This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5999.90 199.78 699.63 1499.78 1099.67 1699.48 699.81 16799.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net99.47 1199.40 1499.70 299.49 8699.29 1899.80 399.72 1099.82 399.04 11699.81 398.05 6999.96 898.85 4299.99 599.86 6
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3499.95 1699.78 14
TDRefinement99.42 1699.38 1599.55 2699.76 2399.33 1699.68 599.71 1199.38 3499.53 3399.61 2398.64 2999.80 17698.24 7899.84 5999.52 98
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6599.63 699.58 2899.44 2999.78 1099.76 696.39 18299.92 3599.44 1399.92 3799.68 33
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 899.64 1299.84 899.83 299.50 599.87 8799.36 1499.92 3799.64 41
Anonymous2023121199.27 2599.27 2499.26 8999.29 12898.18 12799.49 899.51 5899.70 899.80 999.68 1496.84 15599.83 14299.21 2399.91 4399.77 16
v7n99.53 899.57 899.41 6199.88 798.54 10099.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
DVP-MVS++98.90 5498.70 6599.51 4598.43 29399.15 4899.43 1099.32 12898.17 13199.26 8099.02 11998.18 5999.88 7097.07 14499.45 21499.49 109
FOURS199.73 2599.67 299.43 1099.54 5099.43 3099.26 80
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3799.41 1299.59 2699.59 2099.71 1499.57 2897.12 14099.90 4999.21 2399.87 5599.54 86
MVSFormer98.26 14498.43 10697.77 25098.88 22293.89 30199.39 1399.56 4299.11 5798.16 22198.13 26493.81 25999.97 399.26 1899.57 18199.43 142
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8199.39 1399.56 4299.11 5799.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6399.34 1599.69 1598.93 8499.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
mvs_tets99.63 599.67 599.49 4999.88 798.61 9299.34 1599.71 1199.27 4499.90 499.74 899.68 299.97 399.55 899.99 599.88 3
test250692.39 33191.89 33493.89 34499.38 11282.28 37399.32 1766.03 38099.08 6998.77 16699.57 2866.26 37799.84 12798.71 5399.95 1699.54 86
WR-MVS_H99.33 2399.22 2799.65 599.71 3299.24 2499.32 1799.55 4699.46 2799.50 3999.34 6497.30 12999.93 2898.90 3899.93 2899.77 16
ab-mvs98.41 12698.36 11798.59 18599.19 15097.23 20299.32 1798.81 26097.66 16298.62 18299.40 5796.82 15899.80 17695.88 23099.51 19998.75 286
Gipumacopyleft99.03 3799.16 3098.64 17699.94 298.51 10299.32 1799.75 999.58 2298.60 18699.62 2198.22 5599.51 31397.70 11299.73 11097.89 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
GG-mvs-BLEND94.76 33694.54 37392.13 32999.31 2180.47 37888.73 37191.01 37167.59 37498.16 36882.30 36894.53 36593.98 368
gg-mvs-nofinetune92.37 33291.20 33795.85 31895.80 37192.38 32599.31 2181.84 37799.75 591.83 36699.74 868.29 37199.02 35687.15 35797.12 34396.16 360
DTE-MVSNet99.43 1599.35 1799.66 499.71 3299.30 1799.31 2199.51 5899.64 1299.56 2899.46 4698.23 5299.97 398.78 4699.93 2899.72 25
IS-MVSNet98.19 15197.90 16899.08 11599.57 5797.97 15199.31 2198.32 29399.01 7598.98 12699.03 11891.59 28699.79 19095.49 25199.80 8099.48 119
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11199.30 2599.57 3599.61 1999.40 5399.50 3997.12 14099.85 10999.02 3399.94 2499.80 12
pm-mvs199.44 1399.48 1199.33 7699.80 1798.63 8999.29 2699.63 2199.30 4299.65 2299.60 2599.16 1499.82 15399.07 2999.83 6599.56 74
PS-CasMVS99.40 1899.33 2099.62 699.71 3299.10 6099.29 2699.53 5499.53 2399.46 4399.41 5598.23 5299.95 1598.89 4099.95 1699.81 11
PEN-MVS99.41 1799.34 1999.62 699.73 2599.14 5299.29 2699.54 5099.62 1799.56 2899.42 5298.16 6299.96 898.78 4699.93 2899.77 16
EPP-MVSNet98.30 13898.04 15799.07 11899.56 6497.83 16699.29 2698.07 30499.03 7398.59 18899.13 9792.16 28299.90 4996.87 16499.68 13899.49 109
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9299.28 3099.66 1999.09 6799.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
SixPastTwentyTwo98.75 7398.62 7599.16 10299.83 1597.96 15599.28 3098.20 29899.37 3599.70 1599.65 1992.65 27899.93 2899.04 3299.84 5999.60 52
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9599.27 3299.57 3599.39 3399.75 1299.62 2199.17 1299.83 14299.06 3099.62 15899.66 36
3Dnovator98.27 298.81 6398.73 5899.05 12598.76 24397.81 17199.25 3399.30 14498.57 10598.55 19699.33 6697.95 7899.90 4997.16 13499.67 14499.44 138
DROMVSNet99.09 3499.05 3799.20 9699.28 12998.93 7099.24 3499.84 399.08 6998.12 22598.37 24698.72 2699.90 4999.05 3199.77 9398.77 283
test111196.49 26796.82 23895.52 32799.42 10787.08 35899.22 3587.14 37299.11 5799.46 4399.58 2788.69 30399.86 9498.80 4599.95 1699.62 46
ECVR-MVScopyleft96.42 27096.61 25195.85 31899.38 11288.18 35399.22 3586.00 37499.08 6999.36 6099.57 2888.47 30899.82 15398.52 6499.95 1699.54 86
NR-MVSNet98.95 4898.82 5099.36 6599.16 16198.72 8699.22 3599.20 17499.10 6499.72 1398.76 18796.38 18499.86 9498.00 9499.82 6899.50 105
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 13099.20 3899.65 2099.48 2499.92 399.71 1298.07 6699.96 899.53 9100.00 199.93 1
GBi-Net98.65 9198.47 9899.17 9998.90 21698.24 12099.20 3899.44 8498.59 10198.95 13299.55 3294.14 25299.86 9497.77 10699.69 13399.41 148
test198.65 9198.47 9899.17 9998.90 21698.24 12099.20 3899.44 8498.59 10198.95 13299.55 3294.14 25299.86 9497.77 10699.69 13399.41 148
FMVSNet199.17 3099.17 2999.17 9999.55 6798.24 12099.20 3899.44 8499.21 4699.43 4899.55 3297.82 8699.86 9498.42 7099.89 5199.41 148
K. test v398.00 16597.66 18499.03 12899.79 1997.56 18699.19 4292.47 36299.62 1799.52 3599.66 1789.61 29699.96 899.25 2099.81 7299.56 74
Vis-MVSNetpermissive99.34 2299.36 1699.27 8699.73 2598.26 11899.17 4399.78 699.11 5799.27 7699.48 4498.82 2199.95 1598.94 3699.93 2899.59 58
