LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 32 | 95.54 3 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 12 | 85.07 49 | 99.27 1 | 99.54 1 |
|
test_part1 | | | 87.15 85 | 87.82 78 | 85.15 130 | 88.88 176 | 63.04 221 | 87.98 90 | 94.85 14 | 82.52 58 | 93.61 36 | 95.73 25 | 67.51 227 | 95.71 28 | 80.48 100 | 98.83 2 | 96.69 25 |
|
WR-MVS_H | | | 89.91 49 | 91.31 31 | 85.71 121 | 96.32 10 | 62.39 231 | 89.54 66 | 93.31 65 | 90.21 9 | 95.57 8 | 95.66 28 | 81.42 111 | 95.90 13 | 80.94 92 | 98.80 3 | 98.84 5 |
|
ACMP | | 79.16 10 | 90.54 34 | 90.60 47 | 90.35 46 | 94.36 45 | 80.98 63 | 89.16 72 | 94.05 35 | 79.03 99 | 92.87 43 | 93.74 98 | 90.60 12 | 95.21 57 | 82.87 73 | 98.76 4 | 94.87 63 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMH+ | | 77.89 11 | 90.73 30 | 91.50 23 | 88.44 75 | 93.00 79 | 76.26 114 | 89.65 62 | 95.55 4 | 87.72 22 | 93.89 26 | 94.94 44 | 91.62 4 | 93.44 123 | 78.35 120 | 98.76 4 | 95.61 47 |
|
PS-CasMVS | | | 90.06 42 | 91.92 13 | 84.47 143 | 96.56 7 | 58.83 272 | 89.04 74 | 92.74 91 | 91.40 4 | 96.12 3 | 96.06 22 | 87.23 46 | 95.57 33 | 79.42 111 | 98.74 6 | 99.00 2 |
|
LPG-MVS_test | | | 91.47 19 | 91.68 18 | 90.82 38 | 94.75 40 | 81.69 57 | 90.00 51 | 94.27 20 | 82.35 60 | 93.67 33 | 94.82 48 | 91.18 5 | 95.52 39 | 85.36 47 | 98.73 7 | 95.23 58 |
|
LGP-MVS_train | | | | | 90.82 38 | 94.75 40 | 81.69 57 | | 94.27 20 | 82.35 60 | 93.67 33 | 94.82 48 | 91.18 5 | 95.52 39 | 85.36 47 | 98.73 7 | 95.23 58 |
|
PEN-MVS | | | 90.03 44 | 91.88 16 | 84.48 142 | 96.57 6 | 58.88 269 | 88.95 75 | 93.19 72 | 91.62 3 | 96.01 5 | 96.16 20 | 87.02 48 | 95.60 32 | 78.69 116 | 98.72 9 | 98.97 3 |
|
CP-MVSNet | | | 89.27 60 | 90.91 42 | 84.37 144 | 96.34 9 | 58.61 274 | 88.66 84 | 92.06 105 | 90.78 5 | 95.67 6 | 95.17 39 | 81.80 107 | 95.54 38 | 79.00 114 | 98.69 10 | 98.95 4 |
|
TranMVSNet+NR-MVSNet | | | 87.86 77 | 88.76 72 | 85.18 129 | 94.02 56 | 64.13 210 | 84.38 147 | 91.29 126 | 84.88 34 | 92.06 59 | 93.84 93 | 86.45 57 | 93.73 107 | 73.22 172 | 98.66 11 | 97.69 9 |
|
NR-MVSNet | | | 86.00 102 | 86.22 101 | 85.34 127 | 93.24 74 | 64.56 206 | 82.21 204 | 90.46 145 | 80.99 75 | 88.42 129 | 91.97 140 | 77.56 144 | 93.85 102 | 72.46 183 | 98.65 12 | 97.61 10 |
|
UA-Net | | | 91.49 17 | 91.53 22 | 91.39 26 | 94.98 35 | 82.95 54 | 93.52 5 | 92.79 89 | 88.22 19 | 88.53 126 | 97.64 2 | 83.45 80 | 94.55 80 | 86.02 43 | 98.60 13 | 96.67 26 |
|
FC-MVSNet-test | | | 85.93 105 | 87.05 89 | 82.58 186 | 92.25 100 | 56.44 288 | 85.75 125 | 93.09 75 | 77.33 116 | 91.94 63 | 94.65 53 | 74.78 173 | 93.41 125 | 75.11 156 | 98.58 14 | 97.88 7 |
|
DTE-MVSNet | | | 89.98 46 | 91.91 15 | 84.21 149 | 96.51 8 | 57.84 277 | 88.93 77 | 92.84 88 | 91.92 2 | 96.16 2 | 96.23 18 | 86.95 49 | 95.99 8 | 79.05 113 | 98.57 15 | 98.80 6 |
|
UniMVSNet (Re) | | | 86.87 86 | 86.98 91 | 86.55 99 | 93.11 77 | 68.48 178 | 83.80 160 | 92.87 85 | 80.37 80 | 89.61 108 | 91.81 147 | 77.72 142 | 94.18 89 | 75.00 157 | 98.53 16 | 96.99 22 |
|
Baseline_NR-MVSNet | | | 84.00 143 | 85.90 107 | 78.29 253 | 91.47 127 | 53.44 307 | 82.29 200 | 87.00 217 | 79.06 98 | 89.55 110 | 95.72 27 | 77.20 148 | 86.14 275 | 72.30 184 | 98.51 17 | 95.28 55 |
|
TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 2 | 96.46 2 | 90.58 7 | 92.86 44 | 96.29 16 | 88.16 34 | 94.17 91 | 86.07 40 | 98.48 18 | 97.22 17 |
|
ACMM | | 79.39 9 | 90.65 31 | 90.99 39 | 89.63 56 | 95.03 34 | 83.53 47 | 89.62 63 | 93.35 61 | 79.20 96 | 93.83 27 | 93.60 100 | 90.81 8 | 92.96 139 | 85.02 51 | 98.45 19 | 92.41 154 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MP-MVS-pluss | | | 90.81 29 | 91.08 35 | 89.99 51 | 95.97 13 | 79.88 70 | 88.13 89 | 94.51 18 | 75.79 136 | 92.94 41 | 94.96 43 | 88.36 28 | 95.01 63 | 90.70 2 | 98.40 20 | 95.09 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
CP-MVS | | | 91.67 14 | 91.58 21 | 91.96 14 | 95.29 31 | 87.62 12 | 93.38 7 | 93.36 60 | 83.16 50 | 91.06 76 | 94.00 83 | 88.26 31 | 95.71 28 | 87.28 23 | 98.39 21 | 92.55 150 |
|
UniMVSNet_NR-MVSNet | | | 86.84 88 | 87.06 88 | 86.17 112 | 92.86 84 | 67.02 187 | 82.55 193 | 91.56 118 | 83.08 52 | 90.92 78 | 91.82 146 | 78.25 138 | 93.99 97 | 74.16 161 | 98.35 22 | 97.49 13 |
|
DU-MVS | | | 86.80 89 | 86.99 90 | 86.21 110 | 93.24 74 | 67.02 187 | 83.16 180 | 92.21 101 | 81.73 67 | 90.92 78 | 91.97 140 | 77.20 148 | 93.99 97 | 74.16 161 | 98.35 22 | 97.61 10 |
|
zzz-MVS | | | 91.27 22 | 91.26 33 | 91.29 29 | 96.59 4 | 86.29 17 | 88.94 76 | 91.81 114 | 84.07 37 | 92.00 60 | 94.40 65 | 86.63 53 | 95.28 53 | 88.59 5 | 98.31 24 | 92.30 158 |
|
MTAPA | | | 91.52 16 | 91.60 20 | 91.29 29 | 96.59 4 | 86.29 17 | 92.02 28 | 91.81 114 | 84.07 37 | 92.00 60 | 94.40 65 | 86.63 53 | 95.28 53 | 88.59 5 | 98.31 24 | 92.30 158 |
|
ACMH | | 76.49 14 | 89.34 59 | 91.14 34 | 83.96 155 | 92.50 92 | 70.36 162 | 89.55 64 | 93.84 45 | 81.89 66 | 94.70 12 | 95.44 33 | 90.69 9 | 88.31 248 | 83.33 68 | 98.30 26 | 93.20 125 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
COLMAP_ROB |  | 83.01 3 | 91.97 11 | 91.95 12 | 92.04 12 | 93.68 64 | 86.15 21 | 93.37 8 | 95.10 11 | 90.28 8 | 92.11 57 | 95.03 42 | 89.75 21 | 94.93 65 | 79.95 103 | 98.27 27 | 95.04 62 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMMP |  | | 91.91 12 | 91.87 17 | 92.03 13 | 95.53 26 | 85.91 25 | 93.35 9 | 94.16 28 | 82.52 58 | 92.39 54 | 94.14 77 | 89.15 23 | 95.62 31 | 87.35 20 | 98.24 28 | 94.56 72 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HPM-MVS |  | | 92.13 9 | 92.20 11 | 91.91 17 | 95.58 25 | 84.67 41 | 93.51 6 | 94.85 14 | 82.88 54 | 91.77 65 | 93.94 91 | 90.55 13 | 95.73 27 | 88.50 7 | 98.23 29 | 95.33 53 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test_0728_THIRD | | | | | | | | | | 85.33 30 | 93.75 30 | 94.65 53 | 87.44 44 | 95.78 24 | 87.41 19 | 98.21 30 | 92.98 133 |
|
MP-MVS |  | | 91.14 27 | 90.91 42 | 91.83 21 | 96.18 11 | 86.88 14 | 92.20 25 | 93.03 80 | 82.59 57 | 88.52 127 | 94.37 68 | 86.74 52 | 95.41 48 | 86.32 34 | 98.21 30 | 93.19 126 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
SteuartSystems-ACMMP | | | 91.16 26 | 91.36 26 | 90.55 42 | 93.91 59 | 80.97 64 | 91.49 35 | 93.48 58 | 82.82 55 | 92.60 50 | 93.97 84 | 88.19 32 | 96.29 4 | 87.61 15 | 98.20 32 | 94.39 81 |
Skip Steuart: Steuart Systems R&D Blog. |
HPM-MVS_fast | | | 92.50 5 | 92.54 6 | 92.37 6 | 95.93 15 | 85.81 30 | 92.99 11 | 94.23 23 | 85.21 31 | 92.51 51 | 95.13 40 | 90.65 10 | 95.34 50 | 88.06 9 | 98.15 33 | 95.95 40 |
|
mPP-MVS | | | 91.69 13 | 91.47 24 | 92.37 6 | 96.04 12 | 88.48 10 | 92.72 16 | 92.60 94 | 83.09 51 | 91.54 67 | 94.25 73 | 87.67 42 | 95.51 42 | 87.21 24 | 98.11 34 | 93.12 128 |
|
WR-MVS | | | 83.56 151 | 84.40 138 | 81.06 210 | 93.43 69 | 54.88 299 | 78.67 255 | 85.02 241 | 81.24 72 | 90.74 82 | 91.56 153 | 72.85 197 | 91.08 190 | 68.00 221 | 98.04 35 | 97.23 16 |
|
XVG-ACMP-BASELINE | | | 89.98 46 | 89.84 53 | 90.41 44 | 94.91 37 | 84.50 44 | 89.49 68 | 93.98 37 | 79.68 89 | 92.09 58 | 93.89 92 | 83.80 76 | 93.10 137 | 82.67 75 | 98.04 35 | 93.64 112 |
|
DeepC-MVS | | 82.31 4 | 89.15 62 | 89.08 64 | 89.37 61 | 93.64 65 | 79.07 79 | 88.54 85 | 94.20 25 | 73.53 161 | 89.71 102 | 94.82 48 | 85.09 66 | 95.77 26 | 84.17 60 | 98.03 37 | 93.26 123 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FIs | | | 85.35 111 | 86.27 100 | 82.60 185 | 91.86 114 | 57.31 281 | 85.10 134 | 93.05 77 | 75.83 135 | 91.02 77 | 93.97 84 | 73.57 186 | 92.91 143 | 73.97 164 | 98.02 38 | 97.58 12 |
|
abl_6 | | | 93.02 4 | 93.16 4 | 92.60 4 | 94.73 42 | 88.99 7 | 93.26 10 | 94.19 27 | 89.11 11 | 94.43 15 | 95.27 36 | 91.86 3 | 95.09 60 | 87.54 18 | 98.02 38 | 93.71 108 |
|
Anonymous20231211 | | | 88.40 71 | 89.62 57 | 84.73 137 | 90.46 152 | 65.27 200 | 88.86 78 | 93.02 81 | 87.15 24 | 93.05 40 | 97.10 6 | 82.28 95 | 92.02 164 | 76.70 139 | 97.99 40 | 96.88 23 |
|
PGM-MVS | | | 91.20 25 | 90.95 41 | 91.93 15 | 95.67 22 | 85.85 28 | 90.00 51 | 93.90 41 | 80.32 82 | 91.74 66 | 94.41 64 | 88.17 33 | 95.98 9 | 86.37 33 | 97.99 40 | 93.96 96 |
|
APDe-MVS | | | 91.22 24 | 91.92 13 | 89.14 64 | 92.97 80 | 78.04 88 | 92.84 14 | 94.14 32 | 83.33 48 | 93.90 24 | 95.73 25 | 88.77 26 | 96.41 1 | 87.60 16 | 97.98 42 | 92.98 133 |
|
DVP-MVS | | | 90.06 42 | 91.32 30 | 86.29 105 | 94.16 51 | 72.56 137 | 90.54 43 | 91.01 134 | 83.61 44 | 93.75 30 | 94.65 53 | 89.76 19 | 95.78 24 | 86.42 31 | 97.97 43 | 90.55 207 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 86.79 95 | 94.25 47 | 72.45 141 | 90.54 43 | 94.10 34 | | | | | 95.88 14 | 86.42 31 | 97.97 43 | 92.02 170 |
|
ZNCC-MVS | | | 91.26 23 | 91.34 29 | 91.01 35 | 95.73 20 | 83.05 52 | 92.18 26 | 94.22 24 | 80.14 85 | 91.29 73 | 93.97 84 | 87.93 39 | 95.87 15 | 88.65 4 | 97.96 45 | 94.12 91 |
|
SED-MVS | | | 90.46 37 | 91.64 19 | 86.93 92 | 94.18 48 | 72.65 132 | 90.47 46 | 93.69 49 | 83.77 41 | 94.11 22 | 94.27 69 | 90.28 15 | 95.84 19 | 86.03 41 | 97.92 46 | 92.29 160 |
|
IU-MVS | | | | | | 94.18 48 | 72.64 134 | | 90.82 137 | 56.98 302 | 89.67 104 | | | | 85.78 44 | 97.92 46 | 93.28 121 |
|
CLD-MVS | | | 83.18 159 | 82.64 163 | 84.79 135 | 89.05 171 | 67.82 184 | 77.93 263 | 92.52 95 | 68.33 220 | 85.07 184 | 81.54 309 | 82.06 99 | 92.96 139 | 69.35 206 | 97.91 48 | 93.57 115 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
