LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 24 | 99.85 13 | 99.11 55 | 99.90 1 | 99.78 4 | 99.63 14 | 99.78 10 | 99.67 16 | 99.48 6 | 99.81 158 | 99.30 17 | 99.97 11 | 99.77 16 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
3Dnovator | | 98.27 2 | 98.81 60 | 98.73 56 | 99.05 119 | 98.76 234 | 97.81 163 | 99.25 30 | 99.30 138 | 98.57 100 | 98.55 188 | 99.33 62 | 97.95 75 | 99.90 48 | 97.16 127 | 99.67 138 | 99.44 130 |
|
3Dnovator+ | | 97.89 3 | 98.69 80 | 98.51 86 | 99.24 88 | 98.81 229 | 98.40 102 | 99.02 49 | 99.19 172 | 98.99 71 | 98.07 221 | 99.28 65 | 97.11 135 | 99.84 120 | 96.84 156 | 99.32 221 | 99.47 119 |
|
DeepC-MVS | | 97.60 4 | 98.97 43 | 98.93 41 | 99.10 105 | 99.35 114 | 97.98 142 | 98.01 144 | 99.46 74 | 97.56 163 | 99.54 30 | 99.50 36 | 98.97 16 | 99.84 120 | 98.06 83 | 99.92 34 | 99.49 104 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepPCF-MVS | | 96.93 5 | 98.32 132 | 98.01 154 | 99.23 89 | 98.39 286 | 98.97 62 | 95.03 319 | 99.18 176 | 96.88 220 | 99.33 62 | 98.78 176 | 98.16 59 | 99.28 334 | 96.74 164 | 99.62 152 | 99.44 130 |
|
DeepC-MVS_fast | | 96.85 6 | 98.30 134 | 98.15 141 | 98.75 162 | 98.61 264 | 97.23 194 | 97.76 169 | 99.09 198 | 97.31 190 | 98.75 162 | 98.66 197 | 97.56 101 | 99.64 262 | 96.10 214 | 99.55 179 | 99.39 149 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OpenMVS |  | 96.65 7 | 97.09 232 | 96.68 241 | 98.32 210 | 98.32 289 | 97.16 203 | 98.86 63 | 99.37 101 | 89.48 341 | 96.29 312 | 99.15 90 | 96.56 166 | 99.90 48 | 92.90 303 | 99.20 240 | 97.89 312 |
|
ACMH | | 96.65 7 | 99.25 27 | 99.24 26 | 99.26 85 | 99.72 29 | 98.38 104 | 99.07 46 | 99.55 43 | 98.30 109 | 99.65 22 | 99.45 47 | 99.22 9 | 99.76 205 | 98.44 64 | 99.77 90 | 99.64 39 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 96.62 9 | 99.08 34 | 99.00 39 | 99.33 74 | 99.71 30 | 98.83 70 | 98.60 77 | 99.58 26 | 99.11 56 | 99.53 33 | 99.18 80 | 98.81 21 | 99.67 247 | 96.71 169 | 99.77 90 | 99.50 100 |
|
COLMAP_ROB |  | 96.50 10 | 98.99 38 | 98.85 46 | 99.41 60 | 99.58 51 | 99.10 56 | 98.74 67 | 99.56 40 | 99.09 65 | 99.33 62 | 99.19 78 | 98.40 40 | 99.72 228 | 95.98 217 | 99.76 99 | 99.42 137 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
TAPA-MVS | | 96.21 11 | 96.63 257 | 95.95 265 | 98.65 168 | 98.93 200 | 98.09 125 | 96.93 237 | 99.28 147 | 83.58 356 | 98.13 216 | 97.78 280 | 96.13 183 | 99.40 318 | 93.52 293 | 99.29 228 | 98.45 292 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ACMM | | 96.08 12 | 98.91 50 | 98.73 56 | 99.48 50 | 99.55 65 | 99.14 48 | 98.07 132 | 99.37 101 | 97.62 156 | 99.04 111 | 98.96 134 | 98.84 19 | 99.79 180 | 97.43 115 | 99.65 144 | 99.49 104 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HY-MVS | | 95.94 13 | 95.90 276 | 95.35 284 | 97.55 260 | 97.95 309 | 94.79 264 | 98.81 66 | 96.94 321 | 92.28 318 | 95.17 336 | 98.57 215 | 89.90 288 | 99.75 212 | 91.20 329 | 97.33 330 | 98.10 305 |
|
OpenMVS_ROB |  | 95.38 14 | 95.84 278 | 95.18 289 | 97.81 241 | 98.41 285 | 97.15 204 | 97.37 206 | 98.62 271 | 83.86 355 | 98.65 170 | 98.37 238 | 94.29 243 | 99.68 244 | 88.41 342 | 98.62 294 | 96.60 344 |
|
ACMP | | 95.32 15 | 98.41 123 | 98.09 146 | 99.36 64 | 99.51 74 | 98.79 74 | 97.68 176 | 99.38 97 | 95.76 259 | 98.81 156 | 98.82 171 | 98.36 42 | 99.82 145 | 94.75 253 | 99.77 90 | 99.48 111 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PLC |  | 94.65 16 | 96.51 260 | 95.73 269 | 98.85 145 | 98.75 237 | 97.91 151 | 96.42 267 | 99.06 202 | 90.94 334 | 95.59 324 | 97.38 304 | 94.41 239 | 99.59 278 | 90.93 332 | 98.04 315 | 99.05 228 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
PVSNet | | 93.40 17 | 95.67 281 | 95.70 270 | 95.57 317 | 98.83 224 | 88.57 340 | 92.50 353 | 97.72 302 | 92.69 313 | 96.49 308 | 96.44 325 | 93.72 255 | 99.43 316 | 93.61 290 | 99.28 229 | 98.71 278 |
|
PCF-MVS | | 92.86 18 | 94.36 301 | 93.00 318 | 98.42 202 | 98.70 248 | 97.56 178 | 93.16 351 | 99.11 196 | 79.59 359 | 97.55 255 | 97.43 301 | 92.19 274 | 99.73 220 | 79.85 358 | 99.45 204 | 97.97 311 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
IB-MVS | | 91.63 19 | 92.24 327 | 90.90 331 | 96.27 303 | 97.22 339 | 91.24 332 | 94.36 338 | 93.33 350 | 92.37 316 | 92.24 355 | 94.58 353 | 66.20 367 | 99.89 57 | 93.16 301 | 94.63 353 | 97.66 327 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PMVS |  | 91.26 20 | 97.86 172 | 97.94 160 | 97.65 250 | 99.71 30 | 97.94 150 | 98.52 86 | 98.68 267 | 98.99 71 | 97.52 258 | 99.35 58 | 97.41 116 | 98.18 357 | 91.59 324 | 99.67 138 | 96.82 341 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PVSNet_0 | | 89.98 21 | 91.15 330 | 90.30 333 | 93.70 336 | 97.72 319 | 84.34 359 | 90.24 357 | 97.42 308 | 90.20 338 | 93.79 349 | 93.09 358 | 90.90 282 | 98.89 352 | 86.57 347 | 72.76 361 | 97.87 314 |
|
MVE |  | 83.40 22 | 92.50 324 | 91.92 327 | 94.25 331 | 98.83 224 | 91.64 323 | 92.71 352 | 83.52 364 | 95.92 254 | 86.46 363 | 95.46 341 | 95.20 218 | 95.40 360 | 80.51 357 | 98.64 292 | 95.73 353 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
CMPMVS |  | 75.91 23 | 96.29 267 | 95.44 280 | 98.84 146 | 96.25 354 | 98.69 82 | 97.02 230 | 99.12 194 | 88.90 344 | 97.83 235 | 98.86 159 | 89.51 290 | 98.90 351 | 91.92 318 | 99.51 190 | 98.92 252 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Anonymous20240521 | | | 98.69 80 | 98.87 43 | 98.16 223 | 99.77 20 | 95.11 260 | 99.08 44 | 99.44 80 | 99.34 37 | 99.33 62 | 99.55 29 | 94.10 249 | 99.94 23 | 99.25 20 | 99.96 14 | 99.42 137 |
|
hse-mvs3 | | | 97.77 184 | 97.33 205 | 99.10 105 | 99.21 135 | 97.84 157 | 98.35 107 | 98.57 273 | 99.11 56 | 98.58 182 | 99.02 115 | 88.65 298 | 99.96 8 | 98.11 78 | 96.34 341 | 99.49 104 |
|
hse-mvs2 | | | 97.46 204 | 97.07 217 | 98.64 169 | 98.73 239 | 97.33 188 | 97.45 202 | 97.64 307 | 99.11 56 | 98.58 182 | 97.98 268 | 88.65 298 | 99.79 180 | 98.11 78 | 97.39 325 | 98.81 266 |
|
CL-MVSNet_2432*1600 | | | 97.44 207 | 97.22 210 | 98.08 228 | 98.57 271 | 95.78 240 | 94.30 339 | 98.79 254 | 96.58 232 | 98.60 178 | 98.19 253 | 94.74 234 | 99.64 262 | 96.41 195 | 98.84 280 | 98.82 263 |
|
KD-MVS_2432*1600 | | | 92.87 321 | 91.99 325 | 95.51 319 | 91.37 363 | 89.27 338 | 94.07 341 | 98.14 291 | 95.42 267 | 97.25 272 | 96.44 325 | 67.86 362 | 99.24 336 | 91.28 327 | 96.08 345 | 98.02 308 |
|
DIV-MVS_2432*1600 | | | 99.25 27 | 99.18 28 | 99.44 56 | 99.63 48 | 99.06 60 | 98.69 71 | 99.54 47 | 99.31 39 | 99.62 27 | 99.53 33 | 97.36 120 | 99.86 89 | 99.24 22 | 99.71 116 | 99.39 149 |
|
AUN-MVS | | | 96.24 270 | 95.45 279 | 98.60 177 | 98.70 248 | 97.22 196 | 97.38 205 | 97.65 305 | 95.95 253 | 95.53 332 | 97.96 272 | 82.11 339 | 99.79 180 | 96.31 200 | 97.44 323 | 98.80 271 |
|
ZD-MVS | | | | | | 99.01 186 | 98.84 69 | | 99.07 201 | 94.10 295 | 98.05 224 | 98.12 258 | 96.36 179 | 99.86 89 | 92.70 311 | 99.19 244 | |
|
test1172 | | | 98.76 68 | 98.49 91 | 99.57 18 | 99.18 149 | 99.37 8 | 98.39 103 | 99.31 129 | 98.43 103 | 98.90 136 | 98.88 155 | 97.49 111 | 99.86 89 | 96.43 193 | 99.37 214 | 99.48 111 |
|
SR-MVS-dyc-post | | | 98.81 60 | 98.55 81 | 99.57 18 | 99.20 139 | 99.38 5 | 98.48 95 | 99.30 138 | 98.64 90 | 98.95 127 | 98.96 134 | 97.49 111 | 99.86 89 | 96.56 181 | 99.39 210 | 99.45 125 |
|
RE-MVS-def | | | | 98.58 79 | | 99.20 139 | 99.38 5 | 98.48 95 | 99.30 138 | 98.64 90 | 98.95 127 | 98.96 134 | 97.75 86 | | 96.56 181 | 99.39 210 | 99.45 125 |
|
SED-MVS | | | 98.91 50 | 98.72 58 | 99.49 48 | 99.49 84 | 99.17 36 | 98.10 129 | 99.31 129 | 98.03 130 | 99.66 20 | 99.02 115 | 98.36 42 | 99.88 66 | 96.91 145 | 99.62 152 | 99.41 140 |
|
IU-MVS | | | | | | 99.49 84 | 99.15 45 | | 98.87 238 | 92.97 308 | 99.41 49 | | | | 96.76 162 | 99.62 152 | 99.66 34 |
|
OPU-MVS | | | | | 98.82 148 | 98.59 268 | 98.30 107 | 98.10 129 | | | | 98.52 219 | 98.18 57 | 98.75 354 | 94.62 257 | 99.48 200 | 99.41 140 |
|
test_241102_TWO | | | | | | | | | 99.30 138 | 98.03 130 | 99.26 77 | 99.02 115 | 97.51 107 | 99.88 66 | 96.91 145 | 99.60 160 | 99.66 34 |
|
test_241102_ONE | | | | | | 99.49 84 | 99.17 36 | | 99.31 129 | 97.98 132 | 99.66 20 | 98.90 146 | 98.36 42 | 99.48 308 | | | |
|
xxxxxxxxxxxxxcwj | | | 98.44 120 | 98.24 128 | 99.06 117 | 99.11 161 | 97.97 143 | 96.53 259 | 99.54 47 | 98.24 115 | 98.83 150 | 98.90 146 | 97.80 83 | 99.82 145 | 95.68 233 | 99.52 187 | 99.38 156 |
|
SF-MVS | | | 98.53 111 | 98.27 125 | 99.32 76 | 99.31 117 | 98.75 75 | 98.19 119 | 99.41 90 | 96.77 224 | 98.83 150 | 98.90 146 | 97.80 83 | 99.82 145 | 95.68 233 | 99.52 187 | 99.38 156 |
|
ETH3D cwj APD-0.16 | | | 97.55 197 | 97.00 221 | 99.19 92 | 98.51 277 | 98.64 83 | 96.85 243 | 99.13 192 | 94.19 293 | 97.65 246 | 98.40 232 | 95.78 201 | 99.81 158 | 93.37 298 | 99.16 248 | 99.12 222 |
|
cl-mvsnet2 | | | 95.79 279 | 95.39 283 | 96.98 284 | 96.77 346 | 92.79 309 | 94.40 337 | 98.53 275 | 94.59 282 | 97.89 231 | 98.17 254 | 82.82 334 | 99.24 336 | 96.37 196 | 99.03 266 | 98.92 252 |
|
miper_ehance_all_eth | | | 97.06 235 | 97.03 219 | 97.16 279 | 97.83 315 | 93.06 303 | 94.66 329 | 99.09 198 | 95.99 252 | 98.69 166 | 98.45 229 | 92.73 270 | 99.61 273 | 96.79 158 | 99.03 266 | 98.82 263 |
|
miper_enhance_ethall | | | 96.01 273 | 95.74 268 | 96.81 294 | 96.41 352 | 92.27 318 | 93.69 348 | 98.89 235 | 91.14 332 | 98.30 206 | 97.35 307 | 90.58 283 | 99.58 283 | 96.31 200 | 99.03 266 | 98.60 285 |
|
