This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.40 199.67 499.71 399.56 2599.85 1399.11 5699.90 199.78 599.63 1499.78 1199.67 1799.48 699.81 15499.30 1899.97 1299.77 17
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator98.27 298.81 6198.73 5699.05 11798.76 23197.81 16199.25 3199.30 13698.57 9598.55 18399.33 6197.95 7799.90 4697.16 12399.67 13699.44 129
3Dnovator+97.89 398.69 8198.51 8699.24 8798.81 22798.40 10299.02 4899.19 17098.99 6798.07 21699.28 6497.11 13699.84 11696.84 15299.32 21999.47 118
DeepC-MVS97.60 498.97 4398.93 4299.10 10499.35 11497.98 14198.01 14199.46 7497.56 15999.54 2999.50 3598.97 1799.84 11698.06 7999.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.93 598.32 13298.01 15499.23 8898.39 28098.97 6295.03 31599.18 17496.88 21699.33 6298.78 17498.16 6199.28 32896.74 16099.62 15099.44 129
DeepC-MVS_fast96.85 698.30 13498.15 14198.75 16198.61 25997.23 19197.76 16799.09 19797.31 18698.75 16098.66 19597.56 10399.64 25796.10 20899.55 17799.39 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft96.65 797.09 22896.68 23798.32 20798.32 28397.16 19998.86 6299.37 10089.48 33396.29 30599.15 8996.56 16799.90 4692.90 29799.20 23897.89 304
ACMH96.65 799.25 2899.24 2799.26 8499.72 2998.38 10499.07 4699.55 4498.30 10599.65 2399.45 4599.22 1099.76 19998.44 6299.77 8999.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7599.58 2799.11 5499.53 3299.18 7998.81 2299.67 24296.71 16599.77 8999.50 100
COLMAP_ROBcopyleft96.50 1098.99 3898.85 4699.41 6099.58 5099.10 5798.74 6699.56 4199.09 6199.33 6299.19 7798.40 4199.72 22395.98 21199.76 9899.42 136
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS96.21 1196.63 25295.95 26098.65 16798.93 19898.09 12496.93 23399.28 14583.58 34898.13 21197.78 27496.13 18499.40 31293.52 28799.29 22698.45 286
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.08 1298.91 5198.73 5699.48 5199.55 6599.14 4998.07 12999.37 10097.62 15299.04 11098.96 13298.84 2099.79 17697.43 11199.65 14299.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS95.94 1395.90 27095.35 27897.55 25497.95 30394.79 25898.81 6596.94 31492.28 31095.17 32898.57 21389.90 28799.75 20691.20 32197.33 32598.10 299
OpenMVS_ROBcopyleft95.38 1495.84 27295.18 28397.81 23598.41 27997.15 20097.37 20298.62 26983.86 34798.65 16898.37 23594.29 24399.68 23988.41 33498.62 29196.60 336
ACMP95.32 1598.41 12398.09 14699.36 6499.51 7498.79 7497.68 17499.38 9695.76 25398.81 15498.82 16998.36 4399.82 14194.75 24799.77 8999.48 110
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft94.65 1696.51 25595.73 26498.85 14398.75 23497.91 15096.42 26399.06 20190.94 32695.59 31797.38 29894.41 23999.59 27290.93 32498.04 31299.05 225
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 27595.70 26595.57 31198.83 22288.57 33292.50 34697.72 29792.69 30596.49 30196.44 31993.72 25499.43 31093.61 28499.28 22798.71 272
PCF-MVS92.86 1894.36 29593.00 31298.42 19998.70 24497.56 17693.16 34499.11 19579.59 35197.55 25097.43 29592.19 27399.73 21579.85 35099.45 20297.97 303
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS91.63 1992.24 31990.90 32396.27 29797.22 33391.24 32694.36 33493.33 34292.37 30892.24 34794.58 34566.20 35999.89 5593.16 29594.63 34597.66 319
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft91.26 2097.86 17197.94 16097.65 24499.71 3097.94 14998.52 8498.68 26598.99 6797.52 25399.35 5797.41 11898.18 34991.59 31899.67 13696.82 333
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_089.98 2191.15 32290.30 32593.70 32897.72 31384.34 35190.24 34997.42 30190.20 33093.79 34193.09 35090.90 28198.89 34486.57 33972.76 35397.87 306
MVEpermissive83.40 2292.50 31691.92 31994.25 32398.83 22291.64 31792.71 34583.52 35695.92 24886.46 35595.46 33395.20 21995.40 35280.51 34998.64 28995.73 345
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary75.91 2396.29 26295.44 27498.84 14496.25 34898.69 8297.02 22699.12 19388.90 33697.83 23098.86 15789.51 28998.90 34391.92 31299.51 18898.92 249
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ZD-MVS99.01 18598.84 6999.07 20094.10 28798.05 21998.12 25496.36 18099.86 8692.70 30599.19 242
test117298.76 6998.49 9199.57 1999.18 14899.37 998.39 10199.31 12798.43 9998.90 13498.88 15397.49 11399.86 8696.43 18999.37 21299.48 110
SR-MVS-dyc-post98.81 6198.55 8199.57 1999.20 13899.38 698.48 9399.30 13698.64 8598.95 12598.96 13297.49 11399.86 8696.56 17799.39 20899.45 124
RE-MVS-def98.58 7999.20 13899.38 698.48 9399.30 13698.64 8598.95 12598.96 13297.75 8896.56 17799.39 20899.45 124
SED-MVS98.91 5198.72 5899.49 4999.49 8499.17 3798.10 12699.31 12798.03 12699.66 2199.02 11498.36 4399.88 6396.91 14199.62 15099.41 138
IU-MVS99.49 8499.15 4698.87 23792.97 30099.41 4996.76 15899.62 15099.66 34
OPU-MVS98.82 14698.59 26398.30 10798.10 12698.52 21798.18 5998.75 34694.62 25199.48 19899.41 138
test_241102_TWO99.30 13698.03 12699.26 7699.02 11497.51 10999.88 6396.91 14199.60 15899.66 34
test_241102_ONE99.49 8499.17 3799.31 12797.98 12899.66 2198.90 14498.36 4399.48 302
xxxxxxxxxxxxxcwj98.44 12098.24 12899.06 11599.11 16097.97 14296.53 25599.54 4898.24 11198.83 14898.90 14497.80 8599.82 14195.68 22799.52 18599.38 153
SF-MVS98.53 11198.27 12599.32 7699.31 11798.75 7598.19 11699.41 8996.77 22098.83 14898.90 14497.80 8599.82 14195.68 22799.52 18599.38 153
ETH3D cwj APD-0.1697.55 19597.00 21799.19 9198.51 27198.64 8396.85 23999.13 19094.19 28597.65 24198.40 23095.78 20299.81 15493.37 29299.16 24699.12 219
cl-mvsnet295.79 27395.39 27796.98 27896.77 34092.79 30394.40 33398.53 27294.59 27497.89 22698.17 25082.82 33099.24 33096.37 19199.03 26498.92 249
miper_ehance_all_eth97.06 23197.03 21597.16 27397.83 30993.06 29794.66 32599.09 19795.99 24798.69 16498.45 22792.73 26999.61 26796.79 15499.03 26498.82 260
miper_enhance_ethall96.01 26795.74 26396.81 28896.41 34692.27 31293.69 34198.89 23491.14 32498.30 20197.35 30190.58 28299.58 27796.31 19599.03 26498.60 279
ZNCC-MVS98.68 8498.40 10799.54 3099.57 5499.21 2798.46 9599.29 14397.28 18998.11 21398.39 23298.00 7199.87 7996.86 15199.64 14499.55 78
ETH3 D test640096.46 25995.59 27099.08 10798.88 21298.21 11796.53 25599.18 17488.87 33797.08 27097.79 27393.64 25699.77 19288.92 33399.40 20799.28 188
cl-mvsnet_97.02 23596.83 22997.58 25097.82 31094.04 27694.66 32599.16 18397.04 20998.63 17098.71 18488.68 29599.69 23097.00 13399.81 6899.00 236
cl-mvsnet197.02 23596.84 22897.58 25097.82 31094.03 27794.66 32599.16 18397.04 20998.63 17098.71 18488.69 29499.69 23097.00 13399.81 6899.01 233
