This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 599.63 1499.78 1099.67 1699.48 699.81 15999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 999.82 399.04 11199.81 398.05 6799.96 898.85 4199.99 599.86 6
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 1099.38 3399.53 3399.61 2398.64 2899.80 16898.24 7599.84 5699.52 93
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2899.44 2999.78 1099.76 696.39 17899.92 3599.44 1399.92 3499.68 31
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 799.64 1299.84 899.83 299.50 599.87 8499.36 1499.92 3499.64 39
Anonymous2023121199.27 2599.27 2499.26 8599.29 12298.18 12099.49 899.51 5799.70 899.80 999.68 1496.84 15199.83 13699.21 2399.91 4099.77 16
v7n99.53 899.57 899.41 6099.88 798.54 9699.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2699.59 2099.71 1499.57 2797.12 13599.90 4999.21 2399.87 5299.54 83
MVSFormer98.26 14298.43 10597.77 24698.88 21693.89 29599.39 1199.56 4299.11 5698.16 21498.13 25693.81 25599.97 399.26 1899.57 17599.43 135
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4299.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1498.93 7999.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 1099.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4699.46 2799.50 3999.34 6097.30 12499.93 2898.90 3799.93 2599.77 16
ab-mvs98.41 12598.36 11698.59 18099.19 14397.23 19699.32 1598.81 25497.66 15598.62 17599.40 5396.82 15499.80 16895.88 22399.51 19398.75 277
Gipumacopyleft99.03 3699.16 3098.64 17199.94 298.51 9899.32 1599.75 899.58 2298.60 17999.62 2198.22 5599.51 30697.70 10899.73 10697.89 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
GG-mvs-BLEND94.76 33094.54 36492.13 32399.31 1880.47 37088.73 36491.01 36467.59 36898.16 36182.30 36094.53 35793.98 360
gg-mvs-nofinetune92.37 32891.20 33395.85 31495.80 36292.38 31999.31 1881.84 36999.75 591.83 35999.74 868.29 36599.02 34987.15 34997.12 33596.16 352
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5799.64 1299.56 2899.46 4398.23 5299.97 398.78 4599.93 2599.72 25
IS-MVSNet98.19 14997.90 16699.08 11099.57 5597.97 14499.31 1898.32 28799.01 7098.98 12199.03 11491.59 28299.79 18395.49 24499.80 7799.48 112
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10699.30 2299.57 3599.61 1999.40 5299.50 3697.12 13599.85 10599.02 3299.94 2199.80 12
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 2199.30 4199.65 2299.60 2599.16 1499.82 14699.07 2999.83 6299.56 71
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5399.53 2399.46 4399.41 5198.23 5299.95 1598.89 3999.95 1699.81 11
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 5099.62 1799.56 2899.42 4998.16 6099.96 898.78 4599.93 2599.77 16
EPP-MVSNet98.30 13698.04 15599.07 11399.56 6297.83 15999.29 2398.07 29899.03 6898.59 18199.13 9392.16 27899.90 4996.87 15799.68 13499.49 104
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1899.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
SixPastTwentyTwo98.75 7298.62 7499.16 9799.83 1597.96 14899.28 2798.20 29299.37 3499.70 1599.65 1992.65 27499.93 2899.04 3199.84 5699.60 49
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9199.27 2999.57 3599.39 3299.75 1299.62 2199.17 1299.83 13699.06 3099.62 15499.66 34
3Dnovator98.27 298.81 6298.73 5899.05 12098.76 23697.81 16499.25 3099.30 14198.57 10098.55 18999.33 6297.95 7699.90 4997.16 13199.67 14099.44 131
NR-MVSNet98.95 4798.82 4999.36 6499.16 15498.72 8199.22 3199.20 17099.10 6299.72 1398.76 18196.38 18099.86 9198.00 9199.82 6599.50 100
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12399.20 3299.65 1999.48 2499.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
GBi-Net98.65 9098.47 9799.17 9498.90 21098.24 11399.20 3299.44 8398.59 9698.95 12799.55 2994.14 24899.86 9197.77 10299.69 12999.41 141
test198.65 9098.47 9799.17 9498.90 21098.24 11399.20 3299.44 8398.59 9698.95 12799.55 2994.14 24899.86 9197.77 10299.69 12999.41 141
FMVSNet199.17 3099.17 2999.17 9499.55 6598.24 11399.20 3299.44 8399.21 4599.43 4799.55 2997.82 8399.86 9198.42 6799.89 4899.41 141
K. test v398.00 16397.66 18399.03 12399.79 1997.56 18099.19 3692.47 35699.62 1799.52 3599.66 1789.61 29299.96 899.25 2099.81 6999.56 71
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 11199.17 3799.78 599.11 5699.27 7399.48 4198.82 2199.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HPM-MVScopyleft98.79 6498.53 8599.59 1799.65 4399.29 1799.16 3899.43 8996.74 22898.61 17798.38 23798.62 2999.87 8496.47 19399.67 14099.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MIMVSNet96.62 26196.25 26597.71 25099.04 18194.66 27299.16 3896.92 32697.23 20597.87 23399.10 9886.11 31499.65 26391.65 32599.21 24398.82 264
ANet_high99.57 799.67 599.28 7999.89 698.09 12799.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
FIs99.14 3299.09 3499.29 7799.70 3698.28 11099.13 4199.52 5699.48 2499.24 8099.41 5196.79 15799.82 14698.69 5399.88 4999.76 20
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 12099.42 3099.33 6299.26 6997.01 14299.94 2398.74 5099.93 2599.79 13
LS3D98.63 9498.38 11499.36 6497.25 34199.38 599.12 4399.32 12799.21 4598.44 19798.88 15597.31 12399.80 16896.58 18099.34 22298.92 253
Anonymous2024052198.69 8298.87 4498.16 22499.77 2095.11 26399.08 4499.44 8399.34 3799.33 6299.55 2994.10 25299.94 2399.25 2099.96 1499.42 138
UGNet98.53 11398.45 10198.79 15697.94 31396.96 21299.08 4498.54 27799.10 6296.82 29799.47 4296.55 17099.84 12298.56 6199.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_part197.91 16897.46 19999.27 8298.80 23398.18 12099.07 4699.36 10899.75 599.63 2599.49 3982.20 34299.89 5898.87 4099.95 1699.74 24
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10599.07 4699.55 4698.30 11199.65 2299.45 4799.22 999.76 20898.44 6599.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
QAPM97.31 21896.81 23798.82 15098.80 23397.49 18399.06 4899.19 17590.22 34097.69 24699.16 8696.91 14899.90 4990.89 33899.41 21099.07 227
3Dnovator+97.89 398.69 8298.51 8899.24 8998.81 23198.40 10399.02 4999.19 17598.99 7198.07 22299.28 6597.11 13799.84 12296.84 16099.32 22499.47 120
Anonymous2024052998.93 4998.87 4499.12 10299.19 14398.22 11899.01 5098.99 22599.25 4499.54 3099.37 5497.04 13899.80 16897.89 9499.52 19099.35 170
VDDNet98.21 14797.95 16199.01 12799.58 5197.74 17099.01 5097.29 31899.67 1098.97 12499.50 3690.45 28799.80 16897.88 9799.20 24499.48 112
tfpnnormal98.90 5398.90 4398.91 13999.67 4097.82 16299.00 5299.44 8399.45 2899.51 3899.24 7298.20 5799.86 9195.92 22299.69 12999.04 233
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10799.00 5299.45 8099.63 1499.52 3599.44 4898.25 5099.88 6799.09 2899.84 5699.62 44
HPM-MVS_fast99.01 3798.82 4999.57 1899.71 3099.35 1199.00 5299.50 5997.33 19098.94 13398.86 15998.75 2499.82 14697.53 11599.71 11899.56 71