IS-MVSNet | | | 86.66 91 | 86.82 95 | 86.17 112 | 92.05 107 | 66.87 189 | 91.21 37 | 88.64 185 | 86.30 28 | 89.60 109 | 92.59 123 | 69.22 219 | 94.91 66 | 73.89 165 | 97.89 49 | 96.72 24 |
|
ACMMP_NAP | | | 90.65 31 | 91.07 37 | 89.42 60 | 95.93 15 | 79.54 75 | 89.95 54 | 93.68 51 | 77.65 113 | 91.97 62 | 94.89 45 | 88.38 27 | 95.45 46 | 89.27 3 | 97.87 50 | 93.27 122 |
|
test_241102_TWO | | | | | | | | | 93.71 48 | 83.77 41 | 93.49 37 | 94.27 69 | 89.27 22 | 95.84 19 | 86.03 41 | 97.82 51 | 92.04 169 |
|
DPE-MVS | | | 90.53 35 | 91.08 35 | 88.88 66 | 93.38 70 | 78.65 84 | 89.15 73 | 94.05 35 | 84.68 35 | 93.90 24 | 94.11 79 | 88.13 35 | 96.30 3 | 84.51 57 | 97.81 52 | 91.70 181 |
|
OurMVSNet-221017-0 | | | 90.01 45 | 89.74 54 | 90.83 37 | 93.16 76 | 80.37 67 | 91.91 32 | 93.11 74 | 81.10 74 | 95.32 9 | 97.24 5 | 72.94 196 | 94.85 68 | 85.07 49 | 97.78 53 | 97.26 15 |
|
SMA-MVS |  | | 90.31 38 | 90.48 48 | 89.83 52 | 95.31 30 | 79.52 76 | 90.98 39 | 93.24 71 | 75.37 143 | 92.84 45 | 95.28 35 | 85.58 65 | 96.09 7 | 87.92 10 | 97.76 54 | 93.88 99 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMMPR | | | 91.49 17 | 91.35 28 | 91.92 16 | 95.74 19 | 85.88 27 | 92.58 20 | 93.25 70 | 81.99 63 | 91.40 70 | 94.17 75 | 87.51 43 | 95.87 15 | 87.74 11 | 97.76 54 | 93.99 94 |
|
HFP-MVS | | | 91.30 21 | 91.39 25 | 91.02 33 | 95.43 28 | 84.66 42 | 92.58 20 | 93.29 68 | 81.99 63 | 91.47 68 | 93.96 87 | 88.35 29 | 95.56 34 | 87.74 11 | 97.74 56 | 92.85 137 |
|
#test# | | | 90.49 36 | 90.31 50 | 91.02 33 | 95.43 28 | 84.66 42 | 90.65 41 | 93.29 68 | 77.00 120 | 91.47 68 | 93.96 87 | 88.35 29 | 95.56 34 | 84.88 52 | 97.74 56 | 92.85 137 |
|
region2R | | | 91.44 20 | 91.30 32 | 91.87 19 | 95.75 18 | 85.90 26 | 92.63 19 | 93.30 67 | 81.91 65 | 90.88 81 | 94.21 74 | 87.75 40 | 95.87 15 | 87.60 16 | 97.71 58 | 93.83 101 |
|
GST-MVS | | | 90.96 28 | 91.01 38 | 90.82 38 | 95.45 27 | 82.73 55 | 91.75 33 | 93.74 47 | 80.98 76 | 91.38 71 | 93.80 94 | 87.20 47 | 95.80 21 | 87.10 28 | 97.69 59 | 93.93 97 |
|
UniMVSNet_ETH3D | | | 89.12 63 | 90.72 45 | 84.31 147 | 97.00 2 | 64.33 209 | 89.67 61 | 88.38 189 | 88.84 14 | 94.29 18 | 97.57 3 | 90.48 14 | 91.26 184 | 72.57 182 | 97.65 60 | 97.34 14 |
|
v7n | | | 90.13 40 | 90.96 40 | 87.65 87 | 91.95 109 | 71.06 157 | 89.99 53 | 93.05 77 | 86.53 26 | 94.29 18 | 96.27 17 | 82.69 87 | 94.08 95 | 86.25 37 | 97.63 61 | 97.82 8 |
|
XVS | | | 91.54 15 | 91.36 26 | 92.08 10 | 95.64 23 | 86.25 19 | 92.64 17 | 93.33 62 | 85.07 32 | 89.99 93 | 94.03 81 | 86.57 55 | 95.80 21 | 87.35 20 | 97.62 62 | 94.20 86 |
|
X-MVStestdata | | | 85.04 118 | 82.70 161 | 92.08 10 | 95.64 23 | 86.25 19 | 92.64 17 | 93.33 62 | 85.07 32 | 89.99 93 | 16.05 358 | 86.57 55 | 95.80 21 | 87.35 20 | 97.62 62 | 94.20 86 |
|
SR-MVS-dyc-post | | | 92.41 6 | 92.41 7 | 92.39 5 | 94.13 53 | 88.95 8 | 92.87 12 | 94.16 28 | 88.75 15 | 93.79 28 | 94.43 61 | 88.83 24 | 95.51 42 | 87.16 25 | 97.60 64 | 92.73 142 |
|
RE-MVS-def | | | | 92.61 5 | | 94.13 53 | 88.95 8 | 92.87 12 | 94.16 28 | 88.75 15 | 93.79 28 | 94.43 61 | 90.64 11 | | 87.16 25 | 97.60 64 | 92.73 142 |
|
APD-MVS_3200maxsize | | | 92.05 10 | 92.24 10 | 91.48 24 | 93.02 78 | 85.17 34 | 92.47 24 | 95.05 12 | 87.65 23 | 93.21 39 | 94.39 67 | 90.09 18 | 95.08 61 | 86.67 30 | 97.60 64 | 94.18 88 |
|
9.14 | | | | 89.29 61 | | 91.84 115 | | 88.80 80 | 95.32 8 | 75.14 145 | 91.07 75 | 92.89 114 | 87.27 45 | 93.78 106 | 83.69 65 | 97.55 67 | |
|
OPM-MVS | | | 89.80 50 | 89.97 51 | 89.27 62 | 94.76 39 | 79.86 71 | 86.76 111 | 92.78 90 | 78.78 102 | 92.51 51 | 93.64 99 | 88.13 35 | 93.84 104 | 84.83 54 | 97.55 67 | 94.10 92 |
|
test1172 | | | 92.40 7 | 92.41 7 | 92.37 6 | 94.68 43 | 89.04 6 | 91.98 29 | 93.62 52 | 90.14 10 | 93.63 35 | 94.16 76 | 88.83 24 | 95.51 42 | 87.11 27 | 97.54 69 | 92.54 151 |
|
LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 23 | 93.73 63 | 85.72 31 | 96.79 1 | 95.51 5 | 88.86 13 | 95.63 7 | 96.99 8 | 84.81 68 | 93.16 133 | 91.10 1 | 97.53 70 | 96.58 29 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
xxxxxxxxxxxxxcwj | | | 89.04 65 | 89.13 63 | 88.79 68 | 93.75 61 | 77.44 96 | 86.31 119 | 95.27 9 | 70.80 196 | 92.28 55 | 93.80 94 | 86.89 50 | 94.64 74 | 85.52 45 | 97.51 71 | 94.30 84 |
|
SF-MVS | | | 90.27 39 | 90.80 44 | 88.68 71 | 92.86 84 | 77.09 103 | 91.19 38 | 95.74 3 | 81.38 71 | 92.28 55 | 93.80 94 | 86.89 50 | 94.64 74 | 85.52 45 | 97.51 71 | 94.30 84 |
|
ETH3D-3000-0.1 | | | 88.85 68 | 88.96 68 | 88.52 72 | 91.94 111 | 77.27 102 | 88.71 82 | 95.26 10 | 76.08 127 | 90.66 84 | 92.69 121 | 84.48 71 | 93.83 105 | 83.38 67 | 97.48 73 | 94.47 76 |
|
MIMVSNet1 | | | 83.63 150 | 84.59 132 | 80.74 215 | 94.06 55 | 62.77 225 | 82.72 189 | 84.53 246 | 77.57 115 | 90.34 87 | 95.92 23 | 76.88 160 | 85.83 279 | 61.88 260 | 97.42 74 | 93.62 113 |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 75 | |
|
SR-MVS | | | 92.23 8 | 92.34 9 | 91.91 17 | 94.89 38 | 87.85 11 | 92.51 22 | 93.87 44 | 88.20 20 | 93.24 38 | 94.02 82 | 90.15 17 | 95.67 30 | 86.82 29 | 97.34 76 | 92.19 166 |
|
nrg030 | | | 87.85 78 | 88.49 73 | 85.91 115 | 90.07 159 | 69.73 165 | 87.86 93 | 94.20 25 | 74.04 155 | 92.70 49 | 94.66 52 | 85.88 64 | 91.50 175 | 79.72 105 | 97.32 77 | 96.50 30 |
|
pmmvs6 | | | 86.52 93 | 88.06 76 | 81.90 195 | 92.22 102 | 62.28 234 | 84.66 140 | 89.15 178 | 83.54 46 | 89.85 98 | 97.32 4 | 88.08 37 | 86.80 264 | 70.43 199 | 97.30 78 | 96.62 27 |
|
SD-MVS | | | 88.96 66 | 89.88 52 | 86.22 108 | 91.63 118 | 77.07 104 | 89.82 57 | 93.77 46 | 78.90 100 | 92.88 42 | 92.29 134 | 86.11 61 | 90.22 216 | 86.24 38 | 97.24 79 | 91.36 190 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CPTT-MVS | | | 89.39 58 | 88.98 67 | 90.63 41 | 95.09 33 | 86.95 13 | 92.09 27 | 92.30 100 | 79.74 88 | 87.50 142 | 92.38 129 | 81.42 111 | 93.28 128 | 83.07 70 | 97.24 79 | 91.67 182 |
|
APD-MVS |  | | 89.54 55 | 89.63 56 | 89.26 63 | 92.57 89 | 81.34 62 | 90.19 49 | 93.08 76 | 80.87 77 | 91.13 74 | 93.19 104 | 86.22 60 | 95.97 10 | 82.23 79 | 97.18 81 | 90.45 209 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
wuyk23d | | | 75.13 251 | 79.30 207 | 62.63 327 | 75.56 334 | 75.18 119 | 80.89 223 | 73.10 315 | 75.06 146 | 94.76 11 | 95.32 34 | 87.73 41 | 52.85 355 | 34.16 354 | 97.11 82 | 59.85 351 |
|
PMVS |  | 80.48 6 | 90.08 41 | 90.66 46 | 88.34 78 | 96.71 3 | 92.97 1 | 90.31 48 | 89.57 172 | 88.51 18 | 90.11 90 | 95.12 41 | 90.98 7 | 88.92 238 | 77.55 131 | 97.07 83 | 83.13 302 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
OMC-MVS | | | 88.19 73 | 87.52 82 | 90.19 49 | 91.94 111 | 81.68 59 | 87.49 98 | 93.17 73 | 76.02 130 | 88.64 124 | 91.22 158 | 84.24 73 | 93.37 126 | 77.97 127 | 97.03 84 | 95.52 48 |
|
test_prior3 | | | 86.31 96 | 86.31 99 | 86.32 103 | 90.59 149 | 71.99 147 | 83.37 172 | 92.85 86 | 75.43 140 | 84.58 193 | 91.57 151 | 81.92 105 | 94.17 91 | 79.54 108 | 96.97 85 | 92.80 139 |
|
test_prior2 | | | | | | | | 83.37 172 | | 75.43 140 | 84.58 193 | 91.57 151 | 81.92 105 | | 79.54 108 | 96.97 85 | |
|
EPP-MVSNet | | | 85.47 110 | 85.04 121 | 86.77 96 | 91.52 125 | 69.37 168 | 91.63 34 | 87.98 198 | 81.51 70 | 87.05 151 | 91.83 145 | 66.18 235 | 95.29 51 | 70.75 194 | 96.89 87 | 95.64 45 |
|
ETH3D cwj APD-0.16 | | | 87.83 79 | 87.62 81 | 88.47 74 | 91.21 132 | 78.20 86 | 87.26 100 | 94.54 17 | 72.05 186 | 88.89 118 | 92.31 133 | 83.86 74 | 94.24 85 | 81.59 86 | 96.87 88 | 92.97 136 |
|
VDDNet | | | 84.35 132 | 85.39 117 | 81.25 205 | 95.13 32 | 59.32 262 | 85.42 131 | 81.11 264 | 86.41 27 | 87.41 143 | 96.21 19 | 73.61 185 | 90.61 207 | 66.33 231 | 96.85 89 | 93.81 106 |
|
VPNet | | | 80.25 202 | 81.68 175 | 75.94 278 | 92.46 93 | 47.98 338 | 76.70 280 | 81.67 262 | 73.45 162 | 84.87 188 | 92.82 116 | 74.66 176 | 86.51 269 | 61.66 263 | 96.85 89 | 93.33 119 |
|
SixPastTwentyTwo | | | 87.20 84 | 87.45 83 | 86.45 101 | 92.52 91 | 69.19 174 | 87.84 94 | 88.05 195 | 81.66 68 | 94.64 13 | 96.53 14 | 65.94 236 | 94.75 70 | 83.02 72 | 96.83 91 | 95.41 50 |
|
VPA-MVSNet | | | 83.47 154 | 84.73 126 | 79.69 232 | 90.29 154 | 57.52 280 | 81.30 218 | 88.69 184 | 76.29 124 | 87.58 141 | 94.44 60 | 80.60 119 | 87.20 257 | 66.60 230 | 96.82 92 | 94.34 83 |
|
Gipuma |  | | 84.44 130 | 86.33 98 | 78.78 242 | 84.20 259 | 73.57 126 | 89.55 64 | 90.44 146 | 84.24 36 | 84.38 197 | 94.89 45 | 76.35 163 | 80.40 312 | 76.14 145 | 96.80 93 | 82.36 310 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ZD-MVS | | | | | | 92.22 102 | 80.48 66 | | 91.85 111 | 71.22 193 | 90.38 86 | 92.98 109 | 86.06 62 | 96.11 6 | 81.99 81 | 96.75 94 | |
|
CDPH-MVS | | | 86.17 101 | 85.54 114 | 88.05 83 | 92.25 100 | 75.45 117 | 83.85 157 | 92.01 106 | 65.91 243 | 86.19 166 | 91.75 149 | 83.77 77 | 94.98 64 | 77.43 134 | 96.71 95 | 93.73 107 |
|
DIV-MVS_2432*1600 | | | 81.93 177 | 83.14 156 | 78.30 252 | 84.75 247 | 52.75 311 | 80.37 229 | 89.42 175 | 70.24 205 | 90.26 89 | 93.39 102 | 74.55 178 | 86.77 265 | 68.61 217 | 96.64 96 | 95.38 51 |
|
DP-MVS | | | 88.60 70 | 89.01 65 | 87.36 90 | 91.30 129 | 77.50 95 | 87.55 96 | 92.97 83 | 87.95 21 | 89.62 106 | 92.87 115 | 84.56 69 | 93.89 101 | 77.65 129 | 96.62 97 | 90.70 201 |
|
testtj | | | 89.51 56 | 89.48 59 | 89.59 58 | 92.26 99 | 80.80 65 | 90.14 50 | 93.54 56 | 83.37 47 | 90.57 85 | 92.55 126 | 84.99 67 | 96.15 5 | 81.26 87 | 96.61 98 | 91.83 177 |
|
