This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15899.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator98.27 298.81 6098.73 5699.05 11998.76 23497.81 16399.25 3099.30 13898.57 10098.55 18899.33 6297.95 7599.90 4897.16 12799.67 13899.44 130
3Dnovator+97.89 398.69 8098.51 8699.24 8898.81 22998.40 10299.02 4999.19 17298.99 7198.07 22199.28 6597.11 13599.84 12096.84 15699.32 22199.47 119
DeepC-MVS97.60 498.97 4398.93 4199.10 10599.35 11497.98 14298.01 14499.46 7497.56 16399.54 3099.50 3698.97 1699.84 12098.06 8399.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.93 598.32 13298.01 15499.23 8998.39 28698.97 6295.03 31999.18 17696.88 22099.33 6298.78 17698.16 5999.28 33496.74 16499.62 15299.44 130
DeepC-MVS_fast96.85 698.30 13498.15 14198.75 16298.61 26497.23 19497.76 16999.09 19897.31 19098.75 16298.66 19797.56 10199.64 26296.10 21499.55 17999.39 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft96.65 797.09 23296.68 24198.32 21098.32 28997.16 20398.86 6399.37 10189.48 34196.29 31299.15 9096.56 16699.90 4892.90 30399.20 24097.89 312
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10499.07 4699.55 4398.30 10999.65 2299.45 4799.22 999.76 20598.44 6499.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7799.58 2699.11 5699.53 3399.18 8098.81 2199.67 24796.71 16999.77 9099.50 100
COLMAP_ROBcopyleft96.50 1098.99 3898.85 4699.41 6099.58 5199.10 5698.74 6799.56 4099.09 6599.33 6299.19 7898.40 4099.72 22895.98 21799.76 9999.42 137
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS96.21 1196.63 25795.95 26598.65 16898.93 20098.09 12596.93 23799.28 14783.58 35698.13 21697.78 28096.13 18399.40 31893.52 29399.29 22898.45 292
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.08 1298.91 5098.73 5699.48 5099.55 6599.14 4898.07 13299.37 10197.62 15699.04 11198.96 13498.84 1999.79 18097.43 11599.65 14499.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS95.94 1395.90 27695.35 28497.55 26097.95 30994.79 26498.81 6696.94 32192.28 31895.17 33698.57 21589.90 28899.75 21291.20 32997.33 33098.10 305
OpenMVS_ROBcopyleft95.38 1495.84 27895.18 28997.81 24198.41 28597.15 20497.37 20698.62 27183.86 35598.65 17098.37 23894.29 24399.68 24488.41 34298.62 29496.60 344
ACMP95.32 1598.41 12398.09 14699.36 6499.51 7498.79 7497.68 17699.38 9795.76 25998.81 15698.82 17198.36 4299.82 14594.75 25399.77 9099.48 111
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft94.65 1696.51 26095.73 26998.85 14598.75 23797.91 15196.42 26799.06 20290.94 33495.59 32497.38 30494.41 23999.59 27890.93 33298.04 31599.05 228
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 28195.70 27095.57 31798.83 22488.57 34092.50 35397.72 30292.69 31396.49 30896.44 32593.72 25599.43 31693.61 29099.28 22998.71 278
PCF-MVS92.86 1894.36 30193.00 31898.42 20298.70 24897.56 17893.16 35199.11 19679.59 35997.55 25597.43 30192.19 27499.73 22079.85 35899.45 20497.97 311
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS91.63 1992.24 32790.90 33196.27 30397.22 33991.24 33294.36 33893.33 35092.37 31692.24 35594.58 35366.20 36799.89 5793.16 30194.63 35397.66 327
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft91.26 2097.86 17297.94 16097.65 25099.71 3097.94 15098.52 8698.68 26798.99 7197.52 25899.35 5897.41 11698.18 35791.59 32499.67 13896.82 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_089.98 2191.15 33090.30 33393.70 33697.72 31984.34 35990.24 35797.42 30890.20 33893.79 34993.09 35890.90 28298.89 35286.57 34772.76 36197.87 314
MVEpermissive83.40 2292.50 32491.92 32794.25 33198.83 22491.64 32392.71 35283.52 36495.92 25486.46 36395.46 34195.20 21895.40 36080.51 35798.64 29295.73 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary75.91 2396.29 26795.44 28098.84 14696.25 35498.69 8297.02 23099.12 19488.90 34497.83 23598.86 15989.51 29098.90 35191.92 31899.51 19098.92 252
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052198.69 8098.87 4398.16 22399.77 2095.11 26099.08 4499.44 8099.34 3799.33 6299.55 2994.10 24999.94 2399.25 2099.96 1499.42 137
hse-mvs397.77 18497.33 20599.10 10599.21 13597.84 15798.35 10798.57 27399.11 5698.58 18299.02 11588.65 29899.96 898.11 7896.34 34199.49 104
hse-mvs297.46 20497.07 21798.64 16998.73 23997.33 18897.45 20297.64 30799.11 5698.58 18297.98 26888.65 29899.79 18098.11 7897.39 32598.81 266
CL-MVSNet_2432*160097.44 20797.22 21098.08 22898.57 27195.78 24094.30 33998.79 25496.58 23298.60 17898.19 25394.74 23499.64 26296.41 19598.84 28098.82 263
KD-MVS_2432*160092.87 32191.99 32595.51 31991.37 36389.27 33894.07 34198.14 29195.42 26797.25 27296.44 32567.86 36299.24 33691.28 32796.08 34598.02 308
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7199.54 4799.31 3999.62 2799.53 3397.36 12099.86 8999.24 2299.71 11699.39 149
AUN-MVS96.24 27095.45 27998.60 17798.70 24897.22 19697.38 20597.65 30595.95 25395.53 33297.96 27282.11 33999.79 18096.31 20097.44 32398.80 271
ZD-MVS99.01 18698.84 6999.07 20194.10 29598.05 22498.12 25896.36 17999.86 8992.70 31199.19 244
test117298.76 6898.49 9199.57 1899.18 14999.37 898.39 10399.31 12998.43 10398.90 13698.88 15597.49 11199.86 8996.43 19399.37 21499.48 111
SR-MVS-dyc-post98.81 6098.55 8199.57 1899.20 13999.38 598.48 9599.30 13898.64 9098.95 12798.96 13497.49 11199.86 8996.56 18199.39 21099.45 125
RE-MVS-def98.58 7999.20 13999.38 598.48 9599.30 13898.64 9098.95 12798.96 13497.75 8696.56 18199.39 21099.45 125
SED-MVS98.91 5098.72 5899.49 4899.49 8499.17 3698.10 12999.31 12998.03 13099.66 2099.02 11598.36 4299.88 6696.91 14599.62 15299.41 140
IU-MVS99.49 8499.15 4598.87 23892.97 30899.41 4996.76 16299.62 15299.66 34
OPU-MVS98.82 14898.59 26898.30 10798.10 12998.52 21998.18 5798.75 35494.62 25799.48 20099.41 140
test_241102_TWO99.30 13898.03 13099.26 7799.02 11597.51 10799.88 6696.91 14599.60 16099.66 34
test_241102_ONE99.49 8499.17 3699.31 12997.98 13299.66 2098.90 14698.36 4299.48 308
xxxxxxxxxxxxxcwj98.44 12098.24 12899.06 11799.11 16197.97 14396.53 25999.54 4798.24 11598.83 15098.90 14697.80 8399.82 14595.68 23399.52 18799.38 156
SF-MVS98.53 11198.27 12599.32 7699.31 11798.75 7598.19 11999.41 9096.77 22498.83 15098.90 14697.80 8399.82 14595.68 23399.52 18799.38 156
ETH3D cwj APD-0.1697.55 19797.00 22199.19 9298.51 27798.64 8396.85 24399.13 19294.19 29397.65 24698.40 23295.78 20199.81 15893.37 29899.16 24899.12 222
cl-mvsnet295.79 27995.39 28396.98 28496.77 34692.79 30994.40 33798.53 27594.59 28297.89 23198.17 25482.82 33499.24 33696.37 19699.03 26698.92 252
miper_ehance_all_eth97.06 23597.03 21997.16 27997.83 31593.06 30394.66 32999.09 19895.99 25298.69 16698.45 22992.73 27099.61 27396.79 15899.03 26698.82 263
miper_enhance_ethall96.01 27395.74 26896.81 29496.41 35292.27 31893.69 34898.89 23591.14 33298.30 20697.35 30790.58 28399.58 28396.31 20099.03 26698.60 285