eth_miper_zixun_eth97.23 21997.25 20597.17 27198.00 30292.77 30494.71 32299.18 17497.27 19098.56 18198.74 18091.89 27799.69 23097.06 13199.81 6899.05 225
9.1497.78 16999.07 17197.53 19199.32 12295.53 25898.54 18598.70 18797.58 10199.76 19994.32 26499.46 200
testtj97.79 18297.25 20599.42 5799.03 18198.85 6897.78 16299.18 17495.83 25198.12 21298.50 22195.50 21299.86 8692.23 31199.07 25999.54 82
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ETH3D-3000-0.198.03 15697.62 18399.29 7799.11 16098.80 7397.47 19899.32 12295.54 25698.43 19498.62 20696.61 16699.77 19293.95 27599.49 19699.30 183
save fliter99.11 16097.97 14296.53 25599.02 21498.24 111
ET-MVSNet_ETH3D94.30 29893.21 30897.58 25098.14 29494.47 26794.78 32193.24 34394.72 27289.56 35195.87 32678.57 34599.81 15496.91 14197.11 32898.46 284
UniMVSNet_ETH3D99.69 399.69 599.69 499.84 1599.34 1599.69 599.58 2799.90 399.86 899.78 699.58 399.95 1599.00 3299.95 1699.78 15
EIA-MVS98.00 16097.74 17298.80 15098.72 23798.09 12498.05 13399.60 2497.39 17896.63 29295.55 33097.68 9199.80 16396.73 16299.27 22898.52 282
miper_lstm_enhance97.18 22397.16 21097.25 26998.16 29392.85 30295.15 31399.31 12797.25 19298.74 16298.78 17490.07 28599.78 18697.19 12199.80 7699.11 221
ETV-MVS98.03 15697.86 16698.56 18398.69 24798.07 13097.51 19499.50 5698.10 12397.50 25595.51 33198.41 4099.88 6396.27 19899.24 23397.71 317
CS-MVS97.82 18197.59 18798.52 18898.76 23198.04 13498.20 11599.61 2297.10 20696.02 31394.87 34398.27 4999.84 11696.31 19599.17 24597.69 318
D2MVS97.84 17797.84 16797.83 23499.14 15794.74 25996.94 23198.88 23595.84 25098.89 13798.96 13294.40 24099.69 23097.55 10499.95 1699.05 225
DVP-MVS98.77 6898.52 8499.52 4299.50 7799.21 2798.02 13898.84 24497.97 12999.08 10099.02 11497.61 9999.88 6396.99 13599.63 14799.48 110
test_0728_THIRD98.17 12099.08 10099.02 11497.89 7899.88 6397.07 13099.71 11599.70 29
test_0728_SECOND99.60 1499.50 7799.23 2598.02 13899.32 12299.88 6396.99 13599.63 14799.68 31
test072699.50 7799.21 2798.17 12099.35 10997.97 12999.26 7699.06 10097.61 99
SR-MVS98.71 7698.43 10399.57 1999.18 14899.35 1298.36 10499.29 14398.29 10898.88 14198.85 16097.53 10699.87 7996.14 20699.31 22199.48 110
DPM-MVS96.32 26195.59 27098.51 19198.76 23197.21 19494.54 33198.26 28291.94 31396.37 30397.25 30293.06 26399.43 31091.42 32098.74 28198.89 253
GST-MVS98.61 9598.30 12299.52 4299.51 7499.20 3398.26 10999.25 15497.44 17498.67 16698.39 23297.68 9199.85 9996.00 20999.51 18899.52 92
test_yl96.69 24896.29 25497.90 23098.28 28595.24 24897.29 20897.36 30398.21 11498.17 20697.86 26986.27 30399.55 28494.87 24598.32 29798.89 253
thisisatest053095.27 28394.45 29397.74 24099.19 14194.37 26897.86 15590.20 35197.17 20298.22 20597.65 28173.53 35299.90 4696.90 14699.35 21598.95 243
Anonymous2024052998.93 4898.87 4499.12 10099.19 14198.22 11699.01 4998.99 22199.25 4299.54 2999.37 5397.04 13799.80 16397.89 8799.52 18599.35 166
Anonymous20240521197.90 16597.50 19099.08 10798.90 20698.25 11098.53 8396.16 32398.87 7799.11 9498.86 15790.40 28499.78 18697.36 11499.31 22199.19 208
DCV-MVSNet96.69 24896.29 25497.90 23098.28 28595.24 24897.29 20897.36 30398.21 11498.17 20697.86 26986.27 30399.55 28494.87 24598.32 29798.89 253
tttt051795.64 27694.98 28797.64 24699.36 11093.81 28898.72 6890.47 35098.08 12498.67 16698.34 23873.88 35199.92 3397.77 9599.51 18899.20 203
our_test_397.39 20697.73 17496.34 29598.70 24489.78 33194.61 32898.97 22396.50 22899.04 11098.85 16095.98 19499.84 11697.26 11999.67 13699.41 138
thisisatest051594.12 30293.16 30996.97 27998.60 26192.90 30193.77 34090.61 34994.10 28796.91 27995.87 32674.99 35099.80 16394.52 25499.12 25698.20 295
ppachtmachnet_test97.50 19797.74 17296.78 28998.70 24491.23 32794.55 33099.05 20596.36 23399.21 8398.79 17396.39 17699.78 18696.74 16099.82 6499.34 168
SMA-MVScopyleft98.40 12598.03 15399.51 4699.16 15299.21 2798.05 13399.22 16294.16 28698.98 11999.10 9797.52 10899.79 17696.45 18799.64 14499.53 88
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.81 262
DPE-MVS98.59 10098.26 12699.57 1999.27 12399.15 4697.01 22799.39 9497.67 14899.44 4598.99 12397.53 10699.89 5595.40 23799.68 13099.66 34
test_part299.36 11099.10 5799.05 108
test_part199.79 299.79 299.78 299.85 1399.46 399.79 499.81 499.98 199.97 299.87 299.27 999.97 399.60 499.99 599.91 2
thres100view90094.19 29993.67 30395.75 30799.06 17591.35 32298.03 13694.24 33798.33 10397.40 26294.98 33979.84 33799.62 26183.05 34498.08 30996.29 337
tfpnnormal98.90 5398.90 4398.91 13599.67 4097.82 15999.00 5199.44 8099.45 2899.51 3799.24 7198.20 5899.86 8695.92 21399.69 12599.04 229
tfpn200view994.03 30393.44 30595.78 30698.93 19891.44 32097.60 18394.29 33597.94 13197.10 26894.31 34679.67 33999.62 26183.05 34498.08 30996.29 337
cl_fuxian97.36 20797.37 19997.31 26598.09 29793.25 29595.01 31699.16 18397.05 20898.77 15898.72 18392.88 26699.64 25796.93 14099.76 9899.05 225
CHOSEN 280x42095.51 28095.47 27295.65 31098.25 28788.27 33593.25 34398.88 23593.53 29594.65 33297.15 30686.17 30599.93 2797.41 11299.93 2598.73 271
CANet97.87 17097.76 17098.19 21797.75 31295.51 24196.76 24599.05 20597.74 14496.93 27698.21 24895.59 20899.89 5597.86 9299.93 2599.19 208
Fast-Effi-MVS+-dtu98.27 13898.09 14698.81 14898.43 27898.11 12397.61 18299.50 5698.64 8597.39 26397.52 28998.12 6499.95 1596.90 14698.71 28598.38 290
Effi-MVS+-dtu98.26 14097.90 16399.35 6998.02 30099.49 298.02 13899.16 18398.29 10897.64 24297.99 26396.44 17499.95 1596.66 16898.93 27698.60 279
CANet_DTU97.26 21597.06 21497.84 23397.57 31994.65 26496.19 27598.79 25397.23 19895.14 32998.24 24593.22 25899.84 11697.34 11599.84 5599.04 229
MVS_030497.64 18997.35 20198.52 18897.87 30896.69 21698.59 7798.05 29197.44 17493.74 34398.85 16093.69 25599.88 6398.11 7699.81 6898.98 238
MP-MVS-pluss98.57 10198.23 13099.60 1499.69 3899.35 1297.16 22299.38 9694.87 27098.97 12298.99 12398.01 7099.88 6397.29 11799.70 11999.58 60
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 12598.00 15599.61 1099.57 5499.25 2398.57 7999.35 10997.55 16099.31 6997.71 27894.61 23599.88 6396.14 20699.19 24299.70 29
sam_mvs184.74 31698.81 262
sam_mvs84.29 322
IterMVS-SCA-FT97.85 17698.18 13596.87 28499.27 12391.16 32895.53 30199.25 15499.10 5899.41 4999.35 5793.10 26199.96 998.65 5199.94 2099.49 104
TSAR-MVS + MP.98.63 9298.49 9199.06 11599.64 4697.90 15198.51 8898.94 22496.96 21299.24 7998.89 15297.83 8199.81 15496.88 14899.49 19699.48 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.86 17198.17 13696.92 28198.98 19093.91 28396.45 26099.17 18097.85 13998.41 19597.14 30798.47 3699.92 3398.02 8199.05 26096.92 330