TransMVSNet (Re) | | | 84.02 142 | 85.74 110 | 78.85 241 | 91.00 139 | 55.20 298 | 82.29 200 | 87.26 205 | 79.65 90 | 88.38 131 | 95.52 32 | 83.00 84 | 86.88 262 | 67.97 222 | 96.60 99 | 94.45 79 |
|
ambc | | | | | 82.98 175 | 90.55 151 | 64.86 203 | 88.20 87 | 89.15 178 | | 89.40 113 | 93.96 87 | 71.67 211 | 91.38 183 | 78.83 115 | 96.55 100 | 92.71 145 |
|
train_agg | | | 85.98 104 | 85.28 118 | 88.07 82 | 92.34 96 | 79.70 73 | 83.94 153 | 90.32 150 | 65.79 244 | 84.49 195 | 90.97 168 | 81.93 103 | 93.63 111 | 81.21 88 | 96.54 101 | 90.88 197 |
|
VDD-MVS | | | 84.23 137 | 84.58 133 | 83.20 171 | 91.17 136 | 65.16 202 | 83.25 176 | 84.97 243 | 79.79 87 | 87.18 145 | 94.27 69 | 74.77 174 | 90.89 197 | 69.24 207 | 96.54 101 | 93.55 118 |
|
HPM-MVS++ |  | | 88.93 67 | 88.45 74 | 90.38 45 | 94.92 36 | 85.85 28 | 89.70 58 | 91.27 127 | 78.20 109 | 86.69 157 | 92.28 135 | 80.36 122 | 95.06 62 | 86.17 39 | 96.49 103 | 90.22 212 |
|
test_djsdf | | | 89.62 53 | 89.01 65 | 91.45 25 | 92.36 95 | 82.98 53 | 91.98 29 | 90.08 162 | 71.54 190 | 94.28 20 | 96.54 13 | 81.57 109 | 94.27 82 | 86.26 35 | 96.49 103 | 97.09 19 |
|
test9_res | | | | | | | | | | | | | | | 80.83 94 | 96.45 105 | 90.57 205 |
|
Anonymous20240529 | | | 86.20 100 | 87.13 86 | 83.42 167 | 90.19 156 | 64.55 207 | 84.55 142 | 90.71 139 | 85.85 29 | 89.94 96 | 95.24 38 | 82.13 97 | 90.40 211 | 69.19 210 | 96.40 106 | 95.31 54 |
|
agg_prior1 | | | 85.72 107 | 85.20 119 | 87.28 91 | 91.58 122 | 77.69 92 | 83.69 163 | 90.30 153 | 66.29 240 | 84.32 199 | 91.07 165 | 82.13 97 | 93.18 131 | 81.02 90 | 96.36 107 | 90.98 193 |
|
anonymousdsp | | | 89.73 52 | 88.88 69 | 92.27 9 | 89.82 163 | 86.67 15 | 90.51 45 | 90.20 159 | 69.87 208 | 95.06 10 | 96.14 21 | 84.28 72 | 93.07 138 | 87.68 13 | 96.34 108 | 97.09 19 |
|
PHI-MVS | | | 86.38 95 | 85.81 109 | 88.08 81 | 88.44 184 | 77.34 99 | 89.35 71 | 93.05 77 | 73.15 172 | 84.76 190 | 87.70 226 | 78.87 133 | 94.18 89 | 80.67 97 | 96.29 109 | 92.73 142 |
|
PS-MVSNAJss | | | 88.31 72 | 87.90 77 | 89.56 59 | 93.31 72 | 77.96 89 | 87.94 92 | 91.97 108 | 70.73 198 | 94.19 21 | 96.67 11 | 76.94 154 | 94.57 78 | 83.07 70 | 96.28 110 | 96.15 32 |
|
v10 | | | 86.54 92 | 87.10 87 | 84.84 134 | 88.16 190 | 63.28 218 | 86.64 114 | 92.20 102 | 75.42 142 | 92.81 47 | 94.50 57 | 74.05 181 | 94.06 96 | 83.88 62 | 96.28 110 | 97.17 18 |
|
CNVR-MVS | | | 87.81 80 | 87.68 80 | 88.21 80 | 92.87 82 | 77.30 101 | 85.25 132 | 91.23 128 | 77.31 117 | 87.07 150 | 91.47 155 | 82.94 85 | 94.71 71 | 84.67 55 | 96.27 112 | 92.62 149 |
|
RRT_MVS | | | 83.25 157 | 81.08 184 | 89.74 53 | 80.55 299 | 79.32 77 | 86.41 118 | 86.69 218 | 72.33 184 | 87.00 152 | 91.08 163 | 44.98 333 | 95.55 37 | 84.47 58 | 96.24 113 | 94.36 82 |
|
114514_t | | | 83.10 161 | 82.54 166 | 84.77 136 | 92.90 81 | 69.10 176 | 86.65 113 | 90.62 143 | 54.66 311 | 81.46 242 | 90.81 175 | 76.98 153 | 94.38 81 | 72.62 181 | 96.18 114 | 90.82 199 |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 106 | 96.16 115 | 90.22 212 |
|
AllTest | | | 87.97 76 | 87.40 85 | 89.68 54 | 91.59 119 | 83.40 48 | 89.50 67 | 95.44 6 | 79.47 91 | 88.00 136 | 93.03 107 | 82.66 88 | 91.47 176 | 70.81 191 | 96.14 116 | 94.16 89 |
|
TestCases | | | | | 89.68 54 | 91.59 119 | 83.40 48 | | 95.44 6 | 79.47 91 | 88.00 136 | 93.03 107 | 82.66 88 | 91.47 176 | 70.81 191 | 96.14 116 | 94.16 89 |
|
EPNet | | | 80.37 199 | 78.41 216 | 86.23 107 | 76.75 325 | 73.28 128 | 87.18 102 | 77.45 285 | 76.24 126 | 68.14 327 | 88.93 209 | 65.41 238 | 93.85 102 | 69.47 205 | 96.12 118 | 91.55 187 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
pm-mvs1 | | | 83.69 148 | 84.95 123 | 79.91 227 | 90.04 161 | 59.66 259 | 82.43 196 | 87.44 202 | 75.52 139 | 87.85 138 | 95.26 37 | 81.25 113 | 85.65 281 | 68.74 215 | 96.04 119 | 94.42 80 |
|
mvs_tets | | | 89.78 51 | 89.27 62 | 91.30 28 | 93.51 66 | 84.79 39 | 89.89 56 | 90.63 142 | 70.00 207 | 94.55 14 | 96.67 11 | 87.94 38 | 93.59 115 | 84.27 59 | 95.97 120 | 95.52 48 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 83 | 86.21 102 | 90.49 43 | 91.48 126 | 84.90 37 | 83.41 171 | 92.38 99 | 70.25 204 | 89.35 114 | 90.68 179 | 82.85 86 | 94.57 78 | 79.55 107 | 95.95 121 | 92.00 171 |
|
jajsoiax | | | 89.41 57 | 88.81 71 | 91.19 32 | 93.38 70 | 84.72 40 | 89.70 58 | 90.29 156 | 69.27 211 | 94.39 16 | 96.38 15 | 86.02 63 | 93.52 119 | 83.96 61 | 95.92 122 | 95.34 52 |
|
ANet_high | | | 83.17 160 | 85.68 112 | 75.65 279 | 81.24 286 | 45.26 346 | 79.94 234 | 92.91 84 | 83.83 40 | 91.33 72 | 96.88 10 | 80.25 123 | 85.92 277 | 68.89 213 | 95.89 123 | 95.76 42 |
|
3Dnovator+ | | 83.92 2 | 89.97 48 | 89.66 55 | 90.92 36 | 91.27 131 | 81.66 60 | 91.25 36 | 94.13 33 | 88.89 12 | 88.83 121 | 94.26 72 | 77.55 145 | 95.86 18 | 84.88 52 | 95.87 124 | 95.24 57 |
|
HQP_MVS | | | 87.75 81 | 87.43 84 | 88.70 70 | 93.45 67 | 76.42 112 | 89.45 69 | 93.61 53 | 79.44 93 | 86.55 159 | 92.95 112 | 74.84 171 | 95.22 55 | 80.78 95 | 95.83 125 | 94.46 77 |
|
plane_prior5 | | | | | | | | | 93.61 53 | | | | | 95.22 55 | 80.78 95 | 95.83 125 | 94.46 77 |
|
cl-mvsnet_ | | | 80.42 197 | 80.23 195 | 81.02 211 | 79.99 302 | 59.25 263 | 77.07 276 | 87.02 214 | 67.37 232 | 86.18 168 | 89.21 203 | 63.08 250 | 90.16 218 | 76.31 143 | 95.80 127 | 93.65 111 |
|
cl-mvsnet1 | | | 80.43 196 | 80.23 195 | 81.02 211 | 79.99 302 | 59.25 263 | 77.07 276 | 87.02 214 | 67.38 231 | 86.19 166 | 89.22 202 | 63.09 249 | 90.16 218 | 76.32 142 | 95.80 127 | 93.66 110 |
|
DeepC-MVS_fast | | 80.27 8 | 86.23 98 | 85.65 113 | 87.96 84 | 91.30 129 | 76.92 105 | 87.19 101 | 91.99 107 | 70.56 199 | 84.96 185 | 90.69 178 | 80.01 125 | 95.14 58 | 78.37 119 | 95.78 129 | 91.82 178 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
LFMVS | | | 80.15 205 | 80.56 189 | 78.89 240 | 89.19 170 | 55.93 290 | 85.22 133 | 73.78 309 | 82.96 53 | 84.28 203 | 92.72 120 | 57.38 282 | 90.07 225 | 63.80 247 | 95.75 130 | 90.68 202 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 131 | |
|
原ACMM1 | | | | | 84.60 140 | 92.81 87 | 74.01 124 | | 91.50 120 | 62.59 265 | 82.73 223 | 90.67 180 | 76.53 161 | 94.25 84 | 69.24 207 | 95.69 132 | 85.55 270 |
|
tfpnnormal | | | 81.79 178 | 82.95 159 | 78.31 251 | 88.93 175 | 55.40 294 | 80.83 225 | 82.85 253 | 76.81 121 | 85.90 175 | 94.14 77 | 74.58 177 | 86.51 269 | 66.82 229 | 95.68 133 | 93.01 132 |
|
ETH3 D test6400 | | | 85.09 116 | 84.87 124 | 85.75 120 | 90.80 144 | 69.34 169 | 85.90 123 | 93.31 65 | 65.43 250 | 86.11 169 | 89.95 193 | 80.92 115 | 94.86 67 | 75.90 148 | 95.57 134 | 93.05 130 |
|
TAPA-MVS | | 77.73 12 | 85.71 108 | 84.83 125 | 88.37 77 | 88.78 178 | 79.72 72 | 87.15 103 | 93.50 57 | 69.17 212 | 85.80 176 | 89.56 198 | 80.76 117 | 92.13 158 | 73.21 177 | 95.51 135 | 93.25 124 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
LS3D | | | 90.60 33 | 90.34 49 | 91.38 27 | 89.03 172 | 84.23 45 | 93.58 4 | 94.68 16 | 90.65 6 | 90.33 88 | 93.95 90 | 84.50 70 | 95.37 49 | 80.87 93 | 95.50 136 | 94.53 75 |
|
v8 | | | 86.22 99 | 86.83 94 | 84.36 145 | 87.82 195 | 62.35 233 | 86.42 117 | 91.33 125 | 76.78 122 | 92.73 48 | 94.48 59 | 73.41 190 | 93.72 108 | 83.10 69 | 95.41 137 | 97.01 21 |
|
Vis-MVSNet (Re-imp) | | | 77.82 225 | 77.79 222 | 77.92 259 | 88.82 177 | 51.29 325 | 83.28 174 | 71.97 322 | 74.04 155 | 82.23 229 | 89.78 196 | 57.38 282 | 89.41 233 | 57.22 287 | 95.41 137 | 93.05 130 |
|
OPU-MVS | | | | | 88.27 79 | 91.89 113 | 77.83 90 | 90.47 46 | | | | 91.22 158 | 81.12 114 | 94.68 72 | 74.48 158 | 95.35 139 | 92.29 160 |
|
FMVSNet1 | | | 84.55 127 | 85.45 116 | 81.85 197 | 90.27 155 | 61.05 245 | 86.83 108 | 88.27 192 | 78.57 106 | 89.66 105 | 95.64 29 | 75.43 165 | 90.68 204 | 69.09 211 | 95.33 140 | 93.82 103 |
|
test12 | | | | | 86.57 98 | 90.74 145 | 72.63 135 | | 90.69 140 | | 82.76 222 | | 79.20 130 | 94.80 69 | | 95.32 141 | 92.27 162 |
|
NCCC | | | 87.36 82 | 86.87 93 | 88.83 67 | 92.32 98 | 78.84 82 | 86.58 115 | 91.09 132 | 78.77 103 | 84.85 189 | 90.89 172 | 80.85 116 | 95.29 51 | 81.14 89 | 95.32 141 | 92.34 156 |
|
Patchmtry | | | 76.56 240 | 77.46 224 | 73.83 288 | 79.37 310 | 46.60 343 | 82.41 197 | 76.90 287 | 73.81 158 | 85.56 180 | 92.38 129 | 48.07 311 | 83.98 295 | 63.36 250 | 95.31 143 | 90.92 196 |
|
XVG-OURS | | | 89.18 61 | 88.83 70 | 90.23 48 | 94.28 46 | 86.11 23 | 85.91 122 | 93.60 55 | 80.16 84 | 89.13 117 | 93.44 101 | 83.82 75 | 90.98 192 | 83.86 63 | 95.30 144 | 93.60 114 |
|
TSAR-MVS + GP. | | | 83.95 144 | 82.69 162 | 87.72 85 | 89.27 168 | 81.45 61 | 83.72 162 | 81.58 263 | 74.73 148 | 85.66 177 | 86.06 251 | 72.56 202 | 92.69 147 | 75.44 152 | 95.21 145 | 89.01 235 |
|
test_0402 | | | 88.65 69 | 89.58 58 | 85.88 117 | 92.55 90 | 72.22 145 | 84.01 152 | 89.44 174 | 88.63 17 | 94.38 17 | 95.77 24 | 86.38 59 | 93.59 115 | 79.84 104 | 95.21 145 | 91.82 178 |
|
TinyColmap | | | 81.25 183 | 82.34 169 | 77.99 258 | 85.33 242 | 60.68 251 | 82.32 199 | 88.33 190 | 71.26 192 | 86.97 153 | 92.22 138 | 77.10 151 | 86.98 261 | 62.37 255 | 95.17 147 | 86.31 263 |
|
Anonymous202405211 | | | 80.51 195 | 81.19 183 | 78.49 248 | 88.48 182 | 57.26 282 | 76.63 281 | 82.49 255 | 81.21 73 | 84.30 202 | 92.24 137 | 67.99 225 | 86.24 273 | 62.22 256 | 95.13 148 | 91.98 174 |
|