ZNCC-MVS98.68 8498.40 10799.54 2999.57 5599.21 2698.46 9799.29 14597.28 19398.11 21898.39 23498.00 6999.87 8296.86 15599.64 14699.55 79
ETH3 D test640096.46 26495.59 27599.08 10998.88 21498.21 11796.53 25999.18 17688.87 34597.08 27797.79 27993.64 25799.77 19888.92 34199.40 20999.28 191
cl-mvsnet_97.02 23996.83 23397.58 25697.82 31694.04 28294.66 32999.16 18597.04 21398.63 17298.71 18688.68 29799.69 23597.00 13799.81 6999.00 239
cl-mvsnet197.02 23996.84 23297.58 25697.82 31694.03 28394.66 32999.16 18597.04 21398.63 17298.71 18688.69 29699.69 23597.00 13799.81 6999.01 236
eth_miper_zixun_eth97.23 22397.25 20797.17 27798.00 30892.77 31094.71 32699.18 17697.27 19498.56 18698.74 18291.89 27899.69 23597.06 13599.81 6999.05 228
9.1497.78 16999.07 17297.53 19399.32 12495.53 26498.54 19098.70 18997.58 9999.76 20594.32 27099.46 202
testtj97.79 18397.25 20799.42 5799.03 18298.85 6897.78 16499.18 17695.83 25798.12 21798.50 22395.50 21199.86 8992.23 31799.07 26199.54 83
uanet_test0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
ETH3D-3000-0.198.03 15697.62 18399.29 7799.11 16198.80 7397.47 20099.32 12495.54 26298.43 19998.62 20896.61 16599.77 19893.95 28199.49 19899.30 186
save fliter99.11 16197.97 14396.53 25999.02 21598.24 115
ET-MVSNet_ETH3D94.30 30493.21 31497.58 25698.14 30094.47 27394.78 32593.24 35194.72 28089.56 35995.87 33478.57 35199.81 15896.91 14597.11 33398.46 290
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
EIA-MVS98.00 16097.74 17298.80 15298.72 24198.09 12598.05 13699.60 2397.39 18296.63 29995.55 33897.68 8999.80 16796.73 16699.27 23098.52 288
miper_refine_blended92.87 32191.99 32595.51 31991.37 36389.27 33894.07 34198.14 29195.42 26797.25 27296.44 32567.86 36299.24 33691.28 32796.08 34598.02 308
miper_lstm_enhance97.18 22797.16 21397.25 27598.16 29992.85 30895.15 31799.31 12997.25 19698.74 16498.78 17690.07 28699.78 19297.19 12599.80 7799.11 224
ETV-MVS98.03 15697.86 16698.56 18698.69 25298.07 13197.51 19699.50 5698.10 12797.50 26095.51 33998.41 3999.88 6696.27 20499.24 23597.71 325
CS-MVS97.82 18297.59 18798.52 19198.76 23498.04 13598.20 11899.61 2197.10 21096.02 32094.87 35198.27 4899.84 12096.31 20099.17 24797.69 326
D2MVS97.84 17897.84 16797.83 24099.14 15894.74 26596.94 23598.88 23695.84 25698.89 13998.96 13494.40 24099.69 23597.55 10899.95 1699.05 228
DVP-MVS98.77 6798.52 8499.52 4199.50 7799.21 2698.02 14198.84 24597.97 13399.08 10199.02 11597.61 9799.88 6696.99 13999.63 14999.48 111
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 12499.08 10199.02 11597.89 7699.88 6697.07 13499.71 11699.70 29
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14199.32 12499.88 6696.99 13999.63 14999.68 31
test072699.50 7799.21 2698.17 12399.35 11197.97 13399.26 7799.06 10197.61 97
SR-MVS98.71 7598.43 10399.57 1899.18 14999.35 1198.36 10699.29 14598.29 11298.88 14398.85 16297.53 10499.87 8296.14 21299.31 22399.48 111
DPM-MVS96.32 26695.59 27598.51 19498.76 23497.21 19894.54 33598.26 28591.94 32196.37 31097.25 30893.06 26499.43 31691.42 32698.74 28498.89 256
GST-MVS98.61 9598.30 12299.52 4199.51 7499.20 3298.26 11299.25 15697.44 17898.67 16898.39 23497.68 8999.85 10396.00 21599.51 19099.52 93
test_yl96.69 25396.29 25997.90 23698.28 29195.24 25397.29 21297.36 31098.21 11898.17 21197.86 27586.27 30799.55 29094.87 25198.32 30098.89 256
thisisatest053095.27 28994.45 29997.74 24699.19 14294.37 27497.86 15890.20 35997.17 20698.22 21097.65 28773.53 35899.90 4896.90 15099.35 21798.95 246
Anonymous2024052998.93 4898.87 4399.12 10199.19 14298.22 11699.01 5098.99 22299.25 4499.54 3099.37 5497.04 13699.80 16797.89 9199.52 18799.35 169
Anonymous20240521197.90 16697.50 19099.08 10998.90 20898.25 11098.53 8596.16 33098.87 8199.11 9598.86 15990.40 28599.78 19297.36 11899.31 22399.19 211
DCV-MVSNet96.69 25396.29 25997.90 23698.28 29195.24 25397.29 21297.36 31098.21 11898.17 21197.86 27586.27 30799.55 29094.87 25198.32 30098.89 256
tttt051795.64 28294.98 29397.64 25299.36 11093.81 29498.72 6990.47 35898.08 12898.67 16898.34 24173.88 35799.92 3597.77 9999.51 19099.20 206
our_test_397.39 21097.73 17496.34 30198.70 24889.78 33794.61 33298.97 22496.50 23399.04 11198.85 16295.98 19399.84 12097.26 12399.67 13899.41 140
thisisatest051594.12 30893.16 31596.97 28598.60 26692.90 30793.77 34790.61 35794.10 29596.91 28695.87 33474.99 35699.80 16794.52 26099.12 25898.20 301
ppachtmachnet_test97.50 19997.74 17296.78 29598.70 24891.23 33394.55 33499.05 20696.36 23899.21 8498.79 17596.39 17599.78 19296.74 16499.82 6599.34 171
SMA-MVScopyleft98.40 12598.03 15399.51 4599.16 15399.21 2698.05 13699.22 16494.16 29498.98 12199.10 9897.52 10699.79 18096.45 19199.64 14699.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.81 266
DPE-MVScopyleft98.59 10098.26 12699.57 1899.27 12399.15 4597.01 23199.39 9597.67 15299.44 4698.99 12597.53 10499.89 5795.40 24399.68 13299.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.36 11099.10 5699.05 109
test_part197.91 16597.46 19699.27 8298.80 23198.18 11899.07 4699.36 10599.75 599.63 2599.49 3982.20 33899.89 5798.87 4099.95 1699.74 24
thres100view90094.19 30593.67 30995.75 31399.06 17691.35 32898.03 13994.24 34498.33 10797.40 26794.98 34779.84 34399.62 26783.05 35298.08 31296.29 345
tfpnnormal98.90 5298.90 4298.91 13799.67 4097.82 16199.00 5299.44 8099.45 2899.51 3899.24 7298.20 5699.86 8995.92 21999.69 12799.04 232
tfpn200view994.03 30993.44 31195.78 31298.93 20091.44 32697.60 18594.29 34297.94 13597.10 27594.31 35479.67 34599.62 26783.05 35298.08 31296.29 345
cl_fuxian97.36 21197.37 20097.31 27198.09 30393.25 30195.01 32099.16 18597.05 21298.77 16098.72 18592.88 26799.64 26296.93 14499.76 9999.05 228
CHOSEN 280x42095.51 28695.47 27795.65 31698.25 29388.27 34393.25 35098.88 23693.53 30394.65 34097.15 31286.17 30999.93 2897.41 11699.93 2598.73 277
CANet97.87 17197.76 17098.19 22197.75 31895.51 24596.76 24999.05 20697.74 14896.93 28398.21 25195.59 20799.89 5797.86 9699.93 2599.19 211
Fast-Effi-MVS+-dtu98.27 13898.09 14698.81 15098.43 28498.11 12497.61 18499.50 5698.64 9097.39 26897.52 29598.12 6299.95 1596.90 15098.71 28898.38 296
Effi-MVS+-dtu98.26 14097.90 16399.35 6998.02 30699.49 298.02 14199.16 18598.29 11297.64 24797.99 26796.44 17399.95 1596.66 17298.93 27898.60 285
CANet_DTU97.26 21997.06 21897.84 23997.57 32594.65 27096.19 27998.79 25497.23 20295.14 33798.24 24893.22 25999.84 12097.34 11999.84 5699.04 232
MVS_030497.64 19197.35 20298.52 19197.87 31496.69 21998.59 7998.05 29697.44 17893.74 35198.85 16293.69 25699.88 6698.11 7899.81 6998.98 241