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HPM-MVScopyleft98.79 6598.53 8699.59 1799.65 4599.29 1899.16 4499.43 9096.74 23498.61 18498.38 24498.62 3099.87 8796.47 20099.67 14499.59 58
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MIMVSNet96.62 26296.25 26897.71 25499.04 18794.66 27899.16 4496.92 33297.23 21297.87 24199.10 10286.11 32099.65 27091.65 33399.21 25198.82 272
ANet_high99.57 799.67 599.28 8399.89 698.09 13499.14 4699.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
FIs99.14 3299.09 3499.29 8199.70 3898.28 11799.13 4799.52 5799.48 2499.24 8599.41 5596.79 16199.82 15398.69 5599.88 5299.76 20
CP-MVSNet99.21 2999.09 3499.56 2499.65 4598.96 6999.13 4799.34 12199.42 3199.33 6599.26 7397.01 14799.94 2398.74 5199.93 2899.79 13
LS3D98.63 9598.38 11599.36 6597.25 35099.38 699.12 4999.32 12899.21 4698.44 20498.88 16197.31 12899.80 17696.58 18799.34 23198.92 261
EGC-MVSNET85.24 33880.54 34199.34 7399.77 2099.20 3399.08 5099.29 15112.08 37420.84 37599.42 5297.55 10899.85 10997.08 14399.72 11798.96 254
Anonymous2024052198.69 8398.87 4598.16 22999.77 2095.11 26999.08 5099.44 8499.34 3899.33 6599.55 3294.10 25699.94 2399.25 2099.96 1499.42 145
UGNet98.53 11498.45 10298.79 16097.94 32296.96 21899.08 5098.54 28399.10 6496.82 30599.47 4596.55 17499.84 12798.56 6399.94 2499.55 82
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_part197.91 17097.46 20099.27 8698.80 24098.18 12799.07 5399.36 10999.75 599.63 2599.49 4282.20 34899.89 5998.87 4199.95 1699.74 24
ACMH96.65 799.25 2799.24 2699.26 8999.72 3198.38 11099.07 5399.55 4698.30 11699.65 2299.45 5099.22 999.76 21598.44 6899.77 9399.64 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
QAPM97.31 21996.81 23998.82 15498.80 24097.49 18999.06 5599.19 17990.22 34797.69 25399.16 9096.91 15299.90 4990.89 34699.41 21999.07 234
3Dnovator+97.89 398.69 8398.51 8999.24 9398.81 23898.40 10799.02 5699.19 17998.99 7698.07 23099.28 6997.11 14299.84 12796.84 16799.32 23399.47 127
Anonymous2024052998.93 5098.87 4599.12 10799.19 15098.22 12599.01 5798.99 22999.25 4599.54 3099.37 5897.04 14399.80 17697.89 9799.52 19699.35 177
VDDNet98.21 14997.95 16399.01 13299.58 5397.74 17799.01 5797.29 32499.67 1098.97 12999.50 3990.45 29199.80 17697.88 10099.20 25299.48 119
tfpnnormal98.90 5498.90 4498.91 14399.67 4297.82 16999.00 5999.44 8499.45 2899.51 3899.24 7698.20 5899.86 9495.92 22999.69 13399.04 240
VPA-MVSNet99.30 2499.30 2399.28 8399.49 8698.36 11499.00 5999.45 8199.63 1499.52 3599.44 5198.25 5099.88 7099.09 2899.84 5999.62 46
HPM-MVS_fast99.01 3898.82 5099.57 1899.71 3299.35 1299.00 5999.50 6097.33 19798.94 13898.86 16598.75 2499.82 15397.53 11899.71 12299.56 74
nrg03099.40 1899.35 1799.54 2999.58 5399.13 5598.98 6299.48 7099.68 999.46 4399.26 7398.62 3099.73 23099.17 2699.92 3799.76 20
canonicalmvs98.34 13598.26 13098.58 18698.46 29097.82 16998.96 6399.46 7899.19 5397.46 27295.46 35398.59 3299.46 32298.08 8898.71 29998.46 301
Vis-MVSNet (Re-imp)97.46 20897.16 21798.34 21599.55 6796.10 23998.94 6498.44 28898.32 11598.16 22198.62 21588.76 30299.73 23093.88 29599.79 8599.18 221
LFMVS97.20 22996.72 24398.64 17698.72 24996.95 21998.93 6594.14 35699.74 798.78 16399.01 12884.45 33299.73 23097.44 12199.27 24299.25 205
v899.01 3899.16 3098.57 18999.47 9696.31 23698.90 6699.47 7699.03 7399.52 3599.57 2896.93 15199.81 16799.60 499.98 999.60 52
v1098.97 4599.11 3398.55 19499.44 10296.21 23898.90 6699.55 4698.73 9399.48 4099.60 2596.63 17199.83 14299.70 399.99 599.61 51
APDe-MVS98.99 4098.79 5399.60 1399.21 14399.15 4898.87 6899.48 7097.57 17099.35 6299.24 7697.83 8399.89 5997.88 10099.70 12799.75 22
ACMMPcopyleft98.75 7398.50 9199.52 4199.56 6499.16 4398.87 6899.37 10597.16 21798.82 16099.01 12897.71 9399.87 8796.29 21399.69 13399.54 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OpenMVScopyleft96.65 797.09 23696.68 24698.32 21698.32 30197.16 21198.86 7099.37 10589.48 35196.29 32399.15 9496.56 17399.90 4992.90 31499.20 25297.89 324
XXY-MVS99.14 3299.15 3299.10 11199.76 2397.74 17798.85 7199.62 2298.48 10899.37 5899.49 4298.75 2499.86 9498.20 8199.80 8099.71 26
wuyk23d96.06 27897.62 18891.38 35398.65 27198.57 9698.85 7196.95 33096.86 23099.90 499.16 9099.18 1198.40 36689.23 35299.77 9377.18 371
HY-MVS95.94 1395.90 28295.35 29097.55 26797.95 32194.79 27398.81 7396.94 33192.28 32895.17 34698.57 22289.90 29599.75 22291.20 34197.33 34198.10 316
FMVSNet596.01 27995.20 29498.41 20997.53 34096.10 23998.74 7499.50 6097.22 21598.03 23599.04 11569.80 37099.88 7097.27 12999.71 12299.25 205
COLMAP_ROBcopyleft96.50 1098.99 4098.85 4899.41 6199.58 5399.10 6098.74 7499.56 4299.09 6799.33 6599.19 8298.40 4299.72 23895.98 22799.76 10399.42 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE99.05 3698.99 4299.25 9199.44 10298.35 11598.73 7699.56 4298.42 11098.91 14198.81 17998.94 1899.91 4598.35 7499.73 11099.49 109
tttt051795.64 28894.98 29997.64 25999.36 11793.81 30398.72 7790.47 36898.08 13698.67 17598.34 25073.88 36799.92 3597.77 10699.51 19999.20 214
CP-MVS98.70 8198.42 10899.52 4199.36 11799.12 5798.72 7799.36 10997.54 17498.30 21498.40 24097.86 8199.89 5996.53 19799.72 11799.56 74
CS-MVS-test98.41 12698.30 12598.73 17298.84 23098.39 10898.71 7999.79 597.98 14096.86 30297.38 31497.86 8199.83 14297.81 10399.46 21197.97 322
KD-MVS_self_test99.25 2799.18 2899.44 5799.63 5099.06 6498.69 8099.54 5099.31 4099.62 2799.53 3697.36 12799.86 9499.24 2299.71 12299.39 157