DROMVSNet98.85 5898.81 5198.97 13099.08 17398.61 8798.99 5599.81 498.54 10297.73 24398.07 26598.50 3699.88 6798.81 4499.72 11398.42 297
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5699.48 6999.68 999.46 4399.26 6998.62 2999.73 22399.17 2699.92 3499.76 20
canonicalmvs98.34 13398.26 12898.58 18198.46 28397.82 16298.96 5799.46 7799.19 5297.46 26595.46 34698.59 3199.46 31598.08 8598.71 29198.46 292
Vis-MVSNet (Re-imp)97.46 20797.16 21698.34 21099.55 6596.10 23398.94 5898.44 28298.32 11098.16 21498.62 20988.76 29899.73 22393.88 28799.79 8299.18 214
LFMVS97.20 22896.72 24198.64 17198.72 24296.95 21398.93 5994.14 35099.74 798.78 15899.01 12284.45 32699.73 22397.44 11899.27 23499.25 198
v899.01 3799.16 3098.57 18499.47 9496.31 23098.90 6099.47 7599.03 6899.52 3599.57 2796.93 14799.81 15999.60 499.98 999.60 49
v1098.97 4499.11 3398.55 18999.44 10096.21 23298.90 6099.55 4698.73 8899.48 4099.60 2596.63 16799.83 13699.70 399.99 599.61 48
APDe-MVS98.99 3998.79 5399.60 1399.21 13699.15 4598.87 6299.48 6997.57 16399.35 5999.24 7297.83 8099.89 5897.88 9799.70 12399.75 22
ACMMPcopyleft98.75 7298.50 9099.52 4199.56 6299.16 4098.87 6299.37 10497.16 21098.82 15599.01 12297.71 9099.87 8496.29 20699.69 12999.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OpenMVScopyleft96.65 797.09 23596.68 24498.32 21198.32 29197.16 20598.86 6499.37 10489.48 34496.29 31599.15 9096.56 16999.90 4992.90 30699.20 24497.89 315
XXY-MVS99.14 3299.15 3299.10 10699.76 2297.74 17098.85 6599.62 2298.48 10399.37 5699.49 3998.75 2499.86 9198.20 7899.80 7799.71 26
wuyk23d96.06 27597.62 18791.38 34698.65 26498.57 9298.85 6596.95 32496.86 22499.90 499.16 8699.18 1198.40 35989.23 34499.77 9077.18 363
HY-MVS95.94 1395.90 27995.35 28797.55 26397.95 31294.79 26798.81 6796.94 32592.28 32195.17 33998.57 21689.90 29199.75 21591.20 33397.33 33398.10 308
FMVSNet596.01 27695.20 29198.41 20497.53 33196.10 23398.74 6899.50 5997.22 20898.03 22799.04 11169.80 36499.88 6797.27 12699.71 11899.25 198
COLMAP_ROBcopyleft96.50 1098.99 3998.85 4799.41 6099.58 5199.10 5698.74 6899.56 4299.09 6599.33 6299.19 7898.40 4299.72 23195.98 22099.76 9999.42 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE99.05 3598.99 4199.25 8799.44 10098.35 10898.73 7099.56 4298.42 10598.91 13698.81 17398.94 1899.91 4598.35 7199.73 10699.49 104
tttt051795.64 28594.98 29697.64 25599.36 11193.81 29798.72 7190.47 36298.08 13098.67 16998.34 24273.88 36199.92 3597.77 10299.51 19399.20 207
CP-MVS98.70 8098.42 10799.52 4199.36 11199.12 5398.72 7199.36 10897.54 16798.30 20798.40 23397.86 7999.89 5896.53 19099.72 11399.56 71
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7399.54 5099.31 3999.62 2799.53 3397.36 12299.86 9199.24 2299.71 11899.39 150
XVS98.72 7698.45 10199.53 3699.46 9599.21 2698.65 7499.34 12098.62 9497.54 25898.63 20797.50 11099.83 13696.79 16299.53 18799.56 71
X-MVStestdata94.32 30592.59 32399.53 3699.46 9599.21 2698.65 7499.34 12098.62 9497.54 25845.85 36597.50 11099.83 13696.79 16299.53 18799.56 71
mPP-MVS98.64 9298.34 11999.54 2999.54 6899.17 3698.63 7699.24 16497.47 17298.09 22198.68 19397.62 9899.89 5896.22 20999.62 15499.57 66
ambc98.24 21998.82 22995.97 23798.62 7799.00 22499.27 7399.21 7596.99 14499.50 30796.55 18899.50 20099.26 197
FMVSNet298.49 11798.40 10998.75 16498.90 21097.14 20798.61 7899.13 19598.59 9699.19 8699.28 6594.14 24899.82 14697.97 9299.80 7799.29 191
abl_698.99 3998.78 5499.61 999.45 9899.46 398.60 7999.50 5998.59 9699.24 8099.04 11198.54 3499.89 5896.45 19599.62 15499.50 100
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7999.58 2899.11 5699.53 3399.18 8098.81 2299.67 25096.71 17399.77 9099.50 100
MVS_030497.64 19497.35 20598.52 19397.87 31796.69 22298.59 8198.05 30097.44 18193.74 35498.85 16293.69 25999.88 6798.11 8199.81 6998.98 242
VDD-MVS98.56 10498.39 11299.07 11399.13 16198.07 13398.59 8197.01 32299.59 2099.11 9599.27 6794.82 23199.79 18398.34 7299.63 15199.34 172
MSP-MVS98.40 12798.00 15899.61 999.57 5599.25 2298.57 8399.35 11497.55 16699.31 7097.71 28694.61 23899.88 6796.14 21599.19 24899.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CSCG98.68 8698.50 9099.20 9299.45 9898.63 8498.56 8499.57 3597.87 14398.85 14898.04 26797.66 9399.84 12296.72 17199.81 6999.13 222
RPSCF98.62 9698.36 11699.42 5799.65 4399.42 498.55 8599.57 3597.72 15298.90 13799.26 6996.12 18799.52 30295.72 23399.71 11899.32 180
DSMNet-mixed97.42 21197.60 18996.87 29399.15 15891.46 32898.54 8699.12 19792.87 31497.58 25499.63 2096.21 18599.90 4995.74 23299.54 18399.27 194
Anonymous20240521197.90 16997.50 19399.08 11098.90 21098.25 11298.53 8796.16 33498.87 8199.11 9598.86 15990.40 28899.78 19597.36 12299.31 22699.19 212
HFP-MVS98.71 7798.44 10399.51 4599.49 8499.16 4098.52 8899.31 13297.47 17298.58 18398.50 22497.97 7499.85 10596.57 18299.59 16599.53 89
region2R98.69 8298.40 10999.54 2999.53 7099.17 3698.52 8899.31 13297.46 17798.44 19798.51 22197.83 8099.88 6796.46 19499.58 17199.58 61
ACMMPR98.70 8098.42 10799.54 2999.52 7299.14 4898.52 8899.31 13297.47 17298.56 18798.54 21897.75 8799.88 6796.57 18299.59 16599.58 61
PMVScopyleft91.26 2097.86 17597.94 16397.65 25399.71 3097.94 15198.52 8898.68 27098.99 7197.52 26099.35 5897.41 11898.18 36091.59 32799.67 14096.82 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TSAR-MVS + MP.98.63 9498.49 9399.06 11899.64 4697.90 15398.51 9298.94 22896.96 21899.24 8098.89 15497.83 8099.81 15996.88 15699.49 20199.48 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft98.46 12098.09 14999.54 2999.57 5599.22 2598.50 9399.19 17597.61 16097.58 25498.66 19897.40 11999.88 6794.72 25999.60 16399.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVS_3200maxsize98.84 5998.61 7799.53 3699.19 14399.27 2098.49 9499.33 12598.64 9099.03 11498.98 12997.89 7799.85 10596.54 18999.42 20999.46 122
LCM-MVSNet-Re98.64 9298.48 9599.11 10498.85 22198.51 9898.49 9499.83 398.37 10699.69 1799.46 4398.21 5699.92 3594.13 27999.30 22998.91 256
baseline98.96 4699.02 3798.76 16299.38 10897.26 19598.49 9499.50 5998.86 8299.19 8699.06 10198.23 5299.69 23898.71 5299.76 9999.33 178
SR-MVS-dyc-post98.81 6298.55 8399.57 1899.20 14099.38 598.48 9799.30 14198.64 9098.95 12798.96 13497.49 11399.86 9196.56 18599.39 21399.45 126
RE-MVS-def98.58 8199.20 14099.38 598.48 9799.30 14198.64 9098.95 12798.96 13497.75 8796.56 18599.39 21399.45 126
ZNCC-MVS98.68 8698.40 10999.54 2999.57 5599.21 2698.46 9999.29 14897.28 19698.11 21998.39 23598.00 7099.87 8496.86 15999.64 14899.55 79
DP-MVS98.93 4998.81 5199.28 7999.21 13698.45 10298.46 9999.33 12599.63 1499.48 4099.15 9097.23 13299.75 21597.17 13099.66 14599.63 43
test_040298.76 7098.71 6298.93 13699.56 6298.14 12598.45 10199.34 12099.28 4298.95 12798.91 14398.34 4899.79 18395.63 23999.91 4098.86 261
MTAPA98.88 5498.64 7299.61 999.67 4099.36 998.43 10299.20 17098.83 8598.89 14098.90 14696.98 14599.92 3597.16 13199.70 12399.56 71