MP-MVS-pluss98.57 10198.23 13099.60 1399.69 3899.35 1197.16 22699.38 9794.87 27898.97 12498.99 12598.01 6899.88 6697.29 12199.70 12199.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 12598.00 15599.61 999.57 5599.25 2298.57 8199.35 11197.55 16499.31 7097.71 28494.61 23599.88 6696.14 21299.19 24499.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs184.74 32098.81 266
sam_mvs84.29 326
IterMVS-SCA-FT97.85 17798.18 13596.87 29099.27 12391.16 33495.53 30599.25 15699.10 6299.41 4999.35 5893.10 26299.96 898.65 5399.94 2199.49 104
TSAR-MVS + MP.98.63 9298.49 9199.06 11799.64 4697.90 15298.51 9098.94 22596.96 21699.24 8098.89 15497.83 7999.81 15896.88 15299.49 19899.48 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.86 17298.17 13696.92 28798.98 19293.91 28996.45 26499.17 18297.85 14398.41 20097.14 31398.47 3599.92 3598.02 8599.05 26296.92 338
OPM-MVS98.56 10298.32 12199.25 8799.41 10598.73 7997.13 22899.18 17697.10 21098.75 16298.92 14298.18 5799.65 26096.68 17199.56 17799.37 159
ACMMP_NAP98.75 7098.48 9399.57 1899.58 5199.29 1797.82 16299.25 15696.94 21798.78 15799.12 9498.02 6799.84 12097.13 13199.67 13899.59 55
ambc98.24 21898.82 22795.97 23498.62 7599.00 22199.27 7399.21 7596.99 14199.50 30496.55 18499.50 19799.26 196
zzz-MVS98.79 6298.52 8499.61 999.67 4099.36 997.33 20999.20 16798.83 8598.89 13998.90 14696.98 14299.92 3597.16 12799.70 12199.56 71
MTGPAbinary99.20 167
mvs-test197.83 18097.48 19498.89 14098.02 30699.20 3297.20 22099.16 18598.29 11296.46 30997.17 31096.44 17399.92 3596.66 17297.90 31797.54 332
Effi-MVS+98.02 15897.82 16898.62 17498.53 27697.19 20097.33 20999.68 1397.30 19196.68 29797.46 30098.56 3299.80 16796.63 17498.20 30498.86 260
xiu_mvs_v2_base97.16 22997.49 19196.17 30698.54 27492.46 31495.45 30998.84 24597.25 19697.48 26296.49 32298.31 4799.90 4896.34 19998.68 29096.15 349
xiu_mvs_v1_base97.86 17298.17 13696.92 28798.98 19293.91 28996.45 26499.17 18297.85 14398.41 20097.14 31398.47 3599.92 3598.02 8599.05 26296.92 338
new-patchmatchnet98.35 13098.74 5597.18 27699.24 12892.23 31996.42 26799.48 6698.30 10999.69 1799.53 3397.44 11599.82 14598.84 4299.77 9099.49 104
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 699.64 1299.84 899.83 299.50 599.87 8299.36 1499.92 3499.64 39
pmmvs597.64 19197.49 19198.08 22899.14 15895.12 25996.70 25399.05 20693.77 30098.62 17498.83 16893.23 25899.75 21298.33 7199.76 9999.36 165
test_post197.59 18720.48 36583.07 33299.66 25594.16 271
test_post21.25 36483.86 32899.70 231
Fast-Effi-MVS+97.67 18997.38 19998.57 18298.71 24497.43 18597.23 21699.45 7794.82 27996.13 31396.51 32198.52 3499.91 4596.19 20898.83 28198.37 298
patchmatchnet-post98.77 17884.37 32399.85 103
Anonymous2023121199.27 2599.27 2499.26 8599.29 12198.18 11899.49 899.51 5499.70 899.80 999.68 1496.84 14899.83 13599.21 2399.91 4099.77 16
pmmvs-eth3d98.47 11798.34 11798.86 14499.30 12097.76 16697.16 22699.28 14795.54 26299.42 4899.19 7897.27 12599.63 26597.89 9199.97 1199.20 206
GG-mvs-BLEND94.76 32794.54 36192.13 32099.31 1880.47 36688.73 36191.01 36067.59 36498.16 35882.30 35694.53 35493.98 356
xiu_mvs_v1_base_debi97.86 17298.17 13696.92 28798.98 19293.91 28996.45 26499.17 18297.85 14398.41 20097.14 31398.47 3599.92 3598.02 8599.05 26296.92 338
Anonymous2023120698.21 14598.21 13198.20 22099.51 7495.43 24998.13 12499.32 12496.16 24598.93 13498.82 17196.00 18999.83 13597.32 12099.73 10699.36 165
MTAPA98.88 5398.64 7099.61 999.67 4099.36 998.43 10099.20 16798.83 8598.89 13998.90 14696.98 14299.92 3597.16 12799.70 12199.56 71
MTMP97.93 15091.91 355
gm-plane-assit94.83 36081.97 36288.07 34894.99 34699.60 27491.76 320
test9_res93.28 30099.15 25199.38 156
MVP-Stereo98.08 15497.92 16198.57 18298.96 19596.79 21497.90 15499.18 17696.41 23798.46 19498.95 13895.93 19699.60 27496.51 18798.98 27599.31 183
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.71 24498.08 12995.96 28699.03 21191.40 32895.85 32197.53 29396.52 16899.76 205
train_agg97.10 23196.45 25499.07 11298.71 24498.08 12995.96 28699.03 21191.64 32395.85 32197.53 29396.47 17199.76 20593.67 28999.16 24899.36 165
gg-mvs-nofinetune92.37 32591.20 33095.85 31195.80 35992.38 31699.31 1881.84 36599.75 591.83 35699.74 868.29 36199.02 34687.15 34597.12 33296.16 348
SCA96.41 26596.66 24495.67 31498.24 29488.35 34295.85 29496.88 32396.11 24697.67 24598.67 19493.10 26299.85 10394.16 27199.22 23798.81 266
Patchmatch-test96.55 25996.34 25797.17 27798.35 28793.06 30398.40 10297.79 30097.33 18798.41 20098.67 19483.68 32999.69 23595.16 24599.31 22398.77 274
test_898.67 25798.01 13795.91 29199.02 21591.64 32395.79 32397.50 29696.47 17199.76 205
MS-PatchMatch97.68 18897.75 17197.45 26698.23 29693.78 29597.29 21298.84 24596.10 24798.64 17198.65 19996.04 18699.36 32396.84 15699.14 25299.20 206
Patchmatch-RL test97.26 21997.02 22097.99 23599.52 7295.53 24496.13 28099.71 997.47 17099.27 7399.16 8684.30 32599.62 26797.89 9199.77 9098.81 266
cdsmvs_eth3d_5k24.66 33232.88 3350.00 3480.00 3690.00 3700.00 36099.10 1970.00 3650.00 36697.58 29199.21 100.00 3660.00 3640.00 3640.00 362
pcd_1.5k_mvsjas8.17 33510.90 3380.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 36698.07 630.00 3660.00 3640.00 3640.00 362
agg_prior197.06 23596.40 25599.03 12298.68 25597.99 13895.76 29699.01 21891.73 32295.59 32497.50 29696.49 17099.77 19893.71 28899.14 25299.34 171
agg_prior292.50 31499.16 24899.37 159
agg_prior98.68 25597.99 13899.01 21895.59 32499.77 198
tmp_tt78.77 33178.73 33478.90 34558.45 36674.76 36794.20 34078.26 36739.16 36286.71 36292.82 35980.50 34175.19 36386.16 34892.29 35886.74 358
canonicalmvs98.34 13198.26 12698.58 17998.46 28197.82 16198.96 5699.46 7499.19 5297.46 26395.46 34198.59 3099.46 31298.08 8298.71 28898.46 290
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1298.93 7999.65 2299.72 1198.93 1899.95 1599.11 27100.00 199.82 9
alignmvs97.35 21296.88 22998.78 15798.54 27498.09 12597.71 17397.69 30499.20 4897.59 25195.90 33388.12 30199.55 29098.18 7698.96 27698.70 280
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5599.48 6699.68 999.46 4399.26 6998.62 2899.73 22099.17 2699.92 3499.76 20
v14419298.54 10998.57 8098.45 20099.21 13595.98 23397.63 18199.36 10597.15 20999.32 6899.18 8095.84 20099.84 12099.50 1099.91 4099.54 83
FIs99.14 3299.09 3499.29 7799.70 3698.28 10899.13 4199.52 5399.48 2499.24 8099.41 5196.79 15499.82 14598.69 5299.88 4999.76 20
v192192098.54 10998.60 7798.38 20699.20 13995.76 24197.56 19099.36 10597.23 20299.38 5499.17 8496.02 18799.84 12099.57 699.90 4499.54 83
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 899.82 399.04 11199.81 398.05 6699.96 898.85 4199.99 599.86 6
v119298.60 9798.66 6898.41 20399.27 12395.88 23697.52 19499.36 10597.41 18099.33 6299.20 7796.37 17899.82 14599.57 699.92 3499.55 79
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3697.12 13399.85 10399.02 3299.94 2199.80 12