ZNCC-MVS | | | 98.68 84 | 98.40 107 | 99.54 29 | 99.57 55 | 99.21 26 | 98.46 97 | 99.29 145 | 97.28 193 | 98.11 218 | 98.39 234 | 98.00 69 | 99.87 82 | 96.86 155 | 99.64 146 | 99.55 79 |
|
ETH3 D test6400 | | | 96.46 264 | 95.59 275 | 99.08 109 | 98.88 214 | 98.21 117 | 96.53 259 | 99.18 176 | 88.87 345 | 97.08 277 | 97.79 279 | 93.64 257 | 99.77 198 | 88.92 341 | 99.40 209 | 99.28 191 |
|
cl-mvsnet_ | | | 97.02 239 | 96.83 233 | 97.58 256 | 97.82 316 | 94.04 282 | 94.66 329 | 99.16 185 | 97.04 213 | 98.63 172 | 98.71 186 | 88.68 297 | 99.69 235 | 97.00 137 | 99.81 69 | 99.00 239 |
|
cl-mvsnet1 | | | 97.02 239 | 96.84 232 | 97.58 256 | 97.82 316 | 94.03 283 | 94.66 329 | 99.16 185 | 97.04 213 | 98.63 172 | 98.71 186 | 88.69 296 | 99.69 235 | 97.00 137 | 99.81 69 | 99.01 236 |
|
eth_miper_zixun_eth | | | 97.23 223 | 97.25 207 | 97.17 277 | 98.00 308 | 92.77 310 | 94.71 326 | 99.18 176 | 97.27 194 | 98.56 186 | 98.74 182 | 91.89 278 | 99.69 235 | 97.06 135 | 99.81 69 | 99.05 228 |
|
9.14 | | | | 97.78 169 | | 99.07 172 | | 97.53 193 | 99.32 124 | 95.53 264 | 98.54 190 | 98.70 189 | 97.58 99 | 99.76 205 | 94.32 270 | 99.46 202 | |
|
testtj | | | 97.79 183 | 97.25 207 | 99.42 57 | 99.03 182 | 98.85 68 | 97.78 164 | 99.18 176 | 95.83 257 | 98.12 217 | 98.50 223 | 95.50 211 | 99.86 89 | 92.23 317 | 99.07 261 | 99.54 83 |
|
uanet_test | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
ETH3D-3000-0.1 | | | 98.03 156 | 97.62 183 | 99.29 77 | 99.11 161 | 98.80 73 | 97.47 200 | 99.32 124 | 95.54 262 | 98.43 199 | 98.62 208 | 96.61 165 | 99.77 198 | 93.95 281 | 99.49 198 | 99.30 186 |
|
save fliter | | | | | | 99.11 161 | 97.97 143 | 96.53 259 | 99.02 215 | 98.24 115 | | | | | | | |
|
ET-MVSNet_ETH3D | | | 94.30 304 | 93.21 314 | 97.58 256 | 98.14 300 | 94.47 273 | 94.78 325 | 93.24 351 | 94.72 280 | 89.56 359 | 95.87 334 | 78.57 351 | 99.81 158 | 96.91 145 | 97.11 333 | 98.46 290 |
|
UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 14 | 99.34 14 | 99.69 4 | 99.58 26 | 99.90 2 | 99.86 7 | 99.78 5 | 99.58 3 | 99.95 15 | 99.00 33 | 99.95 16 | 99.78 14 |
|
EIA-MVS | | | 98.00 160 | 97.74 172 | 98.80 152 | 98.72 241 | 98.09 125 | 98.05 136 | 99.60 23 | 97.39 182 | 96.63 299 | 95.55 338 | 97.68 89 | 99.80 167 | 96.73 166 | 99.27 230 | 98.52 288 |
|
miper_refine_blended | | | 92.87 321 | 91.99 325 | 95.51 319 | 91.37 363 | 89.27 338 | 94.07 341 | 98.14 291 | 95.42 267 | 97.25 272 | 96.44 325 | 67.86 362 | 99.24 336 | 91.28 327 | 96.08 345 | 98.02 308 |
|
miper_lstm_enhance | | | 97.18 227 | 97.16 213 | 97.25 275 | 98.16 299 | 92.85 308 | 95.15 317 | 99.31 129 | 97.25 196 | 98.74 164 | 98.78 176 | 90.07 286 | 99.78 192 | 97.19 125 | 99.80 77 | 99.11 224 |
|
ETV-MVS | | | 98.03 156 | 97.86 166 | 98.56 186 | 98.69 252 | 98.07 131 | 97.51 196 | 99.50 56 | 98.10 127 | 97.50 260 | 95.51 339 | 98.41 39 | 99.88 66 | 96.27 204 | 99.24 235 | 97.71 325 |
|
CS-MVS | | | 97.82 182 | 97.59 187 | 98.52 191 | 98.76 234 | 98.04 135 | 98.20 118 | 99.61 21 | 97.10 210 | 96.02 320 | 94.87 351 | 98.27 48 | 99.84 120 | 96.31 200 | 99.17 247 | 97.69 326 |
|
D2MVS | | | 97.84 178 | 97.84 167 | 97.83 240 | 99.14 158 | 94.74 265 | 96.94 235 | 98.88 236 | 95.84 256 | 98.89 139 | 98.96 134 | 94.40 240 | 99.69 235 | 97.55 108 | 99.95 16 | 99.05 228 |
|
DVP-MVS | | | 98.77 67 | 98.52 84 | 99.52 41 | 99.50 77 | 99.21 26 | 98.02 141 | 98.84 245 | 97.97 133 | 99.08 101 | 99.02 115 | 97.61 97 | 99.88 66 | 96.99 139 | 99.63 149 | 99.48 111 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 98.17 124 | 99.08 101 | 99.02 115 | 97.89 76 | 99.88 66 | 97.07 134 | 99.71 116 | 99.70 29 |
|
test_0728_SECOND | | | | | 99.60 13 | 99.50 77 | 99.23 24 | 98.02 141 | 99.32 124 | | | | | 99.88 66 | 96.99 139 | 99.63 149 | 99.68 31 |
|
test0726 | | | | | | 99.50 77 | 99.21 26 | 98.17 123 | 99.35 111 | 97.97 133 | 99.26 77 | 99.06 101 | 97.61 97 | | | | |
|
SR-MVS | | | 98.71 75 | 98.43 103 | 99.57 18 | 99.18 149 | 99.35 11 | 98.36 106 | 99.29 145 | 98.29 112 | 98.88 143 | 98.85 162 | 97.53 104 | 99.87 82 | 96.14 212 | 99.31 223 | 99.48 111 |
|
DPM-MVS | | | 96.32 266 | 95.59 275 | 98.51 194 | 98.76 234 | 97.21 198 | 94.54 335 | 98.26 285 | 91.94 321 | 96.37 310 | 97.25 308 | 93.06 264 | 99.43 316 | 91.42 326 | 98.74 284 | 98.89 256 |
|
GST-MVS | | | 98.61 95 | 98.30 122 | 99.52 41 | 99.51 74 | 99.20 32 | 98.26 112 | 99.25 156 | 97.44 178 | 98.67 168 | 98.39 234 | 97.68 89 | 99.85 103 | 96.00 215 | 99.51 190 | 99.52 93 |
|
test_yl | | | 96.69 253 | 96.29 259 | 97.90 236 | 98.28 291 | 95.24 253 | 97.29 212 | 97.36 310 | 98.21 118 | 98.17 211 | 97.86 275 | 86.27 307 | 99.55 290 | 94.87 251 | 98.32 300 | 98.89 256 |
|
thisisatest0530 | | | 95.27 289 | 94.45 299 | 97.74 246 | 99.19 142 | 94.37 274 | 97.86 158 | 90.20 359 | 97.17 206 | 98.22 210 | 97.65 287 | 73.53 358 | 99.90 48 | 96.90 150 | 99.35 217 | 98.95 246 |
|
Anonymous20240529 | | | 98.93 48 | 98.87 43 | 99.12 101 | 99.19 142 | 98.22 116 | 99.01 50 | 98.99 222 | 99.25 44 | 99.54 30 | 99.37 54 | 97.04 136 | 99.80 167 | 97.89 91 | 99.52 187 | 99.35 169 |
|
Anonymous202405211 | | | 97.90 166 | 97.50 190 | 99.08 109 | 98.90 208 | 98.25 110 | 98.53 85 | 96.16 330 | 98.87 81 | 99.11 95 | 98.86 159 | 90.40 285 | 99.78 192 | 97.36 118 | 99.31 223 | 99.19 211 |
|
DCV-MVSNet | | | 96.69 253 | 96.29 259 | 97.90 236 | 98.28 291 | 95.24 253 | 97.29 212 | 97.36 310 | 98.21 118 | 98.17 211 | 97.86 275 | 86.27 307 | 99.55 290 | 94.87 251 | 98.32 300 | 98.89 256 |
|
tttt0517 | | | 95.64 282 | 94.98 293 | 97.64 252 | 99.36 110 | 93.81 294 | 98.72 69 | 90.47 358 | 98.08 128 | 98.67 168 | 98.34 241 | 73.88 357 | 99.92 35 | 97.77 99 | 99.51 190 | 99.20 206 |
|
our_test_3 | | | 97.39 210 | 97.73 174 | 96.34 301 | 98.70 248 | 89.78 337 | 94.61 332 | 98.97 224 | 96.50 233 | 99.04 111 | 98.85 162 | 95.98 193 | 99.84 120 | 97.26 123 | 99.67 138 | 99.41 140 |
|
thisisatest0515 | | | 94.12 308 | 93.16 315 | 96.97 285 | 98.60 266 | 92.90 307 | 93.77 347 | 90.61 357 | 94.10 295 | 96.91 286 | 95.87 334 | 74.99 356 | 99.80 167 | 94.52 260 | 99.12 258 | 98.20 301 |
|
ppachtmachnet_test | | | 97.50 199 | 97.74 172 | 96.78 295 | 98.70 248 | 91.23 333 | 94.55 334 | 99.05 206 | 96.36 238 | 99.21 84 | 98.79 175 | 96.39 175 | 99.78 192 | 96.74 164 | 99.82 65 | 99.34 171 |
|
SMA-MVS |  | | 98.40 125 | 98.03 153 | 99.51 45 | 99.16 153 | 99.21 26 | 98.05 136 | 99.22 164 | 94.16 294 | 98.98 121 | 99.10 98 | 97.52 106 | 99.79 180 | 96.45 191 | 99.64 146 | 99.53 89 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
GSMVS | | | | | | | | | | | | | | | | | 98.81 266 |
|
DPE-MVS |  | | 98.59 100 | 98.26 126 | 99.57 18 | 99.27 123 | 99.15 45 | 97.01 231 | 99.39 95 | 97.67 152 | 99.44 46 | 98.99 125 | 97.53 104 | 99.89 57 | 95.40 243 | 99.68 132 | 99.66 34 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_part2 | | | | | | 99.36 110 | 99.10 56 | | | | 99.05 109 | | | | | | |
|
test_part1 | | | 97.91 165 | 97.46 196 | 99.27 82 | 98.80 231 | 98.18 118 | 99.07 46 | 99.36 105 | 99.75 5 | 99.63 25 | 99.49 39 | 82.20 338 | 99.89 57 | 98.87 40 | 99.95 16 | 99.74 24 |
|
thres100view900 | | | 94.19 305 | 93.67 309 | 95.75 313 | 99.06 176 | 91.35 328 | 98.03 139 | 94.24 344 | 98.33 107 | 97.40 267 | 94.98 347 | 79.84 343 | 99.62 267 | 83.05 352 | 98.08 312 | 96.29 345 |
|
tfpnnormal | | | 98.90 52 | 98.90 42 | 98.91 137 | 99.67 40 | 97.82 161 | 99.00 52 | 99.44 80 | 99.45 28 | 99.51 38 | 99.24 72 | 98.20 56 | 99.86 89 | 95.92 219 | 99.69 127 | 99.04 232 |
|
tfpn200view9 | | | 94.03 309 | 93.44 311 | 95.78 312 | 98.93 200 | 91.44 326 | 97.60 185 | 94.29 342 | 97.94 135 | 97.10 275 | 94.31 354 | 79.67 345 | 99.62 267 | 83.05 352 | 98.08 312 | 96.29 345 |
|
cl_fuxian | | | 97.36 211 | 97.37 200 | 97.31 271 | 98.09 303 | 93.25 301 | 95.01 320 | 99.16 185 | 97.05 212 | 98.77 160 | 98.72 185 | 92.88 267 | 99.64 262 | 96.93 144 | 99.76 99 | 99.05 228 |
|
CHOSEN 280x420 | | | 95.51 286 | 95.47 277 | 95.65 316 | 98.25 293 | 88.27 343 | 93.25 350 | 98.88 236 | 93.53 303 | 94.65 340 | 97.15 312 | 86.17 309 | 99.93 28 | 97.41 116 | 99.93 25 | 98.73 277 |
|
CANet | | | 97.87 171 | 97.76 170 | 98.19 221 | 97.75 318 | 95.51 245 | 96.76 249 | 99.05 206 | 97.74 148 | 96.93 283 | 98.21 251 | 95.59 207 | 99.89 57 | 97.86 96 | 99.93 25 | 99.19 211 |
|
Fast-Effi-MVS+-dtu | | | 98.27 138 | 98.09 146 | 98.81 150 | 98.43 284 | 98.11 124 | 97.61 184 | 99.50 56 | 98.64 90 | 97.39 268 | 97.52 295 | 98.12 62 | 99.95 15 | 96.90 150 | 98.71 288 | 98.38 296 |
|
Effi-MVS+-dtu | | | 98.26 140 | 97.90 163 | 99.35 69 | 98.02 306 | 99.49 2 | 98.02 141 | 99.16 185 | 98.29 112 | 97.64 247 | 97.99 267 | 96.44 173 | 99.95 15 | 96.66 172 | 98.93 278 | 98.60 285 |
|
CANet_DTU | | | 97.26 219 | 97.06 218 | 97.84 239 | 97.57 325 | 94.65 270 | 96.19 279 | 98.79 254 | 97.23 202 | 95.14 337 | 98.24 248 | 93.22 259 | 99.84 120 | 97.34 119 | 99.84 56 | 99.04 232 |
|
MVS_0304 | | | 97.64 191 | 97.35 202 | 98.52 191 | 97.87 314 | 96.69 219 | 98.59 79 | 98.05 296 | 97.44 178 | 93.74 351 | 98.85 162 | 93.69 256 | 99.88 66 | 98.11 78 | 99.81 69 | 98.98 241 |
|
MP-MVS-pluss | | | 98.57 101 | 98.23 130 | 99.60 13 | 99.69 38 | 99.35 11 | 97.16 226 | 99.38 97 | 94.87 278 | 98.97 124 | 98.99 125 | 98.01 68 | 99.88 66 | 97.29 121 | 99.70 121 | 99.58 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MSP-MVS | | | 98.40 125 | 98.00 155 | 99.61 9 | 99.57 55 | 99.25 22 | 98.57 81 | 99.35 111 | 97.55 164 | 99.31 70 | 97.71 284 | 94.61 235 | 99.88 66 | 96.14 212 | 99.19 244 | 99.70 29 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