XVS98.72 7798.45 10299.53 3699.46 9799.21 2798.65 8199.34 12198.62 9997.54 26598.63 21397.50 11599.83 14296.79 16999.53 19399.56 74
X-MVStestdata94.32 30892.59 32699.53 3699.46 9799.21 2798.65 8199.34 12198.62 9997.54 26545.85 37297.50 11599.83 14296.79 16999.53 19399.56 74
mPP-MVS98.64 9398.34 12099.54 2999.54 7099.17 3998.63 8399.24 16897.47 17998.09 22998.68 19997.62 10299.89 5996.22 21699.62 15899.57 69
ambc98.24 22498.82 23695.97 24398.62 8499.00 22899.27 7699.21 7996.99 14899.50 31496.55 19599.50 20699.26 204
FMVSNet298.49 11898.40 11098.75 16898.90 21697.14 21398.61 8599.13 19998.59 10199.19 9199.28 6994.14 25299.82 15397.97 9599.80 8099.29 198
abl_698.99 4098.78 5499.61 999.45 10099.46 498.60 8699.50 6098.59 10199.24 8599.04 11598.54 3599.89 5996.45 20299.62 15899.50 105
ACMH+96.62 999.08 3599.00 4099.33 7699.71 3298.83 7598.60 8699.58 2899.11 5799.53 3399.18 8498.81 2299.67 25796.71 18099.77 9399.50 105
MVS_030497.64 19597.35 20698.52 19897.87 32696.69 22898.59 8898.05 30697.44 18893.74 36198.85 16893.69 26399.88 7098.11 8499.81 7298.98 249
VDD-MVS98.56 10598.39 11399.07 11899.13 16898.07 14098.59 8897.01 32899.59 2099.11 10099.27 7194.82 23599.79 19098.34 7599.63 15599.34 179
MSP-MVS98.40 12998.00 16099.61 999.57 5799.25 2398.57 9099.35 11597.55 17399.31 7397.71 29394.61 24299.88 7096.14 22299.19 25699.70 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CSCG98.68 8798.50 9199.20 9699.45 10098.63 8998.56 9199.57 3597.87 15098.85 15398.04 27497.66 9699.84 12796.72 17899.81 7299.13 229
RPSCF98.62 9798.36 11799.42 5899.65 4599.42 598.55 9299.57 3597.72 15998.90 14299.26 7396.12 19199.52 30995.72 24099.71 12299.32 187
DSMNet-mixed97.42 21297.60 19096.87 29799.15 16591.46 33498.54 9399.12 20192.87 32197.58 26199.63 2096.21 18999.90 4995.74 23999.54 18999.27 201
Anonymous20240521197.90 17197.50 19499.08 11598.90 21698.25 11998.53 9496.16 34098.87 8699.11 10098.86 16590.40 29299.78 20297.36 12599.31 23599.19 219
HFP-MVS98.71 7898.44 10499.51 4599.49 8699.16 4398.52 9599.31 13497.47 17998.58 19098.50 23197.97 7699.85 10996.57 18999.59 17199.53 94
region2R98.69 8398.40 11099.54 2999.53 7299.17 3998.52 9599.31 13497.46 18498.44 20498.51 22897.83 8399.88 7096.46 20199.58 17799.58 64
ACMMPR98.70 8198.42 10899.54 2999.52 7499.14 5298.52 9599.31 13497.47 17998.56 19498.54 22497.75 9099.88 7096.57 18999.59 17199.58 64
PMVScopyleft91.26 2097.86 17797.94 16597.65 25799.71 3297.94 15898.52 9598.68 27698.99 7697.52 26799.35 6297.41 12398.18 36791.59 33599.67 14496.82 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TSAR-MVS + MP.98.63 9598.49 9499.06 12399.64 4897.90 16098.51 9998.94 23296.96 22599.24 8598.89 16097.83 8399.81 16796.88 16399.49 20799.48 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft98.46 12198.09 15199.54 2999.57 5799.22 2698.50 10099.19 17997.61 16797.58 26198.66 20497.40 12499.88 7094.72 26799.60 16799.54 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVS_3200maxsize98.84 6098.61 7899.53 3699.19 15099.27 2198.49 10199.33 12698.64 9599.03 11998.98 13597.89 7999.85 10996.54 19699.42 21899.46 129
LCM-MVSNet-Re98.64 9398.48 9699.11 10998.85 22798.51 10298.49 10199.83 498.37 11199.69 1799.46 4698.21 5799.92 3594.13 28799.30 23898.91 264
baseline98.96 4799.02 3898.76 16699.38 11297.26 20198.49 10199.50 6098.86 8799.19 9199.06 10598.23 5299.69 24598.71 5399.76 10399.33 185
SR-MVS-dyc-post98.81 6398.55 8499.57 1899.20 14799.38 698.48 10499.30 14498.64 9598.95 13298.96 14097.49 11899.86 9496.56 19299.39 22299.45 133
RE-MVS-def98.58 8299.20 14799.38 698.48 10499.30 14498.64 9598.95 13298.96 14097.75 9096.56 19299.39 22299.45 133
ZNCC-MVS98.68 8798.40 11099.54 2999.57 5799.21 2798.46 10699.29 15197.28 20398.11 22798.39 24298.00 7299.87 8796.86 16699.64 15299.55 82
DP-MVS98.93 5098.81 5299.28 8399.21 14398.45 10698.46 10699.33 12699.63 1499.48 4099.15 9497.23 13799.75 22297.17 13399.66 14999.63 45
test_040298.76 7198.71 6298.93 14099.56 6498.14 13298.45 10899.34 12199.28 4398.95 13298.91 14998.34 4899.79 19095.63 24699.91 4398.86 269
MTAPA98.88 5698.64 7399.61 999.67 4299.36 1098.43 10999.20 17498.83 9098.89 14598.90 15296.98 14999.92 3597.16 13499.70 12799.56 74
VPNet98.87 5798.83 4999.01 13299.70 3897.62 18598.43 10999.35 11599.47 2699.28 7499.05 11296.72 16799.82 15398.09 8799.36 22799.59 58
Patchmatch-test96.55 26396.34 26397.17 28498.35 29993.06 31298.40 11197.79 31097.33 19798.41 20898.67 20183.68 33999.69 24595.16 25699.31 23598.77 283
test117298.76 7198.49 9499.57 1899.18 15799.37 998.39 11299.31 13498.43 10998.90 14298.88 16197.49 11899.86 9496.43 20499.37 22699.48 119
baseline195.96 28195.44 28697.52 27098.51 28693.99 29598.39 11296.09 34298.21 12598.40 21297.76 29186.88 31299.63 27595.42 25289.27 37198.95 255
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 11698.87 7298.39 11299.42 9399.42 3199.36 6099.06 10598.38 4399.95 1598.34 7599.90 4799.57 69
SR-MVS98.71 7898.43 10699.57 1899.18 15799.35 1298.36 11599.29 15198.29 11998.88 14998.85 16897.53 11199.87 8796.14 22299.31 23599.48 119
h-mvs3397.77 18897.33 20999.10 11199.21 14397.84 16598.35 11698.57 28299.11 5798.58 19099.02 11988.65 30699.96 898.11 8496.34 35299.49 109
EU-MVSNet97.66 19498.50 9195.13 33399.63 5085.84 36298.35 11698.21 29798.23 12499.54 3099.46 4695.02 22999.68 25498.24 7899.87 5599.87 4
CPTT-MVS97.84 18397.36 20599.27 8699.31 12498.46 10598.29 11899.27 15794.90 28697.83 24498.37 24694.90 23199.84 12793.85 29799.54 18999.51 101