v114498.60 9798.66 6898.41 20399.36 11095.90 23597.58 18899.34 11797.51 16699.27 7399.15 9096.34 18099.80 16799.47 1299.93 2599.51 96
sosnet-low-res0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
HFP-MVS98.71 7598.44 10199.51 4599.49 8499.16 4098.52 8699.31 12997.47 17098.58 18298.50 22397.97 7399.85 10396.57 17899.59 16299.53 89
v14898.45 11998.60 7798.00 23499.44 10094.98 26197.44 20399.06 20298.30 10999.32 6898.97 13196.65 16399.62 26798.37 6899.85 5499.39 149
sosnet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
uncertanet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
AllTest98.44 12098.20 13299.16 9699.50 7798.55 9298.25 11399.58 2696.80 22298.88 14399.06 10197.65 9299.57 28494.45 26399.61 15899.37 159
TestCases99.16 9699.50 7798.55 9299.58 2696.80 22298.88 14399.06 10197.65 9299.57 28494.45 26399.61 15899.37 159
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2199.66 1199.68 1999.66 1798.44 3899.95 1599.73 299.96 1499.75 22
region2R98.69 8098.40 10799.54 2999.53 7099.17 3698.52 8699.31 12997.46 17598.44 19698.51 22097.83 7999.88 6696.46 19099.58 16899.58 61
bset_n11_16_dypcd96.99 24396.56 25098.27 21699.00 18795.25 25292.18 35694.05 34798.75 8799.01 11598.38 23688.98 29499.93 2898.77 4799.92 3499.64 39
RRT_MVS97.07 23496.57 24998.58 17995.89 35896.33 22597.36 20798.77 25797.85 14399.08 10199.12 9482.30 33599.96 898.82 4399.90 4499.45 125
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12199.20 3299.65 1799.48 2499.92 399.71 1298.07 6399.96 899.53 9100.00 199.93 1
PS-MVSNAJ97.08 23397.39 19896.16 30898.56 27292.46 31495.24 31498.85 24497.25 19697.49 26195.99 33198.07 6399.90 4896.37 19698.67 29196.12 350
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1699.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 999.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
#test#98.50 11498.16 13999.51 4599.49 8499.16 4098.03 13999.31 12996.30 24298.58 18298.50 22397.97 7399.85 10395.68 23399.59 16299.53 89
EI-MVSNet-UG-set98.69 8098.71 6098.62 17499.10 16596.37 22497.23 21698.87 23899.20 4899.19 8698.99 12597.30 12299.85 10398.77 4799.79 8299.65 38
EI-MVSNet-Vis-set98.68 8498.70 6398.63 17299.09 16896.40 22397.23 21698.86 24399.20 4899.18 9098.97 13197.29 12499.85 10398.72 5099.78 8699.64 39
Regformer-398.61 9598.61 7598.63 17299.02 18496.53 22197.17 22498.84 24599.13 5599.10 9898.85 16297.24 12999.79 18098.41 6799.70 12199.57 66
Regformer-498.73 7398.68 6598.89 14099.02 18497.22 19697.17 22499.06 20299.21 4599.17 9198.85 16297.45 11499.86 8998.48 6299.70 12199.60 49
Regformer-198.55 10698.44 10198.87 14298.85 21997.29 19096.91 24098.99 22298.97 7498.99 11998.64 20297.26 12899.81 15897.79 9799.57 17299.51 96
Regformer-298.60 9798.46 9799.02 12598.85 21997.71 17196.91 24099.09 19898.98 7399.01 11598.64 20297.37 11999.84 12097.75 10499.57 17299.52 93
HPM-MVS++copyleft98.10 15297.64 18199.48 5099.09 16899.13 5197.52 19498.75 26197.46 17596.90 28997.83 27896.01 18899.84 12095.82 22799.35 21799.46 121
test_prior497.97 14395.86 292
XVS98.72 7498.45 9999.53 3699.46 9599.21 2698.65 7299.34 11798.62 9497.54 25698.63 20697.50 10899.83 13596.79 15899.53 18499.56 71
v124098.55 10698.62 7298.32 21099.22 13395.58 24297.51 19699.45 7797.16 20799.45 4599.24 7296.12 18499.85 10399.60 499.88 4999.55 79
test_prior397.48 20397.00 22198.95 13198.69 25297.95 14895.74 29899.03 21196.48 23496.11 31497.63 28995.92 19799.59 27894.16 27199.20 24099.30 186
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1899.30 4199.65 2299.60 2599.16 1499.82 14599.07 2999.83 6299.56 71
test_prior295.74 29896.48 23496.11 31497.63 28995.92 19794.16 27199.20 240
X-MVStestdata94.32 30292.59 32099.53 3699.46 9599.21 2698.65 7299.34 11798.62 9497.54 25645.85 36197.50 10899.83 13596.79 15899.53 18499.56 71
test_prior98.95 13198.69 25297.95 14899.03 21199.59 27899.30 186
旧先验295.76 29688.56 34797.52 25899.66 25594.48 261
新几何295.93 289
新几何198.91 13798.94 19897.76 16698.76 25887.58 35096.75 29698.10 26094.80 23199.78 19292.73 31099.00 27299.20 206
旧先验198.82 22797.45 18498.76 25898.34 24195.50 21199.01 27199.23 201
无先验95.74 29898.74 26389.38 34299.73 22092.38 31599.22 205
原ACMM295.53 305
原ACMM198.35 20898.90 20896.25 22898.83 25092.48 31596.07 31798.10 26095.39 21599.71 22992.61 31398.99 27399.08 225
test22298.92 20496.93 21195.54 30498.78 25685.72 35396.86 29298.11 25994.43 23899.10 26099.23 201
testdata299.79 18092.80 308
segment_acmp97.02 139
testdata98.09 22598.93 20095.40 25098.80 25390.08 33997.45 26498.37 23895.26 21799.70 23193.58 29298.95 27799.17 217
testdata195.44 31096.32 240
v899.01 3699.16 3098.57 18299.47 9496.31 22798.90 5999.47 7299.03 6899.52 3599.57 2796.93 14499.81 15899.60 499.98 999.60 49
131495.74 28095.60 27496.17 30697.53 32892.75 31198.07 13298.31 28491.22 33094.25 34396.68 31995.53 20899.03 34591.64 32397.18 33196.74 342
112196.73 25296.00 26398.91 13798.95 19797.76 16698.07 13298.73 26487.65 34996.54 30298.13 25594.52 23799.73 22092.38 31599.02 26999.24 200
LFMVS97.20 22596.72 23898.64 16998.72 24196.95 21098.93 5894.14 34699.74 798.78 15799.01 12284.45 32299.73 22097.44 11499.27 23099.25 197
VDD-MVS98.56 10298.39 11099.07 11299.13 16098.07 13198.59 7997.01 31899.59 2099.11 9599.27 6794.82 22899.79 18098.34 6999.63 14999.34 171
VDDNet98.21 14597.95 15899.01 12699.58 5197.74 16999.01 5097.29 31499.67 1098.97 12499.50 3690.45 28499.80 16797.88 9499.20 24099.48 111
v1098.97 4399.11 3398.55 18799.44 10096.21 22998.90 5999.55 4398.73 8899.48 4099.60 2596.63 16499.83 13599.70 399.99 599.61 48
VPNet98.87 5498.83 4799.01 12699.70 3697.62 17798.43 10099.35 11199.47 2699.28 7199.05 10896.72 16099.82 14598.09 8199.36 21599.59 55
MVS93.19 31992.09 32396.50 29996.91 34294.03 28398.07 13298.06 29568.01 36094.56 34296.48 32395.96 19599.30 33183.84 35196.89 33696.17 347
v2v48298.56 10298.62 7298.37 20799.42 10495.81 23997.58 18899.16 18597.90 13999.28 7199.01 12295.98 19399.79 18099.33 1599.90 4499.51 96
V4298.78 6598.78 5298.76 16099.44 10097.04 20698.27 11199.19 17297.87 14199.25 7999.16 8696.84 14899.78 19299.21 2399.84 5699.46 121
SD-MVS98.40 12598.68 6597.54 26198.96 19597.99 13897.88 15599.36 10598.20 12199.63 2599.04 11198.76 2295.33 36196.56 18199.74 10399.31 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS95.86 27795.32 28597.49 26498.60 26694.15 28093.83 34697.93 29895.49 26596.68 29797.42 30283.21 33099.30 33196.22 20698.55 29799.01 236
MSLP-MVS++98.02 15898.14 14397.64 25298.58 26995.19 25697.48 19899.23 16397.47 17097.90 23098.62 20897.04 13698.81 35397.55 10899.41 20798.94 250
APDe-MVS98.99 3898.79 5199.60 1399.21 13599.15 4598.87 6199.48 6697.57 16199.35 5999.24 7297.83 7999.89 5797.88 9499.70 12199.75 22