sam_mvs1 | | | | | | | | | | | | | 84.74 320 | | | | 98.81 266 |
|
sam_mvs | | | | | | | | | | | | | 84.29 326 | | | | |
|
IterMVS-SCA-FT | | | 97.85 177 | 98.18 135 | 96.87 290 | 99.27 123 | 91.16 334 | 95.53 305 | 99.25 156 | 99.10 62 | 99.41 49 | 99.35 58 | 93.10 262 | 99.96 8 | 98.65 53 | 99.94 21 | 99.49 104 |
|
TSAR-MVS + MP. | | | 98.63 92 | 98.49 91 | 99.06 117 | 99.64 46 | 97.90 152 | 98.51 90 | 98.94 225 | 96.96 216 | 99.24 80 | 98.89 154 | 97.83 79 | 99.81 158 | 96.88 152 | 99.49 198 | 99.48 111 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xiu_mvs_v1_base_debu | | | 97.86 172 | 98.17 136 | 96.92 287 | 98.98 192 | 93.91 289 | 96.45 264 | 99.17 182 | 97.85 143 | 98.41 200 | 97.14 313 | 98.47 35 | 99.92 35 | 98.02 85 | 99.05 262 | 96.92 338 |
|
OPM-MVS | | | 98.56 102 | 98.32 121 | 99.25 87 | 99.41 105 | 98.73 79 | 97.13 228 | 99.18 176 | 97.10 210 | 98.75 162 | 98.92 142 | 98.18 57 | 99.65 260 | 96.68 171 | 99.56 177 | 99.37 159 |
|
ACMMP_NAP | | | 98.75 70 | 98.48 93 | 99.57 18 | 99.58 51 | 99.29 17 | 97.82 162 | 99.25 156 | 96.94 217 | 98.78 157 | 99.12 94 | 98.02 67 | 99.84 120 | 97.13 131 | 99.67 138 | 99.59 55 |
|
ambc | | | | | 98.24 218 | 98.82 227 | 95.97 234 | 98.62 75 | 99.00 221 | | 99.27 73 | 99.21 75 | 96.99 141 | 99.50 304 | 96.55 184 | 99.50 197 | 99.26 196 |
|
zzz-MVS | | | 98.79 62 | 98.52 84 | 99.61 9 | 99.67 40 | 99.36 9 | 97.33 209 | 99.20 167 | 98.83 85 | 98.89 139 | 98.90 146 | 96.98 142 | 99.92 35 | 97.16 127 | 99.70 121 | 99.56 71 |
|
MTGPA |  | | | | | | | | 99.20 167 | | | | | | | | |
|
mvs-test1 | | | 97.83 180 | 97.48 194 | 98.89 140 | 98.02 306 | 99.20 32 | 97.20 220 | 99.16 185 | 98.29 112 | 96.46 309 | 97.17 310 | 96.44 173 | 99.92 35 | 96.66 172 | 97.90 317 | 97.54 332 |
|
Effi-MVS+ | | | 98.02 158 | 97.82 168 | 98.62 174 | 98.53 276 | 97.19 200 | 97.33 209 | 99.68 13 | 97.30 191 | 96.68 297 | 97.46 300 | 98.56 32 | 99.80 167 | 96.63 174 | 98.20 304 | 98.86 260 |
|
xiu_mvs_v2_base | | | 97.16 229 | 97.49 191 | 96.17 306 | 98.54 274 | 92.46 314 | 95.45 309 | 98.84 245 | 97.25 196 | 97.48 262 | 96.49 322 | 98.31 47 | 99.90 48 | 96.34 199 | 98.68 290 | 96.15 349 |
|
xiu_mvs_v1_base | | | 97.86 172 | 98.17 136 | 96.92 287 | 98.98 192 | 93.91 289 | 96.45 264 | 99.17 182 | 97.85 143 | 98.41 200 | 97.14 313 | 98.47 35 | 99.92 35 | 98.02 85 | 99.05 262 | 96.92 338 |
|
new-patchmatchnet | | | 98.35 130 | 98.74 55 | 97.18 276 | 99.24 128 | 92.23 319 | 96.42 267 | 99.48 66 | 98.30 109 | 99.69 17 | 99.53 33 | 97.44 115 | 99.82 145 | 98.84 42 | 99.77 90 | 99.49 104 |
|
pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 13 | 99.90 4 | 99.27 20 | 99.53 7 | 99.76 6 | 99.64 12 | 99.84 8 | 99.83 2 | 99.50 5 | 99.87 82 | 99.36 14 | 99.92 34 | 99.64 39 |
|
pmmvs5 | | | 97.64 191 | 97.49 191 | 98.08 228 | 99.14 158 | 95.12 259 | 96.70 253 | 99.05 206 | 93.77 300 | 98.62 174 | 98.83 168 | 93.23 258 | 99.75 212 | 98.33 71 | 99.76 99 | 99.36 165 |
|
test_post1 | | | | | | | | 97.59 187 | | | | 20.48 365 | 83.07 332 | 99.66 255 | 94.16 271 | | |
|
test_post | | | | | | | | | | | | 21.25 364 | 83.86 328 | 99.70 231 | | | |
|
Fast-Effi-MVS+ | | | 97.67 189 | 97.38 199 | 98.57 182 | 98.71 244 | 97.43 185 | 97.23 216 | 99.45 77 | 94.82 279 | 96.13 313 | 96.51 321 | 98.52 34 | 99.91 45 | 96.19 208 | 98.83 281 | 98.37 298 |
|
patchmatchnet-post | | | | | | | | | | | | 98.77 178 | 84.37 323 | 99.85 103 | | | |
|
Anonymous20231211 | | | 99.27 25 | 99.27 24 | 99.26 85 | 99.29 121 | 98.18 118 | 99.49 8 | 99.51 54 | 99.70 8 | 99.80 9 | 99.68 14 | 96.84 148 | 99.83 135 | 99.21 23 | 99.91 40 | 99.77 16 |
|
pmmvs-eth3d | | | 98.47 117 | 98.34 117 | 98.86 144 | 99.30 120 | 97.76 166 | 97.16 226 | 99.28 147 | 95.54 262 | 99.42 48 | 99.19 78 | 97.27 125 | 99.63 265 | 97.89 91 | 99.97 11 | 99.20 206 |
|
GG-mvs-BLEND | | | | | 94.76 327 | 94.54 361 | 92.13 320 | 99.31 18 | 80.47 366 | | 88.73 361 | 91.01 360 | 67.59 364 | 98.16 358 | 82.30 356 | 94.53 354 | 93.98 356 |
|
xiu_mvs_v1_base_debi | | | 97.86 172 | 98.17 136 | 96.92 287 | 98.98 192 | 93.91 289 | 96.45 264 | 99.17 182 | 97.85 143 | 98.41 200 | 97.14 313 | 98.47 35 | 99.92 35 | 98.02 85 | 99.05 262 | 96.92 338 |
|
Anonymous20231206 | | | 98.21 145 | 98.21 131 | 98.20 220 | 99.51 74 | 95.43 249 | 98.13 124 | 99.32 124 | 96.16 245 | 98.93 134 | 98.82 171 | 96.00 189 | 99.83 135 | 97.32 120 | 99.73 106 | 99.36 165 |
|
MTAPA | | | 98.88 53 | 98.64 70 | 99.61 9 | 99.67 40 | 99.36 9 | 98.43 100 | 99.20 167 | 98.83 85 | 98.89 139 | 98.90 146 | 96.98 142 | 99.92 35 | 97.16 127 | 99.70 121 | 99.56 71 |
|
MTMP | | | | | | | | 97.93 150 | 91.91 355 | | | | | | | | |
|
gm-plane-assit | | | | | | 94.83 360 | 81.97 362 | | | 88.07 348 | | 94.99 346 | | 99.60 274 | 91.76 320 | | |
|
test9_res | | | | | | | | | | | | | | | 93.28 300 | 99.15 251 | 99.38 156 |
|
MVP-Stereo | | | 98.08 154 | 97.92 161 | 98.57 182 | 98.96 195 | 96.79 214 | 97.90 154 | 99.18 176 | 96.41 237 | 98.46 194 | 98.95 138 | 95.93 196 | 99.60 274 | 96.51 187 | 98.98 275 | 99.31 183 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
TEST9 | | | | | | 98.71 244 | 98.08 129 | 95.96 286 | 99.03 211 | 91.40 328 | 95.85 321 | 97.53 293 | 96.52 168 | 99.76 205 | | | |
|
train_agg | | | 97.10 231 | 96.45 254 | 99.07 112 | 98.71 244 | 98.08 129 | 95.96 286 | 99.03 211 | 91.64 323 | 95.85 321 | 97.53 293 | 96.47 171 | 99.76 205 | 93.67 289 | 99.16 248 | 99.36 165 |
|
gg-mvs-nofinetune | | | 92.37 325 | 91.20 330 | 95.85 311 | 95.80 359 | 92.38 316 | 99.31 18 | 81.84 365 | 99.75 5 | 91.83 356 | 99.74 8 | 68.29 361 | 99.02 346 | 87.15 345 | 97.12 332 | 96.16 348 |
|
SCA | | | 96.41 265 | 96.66 244 | 95.67 314 | 98.24 294 | 88.35 342 | 95.85 294 | 96.88 323 | 96.11 246 | 97.67 245 | 98.67 194 | 93.10 262 | 99.85 103 | 94.16 271 | 99.22 237 | 98.81 266 |
|
Patchmatch-test | | | 96.55 259 | 96.34 257 | 97.17 277 | 98.35 287 | 93.06 303 | 98.40 102 | 97.79 300 | 97.33 187 | 98.41 200 | 98.67 194 | 83.68 329 | 99.69 235 | 95.16 245 | 99.31 223 | 98.77 274 |
|
test_8 | | | | | | 98.67 257 | 98.01 137 | 95.91 291 | 99.02 215 | 91.64 323 | 95.79 323 | 97.50 296 | 96.47 171 | 99.76 205 | | | |
|
MS-PatchMatch | | | 97.68 188 | 97.75 171 | 97.45 266 | 98.23 296 | 93.78 295 | 97.29 212 | 98.84 245 | 96.10 247 | 98.64 171 | 98.65 199 | 96.04 186 | 99.36 323 | 96.84 156 | 99.14 252 | 99.20 206 |
|
Patchmatch-RL test | | | 97.26 219 | 97.02 220 | 97.99 235 | 99.52 72 | 95.53 244 | 96.13 280 | 99.71 9 | 97.47 170 | 99.27 73 | 99.16 86 | 84.30 325 | 99.62 267 | 97.89 91 | 99.77 90 | 98.81 266 |
|
cdsmvs_eth3d_5k | | | 24.66 332 | 32.88 335 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 99.10 197 | 0.00 365 | 0.00 366 | 97.58 291 | 99.21 10 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
pcd_1.5k_mvsjas | | | 8.17 335 | 10.90 338 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 98.07 63 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
agg_prior1 | | | 97.06 235 | 96.40 255 | 99.03 122 | 98.68 255 | 97.99 138 | 95.76 296 | 99.01 218 | 91.73 322 | 95.59 324 | 97.50 296 | 96.49 170 | 99.77 198 | 93.71 288 | 99.14 252 | 99.34 171 |
|
agg_prior2 | | | | | | | | | | | | | | | 92.50 314 | 99.16 248 | 99.37 159 |
|
agg_prior | | | | | | 98.68 255 | 97.99 138 | | 99.01 218 | | 95.59 324 | | | 99.77 198 | | | |
|
tmp_tt | | | 78.77 331 | 78.73 334 | 78.90 345 | 58.45 366 | 74.76 367 | 94.20 340 | 78.26 367 | 39.16 362 | 86.71 362 | 92.82 359 | 80.50 341 | 75.19 363 | 86.16 348 | 92.29 358 | 86.74 358 |
|
canonicalmvs | | | 98.34 131 | 98.26 126 | 98.58 179 | 98.46 281 | 97.82 161 | 98.96 56 | 99.46 74 | 99.19 52 | 97.46 263 | 95.46 341 | 98.59 30 | 99.46 312 | 98.08 82 | 98.71 288 | 98.46 290 |
|
anonymousdsp | | | 99.51 10 | 99.47 12 | 99.62 6 | 99.88 7 | 99.08 59 | 99.34 13 | 99.69 12 | 98.93 79 | 99.65 22 | 99.72 11 | 98.93 18 | 99.95 15 | 99.11 27 | 100.00 1 | 99.82 9 |
|
alignmvs | | | 97.35 212 | 96.88 229 | 98.78 157 | 98.54 274 | 98.09 125 | 97.71 173 | 97.69 304 | 99.20 48 | 97.59 251 | 95.90 333 | 88.12 301 | 99.55 290 | 98.18 76 | 98.96 276 | 98.70 280 |
|
nrg030 | | | 99.40 18 | 99.35 17 | 99.54 29 | 99.58 51 | 99.13 51 | 98.98 55 | 99.48 66 | 99.68 9 | 99.46 43 | 99.26 69 | 98.62 28 | 99.73 220 | 99.17 26 | 99.92 34 | 99.76 20 |
|
v144192 | | | 98.54 109 | 98.57 80 | 98.45 200 | 99.21 135 | 95.98 233 | 97.63 181 | 99.36 105 | 97.15 209 | 99.32 68 | 99.18 80 | 95.84 200 | 99.84 120 | 99.50 10 | 99.91 40 | 99.54 83 |
|
FIs | | | 99.14 32 | 99.09 34 | 99.29 77 | 99.70 36 | 98.28 108 | 99.13 41 | 99.52 53 | 99.48 24 | 99.24 80 | 99.41 51 | 96.79 154 | 99.82 145 | 98.69 52 | 99.88 49 | 99.76 20 |
|
v1921920 | | | 98.54 109 | 98.60 77 | 98.38 206 | 99.20 139 | 95.76 241 | 97.56 190 | 99.36 105 | 97.23 202 | 99.38 54 | 99.17 84 | 96.02 187 | 99.84 120 | 99.57 6 | 99.90 44 | 99.54 83 |
|
UA-Net | | | 99.47 11 | 99.40 14 | 99.70 2 | 99.49 84 | 99.29 17 | 99.80 3 | 99.72 8 | 99.82 3 | 99.04 111 | 99.81 3 | 98.05 66 | 99.96 8 | 98.85 41 | 99.99 5 | 99.86 6 |
|
v1192 | | | 98.60 97 | 98.66 68 | 98.41 203 | 99.27 123 | 95.88 236 | 97.52 194 | 99.36 105 | 97.41 180 | 99.33 62 | 99.20 77 | 96.37 178 | 99.82 145 | 99.57 6 | 99.92 34 | 99.55 79 |
|
FC-MVSNet-test | | | 99.27 25 | 99.25 25 | 99.34 72 | 99.77 20 | 98.37 105 | 99.30 22 | 99.57 33 | 99.61 19 | 99.40 52 | 99.50 36 | 97.12 133 | 99.85 103 | 99.02 32 | 99.94 21 | 99.80 12 |