OPM-MVS98.56 10298.32 12199.25 8699.41 10598.73 7997.13 22499.18 17497.10 20698.75 16098.92 14098.18 5999.65 25596.68 16799.56 17599.37 156
ACMMP_NAP98.75 7198.48 9399.57 1999.58 5099.29 1897.82 16099.25 15496.94 21398.78 15599.12 9398.02 6999.84 11697.13 12799.67 13699.59 54
ambc98.24 21498.82 22595.97 23198.62 7399.00 22099.27 7299.21 7496.99 14299.50 29896.55 18099.50 19599.26 193
zzz-MVS98.79 6398.52 8499.61 1099.67 4099.36 1097.33 20599.20 16598.83 8198.89 13798.90 14496.98 14399.92 3397.16 12399.70 11999.56 70
MTGPAbinary99.20 165
mvs-test197.83 17997.48 19498.89 13898.02 30099.20 3397.20 21699.16 18398.29 10896.46 30297.17 30496.44 17499.92 3396.66 16897.90 31497.54 324
Effi-MVS+98.02 15897.82 16898.62 17298.53 27097.19 19697.33 20599.68 1497.30 18796.68 29097.46 29498.56 3399.80 16396.63 17098.20 30198.86 257
xiu_mvs_v2_base97.16 22597.49 19196.17 30098.54 26892.46 30895.45 30598.84 24497.25 19297.48 25796.49 31698.31 4899.90 4696.34 19498.68 28796.15 341
xiu_mvs_v1_base97.86 17198.17 13696.92 28198.98 19093.91 28396.45 26099.17 18097.85 13998.41 19597.14 30798.47 3699.92 3398.02 8199.05 26096.92 330
new-patchmatchnet98.35 13098.74 5597.18 27099.24 12892.23 31396.42 26399.48 6698.30 10599.69 1899.53 3397.44 11799.82 14198.84 4199.77 8999.49 104
pmmvs699.67 499.70 499.60 1499.90 499.27 2199.53 899.76 799.64 1299.84 999.83 399.50 599.87 7999.36 1599.92 3499.64 39
pmmvs597.64 18997.49 19198.08 22399.14 15795.12 25496.70 24999.05 20593.77 29298.62 17298.83 16693.23 25799.75 20698.33 6999.76 9899.36 162
test_post197.59 18520.48 35783.07 32899.66 25094.16 265
test_post21.25 35683.86 32499.70 226
Fast-Effi-MVS+97.67 18797.38 19898.57 17998.71 24097.43 18397.23 21299.45 7794.82 27196.13 30696.51 31598.52 3599.91 4396.19 20298.83 27898.37 292
patchmatchnet-post98.77 17684.37 31999.85 99
Anonymous2023121199.27 2699.27 2599.26 8499.29 12198.18 11899.49 999.51 5499.70 899.80 1099.68 1596.84 14999.83 13199.21 2299.91 3999.77 17
pmmvs-eth3d98.47 11798.34 11798.86 14299.30 12097.76 16497.16 22299.28 14595.54 25699.42 4899.19 7797.27 12699.63 25997.89 8799.97 1299.20 203
GG-mvs-BLEND94.76 31994.54 35592.13 31499.31 1980.47 35888.73 35391.01 35267.59 35698.16 35082.30 34894.53 34693.98 348
xiu_mvs_v1_base_debi97.86 17198.17 13696.92 28198.98 19093.91 28396.45 26099.17 18097.85 13998.41 19597.14 30798.47 3699.92 3398.02 8199.05 26096.92 330
Anonymous2023120698.21 14598.21 13198.20 21699.51 7495.43 24598.13 12199.32 12296.16 24098.93 13298.82 16996.00 19099.83 13197.32 11699.73 10599.36 162
MTAPA98.88 5498.64 7099.61 1099.67 4099.36 1098.43 9899.20 16598.83 8198.89 13798.90 14496.98 14399.92 3397.16 12399.70 11999.56 70
MTMP97.93 14791.91 347
gm-plane-assit94.83 35481.97 35488.07 34094.99 33899.60 26891.76 314
test9_res93.28 29499.15 24999.38 153
MVP-Stereo98.08 15497.92 16198.57 17998.96 19396.79 21197.90 15199.18 17496.41 23298.46 18998.95 13695.93 19799.60 26896.51 18398.98 27399.31 180
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.71 24098.08 12895.96 28299.03 21091.40 32095.85 31497.53 28796.52 16999.76 199
train_agg97.10 22796.45 24999.07 11098.71 24098.08 12895.96 28299.03 21091.64 31595.85 31497.53 28796.47 17299.76 19993.67 28399.16 24699.36 162
gg-mvs-nofinetune92.37 31791.20 32295.85 30595.80 35392.38 31099.31 1981.84 35799.75 691.83 34899.74 968.29 35599.02 33887.15 33797.12 32796.16 340
SCA96.41 26096.66 24095.67 30898.24 28888.35 33495.85 29096.88 31696.11 24197.67 24098.67 19293.10 26199.85 9994.16 26599.22 23598.81 262
Patchmatch-test96.55 25496.34 25297.17 27198.35 28193.06 29798.40 10097.79 29597.33 18398.41 19598.67 19283.68 32599.69 23095.16 23999.31 22198.77 268
test_898.67 25298.01 13695.91 28799.02 21491.64 31595.79 31697.50 29096.47 17299.76 199
MS-PatchMatch97.68 18697.75 17197.45 26098.23 29093.78 28997.29 20898.84 24496.10 24298.64 16998.65 19796.04 18799.36 31796.84 15299.14 25099.20 203
Patchmatch-RL test97.26 21597.02 21697.99 22999.52 7295.53 24096.13 27699.71 1097.47 16699.27 7299.16 8584.30 32199.62 26197.89 8799.77 8998.81 262
cdsmvs_eth3d_5k24.66 32432.88 3270.00 3400.00 3610.00 3620.00 35299.10 1960.00 3570.00 35897.58 28599.21 110.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas8.17 32710.90 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35898.07 650.00 3580.00 3560.00 3560.00 354
agg_prior197.06 23196.40 25099.03 12098.68 25097.99 13795.76 29299.01 21791.73 31495.59 31797.50 29096.49 17199.77 19293.71 28299.14 25099.34 168
agg_prior292.50 30899.16 24699.37 156
agg_prior98.68 25097.99 13799.01 21795.59 31799.77 192
tmp_tt78.77 32378.73 32678.90 33758.45 35874.76 35994.20 33578.26 35939.16 35486.71 35492.82 35180.50 33575.19 35586.16 34092.29 35086.74 350
canonicalmvs98.34 13198.26 12698.58 17698.46 27597.82 15998.96 5599.46 7499.19 5097.46 25895.46 33398.59 3199.46 30698.08 7898.71 28598.46 284
anonymousdsp99.51 1199.47 1399.62 799.88 799.08 6099.34 1499.69 1398.93 7599.65 2399.72 1298.93 1999.95 1599.11 26100.00 199.82 10
alignmvs97.35 20896.88 22598.78 15598.54 26898.09 12497.71 17197.69 29999.20 4697.59 24695.90 32588.12 29799.55 28498.18 7498.96 27498.70 274
nrg03099.40 1999.35 1899.54 3099.58 5099.13 5298.98 5499.48 6699.68 999.46 4299.26 6898.62 2999.73 21599.17 2599.92 3499.76 21
v14419298.54 10998.57 8098.45 19799.21 13595.98 23097.63 17999.36 10497.15 20599.32 6799.18 7995.84 20199.84 11699.50 1199.91 3999.54 82
FIs99.14 3299.09 3499.29 7799.70 3698.28 10899.13 4299.52 5399.48 2499.24 7999.41 5096.79 15599.82 14198.69 5099.88 4899.76 21
v192192098.54 10998.60 7798.38 20399.20 13895.76 23797.56 18899.36 10497.23 19899.38 5499.17 8396.02 18899.84 11699.57 799.90 4399.54 82
UA-Net99.47 1299.40 1599.70 399.49 8499.29 1899.80 399.72 999.82 499.04 11099.81 498.05 6899.96 998.85 3999.99 599.86 7
v119298.60 9798.66 6898.41 20099.27 12395.88 23397.52 19299.36 10497.41 17699.33 6299.20 7696.37 17999.82 14199.57 799.92 3499.55 78
FC-MVSNet-test99.27 2699.25 2699.34 7299.77 2198.37 10599.30 2399.57 3499.61 1999.40 5299.50 3597.12 13499.85 9999.02 3199.94 2099.80 13
v114498.60 9798.66 6898.41 20099.36 11095.90 23297.58 18699.34 11597.51 16299.27 7299.15 8996.34 18199.80 16399.47 1399.93 2599.51 95
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
HFP-MVS98.71 7698.44 10199.51 4699.49 8499.16 4198.52 8499.31 12797.47 16698.58 17998.50 22197.97 7599.85 9996.57 17499.59 16099.53 88
v14898.45 11998.60 7798.00 22899.44 10094.98 25597.44 20099.06 20198.30 10599.32 6798.97 12996.65 16499.62 26198.37 6699.85 5399.39 147
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