tttt0517 | | | 81.07 185 | 79.58 205 | 85.52 124 | 88.99 174 | 66.45 194 | 87.03 105 | 75.51 298 | 73.76 159 | 88.32 133 | 90.20 188 | 37.96 349 | 94.16 94 | 79.36 112 | 95.13 148 | 95.93 41 |
|
DP-MVS Recon | | | 84.05 141 | 83.22 153 | 86.52 100 | 91.73 117 | 75.27 118 | 83.23 178 | 92.40 97 | 72.04 187 | 82.04 232 | 88.33 216 | 77.91 141 | 93.95 100 | 66.17 232 | 95.12 150 | 90.34 211 |
|
PCF-MVS | | 74.62 15 | 82.15 172 | 80.92 187 | 85.84 118 | 89.43 165 | 72.30 143 | 80.53 227 | 91.82 113 | 57.36 300 | 87.81 139 | 89.92 195 | 77.67 143 | 93.63 111 | 58.69 279 | 95.08 151 | 91.58 186 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CSCG | | | 86.26 97 | 86.47 97 | 85.60 123 | 90.87 142 | 74.26 123 | 87.98 90 | 91.85 111 | 80.35 81 | 89.54 112 | 88.01 220 | 79.09 131 | 92.13 158 | 75.51 150 | 95.06 152 | 90.41 210 |
|
plane_prior | | | | | | | 76.42 112 | 87.15 103 | | 75.94 134 | | | | | | 95.03 153 | |
|
new-patchmatchnet | | | 70.10 289 | 73.37 263 | 60.29 334 | 81.23 287 | 16.95 362 | 59.54 345 | 74.62 301 | 62.93 263 | 80.97 247 | 87.93 223 | 62.83 252 | 71.90 331 | 55.24 300 | 95.01 154 | 92.00 171 |
|
bset_n11_16_dypcd | | | 79.19 210 | 77.97 220 | 82.86 181 | 85.81 237 | 66.85 190 | 75.02 298 | 79.31 275 | 66.07 241 | 83.50 214 | 83.37 291 | 55.04 296 | 92.10 161 | 78.63 117 | 94.99 155 | 89.63 219 |
|
v1192 | | | 84.57 126 | 84.69 130 | 84.21 149 | 87.75 197 | 62.88 223 | 83.02 183 | 91.43 122 | 69.08 214 | 89.98 95 | 90.89 172 | 72.70 200 | 93.62 114 | 82.41 76 | 94.97 156 | 96.13 33 |
|
v1921920 | | | 84.23 137 | 84.37 139 | 83.79 158 | 87.64 201 | 61.71 237 | 82.91 186 | 91.20 129 | 67.94 226 | 90.06 91 | 90.34 185 | 72.04 207 | 93.59 115 | 82.32 78 | 94.91 157 | 96.07 35 |
|
CL-MVSNet_2432*1600 | | | 76.81 236 | 77.38 226 | 75.12 282 | 86.90 218 | 51.34 323 | 73.20 311 | 80.63 269 | 68.30 221 | 81.80 238 | 88.40 215 | 66.92 231 | 80.90 309 | 55.35 299 | 94.90 158 | 93.12 128 |
|
v144192 | | | 84.24 136 | 84.41 137 | 83.71 161 | 87.59 202 | 61.57 238 | 82.95 185 | 91.03 133 | 67.82 229 | 89.80 100 | 90.49 183 | 73.28 193 | 93.51 120 | 81.88 84 | 94.89 159 | 96.04 37 |
|
LCM-MVSNet-Re | | | 83.48 153 | 85.06 120 | 78.75 243 | 85.94 236 | 55.75 293 | 80.05 232 | 94.27 20 | 76.47 123 | 96.09 4 | 94.54 56 | 83.31 82 | 89.75 229 | 59.95 274 | 94.89 159 | 90.75 200 |
|
v1240 | | | 84.30 134 | 84.51 135 | 83.65 162 | 87.65 200 | 61.26 242 | 82.85 187 | 91.54 119 | 67.94 226 | 90.68 83 | 90.65 181 | 71.71 210 | 93.64 110 | 82.84 74 | 94.78 161 | 96.07 35 |
|
MSLP-MVS++ | | | 85.00 120 | 86.03 105 | 81.90 195 | 91.84 115 | 71.56 155 | 86.75 112 | 93.02 81 | 75.95 133 | 87.12 146 | 89.39 199 | 77.98 139 | 89.40 234 | 77.46 132 | 94.78 161 | 84.75 279 |
|
IterMVS-LS | | | 84.73 123 | 84.98 122 | 83.96 155 | 87.35 205 | 63.66 213 | 83.25 176 | 89.88 166 | 76.06 128 | 89.62 106 | 92.37 132 | 73.40 192 | 92.52 150 | 78.16 123 | 94.77 163 | 95.69 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
AdaColmap |  | | 83.66 149 | 83.69 149 | 83.57 165 | 90.05 160 | 72.26 144 | 86.29 121 | 90.00 164 | 78.19 110 | 81.65 240 | 87.16 236 | 83.40 81 | 94.24 85 | 61.69 262 | 94.76 164 | 84.21 284 |
|
ITE_SJBPF | | | | | 90.11 50 | 90.72 146 | 84.97 36 | | 90.30 153 | 81.56 69 | 90.02 92 | 91.20 160 | 82.40 91 | 90.81 200 | 73.58 169 | 94.66 165 | 94.56 72 |
|
v1144 | | | 84.54 129 | 84.72 128 | 84.00 153 | 87.67 199 | 62.55 229 | 82.97 184 | 90.93 135 | 70.32 203 | 89.80 100 | 90.99 167 | 73.50 187 | 93.48 121 | 81.69 85 | 94.65 166 | 95.97 38 |
|
test20.03 | | | 73.75 264 | 74.59 252 | 71.22 301 | 81.11 288 | 51.12 327 | 70.15 322 | 72.10 321 | 70.42 200 | 80.28 260 | 91.50 154 | 64.21 242 | 74.72 328 | 46.96 337 | 94.58 167 | 87.82 249 |
|
TSAR-MVS + MP. | | | 88.14 74 | 87.82 78 | 89.09 65 | 95.72 21 | 76.74 108 | 92.49 23 | 91.19 130 | 67.85 228 | 86.63 158 | 94.84 47 | 79.58 129 | 95.96 11 | 87.62 14 | 94.50 168 | 94.56 72 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HQP3-MVS | | | | | | | | | 92.68 92 | | | | | | | 94.47 169 | |
|
HQP-MVS | | | 84.61 125 | 84.06 143 | 86.27 106 | 91.19 133 | 70.66 159 | 84.77 136 | 92.68 92 | 73.30 167 | 80.55 255 | 90.17 191 | 72.10 204 | 94.61 76 | 77.30 135 | 94.47 169 | 93.56 116 |
|
cl_fuxian | | | 81.64 179 | 81.59 178 | 81.79 201 | 80.86 292 | 59.15 266 | 78.61 256 | 90.18 160 | 68.36 219 | 87.20 144 | 87.11 238 | 69.39 217 | 91.62 173 | 78.16 123 | 94.43 171 | 94.60 71 |
|
MCST-MVS | | | 84.36 131 | 83.93 146 | 85.63 122 | 91.59 119 | 71.58 154 | 83.52 166 | 92.13 103 | 61.82 271 | 83.96 206 | 89.75 197 | 79.93 128 | 93.46 122 | 78.33 121 | 94.34 172 | 91.87 176 |
|
thisisatest0530 | | | 79.07 211 | 77.33 227 | 84.26 148 | 87.13 210 | 64.58 205 | 83.66 164 | 75.95 293 | 68.86 217 | 85.22 183 | 87.36 233 | 38.10 347 | 93.57 118 | 75.47 151 | 94.28 173 | 94.62 69 |
|
baseline | | | 85.20 113 | 85.93 106 | 83.02 174 | 86.30 228 | 62.37 232 | 84.55 142 | 93.96 38 | 74.48 152 | 87.12 146 | 92.03 139 | 82.30 93 | 91.94 165 | 78.39 118 | 94.21 174 | 94.74 68 |
|
RRT_test8_iter05 | | | 78.08 222 | 77.52 223 | 79.75 230 | 80.84 293 | 52.54 315 | 80.61 226 | 88.96 180 | 67.77 230 | 84.62 192 | 89.29 201 | 33.89 354 | 92.10 161 | 77.59 130 | 94.15 175 | 94.62 69 |
|
alignmvs | | | 83.94 145 | 83.98 145 | 83.80 157 | 87.80 196 | 67.88 183 | 84.54 144 | 91.42 124 | 73.27 170 | 88.41 130 | 87.96 221 | 72.33 203 | 90.83 199 | 76.02 147 | 94.11 176 | 92.69 146 |
|
USDC | | | 76.63 238 | 76.73 234 | 76.34 275 | 83.46 268 | 57.20 283 | 80.02 233 | 88.04 196 | 52.14 326 | 83.65 210 | 91.25 157 | 63.24 248 | 86.65 268 | 54.66 304 | 94.11 176 | 85.17 274 |
|
MVS_111021_HR | | | 84.63 124 | 84.34 140 | 85.49 126 | 90.18 157 | 75.86 116 | 79.23 248 | 87.13 209 | 73.35 164 | 85.56 180 | 89.34 200 | 83.60 79 | 90.50 209 | 76.64 140 | 94.05 178 | 90.09 217 |
|
VNet | | | 79.31 209 | 80.27 194 | 76.44 273 | 87.92 193 | 53.95 303 | 75.58 293 | 84.35 247 | 74.39 153 | 82.23 229 | 90.72 177 | 72.84 198 | 84.39 292 | 60.38 273 | 93.98 179 | 90.97 194 |
|
FMVSNet2 | | | 81.31 182 | 81.61 177 | 80.41 221 | 86.38 223 | 58.75 273 | 83.93 155 | 86.58 220 | 72.43 180 | 87.65 140 | 92.98 109 | 63.78 245 | 90.22 216 | 66.86 226 | 93.92 180 | 92.27 162 |
|
LF4IMVS | | | 82.75 163 | 81.93 174 | 85.19 128 | 82.08 277 | 80.15 69 | 85.53 129 | 88.76 183 | 68.01 223 | 85.58 179 | 87.75 225 | 71.80 209 | 86.85 263 | 74.02 163 | 93.87 181 | 88.58 238 |
|
canonicalmvs | | | 85.50 109 | 86.14 103 | 83.58 164 | 87.97 191 | 67.13 186 | 87.55 96 | 94.32 19 | 73.44 163 | 88.47 128 | 87.54 229 | 86.45 57 | 91.06 191 | 75.76 149 | 93.76 182 | 92.54 151 |
|
v2v482 | | | 84.09 139 | 84.24 141 | 83.62 163 | 87.13 210 | 61.40 239 | 82.71 190 | 89.71 168 | 72.19 185 | 89.55 110 | 91.41 156 | 70.70 215 | 93.20 130 | 81.02 90 | 93.76 182 | 96.25 31 |
|
casdiffmvs | | | 85.21 112 | 85.85 108 | 83.31 169 | 86.17 233 | 62.77 225 | 83.03 182 | 93.93 39 | 74.69 149 | 88.21 134 | 92.68 122 | 82.29 94 | 91.89 168 | 77.87 128 | 93.75 184 | 95.27 56 |
|
UGNet | | | 82.78 162 | 81.64 176 | 86.21 110 | 86.20 232 | 76.24 115 | 86.86 106 | 85.68 228 | 77.07 119 | 73.76 307 | 92.82 116 | 69.64 216 | 91.82 171 | 69.04 212 | 93.69 185 | 90.56 206 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
旧先验1 | | | | | | 91.97 108 | 71.77 149 | | 81.78 261 | | | 91.84 144 | 73.92 182 | | | 93.65 186 | 83.61 292 |
|
AUN-MVS | | | 81.18 184 | 78.78 210 | 88.39 76 | 90.93 140 | 82.14 56 | 82.51 195 | 83.67 248 | 64.69 258 | 80.29 258 | 85.91 254 | 51.07 303 | 92.38 152 | 76.29 144 | 93.63 187 | 90.65 204 |
|
MVS_111021_LR | | | 84.28 135 | 83.76 148 | 85.83 119 | 89.23 169 | 83.07 51 | 80.99 222 | 83.56 249 | 72.71 178 | 86.07 170 | 89.07 207 | 81.75 108 | 86.19 274 | 77.11 137 | 93.36 188 | 88.24 239 |
|
GBi-Net | | | 82.02 174 | 82.07 171 | 81.85 197 | 86.38 223 | 61.05 245 | 86.83 108 | 88.27 192 | 72.43 180 | 86.00 171 | 95.64 29 | 63.78 245 | 90.68 204 | 65.95 233 | 93.34 189 | 93.82 103 |
|
test1 | | | 82.02 174 | 82.07 171 | 81.85 197 | 86.38 223 | 61.05 245 | 86.83 108 | 88.27 192 | 72.43 180 | 86.00 171 | 95.64 29 | 63.78 245 | 90.68 204 | 65.95 233 | 93.34 189 | 93.82 103 |
|
FMVSNet3 | | | 78.80 215 | 78.55 213 | 79.57 234 | 82.89 275 | 56.89 286 | 81.76 208 | 85.77 227 | 69.04 215 | 86.00 171 | 90.44 184 | 51.75 301 | 90.09 224 | 65.95 233 | 93.34 189 | 91.72 180 |
|
CS-MVS | | | 83.43 156 | 83.04 158 | 84.59 141 | 87.87 194 | 66.61 192 | 85.57 128 | 94.90 13 | 73.02 174 | 81.12 246 | 78.56 329 | 80.00 126 | 95.52 39 | 73.04 179 | 93.29 192 | 91.62 184 |
|
K. test v3 | | | 85.14 114 | 84.73 126 | 86.37 102 | 91.13 137 | 69.63 167 | 85.45 130 | 76.68 290 | 84.06 39 | 92.44 53 | 96.99 8 | 62.03 253 | 94.65 73 | 80.58 98 | 93.24 193 | 94.83 67 |
|
Anonymous20231206 | | | 71.38 282 | 71.88 277 | 69.88 304 | 86.31 227 | 54.37 300 | 70.39 321 | 74.62 301 | 52.57 322 | 76.73 283 | 88.76 210 | 59.94 264 | 72.06 330 | 44.35 342 | 93.23 194 | 83.23 300 |
|
D2MVS | | | 76.84 235 | 75.67 244 | 80.34 222 | 80.48 300 | 62.16 236 | 73.50 308 | 84.80 245 | 57.61 298 | 82.24 228 | 87.54 229 | 51.31 302 | 87.65 253 | 70.40 200 | 93.19 195 | 91.23 191 |
|
miper_lstm_enhance | | | 76.45 242 | 76.10 239 | 77.51 263 | 76.72 326 | 60.97 249 | 64.69 337 | 85.04 240 | 63.98 260 | 83.20 217 | 88.22 217 | 56.67 285 | 78.79 317 | 73.22 172 | 93.12 196 | 92.78 141 |
|