APD-MVS_3200maxsize98.84 5798.61 7599.53 3699.19 14299.27 2098.49 9299.33 12298.64 9099.03 11498.98 12997.89 7699.85 10396.54 18599.42 20699.46 121
ADS-MVSNet295.43 28794.98 29396.76 29698.14 30091.74 32297.92 15197.76 30190.23 33596.51 30598.91 14385.61 31499.85 10392.88 30496.90 33498.69 281
EI-MVSNet98.40 12598.51 8698.04 23299.10 16594.73 26697.20 22098.87 23898.97 7499.06 10499.02 11596.00 18999.80 16798.58 5599.82 6599.60 49
Regformer0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
CVMVSNet96.25 26997.21 21193.38 34099.10 16580.56 36497.20 22098.19 29096.94 21799.00 11899.02 11589.50 29199.80 16796.36 19899.59 16299.78 14
pmmvs497.58 19697.28 20698.51 19498.84 22296.93 21195.40 31198.52 27693.60 30298.61 17698.65 19995.10 22199.60 27496.97 14299.79 8298.99 240
EU-MVSNet97.66 19098.50 8895.13 32499.63 4885.84 35198.35 10798.21 28798.23 11799.54 3099.46 4395.02 22299.68 24498.24 7299.87 5299.87 4
VNet98.42 12298.30 12298.79 15498.79 23397.29 19098.23 11498.66 26899.31 3998.85 14798.80 17394.80 23199.78 19298.13 7799.13 25599.31 183
test-LLR93.90 31193.85 30594.04 33296.53 34884.62 35694.05 34392.39 35396.17 24394.12 34595.07 34382.30 33599.67 24795.87 22398.18 30597.82 316
TESTMET0.1,192.19 32891.77 32893.46 33896.48 35082.80 36194.05 34391.52 35694.45 28794.00 34894.88 34966.65 36699.56 28795.78 22898.11 31098.02 308
test-mter92.33 32691.76 32994.04 33296.53 34884.62 35694.05 34392.39 35394.00 29894.12 34595.07 34365.63 36899.67 24795.87 22398.18 30597.82 316
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10699.00 5299.45 7799.63 1499.52 3599.44 4898.25 4999.88 6699.09 2899.84 5699.62 44
ACMMPR98.70 7898.42 10599.54 2999.52 7299.14 4898.52 8699.31 12997.47 17098.56 18698.54 21797.75 8699.88 6696.57 17899.59 16299.58 61
testgi98.32 13298.39 11098.13 22499.57 5595.54 24397.78 16499.49 6497.37 18499.19 8697.65 28798.96 1799.49 30596.50 18898.99 27399.34 171
test20.0398.78 6598.77 5498.78 15799.46 9597.20 19997.78 16499.24 16199.04 6799.41 4998.90 14697.65 9299.76 20597.70 10599.79 8299.39 149
thres600view794.45 30093.83 30696.29 30299.06 17691.53 32497.99 14594.24 34498.34 10697.44 26595.01 34579.84 34399.67 24784.33 35098.23 30297.66 327
ADS-MVSNet95.24 29094.93 29596.18 30598.14 30090.10 33697.92 15197.32 31390.23 33596.51 30598.91 14385.61 31499.74 21692.88 30496.90 33498.69 281
MP-MVScopyleft98.46 11898.09 14699.54 2999.57 5599.22 2598.50 9199.19 17297.61 15897.58 25298.66 19797.40 11799.88 6694.72 25699.60 16099.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs17.12 33320.53 3366.87 34712.05 3674.20 36993.62 3496.73 3684.62 36410.41 36424.33 3628.28 3703.56 3659.69 36315.07 36212.86 361
thres40094.14 30793.44 31196.24 30498.93 20091.44 32697.60 18594.29 34297.94 13597.10 27594.31 35479.67 34599.62 26783.05 35298.08 31297.66 327
test12317.04 33420.11 3377.82 34610.25 3684.91 36894.80 3244.47 3694.93 36310.00 36524.28 3639.69 3693.64 36410.14 36212.43 36314.92 360
thres20093.72 31493.14 31695.46 32198.66 26291.29 33096.61 25794.63 34097.39 18296.83 29393.71 35779.88 34299.56 28782.40 35598.13 30995.54 354
test0.0.03 194.51 29993.69 30896.99 28396.05 35593.61 29994.97 32193.49 34896.17 24397.57 25494.88 34982.30 33599.01 34893.60 29194.17 35698.37 298
pmmvs395.03 29494.40 30096.93 28697.70 32292.53 31395.08 31897.71 30388.57 34697.71 24298.08 26379.39 34799.82 14596.19 20899.11 25998.43 294
EMVS93.83 31294.02 30493.23 34196.83 34584.96 35489.77 35996.32 32997.92 13797.43 26696.36 32886.17 30998.93 35087.68 34497.73 31995.81 352
E-PMN94.17 30694.37 30193.58 33796.86 34385.71 35390.11 35897.07 31798.17 12497.82 23797.19 30984.62 32198.94 34989.77 33897.68 32096.09 351
PGM-MVS98.66 8798.37 11399.55 2699.53 7099.18 3598.23 11499.49 6497.01 21598.69 16698.88 15598.00 6999.89 5795.87 22399.59 16299.58 61
LCM-MVSNet-Re98.64 9098.48 9399.11 10398.85 21998.51 9798.49 9299.83 398.37 10499.69 1799.46 4398.21 5599.92 3594.13 27699.30 22698.91 255
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
MCST-MVS98.00 16097.63 18299.10 10599.24 12898.17 12096.89 24298.73 26495.66 26097.92 22897.70 28597.17 13299.66 25596.18 21099.23 23699.47 119
mvs_anonymous97.83 18098.16 13996.87 29098.18 29891.89 32197.31 21198.90 23397.37 18498.83 15099.46 4396.28 18199.79 18098.90 3798.16 30798.95 246
MVS_Test98.18 14898.36 11497.67 24898.48 27994.73 26698.18 12099.02 21597.69 15198.04 22599.11 9697.22 13199.56 28798.57 5798.90 27998.71 278
MDA-MVSNet-bldmvs97.94 16497.91 16298.06 23099.44 10094.96 26296.63 25699.15 19198.35 10598.83 15099.11 9694.31 24299.85 10396.60 17598.72 28699.37 159
CDPH-MVS97.26 21996.66 24499.07 11299.00 18798.15 12196.03 28299.01 21891.21 33197.79 23897.85 27796.89 14699.69 23592.75 30999.38 21399.39 149
test1298.93 13498.58 26997.83 15898.66 26896.53 30395.51 21099.69 23599.13 25599.27 193
casdiffmvs98.95 4699.00 3998.81 15099.38 10797.33 18897.82 16299.57 3399.17 5399.35 5999.17 8498.35 4599.69 23598.46 6399.73 10699.41 140
diffmvs98.22 14498.24 12898.17 22299.00 18795.44 24896.38 26999.58 2697.79 14798.53 19198.50 22396.76 15799.74 21697.95 9099.64 14699.34 171
baseline293.73 31392.83 31996.42 30097.70 32291.28 33196.84 24589.77 36093.96 29992.44 35495.93 33279.14 34899.77 19892.94 30296.76 33898.21 300
baseline195.96 27595.44 28097.52 26398.51 27793.99 28698.39 10396.09 33298.21 11898.40 20497.76 28286.88 30399.63 26595.42 24289.27 36098.95 246
YYNet197.60 19497.67 17697.39 27099.04 17993.04 30695.27 31298.38 28297.25 19698.92 13598.95 13895.48 21399.73 22096.99 13998.74 28499.41 140
PMMVS298.07 15598.08 14998.04 23299.41 10594.59 27294.59 33399.40 9397.50 16798.82 15498.83 16896.83 15099.84 12097.50 11399.81 6999.71 26
MDA-MVSNet_test_wron97.60 19497.66 17997.41 26999.04 17993.09 30295.27 31298.42 28097.26 19598.88 14398.95 13895.43 21499.73 22097.02 13698.72 28699.41 140
tpmvs95.02 29595.25 28694.33 33096.39 35385.87 35098.08 13196.83 32495.46 26695.51 33398.69 19085.91 31299.53 29594.16 27196.23 34397.58 330
PM-MVS98.82 5898.72 5899.12 10199.64 4698.54 9597.98 14799.68 1397.62 15699.34 6199.18 8097.54 10299.77 19897.79 9799.74 10399.04 232
HQP_MVS97.99 16397.67 17698.93 13499.19 14297.65 17497.77 16799.27 15098.20 12197.79 23897.98 26894.90 22499.70 23194.42 26599.51 19099.45 125
plane_prior799.19 14297.87 154
plane_prior698.99 19197.70 17294.90 224
plane_prior599.27 15099.70 23194.42 26599.51 19099.45 125
plane_prior497.98 268
plane_prior397.78 16597.41 18097.79 238
plane_prior297.77 16798.20 121
plane_prior199.05 178
plane_prior97.65 17497.07 22996.72 22699.36 215
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5099.53 2399.46 4399.41 5198.23 5199.95 1598.89 3999.95 1699.81 11