VPNet98.87 5598.83 4899.01 12799.70 3697.62 17998.43 10299.35 11499.47 2699.28 7199.05 10896.72 16399.82 14698.09 8499.36 21899.59 55
Patchmatch-test96.55 26296.34 26097.17 28098.35 28993.06 30698.40 10497.79 30497.33 19098.41 20198.67 19583.68 33399.69 23895.16 24899.31 22698.77 275
test117298.76 7098.49 9399.57 1899.18 15099.37 898.39 10599.31 13298.43 10498.90 13798.88 15597.49 11399.86 9196.43 19799.37 21799.48 112
baseline195.96 27895.44 28397.52 26698.51 27993.99 28998.39 10596.09 33698.21 12098.40 20597.76 28486.88 30699.63 26895.42 24589.27 36398.95 247
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 11098.87 6798.39 10599.42 9299.42 3099.36 5899.06 10198.38 4399.95 1598.34 7299.90 4499.57 66
SR-MVS98.71 7798.43 10599.57 1899.18 15099.35 1198.36 10899.29 14898.29 11498.88 14498.85 16297.53 10699.87 8496.14 21599.31 22699.48 112
hse-mvs397.77 18697.33 20899.10 10699.21 13697.84 15898.35 10998.57 27699.11 5698.58 18399.02 11588.65 30199.96 898.11 8196.34 34499.49 104
EU-MVSNet97.66 19398.50 9095.13 32799.63 4885.84 35498.35 10998.21 29198.23 11999.54 3099.46 4395.02 22599.68 24798.24 7599.87 5299.87 4
CPTT-MVS97.84 18197.36 20499.27 8299.31 11898.46 10198.29 11199.27 15394.90 28097.83 23698.37 23994.90 22799.84 12293.85 28999.54 18399.51 96
MAR-MVS96.47 26695.70 27398.79 15697.92 31499.12 5398.28 11298.60 27592.16 32395.54 33496.17 33494.77 23699.52 30289.62 34398.23 30597.72 327
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
V4298.78 6798.78 5498.76 16299.44 10097.04 20898.27 11399.19 17597.87 14399.25 7999.16 8696.84 15199.78 19599.21 2399.84 5699.46 122
GST-MVS98.61 9798.30 12499.52 4199.51 7499.20 3298.26 11499.25 15997.44 18198.67 16998.39 23597.68 9199.85 10596.00 21899.51 19399.52 93
AllTest98.44 12298.20 13599.16 9799.50 7798.55 9398.25 11599.58 2896.80 22598.88 14499.06 10197.65 9499.57 28794.45 26699.61 16199.37 160
VNet98.42 12498.30 12498.79 15698.79 23597.29 19298.23 11698.66 27199.31 3998.85 14898.80 17494.80 23499.78 19598.13 8099.13 25899.31 184
PGM-MVS98.66 8998.37 11599.55 2699.53 7099.18 3598.23 11699.49 6797.01 21798.69 16798.88 15598.00 7099.89 5895.87 22699.59 16599.58 61
LPG-MVS_test98.71 7798.46 9999.47 5399.57 5598.97 6298.23 11699.48 6996.60 23399.10 9899.06 10198.71 2699.83 13695.58 24299.78 8699.62 44
SteuartSystems-ACMMP98.79 6498.54 8499.54 2999.73 2499.16 4098.23 11699.31 13297.92 13998.90 13798.90 14698.00 7099.88 6796.15 21499.72 11399.58 61
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS98.53 11398.27 12799.32 7699.31 11898.75 7598.19 12099.41 9396.77 22798.83 15198.90 14697.80 8499.82 14695.68 23699.52 19099.38 157
MVS_Test98.18 15098.36 11697.67 25198.48 28194.73 26998.18 12199.02 21897.69 15398.04 22699.11 9697.22 13399.56 29098.57 5898.90 28298.71 280
Patchmtry97.35 21596.97 22698.50 19797.31 34096.47 22598.18 12198.92 23398.95 7898.78 15899.37 5485.44 32099.85 10595.96 22199.83 6299.17 218
API-MVS97.04 24196.91 23197.42 27197.88 31698.23 11798.18 12198.50 28097.57 16397.39 27096.75 32296.77 15899.15 34690.16 34199.02 27294.88 359
test072699.50 7799.21 2698.17 12499.35 11497.97 13599.26 7799.06 10197.61 99
Anonymous2023120698.21 14798.21 13498.20 22199.51 7495.43 25298.13 12599.32 12796.16 24898.93 13498.82 17196.00 19299.83 13697.32 12499.73 10699.36 166
EPMVS93.72 31793.27 31695.09 32896.04 35987.76 34798.13 12585.01 36794.69 28496.92 28798.64 20378.47 35799.31 33295.04 24996.46 34398.20 304
PHI-MVS98.29 13997.95 16199.34 7298.44 28599.16 4098.12 12799.38 10096.01 25498.06 22398.43 23197.80 8499.67 25095.69 23599.58 17199.20 207
CR-MVSNet96.28 27195.95 26897.28 27697.71 32394.22 27998.11 12898.92 23392.31 32096.91 28999.37 5485.44 32099.81 15997.39 12197.36 33197.81 321
RPMNet97.02 24296.93 22797.30 27597.71 32394.22 27998.11 12899.30 14199.37 3496.91 28999.34 6086.72 30799.87 8497.53 11597.36 33197.81 321
SED-MVS98.91 5198.72 6099.49 4899.49 8499.17 3698.10 13099.31 13298.03 13299.66 2099.02 11598.36 4499.88 6796.91 14999.62 15499.41 141
OPU-MVS98.82 15098.59 26998.30 10998.10 13098.52 22098.18 5898.75 35794.62 26099.48 20399.41 141
CS-MVS98.16 15498.22 13397.97 23798.56 27397.01 21198.10 13099.70 1397.45 17997.29 27397.19 31297.72 8999.80 16898.37 6999.62 15497.11 340
tpmvs95.02 29895.25 28994.33 33396.39 35685.87 35398.08 13396.83 32895.46 26995.51 33698.69 19185.91 31599.53 29894.16 27496.23 34697.58 332
131495.74 28395.60 27796.17 30997.53 33192.75 31498.07 13498.31 28891.22 33394.25 34696.68 32395.53 21199.03 34891.64 32697.18 33496.74 345
112196.73 25596.00 26698.91 13998.95 19997.76 16798.07 13498.73 26787.65 35296.54 30598.13 25694.52 24099.73 22392.38 31899.02 27299.24 201
MVS93.19 32292.09 32696.50 30296.91 34594.03 28698.07 13498.06 29968.01 36394.56 34596.48 32795.96 19899.30 33483.84 35596.89 33996.17 351
ACMM96.08 1298.91 5198.73 5899.48 5099.55 6599.14 4898.07 13499.37 10497.62 15899.04 11198.96 13498.84 2099.79 18397.43 11999.65 14699.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS98.00 16397.74 17598.80 15498.72 24298.09 12798.05 13899.60 2597.39 18596.63 30295.55 34397.68 9199.80 16896.73 17099.27 23498.52 290
SMA-MVScopyleft98.40 12798.03 15699.51 4599.16 15499.21 2698.05 13899.22 16794.16 29798.98 12199.10 9897.52 10899.79 18396.45 19599.64 14899.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EG-PatchMatch MVS98.99 3999.01 3898.94 13599.50 7797.47 18498.04 14099.59 2698.15 12899.40 5299.36 5798.58 3299.76 20898.78 4599.68 13499.59 55
thres100view90094.19 30893.67 31295.75 31699.06 17891.35 33198.03 14194.24 34898.33 10997.40 26994.98 35279.84 34799.62 27083.05 35698.08 31596.29 348
#test#98.50 11698.16 14299.51 4599.49 8499.16 4098.03 14199.31 13296.30 24598.58 18398.50 22497.97 7499.85 10595.68 23699.59 16599.53 89
DVP-MVS98.77 6998.52 8699.52 4199.50 7799.21 2698.02 14398.84 24897.97 13599.08 10199.02 11597.61 9999.88 6796.99 14399.63 15199.48 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14399.32 12799.88 6796.99 14399.63 15199.68 31
Effi-MVS+-dtu98.26 14297.90 16699.35 6998.02 30999.49 298.02 14399.16 18898.29 11497.64 24997.99 26996.44 17699.95 1596.66 17698.93 28198.60 287
DeepC-MVS97.60 498.97 4498.93 4299.10 10699.35 11597.98 14398.01 14699.46 7797.56 16599.54 3099.50 3698.97 1699.84 12298.06 8699.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres600view794.45 30393.83 30996.29 30599.06 17891.53 32797.99 14794.24 34898.34 10897.44 26795.01 35079.84 34799.67 25084.33 35498.23 30597.66 329
RRT_test8_iter0595.24 29395.13 29395.57 32097.32 33987.02 35197.99 14799.41 9398.06 13199.12 9399.05 10866.85 36999.85 10598.93 3699.47 20499.84 8
PM-MVS98.82 6098.72 6099.12 10299.64 4698.54 9697.98 14999.68 1597.62 15899.34 6199.18 8097.54 10499.77 20197.79 10099.74 10399.04 233
CostFormer93.97 31393.78 31094.51 33297.53 33185.83 35597.98 14995.96 33789.29 34694.99 34298.63 20778.63 35499.62 27094.54 26296.50 34298.09 309