MAR-MVS96.47 26895.70 27698.79 16097.92 32399.12 5798.28 11998.60 28192.16 33095.54 34196.17 34194.77 24099.52 30989.62 35198.23 31397.72 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
V4298.78 6898.78 5498.76 16699.44 10297.04 21498.27 12099.19 17997.87 15099.25 8499.16 9096.84 15599.78 20299.21 2399.84 5999.46 129
GST-MVS98.61 9898.30 12599.52 4199.51 7699.20 3398.26 12199.25 16397.44 18898.67 17598.39 24297.68 9499.85 10996.00 22599.51 19999.52 98
AllTest98.44 12398.20 13799.16 10299.50 7998.55 9798.25 12299.58 2896.80 23198.88 14999.06 10597.65 9799.57 29494.45 27499.61 16599.37 167
VNet98.42 12598.30 12598.79 16098.79 24297.29 19898.23 12398.66 27799.31 4098.85 15398.80 18094.80 23899.78 20298.13 8399.13 26699.31 191
PGM-MVS98.66 9098.37 11699.55 2699.53 7299.18 3898.23 12399.49 6897.01 22498.69 17398.88 16198.00 7299.89 5995.87 23399.59 17199.58 64
LPG-MVS_test98.71 7898.46 10099.47 5499.57 5798.97 6698.23 12399.48 7096.60 23999.10 10399.06 10598.71 2799.83 14295.58 24999.78 8999.62 46
SteuartSystems-ACMMP98.79 6598.54 8599.54 2999.73 2599.16 4398.23 12399.31 13497.92 14698.90 14298.90 15298.00 7299.88 7096.15 22199.72 11799.58 64
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS98.53 11498.27 12999.32 7899.31 12498.75 8098.19 12799.41 9496.77 23398.83 15698.90 15297.80 8799.82 15395.68 24399.52 19699.38 164
MVS_Test98.18 15298.36 11797.67 25598.48 28894.73 27598.18 12899.02 22297.69 16098.04 23499.11 10097.22 13899.56 29798.57 6098.90 29098.71 289
Patchmtry97.35 21696.97 22798.50 20297.31 34996.47 23198.18 12898.92 23798.95 8398.78 16399.37 5885.44 32699.85 10995.96 22899.83 6599.17 225
API-MVS97.04 24296.91 23297.42 27597.88 32598.23 12498.18 12898.50 28697.57 17097.39 27796.75 33096.77 16299.15 35390.16 34999.02 28094.88 367
test072699.50 7999.21 2798.17 13199.35 11597.97 14299.26 8099.06 10597.61 103
Anonymous2023120698.21 14998.21 13698.20 22699.51 7695.43 25898.13 13299.32 12896.16 25498.93 13998.82 17796.00 19699.83 14297.32 12799.73 11099.36 173
EPMVS93.72 32093.27 31995.09 33496.04 36887.76 35498.13 13285.01 37594.69 29096.92 29498.64 20978.47 36399.31 33995.04 25796.46 35198.20 312
PHI-MVS98.29 14197.95 16399.34 7398.44 29299.16 4398.12 13499.38 10196.01 26098.06 23198.43 23897.80 8799.67 25795.69 24299.58 17799.20 214
CR-MVSNet96.28 27495.95 27197.28 28097.71 33294.22 28598.11 13598.92 23792.31 32796.91 29699.37 5885.44 32699.81 16797.39 12497.36 33997.81 330
RPMNet97.02 24396.93 22897.30 27997.71 33294.22 28598.11 13599.30 14499.37 3596.91 29699.34 6486.72 31399.87 8797.53 11897.36 33997.81 330
SED-MVS98.91 5298.72 6099.49 4999.49 8699.17 3998.10 13799.31 13498.03 13899.66 2099.02 11998.36 4499.88 7096.91 15699.62 15899.41 148
OPU-MVS98.82 15498.59 27698.30 11698.10 13798.52 22798.18 5998.75 36494.62 26899.48 20999.41 148
CS-MVS98.16 15698.22 13597.97 24298.56 28097.01 21798.10 13799.70 1497.45 18697.29 28097.19 32097.72 9299.80 17698.37 7299.62 15897.11 349
tpmvs95.02 30195.25 29294.33 33996.39 36585.87 36198.08 14096.83 33495.46 27595.51 34398.69 19785.91 32199.53 30594.16 28296.23 35497.58 341
131495.74 28695.60 28096.17 31397.53 34092.75 32098.07 14198.31 29491.22 34094.25 35396.68 33195.53 21599.03 35591.64 33497.18 34296.74 354
112196.73 25696.00 26998.91 14398.95 20597.76 17498.07 14198.73 27387.65 35996.54 31398.13 26494.52 24499.73 23092.38 32699.02 28099.24 208
MVS93.19 32592.09 32996.50 30696.91 35494.03 29298.07 14198.06 30568.01 37094.56 35296.48 33595.96 20299.30 34183.84 36396.89 34796.17 359
ACMM96.08 1298.91 5298.73 5899.48 5199.55 6799.14 5298.07 14199.37 10597.62 16599.04 11698.96 14098.84 2099.79 19097.43 12299.65 15099.49 109
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS98.00 16597.74 17798.80 15898.72 24998.09 13498.05 14599.60 2597.39 19296.63 31095.55 35097.68 9499.80 17696.73 17799.27 24298.52 299
SMA-MVScopyleft98.40 12998.03 15899.51 4599.16 16199.21 2798.05 14599.22 17194.16 30398.98 12699.10 10297.52 11399.79 19096.45 20299.64 15299.53 94
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EG-PatchMatch MVS98.99 4099.01 3998.94 13999.50 7997.47 19098.04 14799.59 2698.15 13499.40 5399.36 6198.58 3399.76 21598.78 4699.68 13899.59 58
thres100view90094.19 31193.67 31595.75 32199.06 18491.35 33798.03 14894.24 35498.33 11497.40 27694.98 35979.84 35399.62 27783.05 36498.08 32396.29 357
#test#98.50 11798.16 14499.51 4599.49 8699.16 4398.03 14899.31 13496.30 25198.58 19098.50 23197.97 7699.85 10995.68 24399.59 17199.53 94
DVP-MVScopyleft98.77 7098.52 8799.52 4199.50 7999.21 2798.02 15098.84 25497.97 14299.08 10699.02 11997.61 10399.88 7096.99 15099.63 15599.48 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1399.50 7999.23 2598.02 15099.32 12899.88 7096.99 15099.63 15599.68 33
Effi-MVS+-dtu98.26 14497.90 16899.35 7098.02 31899.49 398.02 15099.16 19298.29 11997.64 25697.99 27696.44 18099.95 1596.66 18398.93 28998.60 296
DeepC-MVS97.60 498.97 4598.93 4399.10 11199.35 12197.98 15098.01 15399.46 7897.56 17299.54 3099.50 3998.97 1699.84 12798.06 8999.92 3799.49 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres600view794.45 30693.83 31296.29 30999.06 18491.53 33397.99 15494.24 35498.34 11397.44 27495.01 35779.84 35399.67 25784.33 36298.23 31397.66 338
RRT_test8_iter0595.24 29695.13 29695.57 32597.32 34887.02 35997.99 15499.41 9498.06 13799.12 9899.05 11266.85 37599.85 10998.93 3799.47 21099.84 8