UniMVSNet_NR-MVSNet98.86 5698.68 6599.40 6299.17 15198.74 7697.68 17699.40 9399.14 5499.06 10498.59 21396.71 16199.93 2898.57 5799.77 9099.53 89
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 4799.62 1799.56 2899.42 4998.16 5999.96 898.78 4499.93 2599.77 16
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13599.06 3099.62 15299.66 34
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5499.64 1299.56 2899.46 4398.23 5199.97 398.78 4499.93 2599.72 25
DU-MVS98.82 5898.63 7199.39 6399.16 15398.74 7697.54 19299.25 15698.84 8499.06 10498.76 18096.76 15799.93 2898.57 5799.77 9099.50 100
UniMVSNet (Re)98.87 5498.71 6099.35 6999.24 12898.73 7997.73 17299.38 9798.93 7999.12 9398.73 18396.77 15599.86 8998.63 5499.80 7799.46 121
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 11799.42 3099.33 6299.26 6997.01 14099.94 2398.74 4999.93 2599.79 13
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4399.46 2799.50 3999.34 6097.30 12299.93 2898.90 3799.93 2599.77 16
WR-MVS98.40 12598.19 13499.03 12299.00 18797.65 17496.85 24398.94 22598.57 10098.89 13998.50 22395.60 20699.85 10397.54 11099.85 5499.59 55
NR-MVSNet98.95 4698.82 4899.36 6499.16 15398.72 8199.22 3199.20 16799.10 6299.72 1398.76 18096.38 17799.86 8998.00 8899.82 6599.50 100
Baseline_NR-MVSNet98.98 4298.86 4599.36 6499.82 1698.55 9297.47 20099.57 3399.37 3499.21 8499.61 2396.76 15799.83 13598.06 8399.83 6299.71 26
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 10998.87 6798.39 10399.42 8999.42 3099.36 5899.06 10198.38 4199.95 1598.34 6999.90 4499.57 66
TSAR-MVS + GP.98.18 14897.98 15698.77 15998.71 24497.88 15396.32 27298.66 26896.33 23999.23 8398.51 22097.48 11399.40 31897.16 12799.46 20299.02 235
abl_698.99 3898.78 5299.61 999.45 9899.46 398.60 7799.50 5698.59 9699.24 8099.04 11198.54 3399.89 5796.45 19199.62 15299.50 100
n20.00 370
nn0.00 370
mPP-MVS98.64 9098.34 11799.54 2999.54 6899.17 3698.63 7499.24 16197.47 17098.09 22098.68 19297.62 9699.89 5796.22 20699.62 15299.57 66
door-mid99.57 33
XVG-OURS-SEG-HR98.49 11598.28 12499.14 9999.49 8498.83 7096.54 25899.48 6697.32 18999.11 9598.61 21199.33 899.30 33196.23 20598.38 29999.28 191
DWT-MVSNet_test92.75 32392.05 32494.85 32696.48 35087.21 34797.83 16194.99 33792.22 31992.72 35394.11 35670.75 35999.46 31295.01 24794.33 35597.87 314
MVSFormer98.26 14098.43 10397.77 24398.88 21493.89 29299.39 1199.56 4099.11 5698.16 21398.13 25593.81 25299.97 399.26 1899.57 17299.43 134
jason97.45 20697.35 20297.76 24499.24 12893.93 28895.86 29298.42 28094.24 29198.50 19398.13 25594.82 22899.91 4597.22 12499.73 10699.43 134
jason: jason.
lupinMVS97.06 23596.86 23097.65 25098.88 21493.89 29295.48 30897.97 29793.53 30398.16 21397.58 29193.81 25299.91 4596.77 16199.57 17299.17 217
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
HPM-MVS_fast99.01 3698.82 4899.57 1899.71 3099.35 1199.00 5299.50 5697.33 18798.94 13398.86 15998.75 2399.82 14597.53 11199.71 11699.56 71
RRT_test8_iter0595.24 29095.13 29095.57 31797.32 33687.02 34897.99 14599.41 9098.06 12999.12 9399.05 10866.85 36599.85 10398.93 3699.47 20199.84 8
K. test v398.00 16097.66 17999.03 12299.79 1997.56 17899.19 3692.47 35299.62 1799.52 3599.66 1789.61 28999.96 899.25 2099.81 6999.56 71
lessismore_v098.97 12999.73 2497.53 18086.71 36299.37 5699.52 3589.93 28799.92 3598.99 3499.72 11299.44 130
SixPastTwentyTwo98.75 7098.62 7299.16 9699.83 1597.96 14799.28 2798.20 28899.37 3499.70 1599.65 1992.65 27199.93 2899.04 3199.84 5699.60 49
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17599.92 3599.44 1399.92 3499.68 31
HPM-MVScopyleft98.79 6298.53 8399.59 1799.65 4399.29 1799.16 3899.43 8696.74 22598.61 17698.38 23698.62 2899.87 8296.47 18999.67 13899.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.53 11198.34 11799.11 10399.50 7798.82 7295.97 28499.50 5697.30 19199.05 10998.98 12999.35 799.32 32895.72 23099.68 13299.18 213
XVG-ACMP-BASELINE98.56 10298.34 11799.22 9099.54 6898.59 8997.71 17399.46 7497.25 19698.98 12198.99 12597.54 10299.84 12095.88 22099.74 10399.23 201
LPG-MVS_test98.71 7598.46 9799.47 5399.57 5598.97 6298.23 11499.48 6696.60 23099.10 9899.06 10198.71 2599.83 13595.58 23999.78 8699.62 44
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6696.60 23099.10 9899.06 10198.71 2599.83 13595.58 23999.78 8699.62 44
baseline98.96 4599.02 3798.76 16099.38 10797.26 19398.49 9299.50 5698.86 8299.19 8699.06 10198.23 5199.69 23598.71 5199.76 9999.33 177
test1198.87 238
door99.41 90
EPNet_dtu94.93 29694.78 29795.38 32293.58 36287.68 34596.78 24795.69 33697.35 18689.14 36098.09 26288.15 30099.49 30594.95 25099.30 22698.98 241
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.49 20197.14 21698.54 19099.68 3996.09 23296.50 26299.62 1991.58 32598.84 14998.97 13192.36 27399.88 6696.76 16299.95 1699.67 33
EPNet96.14 27195.44 28098.25 21790.76 36595.50 24697.92 15194.65 33998.97 7492.98 35298.85 16289.12 29399.87 8295.99 21699.68 13299.39 149
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.79 214
HQP-NCC98.67 25796.29 27396.05 24895.55 328
ACMP_Plane98.67 25796.29 27396.05 24895.55 328
APD-MVScopyleft98.10 15297.67 17699.42 5799.11 16198.93 6697.76 16999.28 14794.97 27598.72 16598.77 17897.04 13699.85 10393.79 28799.54 18099.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.82 306
HQP4-MVS95.56 32799.54 29399.32 179
HQP3-MVS99.04 20999.26 233
HQP2-MVS93.84 250
CNVR-MVS98.17 15097.87 16599.07 11298.67 25798.24 11197.01 23198.93 22797.25 19697.62 24898.34 24197.27 12599.57 28496.42 19499.33 22099.39 149
NCCC97.86 17297.47 19599.05 11998.61 26498.07 13196.98 23398.90 23397.63 15597.04 28097.93 27395.99 19299.66 25595.31 24498.82 28299.43 134
114514_t96.50 26295.77 26798.69 16699.48 9297.43 18597.84 16099.55 4381.42 35896.51 30598.58 21495.53 20899.67 24793.41 29799.58 16898.98 241
CP-MVS98.70 7898.42 10599.52 4199.36 11099.12 5398.72 6999.36 10597.54 16598.30 20698.40 23297.86 7899.89 5796.53 18699.72 11299.56 71
DSMNet-mixed97.42 20897.60 18596.87 29099.15 15791.46 32598.54 8499.12 19492.87 31197.58 25299.63 2096.21 18299.90 4895.74 22999.54 18099.27 193
tpm293.09 32092.58 32194.62 32897.56 32686.53 34997.66 17895.79 33586.15 35294.07 34798.23 25075.95 35499.53 29590.91 33396.86 33797.81 318
NP-MVS98.84 22297.39 18796.84 316
EG-PatchMatch MVS98.99 3899.01 3898.94 13399.50 7797.47 18298.04 13899.59 2498.15 12699.40 5299.36 5798.58 3199.76 20598.78 4499.68 13299.59 55
tpm cat193.29 31893.13 31793.75 33597.39 33484.74 35597.39 20497.65 30583.39 35794.16 34498.41 23182.86 33399.39 32091.56 32595.35 35097.14 337
SteuartSystems-ACMMP98.79 6298.54 8299.54 2999.73 2499.16 4098.23 11499.31 12997.92 13798.90 13698.90 14698.00 6999.88 6696.15 21199.72 11299.58 61
Skip Steuart: Steuart Systems R&D Blog.