AllTest98.44 12098.20 13299.16 9599.50 7798.55 9298.25 11099.58 2796.80 21898.88 14199.06 10097.65 9499.57 27894.45 25799.61 15699.37 156
TestCases99.16 9599.50 7798.55 9299.58 2796.80 21898.88 14199.06 10097.65 9499.57 27894.45 25799.61 15699.37 156
v7n99.53 999.57 999.41 6099.88 798.54 9599.45 1099.61 2299.66 1199.68 2099.66 1898.44 3999.95 1599.73 299.96 1599.75 23
region2R98.69 8198.40 10799.54 3099.53 7099.17 3798.52 8499.31 12797.46 17198.44 19198.51 21897.83 8199.88 6396.46 18699.58 16699.58 60
testing_298.93 4898.99 4198.76 15899.57 5497.03 20397.85 15799.13 19098.46 9899.44 4599.44 4698.22 5599.74 21098.85 3999.94 2099.51 95
RRT_MVS97.07 23096.57 24598.58 17695.89 35296.33 22297.36 20398.77 25597.85 13999.08 10099.12 9382.30 33199.96 998.82 4299.90 4399.45 124
PS-MVSNAJss99.46 1399.49 1199.35 6999.90 498.15 12099.20 3399.65 1899.48 2499.92 499.71 1398.07 6599.96 999.53 10100.00 199.93 1
PS-MVSNAJ97.08 22997.39 19796.16 30298.56 26692.46 30895.24 31098.85 24397.25 19297.49 25695.99 32398.07 6599.90 4696.37 19198.67 28896.12 342
jajsoiax99.58 799.61 899.48 5199.87 1098.61 8799.28 2899.66 1799.09 6199.89 799.68 1599.53 499.97 399.50 1199.99 599.87 5
mvs_tets99.63 699.67 699.49 4999.88 798.61 8799.34 1499.71 1099.27 4199.90 599.74 999.68 299.97 399.55 999.99 599.88 4
#test#98.50 11498.16 13999.51 4699.49 8499.16 4198.03 13699.31 12796.30 23798.58 17998.50 22197.97 7599.85 9995.68 22799.59 16099.53 88
EI-MVSNet-UG-set98.69 8198.71 6098.62 17299.10 16496.37 22197.23 21298.87 23799.20 4699.19 8598.99 12397.30 12399.85 9998.77 4699.79 8199.65 38
EI-MVSNet-Vis-set98.68 8498.70 6398.63 17099.09 16796.40 22097.23 21298.86 24299.20 4699.18 8998.97 12997.29 12599.85 9998.72 4899.78 8599.64 39
Regformer-398.61 9598.61 7598.63 17099.02 18396.53 21897.17 22098.84 24499.13 5399.10 9798.85 16097.24 13099.79 17698.41 6599.70 11999.57 65
Regformer-498.73 7498.68 6598.89 13899.02 18397.22 19397.17 22099.06 20199.21 4399.17 9098.85 16097.45 11699.86 8698.48 6099.70 11999.60 48
Regformer-198.55 10698.44 10198.87 14098.85 21797.29 18796.91 23698.99 22198.97 7098.99 11798.64 20097.26 12999.81 15497.79 9399.57 17099.51 95
Regformer-298.60 9798.46 9799.02 12398.85 21797.71 16996.91 23699.09 19798.98 6999.01 11498.64 20097.37 12199.84 11697.75 10099.57 17099.52 92
HPM-MVS++copyleft98.10 15297.64 18199.48 5199.09 16799.13 5297.52 19298.75 25997.46 17196.90 28297.83 27296.01 18999.84 11695.82 22199.35 21599.46 120
test_prior497.97 14295.86 288
XVS98.72 7598.45 9999.53 3799.46 9599.21 2798.65 7099.34 11598.62 8997.54 25198.63 20497.50 11099.83 13196.79 15499.53 18299.56 70
v124098.55 10698.62 7298.32 20799.22 13395.58 23897.51 19499.45 7797.16 20399.45 4499.24 7196.12 18599.85 9999.60 499.88 4899.55 78
test_prior397.48 20197.00 21798.95 12998.69 24797.95 14795.74 29499.03 21096.48 22996.11 30797.63 28395.92 19899.59 27294.16 26599.20 23899.30 183
pm-mvs199.44 1499.48 1299.33 7499.80 1898.63 8499.29 2499.63 1999.30 3999.65 2399.60 2699.16 1599.82 14199.07 2899.83 6199.56 70
test_prior295.74 29496.48 22996.11 30797.63 28395.92 19894.16 26599.20 238
X-MVStestdata94.32 29692.59 31499.53 3799.46 9599.21 2798.65 7099.34 11598.62 8997.54 25145.85 35397.50 11099.83 13196.79 15499.53 18299.56 70
test_prior98.95 12998.69 24797.95 14799.03 21099.59 27299.30 183
旧先验295.76 29288.56 33997.52 25399.66 25094.48 255
新几何295.93 285
新几何198.91 13598.94 19697.76 16498.76 25687.58 34296.75 28998.10 25694.80 23299.78 18692.73 30499.00 27099.20 203
旧先验198.82 22597.45 18298.76 25698.34 23895.50 21299.01 26999.23 198
无先验95.74 29498.74 26189.38 33499.73 21592.38 30999.22 202
原ACMM295.53 301
原ACMM198.35 20598.90 20696.25 22598.83 24992.48 30796.07 31098.10 25695.39 21699.71 22492.61 30798.99 27199.08 222
test22298.92 20296.93 20895.54 30098.78 25485.72 34596.86 28598.11 25594.43 23899.10 25899.23 198
testdata299.79 17692.80 302
segment_acmp97.02 140
testdata98.09 22098.93 19895.40 24698.80 25290.08 33197.45 25998.37 23595.26 21899.70 22693.58 28698.95 27599.17 214
testdata195.44 30696.32 235
v899.01 3699.16 3098.57 17999.47 9496.31 22498.90 5899.47 7299.03 6499.52 3499.57 2896.93 14599.81 15499.60 499.98 1099.60 48
131495.74 27495.60 26996.17 30097.53 32292.75 30598.07 12998.31 28191.22 32294.25 33596.68 31395.53 20999.03 33791.64 31797.18 32696.74 334
112196.73 24796.00 25898.91 13598.95 19597.76 16498.07 12998.73 26287.65 34196.54 29598.13 25194.52 23799.73 21592.38 30999.02 26799.24 197
LFMVS97.20 22196.72 23498.64 16898.72 23796.95 20798.93 5794.14 33999.74 798.78 15599.01 12084.45 31899.73 21597.44 11099.27 22899.25 194
VDD-MVS98.56 10298.39 11099.07 11099.13 15998.07 13098.59 7797.01 31199.59 2099.11 9499.27 6694.82 22999.79 17698.34 6799.63 14799.34 168
VDDNet98.21 14597.95 15899.01 12499.58 5097.74 16799.01 4997.29 30799.67 1098.97 12299.50 3590.45 28399.80 16397.88 9099.20 23899.48 110
v1098.97 4399.11 3398.55 18499.44 10096.21 22698.90 5899.55 4498.73 8399.48 3999.60 2696.63 16599.83 13199.70 399.99 599.61 47
VPNet98.87 5598.83 4799.01 12499.70 3697.62 17598.43 9899.35 10999.47 2699.28 7099.05 10796.72 16199.82 14198.09 7799.36 21399.59 54
MVS93.19 31392.09 31796.50 29396.91 33694.03 27798.07 12998.06 29068.01 35294.56 33496.48 31795.96 19699.30 32583.84 34396.89 33196.17 339
v2v48298.56 10298.62 7298.37 20499.42 10495.81 23697.58 18699.16 18397.90 13599.28 7099.01 12095.98 19499.79 17699.33 1699.90 4399.51 95
V4298.78 6698.78 5298.76 15899.44 10097.04 20298.27 10899.19 17097.87 13799.25 7899.16 8596.84 14999.78 18699.21 2299.84 5599.46 120
SD-MVS98.40 12598.68 6597.54 25598.96 19397.99 13797.88 15299.36 10498.20 11799.63 2699.04 11098.76 2395.33 35396.56 17799.74 10299.31 180
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS95.86 27195.32 27997.49 25898.60 26194.15 27493.83 33997.93 29395.49 25996.68 29097.42 29683.21 32699.30 32596.22 20098.55 29499.01 233
MSLP-MVS++98.02 15898.14 14397.64 24698.58 26495.19 25197.48 19699.23 16197.47 16697.90 22598.62 20697.04 13798.81 34597.55 10499.41 20598.94 247
APDe-MVS98.99 3898.79 5199.60 1499.21 13599.15 4698.87 6099.48 6697.57 15799.35 5999.24 7197.83 8199.89 5597.88 9099.70 11999.75 23
APD-MVS_3200maxsize98.84 5898.61 7599.53 3799.19 14199.27 2198.49 9099.33 12098.64 8599.03 11398.98 12797.89 7899.85 9996.54 18199.42 20499.46 120
ADS-MVSNet295.43 28194.98 28796.76 29098.14 29491.74 31697.92 14897.76 29690.23 32796.51 29898.91 14185.61 31099.85 9992.88 29896.90 32998.69 275
EI-MVSNet98.40 12598.51 8698.04 22699.10 16494.73 26097.20 21698.87 23798.97 7099.06 10399.02 11496.00 19099.80 16398.58 5399.82 6499.60 48
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