PM-MVS98.82 6198.72 6099.12 10799.64 4898.54 10097.98 15699.68 1697.62 16599.34 6499.18 8497.54 10999.77 20897.79 10499.74 10799.04 240
CostFormer93.97 31693.78 31394.51 33897.53 34085.83 36397.98 15695.96 34389.29 35394.99 34998.63 21378.63 36099.62 27794.54 27096.50 35098.09 317
PatchT96.65 26096.35 26297.54 26897.40 34595.32 26097.98 15696.64 33699.33 3996.89 30099.42 5284.32 33499.81 16797.69 11497.49 33297.48 344
MTMP97.93 15991.91 365
ADS-MVSNet295.43 29394.98 29996.76 30398.14 31291.74 33197.92 16097.76 31190.23 34596.51 31698.91 14985.61 32399.85 10992.88 31596.90 34598.69 292
ADS-MVSNet95.24 29694.93 30196.18 31298.14 31290.10 34597.92 16097.32 32390.23 34596.51 31698.91 14985.61 32399.74 22692.88 31596.90 34598.69 292
EPNet96.14 27795.44 28698.25 22390.76 37795.50 25597.92 16094.65 34998.97 7992.98 36298.85 16889.12 30099.87 8795.99 22699.68 13899.39 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo98.08 15997.92 16698.57 18998.96 20396.79 22397.90 16399.18 18396.41 24698.46 20298.95 14495.93 20399.60 28496.51 19898.98 28699.31 191
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 12998.68 6897.54 26898.96 20397.99 14697.88 16499.36 10998.20 12899.63 2599.04 11598.76 2395.33 37396.56 19299.74 10799.31 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
tpm94.67 30494.34 30895.66 32397.68 33688.42 35097.88 16494.90 34894.46 29496.03 33098.56 22378.66 35999.79 19095.88 23095.01 36298.78 282
TAMVS98.24 14798.05 15698.80 15899.07 18097.18 20997.88 16498.81 26096.66 23899.17 9699.21 7994.81 23799.77 20896.96 15499.88 5299.44 138
thisisatest053095.27 29594.45 30597.74 25399.19 15094.37 28397.86 16790.20 36997.17 21698.22 21897.65 29773.53 36899.90 4996.90 16199.35 22998.95 255
FMVSNet397.50 20397.24 21398.29 22098.08 31695.83 24797.86 16798.91 23997.89 14998.95 13298.95 14487.06 31199.81 16797.77 10699.69 13399.23 209
114514_t96.50 26695.77 27398.69 17399.48 9497.43 19397.84 16999.55 4681.42 36896.51 31698.58 22195.53 21599.67 25793.41 30899.58 17798.98 249
DWT-MVSNet_test92.75 32992.05 33094.85 33596.48 36287.21 35797.83 17094.99 34792.22 32992.72 36394.11 36770.75 36999.46 32295.01 25894.33 36697.87 326
ACMMP_NAP98.75 7398.48 9699.57 1899.58 5399.29 1897.82 17199.25 16396.94 22698.78 16399.12 9898.02 7099.84 12797.13 14099.67 14499.59 58
casdiffmvs98.95 4899.00 4098.81 15699.38 11297.33 19697.82 17199.57 3599.17 5499.35 6299.17 8898.35 4799.69 24598.46 6799.73 11099.41 148
testtj97.79 18797.25 21199.42 5899.03 19098.85 7397.78 17399.18 18395.83 26698.12 22598.50 23195.50 21899.86 9492.23 32899.07 27299.54 86
testgi98.32 13698.39 11398.13 23099.57 5795.54 25297.78 17399.49 6897.37 19499.19 9197.65 29798.96 1799.49 31596.50 19998.99 28499.34 179
test20.0398.78 6898.77 5698.78 16399.46 9797.20 20797.78 17399.24 16899.04 7299.41 5098.90 15297.65 9799.76 21597.70 11299.79 8599.39 157
HQP_MVS97.99 16897.67 18198.93 14099.19 15097.65 18297.77 17699.27 15798.20 12897.79 24797.98 27794.90 23199.70 24194.42 27699.51 19999.45 133
plane_prior297.77 17698.20 128
APD-MVScopyleft98.10 15797.67 18199.42 5899.11 16998.93 7097.76 17899.28 15494.97 28498.72 17298.77 18597.04 14399.85 10993.79 29899.54 18999.49 109
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.85 698.30 13898.15 14698.75 16898.61 27297.23 20297.76 17899.09 20597.31 20098.75 16998.66 20497.56 10799.64 27296.10 22499.55 18899.39 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MDTV_nov1_ep1395.22 29397.06 35383.20 37197.74 18096.16 34094.37 29896.99 29298.83 17483.95 33799.53 30593.90 29397.95 327
UniMVSNet (Re)98.87 5798.71 6299.35 7099.24 13698.73 8497.73 18199.38 10198.93 8499.12 9898.73 19096.77 16299.86 9498.63 5799.80 8099.46 129
alignmvs97.35 21696.88 23398.78 16398.54 28398.09 13497.71 18297.69 31499.20 4997.59 26095.90 34588.12 31099.55 30098.18 8298.96 28798.70 291
XVG-ACMP-BASELINE98.56 10598.34 12099.22 9599.54 7098.59 9497.71 18299.46 7897.25 20698.98 12698.99 13197.54 10999.84 12795.88 23099.74 10799.23 209
MDTV_nov1_ep13_2view74.92 37897.69 18490.06 35097.75 25085.78 32293.52 30498.69 292
UniMVSNet_NR-MVSNet98.86 5998.68 6899.40 6399.17 15998.74 8197.68 18599.40 9799.14 5599.06 10998.59 22096.71 16899.93 2898.57 6099.77 9399.53 94
ACMP95.32 1598.41 12698.09 15199.36 6599.51 7698.79 7997.68 18599.38 10195.76 26898.81 16298.82 17798.36 4499.82 15394.75 26499.77 9399.48 119
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tpm293.09 32692.58 32794.62 33797.56 33886.53 36097.66 18795.79 34586.15 36294.07 35798.23 25975.95 36499.53 30590.91 34596.86 34897.81 330
dp93.47 32293.59 31693.13 35296.64 35981.62 37597.66 18796.42 33892.80 32296.11 32598.64 20978.55 36299.59 28893.31 31092.18 37098.16 314
PatchmatchNetpermissive95.58 28995.67 27895.30 33297.34 34787.32 35697.65 18996.65 33595.30 27997.07 28898.69 19784.77 32999.75 22294.97 26098.64 30398.83 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14419298.54 11298.57 8398.45 20699.21 14395.98 24297.63 19099.36 10997.15 21999.32 7199.18 8495.84 20799.84 12799.50 1099.91 4399.54 86
tpmrst95.07 29995.46 28493.91 34397.11 35284.36 36997.62 19196.96 32994.98 28396.35 32298.80 18085.46 32599.59 28895.60 24796.23 35497.79 333
UnsupCasMVSNet_eth97.89 17397.60 19098.75 16899.31 12497.17 21097.62 19199.35 11598.72 9498.76 16898.68 19992.57 27999.74 22697.76 11095.60 35999.34 179
Fast-Effi-MVS+-dtu98.27 14298.09 15198.81 15698.43 29398.11 13397.61 19399.50 6098.64 9597.39 27797.52 30598.12 6599.95 1596.90 16198.71 29998.38 307