|
v1144 | | | 98.60 97 | 98.66 68 | 98.41 203 | 99.36 110 | 95.90 235 | 97.58 188 | 99.34 117 | 97.51 166 | 99.27 73 | 99.15 90 | 96.34 180 | 99.80 167 | 99.47 12 | 99.93 25 | 99.51 96 |
|
sosnet-low-res | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
HFP-MVS | | | 98.71 75 | 98.44 101 | 99.51 45 | 99.49 84 | 99.16 40 | 98.52 86 | 99.31 129 | 97.47 170 | 98.58 182 | 98.50 223 | 97.97 73 | 99.85 103 | 96.57 178 | 99.59 162 | 99.53 89 |
|
v148 | | | 98.45 119 | 98.60 77 | 98.00 234 | 99.44 100 | 94.98 261 | 97.44 203 | 99.06 202 | 98.30 109 | 99.32 68 | 98.97 131 | 96.65 163 | 99.62 267 | 98.37 68 | 99.85 54 | 99.39 149 |
|
sosnet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
uncertanet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
AllTest | | | 98.44 120 | 98.20 132 | 99.16 96 | 99.50 77 | 98.55 92 | 98.25 113 | 99.58 26 | 96.80 222 | 98.88 143 | 99.06 101 | 97.65 92 | 99.57 284 | 94.45 263 | 99.61 158 | 99.37 159 |
|
TestCases | | | | | 99.16 96 | 99.50 77 | 98.55 92 | | 99.58 26 | 96.80 222 | 98.88 143 | 99.06 101 | 97.65 92 | 99.57 284 | 94.45 263 | 99.61 158 | 99.37 159 |
|
v7n | | | 99.53 8 | 99.57 8 | 99.41 60 | 99.88 7 | 98.54 95 | 99.45 9 | 99.61 21 | 99.66 11 | 99.68 19 | 99.66 17 | 98.44 38 | 99.95 15 | 99.73 2 | 99.96 14 | 99.75 22 |
|
region2R | | | 98.69 80 | 98.40 107 | 99.54 29 | 99.53 70 | 99.17 36 | 98.52 86 | 99.31 129 | 97.46 175 | 98.44 196 | 98.51 220 | 97.83 79 | 99.88 66 | 96.46 190 | 99.58 168 | 99.58 61 |
|
bset_n11_16_dypcd | | | 96.99 243 | 96.56 250 | 98.27 216 | 99.00 187 | 95.25 252 | 92.18 356 | 94.05 347 | 98.75 87 | 99.01 115 | 98.38 236 | 88.98 294 | 99.93 28 | 98.77 47 | 99.92 34 | 99.64 39 |
|
RRT_MVS | | | 97.07 234 | 96.57 249 | 98.58 179 | 95.89 358 | 96.33 225 | 97.36 207 | 98.77 257 | 97.85 143 | 99.08 101 | 99.12 94 | 82.30 335 | 99.96 8 | 98.82 43 | 99.90 44 | 99.45 125 |
|
PS-MVSNAJss | | | 99.46 12 | 99.49 10 | 99.35 69 | 99.90 4 | 98.15 121 | 99.20 32 | 99.65 17 | 99.48 24 | 99.92 3 | 99.71 12 | 98.07 63 | 99.96 8 | 99.53 9 | 100.00 1 | 99.93 1 |
|
PS-MVSNAJ | | | 97.08 233 | 97.39 198 | 96.16 308 | 98.56 272 | 92.46 314 | 95.24 314 | 98.85 244 | 97.25 196 | 97.49 261 | 95.99 331 | 98.07 63 | 99.90 48 | 96.37 196 | 98.67 291 | 96.12 350 |
|
jajsoiax | | | 99.58 6 | 99.61 7 | 99.48 50 | 99.87 10 | 98.61 87 | 99.28 27 | 99.66 16 | 99.09 65 | 99.89 6 | 99.68 14 | 99.53 4 | 99.97 3 | 99.50 10 | 99.99 5 | 99.87 4 |
|
mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 48 | 99.88 7 | 98.61 87 | 99.34 13 | 99.71 9 | 99.27 43 | 99.90 4 | 99.74 8 | 99.68 2 | 99.97 3 | 99.55 8 | 99.99 5 | 99.88 3 |
|
#test# | | | 98.50 114 | 98.16 139 | 99.51 45 | 99.49 84 | 99.16 40 | 98.03 139 | 99.31 129 | 96.30 242 | 98.58 182 | 98.50 223 | 97.97 73 | 99.85 103 | 95.68 233 | 99.59 162 | 99.53 89 |
|
EI-MVSNet-UG-set | | | 98.69 80 | 98.71 60 | 98.62 174 | 99.10 165 | 96.37 224 | 97.23 216 | 98.87 238 | 99.20 48 | 99.19 86 | 98.99 125 | 97.30 122 | 99.85 103 | 98.77 47 | 99.79 82 | 99.65 38 |
|
EI-MVSNet-Vis-set | | | 98.68 84 | 98.70 63 | 98.63 172 | 99.09 168 | 96.40 223 | 97.23 216 | 98.86 243 | 99.20 48 | 99.18 90 | 98.97 131 | 97.29 124 | 99.85 103 | 98.72 50 | 99.78 86 | 99.64 39 |
|
Regformer-3 | | | 98.61 95 | 98.61 75 | 98.63 172 | 99.02 184 | 96.53 221 | 97.17 224 | 98.84 245 | 99.13 55 | 99.10 98 | 98.85 162 | 97.24 129 | 99.79 180 | 98.41 67 | 99.70 121 | 99.57 66 |
|
Regformer-4 | | | 98.73 73 | 98.68 65 | 98.89 140 | 99.02 184 | 97.22 196 | 97.17 224 | 99.06 202 | 99.21 45 | 99.17 91 | 98.85 162 | 97.45 114 | 99.86 89 | 98.48 62 | 99.70 121 | 99.60 49 |
|
Regformer-1 | | | 98.55 106 | 98.44 101 | 98.87 142 | 98.85 219 | 97.29 190 | 96.91 240 | 98.99 222 | 98.97 74 | 98.99 119 | 98.64 202 | 97.26 128 | 99.81 158 | 97.79 97 | 99.57 172 | 99.51 96 |
|
Regformer-2 | | | 98.60 97 | 98.46 97 | 99.02 125 | 98.85 219 | 97.71 171 | 96.91 240 | 99.09 198 | 98.98 73 | 99.01 115 | 98.64 202 | 97.37 119 | 99.84 120 | 97.75 104 | 99.57 172 | 99.52 93 |
|
HPM-MVS++ |  | | 98.10 152 | 97.64 181 | 99.48 50 | 99.09 168 | 99.13 51 | 97.52 194 | 98.75 261 | 97.46 175 | 96.90 289 | 97.83 278 | 96.01 188 | 99.84 120 | 95.82 227 | 99.35 217 | 99.46 121 |
|
test_prior4 | | | | | | | 97.97 143 | 95.86 292 | | | | | | | | | |
|
XVS | | | 98.72 74 | 98.45 99 | 99.53 36 | 99.46 95 | 99.21 26 | 98.65 72 | 99.34 117 | 98.62 94 | 97.54 256 | 98.63 206 | 97.50 108 | 99.83 135 | 96.79 158 | 99.53 184 | 99.56 71 |
|
v1240 | | | 98.55 106 | 98.62 72 | 98.32 210 | 99.22 133 | 95.58 242 | 97.51 196 | 99.45 77 | 97.16 207 | 99.45 45 | 99.24 72 | 96.12 184 | 99.85 103 | 99.60 4 | 99.88 49 | 99.55 79 |
|
test_prior3 | | | 97.48 203 | 97.00 221 | 98.95 131 | 98.69 252 | 97.95 148 | 95.74 298 | 99.03 211 | 96.48 234 | 96.11 314 | 97.63 289 | 95.92 197 | 99.59 278 | 94.16 271 | 99.20 240 | 99.30 186 |
|
pm-mvs1 | | | 99.44 13 | 99.48 11 | 99.33 74 | 99.80 17 | 98.63 84 | 99.29 23 | 99.63 18 | 99.30 41 | 99.65 22 | 99.60 25 | 99.16 14 | 99.82 145 | 99.07 29 | 99.83 62 | 99.56 71 |
|
test_prior2 | | | | | | | | 95.74 298 | | 96.48 234 | 96.11 314 | 97.63 289 | 95.92 197 | | 94.16 271 | 99.20 240 | |
|
X-MVStestdata | | | 94.32 302 | 92.59 320 | 99.53 36 | 99.46 95 | 99.21 26 | 98.65 72 | 99.34 117 | 98.62 94 | 97.54 256 | 45.85 361 | 97.50 108 | 99.83 135 | 96.79 158 | 99.53 184 | 99.56 71 |
|
test_prior | | | | | 98.95 131 | 98.69 252 | 97.95 148 | | 99.03 211 | | | | | 99.59 278 | | | 99.30 186 |
|
旧先验2 | | | | | | | | 95.76 296 | | 88.56 347 | 97.52 258 | | | 99.66 255 | 94.48 261 | | |
|
新几何2 | | | | | | | | 95.93 289 | | | | | | | | | |
|
新几何1 | | | | | 98.91 137 | 98.94 198 | 97.76 166 | | 98.76 258 | 87.58 350 | 96.75 296 | 98.10 260 | 94.80 231 | 99.78 192 | 92.73 310 | 99.00 272 | 99.20 206 |
|
旧先验1 | | | | | | 98.82 227 | 97.45 184 | | 98.76 258 | | | 98.34 241 | 95.50 211 | | | 99.01 271 | 99.23 201 |
|
无先验 | | | | | | | | 95.74 298 | 98.74 263 | 89.38 342 | | | | 99.73 220 | 92.38 315 | | 99.22 205 |
|
原ACMM2 | | | | | | | | 95.53 305 | | | | | | | | | |
|
原ACMM1 | | | | | 98.35 208 | 98.90 208 | 96.25 228 | | 98.83 250 | 92.48 315 | 96.07 317 | 98.10 260 | 95.39 215 | 99.71 229 | 92.61 313 | 98.99 273 | 99.08 225 |
|
test222 | | | | | | 98.92 204 | 96.93 211 | 95.54 304 | 98.78 256 | 85.72 353 | 96.86 292 | 98.11 259 | 94.43 238 | | | 99.10 260 | 99.23 201 |
|
testdata2 | | | | | | | | | | | | | | 99.79 180 | 92.80 308 | | |
|
segment_acmp | | | | | | | | | | | | | 97.02 139 | | | | |
|
testdata | | | | | 98.09 225 | 98.93 200 | 95.40 250 | | 98.80 253 | 90.08 339 | 97.45 264 | 98.37 238 | 95.26 217 | 99.70 231 | 93.58 292 | 98.95 277 | 99.17 217 |
|
testdata1 | | | | | | | | 95.44 310 | | 96.32 240 | | | | | | | |
|
v8 | | | 99.01 36 | 99.16 30 | 98.57 182 | 99.47 94 | 96.31 227 | 98.90 59 | 99.47 72 | 99.03 68 | 99.52 35 | 99.57 27 | 96.93 144 | 99.81 158 | 99.60 4 | 99.98 9 | 99.60 49 |
|
1314 | | | 95.74 280 | 95.60 274 | 96.17 306 | 97.53 328 | 92.75 311 | 98.07 132 | 98.31 284 | 91.22 330 | 94.25 343 | 96.68 319 | 95.53 208 | 99.03 345 | 91.64 323 | 97.18 331 | 96.74 342 |
|
1121 | | | 96.73 252 | 96.00 263 | 98.91 137 | 98.95 197 | 97.76 166 | 98.07 132 | 98.73 264 | 87.65 349 | 96.54 302 | 98.13 255 | 94.52 237 | 99.73 220 | 92.38 315 | 99.02 269 | 99.24 200 |
|
LFMVS | | | 97.20 225 | 96.72 238 | 98.64 169 | 98.72 241 | 96.95 210 | 98.93 58 | 94.14 346 | 99.74 7 | 98.78 157 | 99.01 122 | 84.45 322 | 99.73 220 | 97.44 114 | 99.27 230 | 99.25 197 |
|
VDD-MVS | | | 98.56 102 | 98.39 110 | 99.07 112 | 99.13 160 | 98.07 131 | 98.59 79 | 97.01 318 | 99.59 20 | 99.11 95 | 99.27 67 | 94.82 228 | 99.79 180 | 98.34 69 | 99.63 149 | 99.34 171 |
|
VDDNet | | | 98.21 145 | 97.95 158 | 99.01 126 | 99.58 51 | 97.74 169 | 99.01 50 | 97.29 314 | 99.67 10 | 98.97 124 | 99.50 36 | 90.45 284 | 99.80 167 | 97.88 94 | 99.20 240 | 99.48 111 |
|
v10 | | | 98.97 43 | 99.11 33 | 98.55 187 | 99.44 100 | 96.21 229 | 98.90 59 | 99.55 43 | 98.73 88 | 99.48 40 | 99.60 25 | 96.63 164 | 99.83 135 | 99.70 3 | 99.99 5 | 99.61 48 |
|
VPNet | | | 98.87 54 | 98.83 47 | 99.01 126 | 99.70 36 | 97.62 177 | 98.43 100 | 99.35 111 | 99.47 26 | 99.28 71 | 99.05 108 | 96.72 160 | 99.82 145 | 98.09 81 | 99.36 215 | 99.59 55 |
|
MVS | | | 93.19 319 | 92.09 323 | 96.50 299 | 96.91 342 | 94.03 283 | 98.07 132 | 98.06 295 | 68.01 360 | 94.56 342 | 96.48 323 | 95.96 195 | 99.30 331 | 83.84 351 | 96.89 336 | 96.17 347 |
|
v2v482 | | | 98.56 102 | 98.62 72 | 98.37 207 | 99.42 104 | 95.81 239 | 97.58 188 | 99.16 185 | 97.90 139 | 99.28 71 | 99.01 122 | 95.98 193 | 99.79 180 | 99.33 15 | 99.90 44 | 99.51 96 |
|
V42 | | | 98.78 65 | 98.78 52 | 98.76 160 | 99.44 100 | 97.04 206 | 98.27 111 | 99.19 172 | 97.87 141 | 99.25 79 | 99.16 86 | 96.84 148 | 99.78 192 | 99.21 23 | 99.84 56 | 99.46 121 |
|
SD-MVS | | | 98.40 125 | 98.68 65 | 97.54 261 | 98.96 195 | 97.99 138 | 97.88 155 | 99.36 105 | 98.20 121 | 99.63 25 | 99.04 111 | 98.76 22 | 95.33 361 | 96.56 181 | 99.74 103 | 99.31 183 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
GA-MVS | | | 95.86 277 | 95.32 285 | 97.49 264 | 98.60 266 | 94.15 280 | 93.83 346 | 97.93 298 | 95.49 265 | 96.68 297 | 97.42 302 | 83.21 330 | 99.30 331 | 96.22 206 | 98.55 297 | 99.01 236 |
|
MSLP-MVS++ | | | 98.02 158 | 98.14 143 | 97.64 252 | 98.58 269 | 95.19 256 | 97.48 198 | 99.23 163 | 97.47 170 | 97.90 230 | 98.62 208 | 97.04 136 | 98.81 353 | 97.55 108 | 99.41 207 | 98.94 250 |