PatchT96.65 25996.35 25997.54 26497.40 33695.32 25497.98 14996.64 33099.33 3896.89 29399.42 4984.32 32899.81 15997.69 11097.49 32497.48 335
CS-MVS-test97.75 18797.70 17897.90 23898.30 29397.66 17497.93 15299.65 1996.91 22196.27 31696.28 33397.00 14399.80 16897.64 11199.28 23296.24 350
MTMP97.93 15291.91 359
ADS-MVSNet295.43 29094.98 29696.76 29998.14 30391.74 32597.92 15497.76 30590.23 33896.51 30898.91 14385.61 31799.85 10592.88 30796.90 33798.69 283
ADS-MVSNet95.24 29394.93 29896.18 30898.14 30390.10 33997.92 15497.32 31790.23 33896.51 30898.91 14385.61 31799.74 21992.88 30796.90 33798.69 283
EPNet96.14 27495.44 28398.25 21890.76 36895.50 24997.92 15494.65 34398.97 7492.98 35598.85 16289.12 29699.87 8495.99 21999.68 13499.39 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo98.08 15797.92 16498.57 18498.96 19796.79 21797.90 15799.18 17996.41 24098.46 19598.95 13895.93 19999.60 27796.51 19198.98 27899.31 184
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 12798.68 6797.54 26498.96 19797.99 13997.88 15899.36 10898.20 12399.63 2599.04 11198.76 2395.33 36596.56 18599.74 10399.31 184
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
tpm94.67 30194.34 30595.66 31897.68 32788.42 34497.88 15894.90 34294.46 28896.03 32398.56 21778.66 35399.79 18395.88 22395.01 35498.78 274
TAMVS98.24 14598.05 15498.80 15499.07 17497.18 20397.88 15898.81 25496.66 23299.17 9199.21 7594.81 23399.77 20196.96 14799.88 4999.44 131
thisisatest053095.27 29294.45 30297.74 24999.19 14394.37 27797.86 16190.20 36397.17 20998.22 21197.65 29073.53 36299.90 4996.90 15499.35 22098.95 247
FMVSNet397.50 20297.24 21298.29 21598.08 30795.83 24197.86 16198.91 23597.89 14298.95 12798.95 13887.06 30599.81 15997.77 10299.69 12999.23 202
114514_t96.50 26595.77 27098.69 16899.48 9297.43 18797.84 16399.55 4681.42 36196.51 30898.58 21595.53 21199.67 25093.41 30099.58 17198.98 242
DWT-MVSNet_test92.75 32692.05 32794.85 32996.48 35387.21 35097.83 16494.99 34192.22 32292.72 35694.11 36070.75 36399.46 31595.01 25094.33 35897.87 317
ACMMP_NAP98.75 7298.48 9599.57 1899.58 5199.29 1797.82 16599.25 15996.94 21998.78 15899.12 9498.02 6899.84 12297.13 13599.67 14099.59 55
casdiffmvs98.95 4799.00 3998.81 15299.38 10897.33 19097.82 16599.57 3599.17 5399.35 5999.17 8498.35 4799.69 23898.46 6499.73 10699.41 141
testtj97.79 18597.25 21099.42 5799.03 18498.85 6897.78 16799.18 17995.83 26098.12 21898.50 22495.50 21499.86 9192.23 32099.07 26499.54 83
testgi98.32 13498.39 11298.13 22599.57 5595.54 24697.78 16799.49 6797.37 18799.19 8697.65 29098.96 1799.49 30896.50 19298.99 27699.34 172
test20.0398.78 6798.77 5698.78 15999.46 9597.20 20197.78 16799.24 16499.04 6799.41 4998.90 14697.65 9499.76 20897.70 10899.79 8299.39 150
HQP_MVS97.99 16697.67 18098.93 13699.19 14397.65 17697.77 17099.27 15398.20 12397.79 23997.98 27094.90 22799.70 23494.42 26899.51 19399.45 126
plane_prior297.77 17098.20 123
APD-MVScopyleft98.10 15597.67 18099.42 5799.11 16298.93 6697.76 17299.28 15094.97 27898.72 16698.77 17997.04 13899.85 10593.79 29099.54 18399.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.85 698.30 13698.15 14498.75 16498.61 26597.23 19697.76 17299.09 20197.31 19398.75 16398.66 19897.56 10399.64 26596.10 21799.55 18299.39 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MDTV_nov1_ep1395.22 29097.06 34483.20 36397.74 17496.16 33494.37 29296.99 28598.83 16883.95 33199.53 29893.90 28597.95 319
UniMVSNet (Re)98.87 5598.71 6299.35 6999.24 12998.73 7997.73 17599.38 10098.93 7999.12 9398.73 18496.77 15899.86 9198.63 5599.80 7799.46 122
alignmvs97.35 21596.88 23298.78 15998.54 27698.09 12797.71 17697.69 30899.20 4897.59 25395.90 33888.12 30499.55 29398.18 7998.96 27998.70 282
XVG-ACMP-BASELINE98.56 10498.34 11999.22 9199.54 6898.59 9097.71 17699.46 7797.25 19998.98 12198.99 12597.54 10499.84 12295.88 22399.74 10399.23 202
MDTV_nov1_ep13_2view74.92 36997.69 17890.06 34397.75 24285.78 31693.52 29698.69 283
UniMVSNet_NR-MVSNet98.86 5798.68 6799.40 6299.17 15298.74 7697.68 17999.40 9699.14 5499.06 10498.59 21496.71 16499.93 2898.57 5899.77 9099.53 89
ACMP95.32 1598.41 12598.09 14999.36 6499.51 7498.79 7497.68 17999.38 10095.76 26298.81 15798.82 17198.36 4499.82 14694.75 25699.77 9099.48 112
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tpm293.09 32392.58 32494.62 33197.56 32986.53 35297.66 18195.79 33986.15 35594.07 35098.23 25175.95 35899.53 29890.91 33796.86 34097.81 321
dp93.47 31993.59 31393.13 34596.64 35081.62 36697.66 18196.42 33292.80 31596.11 31898.64 20378.55 35699.59 28193.31 30292.18 36298.16 306
PatchmatchNetpermissive95.58 28695.67 27595.30 32697.34 33887.32 34997.65 18396.65 32995.30 27397.07 28198.69 19184.77 32399.75 21594.97 25298.64 29598.83 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14419298.54 11198.57 8298.45 20199.21 13695.98 23697.63 18499.36 10897.15 21299.32 6899.18 8095.84 20399.84 12299.50 1099.91 4099.54 83
tpmrst95.07 29695.46 28193.91 33797.11 34384.36 36197.62 18596.96 32394.98 27796.35 31498.80 17485.46 31999.59 28195.60 24096.23 34697.79 324
UnsupCasMVSNet_eth97.89 17197.60 18998.75 16499.31 11897.17 20497.62 18599.35 11498.72 8998.76 16298.68 19392.57 27599.74 21997.76 10695.60 35199.34 172
Fast-Effi-MVS+-dtu98.27 14098.09 14998.81 15298.43 28698.11 12697.61 18799.50 5998.64 9097.39 27097.52 29898.12 6399.95 1596.90 15498.71 29198.38 299
tfpn200view994.03 31293.44 31495.78 31598.93 20291.44 32997.60 18894.29 34697.94 13797.10 27894.31 35879.67 34999.62 27083.05 35698.08 31596.29 348
thres40094.14 31093.44 31496.24 30798.93 20291.44 32997.60 18894.29 34697.94 13797.10 27894.31 35879.67 34999.62 27083.05 35698.08 31597.66 329
test_post197.59 19020.48 36983.07 33699.66 25894.16 274
v114498.60 9998.66 7098.41 20499.36 11195.90 23897.58 19199.34 12097.51 16899.27 7399.15 9096.34 18399.80 16899.47 1299.93 2599.51 96
v2v48298.56 10498.62 7498.37 20899.42 10595.81 24297.58 19199.16 18897.90 14199.28 7199.01 12295.98 19699.79 18399.33 1599.90 4499.51 96
v192192098.54 11198.60 7998.38 20799.20 14095.76 24497.56 19399.36 10897.23 20599.38 5499.17 8496.02 19099.84 12299.57 699.90 4499.54 83
MVSTER96.86 25096.55 25497.79 24597.91 31594.21 28197.56 19398.87 24197.49 17199.06 10499.05 10880.72 34499.80 16898.44 6599.82 6599.37 160
DU-MVS98.82 6098.63 7399.39 6399.16 15498.74 7697.54 19599.25 15998.84 8499.06 10498.76 18196.76 16099.93 2898.57 5899.77 9099.50 100
9.1497.78 17299.07 17497.53 19699.32 12795.53 26798.54 19198.70 19097.58 10199.76 20894.32 27399.46 205
v119298.60 9998.66 7098.41 20499.27 12495.88 23997.52 19799.36 10897.41 18399.33 6299.20 7796.37 18199.82 14699.57 699.92 3499.55 79
HPM-MVS++copyleft98.10 15597.64 18599.48 5099.09 16999.13 5197.52 19798.75 26497.46 17796.90 29297.83 28096.01 19199.84 12295.82 23099.35 22099.46 122