新几何1 | | | | | 82.95 176 | 93.96 57 | 78.56 85 | | 80.24 270 | 55.45 307 | 83.93 207 | 91.08 163 | 71.19 213 | 88.33 247 | 65.84 236 | 93.07 197 | 81.95 315 |
|
1121 | | | 80.86 188 | 79.81 204 | 84.02 152 | 93.93 58 | 78.70 83 | 81.64 211 | 80.18 271 | 55.43 308 | 83.67 209 | 91.15 161 | 71.29 212 | 91.41 181 | 67.95 223 | 93.06 198 | 81.96 314 |
|
lessismore_v0 | | | | | 85.95 114 | 91.10 138 | 70.99 158 | | 70.91 328 | | 91.79 64 | 94.42 63 | 61.76 254 | 92.93 141 | 79.52 110 | 93.03 199 | 93.93 97 |
|
TAMVS | | | 78.08 222 | 76.36 236 | 83.23 170 | 90.62 148 | 72.87 130 | 79.08 249 | 80.01 273 | 61.72 273 | 81.35 244 | 86.92 240 | 63.96 244 | 88.78 242 | 50.61 321 | 93.01 200 | 88.04 243 |
|
ETV-MVS | | | 84.31 133 | 83.91 147 | 85.52 124 | 88.58 180 | 70.40 161 | 84.50 146 | 93.37 59 | 78.76 104 | 84.07 205 | 78.72 328 | 80.39 121 | 95.13 59 | 73.82 167 | 92.98 201 | 91.04 192 |
|
EPNet_dtu | | | 72.87 271 | 71.33 283 | 77.49 264 | 77.72 319 | 60.55 252 | 82.35 198 | 75.79 294 | 66.49 239 | 58.39 355 | 81.06 312 | 53.68 298 | 85.98 276 | 53.55 308 | 92.97 202 | 85.95 266 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Effi-MVS+-dtu | | | 85.82 106 | 83.38 151 | 93.14 3 | 87.13 210 | 91.15 2 | 87.70 95 | 88.42 187 | 74.57 150 | 83.56 212 | 85.65 255 | 78.49 135 | 94.21 87 | 72.04 185 | 92.88 203 | 94.05 93 |
|
CANet | | | 83.79 147 | 82.85 160 | 86.63 97 | 86.17 233 | 72.21 146 | 83.76 161 | 91.43 122 | 77.24 118 | 74.39 304 | 87.45 231 | 75.36 166 | 95.42 47 | 77.03 138 | 92.83 204 | 92.25 164 |
|
API-MVS | | | 82.28 169 | 82.61 164 | 81.30 204 | 86.29 229 | 69.79 163 | 88.71 82 | 87.67 201 | 78.42 108 | 82.15 231 | 84.15 282 | 77.98 139 | 91.59 174 | 65.39 239 | 92.75 205 | 82.51 309 |
|
test_yl | | | 78.71 217 | 78.51 214 | 79.32 237 | 84.32 254 | 58.84 270 | 78.38 257 | 85.33 232 | 75.99 131 | 82.49 224 | 86.57 242 | 58.01 276 | 90.02 226 | 62.74 253 | 92.73 206 | 89.10 230 |
|
DCV-MVSNet | | | 78.71 217 | 78.51 214 | 79.32 237 | 84.32 254 | 58.84 270 | 78.38 257 | 85.33 232 | 75.99 131 | 82.49 224 | 86.57 242 | 58.01 276 | 90.02 226 | 62.74 253 | 92.73 206 | 89.10 230 |
|
Regformer-1 | | | 86.00 102 | 85.50 115 | 87.49 88 | 84.18 260 | 76.90 106 | 83.52 166 | 87.94 199 | 82.18 62 | 89.19 115 | 85.07 270 | 82.28 95 | 91.89 168 | 82.40 77 | 92.72 208 | 93.69 109 |
|
Regformer-2 | | | 86.74 90 | 86.08 104 | 88.73 69 | 84.18 260 | 79.20 78 | 83.52 166 | 89.33 176 | 83.33 48 | 89.92 97 | 85.07 270 | 83.23 83 | 93.16 133 | 83.39 66 | 92.72 208 | 93.83 101 |
|
testgi | | | 72.36 274 | 74.61 250 | 65.59 321 | 80.56 298 | 42.82 352 | 68.29 327 | 73.35 312 | 66.87 236 | 81.84 235 | 89.93 194 | 72.08 206 | 66.92 344 | 46.05 339 | 92.54 210 | 87.01 257 |
|
FMVSNet5 | | | 72.10 277 | 71.69 278 | 73.32 289 | 81.57 282 | 53.02 310 | 76.77 279 | 78.37 281 | 63.31 261 | 76.37 285 | 91.85 143 | 36.68 351 | 78.98 315 | 47.87 333 | 92.45 211 | 87.95 245 |
|
CDS-MVSNet | | | 77.32 230 | 75.40 245 | 83.06 173 | 89.00 173 | 72.48 140 | 77.90 264 | 82.17 258 | 60.81 280 | 78.94 270 | 83.49 287 | 59.30 269 | 88.76 243 | 54.64 305 | 92.37 212 | 87.93 246 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CNLPA | | | 83.55 152 | 83.10 157 | 84.90 133 | 89.34 167 | 83.87 46 | 84.54 144 | 88.77 182 | 79.09 97 | 83.54 213 | 88.66 213 | 74.87 170 | 81.73 306 | 66.84 228 | 92.29 213 | 89.11 229 |
|
F-COLMAP | | | 84.97 121 | 83.42 150 | 89.63 56 | 92.39 94 | 83.40 48 | 88.83 79 | 91.92 110 | 73.19 171 | 80.18 261 | 89.15 205 | 77.04 152 | 93.28 128 | 65.82 237 | 92.28 214 | 92.21 165 |
|
thres600view7 | | | 75.97 245 | 75.35 247 | 77.85 261 | 87.01 216 | 51.84 321 | 80.45 228 | 73.26 313 | 75.20 144 | 83.10 219 | 86.31 248 | 45.54 324 | 89.05 235 | 55.03 302 | 92.24 215 | 92.66 147 |
|
PVSNet_BlendedMVS | | | 78.80 215 | 77.84 221 | 81.65 202 | 84.43 250 | 63.41 215 | 79.49 242 | 90.44 146 | 61.70 274 | 75.43 297 | 87.07 239 | 69.11 220 | 91.44 178 | 60.68 271 | 92.24 215 | 90.11 216 |
|
DELS-MVS | | | 81.44 181 | 81.25 181 | 82.03 193 | 84.27 256 | 62.87 224 | 76.47 285 | 92.49 96 | 70.97 195 | 81.64 241 | 83.83 283 | 75.03 168 | 92.70 146 | 74.29 159 | 92.22 217 | 90.51 208 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
testdata | | | | | 79.54 235 | 92.87 82 | 72.34 142 | | 80.14 272 | 59.91 287 | 85.47 182 | 91.75 149 | 67.96 226 | 85.24 283 | 68.57 219 | 92.18 218 | 81.06 328 |
|
cl-mvsnet2 | | | 78.97 212 | 78.21 218 | 81.24 207 | 77.74 318 | 59.01 267 | 77.46 273 | 87.13 209 | 65.79 244 | 84.32 199 | 85.10 267 | 58.96 272 | 90.88 198 | 75.36 153 | 92.03 219 | 93.84 100 |
|
miper_ehance_all_eth | | | 80.34 200 | 80.04 202 | 81.24 207 | 79.82 304 | 58.95 268 | 77.66 267 | 89.66 169 | 65.75 247 | 85.99 174 | 85.11 266 | 68.29 224 | 91.42 180 | 76.03 146 | 92.03 219 | 93.33 119 |
|
miper_enhance_ethall | | | 77.83 224 | 76.93 231 | 80.51 219 | 76.15 331 | 58.01 276 | 75.47 295 | 88.82 181 | 58.05 294 | 83.59 211 | 80.69 313 | 64.41 240 | 91.20 185 | 73.16 178 | 92.03 219 | 92.33 157 |
|
MVS_0304 | | | 78.17 220 | 77.23 228 | 80.99 213 | 84.13 262 | 69.07 177 | 81.39 215 | 80.81 267 | 76.28 125 | 67.53 332 | 89.11 206 | 62.87 251 | 86.77 265 | 60.90 270 | 92.01 222 | 87.13 255 |
|
DPM-MVS | | | 80.10 206 | 79.18 208 | 82.88 180 | 90.71 147 | 69.74 164 | 78.87 252 | 90.84 136 | 60.29 285 | 75.64 296 | 85.92 253 | 67.28 228 | 93.11 136 | 71.24 189 | 91.79 223 | 85.77 269 |
|
v148 | | | 82.31 168 | 82.48 167 | 81.81 200 | 85.59 239 | 59.66 259 | 81.47 214 | 86.02 225 | 72.85 176 | 88.05 135 | 90.65 181 | 70.73 214 | 90.91 196 | 75.15 155 | 91.79 223 | 94.87 63 |
|
test222 | | | | | | 93.31 72 | 76.54 109 | 79.38 243 | 77.79 283 | 52.59 321 | 82.36 227 | 90.84 174 | 66.83 232 | | | 91.69 225 | 81.25 323 |
|
eth_miper_zixun_eth | | | 80.84 189 | 80.22 197 | 82.71 183 | 81.41 284 | 60.98 248 | 77.81 265 | 90.14 161 | 67.31 233 | 86.95 154 | 87.24 235 | 64.26 241 | 92.31 154 | 75.23 154 | 91.61 226 | 94.85 65 |
|
pmmvs-eth3d | | | 78.42 219 | 77.04 230 | 82.57 188 | 87.44 204 | 74.41 122 | 80.86 224 | 79.67 274 | 55.68 306 | 84.69 191 | 90.31 187 | 60.91 257 | 85.42 282 | 62.20 257 | 91.59 227 | 87.88 247 |
|
Vis-MVSNet |  | | 86.86 87 | 86.58 96 | 87.72 85 | 92.09 105 | 77.43 98 | 87.35 99 | 92.09 104 | 78.87 101 | 84.27 204 | 94.05 80 | 78.35 137 | 93.65 109 | 80.54 99 | 91.58 228 | 92.08 168 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
thisisatest0515 | | | 73.00 270 | 70.52 285 | 80.46 220 | 81.45 283 | 59.90 257 | 73.16 312 | 74.31 305 | 57.86 295 | 76.08 291 | 77.78 332 | 37.60 350 | 92.12 160 | 65.00 240 | 91.45 229 | 89.35 224 |
|
ppachtmachnet_test | | | 74.73 258 | 74.00 257 | 76.90 268 | 80.71 296 | 56.89 286 | 71.53 317 | 78.42 280 | 58.24 292 | 79.32 267 | 82.92 296 | 57.91 279 | 84.26 293 | 65.60 238 | 91.36 230 | 89.56 220 |
|
OpenMVS |  | 76.72 13 | 81.98 176 | 82.00 173 | 81.93 194 | 84.42 252 | 68.22 180 | 88.50 86 | 89.48 173 | 66.92 235 | 81.80 238 | 91.86 142 | 72.59 201 | 90.16 218 | 71.19 190 | 91.25 231 | 87.40 252 |
|
EG-PatchMatch MVS | | | 84.08 140 | 84.11 142 | 83.98 154 | 92.22 102 | 72.61 136 | 82.20 206 | 87.02 214 | 72.63 179 | 88.86 119 | 91.02 166 | 78.52 134 | 91.11 189 | 73.41 171 | 91.09 232 | 88.21 240 |
|
3Dnovator | | 80.37 7 | 84.80 122 | 84.71 129 | 85.06 132 | 86.36 226 | 74.71 120 | 88.77 81 | 90.00 164 | 75.65 138 | 84.96 185 | 93.17 105 | 74.06 180 | 91.19 186 | 78.28 122 | 91.09 232 | 89.29 227 |
|
Regformer-3 | | | 85.06 117 | 84.67 131 | 86.22 108 | 84.27 256 | 73.43 127 | 84.07 150 | 85.26 234 | 80.77 78 | 88.62 125 | 85.48 258 | 80.56 120 | 90.39 212 | 81.99 81 | 91.04 234 | 94.85 65 |
|
Regformer-4 | | | 86.41 94 | 85.71 111 | 88.52 72 | 84.27 256 | 77.57 94 | 84.07 150 | 88.00 197 | 82.82 55 | 89.84 99 | 85.48 258 | 82.06 99 | 92.77 145 | 83.83 64 | 91.04 234 | 95.22 60 |
|
thres100view900 | | | 75.45 248 | 75.05 248 | 76.66 272 | 87.27 206 | 51.88 320 | 81.07 221 | 73.26 313 | 75.68 137 | 83.25 216 | 86.37 245 | 45.54 324 | 88.80 239 | 51.98 317 | 90.99 236 | 89.31 225 |
|
tfpn200view9 | | | 74.86 256 | 74.23 255 | 76.74 271 | 86.24 230 | 52.12 317 | 79.24 246 | 73.87 307 | 73.34 165 | 81.82 236 | 84.60 278 | 46.02 318 | 88.80 239 | 51.98 317 | 90.99 236 | 89.31 225 |
|
thres400 | | | 75.14 250 | 74.23 255 | 77.86 260 | 86.24 230 | 52.12 317 | 79.24 246 | 73.87 307 | 73.34 165 | 81.82 236 | 84.60 278 | 46.02 318 | 88.80 239 | 51.98 317 | 90.99 236 | 92.66 147 |
|
cascas | | | 76.29 244 | 74.81 249 | 80.72 217 | 84.47 249 | 62.94 222 | 73.89 306 | 87.34 203 | 55.94 305 | 75.16 301 | 76.53 340 | 63.97 243 | 91.16 187 | 65.00 240 | 90.97 239 | 88.06 242 |
|
MSP-MVS | | | 89.08 64 | 88.16 75 | 91.83 21 | 95.76 17 | 86.14 22 | 92.75 15 | 93.90 41 | 78.43 107 | 89.16 116 | 92.25 136 | 72.03 208 | 96.36 2 | 88.21 8 | 90.93 240 | 92.98 133 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
ab-mvs | | | 79.67 208 | 80.56 189 | 76.99 266 | 88.48 182 | 56.93 284 | 84.70 139 | 86.06 224 | 68.95 216 | 80.78 251 | 93.08 106 | 75.30 167 | 84.62 290 | 56.78 288 | 90.90 241 | 89.43 223 |
|
MAR-MVS | | | 80.24 203 | 78.74 212 | 84.73 137 | 86.87 220 | 78.18 87 | 85.75 125 | 87.81 200 | 65.67 249 | 77.84 277 | 78.50 330 | 73.79 184 | 90.53 208 | 61.59 265 | 90.87 242 | 85.49 272 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
EI-MVSNet-Vis-set | | | 85.12 115 | 84.53 134 | 86.88 93 | 84.01 263 | 72.76 131 | 83.91 156 | 85.18 236 | 80.44 79 | 88.75 122 | 85.49 257 | 80.08 124 | 91.92 166 | 82.02 80 | 90.85 243 | 95.97 38 |