CVMVSNet96.25 26497.21 20893.38 33299.10 16480.56 35697.20 21698.19 28796.94 21399.00 11699.02 11489.50 29099.80 16396.36 19399.59 16099.78 15
pmmvs497.58 19497.28 20498.51 19198.84 22096.93 20895.40 30798.52 27393.60 29498.61 17498.65 19795.10 22299.60 26896.97 13899.79 8198.99 237
EU-MVSNet97.66 18898.50 8895.13 31699.63 4885.84 34398.35 10598.21 28498.23 11399.54 2999.46 4195.02 22399.68 23998.24 7099.87 5199.87 5
VNet98.42 12298.30 12298.79 15298.79 23097.29 18798.23 11198.66 26699.31 3898.85 14598.80 17194.80 23299.78 18698.13 7599.13 25399.31 180
test-LLR93.90 30593.85 29994.04 32496.53 34284.62 34894.05 33692.39 34596.17 23894.12 33795.07 33582.30 33199.67 24295.87 21798.18 30297.82 308
TESTMET0.1,192.19 32091.77 32093.46 33096.48 34482.80 35394.05 33691.52 34894.45 27994.00 34094.88 34166.65 35899.56 28195.78 22298.11 30798.02 302
test-mter92.33 31891.76 32194.04 32496.53 34284.62 34894.05 33692.39 34594.00 29094.12 33795.07 33565.63 36099.67 24295.87 21798.18 30297.82 308
VPA-MVSNet99.30 2599.30 2499.28 7999.49 8498.36 10699.00 5199.45 7799.63 1499.52 3499.44 4698.25 5099.88 6399.09 2799.84 5599.62 43
ACMMPR98.70 7998.42 10599.54 3099.52 7299.14 4998.52 8499.31 12797.47 16698.56 18198.54 21597.75 8899.88 6396.57 17499.59 16099.58 60
testgi98.32 13298.39 11098.13 21999.57 5495.54 23997.78 16299.49 6497.37 18099.19 8597.65 28198.96 1899.49 29996.50 18498.99 27199.34 168
test20.0398.78 6698.77 5498.78 15599.46 9597.20 19597.78 16299.24 15999.04 6399.41 4998.90 14497.65 9499.76 19997.70 10199.79 8199.39 147
thres600view794.45 29493.83 30096.29 29699.06 17591.53 31897.99 14294.24 33798.34 10297.44 26095.01 33779.84 33799.67 24284.33 34298.23 29997.66 319
ADS-MVSNet95.24 28494.93 28996.18 29998.14 29490.10 33097.92 14897.32 30690.23 32796.51 29898.91 14185.61 31099.74 21092.88 29896.90 32998.69 275
MP-MVScopyleft98.46 11898.09 14699.54 3099.57 5499.22 2698.50 8999.19 17097.61 15497.58 24798.66 19597.40 11999.88 6394.72 25099.60 15899.54 82
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs17.12 32520.53 3286.87 33912.05 3594.20 36193.62 3426.73 3604.62 35610.41 35624.33 3548.28 3623.56 3579.69 35515.07 35412.86 353
thres40094.14 30193.44 30596.24 29898.93 19891.44 32097.60 18394.29 33597.94 13197.10 26894.31 34679.67 33999.62 26183.05 34498.08 30997.66 319
test12317.04 32620.11 3297.82 33810.25 3604.91 36094.80 3204.47 3614.93 35510.00 35724.28 3559.69 3613.64 35610.14 35412.43 35514.92 352
thres20093.72 30893.14 31095.46 31398.66 25791.29 32496.61 25394.63 33397.39 17896.83 28693.71 34979.88 33699.56 28182.40 34798.13 30695.54 346
test0.0.03 194.51 29393.69 30296.99 27796.05 34993.61 29394.97 31793.49 34096.17 23897.57 24994.88 34182.30 33199.01 34093.60 28594.17 34898.37 292
pmmvs395.03 28894.40 29496.93 28097.70 31692.53 30795.08 31497.71 29888.57 33897.71 23798.08 25979.39 34199.82 14196.19 20299.11 25798.43 288
EMVS93.83 30694.02 29893.23 33396.83 33984.96 34689.77 35196.32 32297.92 13397.43 26196.36 32086.17 30598.93 34287.68 33697.73 31695.81 344
E-PMN94.17 30094.37 29593.58 32996.86 33785.71 34590.11 35097.07 31098.17 12097.82 23297.19 30384.62 31798.94 34189.77 33097.68 31796.09 343
PGM-MVS98.66 8798.37 11399.55 2799.53 7099.18 3698.23 11199.49 6497.01 21198.69 16498.88 15398.00 7199.89 5595.87 21799.59 16099.58 60
LCM-MVSNet-Re98.64 9098.48 9399.11 10298.85 21798.51 9798.49 9099.83 398.37 10099.69 1899.46 4198.21 5799.92 3394.13 27099.30 22498.91 252
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 8
MCST-MVS98.00 16097.63 18299.10 10499.24 12898.17 11996.89 23898.73 26295.66 25497.92 22397.70 27997.17 13399.66 25096.18 20499.23 23499.47 118
mvs_anonymous97.83 17998.16 13996.87 28498.18 29291.89 31597.31 20798.90 23297.37 18098.83 14899.46 4196.28 18299.79 17698.90 3698.16 30498.95 243
MVS_Test98.18 14898.36 11497.67 24298.48 27394.73 26098.18 11799.02 21497.69 14798.04 22099.11 9597.22 13299.56 28198.57 5598.90 27798.71 272
MDA-MVSNet-bldmvs97.94 16497.91 16298.06 22499.44 10094.96 25696.63 25299.15 18998.35 10198.83 14899.11 9594.31 24299.85 9996.60 17198.72 28399.37 156
CDPH-MVS97.26 21596.66 24099.07 11099.00 18698.15 12096.03 27899.01 21791.21 32397.79 23397.85 27196.89 14799.69 23092.75 30399.38 21199.39 147
test1298.93 13298.58 26497.83 15698.66 26696.53 29695.51 21199.69 23099.13 25399.27 190
casdiffmvs98.95 4699.00 3998.81 14899.38 10797.33 18697.82 16099.57 3499.17 5199.35 5999.17 8398.35 4699.69 23098.46 6199.73 10599.41 138
diffmvs98.22 14498.24 12898.17 21899.00 18695.44 24496.38 26599.58 2797.79 14398.53 18698.50 22196.76 15899.74 21097.95 8699.64 14499.34 168
baseline293.73 30792.83 31396.42 29497.70 31691.28 32596.84 24189.77 35293.96 29192.44 34695.93 32479.14 34299.77 19292.94 29696.76 33398.21 294
baseline195.96 26995.44 27497.52 25798.51 27193.99 28098.39 10196.09 32598.21 11498.40 19997.76 27686.88 29999.63 25995.42 23689.27 35298.95 243
YYNet197.60 19297.67 17697.39 26499.04 17893.04 30095.27 30898.38 27997.25 19298.92 13398.95 13695.48 21499.73 21596.99 13598.74 28199.41 138
PMMVS298.07 15598.08 14998.04 22699.41 10594.59 26694.59 32999.40 9297.50 16398.82 15298.83 16696.83 15199.84 11697.50 10999.81 6899.71 26
MDA-MVSNet_test_wron97.60 19297.66 17997.41 26399.04 17893.09 29695.27 30898.42 27797.26 19198.88 14198.95 13695.43 21599.73 21597.02 13298.72 28399.41 138
tpmvs95.02 28995.25 28094.33 32296.39 34785.87 34298.08 12896.83 31795.46 26095.51 32598.69 18885.91 30899.53 28994.16 26596.23 33797.58 322
PM-MVS98.82 5998.72 5899.12 10099.64 4698.54 9597.98 14499.68 1497.62 15299.34 6199.18 7997.54 10499.77 19297.79 9399.74 10299.04 229
HQP_MVS97.99 16397.67 17698.93 13299.19 14197.65 17297.77 16599.27 14898.20 11797.79 23397.98 26494.90 22599.70 22694.42 25999.51 18899.45 124
plane_prior799.19 14197.87 153
plane_prior698.99 18997.70 17094.90 225
plane_prior599.27 14899.70 22694.42 25999.51 18899.45 124
plane_prior497.98 264
plane_prior397.78 16397.41 17697.79 233
plane_prior297.77 16598.20 117
plane_prior199.05 177
plane_prior97.65 17297.07 22596.72 22299.36 213
PS-CasMVS99.40 1999.33 2199.62 799.71 3099.10 5799.29 2499.53 5099.53 2399.46 4299.41 5098.23 5299.95 1598.89 3899.95 1699.81 12
UniMVSNet_NR-MVSNet98.86 5798.68 6599.40 6299.17 15098.74 7697.68 17499.40 9299.14 5299.06 10398.59 21196.71 16299.93 2798.57 5599.77 8999.53 88
PEN-MVS99.41 1899.34 2099.62 799.73 2499.14 4999.29 2499.54 4899.62 1799.56 2799.42 4898.16 6199.96 998.78 4399.93 2599.77 17
TransMVSNet (Re)99.44 1499.47 1399.36 6499.80 1898.58 9099.27 3099.57 3499.39 3299.75 1399.62 2299.17 1399.83 13199.06 2999.62 15099.66 34