CostFormer93.97 31093.78 30794.51 32997.53 32885.83 35297.98 14795.96 33389.29 34394.99 33998.63 20678.63 35099.62 26794.54 25996.50 33998.09 306
CR-MVSNet96.28 26895.95 26597.28 27397.71 32094.22 27698.11 12798.92 23092.31 31796.91 28699.37 5485.44 31799.81 15897.39 11797.36 32897.81 318
JIA-IIPM95.52 28595.03 29297.00 28296.85 34494.03 28396.93 23795.82 33499.20 4894.63 34199.71 1283.09 33199.60 27494.42 26594.64 35297.36 335
Patchmtry97.35 21296.97 22398.50 19697.31 33796.47 22298.18 12098.92 23098.95 7898.78 15799.37 5485.44 31799.85 10395.96 21899.83 6299.17 217
PatchT96.65 25696.35 25697.54 26197.40 33395.32 25197.98 14796.64 32699.33 3896.89 29099.42 4984.32 32499.81 15897.69 10797.49 32197.48 333
tpmrst95.07 29395.46 27893.91 33497.11 34084.36 35897.62 18296.96 31994.98 27496.35 31198.80 17385.46 31699.59 27895.60 23796.23 34397.79 321
BH-w/o95.13 29294.89 29695.86 31098.20 29791.31 32995.65 30197.37 30993.64 30196.52 30495.70 33693.04 26599.02 34688.10 34395.82 34797.24 336
tpm94.67 29894.34 30295.66 31597.68 32488.42 34197.88 15594.90 33894.46 28596.03 31998.56 21678.66 34999.79 18095.88 22095.01 35198.78 273
DELS-MVS98.27 13898.20 13298.48 19798.86 21796.70 21895.60 30399.20 16797.73 14998.45 19598.71 18697.50 10899.82 14598.21 7499.59 16298.93 251
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned96.83 24896.75 23797.08 28098.74 23893.33 30096.71 25298.26 28596.72 22698.44 19697.37 30595.20 21899.47 31091.89 31997.43 32498.44 293
RPMNet97.02 23996.93 22497.30 27297.71 32094.22 27698.11 12799.30 13899.37 3496.91 28699.34 6086.72 30499.87 8297.53 11197.36 32897.81 318
MVSTER96.86 24796.55 25197.79 24297.91 31294.21 27897.56 19098.87 23897.49 16999.06 10499.05 10880.72 34099.80 16798.44 6499.82 6599.37 159
CPTT-MVS97.84 17897.36 20199.27 8299.31 11798.46 10098.29 10999.27 15094.90 27797.83 23598.37 23894.90 22499.84 12093.85 28699.54 18099.51 96
GBi-Net98.65 8898.47 9599.17 9398.90 20898.24 11199.20 3299.44 8098.59 9698.95 12799.55 2994.14 24599.86 8997.77 9999.69 12799.41 140
PVSNet_Blended_VisFu98.17 15098.15 14198.22 21999.73 2495.15 25797.36 20799.68 1394.45 28798.99 11999.27 6796.87 14799.94 2397.13 13199.91 4099.57 66
PVSNet_BlendedMVS97.55 19797.53 18897.60 25498.92 20493.77 29696.64 25599.43 8694.49 28397.62 24899.18 8096.82 15199.67 24794.73 25499.93 2599.36 165
UnsupCasMVSNet_eth97.89 16897.60 18598.75 16299.31 11797.17 20297.62 18299.35 11198.72 8998.76 16198.68 19292.57 27299.74 21697.76 10395.60 34899.34 171
UnsupCasMVSNet_bld97.30 21696.92 22698.45 20099.28 12296.78 21796.20 27899.27 15095.42 26798.28 20898.30 24593.16 26099.71 22994.99 24897.37 32698.87 259
PVSNet_Blended96.88 24696.68 24197.47 26598.92 20493.77 29694.71 32699.43 8690.98 33397.62 24897.36 30696.82 15199.67 24794.73 25499.56 17798.98 241
FMVSNet596.01 27395.20 28898.41 20397.53 32896.10 23098.74 6799.50 5697.22 20598.03 22699.04 11169.80 36099.88 6697.27 12299.71 11699.25 197
test198.65 8898.47 9599.17 9398.90 20898.24 11199.20 3299.44 8098.59 9698.95 12799.55 2994.14 24599.86 8997.77 9999.69 12799.41 140
new_pmnet96.99 24396.76 23697.67 24898.72 24194.89 26395.95 28898.20 28892.62 31498.55 18898.54 21794.88 22799.52 29993.96 28099.44 20598.59 287
FMVSNet397.50 19997.24 20998.29 21498.08 30495.83 23897.86 15898.91 23297.89 14098.95 12798.95 13887.06 30299.81 15897.77 9999.69 12799.23 201
dp93.47 31693.59 31093.13 34296.64 34781.62 36397.66 17896.42 32892.80 31296.11 31498.64 20278.55 35299.59 27893.31 29992.18 35998.16 303
FMVSNet298.49 11598.40 10798.75 16298.90 20897.14 20598.61 7699.13 19298.59 9699.19 8699.28 6594.14 24599.82 14597.97 8999.80 7799.29 190
FMVSNet199.17 3099.17 2999.17 9399.55 6598.24 11199.20 3299.44 8099.21 4599.43 4799.55 2997.82 8299.86 8998.42 6699.89 4899.41 140
N_pmnet97.63 19397.17 21298.99 12899.27 12397.86 15595.98 28393.41 34995.25 27199.47 4298.90 14695.63 20599.85 10396.91 14599.73 10699.27 193
cascas94.79 29794.33 30396.15 30996.02 35792.36 31792.34 35599.26 15585.34 35495.08 33894.96 34892.96 26698.53 35594.41 26898.59 29597.56 331
BH-RMVSNet96.83 24896.58 24897.58 25698.47 28094.05 28196.67 25497.36 31096.70 22897.87 23297.98 26895.14 22099.44 31590.47 33698.58 29699.25 197
UGNet98.53 11198.45 9998.79 15497.94 31096.96 20999.08 4498.54 27499.10 6296.82 29499.47 4296.55 16799.84 12098.56 6099.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS96.67 25596.27 26197.87 23898.81 22994.61 27196.77 24897.92 29994.94 27697.12 27497.74 28391.11 28199.82 14593.89 28398.15 30899.18 213
XXY-MVS99.14 3299.15 3299.10 10599.76 2297.74 16998.85 6499.62 1998.48 10299.37 5699.49 3998.75 2399.86 8998.20 7599.80 7799.71 26
sss97.21 22496.93 22498.06 23098.83 22495.22 25596.75 25098.48 27894.49 28397.27 27197.90 27492.77 26999.80 16796.57 17899.32 22199.16 220
Test_1112_low_res96.99 24396.55 25198.31 21299.35 11495.47 24795.84 29599.53 5091.51 32796.80 29598.48 22891.36 28099.83 13596.58 17699.53 18499.62 44
1112_ss97.29 21896.86 23098.58 17999.34 11696.32 22696.75 25099.58 2693.14 30796.89 29097.48 29892.11 27699.86 8996.91 14599.54 18099.57 66
ab-mvs-re8.12 33610.83 3390.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 36697.48 2980.00 3710.00 3660.00 3640.00 3640.00 362
ab-mvs98.41 12398.36 11498.59 17899.19 14297.23 19499.32 1598.81 25197.66 15398.62 17499.40 5396.82 15199.80 16795.88 22099.51 19098.75 276
TR-MVS95.55 28495.12 29196.86 29397.54 32793.94 28796.49 26396.53 32794.36 29097.03 28196.61 32094.26 24499.16 34286.91 34696.31 34297.47 334
MDTV_nov1_ep13_2view74.92 36697.69 17590.06 34097.75 24185.78 31393.52 29398.69 281
MDTV_nov1_ep1395.22 28797.06 34183.20 36097.74 17196.16 33094.37 28996.99 28298.83 16883.95 32799.53 29593.90 28297.95 316
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13399.90 4899.21 2399.87 5299.54 83
MIMVSNet96.62 25896.25 26297.71 24799.04 17994.66 26999.16 3896.92 32297.23 20297.87 23299.10 9886.11 31199.65 26091.65 32299.21 23998.82 263
IterMVS-LS98.55 10698.70 6398.09 22599.48 9294.73 26697.22 21999.39 9598.97 7499.38 5499.31 6496.00 18999.93 2898.58 5599.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet97.69 18797.35 20298.69 16698.73 23997.02 20896.92 23998.75 26195.89 25598.59 18098.67 19492.08 27799.74 21696.72 16799.81 6999.32 179
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.77 90
IterMVS97.73 18598.11 14596.57 29799.24 12890.28 33595.52 30799.21 16598.86 8299.33 6299.33 6293.11 26199.94 2398.49 6199.94 2199.48 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.33 21496.92 22698.57 18299.09 16897.99 13896.79 24699.35 11193.18 30697.71 24298.07 26495.00 22399.31 32993.97 27999.13 25598.42 295