|
APDe-MVS | | | 98.99 38 | 98.79 51 | 99.60 13 | 99.21 135 | 99.15 45 | 98.87 61 | 99.48 66 | 97.57 161 | 99.35 59 | 99.24 72 | 97.83 79 | 99.89 57 | 97.88 94 | 99.70 121 | 99.75 22 |
|
APD-MVS_3200maxsize | | | 98.84 57 | 98.61 75 | 99.53 36 | 99.19 142 | 99.27 20 | 98.49 92 | 99.33 122 | 98.64 90 | 99.03 114 | 98.98 129 | 97.89 76 | 99.85 103 | 96.54 185 | 99.42 206 | 99.46 121 |
|
ADS-MVSNet2 | | | 95.43 287 | 94.98 293 | 96.76 296 | 98.14 300 | 91.74 322 | 97.92 151 | 97.76 301 | 90.23 335 | 96.51 305 | 98.91 143 | 85.61 314 | 99.85 103 | 92.88 304 | 96.90 334 | 98.69 281 |
|
EI-MVSNet | | | 98.40 125 | 98.51 86 | 98.04 232 | 99.10 165 | 94.73 266 | 97.20 220 | 98.87 238 | 98.97 74 | 99.06 104 | 99.02 115 | 96.00 189 | 99.80 167 | 98.58 55 | 99.82 65 | 99.60 49 |
|
Regformer | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
CVMVSNet | | | 96.25 269 | 97.21 211 | 93.38 340 | 99.10 165 | 80.56 364 | 97.20 220 | 98.19 290 | 96.94 217 | 99.00 118 | 99.02 115 | 89.50 291 | 99.80 167 | 96.36 198 | 99.59 162 | 99.78 14 |
|
pmmvs4 | | | 97.58 196 | 97.28 206 | 98.51 194 | 98.84 222 | 96.93 211 | 95.40 311 | 98.52 276 | 93.60 302 | 98.61 176 | 98.65 199 | 95.10 221 | 99.60 274 | 96.97 142 | 99.79 82 | 98.99 240 |
|
EU-MVSNet | | | 97.66 190 | 98.50 88 | 95.13 324 | 99.63 48 | 85.84 351 | 98.35 107 | 98.21 287 | 98.23 117 | 99.54 30 | 99.46 43 | 95.02 222 | 99.68 244 | 98.24 72 | 99.87 52 | 99.87 4 |
|
VNet | | | 98.42 122 | 98.30 122 | 98.79 154 | 98.79 233 | 97.29 190 | 98.23 114 | 98.66 268 | 99.31 39 | 98.85 147 | 98.80 173 | 94.80 231 | 99.78 192 | 98.13 77 | 99.13 255 | 99.31 183 |
|
test-LLR | | | 93.90 311 | 93.85 305 | 94.04 332 | 96.53 348 | 84.62 356 | 94.05 343 | 92.39 353 | 96.17 243 | 94.12 345 | 95.07 343 | 82.30 335 | 99.67 247 | 95.87 223 | 98.18 305 | 97.82 316 |
|
TESTMET0.1,1 | | | 92.19 328 | 91.77 328 | 93.46 338 | 96.48 350 | 82.80 361 | 94.05 343 | 91.52 356 | 94.45 287 | 94.00 348 | 94.88 349 | 66.65 366 | 99.56 287 | 95.78 228 | 98.11 310 | 98.02 308 |
|
test-mter | | | 92.33 326 | 91.76 329 | 94.04 332 | 96.53 348 | 84.62 356 | 94.05 343 | 92.39 353 | 94.00 298 | 94.12 345 | 95.07 343 | 65.63 368 | 99.67 247 | 95.87 223 | 98.18 305 | 97.82 316 |
|
VPA-MVSNet | | | 99.30 24 | 99.30 23 | 99.28 79 | 99.49 84 | 98.36 106 | 99.00 52 | 99.45 77 | 99.63 14 | 99.52 35 | 99.44 48 | 98.25 49 | 99.88 66 | 99.09 28 | 99.84 56 | 99.62 44 |
|
ACMMPR | | | 98.70 78 | 98.42 105 | 99.54 29 | 99.52 72 | 99.14 48 | 98.52 86 | 99.31 129 | 97.47 170 | 98.56 186 | 98.54 217 | 97.75 86 | 99.88 66 | 96.57 178 | 99.59 162 | 99.58 61 |
|
testgi | | | 98.32 132 | 98.39 110 | 98.13 224 | 99.57 55 | 95.54 243 | 97.78 164 | 99.49 64 | 97.37 184 | 99.19 86 | 97.65 287 | 98.96 17 | 99.49 305 | 96.50 188 | 98.99 273 | 99.34 171 |
|
test20.03 | | | 98.78 65 | 98.77 54 | 98.78 157 | 99.46 95 | 97.20 199 | 97.78 164 | 99.24 161 | 99.04 67 | 99.41 49 | 98.90 146 | 97.65 92 | 99.76 205 | 97.70 105 | 99.79 82 | 99.39 149 |
|
thres600view7 | | | 94.45 300 | 93.83 306 | 96.29 302 | 99.06 176 | 91.53 324 | 97.99 145 | 94.24 344 | 98.34 106 | 97.44 265 | 95.01 345 | 79.84 343 | 99.67 247 | 84.33 350 | 98.23 302 | 97.66 327 |
|
ADS-MVSNet | | | 95.24 290 | 94.93 295 | 96.18 305 | 98.14 300 | 90.10 336 | 97.92 151 | 97.32 313 | 90.23 335 | 96.51 305 | 98.91 143 | 85.61 314 | 99.74 216 | 92.88 304 | 96.90 334 | 98.69 281 |
|
MP-MVS |  | | 98.46 118 | 98.09 146 | 99.54 29 | 99.57 55 | 99.22 25 | 98.50 91 | 99.19 172 | 97.61 158 | 97.58 252 | 98.66 197 | 97.40 117 | 99.88 66 | 94.72 256 | 99.60 160 | 99.54 83 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
testmvs | | | 17.12 333 | 20.53 336 | 6.87 347 | 12.05 367 | 4.20 369 | 93.62 349 | 6.73 368 | 4.62 364 | 10.41 364 | 24.33 362 | 8.28 370 | 3.56 365 | 9.69 363 | 15.07 362 | 12.86 361 |
|
thres400 | | | 94.14 307 | 93.44 311 | 96.24 304 | 98.93 200 | 91.44 326 | 97.60 185 | 94.29 342 | 97.94 135 | 97.10 275 | 94.31 354 | 79.67 345 | 99.62 267 | 83.05 352 | 98.08 312 | 97.66 327 |
|
test123 | | | 17.04 334 | 20.11 337 | 7.82 346 | 10.25 368 | 4.91 368 | 94.80 324 | 4.47 369 | 4.93 363 | 10.00 365 | 24.28 363 | 9.69 369 | 3.64 364 | 10.14 362 | 12.43 363 | 14.92 360 |
|
thres200 | | | 93.72 314 | 93.14 316 | 95.46 321 | 98.66 262 | 91.29 330 | 96.61 257 | 94.63 340 | 97.39 182 | 96.83 293 | 93.71 357 | 79.88 342 | 99.56 287 | 82.40 355 | 98.13 309 | 95.54 354 |
|
test0.0.03 1 | | | 94.51 299 | 93.69 308 | 96.99 283 | 96.05 355 | 93.61 299 | 94.97 321 | 93.49 348 | 96.17 243 | 97.57 254 | 94.88 349 | 82.30 335 | 99.01 348 | 93.60 291 | 94.17 356 | 98.37 298 |
|
pmmvs3 | | | 95.03 294 | 94.40 300 | 96.93 286 | 97.70 322 | 92.53 313 | 95.08 318 | 97.71 303 | 88.57 346 | 97.71 242 | 98.08 263 | 79.39 347 | 99.82 145 | 96.19 208 | 99.11 259 | 98.43 294 |
|
EMVS | | | 93.83 312 | 94.02 304 | 93.23 341 | 96.83 345 | 84.96 354 | 89.77 359 | 96.32 329 | 97.92 137 | 97.43 266 | 96.36 328 | 86.17 309 | 98.93 350 | 87.68 344 | 97.73 319 | 95.81 352 |
|
E-PMN | | | 94.17 306 | 94.37 301 | 93.58 337 | 96.86 343 | 85.71 353 | 90.11 358 | 97.07 317 | 98.17 124 | 97.82 237 | 97.19 309 | 84.62 321 | 98.94 349 | 89.77 338 | 97.68 320 | 96.09 351 |
|
PGM-MVS | | | 98.66 87 | 98.37 113 | 99.55 26 | 99.53 70 | 99.18 35 | 98.23 114 | 99.49 64 | 97.01 215 | 98.69 166 | 98.88 155 | 98.00 69 | 99.89 57 | 95.87 223 | 99.59 162 | 99.58 61 |
|
LCM-MVSNet-Re | | | 98.64 90 | 98.48 93 | 99.11 103 | 98.85 219 | 98.51 97 | 98.49 92 | 99.83 3 | 98.37 104 | 99.69 17 | 99.46 43 | 98.21 55 | 99.92 35 | 94.13 276 | 99.30 226 | 98.91 255 |
|
LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 2 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 1 | 100.00 1 | 99.81 1 | 100.00 1 | 99.85 7 |
|
MCST-MVS | | | 98.00 160 | 97.63 182 | 99.10 105 | 99.24 128 | 98.17 120 | 96.89 242 | 98.73 264 | 95.66 260 | 97.92 228 | 97.70 285 | 97.17 132 | 99.66 255 | 96.18 210 | 99.23 236 | 99.47 119 |
|
mvs_anonymous | | | 97.83 180 | 98.16 139 | 96.87 290 | 98.18 298 | 91.89 321 | 97.31 211 | 98.90 233 | 97.37 184 | 98.83 150 | 99.46 43 | 96.28 181 | 99.79 180 | 98.90 37 | 98.16 307 | 98.95 246 |
|
MVS_Test | | | 98.18 148 | 98.36 114 | 97.67 248 | 98.48 279 | 94.73 266 | 98.18 120 | 99.02 215 | 97.69 151 | 98.04 225 | 99.11 96 | 97.22 131 | 99.56 287 | 98.57 57 | 98.90 279 | 98.71 278 |
|
MDA-MVSNet-bldmvs | | | 97.94 164 | 97.91 162 | 98.06 230 | 99.44 100 | 94.96 262 | 96.63 256 | 99.15 191 | 98.35 105 | 98.83 150 | 99.11 96 | 94.31 242 | 99.85 103 | 96.60 175 | 98.72 286 | 99.37 159 |
|
CDPH-MVS | | | 97.26 219 | 96.66 244 | 99.07 112 | 99.00 187 | 98.15 121 | 96.03 282 | 99.01 218 | 91.21 331 | 97.79 238 | 97.85 277 | 96.89 146 | 99.69 235 | 92.75 309 | 99.38 213 | 99.39 149 |
|
test12 | | | | | 98.93 134 | 98.58 269 | 97.83 158 | | 98.66 268 | | 96.53 303 | | 95.51 210 | 99.69 235 | | 99.13 255 | 99.27 193 |
|
casdiffmvs | | | 98.95 46 | 99.00 39 | 98.81 150 | 99.38 107 | 97.33 188 | 97.82 162 | 99.57 33 | 99.17 53 | 99.35 59 | 99.17 84 | 98.35 45 | 99.69 235 | 98.46 63 | 99.73 106 | 99.41 140 |
|
diffmvs | | | 98.22 144 | 98.24 128 | 98.17 222 | 99.00 187 | 95.44 248 | 96.38 269 | 99.58 26 | 97.79 147 | 98.53 191 | 98.50 223 | 96.76 157 | 99.74 216 | 97.95 90 | 99.64 146 | 99.34 171 |
|
baseline2 | | | 93.73 313 | 92.83 319 | 96.42 300 | 97.70 322 | 91.28 331 | 96.84 245 | 89.77 360 | 93.96 299 | 92.44 354 | 95.93 332 | 79.14 348 | 99.77 198 | 92.94 302 | 96.76 338 | 98.21 300 |
|
baseline1 | | | 95.96 275 | 95.44 280 | 97.52 263 | 98.51 277 | 93.99 286 | 98.39 103 | 96.09 332 | 98.21 118 | 98.40 204 | 97.76 282 | 86.88 303 | 99.63 265 | 95.42 242 | 89.27 360 | 98.95 246 |
|
YYNet1 | | | 97.60 194 | 97.67 176 | 97.39 270 | 99.04 179 | 93.04 306 | 95.27 312 | 98.38 282 | 97.25 196 | 98.92 135 | 98.95 138 | 95.48 213 | 99.73 220 | 96.99 139 | 98.74 284 | 99.41 140 |
|
PMMVS2 | | | 98.07 155 | 98.08 149 | 98.04 232 | 99.41 105 | 94.59 272 | 94.59 333 | 99.40 93 | 97.50 167 | 98.82 154 | 98.83 168 | 96.83 150 | 99.84 120 | 97.50 113 | 99.81 69 | 99.71 26 |
|
MDA-MVSNet_test_wron | | | 97.60 194 | 97.66 179 | 97.41 269 | 99.04 179 | 93.09 302 | 95.27 312 | 98.42 280 | 97.26 195 | 98.88 143 | 98.95 138 | 95.43 214 | 99.73 220 | 97.02 136 | 98.72 286 | 99.41 140 |
|
tpmvs | | | 95.02 295 | 95.25 286 | 94.33 330 | 96.39 353 | 85.87 350 | 98.08 131 | 96.83 324 | 95.46 266 | 95.51 333 | 98.69 190 | 85.91 312 | 99.53 295 | 94.16 271 | 96.23 343 | 97.58 330 |
|
PM-MVS | | | 98.82 58 | 98.72 58 | 99.12 101 | 99.64 46 | 98.54 95 | 97.98 147 | 99.68 13 | 97.62 156 | 99.34 61 | 99.18 80 | 97.54 102 | 99.77 198 | 97.79 97 | 99.74 103 | 99.04 232 |
|
HQP_MVS | | | 97.99 163 | 97.67 176 | 98.93 134 | 99.19 142 | 97.65 174 | 97.77 167 | 99.27 150 | 98.20 121 | 97.79 238 | 97.98 268 | 94.90 224 | 99.70 231 | 94.42 265 | 99.51 190 | 99.45 125 |
|
plane_prior7 | | | | | | 99.19 142 | 97.87 154 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.99 191 | 97.70 172 | | | | | | 94.90 224 | | | | |
|
plane_prior5 | | | | | | | | | 99.27 150 | | | | | 99.70 231 | 94.42 265 | 99.51 190 | 99.45 125 |
|
plane_prior4 | | | | | | | | | | | | 97.98 268 | | | | | |
|
plane_prior3 | | | | | | | 97.78 165 | | | 97.41 180 | 97.79 238 | | | | | | |
|
plane_prior2 | | | | | | | | 97.77 167 | | 98.20 121 | | | | | | | |
|
plane_prior1 | | | | | | 99.05 178 | | | | | | | | | | | |
|