ETV-MVS98.03 15997.86 16998.56 18898.69 25398.07 13397.51 19999.50 5998.10 12997.50 26295.51 34498.41 4199.88 6796.27 20799.24 23997.71 328
v124098.55 10898.62 7498.32 21199.22 13495.58 24597.51 19999.45 8097.16 21099.45 4599.24 7296.12 18799.85 10599.60 499.88 4999.55 79
MSLP-MVS++98.02 16198.14 14697.64 25598.58 27095.19 25997.48 20199.23 16697.47 17297.90 23198.62 20997.04 13898.81 35697.55 11299.41 21098.94 251
PAPM_NR96.82 25396.32 26198.30 21499.07 17496.69 22297.48 20198.76 26195.81 26196.61 30496.47 32894.12 25199.17 34490.82 33997.78 32199.06 228
ETH3D-3000-0.198.03 15997.62 18799.29 7799.11 16298.80 7397.47 20399.32 12795.54 26598.43 20098.62 20996.61 16899.77 20193.95 28499.49 20199.30 187
Baseline_NR-MVSNet98.98 4398.86 4699.36 6499.82 1698.55 9397.47 20399.57 3599.37 3499.21 8499.61 2396.76 16099.83 13698.06 8699.83 6299.71 26
hse-mvs297.46 20797.07 22098.64 17198.73 24097.33 19097.45 20597.64 31199.11 5698.58 18397.98 27088.65 30199.79 18398.11 8197.39 32898.81 267
v14898.45 12198.60 7998.00 23599.44 10094.98 26497.44 20699.06 20598.30 11199.32 6898.97 13196.65 16699.62 27098.37 6999.85 5499.39 150
tpm cat193.29 32193.13 32093.75 33897.39 33784.74 35897.39 20797.65 30983.39 36094.16 34798.41 23282.86 33799.39 32391.56 32895.35 35397.14 339
AUN-MVS96.24 27395.45 28298.60 17998.70 24997.22 19897.38 20897.65 30995.95 25695.53 33597.96 27482.11 34399.79 18396.31 20497.44 32698.80 272
OpenMVS_ROBcopyleft95.38 1495.84 28195.18 29297.81 24498.41 28797.15 20697.37 20998.62 27483.86 35898.65 17198.37 23994.29 24699.68 24788.41 34698.62 29796.60 347
RRT_MVS97.07 23796.57 25298.58 18195.89 36196.33 22897.36 21098.77 26097.85 14599.08 10199.12 9482.30 33999.96 898.82 4399.90 4499.45 126
PVSNet_Blended_VisFu98.17 15298.15 14498.22 22099.73 2495.15 26097.36 21099.68 1594.45 29098.99 11999.27 6796.87 15099.94 2397.13 13599.91 4099.57 66
zzz-MVS98.79 6498.52 8699.61 999.67 4099.36 997.33 21299.20 17098.83 8598.89 14098.90 14696.98 14599.92 3597.16 13199.70 12399.56 71
Effi-MVS+98.02 16197.82 17198.62 17698.53 27897.19 20297.33 21299.68 1597.30 19496.68 30097.46 30398.56 3399.80 16896.63 17898.20 30798.86 261
mvs_anonymous97.83 18398.16 14296.87 29398.18 30191.89 32497.31 21498.90 23697.37 18798.83 15199.46 4396.28 18499.79 18398.90 3798.16 31098.95 247
test_yl96.69 25696.29 26297.90 23898.28 29495.24 25697.29 21597.36 31498.21 12098.17 21297.86 27786.27 31099.55 29394.87 25498.32 30398.89 257
DCV-MVSNet96.69 25696.29 26297.90 23898.28 29495.24 25697.29 21597.36 31498.21 12098.17 21297.86 27786.27 31099.55 29394.87 25498.32 30398.89 257
MS-PatchMatch97.68 19197.75 17497.45 26998.23 29993.78 29897.29 21598.84 24896.10 25098.64 17298.65 20096.04 18999.36 32696.84 16099.14 25599.20 207
F-COLMAP97.30 21996.68 24499.14 10099.19 14398.39 10497.27 21899.30 14192.93 31296.62 30398.00 26895.73 20699.68 24792.62 31598.46 30199.35 170
Fast-Effi-MVS+97.67 19297.38 20298.57 18498.71 24597.43 18797.23 21999.45 8094.82 28296.13 31796.51 32598.52 3599.91 4596.19 21198.83 28498.37 301
EI-MVSNet-UG-set98.69 8298.71 6298.62 17699.10 16696.37 22797.23 21998.87 24199.20 4899.19 8698.99 12597.30 12499.85 10598.77 4899.79 8299.65 38
EI-MVSNet-Vis-set98.68 8698.70 6598.63 17499.09 16996.40 22697.23 21998.86 24699.20 4899.18 9098.97 13197.29 12699.85 10598.72 5199.78 8699.64 39
IterMVS-LS98.55 10898.70 6598.09 22699.48 9294.73 26997.22 22299.39 9898.97 7499.38 5499.31 6496.00 19299.93 2898.58 5699.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs-test197.83 18397.48 19798.89 14298.02 30999.20 3297.20 22399.16 18898.29 11496.46 31297.17 31496.44 17699.92 3596.66 17697.90 32097.54 334
EI-MVSNet98.40 12798.51 8898.04 23399.10 16694.73 26997.20 22398.87 24198.97 7499.06 10499.02 11596.00 19299.80 16898.58 5699.82 6599.60 49
CVMVSNet96.25 27297.21 21493.38 34399.10 16680.56 36797.20 22398.19 29496.94 21999.00 11899.02 11589.50 29499.80 16896.36 20299.59 16599.78 14
LF4IMVS97.90 16997.69 17998.52 19399.17 15297.66 17497.19 22699.47 7596.31 24497.85 23598.20 25396.71 16499.52 30294.62 26099.72 11398.38 299
Regformer-398.61 9798.61 7798.63 17499.02 18696.53 22497.17 22798.84 24899.13 5599.10 9898.85 16297.24 13199.79 18398.41 6899.70 12399.57 66
Regformer-498.73 7598.68 6798.89 14299.02 18697.22 19897.17 22799.06 20599.21 4599.17 9198.85 16297.45 11699.86 9198.48 6399.70 12399.60 49
MP-MVS-pluss98.57 10398.23 13299.60 1399.69 3899.35 1197.16 22999.38 10094.87 28198.97 12498.99 12598.01 6999.88 6797.29 12599.70 12399.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs-eth3d98.47 11998.34 11998.86 14699.30 12197.76 16797.16 22999.28 15095.54 26599.42 4899.19 7897.27 12799.63 26897.89 9499.97 1199.20 207
OPM-MVS98.56 10498.32 12399.25 8799.41 10698.73 7997.13 23199.18 17997.10 21398.75 16398.92 14298.18 5899.65 26396.68 17599.56 18099.37 160
plane_prior97.65 17697.07 23296.72 22999.36 218
CMPMVSbinary75.91 2396.29 27095.44 28398.84 14896.25 35798.69 8297.02 23399.12 19788.90 34797.83 23698.86 15989.51 29398.90 35491.92 32199.51 19398.92 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DPE-MVScopyleft98.59 10298.26 12899.57 1899.27 12499.15 4597.01 23499.39 9897.67 15499.44 4698.99 12597.53 10699.89 5895.40 24699.68 13499.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.17 15297.87 16899.07 11398.67 25898.24 11397.01 23498.93 23097.25 19997.62 25098.34 24297.27 12799.57 28796.42 19899.33 22399.39 150
NCCC97.86 17597.47 19899.05 12098.61 26598.07 13396.98 23698.90 23697.63 15797.04 28397.93 27595.99 19599.66 25895.31 24798.82 28599.43 135
AdaColmapbinary97.14 23396.71 24298.46 20098.34 29097.80 16596.95 23798.93 23095.58 26496.92 28797.66 28995.87 20299.53 29890.97 33599.14 25598.04 310
D2MVS97.84 18197.84 17097.83 24399.14 15994.74 26896.94 23898.88 23995.84 25998.89 14098.96 13494.40 24399.69 23897.55 11299.95 1699.05 229
OMC-MVS97.88 17397.49 19499.04 12298.89 21598.63 8496.94 23899.25 15995.02 27698.53 19298.51 22197.27 12799.47 31393.50 29899.51 19399.01 237
JIA-IIPM95.52 28895.03 29597.00 28596.85 34794.03 28696.93 24095.82 33899.20 4894.63 34499.71 1283.09 33599.60 27794.42 26894.64 35597.36 337
TAPA-MVS96.21 1196.63 26095.95 26898.65 17098.93 20298.09 12796.93 24099.28 15083.58 35998.13 21797.78 28296.13 18699.40 32193.52 29699.29 23198.45 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CDS-MVSNet97.69 19097.35 20598.69 16898.73 24097.02 21096.92 24298.75 26495.89 25898.59 18198.67 19592.08 28099.74 21996.72 17199.81 6999.32 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Regformer-198.55 10898.44 10398.87 14498.85 22197.29 19296.91 24398.99 22598.97 7498.99 11998.64 20397.26 13099.81 15997.79 10099.57 17599.51 96
Regformer-298.60 9998.46 9999.02 12698.85 22197.71 17296.91 24399.09 20198.98 7399.01 11598.64 20397.37 12199.84 12297.75 10799.57 17599.52 93