|
EI-MVSNet-UG-set | | | 85.04 118 | 84.44 136 | 86.85 94 | 83.87 266 | 72.52 139 | 83.82 158 | 85.15 237 | 80.27 83 | 88.75 122 | 85.45 261 | 79.95 127 | 91.90 167 | 81.92 83 | 90.80 244 | 96.13 33 |
|
XVG-OURS-SEG-HR | | | 89.59 54 | 89.37 60 | 90.28 47 | 94.47 44 | 85.95 24 | 86.84 107 | 93.91 40 | 80.07 86 | 86.75 156 | 93.26 103 | 93.64 2 | 90.93 194 | 84.60 56 | 90.75 245 | 93.97 95 |
|
ET-MVSNet_ETH3D | | | 75.28 249 | 72.77 268 | 82.81 182 | 83.03 274 | 68.11 181 | 77.09 275 | 76.51 291 | 60.67 283 | 77.60 281 | 80.52 317 | 38.04 348 | 91.15 188 | 70.78 193 | 90.68 246 | 89.17 228 |
|
EI-MVSNet | | | 82.61 164 | 82.42 168 | 83.20 171 | 83.25 270 | 63.66 213 | 83.50 169 | 85.07 238 | 76.06 128 | 86.55 159 | 85.10 267 | 73.41 190 | 90.25 213 | 78.15 125 | 90.67 247 | 95.68 44 |
|
MVSTER | | | 77.09 232 | 75.70 243 | 81.25 205 | 75.27 338 | 61.08 244 | 77.49 272 | 85.07 238 | 60.78 281 | 86.55 159 | 88.68 212 | 43.14 339 | 90.25 213 | 73.69 168 | 90.67 247 | 92.42 153 |
|
Patchmatch-RL test | | | 74.48 259 | 73.68 259 | 76.89 269 | 84.83 246 | 66.54 193 | 72.29 314 | 69.16 333 | 57.70 296 | 86.76 155 | 86.33 246 | 45.79 323 | 82.59 301 | 69.63 204 | 90.65 249 | 81.54 319 |
|
CMPMVS |  | 59.41 20 | 75.12 252 | 73.57 260 | 79.77 228 | 75.84 333 | 67.22 185 | 81.21 219 | 82.18 257 | 50.78 334 | 76.50 284 | 87.66 227 | 55.20 294 | 82.99 300 | 62.17 259 | 90.64 250 | 89.09 232 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
V42 | | | 83.47 154 | 83.37 152 | 83.75 160 | 83.16 272 | 63.33 217 | 81.31 216 | 90.23 158 | 69.51 210 | 90.91 80 | 90.81 175 | 74.16 179 | 92.29 156 | 80.06 101 | 90.22 251 | 95.62 46 |
|
PM-MVS | | | 80.20 204 | 79.00 209 | 83.78 159 | 88.17 189 | 86.66 16 | 81.31 216 | 66.81 340 | 69.64 209 | 88.33 132 | 90.19 189 | 64.58 239 | 83.63 298 | 71.99 187 | 90.03 252 | 81.06 328 |
|
PLC |  | 73.85 16 | 82.09 173 | 80.31 193 | 87.45 89 | 90.86 143 | 80.29 68 | 85.88 124 | 90.65 141 | 68.17 222 | 76.32 287 | 86.33 246 | 73.12 195 | 92.61 149 | 61.40 266 | 90.02 253 | 89.44 222 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
mvs-test1 | | | 84.55 127 | 82.12 170 | 91.84 20 | 87.13 210 | 89.54 4 | 85.05 135 | 88.42 187 | 74.57 150 | 80.60 252 | 82.98 292 | 78.49 135 | 93.98 99 | 72.04 185 | 89.77 254 | 92.00 171 |
|
CANet_DTU | | | 77.81 226 | 77.05 229 | 80.09 226 | 81.37 285 | 59.90 257 | 83.26 175 | 88.29 191 | 69.16 213 | 67.83 330 | 83.72 284 | 60.93 256 | 89.47 230 | 69.22 209 | 89.70 255 | 90.88 197 |
|
diffmvs | | | 80.40 198 | 80.48 192 | 80.17 225 | 79.02 314 | 60.04 255 | 77.54 270 | 90.28 157 | 66.65 238 | 82.40 226 | 87.33 234 | 73.50 187 | 87.35 256 | 77.98 126 | 89.62 256 | 93.13 127 |
|
PMMVS2 | | | 55.64 326 | 59.27 326 | 44.74 340 | 64.30 360 | 12.32 363 | 40.60 354 | 49.79 359 | 53.19 318 | 65.06 342 | 84.81 274 | 53.60 299 | 49.76 356 | 32.68 356 | 89.41 257 | 72.15 341 |
|
Fast-Effi-MVS+-dtu | | | 82.54 166 | 81.41 180 | 85.90 116 | 85.60 238 | 76.53 111 | 83.07 181 | 89.62 171 | 73.02 174 | 79.11 269 | 83.51 286 | 80.74 118 | 90.24 215 | 68.76 214 | 89.29 258 | 90.94 195 |
|
thres200 | | | 72.34 275 | 71.55 281 | 74.70 285 | 83.48 267 | 51.60 322 | 75.02 298 | 73.71 310 | 70.14 206 | 78.56 273 | 80.57 316 | 46.20 316 | 88.20 249 | 46.99 336 | 89.29 258 | 84.32 283 |
|
jason | | | 77.42 229 | 75.75 242 | 82.43 191 | 87.10 214 | 69.27 170 | 77.99 262 | 81.94 260 | 51.47 330 | 77.84 277 | 85.07 270 | 60.32 261 | 89.00 236 | 70.74 195 | 89.27 260 | 89.03 233 |
jason: jason. |
MG-MVS | | | 80.32 201 | 80.94 186 | 78.47 249 | 88.18 188 | 52.62 314 | 82.29 200 | 85.01 242 | 72.01 188 | 79.24 268 | 92.54 127 | 69.36 218 | 93.36 127 | 70.65 196 | 89.19 261 | 89.45 221 |
|
BH-untuned | | | 80.96 187 | 80.99 185 | 80.84 214 | 88.55 181 | 68.23 179 | 80.33 230 | 88.46 186 | 72.79 177 | 86.55 159 | 86.76 241 | 74.72 175 | 91.77 172 | 61.79 261 | 88.99 262 | 82.52 308 |
|
EIA-MVS | | | 82.19 171 | 81.23 182 | 85.10 131 | 87.95 192 | 69.17 175 | 83.22 179 | 93.33 62 | 70.42 200 | 78.58 272 | 79.77 325 | 77.29 147 | 94.20 88 | 71.51 188 | 88.96 263 | 91.93 175 |
|
PVSNet_Blended_VisFu | | | 81.55 180 | 80.49 191 | 84.70 139 | 91.58 122 | 73.24 129 | 84.21 148 | 91.67 117 | 62.86 264 | 80.94 248 | 87.16 236 | 67.27 229 | 92.87 144 | 69.82 203 | 88.94 264 | 87.99 244 |
|
MVSFormer | | | 82.23 170 | 81.57 179 | 84.19 151 | 85.54 240 | 69.26 171 | 91.98 29 | 90.08 162 | 71.54 190 | 76.23 288 | 85.07 270 | 58.69 273 | 94.27 82 | 86.26 35 | 88.77 265 | 89.03 233 |
|
lupinMVS | | | 76.37 243 | 74.46 253 | 82.09 192 | 85.54 240 | 69.26 171 | 76.79 278 | 80.77 268 | 50.68 336 | 76.23 288 | 82.82 297 | 58.69 273 | 88.94 237 | 69.85 202 | 88.77 265 | 88.07 241 |
|
RPSCF | | | 88.00 75 | 86.93 92 | 91.22 31 | 90.08 158 | 89.30 5 | 89.68 60 | 91.11 131 | 79.26 95 | 89.68 103 | 94.81 51 | 82.44 90 | 87.74 252 | 76.54 141 | 88.74 267 | 96.61 28 |
|
PAPM_NR | | | 83.23 158 | 83.19 155 | 83.33 168 | 90.90 141 | 65.98 196 | 88.19 88 | 90.78 138 | 78.13 111 | 80.87 250 | 87.92 224 | 73.49 189 | 92.42 151 | 70.07 201 | 88.40 268 | 91.60 185 |
|
xiu_mvs_v1_base_debu | | | 80.84 189 | 80.14 199 | 82.93 177 | 88.31 185 | 71.73 150 | 79.53 239 | 87.17 206 | 65.43 250 | 79.59 263 | 82.73 299 | 76.94 154 | 90.14 221 | 73.22 172 | 88.33 269 | 86.90 258 |
|
xiu_mvs_v1_base | | | 80.84 189 | 80.14 199 | 82.93 177 | 88.31 185 | 71.73 150 | 79.53 239 | 87.17 206 | 65.43 250 | 79.59 263 | 82.73 299 | 76.94 154 | 90.14 221 | 73.22 172 | 88.33 269 | 86.90 258 |
|
xiu_mvs_v1_base_debi | | | 80.84 189 | 80.14 199 | 82.93 177 | 88.31 185 | 71.73 150 | 79.53 239 | 87.17 206 | 65.43 250 | 79.59 263 | 82.73 299 | 76.94 154 | 90.14 221 | 73.22 172 | 88.33 269 | 86.90 258 |
|
XXY-MVS | | | 74.44 261 | 76.19 238 | 69.21 308 | 84.61 248 | 52.43 316 | 71.70 316 | 77.18 286 | 60.73 282 | 80.60 252 | 90.96 170 | 75.44 164 | 69.35 336 | 56.13 292 | 88.33 269 | 85.86 268 |
|
Fast-Effi-MVS+ | | | 81.04 186 | 80.57 188 | 82.46 190 | 87.50 203 | 63.22 219 | 78.37 259 | 89.63 170 | 68.01 223 | 81.87 234 | 82.08 304 | 82.31 92 | 92.65 148 | 67.10 225 | 88.30 273 | 91.51 188 |
|
MDA-MVSNet-bldmvs | | | 77.47 228 | 76.90 232 | 79.16 239 | 79.03 313 | 64.59 204 | 66.58 334 | 75.67 296 | 73.15 172 | 88.86 119 | 88.99 208 | 66.94 230 | 81.23 308 | 64.71 242 | 88.22 274 | 91.64 183 |
|
PAPR | | | 78.84 214 | 78.10 219 | 81.07 209 | 85.17 243 | 60.22 254 | 82.21 204 | 90.57 144 | 62.51 266 | 75.32 299 | 84.61 277 | 74.99 169 | 92.30 155 | 59.48 277 | 88.04 275 | 90.68 202 |
|
BH-RMVSNet | | | 80.53 194 | 80.22 197 | 81.49 203 | 87.19 209 | 66.21 195 | 77.79 266 | 86.23 222 | 74.21 154 | 83.69 208 | 88.50 214 | 73.25 194 | 90.75 201 | 63.18 252 | 87.90 276 | 87.52 250 |
|
Effi-MVS+ | | | 83.90 146 | 84.01 144 | 83.57 165 | 87.22 208 | 65.61 199 | 86.55 116 | 92.40 97 | 78.64 105 | 81.34 245 | 84.18 281 | 83.65 78 | 92.93 141 | 74.22 160 | 87.87 277 | 92.17 167 |
|
MVS_Test | | | 82.47 167 | 83.22 153 | 80.22 224 | 82.62 276 | 57.75 279 | 82.54 194 | 91.96 109 | 71.16 194 | 82.89 221 | 92.52 128 | 77.41 146 | 90.50 209 | 80.04 102 | 87.84 278 | 92.40 155 |
|
QAPM | | | 82.59 165 | 82.59 165 | 82.58 186 | 86.44 221 | 66.69 191 | 89.94 55 | 90.36 149 | 67.97 225 | 84.94 187 | 92.58 125 | 72.71 199 | 92.18 157 | 70.63 197 | 87.73 279 | 88.85 236 |
|
PVSNet_Blended | | | 76.49 241 | 75.40 245 | 79.76 229 | 84.43 250 | 63.41 215 | 75.14 297 | 90.44 146 | 57.36 300 | 75.43 297 | 78.30 331 | 69.11 220 | 91.44 178 | 60.68 271 | 87.70 280 | 84.42 282 |
|
pmmvs5 | | | 70.73 285 | 70.07 289 | 72.72 293 | 77.03 324 | 52.73 312 | 74.14 303 | 75.65 297 | 50.36 338 | 72.17 314 | 85.37 264 | 55.42 293 | 80.67 311 | 52.86 314 | 87.59 281 | 84.77 278 |
|
IB-MVS | | 62.13 19 | 71.64 280 | 68.97 294 | 79.66 233 | 80.80 295 | 62.26 235 | 73.94 305 | 76.90 287 | 63.27 262 | 68.63 326 | 76.79 338 | 33.83 355 | 91.84 170 | 59.28 278 | 87.26 282 | 84.88 277 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
N_pmnet | | | 70.20 287 | 68.80 296 | 74.38 286 | 80.91 290 | 84.81 38 | 59.12 347 | 76.45 292 | 55.06 309 | 75.31 300 | 82.36 302 | 55.74 290 | 54.82 354 | 47.02 335 | 87.24 283 | 83.52 293 |
|
pmmvs4 | | | 74.92 255 | 72.98 267 | 80.73 216 | 84.95 244 | 71.71 153 | 76.23 288 | 77.59 284 | 52.83 320 | 77.73 280 | 86.38 244 | 56.35 288 | 84.97 286 | 57.72 286 | 87.05 284 | 85.51 271 |
|
MIMVSNet | | | 71.09 283 | 71.59 279 | 69.57 307 | 87.23 207 | 50.07 333 | 78.91 250 | 71.83 323 | 60.20 286 | 71.26 317 | 91.76 148 | 55.08 295 | 76.09 322 | 41.06 347 | 87.02 285 | 82.54 307 |
|
HyFIR lowres test | | | 75.12 252 | 72.66 270 | 82.50 189 | 91.44 128 | 65.19 201 | 72.47 313 | 87.31 204 | 46.79 342 | 80.29 258 | 84.30 280 | 52.70 300 | 92.10 161 | 51.88 320 | 86.73 286 | 90.22 212 |
|
MSDG | | | 80.06 207 | 79.99 203 | 80.25 223 | 83.91 265 | 68.04 182 | 77.51 271 | 89.19 177 | 77.65 113 | 81.94 233 | 83.45 288 | 76.37 162 | 86.31 272 | 63.31 251 | 86.59 287 | 86.41 261 |
|
Patchmatch-test | | | 65.91 309 | 67.38 301 | 61.48 332 | 75.51 335 | 43.21 351 | 68.84 325 | 63.79 344 | 62.48 267 | 72.80 311 | 83.42 289 | 44.89 334 | 59.52 353 | 48.27 332 | 86.45 288 | 81.70 316 |
|
mvs_anonymous | | | 78.13 221 | 78.76 211 | 76.23 277 | 79.24 311 | 50.31 332 | 78.69 254 | 84.82 244 | 61.60 275 | 83.09 220 | 92.82 116 | 73.89 183 | 87.01 258 | 68.33 220 | 86.41 289 | 91.37 189 |