tfpn200view994.03 31593.44 31795.78 32098.93 20891.44 33597.60 19494.29 35297.94 14497.10 28594.31 36579.67 35599.62 27783.05 36498.08 32396.29 357
thres40094.14 31393.44 31796.24 31198.93 20891.44 33597.60 19494.29 35297.94 14497.10 28594.31 36579.67 35599.62 27783.05 36498.08 32397.66 338
test_post197.59 19620.48 37683.07 34299.66 26594.16 282
v114498.60 10098.66 7198.41 20999.36 11795.90 24497.58 19799.34 12197.51 17599.27 7699.15 9496.34 18799.80 17699.47 1299.93 2899.51 101
v2v48298.56 10598.62 7598.37 21399.42 10795.81 24897.58 19799.16 19297.90 14899.28 7499.01 12895.98 20099.79 19099.33 1599.90 4799.51 101
v192192098.54 11298.60 8098.38 21299.20 14795.76 25097.56 19999.36 10997.23 21299.38 5699.17 8896.02 19499.84 12799.57 699.90 4799.54 86
MVSTER96.86 25196.55 25797.79 24997.91 32494.21 28797.56 19998.87 24597.49 17899.06 10999.05 11280.72 35099.80 17698.44 6899.82 6899.37 167
DU-MVS98.82 6198.63 7499.39 6499.16 16198.74 8197.54 20199.25 16398.84 8999.06 10998.76 18796.76 16499.93 2898.57 6099.77 9399.50 105
9.1497.78 17499.07 18097.53 20299.32 12895.53 27398.54 19898.70 19697.58 10599.76 21594.32 28199.46 211
v119298.60 10098.66 7198.41 20999.27 13195.88 24597.52 20399.36 10997.41 19099.33 6599.20 8196.37 18599.82 15399.57 699.92 3799.55 82
HPM-MVS++copyleft98.10 15797.64 18699.48 5199.09 17699.13 5597.52 20398.75 27097.46 18496.90 29997.83 28796.01 19599.84 12795.82 23799.35 22999.46 129
ETV-MVS98.03 16197.86 17198.56 19398.69 26098.07 14097.51 20599.50 6098.10 13597.50 26995.51 35198.41 4199.88 7096.27 21499.24 24797.71 337
v124098.55 10998.62 7598.32 21699.22 14195.58 25197.51 20599.45 8197.16 21799.45 4699.24 7696.12 19199.85 10999.60 499.88 5299.55 82
MSLP-MVS++98.02 16398.14 14897.64 25998.58 27795.19 26597.48 20799.23 17097.47 17997.90 23998.62 21597.04 14398.81 36397.55 11599.41 21998.94 259
PAPM_NR96.82 25496.32 26498.30 21999.07 18096.69 22897.48 20798.76 26795.81 26796.61 31296.47 33694.12 25599.17 35190.82 34797.78 32999.06 235
ETH3D-3000-0.198.03 16197.62 18899.29 8199.11 16998.80 7897.47 20999.32 12895.54 27198.43 20798.62 21596.61 17299.77 20893.95 29299.49 20799.30 194
Baseline_NR-MVSNet98.98 4498.86 4799.36 6599.82 1698.55 9797.47 20999.57 3599.37 3599.21 8999.61 2396.76 16499.83 14298.06 8999.83 6599.71 26
hse-mvs297.46 20897.07 22198.64 17698.73 24797.33 19697.45 21197.64 31799.11 5798.58 19097.98 27788.65 30699.79 19098.11 8497.39 33698.81 275
v14898.45 12298.60 8098.00 24099.44 10294.98 27097.44 21299.06 20998.30 11699.32 7198.97 13796.65 17099.62 27798.37 7299.85 5799.39 157
tpm cat193.29 32493.13 32393.75 34597.39 34684.74 36697.39 21397.65 31583.39 36794.16 35498.41 23982.86 34399.39 33091.56 33695.35 36197.14 348
AUN-MVS96.24 27695.45 28598.60 18498.70 25697.22 20497.38 21497.65 31595.95 26295.53 34297.96 28182.11 34999.79 19096.31 21197.44 33498.80 280
OpenMVS_ROBcopyleft95.38 1495.84 28495.18 29597.81 24898.41 29797.15 21297.37 21598.62 28083.86 36598.65 17898.37 24694.29 25099.68 25488.41 35498.62 30596.60 356
RRT_MVS97.07 23896.57 25598.58 18695.89 37096.33 23497.36 21698.77 26697.85 15299.08 10699.12 9882.30 34599.96 898.82 4499.90 4799.45 133
PVSNet_Blended_VisFu98.17 15498.15 14698.22 22599.73 2595.15 26697.36 21699.68 1694.45 29698.99 12499.27 7196.87 15499.94 2397.13 14099.91 4399.57 69
zzz-MVS98.79 6598.52 8799.61 999.67 4299.36 1097.33 21899.20 17498.83 9098.89 14598.90 15296.98 14999.92 3597.16 13499.70 12799.56 74
Effi-MVS+98.02 16397.82 17398.62 18198.53 28597.19 20897.33 21899.68 1697.30 20196.68 30897.46 31098.56 3499.80 17696.63 18598.20 31598.86 269
mvs_anonymous97.83 18598.16 14496.87 29798.18 31091.89 33097.31 22098.90 24097.37 19498.83 15699.46 4696.28 18899.79 19098.90 3898.16 31898.95 255
test_yl96.69 25796.29 26597.90 24398.28 30395.24 26297.29 22197.36 32098.21 12598.17 21997.86 28486.27 31699.55 30094.87 26298.32 31198.89 265
DCV-MVSNet96.69 25796.29 26597.90 24398.28 30395.24 26297.29 22197.36 32098.21 12598.17 21997.86 28486.27 31699.55 30094.87 26298.32 31198.89 265
MS-PatchMatch97.68 19297.75 17697.45 27398.23 30893.78 30497.29 22198.84 25496.10 25698.64 17998.65 20696.04 19399.36 33396.84 16799.14 26399.20 214
F-COLMAP97.30 22096.68 24699.14 10599.19 15098.39 10897.27 22499.30 14492.93 31996.62 31198.00 27595.73 21099.68 25492.62 32398.46 30999.35 177
Fast-Effi-MVS+97.67 19397.38 20398.57 18998.71 25297.43 19397.23 22599.45 8194.82 28896.13 32496.51 33398.52 3699.91 4596.19 21898.83 29298.37 309
EI-MVSNet-UG-set98.69 8398.71 6298.62 18199.10 17396.37 23397.23 22598.87 24599.20 4999.19 9198.99 13197.30 12999.85 10998.77 4999.79 8599.65 40
EI-MVSNet-Vis-set98.68 8798.70 6598.63 17999.09 17696.40 23297.23 22598.86 25099.20 4999.18 9598.97 13797.29 13199.85 10998.72 5299.78 8999.64 41
IterMVS-LS98.55 10998.70 6598.09 23199.48 9494.73 27597.22 22899.39 9998.97 7999.38 5699.31 6896.00 19699.93 2898.58 5899.97 1199.60 52
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs-test197.83 18597.48 19898.89 14698.02 31899.20 3397.20 22999.16 19298.29 11996.46 32097.17 32296.44 18099.92 3596.66 18397.90 32897.54 343
EI-MVSNet98.40 12998.51 8998.04 23899.10 17394.73 27597.20 22998.87 24598.97 7999.06 10999.02 11996.00 19699.80 17698.58 5899.82 6899.60 52
CVMVSNet96.25 27597.21 21593.38 35099.10 17380.56 37697.20 22998.19 30096.94 22699.00 12399.02 11989.50 29899.80 17696.36 20999.59 17199.78 14
LF4IMVS97.90 17197.69 18098.52 19899.17 15997.66 18197.19 23299.47 7696.31 25097.85 24398.20 26196.71 16899.52 30994.62 26899.72 11798.38 307