DTE-MVSNet99.43 1699.35 1899.66 599.71 3099.30 1799.31 1999.51 5499.64 1299.56 2799.46 4198.23 5299.97 398.78 4399.93 2599.72 25
DU-MVS98.82 5998.63 7199.39 6399.16 15298.74 7697.54 19099.25 15498.84 8099.06 10398.76 17896.76 15899.93 2798.57 5599.77 8999.50 100
UniMVSNet (Re)98.87 5598.71 6099.35 6999.24 12898.73 7997.73 17099.38 9698.93 7599.12 9298.73 18196.77 15699.86 8698.63 5299.80 7699.46 120
CP-MVSNet99.21 2999.09 3499.56 2599.65 4398.96 6599.13 4299.34 11599.42 3099.33 6299.26 6897.01 14199.94 2398.74 4799.93 2599.79 14
WR-MVS_H99.33 2499.22 2899.65 699.71 3099.24 2499.32 1699.55 4499.46 2799.50 3899.34 5997.30 12399.93 2798.90 3699.93 2599.77 17
WR-MVS98.40 12598.19 13499.03 12099.00 18697.65 17296.85 23998.94 22498.57 9598.89 13798.50 22195.60 20799.85 9997.54 10699.85 5399.59 54
NR-MVSNet98.95 4698.82 4899.36 6499.16 15298.72 8199.22 3299.20 16599.10 5899.72 1498.76 17896.38 17899.86 8698.00 8499.82 6499.50 100
Baseline_NR-MVSNet98.98 4298.86 4599.36 6499.82 1798.55 9297.47 19899.57 3499.37 3499.21 8399.61 2496.76 15899.83 13198.06 7999.83 6199.71 26
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 10998.87 6798.39 10199.42 8899.42 3099.36 5899.06 10098.38 4299.95 1598.34 6799.90 4399.57 65
TSAR-MVS + GP.98.18 14897.98 15698.77 15798.71 24097.88 15296.32 26898.66 26696.33 23499.23 8298.51 21897.48 11599.40 31297.16 12399.46 20099.02 232
abl_698.99 3898.78 5299.61 1099.45 9899.46 398.60 7599.50 5698.59 9199.24 7999.04 11098.54 3499.89 5596.45 18799.62 15099.50 100
n20.00 362
nn0.00 362
mPP-MVS98.64 9098.34 11799.54 3099.54 6899.17 3798.63 7299.24 15997.47 16698.09 21598.68 19097.62 9899.89 5596.22 20099.62 15099.57 65
door-mid99.57 34
XVG-OURS-SEG-HR98.49 11598.28 12499.14 9899.49 8498.83 7096.54 25499.48 6697.32 18599.11 9498.61 20999.33 899.30 32596.23 19998.38 29699.28 188
DWT-MVSNet_test92.75 31592.05 31894.85 31896.48 34487.21 33997.83 15994.99 33092.22 31192.72 34594.11 34870.75 35399.46 30695.01 24194.33 34797.87 306
MVSFormer98.26 14098.43 10397.77 23798.88 21293.89 28699.39 1299.56 4199.11 5498.16 20898.13 25193.81 25199.97 399.26 1999.57 17099.43 133
jason97.45 20397.35 20197.76 23899.24 12893.93 28295.86 28898.42 27794.24 28398.50 18898.13 25194.82 22999.91 4397.22 12099.73 10599.43 133
jason: jason.
lupinMVS97.06 23196.86 22697.65 24498.88 21293.89 28695.48 30497.97 29293.53 29598.16 20897.58 28593.81 25199.91 4396.77 15799.57 17099.17 214
test_djsdf99.52 1099.51 1099.53 3799.86 1198.74 7699.39 1299.56 4199.11 5499.70 1699.73 1199.00 1699.97 399.26 1999.98 1099.89 3
HPM-MVS_fast99.01 3698.82 4899.57 1999.71 3099.35 1299.00 5199.50 5697.33 18398.94 13198.86 15798.75 2499.82 14197.53 10799.71 11599.56 70
RRT_test8_iter0595.24 28495.13 28495.57 31197.32 33087.02 34097.99 14299.41 8998.06 12599.12 9299.05 10766.85 35799.85 9998.93 3599.47 19999.84 9
K. test v398.00 16097.66 17999.03 12099.79 2097.56 17699.19 3792.47 34499.62 1799.52 3499.66 1889.61 28899.96 999.25 2199.81 6899.56 70
lessismore_v098.97 12799.73 2497.53 17886.71 35499.37 5699.52 3489.93 28699.92 3398.99 3399.72 11199.44 129
SixPastTwentyTwo98.75 7198.62 7299.16 9599.83 1697.96 14699.28 2898.20 28599.37 3499.70 1699.65 2092.65 27099.93 2799.04 3099.84 5599.60 48
OurMVSNet-221017-099.37 2299.31 2399.53 3799.91 398.98 6199.63 799.58 2799.44 2999.78 1199.76 796.39 17699.92 3399.44 1499.92 3499.68 31
HPM-MVScopyleft98.79 6398.53 8399.59 1899.65 4399.29 1899.16 3999.43 8596.74 22198.61 17498.38 23498.62 2999.87 7996.47 18599.67 13699.59 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.53 11198.34 11799.11 10299.50 7798.82 7295.97 28099.50 5697.30 18799.05 10898.98 12799.35 799.32 32295.72 22499.68 13099.18 210
XVG-ACMP-BASELINE98.56 10298.34 11799.22 8999.54 6898.59 8997.71 17199.46 7497.25 19298.98 11998.99 12397.54 10499.84 11695.88 21499.74 10299.23 198
LPG-MVS_test98.71 7698.46 9799.47 5499.57 5498.97 6298.23 11199.48 6696.60 22699.10 9799.06 10098.71 2699.83 13195.58 23399.78 8599.62 43
LGP-MVS_train99.47 5499.57 5498.97 6299.48 6696.60 22699.10 9799.06 10098.71 2699.83 13195.58 23399.78 8599.62 43
baseline98.96 4599.02 3798.76 15899.38 10797.26 19098.49 9099.50 5698.86 7899.19 8599.06 10098.23 5299.69 23098.71 4999.76 9899.33 174
test1198.87 237
door99.41 89
EPNet_dtu94.93 29094.78 29195.38 31493.58 35687.68 33796.78 24395.69 32997.35 18289.14 35298.09 25888.15 29699.49 29994.95 24499.30 22498.98 238
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.49 19997.14 21398.54 18799.68 3996.09 22996.50 25899.62 2091.58 31798.84 14798.97 12992.36 27299.88 6396.76 15899.95 1699.67 33
EPNet96.14 26595.44 27498.25 21390.76 35795.50 24297.92 14894.65 33298.97 7092.98 34498.85 16089.12 29299.87 7995.99 21099.68 13099.39 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.79 211
HQP-NCC98.67 25296.29 26996.05 24395.55 321
ACMP_Plane98.67 25296.29 26996.05 24395.55 321
APD-MVScopyleft98.10 15297.67 17699.42 5799.11 16098.93 6697.76 16799.28 14594.97 26798.72 16398.77 17697.04 13799.85 9993.79 28199.54 17899.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.82 300
HQP4-MVS95.56 32099.54 28799.32 176
HQP3-MVS99.04 20899.26 231
HQP2-MVS93.84 249
CNVR-MVS98.17 15097.87 16599.07 11098.67 25298.24 11197.01 22798.93 22697.25 19297.62 24398.34 23897.27 12699.57 27896.42 19099.33 21899.39 147
NCCC97.86 17197.47 19599.05 11798.61 25998.07 13096.98 22998.90 23297.63 15197.04 27397.93 26795.99 19399.66 25095.31 23898.82 27999.43 133
114514_t96.50 25795.77 26298.69 16599.48 9297.43 18397.84 15899.55 4481.42 35096.51 29898.58 21295.53 20999.67 24293.41 29199.58 16698.98 238
CP-MVS98.70 7998.42 10599.52 4299.36 11099.12 5498.72 6899.36 10497.54 16198.30 20198.40 23097.86 8099.89 5596.53 18299.72 11199.56 70
DSMNet-mixed97.42 20497.60 18596.87 28499.15 15691.46 31998.54 8299.12 19392.87 30397.58 24799.63 2196.21 18399.90 4695.74 22399.54 17899.27 190
tpm293.09 31492.58 31594.62 32097.56 32086.53 34197.66 17695.79 32886.15 34494.07 33998.23 24775.95 34899.53 28990.91 32596.86 33297.81 310
NP-MVS98.84 22097.39 18596.84 310
EG-PatchMatch MVS98.99 3899.01 3898.94 13199.50 7797.47 18098.04 13599.59 2598.15 12299.40 5299.36 5698.58 3299.76 19998.78 4399.68 13099.59 54
tpm cat193.29 31293.13 31193.75 32797.39 32884.74 34797.39 20197.65 30083.39 34994.16 33698.41 22982.86 32999.39 31491.56 31995.35 34297.14 329
SteuartSystems-ACMMP98.79 6398.54 8299.54 3099.73 2499.16 4198.23 11199.31 12797.92 13398.90 13498.90 14498.00 7199.88 6396.15 20599.72 11199.58 60
Skip Steuart: Steuart Systems R&D Blog.