|
IterMVS-SCA-FT | | | 80.64 193 | 79.41 206 | 84.34 146 | 83.93 264 | 69.66 166 | 76.28 287 | 81.09 265 | 72.43 180 | 86.47 165 | 90.19 189 | 60.46 259 | 93.15 135 | 77.45 133 | 86.39 290 | 90.22 212 |
|
E-PMN | | | 61.59 317 | 61.62 319 | 61.49 331 | 66.81 357 | 55.40 294 | 53.77 351 | 60.34 350 | 66.80 237 | 58.90 353 | 65.50 352 | 40.48 344 | 66.12 347 | 55.72 294 | 86.25 291 | 62.95 349 |
|
EMVS | | | 61.10 320 | 60.81 321 | 61.99 329 | 65.96 358 | 55.86 291 | 53.10 352 | 58.97 352 | 67.06 234 | 56.89 356 | 63.33 353 | 40.98 342 | 67.03 343 | 54.79 303 | 86.18 292 | 63.08 348 |
|
our_test_3 | | | 71.85 278 | 71.59 279 | 72.62 295 | 80.71 296 | 53.78 304 | 69.72 324 | 71.71 326 | 58.80 289 | 78.03 274 | 80.51 318 | 56.61 286 | 78.84 316 | 62.20 257 | 86.04 293 | 85.23 273 |
|
EU-MVSNet | | | 75.12 252 | 74.43 254 | 77.18 265 | 83.11 273 | 59.48 261 | 85.71 127 | 82.43 256 | 39.76 354 | 85.64 178 | 88.76 210 | 44.71 335 | 87.88 251 | 73.86 166 | 85.88 294 | 84.16 285 |
|
GA-MVS | | | 75.83 246 | 74.61 250 | 79.48 236 | 81.87 279 | 59.25 263 | 73.42 309 | 82.88 252 | 68.68 218 | 79.75 262 | 81.80 306 | 50.62 305 | 89.46 231 | 66.85 227 | 85.64 295 | 89.72 218 |
|
MVS | | | 73.21 268 | 72.59 271 | 75.06 283 | 80.97 289 | 60.81 250 | 81.64 211 | 85.92 226 | 46.03 345 | 71.68 316 | 77.54 333 | 68.47 223 | 89.77 228 | 55.70 295 | 85.39 296 | 74.60 339 |
|
PatchT | | | 70.52 286 | 72.76 269 | 63.79 326 | 79.38 309 | 33.53 358 | 77.63 268 | 65.37 342 | 73.61 160 | 71.77 315 | 92.79 119 | 44.38 336 | 75.65 325 | 64.53 246 | 85.37 297 | 82.18 312 |
|
TR-MVS | | | 76.77 237 | 75.79 241 | 79.72 231 | 86.10 235 | 65.79 198 | 77.14 274 | 83.02 251 | 65.20 255 | 81.40 243 | 82.10 303 | 66.30 233 | 90.73 203 | 55.57 296 | 85.27 298 | 82.65 304 |
|
BH-w/o | | | 76.57 239 | 76.07 240 | 78.10 256 | 86.88 219 | 65.92 197 | 77.63 268 | 86.33 221 | 65.69 248 | 80.89 249 | 79.95 322 | 68.97 222 | 90.74 202 | 53.01 313 | 85.25 299 | 77.62 334 |
|
IterMVS | | | 76.91 234 | 76.34 237 | 78.64 245 | 80.91 290 | 64.03 211 | 76.30 286 | 79.03 278 | 64.88 257 | 83.11 218 | 89.16 204 | 59.90 265 | 84.46 291 | 68.61 217 | 85.15 300 | 87.42 251 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
OpenMVS_ROB |  | 70.19 17 | 77.77 227 | 77.46 224 | 78.71 244 | 84.39 253 | 61.15 243 | 81.18 220 | 82.52 254 | 62.45 268 | 83.34 215 | 87.37 232 | 66.20 234 | 88.66 244 | 64.69 243 | 85.02 301 | 86.32 262 |
|
KD-MVS_2432*1600 | | | 66.87 303 | 65.81 308 | 70.04 302 | 67.50 355 | 47.49 340 | 62.56 341 | 79.16 276 | 61.21 278 | 77.98 275 | 80.61 314 | 25.29 364 | 82.48 302 | 53.02 311 | 84.92 302 | 80.16 331 |
|
miper_refine_blended | | | 66.87 303 | 65.81 308 | 70.04 302 | 67.50 355 | 47.49 340 | 62.56 341 | 79.16 276 | 61.21 278 | 77.98 275 | 80.61 314 | 25.29 364 | 82.48 302 | 53.02 311 | 84.92 302 | 80.16 331 |
|
test-LLR | | | 67.21 301 | 66.74 305 | 68.63 312 | 76.45 329 | 55.21 296 | 67.89 328 | 67.14 337 | 62.43 269 | 65.08 340 | 72.39 345 | 43.41 337 | 69.37 334 | 61.00 267 | 84.89 304 | 81.31 321 |
|
test-mter | | | 65.00 311 | 63.79 314 | 68.63 312 | 76.45 329 | 55.21 296 | 67.89 328 | 67.14 337 | 50.98 333 | 65.08 340 | 72.39 345 | 28.27 361 | 69.37 334 | 61.00 267 | 84.89 304 | 81.31 321 |
|
PS-MVSNAJ | | | 77.04 233 | 76.53 235 | 78.56 246 | 87.09 215 | 61.40 239 | 75.26 296 | 87.13 209 | 61.25 276 | 74.38 305 | 77.22 337 | 76.94 154 | 90.94 193 | 64.63 244 | 84.83 306 | 83.35 297 |
|
xiu_mvs_v2_base | | | 77.19 231 | 76.75 233 | 78.52 247 | 87.01 216 | 61.30 241 | 75.55 294 | 87.12 212 | 61.24 277 | 74.45 303 | 78.79 327 | 77.20 148 | 90.93 194 | 64.62 245 | 84.80 307 | 83.32 298 |
|
pmmvs3 | | | 62.47 313 | 60.02 325 | 69.80 305 | 71.58 353 | 64.00 212 | 70.52 320 | 58.44 353 | 39.77 353 | 66.05 334 | 75.84 341 | 27.10 363 | 72.28 329 | 46.15 338 | 84.77 308 | 73.11 340 |
|
MDTV_nov1_ep13 | | | | 68.29 299 | | 78.03 317 | 43.87 349 | 74.12 304 | 72.22 320 | 52.17 324 | 67.02 333 | 85.54 256 | 45.36 328 | 80.85 310 | 55.73 293 | 84.42 309 | |
|
1112_ss | | | 74.82 257 | 73.74 258 | 78.04 257 | 89.57 164 | 60.04 255 | 76.49 284 | 87.09 213 | 54.31 312 | 73.66 308 | 79.80 323 | 60.25 262 | 86.76 267 | 58.37 280 | 84.15 310 | 87.32 253 |
|
PatchMatch-RL | | | 74.48 259 | 73.22 264 | 78.27 254 | 87.70 198 | 85.26 33 | 75.92 290 | 70.09 330 | 64.34 259 | 76.09 290 | 81.25 311 | 65.87 237 | 78.07 318 | 53.86 307 | 83.82 311 | 71.48 342 |
|
MDA-MVSNet_test_wron | | | 70.05 291 | 70.44 286 | 68.88 310 | 73.84 343 | 53.47 306 | 58.93 349 | 67.28 335 | 58.43 290 | 87.09 149 | 85.40 262 | 59.80 267 | 67.25 342 | 59.66 276 | 83.54 312 | 85.92 267 |
|
YYNet1 | | | 70.06 290 | 70.44 286 | 68.90 309 | 73.76 344 | 53.42 308 | 58.99 348 | 67.20 336 | 58.42 291 | 87.10 148 | 85.39 263 | 59.82 266 | 67.32 341 | 59.79 275 | 83.50 313 | 85.96 265 |
|
Test_1112_low_res | | | 73.90 263 | 73.08 265 | 76.35 274 | 90.35 153 | 55.95 289 | 73.40 310 | 86.17 223 | 50.70 335 | 73.14 309 | 85.94 252 | 58.31 275 | 85.90 278 | 56.51 290 | 83.22 314 | 87.20 254 |
|
PVSNet | | 58.17 21 | 66.41 307 | 65.63 310 | 68.75 311 | 81.96 278 | 49.88 334 | 62.19 343 | 72.51 319 | 51.03 332 | 68.04 328 | 75.34 343 | 50.84 304 | 74.77 326 | 45.82 340 | 82.96 315 | 81.60 318 |
|
gg-mvs-nofinetune | | | 68.96 297 | 69.11 293 | 68.52 314 | 76.12 332 | 45.32 345 | 83.59 165 | 55.88 355 | 86.68 25 | 64.62 344 | 97.01 7 | 30.36 359 | 83.97 296 | 44.78 341 | 82.94 316 | 76.26 336 |
|
CR-MVSNet | | | 74.00 262 | 73.04 266 | 76.85 270 | 79.58 305 | 62.64 227 | 82.58 191 | 76.90 287 | 50.50 337 | 75.72 294 | 92.38 129 | 48.07 311 | 84.07 294 | 68.72 216 | 82.91 317 | 83.85 289 |
|
RPMNet | | | 78.88 213 | 78.28 217 | 80.68 218 | 79.58 305 | 62.64 227 | 82.58 191 | 94.16 28 | 74.80 147 | 75.72 294 | 92.59 123 | 48.69 309 | 95.56 34 | 73.48 170 | 82.91 317 | 83.85 289 |
|
test0.0.03 1 | | | 64.66 312 | 64.36 313 | 65.57 322 | 75.03 340 | 46.89 342 | 64.69 337 | 61.58 349 | 62.43 269 | 71.18 319 | 77.54 333 | 43.41 337 | 68.47 339 | 40.75 348 | 82.65 319 | 81.35 320 |
|
HY-MVS | | 64.64 18 | 73.03 269 | 72.47 274 | 74.71 284 | 83.36 269 | 54.19 301 | 82.14 207 | 81.96 259 | 56.76 304 | 69.57 324 | 86.21 250 | 60.03 263 | 84.83 289 | 49.58 326 | 82.65 319 | 85.11 275 |
|
SCA | | | 73.32 265 | 72.57 272 | 75.58 280 | 81.62 281 | 55.86 291 | 78.89 251 | 71.37 327 | 61.73 272 | 74.93 302 | 83.42 289 | 60.46 259 | 87.01 258 | 58.11 284 | 82.63 321 | 83.88 286 |
|
CHOSEN 1792x2688 | | | 72.45 273 | 70.56 284 | 78.13 255 | 90.02 162 | 63.08 220 | 68.72 326 | 83.16 250 | 42.99 351 | 75.92 292 | 85.46 260 | 57.22 284 | 85.18 285 | 49.87 325 | 81.67 322 | 86.14 264 |
|
WTY-MVS | | | 67.91 300 | 68.35 298 | 66.58 319 | 80.82 294 | 48.12 337 | 65.96 335 | 72.60 317 | 53.67 316 | 71.20 318 | 81.68 308 | 58.97 271 | 69.06 338 | 48.57 329 | 81.67 322 | 82.55 306 |
|
TESTMET0.1,1 | | | 61.29 318 | 60.32 323 | 64.19 325 | 72.06 351 | 51.30 324 | 67.89 328 | 62.09 345 | 45.27 346 | 60.65 349 | 69.01 348 | 27.93 362 | 64.74 350 | 56.31 291 | 81.65 324 | 76.53 335 |
|
PAPM | | | 71.77 279 | 70.06 290 | 76.92 267 | 86.39 222 | 53.97 302 | 76.62 282 | 86.62 219 | 53.44 317 | 63.97 345 | 84.73 276 | 57.79 281 | 92.34 153 | 39.65 349 | 81.33 325 | 84.45 281 |
|
DSMNet-mixed | | | 60.98 321 | 61.61 320 | 59.09 336 | 72.88 349 | 45.05 347 | 74.70 301 | 46.61 360 | 26.20 357 | 65.34 338 | 90.32 186 | 55.46 292 | 63.12 352 | 41.72 346 | 81.30 326 | 69.09 346 |
|
sss | | | 66.92 302 | 67.26 302 | 65.90 320 | 77.23 321 | 51.10 328 | 64.79 336 | 71.72 325 | 52.12 327 | 70.13 322 | 80.18 320 | 57.96 278 | 65.36 349 | 50.21 322 | 81.01 327 | 81.25 323 |
|
tpm | | | 67.95 299 | 68.08 300 | 67.55 316 | 78.74 316 | 43.53 350 | 75.60 292 | 67.10 339 | 54.92 310 | 72.23 313 | 88.10 219 | 42.87 340 | 75.97 323 | 52.21 315 | 80.95 328 | 83.15 301 |
|
tpm2 | | | 68.45 298 | 66.83 304 | 73.30 290 | 78.93 315 | 48.50 335 | 79.76 236 | 71.76 324 | 47.50 341 | 69.92 323 | 83.60 285 | 42.07 341 | 88.40 246 | 48.44 331 | 79.51 329 | 83.01 303 |
|
FPMVS | | | 72.29 276 | 72.00 276 | 73.14 291 | 88.63 179 | 85.00 35 | 74.65 302 | 67.39 334 | 71.94 189 | 77.80 279 | 87.66 227 | 50.48 306 | 75.83 324 | 49.95 323 | 79.51 329 | 58.58 353 |
|
UnsupCasMVSNet_bld | | | 69.21 296 | 69.68 291 | 67.82 315 | 79.42 308 | 51.15 326 | 67.82 331 | 75.79 294 | 54.15 313 | 77.47 282 | 85.36 265 | 59.26 270 | 70.64 333 | 48.46 330 | 79.35 331 | 81.66 317 |
|
CostFormer | | | 69.98 292 | 68.68 297 | 73.87 287 | 77.14 322 | 50.72 330 | 79.26 245 | 74.51 303 | 51.94 328 | 70.97 320 | 84.75 275 | 45.16 332 | 87.49 254 | 55.16 301 | 79.23 332 | 83.40 296 |
|
1314 | | | 73.22 267 | 72.56 273 | 75.20 281 | 80.41 301 | 57.84 277 | 81.64 211 | 85.36 231 | 51.68 329 | 73.10 310 | 76.65 339 | 61.45 255 | 85.19 284 | 63.54 248 | 79.21 333 | 82.59 305 |
|
baseline1 | | | 73.26 266 | 73.54 261 | 72.43 297 | 84.92 245 | 47.79 339 | 79.89 235 | 74.00 306 | 65.93 242 | 78.81 271 | 86.28 249 | 56.36 287 | 81.63 307 | 56.63 289 | 79.04 334 | 87.87 248 |
|
PMMVS | | | 61.65 316 | 60.38 322 | 65.47 323 | 65.40 359 | 69.26 171 | 63.97 339 | 61.73 348 | 36.80 356 | 60.11 350 | 68.43 349 | 59.42 268 | 66.35 346 | 48.97 328 | 78.57 335 | 60.81 350 |
|