plane_prior | | | | | | | 97.65 174 | 97.07 229 | | 96.72 226 | | | | | | 99.36 215 | |
|
PS-CasMVS | | | 99.40 18 | 99.33 20 | 99.62 6 | 99.71 30 | 99.10 56 | 99.29 23 | 99.53 50 | 99.53 23 | 99.46 43 | 99.41 51 | 98.23 51 | 99.95 15 | 98.89 39 | 99.95 16 | 99.81 11 |
|
UniMVSNet_NR-MVSNet | | | 98.86 56 | 98.68 65 | 99.40 62 | 99.17 151 | 98.74 76 | 97.68 176 | 99.40 93 | 99.14 54 | 99.06 104 | 98.59 213 | 96.71 161 | 99.93 28 | 98.57 57 | 99.77 90 | 99.53 89 |
|
PEN-MVS | | | 99.41 17 | 99.34 19 | 99.62 6 | 99.73 24 | 99.14 48 | 99.29 23 | 99.54 47 | 99.62 17 | 99.56 28 | 99.42 49 | 98.16 59 | 99.96 8 | 98.78 44 | 99.93 25 | 99.77 16 |
|
TransMVSNet (Re) | | | 99.44 13 | 99.47 12 | 99.36 64 | 99.80 17 | 98.58 90 | 99.27 29 | 99.57 33 | 99.39 32 | 99.75 12 | 99.62 21 | 99.17 12 | 99.83 135 | 99.06 30 | 99.62 152 | 99.66 34 |
|
DTE-MVSNet | | | 99.43 15 | 99.35 17 | 99.66 4 | 99.71 30 | 99.30 16 | 99.31 18 | 99.51 54 | 99.64 12 | 99.56 28 | 99.46 43 | 98.23 51 | 99.97 3 | 98.78 44 | 99.93 25 | 99.72 25 |
|
DU-MVS | | | 98.82 58 | 98.63 71 | 99.39 63 | 99.16 153 | 98.74 76 | 97.54 192 | 99.25 156 | 98.84 84 | 99.06 104 | 98.76 180 | 96.76 157 | 99.93 28 | 98.57 57 | 99.77 90 | 99.50 100 |
|
UniMVSNet (Re) | | | 98.87 54 | 98.71 60 | 99.35 69 | 99.24 128 | 98.73 79 | 97.73 172 | 99.38 97 | 98.93 79 | 99.12 93 | 98.73 183 | 96.77 155 | 99.86 89 | 98.63 54 | 99.80 77 | 99.46 121 |
|
CP-MVSNet | | | 99.21 29 | 99.09 34 | 99.56 24 | 99.65 43 | 98.96 65 | 99.13 41 | 99.34 117 | 99.42 30 | 99.33 62 | 99.26 69 | 97.01 140 | 99.94 23 | 98.74 49 | 99.93 25 | 99.79 13 |
|
WR-MVS_H | | | 99.33 23 | 99.22 27 | 99.65 5 | 99.71 30 | 99.24 23 | 99.32 15 | 99.55 43 | 99.46 27 | 99.50 39 | 99.34 60 | 97.30 122 | 99.93 28 | 98.90 37 | 99.93 25 | 99.77 16 |
|
WR-MVS | | | 98.40 125 | 98.19 134 | 99.03 122 | 99.00 187 | 97.65 174 | 96.85 243 | 98.94 225 | 98.57 100 | 98.89 139 | 98.50 223 | 95.60 206 | 99.85 103 | 97.54 110 | 99.85 54 | 99.59 55 |
|
NR-MVSNet | | | 98.95 46 | 98.82 48 | 99.36 64 | 99.16 153 | 98.72 81 | 99.22 31 | 99.20 167 | 99.10 62 | 99.72 13 | 98.76 180 | 96.38 177 | 99.86 89 | 98.00 88 | 99.82 65 | 99.50 100 |
|
Baseline_NR-MVSNet | | | 98.98 42 | 98.86 45 | 99.36 64 | 99.82 16 | 98.55 92 | 97.47 200 | 99.57 33 | 99.37 34 | 99.21 84 | 99.61 23 | 96.76 157 | 99.83 135 | 98.06 83 | 99.83 62 | 99.71 26 |
|
TranMVSNet+NR-MVSNet | | | 99.17 30 | 99.07 36 | 99.46 55 | 99.37 109 | 98.87 67 | 98.39 103 | 99.42 89 | 99.42 30 | 99.36 58 | 99.06 101 | 98.38 41 | 99.95 15 | 98.34 69 | 99.90 44 | 99.57 66 |
|
TSAR-MVS + GP. | | | 98.18 148 | 97.98 156 | 98.77 159 | 98.71 244 | 97.88 153 | 96.32 272 | 98.66 268 | 96.33 239 | 99.23 83 | 98.51 220 | 97.48 113 | 99.40 318 | 97.16 127 | 99.46 202 | 99.02 235 |
|
abl_6 | | | 98.99 38 | 98.78 52 | 99.61 9 | 99.45 98 | 99.46 3 | 98.60 77 | 99.50 56 | 98.59 96 | 99.24 80 | 99.04 111 | 98.54 33 | 99.89 57 | 96.45 191 | 99.62 152 | 99.50 100 |
|
n2 | | | | | | | | | 0.00 370 | | | | | | | | |
|
nn | | | | | | | | | 0.00 370 | | | | | | | | |
|
mPP-MVS | | | 98.64 90 | 98.34 117 | 99.54 29 | 99.54 68 | 99.17 36 | 98.63 74 | 99.24 161 | 97.47 170 | 98.09 220 | 98.68 192 | 97.62 96 | 99.89 57 | 96.22 206 | 99.62 152 | 99.57 66 |
|
door-mid | | | | | | | | | 99.57 33 | | | | | | | | |
|
XVG-OURS-SEG-HR | | | 98.49 115 | 98.28 124 | 99.14 99 | 99.49 84 | 98.83 70 | 96.54 258 | 99.48 66 | 97.32 189 | 99.11 95 | 98.61 211 | 99.33 8 | 99.30 331 | 96.23 205 | 98.38 299 | 99.28 191 |
|
DWT-MVSNet_test | | | 92.75 323 | 92.05 324 | 94.85 326 | 96.48 350 | 87.21 347 | 97.83 161 | 94.99 337 | 92.22 319 | 92.72 353 | 94.11 356 | 70.75 359 | 99.46 312 | 95.01 247 | 94.33 355 | 97.87 314 |
|
MVSFormer | | | 98.26 140 | 98.43 103 | 97.77 243 | 98.88 214 | 93.89 292 | 99.39 11 | 99.56 40 | 99.11 56 | 98.16 213 | 98.13 255 | 93.81 252 | 99.97 3 | 99.26 18 | 99.57 172 | 99.43 134 |
|
jason | | | 97.45 206 | 97.35 202 | 97.76 244 | 99.24 128 | 93.93 288 | 95.86 292 | 98.42 280 | 94.24 291 | 98.50 193 | 98.13 255 | 94.82 228 | 99.91 45 | 97.22 124 | 99.73 106 | 99.43 134 |
jason: jason. |
lupinMVS | | | 97.06 235 | 96.86 230 | 97.65 250 | 98.88 214 | 93.89 292 | 95.48 308 | 97.97 297 | 93.53 303 | 98.16 213 | 97.58 291 | 93.81 252 | 99.91 45 | 96.77 161 | 99.57 172 | 99.17 217 |
|
test_djsdf | | | 99.52 9 | 99.51 9 | 99.53 36 | 99.86 11 | 98.74 76 | 99.39 11 | 99.56 40 | 99.11 56 | 99.70 15 | 99.73 10 | 99.00 15 | 99.97 3 | 99.26 18 | 99.98 9 | 99.89 2 |
|
HPM-MVS_fast | | | 99.01 36 | 98.82 48 | 99.57 18 | 99.71 30 | 99.35 11 | 99.00 52 | 99.50 56 | 97.33 187 | 98.94 133 | 98.86 159 | 98.75 23 | 99.82 145 | 97.53 111 | 99.71 116 | 99.56 71 |
|
RRT_test8_iter05 | | | 95.24 290 | 95.13 290 | 95.57 317 | 97.32 336 | 87.02 348 | 97.99 145 | 99.41 90 | 98.06 129 | 99.12 93 | 99.05 108 | 66.85 365 | 99.85 103 | 98.93 36 | 99.47 201 | 99.84 8 |
|
K. test v3 | | | 98.00 160 | 97.66 179 | 99.03 122 | 99.79 19 | 97.56 178 | 99.19 36 | 92.47 352 | 99.62 17 | 99.52 35 | 99.66 17 | 89.61 289 | 99.96 8 | 99.25 20 | 99.81 69 | 99.56 71 |
|
lessismore_v0 | | | | | 98.97 129 | 99.73 24 | 97.53 180 | | 86.71 362 | | 99.37 56 | 99.52 35 | 89.93 287 | 99.92 35 | 98.99 34 | 99.72 112 | 99.44 130 |
|
SixPastTwentyTwo | | | 98.75 70 | 98.62 72 | 99.16 96 | 99.83 15 | 97.96 147 | 99.28 27 | 98.20 288 | 99.37 34 | 99.70 15 | 99.65 19 | 92.65 271 | 99.93 28 | 99.04 31 | 99.84 56 | 99.60 49 |
|
OurMVSNet-221017-0 | | | 99.37 21 | 99.31 22 | 99.53 36 | 99.91 3 | 98.98 61 | 99.63 6 | 99.58 26 | 99.44 29 | 99.78 10 | 99.76 6 | 96.39 175 | 99.92 35 | 99.44 13 | 99.92 34 | 99.68 31 |
|
HPM-MVS |  | | 98.79 62 | 98.53 83 | 99.59 17 | 99.65 43 | 99.29 17 | 99.16 38 | 99.43 86 | 96.74 225 | 98.61 176 | 98.38 236 | 98.62 28 | 99.87 82 | 96.47 189 | 99.67 138 | 99.59 55 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
XVG-OURS | | | 98.53 111 | 98.34 117 | 99.11 103 | 99.50 77 | 98.82 72 | 95.97 284 | 99.50 56 | 97.30 191 | 99.05 109 | 98.98 129 | 99.35 7 | 99.32 328 | 95.72 230 | 99.68 132 | 99.18 213 |
|
XVG-ACMP-BASELINE | | | 98.56 102 | 98.34 117 | 99.22 90 | 99.54 68 | 98.59 89 | 97.71 173 | 99.46 74 | 97.25 196 | 98.98 121 | 98.99 125 | 97.54 102 | 99.84 120 | 95.88 220 | 99.74 103 | 99.23 201 |
|
LPG-MVS_test | | | 98.71 75 | 98.46 97 | 99.47 53 | 99.57 55 | 98.97 62 | 98.23 114 | 99.48 66 | 96.60 230 | 99.10 98 | 99.06 101 | 98.71 25 | 99.83 135 | 95.58 239 | 99.78 86 | 99.62 44 |
|
LGP-MVS_train | | | | | 99.47 53 | 99.57 55 | 98.97 62 | | 99.48 66 | 96.60 230 | 99.10 98 | 99.06 101 | 98.71 25 | 99.83 135 | 95.58 239 | 99.78 86 | 99.62 44 |
|
baseline | | | 98.96 45 | 99.02 37 | 98.76 160 | 99.38 107 | 97.26 193 | 98.49 92 | 99.50 56 | 98.86 82 | 99.19 86 | 99.06 101 | 98.23 51 | 99.69 235 | 98.71 51 | 99.76 99 | 99.33 177 |
|
test11 | | | | | | | | | 98.87 238 | | | | | | | | |
|
door | | | | | | | | | 99.41 90 | | | | | | | | |
|
EPNet_dtu | | | 94.93 296 | 94.78 297 | 95.38 322 | 93.58 362 | 87.68 345 | 96.78 247 | 95.69 336 | 97.35 186 | 89.14 360 | 98.09 262 | 88.15 300 | 99.49 305 | 94.95 250 | 99.30 226 | 98.98 241 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CHOSEN 1792x2688 | | | 97.49 201 | 97.14 216 | 98.54 190 | 99.68 39 | 96.09 232 | 96.50 262 | 99.62 19 | 91.58 325 | 98.84 149 | 98.97 131 | 92.36 273 | 99.88 66 | 96.76 162 | 99.95 16 | 99.67 33 |
|
EPNet | | | 96.14 271 | 95.44 280 | 98.25 217 | 90.76 365 | 95.50 246 | 97.92 151 | 94.65 339 | 98.97 74 | 92.98 352 | 98.85 162 | 89.12 293 | 99.87 82 | 95.99 216 | 99.68 132 | 99.39 149 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HQP5-MVS | | | | | | | 96.79 214 | | | | | | | | | | |
|
HQP-NCC | | | | | | 98.67 257 | | 96.29 273 | | 96.05 248 | 95.55 328 | | | | | | |
|
ACMP_Plane | | | | | | 98.67 257 | | 96.29 273 | | 96.05 248 | 95.55 328 | | | | | | |
|
APD-MVS |  | | 98.10 152 | 97.67 176 | 99.42 57 | 99.11 161 | 98.93 66 | 97.76 169 | 99.28 147 | 94.97 275 | 98.72 165 | 98.77 178 | 97.04 136 | 99.85 103 | 93.79 287 | 99.54 180 | 99.49 104 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
BP-MVS | | | | | | | | | | | | | | | 92.82 306 | | |
|
HQP4-MVS | | | | | | | | | | | 95.56 327 | | | 99.54 293 | | | 99.32 179 |
|
HQP3-MVS | | | | | | | | | 99.04 209 | | | | | | | 99.26 233 | |
|
HQP2-MVS | | | | | | | | | | | | | 93.84 250 | | | | |
|
CNVR-MVS | | | 98.17 150 | 97.87 165 | 99.07 112 | 98.67 257 | 98.24 111 | 97.01 231 | 98.93 227 | 97.25 196 | 97.62 248 | 98.34 241 | 97.27 125 | 99.57 284 | 96.42 194 | 99.33 220 | 99.39 149 |
|
NCCC | | | 97.86 172 | 97.47 195 | 99.05 119 | 98.61 264 | 98.07 131 | 96.98 233 | 98.90 233 | 97.63 155 | 97.04 280 | 97.93 273 | 95.99 192 | 99.66 255 | 95.31 244 | 98.82 282 | 99.43 134 |
|
114514_t | | | 96.50 262 | 95.77 267 | 98.69 166 | 99.48 92 | 97.43 185 | 97.84 160 | 99.55 43 | 81.42 358 | 96.51 305 | 98.58 214 | 95.53 208 | 99.67 247 | 93.41 297 | 99.58 168 | 98.98 241 |
|
CP-MVS | | | 98.70 78 | 98.42 105 | 99.52 41 | 99.36 110 | 99.12 53 | 98.72 69 | 99.36 105 | 97.54 165 | 98.30 206 | 98.40 232 | 97.86 78 | 99.89 57 | 96.53 186 | 99.72 112 | 99.56 71 |
|
DSMNet-mixed | | | 97.42 208 | 97.60 185 | 96.87 290 | 99.15 157 | 91.46 325 | 98.54 84 | 99.12 194 | 92.87 311 | 97.58 252 | 99.63 20 | 96.21 182 | 99.90 48 | 95.74 229 | 99.54 180 | 99.27 193 |
|
tpm2 | | | 93.09 320 | 92.58 321 | 94.62 328 | 97.56 326 | 86.53 349 | 97.66 178 | 95.79 335 | 86.15 352 | 94.07 347 | 98.23 250 | 75.95 354 | 99.53 295 | 90.91 333 | 96.86 337 | 97.81 318 |