CostFormer93.97 30493.78 30194.51 32197.53 32285.83 34497.98 14495.96 32689.29 33594.99 33198.63 20478.63 34499.62 26194.54 25396.50 33498.09 300
CR-MVSNet96.28 26395.95 26097.28 26797.71 31494.22 27098.11 12498.92 22992.31 30996.91 27999.37 5385.44 31399.81 15497.39 11397.36 32397.81 310
JIA-IIPM95.52 27995.03 28697.00 27696.85 33894.03 27796.93 23395.82 32799.20 4694.63 33399.71 1383.09 32799.60 26894.42 25994.64 34497.36 327
Patchmtry97.35 20896.97 21998.50 19397.31 33196.47 21998.18 11798.92 22998.95 7498.78 15599.37 5385.44 31399.85 9995.96 21299.83 6199.17 214
PatchT96.65 25196.35 25197.54 25597.40 32795.32 24797.98 14496.64 31999.33 3796.89 28399.42 4884.32 32099.81 15497.69 10397.49 31897.48 325
tpmrst95.07 28795.46 27393.91 32697.11 33484.36 35097.62 18096.96 31294.98 26696.35 30498.80 17185.46 31299.59 27295.60 23196.23 33797.79 313
BH-w/o95.13 28694.89 29095.86 30498.20 29191.31 32395.65 29797.37 30293.64 29396.52 29795.70 32893.04 26499.02 33888.10 33595.82 33997.24 328
tpm94.67 29294.34 29695.66 30997.68 31888.42 33397.88 15294.90 33194.46 27796.03 31298.56 21478.66 34399.79 17695.88 21495.01 34398.78 267
DELS-MVS98.27 13898.20 13298.48 19498.86 21596.70 21595.60 29999.20 16597.73 14598.45 19098.71 18497.50 11099.82 14198.21 7299.59 16098.93 248
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned96.83 24396.75 23397.08 27498.74 23593.33 29496.71 24898.26 28296.72 22298.44 19197.37 29995.20 21999.47 30491.89 31397.43 32098.44 287
RPMNet97.02 23596.93 22097.30 26697.71 31494.22 27098.11 12499.30 13699.37 3496.91 27999.34 5986.72 30099.87 7997.53 10797.36 32397.81 310
MVSTER96.86 24296.55 24697.79 23697.91 30694.21 27297.56 18898.87 23797.49 16599.06 10399.05 10780.72 33499.80 16398.44 6299.82 6499.37 156
CPTT-MVS97.84 17797.36 20099.27 8299.31 11798.46 10098.29 10699.27 14894.90 26997.83 23098.37 23594.90 22599.84 11693.85 28099.54 17899.51 95
GBi-Net98.65 8898.47 9599.17 9298.90 20698.24 11199.20 3399.44 8098.59 9198.95 12599.55 3094.14 24599.86 8697.77 9599.69 12599.41 138
PVSNet_Blended_VisFu98.17 15098.15 14198.22 21599.73 2495.15 25297.36 20399.68 1494.45 27998.99 11799.27 6696.87 14899.94 2397.13 12799.91 3999.57 65
PVSNet_BlendedMVS97.55 19597.53 18897.60 24898.92 20293.77 29096.64 25199.43 8594.49 27597.62 24399.18 7996.82 15299.67 24294.73 24899.93 2599.36 162
UnsupCasMVSNet_eth97.89 16797.60 18598.75 16199.31 11797.17 19897.62 18099.35 10998.72 8498.76 15998.68 19092.57 27199.74 21097.76 9995.60 34099.34 168
UnsupCasMVSNet_bld97.30 21296.92 22298.45 19799.28 12296.78 21496.20 27499.27 14895.42 26198.28 20398.30 24293.16 25999.71 22494.99 24297.37 32198.87 256
PVSNet_Blended96.88 24196.68 23797.47 25998.92 20293.77 29094.71 32299.43 8590.98 32597.62 24397.36 30096.82 15299.67 24294.73 24899.56 17598.98 238
FMVSNet596.01 26795.20 28298.41 20097.53 32296.10 22798.74 6699.50 5697.22 20198.03 22199.04 11069.80 35499.88 6397.27 11899.71 11599.25 194
test198.65 8898.47 9599.17 9298.90 20698.24 11199.20 3399.44 8098.59 9198.95 12599.55 3094.14 24599.86 8697.77 9599.69 12599.41 138
new_pmnet96.99 23996.76 23297.67 24298.72 23794.89 25795.95 28498.20 28592.62 30698.55 18398.54 21594.88 22899.52 29393.96 27499.44 20398.59 281
FMVSNet397.50 19797.24 20798.29 21198.08 29895.83 23597.86 15598.91 23197.89 13698.95 12598.95 13687.06 29899.81 15497.77 9599.69 12599.23 198
dp93.47 31093.59 30493.13 33496.64 34181.62 35597.66 17696.42 32192.80 30496.11 30798.64 20078.55 34699.59 27293.31 29392.18 35198.16 297
FMVSNet298.49 11598.40 10798.75 16198.90 20697.14 20198.61 7499.13 19098.59 9199.19 8599.28 6494.14 24599.82 14197.97 8599.80 7699.29 187
FMVSNet199.17 3099.17 2999.17 9299.55 6598.24 11199.20 3399.44 8099.21 4399.43 4799.55 3097.82 8499.86 8698.42 6499.89 4799.41 138
N_pmnet97.63 19197.17 20998.99 12699.27 12397.86 15495.98 27993.41 34195.25 26399.47 4198.90 14495.63 20699.85 9996.91 14199.73 10599.27 190
cascas94.79 29194.33 29796.15 30396.02 35192.36 31192.34 34899.26 15385.34 34695.08 33094.96 34092.96 26598.53 34794.41 26298.59 29297.56 323
BH-RMVSNet96.83 24396.58 24497.58 25098.47 27494.05 27596.67 25097.36 30396.70 22497.87 22797.98 26495.14 22199.44 30990.47 32898.58 29399.25 194
UGNet98.53 11198.45 9998.79 15297.94 30496.96 20699.08 4598.54 27199.10 5896.82 28799.47 4096.55 16899.84 11698.56 5899.94 2099.55 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS96.67 25096.27 25697.87 23298.81 22794.61 26596.77 24497.92 29494.94 26897.12 26797.74 27791.11 28099.82 14193.89 27798.15 30599.18 210
XXY-MVS99.14 3299.15 3299.10 10499.76 2297.74 16798.85 6399.62 2098.48 9799.37 5699.49 3898.75 2499.86 8698.20 7399.80 7699.71 26
sss97.21 22096.93 22098.06 22498.83 22295.22 25096.75 24698.48 27594.49 27597.27 26697.90 26892.77 26899.80 16396.57 17499.32 21999.16 217
Test_1112_low_res96.99 23996.55 24698.31 20999.35 11495.47 24395.84 29199.53 5091.51 31996.80 28898.48 22691.36 27999.83 13196.58 17299.53 18299.62 43
1112_ss97.29 21496.86 22698.58 17699.34 11696.32 22396.75 24699.58 2793.14 29996.89 28397.48 29292.11 27599.86 8696.91 14199.54 17899.57 65
ab-mvs-re8.12 32810.83 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35897.48 2920.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs98.41 12398.36 11498.59 17599.19 14197.23 19199.32 1698.81 25097.66 14998.62 17299.40 5296.82 15299.80 16395.88 21499.51 18898.75 270
TR-MVS95.55 27895.12 28596.86 28797.54 32193.94 28196.49 25996.53 32094.36 28297.03 27496.61 31494.26 24499.16 33486.91 33896.31 33697.47 326
MDTV_nov1_ep13_2view74.92 35897.69 17390.06 33297.75 23685.78 30993.52 28798.69 275
MDTV_nov1_ep1395.22 28197.06 33583.20 35297.74 16996.16 32394.37 28196.99 27598.83 16683.95 32399.53 28993.90 27697.95 313
MIMVSNet199.38 2199.32 2299.55 2799.86 1199.19 3599.41 1199.59 2599.59 2099.71 1599.57 2897.12 13499.90 4699.21 2299.87 5199.54 82
MIMVSNet96.62 25396.25 25797.71 24199.04 17894.66 26399.16 3996.92 31597.23 19897.87 22799.10 9786.11 30799.65 25591.65 31699.21 23798.82 260
IterMVS-LS98.55 10698.70 6398.09 22099.48 9294.73 26097.22 21599.39 9498.97 7099.38 5499.31 6396.00 19099.93 2798.58 5399.97 1299.60 48
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet97.69 18597.35 20198.69 16598.73 23697.02 20596.92 23598.75 25995.89 24998.59 17798.67 19292.08 27699.74 21096.72 16399.81 6899.32 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.77 89
IterMVS97.73 18398.11 14596.57 29199.24 12890.28 32995.52 30399.21 16398.86 7899.33 6299.33 6193.11 26099.94 2398.49 5999.94 2099.48 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.33 21096.92 22298.57 17999.09 16797.99 13796.79 24299.35 10993.18 29897.71 23798.07 26095.00 22499.31 32393.97 27399.13 25398.42 289