Regformer-398.61 9898.61 7898.63 17999.02 19296.53 23097.17 23398.84 25499.13 5699.10 10398.85 16897.24 13699.79 19098.41 7199.70 12799.57 69
Regformer-498.73 7698.68 6898.89 14699.02 19297.22 20497.17 23399.06 20999.21 4699.17 9698.85 16897.45 12199.86 9498.48 6699.70 12799.60 52
MP-MVS-pluss98.57 10498.23 13499.60 1399.69 4099.35 1297.16 23599.38 10194.87 28798.97 12998.99 13198.01 7199.88 7097.29 12899.70 12799.58 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs-eth3d98.47 12098.34 12098.86 15099.30 12797.76 17497.16 23599.28 15495.54 27199.42 4999.19 8297.27 13299.63 27597.89 9799.97 1199.20 214
OPM-MVS98.56 10598.32 12499.25 9199.41 10998.73 8497.13 23799.18 18397.10 22098.75 16998.92 14898.18 5999.65 27096.68 18299.56 18699.37 167
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
plane_prior97.65 18297.07 23896.72 23599.36 227
CMPMVSbinary75.91 2396.29 27395.44 28698.84 15296.25 36698.69 8797.02 23999.12 20188.90 35497.83 24498.86 16589.51 29798.90 36191.92 32999.51 19998.92 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DPE-MVScopyleft98.59 10398.26 13099.57 1899.27 13199.15 4897.01 24099.39 9997.67 16199.44 4798.99 13197.53 11199.89 5995.40 25399.68 13899.66 36
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.17 15497.87 17099.07 11898.67 26598.24 12097.01 24098.93 23497.25 20697.62 25798.34 25097.27 13299.57 29496.42 20599.33 23299.39 157
NCCC97.86 17797.47 19999.05 12598.61 27298.07 14096.98 24298.90 24097.63 16497.04 29097.93 28295.99 19999.66 26595.31 25498.82 29399.43 142
AdaColmapbinary97.14 23496.71 24498.46 20598.34 30097.80 17296.95 24398.93 23495.58 27096.92 29497.66 29695.87 20699.53 30590.97 34399.14 26398.04 318
D2MVS97.84 18397.84 17297.83 24799.14 16694.74 27496.94 24498.88 24395.84 26598.89 14598.96 14094.40 24799.69 24597.55 11599.95 1699.05 236
OMC-MVS97.88 17597.49 19599.04 12798.89 22198.63 8996.94 24499.25 16395.02 28298.53 19998.51 22897.27 13299.47 32093.50 30699.51 19999.01 244
JIA-IIPM95.52 29195.03 29897.00 28996.85 35694.03 29296.93 24695.82 34499.20 4994.63 35199.71 1283.09 34199.60 28494.42 27694.64 36397.36 346
TAPA-MVS96.21 1196.63 26195.95 27198.65 17598.93 20898.09 13496.93 24699.28 15483.58 36698.13 22497.78 28996.13 19099.40 32893.52 30499.29 24098.45 303
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CDS-MVSNet97.69 19197.35 20698.69 17398.73 24797.02 21696.92 24898.75 27095.89 26498.59 18898.67 20192.08 28499.74 22696.72 17899.81 7299.32 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Regformer-198.55 10998.44 10498.87 14898.85 22797.29 19896.91 24998.99 22998.97 7998.99 12498.64 20997.26 13599.81 16797.79 10499.57 18199.51 101
Regformer-298.60 10098.46 10099.02 13198.85 22797.71 17996.91 24999.09 20598.98 7899.01 12098.64 20997.37 12699.84 12797.75 11199.57 18199.52 98
MCST-MVS98.00 16597.63 18799.10 11199.24 13698.17 12996.89 25198.73 27395.66 26997.92 23797.70 29597.17 13999.66 26596.18 22099.23 24899.47 127
ETH3D cwj APD-0.1697.55 20197.00 22599.19 9898.51 28698.64 8896.85 25299.13 19994.19 30297.65 25598.40 24095.78 20899.81 16793.37 30999.16 25999.12 230
WR-MVS98.40 12998.19 13999.03 12899.00 19597.65 18296.85 25298.94 23298.57 10598.89 14598.50 23195.60 21399.85 10997.54 11799.85 5799.59 58
baseline293.73 31992.83 32596.42 30797.70 33491.28 34096.84 25489.77 37093.96 30892.44 36495.93 34479.14 35899.77 20892.94 31396.76 34998.21 311
DP-MVS Recon97.33 21896.92 23098.57 18999.09 17697.99 14696.79 25599.35 11593.18 31697.71 25198.07 27395.00 23099.31 33993.97 29099.13 26698.42 306
EPNet_dtu94.93 30294.78 30395.38 33193.58 37487.68 35596.78 25695.69 34697.35 19689.14 37098.09 27188.15 30999.49 31594.95 26199.30 23898.98 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS96.67 25996.27 26797.87 24598.81 23894.61 28096.77 25797.92 30994.94 28597.12 28497.74 29291.11 28899.82 15393.89 29498.15 31999.18 221
CANet97.87 17697.76 17598.19 22797.75 33095.51 25496.76 25899.05 21397.74 15796.93 29398.21 26095.59 21499.89 5997.86 10299.93 2899.19 219
sss97.21 22896.93 22898.06 23698.83 23395.22 26496.75 25998.48 28794.49 29297.27 28197.90 28392.77 27699.80 17696.57 18999.32 23399.16 228
1112_ss97.29 22296.86 23498.58 18699.34 12396.32 23596.75 25999.58 2893.14 31796.89 30097.48 30892.11 28399.86 9496.91 15699.54 18999.57 69
BH-untuned96.83 25296.75 24297.08 28798.74 24693.33 30996.71 26198.26 29596.72 23598.44 20497.37 31695.20 22599.47 32091.89 33097.43 33598.44 304
pmmvs597.64 19597.49 19598.08 23499.14 16695.12 26896.70 26299.05 21393.77 30998.62 18298.83 17493.23 26599.75 22298.33 7799.76 10399.36 173
BH-RMVSNet96.83 25296.58 25497.58 26398.47 28994.05 29096.67 26397.36 32096.70 23797.87 24197.98 27795.14 22799.44 32590.47 34898.58 30799.25 205
PVSNet_BlendedMVS97.55 20197.53 19297.60 26198.92 21293.77 30596.64 26499.43 9094.49 29297.62 25799.18 8496.82 15899.67 25794.73 26599.93 2899.36 173
MDA-MVSNet-bldmvs97.94 16997.91 16798.06 23699.44 10294.96 27196.63 26599.15 19898.35 11298.83 15699.11 10094.31 24999.85 10996.60 18698.72 29799.37 167
thres20093.72 32093.14 32295.46 33098.66 27091.29 33996.61 26694.63 35097.39 19296.83 30493.71 36879.88 35299.56 29782.40 36798.13 32095.54 366
XVG-OURS-SEG-HR98.49 11898.28 12899.14 10599.49 8698.83 7596.54 26799.48 7097.32 19999.11 10098.61 21899.33 899.30 34196.23 21598.38 31099.28 199
xxxxxxxxxxxxxcwj98.44 12398.24 13299.06 12399.11 16997.97 15196.53 26899.54 5098.24 12298.83 15698.90 15297.80 8799.82 15395.68 24399.52 19699.38 164