|
NP-MVS | | | | | | 98.84 222 | 97.39 187 | | | | | 96.84 316 | | | | | |
|
EG-PatchMatch MVS | | | 98.99 38 | 99.01 38 | 98.94 133 | 99.50 77 | 97.47 182 | 98.04 138 | 99.59 24 | 98.15 126 | 99.40 52 | 99.36 57 | 98.58 31 | 99.76 205 | 98.78 44 | 99.68 132 | 99.59 55 |
|
tpm cat1 | | | 93.29 318 | 93.13 317 | 93.75 335 | 97.39 334 | 84.74 355 | 97.39 204 | 97.65 305 | 83.39 357 | 94.16 344 | 98.41 231 | 82.86 333 | 99.39 320 | 91.56 325 | 95.35 350 | 97.14 337 |
|
SteuartSystems-ACMMP | | | 98.79 62 | 98.54 82 | 99.54 29 | 99.73 24 | 99.16 40 | 98.23 114 | 99.31 129 | 97.92 137 | 98.90 136 | 98.90 146 | 98.00 69 | 99.88 66 | 96.15 211 | 99.72 112 | 99.58 61 |
Skip Steuart: Steuart Systems R&D Blog. |
CostFormer | | | 93.97 310 | 93.78 307 | 94.51 329 | 97.53 328 | 85.83 352 | 97.98 147 | 95.96 333 | 89.29 343 | 94.99 339 | 98.63 206 | 78.63 350 | 99.62 267 | 94.54 259 | 96.50 339 | 98.09 306 |
|
CR-MVSNet | | | 96.28 268 | 95.95 265 | 97.28 273 | 97.71 320 | 94.22 276 | 98.11 127 | 98.92 230 | 92.31 317 | 96.91 286 | 99.37 54 | 85.44 317 | 99.81 158 | 97.39 117 | 97.36 328 | 97.81 318 |
|
JIA-IIPM | | | 95.52 285 | 95.03 292 | 97.00 282 | 96.85 344 | 94.03 283 | 96.93 237 | 95.82 334 | 99.20 48 | 94.63 341 | 99.71 12 | 83.09 331 | 99.60 274 | 94.42 265 | 94.64 352 | 97.36 335 |
|
Patchmtry | | | 97.35 212 | 96.97 223 | 98.50 196 | 97.31 337 | 96.47 222 | 98.18 120 | 98.92 230 | 98.95 78 | 98.78 157 | 99.37 54 | 85.44 317 | 99.85 103 | 95.96 218 | 99.83 62 | 99.17 217 |
|
PatchT | | | 96.65 256 | 96.35 256 | 97.54 261 | 97.40 333 | 95.32 251 | 97.98 147 | 96.64 326 | 99.33 38 | 96.89 290 | 99.42 49 | 84.32 324 | 99.81 158 | 97.69 107 | 97.49 321 | 97.48 333 |
|
tpmrst | | | 95.07 293 | 95.46 278 | 93.91 334 | 97.11 340 | 84.36 358 | 97.62 182 | 96.96 319 | 94.98 274 | 96.35 311 | 98.80 173 | 85.46 316 | 99.59 278 | 95.60 237 | 96.23 343 | 97.79 321 |
|
BH-w/o | | | 95.13 292 | 94.89 296 | 95.86 310 | 98.20 297 | 91.31 329 | 95.65 301 | 97.37 309 | 93.64 301 | 96.52 304 | 95.70 336 | 93.04 265 | 99.02 346 | 88.10 343 | 95.82 347 | 97.24 336 |
|
tpm | | | 94.67 298 | 94.34 302 | 95.66 315 | 97.68 324 | 88.42 341 | 97.88 155 | 94.90 338 | 94.46 285 | 96.03 319 | 98.56 216 | 78.66 349 | 99.79 180 | 95.88 220 | 95.01 351 | 98.78 273 |
|
DELS-MVS | | | 98.27 138 | 98.20 132 | 98.48 197 | 98.86 217 | 96.70 218 | 95.60 303 | 99.20 167 | 97.73 149 | 98.45 195 | 98.71 186 | 97.50 108 | 99.82 145 | 98.21 74 | 99.59 162 | 98.93 251 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
BH-untuned | | | 96.83 248 | 96.75 237 | 97.08 280 | 98.74 238 | 93.33 300 | 96.71 252 | 98.26 285 | 96.72 226 | 98.44 196 | 97.37 305 | 95.20 218 | 99.47 310 | 91.89 319 | 97.43 324 | 98.44 293 |
|
RPMNet | | | 97.02 239 | 96.93 224 | 97.30 272 | 97.71 320 | 94.22 276 | 98.11 127 | 99.30 138 | 99.37 34 | 96.91 286 | 99.34 60 | 86.72 304 | 99.87 82 | 97.53 111 | 97.36 328 | 97.81 318 |
|
MVSTER | | | 96.86 247 | 96.55 251 | 97.79 242 | 97.91 312 | 94.21 278 | 97.56 190 | 98.87 238 | 97.49 169 | 99.06 104 | 99.05 108 | 80.72 340 | 99.80 167 | 98.44 64 | 99.82 65 | 99.37 159 |
|
CPTT-MVS | | | 97.84 178 | 97.36 201 | 99.27 82 | 99.31 117 | 98.46 100 | 98.29 109 | 99.27 150 | 94.90 277 | 97.83 235 | 98.37 238 | 94.90 224 | 99.84 120 | 93.85 286 | 99.54 180 | 99.51 96 |
|
GBi-Net | | | 98.65 88 | 98.47 95 | 99.17 93 | 98.90 208 | 98.24 111 | 99.20 32 | 99.44 80 | 98.59 96 | 98.95 127 | 99.55 29 | 94.14 245 | 99.86 89 | 97.77 99 | 99.69 127 | 99.41 140 |
|
PVSNet_Blended_VisFu | | | 98.17 150 | 98.15 141 | 98.22 219 | 99.73 24 | 95.15 257 | 97.36 207 | 99.68 13 | 94.45 287 | 98.99 119 | 99.27 67 | 96.87 147 | 99.94 23 | 97.13 131 | 99.91 40 | 99.57 66 |
|
PVSNet_BlendedMVS | | | 97.55 197 | 97.53 188 | 97.60 254 | 98.92 204 | 93.77 296 | 96.64 255 | 99.43 86 | 94.49 283 | 97.62 248 | 99.18 80 | 96.82 151 | 99.67 247 | 94.73 254 | 99.93 25 | 99.36 165 |
|
UnsupCasMVSNet_eth | | | 97.89 168 | 97.60 185 | 98.75 162 | 99.31 117 | 97.17 202 | 97.62 182 | 99.35 111 | 98.72 89 | 98.76 161 | 98.68 192 | 92.57 272 | 99.74 216 | 97.76 103 | 95.60 348 | 99.34 171 |
|
UnsupCasMVSNet_bld | | | 97.30 216 | 96.92 226 | 98.45 200 | 99.28 122 | 96.78 217 | 96.20 278 | 99.27 150 | 95.42 267 | 98.28 208 | 98.30 245 | 93.16 260 | 99.71 229 | 94.99 248 | 97.37 326 | 98.87 259 |
|
PVSNet_Blended | | | 96.88 246 | 96.68 241 | 97.47 265 | 98.92 204 | 93.77 296 | 94.71 326 | 99.43 86 | 90.98 333 | 97.62 248 | 97.36 306 | 96.82 151 | 99.67 247 | 94.73 254 | 99.56 177 | 98.98 241 |
|
FMVSNet5 | | | 96.01 273 | 95.20 288 | 98.41 203 | 97.53 328 | 96.10 230 | 98.74 67 | 99.50 56 | 97.22 205 | 98.03 226 | 99.04 111 | 69.80 360 | 99.88 66 | 97.27 122 | 99.71 116 | 99.25 197 |
|
test1 | | | 98.65 88 | 98.47 95 | 99.17 93 | 98.90 208 | 98.24 111 | 99.20 32 | 99.44 80 | 98.59 96 | 98.95 127 | 99.55 29 | 94.14 245 | 99.86 89 | 97.77 99 | 99.69 127 | 99.41 140 |
|
new_pmnet | | | 96.99 243 | 96.76 236 | 97.67 248 | 98.72 241 | 94.89 263 | 95.95 288 | 98.20 288 | 92.62 314 | 98.55 188 | 98.54 217 | 94.88 227 | 99.52 299 | 93.96 280 | 99.44 205 | 98.59 287 |
|
FMVSNet3 | | | 97.50 199 | 97.24 209 | 98.29 214 | 98.08 304 | 95.83 238 | 97.86 158 | 98.91 232 | 97.89 140 | 98.95 127 | 98.95 138 | 87.06 302 | 99.81 158 | 97.77 99 | 99.69 127 | 99.23 201 |
|
dp | | | 93.47 316 | 93.59 310 | 93.13 342 | 96.64 347 | 81.62 363 | 97.66 178 | 96.42 328 | 92.80 312 | 96.11 314 | 98.64 202 | 78.55 352 | 99.59 278 | 93.31 299 | 92.18 359 | 98.16 303 |
|
FMVSNet2 | | | 98.49 115 | 98.40 107 | 98.75 162 | 98.90 208 | 97.14 205 | 98.61 76 | 99.13 192 | 98.59 96 | 99.19 86 | 99.28 65 | 94.14 245 | 99.82 145 | 97.97 89 | 99.80 77 | 99.29 190 |
|
FMVSNet1 | | | 99.17 30 | 99.17 29 | 99.17 93 | 99.55 65 | 98.24 111 | 99.20 32 | 99.44 80 | 99.21 45 | 99.43 47 | 99.55 29 | 97.82 82 | 99.86 89 | 98.42 66 | 99.89 48 | 99.41 140 |
|
N_pmnet | | | 97.63 193 | 97.17 212 | 98.99 128 | 99.27 123 | 97.86 155 | 95.98 283 | 93.41 349 | 95.25 271 | 99.47 42 | 98.90 146 | 95.63 205 | 99.85 103 | 96.91 145 | 99.73 106 | 99.27 193 |
|
cascas | | | 94.79 297 | 94.33 303 | 96.15 309 | 96.02 357 | 92.36 317 | 92.34 355 | 99.26 155 | 85.34 354 | 95.08 338 | 94.96 348 | 92.96 266 | 98.53 355 | 94.41 268 | 98.59 295 | 97.56 331 |
|
BH-RMVSNet | | | 96.83 248 | 96.58 248 | 97.58 256 | 98.47 280 | 94.05 281 | 96.67 254 | 97.36 310 | 96.70 228 | 97.87 232 | 97.98 268 | 95.14 220 | 99.44 315 | 90.47 336 | 98.58 296 | 99.25 197 |
|
UGNet | | | 98.53 111 | 98.45 99 | 98.79 154 | 97.94 310 | 96.96 209 | 99.08 44 | 98.54 274 | 99.10 62 | 96.82 294 | 99.47 42 | 96.55 167 | 99.84 120 | 98.56 60 | 99.94 21 | 99.55 79 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
WTY-MVS | | | 96.67 255 | 96.27 261 | 97.87 238 | 98.81 229 | 94.61 271 | 96.77 248 | 97.92 299 | 94.94 276 | 97.12 274 | 97.74 283 | 91.11 281 | 99.82 145 | 93.89 283 | 98.15 308 | 99.18 213 |
|
XXY-MVS | | | 99.14 32 | 99.15 32 | 99.10 105 | 99.76 22 | 97.74 169 | 98.85 64 | 99.62 19 | 98.48 102 | 99.37 56 | 99.49 39 | 98.75 23 | 99.86 89 | 98.20 75 | 99.80 77 | 99.71 26 |
|
sss | | | 97.21 224 | 96.93 224 | 98.06 230 | 98.83 224 | 95.22 255 | 96.75 250 | 98.48 278 | 94.49 283 | 97.27 271 | 97.90 274 | 92.77 269 | 99.80 167 | 96.57 178 | 99.32 221 | 99.16 220 |
|
Test_1112_low_res | | | 96.99 243 | 96.55 251 | 98.31 212 | 99.35 114 | 95.47 247 | 95.84 295 | 99.53 50 | 91.51 327 | 96.80 295 | 98.48 228 | 91.36 280 | 99.83 135 | 96.58 176 | 99.53 184 | 99.62 44 |
|
1112_ss | | | 97.29 218 | 96.86 230 | 98.58 179 | 99.34 116 | 96.32 226 | 96.75 250 | 99.58 26 | 93.14 307 | 96.89 290 | 97.48 298 | 92.11 276 | 99.86 89 | 96.91 145 | 99.54 180 | 99.57 66 |
|
ab-mvs-re | | | 8.12 336 | 10.83 339 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 97.48 298 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
ab-mvs | | | 98.41 123 | 98.36 114 | 98.59 178 | 99.19 142 | 97.23 194 | 99.32 15 | 98.81 251 | 97.66 153 | 98.62 174 | 99.40 53 | 96.82 151 | 99.80 167 | 95.88 220 | 99.51 190 | 98.75 276 |
|
TR-MVS | | | 95.55 284 | 95.12 291 | 96.86 293 | 97.54 327 | 93.94 287 | 96.49 263 | 96.53 327 | 94.36 290 | 97.03 281 | 96.61 320 | 94.26 244 | 99.16 342 | 86.91 346 | 96.31 342 | 97.47 334 |
|
MDTV_nov1_ep13_2view | | | | | | | 74.92 366 | 97.69 175 | | 90.06 340 | 97.75 241 | | 85.78 313 | | 93.52 293 | | 98.69 281 |
|
MDTV_nov1_ep13 | | | | 95.22 287 | | 97.06 341 | 83.20 360 | 97.74 171 | 96.16 330 | 94.37 289 | 96.99 282 | 98.83 168 | 83.95 327 | 99.53 295 | 93.90 282 | 97.95 316 | |
|
MIMVSNet1 | | | 99.38 20 | 99.32 21 | 99.55 26 | 99.86 11 | 99.19 34 | 99.41 10 | 99.59 24 | 99.59 20 | 99.71 14 | 99.57 27 | 97.12 133 | 99.90 48 | 99.21 23 | 99.87 52 | 99.54 83 |
|
MIMVSNet | | | 96.62 258 | 96.25 262 | 97.71 247 | 99.04 179 | 94.66 269 | 99.16 38 | 96.92 322 | 97.23 202 | 97.87 232 | 99.10 98 | 86.11 311 | 99.65 260 | 91.65 322 | 99.21 239 | 98.82 263 |
|
IterMVS-LS | | | 98.55 106 | 98.70 63 | 98.09 225 | 99.48 92 | 94.73 266 | 97.22 219 | 99.39 95 | 98.97 74 | 99.38 54 | 99.31 64 | 96.00 189 | 99.93 28 | 98.58 55 | 99.97 11 | 99.60 49 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 97.69 187 | 97.35 202 | 98.69 166 | 98.73 239 | 97.02 208 | 96.92 239 | 98.75 261 | 95.89 255 | 98.59 180 | 98.67 194 | 92.08 277 | 99.74 216 | 96.72 167 | 99.81 69 | 99.32 179 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 90 | |