MCST-MVS98.00 16397.63 18699.10 10699.24 12998.17 12296.89 24598.73 26795.66 26397.92 22997.70 28897.17 13499.66 25896.18 21399.23 24099.47 120
ETH3D cwj APD-0.1697.55 20097.00 22499.19 9398.51 27998.64 8396.85 24699.13 19594.19 29697.65 24898.40 23395.78 20499.81 15993.37 30199.16 25199.12 223
WR-MVS98.40 12798.19 13799.03 12399.00 18997.65 17696.85 24698.94 22898.57 10098.89 14098.50 22495.60 20999.85 10597.54 11499.85 5499.59 55
baseline293.73 31692.83 32296.42 30397.70 32591.28 33496.84 24889.77 36493.96 30292.44 35795.93 33779.14 35299.77 20192.94 30596.76 34198.21 303
DP-MVS Recon97.33 21796.92 22998.57 18499.09 16997.99 13996.79 24999.35 11493.18 30997.71 24498.07 26595.00 22699.31 33293.97 28299.13 25898.42 297
EPNet_dtu94.93 29994.78 30095.38 32593.58 36587.68 34896.78 25095.69 34097.35 18989.14 36398.09 26388.15 30399.49 30894.95 25399.30 22998.98 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS96.67 25896.27 26497.87 24198.81 23194.61 27496.77 25197.92 30394.94 27997.12 27797.74 28591.11 28499.82 14693.89 28698.15 31199.18 214
CANet97.87 17497.76 17398.19 22297.75 32195.51 24896.76 25299.05 20997.74 15096.93 28698.21 25295.59 21099.89 5897.86 9999.93 2599.19 212
sss97.21 22796.93 22798.06 23198.83 22695.22 25896.75 25398.48 28194.49 28697.27 27497.90 27692.77 27299.80 16896.57 18299.32 22499.16 221
1112_ss97.29 22196.86 23398.58 18199.34 11796.32 22996.75 25399.58 2893.14 31096.89 29397.48 30192.11 27999.86 9196.91 14999.54 18399.57 66
BH-untuned96.83 25196.75 24097.08 28398.74 23993.33 30396.71 25598.26 28996.72 22998.44 19797.37 30895.20 22199.47 31391.89 32297.43 32798.44 295
pmmvs597.64 19497.49 19498.08 22999.14 15995.12 26296.70 25699.05 20993.77 30398.62 17598.83 16893.23 26199.75 21598.33 7499.76 9999.36 166
BH-RMVSNet96.83 25196.58 25197.58 25998.47 28294.05 28496.67 25797.36 31496.70 23197.87 23397.98 27095.14 22399.44 31890.47 34098.58 29999.25 198
PVSNet_BlendedMVS97.55 20097.53 19197.60 25798.92 20693.77 29996.64 25899.43 8994.49 28697.62 25099.18 8096.82 15499.67 25094.73 25799.93 2599.36 166
MDA-MVSNet-bldmvs97.94 16797.91 16598.06 23199.44 10094.96 26596.63 25999.15 19498.35 10798.83 15199.11 9694.31 24599.85 10596.60 17998.72 28999.37 160
thres20093.72 31793.14 31995.46 32498.66 26391.29 33396.61 26094.63 34497.39 18596.83 29693.71 36179.88 34699.56 29082.40 35998.13 31295.54 358
XVG-OURS-SEG-HR98.49 11798.28 12699.14 10099.49 8498.83 7096.54 26199.48 6997.32 19299.11 9598.61 21299.33 899.30 33496.23 20898.38 30299.28 192
xxxxxxxxxxxxxcwj98.44 12298.24 13099.06 11899.11 16297.97 14496.53 26299.54 5098.24 11798.83 15198.90 14697.80 8499.82 14695.68 23699.52 19099.38 157
ETH3 D test640096.46 26795.59 27899.08 11098.88 21698.21 11996.53 26299.18 17988.87 34897.08 28097.79 28193.64 26099.77 20188.92 34599.40 21299.28 192
save fliter99.11 16297.97 14496.53 26299.02 21898.24 117
CHOSEN 1792x268897.49 20497.14 21998.54 19299.68 3996.09 23596.50 26599.62 2291.58 32898.84 15098.97 13192.36 27699.88 6796.76 16699.95 1699.67 33
TR-MVS95.55 28795.12 29496.86 29697.54 33093.94 29096.49 26696.53 33194.36 29397.03 28496.61 32494.26 24799.16 34586.91 35096.31 34597.47 336
xiu_mvs_v1_base_debu97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
xiu_mvs_v1_base97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
xiu_mvs_v1_base_debi97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
new-patchmatchnet98.35 13298.74 5797.18 27999.24 12992.23 32296.42 27099.48 6998.30 11199.69 1799.53 3397.44 11799.82 14698.84 4299.77 9099.49 104
PLCcopyleft94.65 1696.51 26395.73 27298.85 14798.75 23897.91 15296.42 27099.06 20590.94 33795.59 32797.38 30794.41 24299.59 28190.93 33698.04 31899.05 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
diffmvs98.22 14698.24 13098.17 22399.00 18995.44 25196.38 27299.58 2897.79 14998.53 19298.50 22496.76 16099.74 21997.95 9399.64 14899.34 172
PatchMatch-RL97.24 22596.78 23898.61 17899.03 18497.83 15996.36 27399.06 20593.49 30897.36 27297.78 28295.75 20599.49 30893.44 29998.77 28698.52 290
CNLPA97.17 23196.71 24298.55 18998.56 27398.05 13696.33 27498.93 23096.91 22197.06 28297.39 30694.38 24499.45 31791.66 32499.18 25098.14 307
TSAR-MVS + GP.98.18 15097.98 15998.77 16198.71 24597.88 15496.32 27598.66 27196.33 24299.23 8398.51 22197.48 11599.40 32197.16 13199.46 20599.02 236
HQP-NCC98.67 25896.29 27696.05 25195.55 331
ACMP_Plane98.67 25896.29 27696.05 25195.55 331
HQP-MVS97.00 24596.49 25698.55 18998.67 25896.79 21796.29 27699.04 21296.05 25195.55 33196.84 32093.84 25399.54 29692.82 30999.26 23799.32 180
MVS-HIRNet94.32 30595.62 27690.42 34798.46 28375.36 36896.29 27689.13 36595.25 27495.38 33799.75 792.88 27099.19 34394.07 28199.39 21396.72 346
TinyColmap97.89 17197.98 15997.60 25798.86 21994.35 27896.21 28099.44 8397.45 17999.06 10498.88 15597.99 7399.28 33794.38 27299.58 17199.18 214
UnsupCasMVSNet_bld97.30 21996.92 22998.45 20199.28 12396.78 22096.20 28199.27 15395.42 27098.28 20998.30 24693.16 26399.71 23294.99 25197.37 32998.87 260
CANet_DTU97.26 22297.06 22197.84 24297.57 32894.65 27396.19 28298.79 25797.23 20595.14 34098.24 24993.22 26299.84 12297.34 12399.84 5699.04 233
Patchmatch-RL test97.26 22297.02 22397.99 23699.52 7295.53 24796.13 28399.71 1097.47 17299.27 7399.16 8684.30 32999.62 27097.89 9499.77 9098.81 267
MVS_111021_LR98.30 13698.12 14798.83 14999.16 15498.03 13796.09 28499.30 14197.58 16298.10 22098.24 24998.25 5099.34 32896.69 17499.65 14699.12 223
CDPH-MVS97.26 22296.66 24799.07 11399.00 18998.15 12396.03 28599.01 22191.21 33497.79 23997.85 27996.89 14999.69 23892.75 31299.38 21699.39 150
N_pmnet97.63 19697.17 21598.99 12999.27 12497.86 15695.98 28693.41 35395.25 27499.47 4298.90 14695.63 20899.85 10596.91 14999.73 10699.27 194
XVG-OURS98.53 11398.34 11999.11 10499.50 7798.82 7295.97 28799.50 5997.30 19499.05 10998.98 12999.35 799.32 33195.72 23399.68 13499.18 214
MVS_111021_HR98.25 14498.08 15298.75 16499.09 16997.46 18595.97 28799.27 15397.60 16197.99 22898.25 24898.15 6299.38 32596.87 15799.57 17599.42 138
TEST998.71 24598.08 13195.96 28999.03 21491.40 33195.85 32497.53 29696.52 17199.76 208
train_agg97.10 23496.45 25799.07 11398.71 24598.08 13195.96 28999.03 21491.64 32695.85 32497.53 29696.47 17499.76 20893.67 29299.16 25199.36 166
new_pmnet96.99 24696.76 23997.67 25198.72 24294.89 26695.95 29198.20 29292.62 31798.55 18998.54 21894.88 23099.52 30293.96 28399.44 20898.59 289
新几何295.93 292
MG-MVS96.77 25496.61 24997.26 27798.31 29293.06 30695.93 29298.12 29796.45 23997.92 22998.73 18493.77 25799.39 32391.19 33499.04 26899.33 178
test_898.67 25898.01 13895.91 29499.02 21891.64 32695.79 32697.50 29996.47 17499.76 208
test_prior497.97 14495.86 295
jason97.45 20997.35 20597.76 24799.24 12993.93 29195.86 29598.42 28394.24 29498.50 19498.13 25694.82 23199.91 4597.22 12899.73 10699.43 135
jason: jason.