MVS_111021_LR98.30 13498.12 14498.83 14799.16 15398.03 13696.09 28199.30 13897.58 16098.10 21998.24 24898.25 4999.34 32596.69 17099.65 14499.12 222
DP-MVS98.93 4898.81 5099.28 7999.21 13598.45 10198.46 9799.33 12299.63 1499.48 4099.15 9097.23 13099.75 21297.17 12699.66 14399.63 43
ACMMP++99.68 132
HQP-MVS97.00 24296.49 25398.55 18798.67 25796.79 21496.29 27399.04 20996.05 24895.55 32896.84 31693.84 25099.54 29392.82 30699.26 23399.32 179
QAPM97.31 21596.81 23498.82 14898.80 23197.49 18199.06 4899.19 17290.22 33797.69 24499.16 8696.91 14599.90 4890.89 33499.41 20799.07 226
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 10999.17 3799.78 499.11 5699.27 7399.48 4198.82 2099.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet94.32 30295.62 27390.42 34498.46 28175.36 36596.29 27389.13 36195.25 27195.38 33499.75 792.88 26799.19 34094.07 27899.39 21096.72 343
IS-MVSNet98.19 14797.90 16399.08 10999.57 5597.97 14399.31 1898.32 28399.01 7098.98 12199.03 11491.59 27999.79 18095.49 24199.80 7799.48 111
HyFIR lowres test97.19 22696.60 24798.96 13099.62 5097.28 19295.17 31599.50 5694.21 29299.01 11598.32 24486.61 30599.99 297.10 13399.84 5699.60 49
EPMVS93.72 31493.27 31395.09 32596.04 35687.76 34498.13 12485.01 36394.69 28196.92 28498.64 20278.47 35399.31 32995.04 24696.46 34098.20 301
PAPM_NR96.82 25096.32 25898.30 21399.07 17296.69 21997.48 19898.76 25895.81 25896.61 30196.47 32494.12 24899.17 34190.82 33597.78 31899.06 227
TAMVS98.24 14398.05 15198.80 15299.07 17297.18 20197.88 15598.81 25196.66 22999.17 9199.21 7594.81 23099.77 19896.96 14399.88 4999.44 130
PAPR95.29 28894.47 29897.75 24597.50 33295.14 25894.89 32398.71 26691.39 32995.35 33595.48 34094.57 23699.14 34484.95 34997.37 32698.97 245
RPSCF98.62 9498.36 11499.42 5799.65 4399.42 498.55 8399.57 3397.72 15098.90 13699.26 6996.12 18499.52 29995.72 23099.71 11699.32 179
Vis-MVSNet (Re-imp)97.46 20497.16 21398.34 20999.55 6596.10 23098.94 5798.44 27998.32 10898.16 21398.62 20888.76 29599.73 22093.88 28499.79 8299.18 213
test_040298.76 6898.71 6098.93 13499.56 6298.14 12398.45 9999.34 11799.28 4298.95 12798.91 14398.34 4699.79 18095.63 23699.91 4098.86 260
MVS_111021_HR98.25 14298.08 14998.75 16299.09 16897.46 18395.97 28499.27 15097.60 15997.99 22798.25 24798.15 6199.38 32296.87 15399.57 17299.42 137
CSCG98.68 8498.50 8899.20 9199.45 9898.63 8498.56 8299.57 3397.87 14198.85 14798.04 26597.66 9199.84 12096.72 16799.81 6999.13 221
PatchMatch-RL97.24 22296.78 23598.61 17699.03 18297.83 15896.36 27099.06 20293.49 30597.36 27097.78 28095.75 20299.49 30593.44 29698.77 28398.52 288
API-MVS97.04 23896.91 22897.42 26897.88 31398.23 11598.18 12098.50 27797.57 16197.39 26896.75 31896.77 15599.15 34390.16 33799.02 26994.88 355
Test By Simon96.52 168
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 999.38 3399.53 3399.61 2398.64 2799.80 16798.24 7299.84 5699.52 93
USDC97.41 20997.40 19797.44 26798.94 19893.67 29895.17 31599.53 5094.03 29798.97 12499.10 9895.29 21699.34 32595.84 22699.73 10699.30 186
EPP-MVSNet98.30 13498.04 15299.07 11299.56 6297.83 15899.29 2398.07 29499.03 6898.59 18099.13 9392.16 27599.90 4896.87 15399.68 13299.49 104
PMMVS96.51 26095.98 26498.09 22597.53 32895.84 23794.92 32298.84 24591.58 32596.05 31895.58 33795.68 20499.66 25595.59 23898.09 31198.76 275
PAPM91.88 32990.34 33296.51 29898.06 30592.56 31292.44 35497.17 31586.35 35190.38 35896.01 33086.61 30599.21 33970.65 36195.43 34997.75 322
ACMMPcopyleft98.75 7098.50 8899.52 4199.56 6299.16 4098.87 6199.37 10197.16 20798.82 15499.01 12297.71 8899.87 8296.29 20399.69 12799.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.17 22896.71 23998.55 18798.56 27298.05 13496.33 27198.93 22796.91 21997.06 27997.39 30394.38 24199.45 31491.66 32199.18 24698.14 304
PatchmatchNetpermissive95.58 28395.67 27295.30 32397.34 33587.32 34697.65 18096.65 32595.30 27097.07 27898.69 19084.77 31999.75 21294.97 24998.64 29298.83 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.29 13797.95 15899.34 7298.44 28399.16 4098.12 12699.38 9796.01 25198.06 22298.43 23097.80 8399.67 24795.69 23299.58 16899.20 206
F-COLMAP97.30 21696.68 24199.14 9999.19 14298.39 10397.27 21599.30 13892.93 30996.62 30098.00 26695.73 20399.68 24492.62 31298.46 29899.35 169
ANet_high99.57 799.67 599.28 7999.89 698.09 12599.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
wuyk23d96.06 27297.62 18391.38 34398.65 26398.57 9198.85 6496.95 32096.86 22199.90 499.16 8699.18 1198.40 35689.23 34099.77 9077.18 359
OMC-MVS97.88 17097.49 19199.04 12198.89 21398.63 8496.94 23599.25 15695.02 27398.53 19198.51 22097.27 12599.47 31093.50 29599.51 19099.01 236
MG-MVS96.77 25196.61 24697.26 27498.31 29093.06 30395.93 28998.12 29396.45 23697.92 22898.73 18393.77 25499.39 32091.19 33099.04 26599.33 177
AdaColmapbinary97.14 23096.71 23998.46 19998.34 28897.80 16496.95 23498.93 22795.58 26196.92 28497.66 28695.87 19999.53 29590.97 33199.14 25298.04 307
uanet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
ITE_SJBPF98.87 14299.22 13398.48 9999.35 11197.50 16798.28 20898.60 21297.64 9599.35 32493.86 28599.27 23098.79 272
DeepMVS_CXcopyleft93.44 33998.24 29494.21 27894.34 34164.28 36191.34 35794.87 35189.45 29292.77 36277.54 36093.14 35793.35 357
TinyColmap97.89 16897.98 15697.60 25498.86 21794.35 27596.21 27799.44 8097.45 17799.06 10498.88 15597.99 7299.28 33494.38 26999.58 16899.18 213
MAR-MVS96.47 26395.70 27098.79 15497.92 31199.12 5398.28 11098.60 27292.16 32095.54 33196.17 32994.77 23399.52 29989.62 33998.23 30297.72 324
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 16697.69 17598.52 19199.17 15197.66 17397.19 22399.47 7296.31 24197.85 23498.20 25296.71 16199.52 29994.62 25799.72 11298.38 296
MSDG97.71 18697.52 18998.28 21598.91 20796.82 21394.42 33699.37 10197.65 15498.37 20598.29 24697.40 11799.33 32794.09 27799.22 23798.68 284
LS3D98.63 9298.38 11299.36 6497.25 33899.38 599.12 4399.32 12499.21 4598.44 19698.88 15597.31 12199.80 16796.58 17699.34 21998.92 252
CLD-MVS97.49 20197.16 21398.48 19799.07 17297.03 20794.71 32699.21 16594.46 28598.06 22297.16 31197.57 10099.48 30894.46 26299.78 8698.95 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS93.44 31792.23 32297.08 28099.25 12797.86 15595.61 30297.16 31692.90 31093.76 35098.65 19975.94 35595.66 35979.30 35997.49 32197.73 323
Gipumacopyleft99.03 3599.16 3098.64 16999.94 298.51 9799.32 1599.75 799.58 2298.60 17899.62 2198.22 5499.51 30397.70 10599.73 10697.89 312
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015