|
IterMVS | | | 97.73 185 | 98.11 145 | 96.57 297 | 99.24 128 | 90.28 335 | 95.52 307 | 99.21 165 | 98.86 82 | 99.33 62 | 99.33 62 | 93.11 261 | 99.94 23 | 98.49 61 | 99.94 21 | 99.48 111 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DP-MVS Recon | | | 97.33 214 | 96.92 226 | 98.57 182 | 99.09 168 | 97.99 138 | 96.79 246 | 99.35 111 | 93.18 306 | 97.71 242 | 98.07 264 | 95.00 223 | 99.31 329 | 93.97 279 | 99.13 255 | 98.42 295 |
|
MVS_111021_LR | | | 98.30 134 | 98.12 144 | 98.83 147 | 99.16 153 | 98.03 136 | 96.09 281 | 99.30 138 | 97.58 160 | 98.10 219 | 98.24 248 | 98.25 49 | 99.34 325 | 96.69 170 | 99.65 144 | 99.12 222 |
|
DP-MVS | | | 98.93 48 | 98.81 50 | 99.28 79 | 99.21 135 | 98.45 101 | 98.46 97 | 99.33 122 | 99.63 14 | 99.48 40 | 99.15 90 | 97.23 130 | 99.75 212 | 97.17 126 | 99.66 143 | 99.63 43 |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.68 132 | |
|
HQP-MVS | | | 97.00 242 | 96.49 253 | 98.55 187 | 98.67 257 | 96.79 214 | 96.29 273 | 99.04 209 | 96.05 248 | 95.55 328 | 96.84 316 | 93.84 250 | 99.54 293 | 92.82 306 | 99.26 233 | 99.32 179 |
|
QAPM | | | 97.31 215 | 96.81 234 | 98.82 148 | 98.80 231 | 97.49 181 | 99.06 48 | 99.19 172 | 90.22 337 | 97.69 244 | 99.16 86 | 96.91 145 | 99.90 48 | 90.89 334 | 99.41 207 | 99.07 226 |
|
Vis-MVSNet |  | | 99.34 22 | 99.36 16 | 99.27 82 | 99.73 24 | 98.26 109 | 99.17 37 | 99.78 4 | 99.11 56 | 99.27 73 | 99.48 41 | 98.82 20 | 99.95 15 | 98.94 35 | 99.93 25 | 99.59 55 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MVS-HIRNet | | | 94.32 302 | 95.62 273 | 90.42 344 | 98.46 281 | 75.36 365 | 96.29 273 | 89.13 361 | 95.25 271 | 95.38 334 | 99.75 7 | 92.88 267 | 99.19 340 | 94.07 278 | 99.39 210 | 96.72 343 |
|
IS-MVSNet | | | 98.19 147 | 97.90 163 | 99.08 109 | 99.57 55 | 97.97 143 | 99.31 18 | 98.32 283 | 99.01 70 | 98.98 121 | 99.03 114 | 91.59 279 | 99.79 180 | 95.49 241 | 99.80 77 | 99.48 111 |
|
HyFIR lowres test | | | 97.19 226 | 96.60 247 | 98.96 130 | 99.62 50 | 97.28 192 | 95.17 315 | 99.50 56 | 94.21 292 | 99.01 115 | 98.32 244 | 86.61 305 | 99.99 2 | 97.10 133 | 99.84 56 | 99.60 49 |
|
EPMVS | | | 93.72 314 | 93.27 313 | 95.09 325 | 96.04 356 | 87.76 344 | 98.13 124 | 85.01 363 | 94.69 281 | 96.92 284 | 98.64 202 | 78.47 353 | 99.31 329 | 95.04 246 | 96.46 340 | 98.20 301 |
|
PAPM_NR | | | 96.82 250 | 96.32 258 | 98.30 213 | 99.07 172 | 96.69 219 | 97.48 198 | 98.76 258 | 95.81 258 | 96.61 301 | 96.47 324 | 94.12 248 | 99.17 341 | 90.82 335 | 97.78 318 | 99.06 227 |
|
TAMVS | | | 98.24 143 | 98.05 151 | 98.80 152 | 99.07 172 | 97.18 201 | 97.88 155 | 98.81 251 | 96.66 229 | 99.17 91 | 99.21 75 | 94.81 230 | 99.77 198 | 96.96 143 | 99.88 49 | 99.44 130 |
|
PAPR | | | 95.29 288 | 94.47 298 | 97.75 245 | 97.50 332 | 95.14 258 | 94.89 323 | 98.71 266 | 91.39 329 | 95.35 335 | 95.48 340 | 94.57 236 | 99.14 344 | 84.95 349 | 97.37 326 | 98.97 245 |
|
RPSCF | | | 98.62 94 | 98.36 114 | 99.42 57 | 99.65 43 | 99.42 4 | 98.55 83 | 99.57 33 | 97.72 150 | 98.90 136 | 99.26 69 | 96.12 184 | 99.52 299 | 95.72 230 | 99.71 116 | 99.32 179 |
|
Vis-MVSNet (Re-imp) | | | 97.46 204 | 97.16 213 | 98.34 209 | 99.55 65 | 96.10 230 | 98.94 57 | 98.44 279 | 98.32 108 | 98.16 213 | 98.62 208 | 88.76 295 | 99.73 220 | 93.88 284 | 99.79 82 | 99.18 213 |
|
test_0402 | | | 98.76 68 | 98.71 60 | 98.93 134 | 99.56 62 | 98.14 123 | 98.45 99 | 99.34 117 | 99.28 42 | 98.95 127 | 98.91 143 | 98.34 46 | 99.79 180 | 95.63 236 | 99.91 40 | 98.86 260 |
|
MVS_111021_HR | | | 98.25 142 | 98.08 149 | 98.75 162 | 99.09 168 | 97.46 183 | 95.97 284 | 99.27 150 | 97.60 159 | 97.99 227 | 98.25 247 | 98.15 61 | 99.38 322 | 96.87 153 | 99.57 172 | 99.42 137 |
|
CSCG | | | 98.68 84 | 98.50 88 | 99.20 91 | 99.45 98 | 98.63 84 | 98.56 82 | 99.57 33 | 97.87 141 | 98.85 147 | 98.04 265 | 97.66 91 | 99.84 120 | 96.72 167 | 99.81 69 | 99.13 221 |
|
PatchMatch-RL | | | 97.24 222 | 96.78 235 | 98.61 176 | 99.03 182 | 97.83 158 | 96.36 270 | 99.06 202 | 93.49 305 | 97.36 270 | 97.78 280 | 95.75 202 | 99.49 305 | 93.44 296 | 98.77 283 | 98.52 288 |
|
API-MVS | | | 97.04 238 | 96.91 228 | 97.42 268 | 97.88 313 | 98.23 115 | 98.18 120 | 98.50 277 | 97.57 161 | 97.39 268 | 96.75 318 | 96.77 155 | 99.15 343 | 90.16 337 | 99.02 269 | 94.88 355 |
|
Test By Simon | | | | | | | | | | | | | 96.52 168 | | | | |
|
TDRefinement | | | 99.42 16 | 99.38 15 | 99.55 26 | 99.76 22 | 99.33 15 | 99.68 5 | 99.71 9 | 99.38 33 | 99.53 33 | 99.61 23 | 98.64 27 | 99.80 167 | 98.24 72 | 99.84 56 | 99.52 93 |
|
USDC | | | 97.41 209 | 97.40 197 | 97.44 267 | 98.94 198 | 93.67 298 | 95.17 315 | 99.53 50 | 94.03 297 | 98.97 124 | 99.10 98 | 95.29 216 | 99.34 325 | 95.84 226 | 99.73 106 | 99.30 186 |
|
EPP-MVSNet | | | 98.30 134 | 98.04 152 | 99.07 112 | 99.56 62 | 97.83 158 | 99.29 23 | 98.07 294 | 99.03 68 | 98.59 180 | 99.13 93 | 92.16 275 | 99.90 48 | 96.87 153 | 99.68 132 | 99.49 104 |
|
PMMVS | | | 96.51 260 | 95.98 264 | 98.09 225 | 97.53 328 | 95.84 237 | 94.92 322 | 98.84 245 | 91.58 325 | 96.05 318 | 95.58 337 | 95.68 204 | 99.66 255 | 95.59 238 | 98.09 311 | 98.76 275 |
|
PAPM | | | 91.88 329 | 90.34 332 | 96.51 298 | 98.06 305 | 92.56 312 | 92.44 354 | 97.17 315 | 86.35 351 | 90.38 358 | 96.01 330 | 86.61 305 | 99.21 339 | 70.65 361 | 95.43 349 | 97.75 322 |
|
ACMMP |  | | 98.75 70 | 98.50 88 | 99.52 41 | 99.56 62 | 99.16 40 | 98.87 61 | 99.37 101 | 97.16 207 | 98.82 154 | 99.01 122 | 97.71 88 | 99.87 82 | 96.29 203 | 99.69 127 | 99.54 83 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CNLPA | | | 97.17 228 | 96.71 239 | 98.55 187 | 98.56 272 | 98.05 134 | 96.33 271 | 98.93 227 | 96.91 219 | 97.06 279 | 97.39 303 | 94.38 241 | 99.45 314 | 91.66 321 | 99.18 246 | 98.14 304 |
|
PatchmatchNet |  | | 95.58 283 | 95.67 272 | 95.30 323 | 97.34 335 | 87.32 346 | 97.65 180 | 96.65 325 | 95.30 270 | 97.07 278 | 98.69 190 | 84.77 319 | 99.75 212 | 94.97 249 | 98.64 292 | 98.83 262 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PHI-MVS | | | 98.29 137 | 97.95 158 | 99.34 72 | 98.44 283 | 99.16 40 | 98.12 126 | 99.38 97 | 96.01 251 | 98.06 222 | 98.43 230 | 97.80 83 | 99.67 247 | 95.69 232 | 99.58 168 | 99.20 206 |
|
F-COLMAP | | | 97.30 216 | 96.68 241 | 99.14 99 | 99.19 142 | 98.39 103 | 97.27 215 | 99.30 138 | 92.93 309 | 96.62 300 | 98.00 266 | 95.73 203 | 99.68 244 | 92.62 312 | 98.46 298 | 99.35 169 |
|
ANet_high | | | 99.57 7 | 99.67 5 | 99.28 79 | 99.89 6 | 98.09 125 | 99.14 40 | 99.93 1 | 99.82 3 | 99.93 2 | 99.81 3 | 99.17 12 | 99.94 23 | 99.31 16 | 100.00 1 | 99.82 9 |
|
wuyk23d | | | 96.06 272 | 97.62 183 | 91.38 343 | 98.65 263 | 98.57 91 | 98.85 64 | 96.95 320 | 96.86 221 | 99.90 4 | 99.16 86 | 99.18 11 | 98.40 356 | 89.23 340 | 99.77 90 | 77.18 359 |
|
OMC-MVS | | | 97.88 170 | 97.49 191 | 99.04 121 | 98.89 213 | 98.63 84 | 96.94 235 | 99.25 156 | 95.02 273 | 98.53 191 | 98.51 220 | 97.27 125 | 99.47 310 | 93.50 295 | 99.51 190 | 99.01 236 |
|
MG-MVS | | | 96.77 251 | 96.61 246 | 97.26 274 | 98.31 290 | 93.06 303 | 95.93 289 | 98.12 293 | 96.45 236 | 97.92 228 | 98.73 183 | 93.77 254 | 99.39 320 | 91.19 330 | 99.04 265 | 99.33 177 |
|
AdaColmap |  | | 97.14 230 | 96.71 239 | 98.46 199 | 98.34 288 | 97.80 164 | 96.95 234 | 98.93 227 | 95.58 261 | 96.92 284 | 97.66 286 | 95.87 199 | 99.53 295 | 90.97 331 | 99.14 252 | 98.04 307 |
|
uanet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
ITE_SJBPF | | | | | 98.87 142 | 99.22 133 | 98.48 99 | | 99.35 111 | 97.50 167 | 98.28 208 | 98.60 212 | 97.64 95 | 99.35 324 | 93.86 285 | 99.27 230 | 98.79 272 |
|
DeepMVS_CX |  | | | | 93.44 339 | 98.24 294 | 94.21 278 | | 94.34 341 | 64.28 361 | 91.34 357 | 94.87 351 | 89.45 292 | 92.77 362 | 77.54 360 | 93.14 357 | 93.35 357 |
|
TinyColmap | | | 97.89 168 | 97.98 156 | 97.60 254 | 98.86 217 | 94.35 275 | 96.21 277 | 99.44 80 | 97.45 177 | 99.06 104 | 98.88 155 | 97.99 72 | 99.28 334 | 94.38 269 | 99.58 168 | 99.18 213 |
|
MAR-MVS | | | 96.47 263 | 95.70 270 | 98.79 154 | 97.92 311 | 99.12 53 | 98.28 110 | 98.60 272 | 92.16 320 | 95.54 331 | 96.17 329 | 94.77 233 | 99.52 299 | 89.62 339 | 98.23 302 | 97.72 324 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
LF4IMVS | | | 97.90 166 | 97.69 175 | 98.52 191 | 99.17 151 | 97.66 173 | 97.19 223 | 99.47 72 | 96.31 241 | 97.85 234 | 98.20 252 | 96.71 161 | 99.52 299 | 94.62 257 | 99.72 112 | 98.38 296 |
|
MSDG | | | 97.71 186 | 97.52 189 | 98.28 215 | 98.91 207 | 96.82 213 | 94.42 336 | 99.37 101 | 97.65 154 | 98.37 205 | 98.29 246 | 97.40 117 | 99.33 327 | 94.09 277 | 99.22 237 | 98.68 284 |
|
LS3D | | | 98.63 92 | 98.38 112 | 99.36 64 | 97.25 338 | 99.38 5 | 99.12 43 | 99.32 124 | 99.21 45 | 98.44 196 | 98.88 155 | 97.31 121 | 99.80 167 | 96.58 176 | 99.34 219 | 98.92 252 |
|
CLD-MVS | | | 97.49 201 | 97.16 213 | 98.48 197 | 99.07 172 | 97.03 207 | 94.71 326 | 99.21 165 | 94.46 285 | 98.06 222 | 97.16 311 | 97.57 100 | 99.48 308 | 94.46 262 | 99.78 86 | 98.95 246 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
FPMVS | | | 93.44 317 | 92.23 322 | 97.08 280 | 99.25 127 | 97.86 155 | 95.61 302 | 97.16 316 | 92.90 310 | 93.76 350 | 98.65 199 | 75.94 355 | 95.66 359 | 79.30 359 | 97.49 321 | 97.73 323 |
|
Gipuma |  | | 99.03 35 | 99.16 30 | 98.64 169 | 99.94 2 | 98.51 97 | 99.32 15 | 99.75 7 | 99.58 22 | 98.60 178 | 99.62 21 | 98.22 54 | 99.51 303 | 97.70 105 | 99.73 106 | 97.89 312 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |