34596.51 31698.91 14985.61 32399.85 10992.88 31596.90 34598.69 292
ADS-MVSNet95.24 29694.93 30196.18 31298.14 31290.10 34597.92 16097.32 32390.23 34596.51 31698.91 14985.61 32399.74 22692.88 31596.90 34598.69 292
MVS93.19 32592.09 32996.50 30696.91 35494.03 29298.07 14198.06 30568.01 37094.56 35296.48 33595.96 20299.30 34183.84 36396.89 34796.17 359
tpm293.09 32692.58 32794.62 33797.56 33886.53 36097.66 18795.79 34586.15 36294.07 35798.23 25975.95 36499.53 30590.91 34596.86 34897.81 330
baseline293.73 31992.83 32596.42 30797.70 33491.28 34096.84 25489.77 37093.96 30892.44 36495.93 34479.14 35899.77 20892.94 31396.76 34998.21 311
CostFormer93.97 31693.78 31394.51 33897.53 34085.83 36397.98 15695.96 34389.29 35394.99 34998.63 21378.63 36099.62 27794.54 27096.50 35098.09 317
EPMVS93.72 32093.27 31995.09 33496.04 36887.76 35498.13 13285.01 37594.69 29096.92 29498.64 20978.47 36399.31 33995.04 25796.46 35198.20 312
h-mvs3397.77 18897.33 20999.10 11199.21 14397.84 16598.35 11698.57 28299.11 5798.58 19099.02 11988.65 30699.96 898.11 8496.34 35299.49 109
TR-MVS95.55 29095.12 29796.86 30097.54 33993.94 29696.49 27296.53 33794.36 29997.03 29196.61 33294.26 25199.16 35286.91 35896.31 35397.47 345
tpmvs95.02 30195.25 29294.33 33996.39 36585.87 36198.08 14096.83 33495.46 27595.51 34398.69 19785.91 32199.53 30594.16 28296.23 35497.58 341
tpmrst95.07 29995.46 28493.91 34397.11 35284.36 36997.62 19196.96 32994.98 28396.35 32298.80 18085.46 32599.59 28895.60 24796.23 35497.79 333
KD-MVS_2432*160092.87 32791.99 33195.51 32891.37 37589.27 34794.07 35098.14 30195.42 27697.25 28296.44 33767.86 37299.24 34691.28 33996.08 35698.02 319
miper_refine_blended92.87 32791.99 33195.51 32891.37 37589.27 34794.07 35098.14 30195.42 27697.25 28296.44 33767.86 37299.24 34691.28 33996.08 35698.02 319
BH-w/o95.13 29894.89 30295.86 31798.20 30991.31 33895.65 31097.37 31993.64 31096.52 31595.70 34893.04 27299.02 35688.10 35595.82 35897.24 347
UnsupCasMVSNet_eth97.89 17397.60 19098.75 16899.31 12497.17 21097.62 19199.35 11598.72 9498.76 16898.68 19992.57 27999.74 22697.76 11095.60 35999.34 179
PAPM91.88 33690.34 33996.51 30598.06 31792.56 32192.44 36397.17 32586.35 36190.38 36896.01 34286.61 31499.21 34970.65 37395.43 36097.75 334
tpm cat193.29 32493.13 32393.75 34597.39 34684.74 36697.39 21397.65 31583.39 36794.16 35498.41 23982.86 34399.39 33091.56 33695.35 36197.14 348
tpm94.67 30494.34 30895.66 32397.68 33688.42 35097.88 16494.90 34894.46 29496.03 33098.56 22378.66 35999.79 19095.88 23095.01 36298.78 282
JIA-IIPM95.52 29195.03 29897.00 28996.85 35694.03 29296.93 24695.82 34499.20 4994.63 35199.71 1283.09 34199.60 28494.42 27694.64 36397.36 346
IB-MVS91.63 1992.24 33490.90 33896.27 31097.22 35191.24 34194.36 34793.33 36092.37 32692.24 36594.58 36466.20 37899.89 5993.16 31294.63 36497.66 338
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND94.76 33694.54 37392.13 32999.31 2180.47 37888.73 37191.01 37167.59 37498.16 36882.30 36894.53 36593.98 368
DWT-MVSNet_test92.75 32992.05 33094.85 33596.48 36287.21 35797.83 17094.99 34792.22 32992.72 36394.11 36770.75 36999.46 32295.01 25894.33 36697.87 326
test0.0.03 194.51 30593.69 31496.99 29096.05 36793.61 30894.97 33093.49 35896.17 25297.57 26394.88 36182.30 34599.01 35893.60 30294.17 36798.37 309
DeepMVS_CXcopyleft93.44 34998.24 30694.21 28794.34 35164.28 37191.34 36794.87 36389.45 29992.77 37477.54 37293.14 36893.35 369