SCA96.41 26896.66 24795.67 31798.24 29788.35 34595.85 29796.88 32796.11 24997.67 24798.67 19593.10 26599.85 10594.16 27499.22 24198.81 267
Test_1112_low_res96.99 24696.55 25498.31 21399.35 11595.47 25095.84 29899.53 5391.51 33096.80 29898.48 22991.36 28399.83 13696.58 18099.53 18799.62 44
agg_prior197.06 23896.40 25899.03 12398.68 25697.99 13995.76 29999.01 22191.73 32595.59 32797.50 29996.49 17399.77 20193.71 29199.14 25599.34 172
旧先验295.76 29988.56 35097.52 26099.66 25894.48 264
test_prior397.48 20697.00 22498.95 13398.69 25397.95 14995.74 30199.03 21496.48 23796.11 31897.63 29295.92 20099.59 28194.16 27499.20 24499.30 187
test_prior295.74 30196.48 23796.11 31897.63 29295.92 20094.16 27499.20 244
无先验95.74 30198.74 26689.38 34599.73 22392.38 31899.22 206
BH-w/o95.13 29594.89 29995.86 31398.20 30091.31 33295.65 30497.37 31393.64 30496.52 30795.70 34193.04 26899.02 34988.10 34795.82 35097.24 338
FPMVS93.44 32092.23 32597.08 28399.25 12897.86 15695.61 30597.16 32092.90 31393.76 35398.65 20075.94 35995.66 36379.30 36397.49 32497.73 326
DELS-MVS98.27 14098.20 13598.48 19898.86 21996.70 22195.60 30699.20 17097.73 15198.45 19698.71 18797.50 11099.82 14698.21 7799.59 16598.93 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test22298.92 20696.93 21495.54 30798.78 25985.72 35696.86 29598.11 26094.43 24199.10 26399.23 202
IterMVS-SCA-FT97.85 18098.18 13896.87 29399.27 12491.16 33795.53 30899.25 15999.10 6299.41 4999.35 5893.10 26599.96 898.65 5499.94 2199.49 104
原ACMM295.53 308
IterMVS97.73 18898.11 14896.57 30099.24 12990.28 33895.52 31099.21 16898.86 8299.33 6299.33 6293.11 26499.94 2398.49 6299.94 2199.48 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lupinMVS97.06 23896.86 23397.65 25398.88 21693.89 29595.48 31197.97 30193.53 30698.16 21497.58 29493.81 25599.91 4596.77 16599.57 17599.17 218
xiu_mvs_v2_base97.16 23297.49 19496.17 30998.54 27692.46 31795.45 31298.84 24897.25 19997.48 26496.49 32698.31 4999.90 4996.34 20398.68 29396.15 353
testdata195.44 31396.32 243
pmmvs497.58 19997.28 20998.51 19598.84 22496.93 21495.40 31498.52 27993.60 30598.61 17798.65 20095.10 22499.60 27796.97 14699.79 8298.99 241
YYNet197.60 19797.67 18097.39 27399.04 18193.04 30995.27 31598.38 28697.25 19998.92 13598.95 13895.48 21699.73 22396.99 14398.74 28799.41 141
MDA-MVSNet_test_wron97.60 19797.66 18397.41 27299.04 18193.09 30595.27 31598.42 28397.26 19898.88 14498.95 13895.43 21799.73 22397.02 14098.72 28999.41 141
PS-MVSNAJ97.08 23697.39 20196.16 31198.56 27392.46 31795.24 31798.85 24797.25 19997.49 26395.99 33698.07 6499.90 4996.37 20098.67 29496.12 354
HyFIR lowres test97.19 22996.60 25098.96 13299.62 5097.28 19495.17 31899.50 5994.21 29599.01 11598.32 24586.61 30899.99 297.10 13799.84 5699.60 49
USDC97.41 21297.40 20097.44 27098.94 20093.67 30195.17 31899.53 5394.03 30098.97 12499.10 9895.29 21999.34 32895.84 22999.73 10699.30 187
miper_lstm_enhance97.18 23097.16 21697.25 27898.16 30292.85 31195.15 32099.31 13297.25 19998.74 16598.78 17790.07 28999.78 19597.19 12999.80 7799.11 225
pmmvs395.03 29794.40 30396.93 28997.70 32592.53 31695.08 32197.71 30788.57 34997.71 24498.08 26479.39 35199.82 14696.19 21199.11 26298.43 296
DeepPCF-MVS96.93 598.32 13498.01 15799.23 9098.39 28898.97 6295.03 32299.18 17996.88 22399.33 6298.78 17798.16 6099.28 33796.74 16899.62 15499.44 131
cl_fuxian97.36 21497.37 20397.31 27498.09 30693.25 30495.01 32399.16 18897.05 21498.77 16198.72 18692.88 27099.64 26596.93 14899.76 9999.05 229
test0.0.03 194.51 30293.69 31196.99 28696.05 35893.61 30294.97 32493.49 35296.17 24697.57 25694.88 35482.30 33999.01 35193.60 29494.17 35998.37 301
PMMVS96.51 26395.98 26798.09 22697.53 33195.84 24094.92 32598.84 24891.58 32896.05 32295.58 34295.68 20799.66 25895.59 24198.09 31498.76 276
PAPR95.29 29194.47 30197.75 24897.50 33595.14 26194.89 32698.71 26991.39 33295.35 33895.48 34594.57 23999.14 34784.95 35397.37 32998.97 246
test12317.04 33820.11 3417.82 35010.25 3724.91 37294.80 3274.47 3734.93 36710.00 36924.28 3679.69 3733.64 36810.14 36612.43 36714.92 364
ET-MVSNet_ETH3D94.30 30793.21 31797.58 25998.14 30394.47 27694.78 32893.24 35594.72 28389.56 36295.87 33978.57 35599.81 15996.91 14997.11 33698.46 292
eth_miper_zixun_eth97.23 22697.25 21097.17 28098.00 31192.77 31394.71 32999.18 17997.27 19798.56 18798.74 18391.89 28199.69 23897.06 13999.81 6999.05 229
PVSNet_Blended96.88 24996.68 24497.47 26898.92 20693.77 29994.71 32999.43 8990.98 33697.62 25097.36 30996.82 15499.67 25094.73 25799.56 18098.98 242
CLD-MVS97.49 20497.16 21698.48 19899.07 17497.03 20994.71 32999.21 16894.46 28898.06 22397.16 31597.57 10299.48 31194.46 26599.78 8698.95 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth97.06 23897.03 22297.16 28297.83 31893.06 30694.66 33299.09 20195.99 25598.69 16798.45 23092.73 27399.61 27696.79 16299.03 26998.82 264
cl-mvsnet____97.02 24296.83 23697.58 25997.82 31994.04 28594.66 33299.16 18897.04 21598.63 17398.71 18788.68 30099.69 23897.00 14199.81 6999.00 240
cl-mvsnet197.02 24296.84 23597.58 25997.82 31994.03 28694.66 33299.16 18897.04 21598.63 17398.71 18788.69 29999.69 23897.00 14199.81 6999.01 237
our_test_397.39 21397.73 17796.34 30498.70 24989.78 34094.61 33598.97 22796.50 23699.04 11198.85 16295.98 19699.84 12297.26 12799.67 14099.41 141
PMMVS298.07 15898.08 15298.04 23399.41 10694.59 27594.59 33699.40 9697.50 16998.82 15598.83 16896.83 15399.84 12297.50 11799.81 6999.71 26
ppachtmachnet_test97.50 20297.74 17596.78 29898.70 24991.23 33694.55 33799.05 20996.36 24199.21 8498.79 17696.39 17899.78 19596.74 16899.82 6599.34 172
DPM-MVS96.32 26995.59 27898.51 19598.76 23697.21 20094.54 33898.26 28991.94 32496.37 31397.25 31193.06 26799.43 31991.42 33098.74 28798.89 257
MSDG97.71 18997.52 19298.28 21698.91 20996.82 21694.42 33999.37 10497.65 15698.37 20698.29 24797.40 11999.33 33094.09 28099.22 24198.68 286
cl-mvsnet295.79 28295.39 28696.98 28796.77 34992.79 31294.40 34098.53 27894.59 28597.89 23298.17 25582.82 33899.24 33996.37 20099.03 26998.92 253
IB-MVS91.63 1992.24 33090.90 33496.27 30697.22 34291.24 33594.36 34193.33 35492.37 31992.24 35894.58 35766.20 37199.89 5893.16 30494.63 35697.66 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CL-MVSNet_2432*160097.44 21097.22 21398.08 22998.57 27295.78 24394.30 34298.79 25796.58 23598.60 17998.19 25494.74 23799.64 26596.41 19998.84 28398.82 264