baseline2 | | | 69.77 293 | 66.89 303 | 78.41 250 | 79.51 307 | 58.09 275 | 76.23 288 | 69.57 332 | 57.50 299 | 64.82 343 | 77.45 335 | 46.02 318 | 88.44 245 | 53.08 310 | 77.83 336 | 88.70 237 |
|
MS-PatchMatch | | | 70.93 284 | 70.22 288 | 73.06 292 | 81.85 280 | 62.50 230 | 73.82 307 | 77.90 282 | 52.44 323 | 75.92 292 | 81.27 310 | 55.67 291 | 81.75 305 | 55.37 298 | 77.70 337 | 74.94 338 |
|
UnsupCasMVSNet_eth | | | 71.63 281 | 72.30 275 | 69.62 306 | 76.47 328 | 52.70 313 | 70.03 323 | 80.97 266 | 59.18 288 | 79.36 266 | 88.21 218 | 60.50 258 | 69.12 337 | 58.33 282 | 77.62 338 | 87.04 256 |
|
CVMVSNet | | | 72.62 272 | 71.41 282 | 76.28 276 | 83.25 270 | 60.34 253 | 83.50 169 | 79.02 279 | 37.77 355 | 76.33 286 | 85.10 267 | 49.60 308 | 87.41 255 | 70.54 198 | 77.54 339 | 81.08 326 |
|
GG-mvs-BLEND | | | | | 67.16 317 | 73.36 345 | 46.54 344 | 84.15 149 | 55.04 356 | | 58.64 354 | 61.95 355 | 29.93 360 | 83.87 297 | 38.71 351 | 76.92 340 | 71.07 343 |
|
CHOSEN 280x420 | | | 59.08 323 | 56.52 328 | 66.76 318 | 76.51 327 | 64.39 208 | 49.62 353 | 59.00 351 | 43.86 349 | 55.66 357 | 68.41 350 | 35.55 353 | 68.21 340 | 43.25 343 | 76.78 341 | 67.69 347 |
|
tpmvs | | | 70.16 288 | 69.56 292 | 71.96 299 | 74.71 342 | 48.13 336 | 79.63 237 | 75.45 299 | 65.02 256 | 70.26 321 | 81.88 305 | 45.34 329 | 85.68 280 | 58.34 281 | 75.39 342 | 82.08 313 |
|
MVP-Stereo | | | 75.81 247 | 73.51 262 | 82.71 183 | 89.35 166 | 73.62 125 | 80.06 231 | 85.20 235 | 60.30 284 | 73.96 306 | 87.94 222 | 57.89 280 | 89.45 232 | 52.02 316 | 74.87 343 | 85.06 276 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
DWT-MVSNet_test | | | 66.43 306 | 64.37 312 | 72.63 294 | 74.86 341 | 50.86 329 | 76.52 283 | 72.74 316 | 54.06 314 | 65.50 337 | 68.30 351 | 32.13 357 | 84.84 288 | 61.63 264 | 73.59 344 | 82.19 311 |
|
new_pmnet | | | 55.69 325 | 57.66 327 | 49.76 339 | 75.47 336 | 30.59 359 | 59.56 344 | 51.45 358 | 43.62 350 | 62.49 346 | 75.48 342 | 40.96 343 | 49.15 357 | 37.39 352 | 72.52 345 | 69.55 345 |
|
PatchmatchNet |  | | 69.71 294 | 68.83 295 | 72.33 298 | 77.66 320 | 53.60 305 | 79.29 244 | 69.99 331 | 57.66 297 | 72.53 312 | 82.93 295 | 46.45 315 | 80.08 314 | 60.91 269 | 72.09 346 | 83.31 299 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MVS-HIRNet | | | 61.16 319 | 62.92 316 | 55.87 337 | 79.09 312 | 35.34 357 | 71.83 315 | 57.98 354 | 46.56 343 | 59.05 352 | 91.14 162 | 49.95 307 | 76.43 321 | 38.74 350 | 71.92 347 | 55.84 354 |
|
tpmrst | | | 66.28 308 | 66.69 306 | 65.05 324 | 72.82 350 | 39.33 353 | 78.20 260 | 70.69 329 | 53.16 319 | 67.88 329 | 80.36 319 | 48.18 310 | 74.75 327 | 58.13 283 | 70.79 348 | 81.08 326 |
|
tpm cat1 | | | 66.76 305 | 65.21 311 | 71.42 300 | 77.09 323 | 50.62 331 | 78.01 261 | 73.68 311 | 44.89 347 | 68.64 325 | 79.00 326 | 45.51 326 | 82.42 304 | 49.91 324 | 70.15 349 | 81.23 325 |
|
ADS-MVSNet2 | | | 65.87 310 | 63.64 315 | 72.55 296 | 73.16 347 | 56.92 285 | 67.10 332 | 74.81 300 | 49.74 339 | 66.04 335 | 82.97 293 | 46.71 313 | 77.26 319 | 42.29 344 | 69.96 350 | 83.46 294 |
|
ADS-MVSNet | | | 61.90 315 | 62.19 318 | 61.03 333 | 73.16 347 | 36.42 356 | 67.10 332 | 61.75 347 | 49.74 339 | 66.04 335 | 82.97 293 | 46.71 313 | 63.21 351 | 42.29 344 | 69.96 350 | 83.46 294 |
|
JIA-IIPM | | | 69.41 295 | 66.64 307 | 77.70 262 | 73.19 346 | 71.24 156 | 75.67 291 | 65.56 341 | 70.42 200 | 65.18 339 | 92.97 111 | 33.64 356 | 83.06 299 | 53.52 309 | 69.61 352 | 78.79 333 |
|
EPMVS | | | 62.47 313 | 62.63 317 | 62.01 328 | 70.63 354 | 38.74 354 | 74.76 300 | 52.86 357 | 53.91 315 | 67.71 331 | 80.01 321 | 39.40 345 | 66.60 345 | 55.54 297 | 68.81 353 | 80.68 330 |
|
MVE |  | 40.22 23 | 51.82 327 | 50.47 330 | 55.87 337 | 62.66 361 | 51.91 319 | 31.61 356 | 39.28 361 | 40.65 352 | 50.76 358 | 74.98 344 | 56.24 289 | 44.67 358 | 33.94 355 | 64.11 354 | 71.04 344 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
dp | | | 60.70 322 | 60.29 324 | 61.92 330 | 72.04 352 | 38.67 355 | 70.83 318 | 64.08 343 | 51.28 331 | 60.75 348 | 77.28 336 | 36.59 352 | 71.58 332 | 47.41 334 | 62.34 355 | 75.52 337 |
|
PVSNet_0 | | 51.08 22 | 56.10 324 | 54.97 329 | 59.48 335 | 75.12 339 | 53.28 309 | 55.16 350 | 61.89 346 | 44.30 348 | 59.16 351 | 62.48 354 | 54.22 297 | 65.91 348 | 35.40 353 | 47.01 356 | 59.25 352 |
|
tmp_tt | | | 20.25 329 | 24.50 332 | 7.49 342 | 4.47 363 | 8.70 364 | 34.17 355 | 25.16 363 | 1.00 359 | 32.43 360 | 18.49 357 | 39.37 346 | 9.21 360 | 21.64 357 | 43.75 357 | 4.57 356 |
|
DeepMVS_CX |  | | | | 24.13 341 | 32.95 362 | 29.49 360 | | 21.63 364 | 12.07 358 | 37.95 359 | 45.07 356 | 30.84 358 | 19.21 359 | 17.94 358 | 33.06 358 | 23.69 355 |
|
testmvs | | | 5.91 333 | 7.65 336 | 0.72 344 | 1.20 364 | 0.37 366 | 59.14 346 | 0.67 366 | 0.49 361 | 1.11 361 | 2.76 361 | 0.94 367 | 0.24 362 | 1.02 360 | 1.47 359 | 1.55 358 |
|
test123 | | | 6.27 332 | 8.08 335 | 0.84 343 | 1.11 365 | 0.57 365 | 62.90 340 | 0.82 365 | 0.54 360 | 1.07 362 | 2.75 362 | 1.26 366 | 0.30 361 | 1.04 359 | 1.26 360 | 1.66 357 |
|
uanet_test | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
cdsmvs_eth3d_5k | | | 20.81 328 | 27.75 331 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 85.44 230 | 0.00 362 | 0.00 363 | 82.82 297 | 81.46 110 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
pcd_1.5k_mvsjas | | | 6.41 331 | 8.55 334 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 76.94 154 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet-low-res | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uncertanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
Regformer | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
ab-mvs-re | | | 6.65 330 | 8.87 333 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 79.80 323 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
test_241102_ONE | | | | | | 94.18 48 | 72.65 132 | | 93.69 49 | 83.62 43 | 94.11 22 | 93.78 97 | 90.28 15 | 95.50 45 | | | |
|
save fliter | | | | | | 93.75 61 | 77.44 96 | 86.31 119 | 89.72 167 | 70.80 196 | | | | | | | |
|
test0726 | | | | | | 94.16 51 | 72.56 137 | 90.63 42 | 93.90 41 | 83.61 44 | 93.75 30 | 94.49 58 | 89.76 19 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 286 |
|
test_part2 | | | | | | 93.86 60 | 77.77 91 | | | | 92.84 45 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 317 | | | | 83.88 286 |
|
sam_mvs | | | | | | | | | | | | | 45.92 322 | | | | |
|
MTGPA |  | | | | | | | | 91.81 114 | | | | | | | | |
|
test_post1 | | | | | | | | 78.85 253 | | | | 3.13 359 | 45.19 331 | 80.13 313 | 58.11 284 | | |
|
test_post | | | | | | | | | | | | 3.10 360 | 45.43 327 | 77.22 320 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 307 | 45.93 321 | 87.01 258 | | | |
|
MTMP | | | | | | | | 90.66 40 | 33.14 362 | | | | | | | | |
|
gm-plane-assit | | | | | | 75.42 337 | 44.97 348 | | | 52.17 324 | | 72.36 347 | | 87.90 250 | 54.10 306 | | |
|
TEST9 | | | | | | 92.34 96 | 79.70 73 | 83.94 153 | 90.32 150 | 65.41 254 | 84.49 195 | 90.97 168 | 82.03 101 | 93.63 111 | | | |
|
test_8 | | | | | | 92.09 105 | 78.87 81 | 83.82 158 | 90.31 152 | 65.79 244 | 84.36 198 | 90.96 170 | 81.93 103 | 93.44 123 | | | |
|
agg_prior | | | | | | 91.58 122 | 77.69 92 | | 90.30 153 | | 84.32 199 | | | 93.18 131 | | | |
|
test_prior4 | | | | | | | 78.97 80 | 84.59 141 | | | | | | | | | |
|
test_prior | | | | | 86.32 103 | 90.59 149 | 71.99 147 | | 92.85 86 | | | | | 94.17 91 | | | 92.80 139 |
|
旧先验2 | | | | | | | | 81.73 209 | | 56.88 303 | 86.54 164 | | | 84.90 287 | 72.81 180 | | |
|
新几何2 | | | | | | | | 81.72 210 | | | | | | | | | |
|
无先验 | | | | | | | | 82.81 188 | 85.62 229 | 58.09 293 | | | | 91.41 181 | 67.95 223 | | 84.48 280 |
|
原ACMM2 | | | | | | | | 82.26 203 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 86.43 271 | 63.52 249 | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 102 | | | | |
|
testdata1 | | | | | | | | 79.62 238 | | 73.95 157 | | | | | | | |
|
plane_prior7 | | | | | | 93.45 67 | 77.31 100 | | | | | | | | | | |
|
plane_prior6 | | | | | | 92.61 88 | 76.54 109 | | | | | | 74.84 171 | | | | |
|
plane_prior4 | | | | | | | | | | | | 92.95 112 | | | | | |
|
plane_prior3 | | | | | | | 76.85 107 | | | 77.79 112 | 86.55 159 | | | | | | |
|
plane_prior2 | | | | | | | | 89.45 69 | | 79.44 93 | | | | | | | |
|
plane_prior1 | | | | | | 92.83 86 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 367 | | | | | | | | |
|
nn | | | | | | | | | 0.00 367 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 304 | | | | | | | | |
|
test11 | | | | | | | | | 91.46 121 | | | | | | | | |
|
door | | | | | | | | | 72.57 318 | | | | | | | | |
|
HQP5-MVS | | | | | | | 70.66 159 | | | | | | | | | | |
|
HQP-NCC | | | | | | 91.19 133 | | 84.77 136 | | 73.30 167 | 80.55 255 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 133 | | 84.77 136 | | 73.30 167 | 80.55 255 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 135 | | |
|
HQP4-MVS | | | | | | | | | | | 80.56 254 | | | 94.61 76 | | | 93.56 116 |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 204 | | | | |
|
NP-MVS | | | | | | 91.95 109 | 74.55 121 | | | | | 90.17 191 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 361 | 70.76 319 | | 46.47 344 | 61.27 347 | | 45.20 330 | | 49.18 327 | | 83.75 291 |
|
Test By Simon | | | | | | | | | | | | | 79.09 131 | | | | |
|