tmp_tt78.77 34078.73 34378.90 35658.45 37974.76 37994.20 34978.26 37939.16 37286.71 37292.82 37080.50 35175.19 37586.16 36092.29 36986.74 370
dp93.47 32293.59 31693.13 35296.64 35981.62 37597.66 18796.42 33892.80 32296.11 32598.64 20978.55 36299.59 28893.31 31092.18 37098.16 314
baseline195.96 28195.44 28697.52 27098.51 28693.99 29598.39 11296.09 34298.21 12598.40 21297.76 29186.88 31299.63 27595.42 25289.27 37198.95 255
test_method79.78 33979.50 34280.62 35580.21 37845.76 38070.82 36998.41 29131.08 37380.89 37497.71 29384.85 32897.37 36991.51 33780.03 37298.75 286
PVSNet_089.98 2191.15 33790.30 34093.70 34697.72 33184.34 37090.24 36697.42 31890.20 34893.79 35993.09 36990.90 28998.89 36286.57 35972.76 37397.87 326
testmvs17.12 34220.53 3456.87 35812.05 3804.20 38293.62 3586.73 3814.62 37610.41 37624.33 3738.28 3813.56 3779.69 37515.07 37412.86 373
test12317.04 34320.11 3467.82 35710.25 3814.91 38194.80 3334.47 3824.93 37510.00 37724.28 3749.69 3803.64 37610.14 37412.43 37514.92 372
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k24.66 34132.88 3440.00 3590.00 3820.00 3830.00 37099.10 2040.00 3770.00 37897.58 30199.21 100.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas8.17 34410.90 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37798.07 660.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.12 34510.83 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37897.48 3080.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.73 2599.67 299.43 1099.54 5099.43 3099.26 80
test_one_060199.39 11199.20 3399.31 13498.49 10798.66 17799.02 11997.64 100
eth-test20.00 382
eth-test0.00 382
test_241102_ONE99.49 8699.17 3999.31 13497.98 14099.66 2098.90 15298.36 4499.48 318
save fliter99.11 16997.97 15196.53 26899.02 22298.24 122
test072699.50 7999.21 2798.17 13199.35 11597.97 14299.26 8099.06 10597.61 103
GSMVS98.81 275
test_part299.36 11799.10 6099.05 114
sam_mvs184.74 33098.81 275
sam_mvs84.29 336
MTGPAbinary99.20 174
test_post197.59 19620.48 37683.07 34299.66 26594.16 282
test_post21.25 37583.86 33899.70 241
patchmatchnet-post98.77 18584.37 33399.85 109
MTMP97.93 15991.91 365
gm-plane-assit94.83 37281.97 37488.07 35894.99 35899.60 28491.76 331
TEST998.71 25298.08 13895.96 29599.03 21891.40 33895.85 33197.53 30396.52 17599.76 215
test_898.67 26598.01 14595.91 30099.02 22291.64 33395.79 33397.50 30696.47 17899.76 215
agg_prior98.68 26397.99 14699.01 22595.59 33499.77 208
test_prior497.97 15195.86 301
test_prior98.95 13798.69 26097.95 15699.03 21899.59 28899.30 194
旧先验295.76 30588.56 35797.52 26799.66 26594.48 272
新几何295.93 298
无先验95.74 30798.74 27289.38 35299.73 23092.38 32699.22 213
原ACMM295.53 314
testdata299.79 19092.80 319
segment_acmp97.02 146
testdata195.44 31996.32 249
plane_prior799.19 15097.87 162
plane_prior698.99 19997.70 18094.90 231
plane_prior497.98 277
plane_prior397.78 17397.41 19097.79 247
plane_prior297.77 17698.20 128
plane_prior199.05 186
n20.00 383
nn0.00 383
door-mid99.57 35
test1198.87 245
door99.41 94
HQP5-MVS96.79 223
HQP-NCC98.67 26596.29 28296.05 25795.55 338
ACMP_Plane98.67 26596.29 28296.05 25795.55 338
BP-MVS92.82 317
HQP4-MVS95.56 33799.54 30399.32 187
HQP2-MVS93.84 257
NP-MVS98.84 23097.39 19596.84 328
MDTV_nov1_ep13_2view74.92 37897.69 18490.06 35097.75 25085.78 32293.52 30498.69 292
Test By Simon96.52 175