tmp_tt78.77 33578.73 33878.90 34958.45 37074.76 37094.20 34378.26 37139.16 36586.71 36592.82 36380.50 34575.19 36786.16 35292.29 36186.74 362
KD-MVS_2432*160092.87 32491.99 32895.51 32291.37 36689.27 34194.07 34498.14 29595.42 27097.25 27596.44 32967.86 36699.24 33991.28 33196.08 34898.02 311
miper_refine_blended92.87 32491.99 32895.51 32291.37 36689.27 34194.07 34498.14 29595.42 27097.25 27596.44 32967.86 36699.24 33991.28 33196.08 34898.02 311
test-LLR93.90 31493.85 30894.04 33596.53 35184.62 35994.05 34692.39 35796.17 24694.12 34895.07 34882.30 33999.67 25095.87 22698.18 30897.82 319
TESTMET0.1,192.19 33191.77 33193.46 34196.48 35382.80 36494.05 34691.52 36094.45 29094.00 35194.88 35466.65 37099.56 29095.78 23198.11 31398.02 311
test-mter92.33 32991.76 33294.04 33596.53 35184.62 35994.05 34692.39 35794.00 30194.12 34895.07 34865.63 37299.67 25095.87 22698.18 30897.82 319
GA-MVS95.86 28095.32 28897.49 26798.60 26794.15 28393.83 34997.93 30295.49 26896.68 30097.42 30583.21 33499.30 33496.22 20998.55 30099.01 237
thisisatest051594.12 31193.16 31896.97 28898.60 26792.90 31093.77 35090.61 36194.10 29896.91 28995.87 33974.99 36099.80 16894.52 26399.12 26198.20 304
miper_enhance_ethall96.01 27695.74 27196.81 29796.41 35592.27 32193.69 35198.89 23891.14 33598.30 20797.35 31090.58 28699.58 28696.31 20499.03 26998.60 287
testmvs17.12 33720.53 3406.87 35112.05 3714.20 37393.62 3526.73 3724.62 36810.41 36824.33 3668.28 3743.56 3699.69 36715.07 36612.86 365
CHOSEN 280x42095.51 28995.47 28095.65 31998.25 29688.27 34693.25 35398.88 23993.53 30694.65 34397.15 31686.17 31299.93 2897.41 12099.93 2598.73 279
PCF-MVS92.86 1894.36 30493.00 32198.42 20398.70 24997.56 18093.16 35499.11 19979.59 36297.55 25797.43 30492.19 27799.73 22379.85 36299.45 20797.97 314
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVEpermissive83.40 2292.50 32791.92 33094.25 33498.83 22691.64 32692.71 35583.52 36895.92 25786.46 36695.46 34695.20 22195.40 36480.51 36198.64 29595.73 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet93.40 1795.67 28495.70 27395.57 32098.83 22688.57 34392.50 35697.72 30692.69 31696.49 31196.44 32993.72 25899.43 31993.61 29399.28 23298.71 280
PAPM91.88 33290.34 33596.51 30198.06 30892.56 31592.44 35797.17 31986.35 35490.38 36196.01 33586.61 30899.21 34270.65 36595.43 35297.75 325
cascas94.79 30094.33 30696.15 31296.02 36092.36 32092.34 35899.26 15885.34 35795.08 34194.96 35392.96 26998.53 35894.41 27198.59 29897.56 333
bset_n11_16_dypcd96.99 24696.56 25398.27 21799.00 18995.25 25592.18 35994.05 35198.75 8799.01 11598.38 23788.98 29799.93 2898.77 4899.92 3499.64 39
PVSNet_089.98 2191.15 33390.30 33693.70 33997.72 32284.34 36290.24 36097.42 31290.20 34193.79 35293.09 36290.90 28598.89 35586.57 35172.76 36597.87 317
E-PMN94.17 30994.37 30493.58 34096.86 34685.71 35690.11 36197.07 32198.17 12697.82 23897.19 31284.62 32598.94 35289.77 34297.68 32396.09 355
EMVS93.83 31594.02 30793.23 34496.83 34884.96 35789.77 36296.32 33397.92 13997.43 26896.36 33286.17 31298.93 35387.68 34897.73 32295.81 356
test_method79.78 33479.50 33780.62 34880.21 36945.76 37170.82 36398.41 28531.08 36680.89 36797.71 28684.85 32297.37 36291.51 32980.03 36498.75 277
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k24.66 33632.88 3390.00 3520.00 3730.00 3740.00 36499.10 2000.00 3690.00 37097.58 29499.21 100.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas8.17 33910.90 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37098.07 640.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.12 34010.83 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37097.48 3010.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
ZD-MVS99.01 18898.84 6999.07 20494.10 29898.05 22598.12 25996.36 18299.86 9192.70 31499.19 248
IU-MVS99.49 8499.15 4598.87 24192.97 31199.41 4996.76 16699.62 15499.66 34
test_241102_TWO99.30 14198.03 13299.26 7799.02 11597.51 10999.88 6796.91 14999.60 16399.66 34
test_241102_ONE99.49 8499.17 3699.31 13297.98 13499.66 2098.90 14698.36 4499.48 311
test_0728_THIRD98.17 12699.08 10199.02 11597.89 7799.88 6797.07 13899.71 11899.70 29
GSMVS98.81 267
test_part299.36 11199.10 5699.05 109
sam_mvs184.74 32498.81 267
sam_mvs84.29 330
MTGPAbinary99.20 170
test_post21.25 36883.86 33299.70 234
patchmatchnet-post98.77 17984.37 32799.85 105
gm-plane-assit94.83 36381.97 36588.07 35194.99 35199.60 27791.76 323
test9_res93.28 30399.15 25499.38 157
agg_prior292.50 31799.16 25199.37 160
agg_prior98.68 25697.99 13999.01 22195.59 32799.77 201
TestCases99.16 9799.50 7798.55 9399.58 2896.80 22598.88 14499.06 10197.65 9499.57 28794.45 26699.61 16199.37 160
test_prior98.95 13398.69 25397.95 14999.03 21499.59 28199.30 187
新几何198.91 13998.94 20097.76 16798.76 26187.58 35396.75 29998.10 26194.80 23499.78 19592.73 31399.00 27599.20 207
旧先验198.82 22997.45 18698.76 26198.34 24295.50 21499.01 27499.23 202
原ACMM198.35 20998.90 21096.25 23198.83 25392.48 31896.07 32198.10 26195.39 21899.71 23292.61 31698.99 27699.08 226
testdata299.79 18392.80 311
segment_acmp97.02 141
testdata98.09 22698.93 20295.40 25398.80 25690.08 34297.45 26698.37 23995.26 22099.70 23493.58 29598.95 28099.17 218
test1298.93 13698.58 27097.83 15998.66 27196.53 30695.51 21399.69 23899.13 25899.27 194
plane_prior799.19 14397.87 155
plane_prior698.99 19397.70 17394.90 227
plane_prior599.27 15399.70 23494.42 26899.51 19399.45 126
plane_prior497.98 270
plane_prior397.78 16697.41 18397.79 239
plane_prior199.05 180
n20.00 374
nn0.00 374
door-mid99.57 35
lessismore_v098.97 13099.73 2497.53 18286.71 36699.37 5699.52 3589.93 29099.92 3598.99 3499.72 11399.44 131
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6996.60 23399.10 9899.06 10198.71 2699.83 13695.58 24299.78 8699.62 44
test1198.87 241
door99.41 93
HQP5-MVS96.79 217
BP-MVS92.82 309
HQP4-MVS95.56 33099.54 29699.32 180
HQP3-MVS99.04 21299.26 237
HQP2-MVS93.84 253
NP-MVS98.84 22497.39 18996.84 320
ACMMP++_ref99.77 90
ACMMP++99.68 134
Test By Simon96.52 171
ITE_SJBPF98.87 14499.22 13498.48 10099.35 11497.50 16998.28 20998.60 21397.64 9799.35 32793.86 28899.27 23498.79 273
DeepMVS_CXcopyleft93.44 34298.24 29794.21 28194.34 34564.28 36491.34 36094.87 35689.45 29592.77 36677.54 36493.14 36093.35 361