MVS_111021_LR98.30 13498.12 14498.83 14599.16 15298.03 13596.09 27799.30 13697.58 15698.10 21498.24 24598.25 5099.34 31996.69 16699.65 14299.12 219
DP-MVS98.93 4898.81 5099.28 7999.21 13598.45 10198.46 9599.33 12099.63 1499.48 3999.15 8997.23 13199.75 20697.17 12299.66 14199.63 42
ACMMP++99.68 130
HQP-MVS97.00 23896.49 24898.55 18498.67 25296.79 21196.29 26999.04 20896.05 24395.55 32196.84 31093.84 24999.54 28792.82 30099.26 23199.32 176
QAPM97.31 21196.81 23098.82 14698.80 22997.49 17999.06 4799.19 17090.22 32997.69 23999.16 8596.91 14699.90 4690.89 32699.41 20599.07 223
Vis-MVSNetpermissive99.34 2399.36 1799.27 8299.73 2498.26 10999.17 3899.78 599.11 5499.27 7299.48 3998.82 2199.95 1598.94 3499.93 2599.59 54
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet94.32 29695.62 26890.42 33698.46 27575.36 35796.29 26989.13 35395.25 26395.38 32699.75 892.88 26699.19 33294.07 27299.39 20896.72 335
IS-MVSNet98.19 14797.90 16399.08 10799.57 5497.97 14299.31 1998.32 28099.01 6698.98 11999.03 11391.59 27899.79 17695.49 23599.80 7699.48 110
HyFIR lowres test97.19 22296.60 24398.96 12899.62 4997.28 18995.17 31199.50 5694.21 28499.01 11498.32 24186.61 30199.99 297.10 12999.84 5599.60 48
EPMVS93.72 30893.27 30795.09 31796.04 35087.76 33698.13 12185.01 35594.69 27396.92 27798.64 20078.47 34799.31 32395.04 24096.46 33598.20 295
PAPM_NR96.82 24596.32 25398.30 21099.07 17196.69 21697.48 19698.76 25695.81 25296.61 29496.47 31894.12 24899.17 33390.82 32797.78 31599.06 224
TAMVS98.24 14398.05 15198.80 15099.07 17197.18 19797.88 15298.81 25096.66 22599.17 9099.21 7494.81 23199.77 19296.96 13999.88 4899.44 129
PAPR95.29 28294.47 29297.75 23997.50 32695.14 25394.89 31998.71 26491.39 32195.35 32795.48 33294.57 23699.14 33684.95 34197.37 32198.97 242
RPSCF98.62 9498.36 11499.42 5799.65 4399.42 598.55 8199.57 3497.72 14698.90 13499.26 6896.12 18599.52 29395.72 22499.71 11599.32 176
Vis-MVSNet (Re-imp)97.46 20297.16 21098.34 20699.55 6596.10 22798.94 5698.44 27698.32 10498.16 20898.62 20688.76 29399.73 21593.88 27899.79 8199.18 210
test_040298.76 6998.71 6098.93 13299.56 6298.14 12298.45 9799.34 11599.28 4098.95 12598.91 14198.34 4799.79 17695.63 23099.91 3998.86 257
MVS_111021_HR98.25 14298.08 14998.75 16199.09 16797.46 18195.97 28099.27 14897.60 15597.99 22298.25 24498.15 6399.38 31696.87 14999.57 17099.42 136
CSCG98.68 8498.50 8899.20 9099.45 9898.63 8498.56 8099.57 3497.87 13798.85 14598.04 26197.66 9399.84 11696.72 16399.81 6899.13 218
PatchMatch-RL97.24 21896.78 23198.61 17499.03 18197.83 15696.36 26699.06 20193.49 29797.36 26597.78 27495.75 20399.49 29993.44 29098.77 28098.52 282
API-MVS97.04 23496.91 22497.42 26297.88 30798.23 11598.18 11798.50 27497.57 15797.39 26396.75 31296.77 15699.15 33590.16 32999.02 26794.88 347
Test By Simon96.52 169
TDRefinement99.42 1799.38 1699.55 2799.76 2299.33 1699.68 699.71 1099.38 3399.53 3299.61 2498.64 2899.80 16398.24 7099.84 5599.52 92
USDC97.41 20597.40 19697.44 26198.94 19693.67 29295.17 31199.53 5094.03 28998.97 12299.10 9795.29 21799.34 31995.84 22099.73 10599.30 183
EPP-MVSNet98.30 13498.04 15299.07 11099.56 6297.83 15699.29 2498.07 28999.03 6498.59 17799.13 9292.16 27499.90 4696.87 14999.68 13099.49 104
PMMVS96.51 25595.98 25998.09 22097.53 32295.84 23494.92 31898.84 24491.58 31796.05 31195.58 32995.68 20599.66 25095.59 23298.09 30898.76 269
PAPM91.88 32190.34 32496.51 29298.06 29992.56 30692.44 34797.17 30886.35 34390.38 35096.01 32286.61 30199.21 33170.65 35395.43 34197.75 314
ACMMPcopyleft98.75 7198.50 8899.52 4299.56 6299.16 4198.87 6099.37 10097.16 20398.82 15299.01 12097.71 9099.87 7996.29 19799.69 12599.54 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.17 22496.71 23598.55 18498.56 26698.05 13396.33 26798.93 22696.91 21597.06 27297.39 29794.38 24199.45 30891.66 31599.18 24498.14 298
PatchmatchNetpermissive95.58 27795.67 26795.30 31597.34 32987.32 33897.65 17896.65 31895.30 26297.07 27198.69 18884.77 31599.75 20694.97 24398.64 28998.83 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.29 13797.95 15899.34 7298.44 27799.16 4198.12 12399.38 9696.01 24698.06 21798.43 22897.80 8599.67 24295.69 22699.58 16699.20 203
F-COLMAP97.30 21296.68 23799.14 9899.19 14198.39 10397.27 21199.30 13692.93 30196.62 29398.00 26295.73 20499.68 23992.62 30698.46 29599.35 166
ANet_high99.57 899.67 699.28 7999.89 698.09 12499.14 4199.93 199.82 499.93 399.81 499.17 1399.94 2399.31 17100.00 199.82 10
wuyk23d96.06 26697.62 18391.38 33598.65 25898.57 9198.85 6396.95 31396.86 21799.90 599.16 8599.18 1298.40 34889.23 33299.77 8977.18 351
OMC-MVS97.88 16997.49 19199.04 11998.89 21198.63 8496.94 23199.25 15495.02 26598.53 18698.51 21897.27 12699.47 30493.50 28999.51 18899.01 233
MG-MVS96.77 24696.61 24297.26 26898.31 28493.06 29795.93 28598.12 28896.45 23197.92 22398.73 18193.77 25399.39 31491.19 32299.04 26399.33 174
AdaColmapbinary97.14 22696.71 23598.46 19698.34 28297.80 16296.95 23098.93 22695.58 25596.92 27797.66 28095.87 20099.53 28990.97 32399.14 25098.04 301
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ITE_SJBPF98.87 14099.22 13398.48 9999.35 10997.50 16398.28 20398.60 21097.64 9799.35 31893.86 27999.27 22898.79 266
DeepMVS_CXcopyleft93.44 33198.24 28894.21 27294.34 33464.28 35391.34 34994.87 34389.45 29192.77 35477.54 35293.14 34993.35 349
TinyColmap97.89 16797.98 15697.60 24898.86 21594.35 26996.21 27399.44 8097.45 17399.06 10398.88 15397.99 7499.28 32894.38 26399.58 16699.18 210
MAR-MVS96.47 25895.70 26598.79 15297.92 30599.12 5498.28 10798.60 27092.16 31295.54 32496.17 32194.77 23499.52 29389.62 33198.23 29997.72 316
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 16597.69 17598.52 18899.17 15097.66 17197.19 21999.47 7296.31 23697.85 22998.20 24996.71 16299.52 29394.62 25199.72 11198.38 290
MSDG97.71 18497.52 18998.28 21298.91 20596.82 21094.42 33299.37 10097.65 15098.37 20098.29 24397.40 11999.33 32194.09 27199.22 23598.68 278
LS3D98.63 9298.38 11299.36 6497.25 33299.38 699.12 4499.32 12299.21 4398.44 19198.88 15397.31 12299.80 16396.58 17299.34 21798.92 249
CLD-MVS97.49 19997.16 21098.48 19499.07 17197.03 20394.71 32299.21 16394.46 27798.06 21797.16 30597.57 10299.48 30294.46 25699.78 8598.95 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS93.44 31192.23 31697.08 27499.25 12797.86 15495.61 29897.16 30992.90 30293.76 34298.65 19775.94 34995.66 35179.30 35197.49 31897.73 315
Gipumacopyleft99.03 3599.16 3098.64 16899.94 298.51 9799.32 1699.75 899.58 2298.60 17699.62 2298.22 5599.51 29797.70 10199.73 10597.89 304
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015