ETH3 D test640096.46 26995.59 28199.08 11598.88 22298.21 12696.53 26899.18 18388.87 35597.08 28797.79 28893.64 26499.77 20888.92 35399.40 22199.28 199
save fliter99.11 16997.97 15196.53 26899.02 22298.24 122
CHOSEN 1792x268897.49 20597.14 22098.54 19799.68 4196.09 24196.50 27199.62 2291.58 33598.84 15598.97 13792.36 28099.88 7096.76 17399.95 1699.67 35
TR-MVS95.55 29095.12 29796.86 30097.54 33993.94 29696.49 27296.53 33794.36 29997.03 29196.61 33294.26 25199.16 35286.91 35896.31 35397.47 345
xiu_mvs_v1_base_debu97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
xiu_mvs_v1_base97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
xiu_mvs_v1_base_debi97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
new-patchmatchnet98.35 13498.74 5797.18 28399.24 13692.23 32896.42 27699.48 7098.30 11699.69 1799.53 3697.44 12299.82 15398.84 4399.77 9399.49 109
PLCcopyleft94.65 1696.51 26495.73 27598.85 15198.75 24597.91 15996.42 27699.06 20990.94 34495.59 33497.38 31494.41 24699.59 28890.93 34498.04 32699.05 236
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
diffmvs98.22 14898.24 13298.17 22899.00 19595.44 25796.38 27899.58 2897.79 15698.53 19998.50 23196.76 16499.74 22697.95 9699.64 15299.34 179
PatchMatch-RL97.24 22696.78 24098.61 18399.03 19097.83 16696.36 27999.06 20993.49 31497.36 27997.78 28995.75 20999.49 31593.44 30798.77 29498.52 299
CNLPA97.17 23296.71 24498.55 19498.56 28098.05 14396.33 28098.93 23496.91 22897.06 28997.39 31394.38 24899.45 32491.66 33299.18 25898.14 315
TSAR-MVS + GP.98.18 15297.98 16198.77 16598.71 25297.88 16196.32 28198.66 27796.33 24899.23 8898.51 22897.48 12099.40 32897.16 13499.46 21199.02 243
HQP-NCC98.67 26596.29 28296.05 25795.55 338
ACMP_Plane98.67 26596.29 28296.05 25795.55 338
HQP-MVS97.00 24696.49 25998.55 19498.67 26596.79 22396.29 28299.04 21696.05 25795.55 33896.84 32893.84 25799.54 30392.82 31799.26 24599.32 187
MVS-HIRNet94.32 30895.62 27990.42 35498.46 29075.36 37796.29 28289.13 37195.25 28095.38 34499.75 792.88 27499.19 35094.07 28999.39 22296.72 355
TinyColmap97.89 17397.98 16197.60 26198.86 22594.35 28496.21 28699.44 8497.45 18699.06 10998.88 16197.99 7599.28 34494.38 28099.58 17799.18 221
UnsupCasMVSNet_bld97.30 22096.92 23098.45 20699.28 12996.78 22696.20 28799.27 15795.42 27698.28 21698.30 25493.16 26799.71 23994.99 25997.37 33798.87 268
CANet_DTU97.26 22397.06 22297.84 24697.57 33794.65 27996.19 28898.79 26397.23 21295.14 34798.24 25793.22 26699.84 12797.34 12699.84 5999.04 240
Patchmatch-RL test97.26 22397.02 22497.99 24199.52 7495.53 25396.13 28999.71 1197.47 17999.27 7699.16 9084.30 33599.62 27797.89 9799.77 9398.81 275
MVS_111021_LR98.30 13898.12 14998.83 15399.16 16198.03 14496.09 29099.30 14497.58 16998.10 22898.24 25798.25 5099.34 33596.69 18199.65 15099.12 230
CDPH-MVS97.26 22396.66 24999.07 11899.00 19598.15 13096.03 29199.01 22591.21 34197.79 24797.85 28696.89 15399.69 24592.75 32099.38 22599.39 157
N_pmnet97.63 19797.17 21698.99 13499.27 13197.86 16395.98 29293.41 35995.25 28099.47 4298.90 15295.63 21299.85 10996.91 15699.73 11099.27 201
XVG-OURS98.53 11498.34 12099.11 10999.50 7998.82 7795.97 29399.50 6097.30 20199.05 11498.98 13599.35 799.32 33895.72 24099.68 13899.18 221
MVS_111021_HR98.25 14698.08 15498.75 16899.09 17697.46 19195.97 29399.27 15797.60 16897.99 23698.25 25698.15 6499.38 33296.87 16499.57 18199.42 145
TEST998.71 25298.08 13895.96 29599.03 21891.40 33895.85 33197.53 30396.52 17599.76 215
train_agg97.10 23596.45 26099.07 11898.71 25298.08 13895.96 29599.03 21891.64 33395.85 33197.53 30396.47 17899.76 21593.67 30099.16 25999.36 173
new_pmnet96.99 24796.76 24197.67 25598.72 24994.89 27295.95 29798.20 29892.62 32498.55 19698.54 22494.88 23499.52 30993.96 29199.44 21798.59 298
新几何295.93 298
MG-MVS96.77 25596.61 25197.26 28198.31 30293.06 31295.93 29898.12 30396.45 24597.92 23798.73 19093.77 26199.39 33091.19 34299.04 27699.33 185
test_898.67 26598.01 14595.91 30099.02 22291.64 33395.79 33397.50 30696.47 17899.76 215
test_prior497.97 15195.86 301
jason97.45 21097.35 20697.76 25199.24 13693.93 29795.86 30198.42 28994.24 30098.50 20198.13 26494.82 23599.91 4597.22 13199.73 11099.43 142
jason: jason.
SCA96.41 27196.66 24995.67 32298.24 30688.35 35195.85 30396.88 33396.11 25597.67 25498.67 20193.10 26999.85 10994.16 28299.22 24998.81 275
Test_1112_low_res96.99 24796.55 25798.31 21899.35 12195.47 25695.84 30499.53 5491.51 33796.80 30698.48 23691.36 28799.83 14296.58 18799.53 19399.62 46
agg_prior197.06 23996.40 26199.03 12898.68 26397.99 14695.76 30599.01 22591.73 33295.59 33497.50 30696.49 17799.77 20893.71 29999.14 26399.34 179
旧先验295.76 30588.56 35797.52 26799.66 26594.48 272
test_prior397.48 20797.00 22598.95 13798.69 26097.95 15695.74 30799.03 21896.48 24396.11 32597.63 29995.92 20499.59 28894.16 28299.20 25299.30 194
test_prior295.74 30796.48 24396.11 32597.63 29995.92 20494.16 28299.20 252
无先验95.74 30798.74 27289.38 35299.73 23092.38 32699.22 213
BH-w/o95.13 29894.89 30295.86 31798.20 30991.31 33895.65 31097.37 31993.64 31096.52 31595.70 34893.04 27299.02 35688.10 35595.82 35897.24 347
FPMVS93.44 32392.23 32897.08 28799.25 13597.86 16395.61 31197.16 32692.90 32093.76 36098.65 20675.94 36595.66 37179.30 37197.49 33297.73 335
DELS-MVS98.27 14298.20 13798.48 20398.86 22596.70 22795.60 31299.20 17497.73 15898.45 20398.71 19397.50 11599.82 15398.21 8099.59 17198.93 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test22298.92 21296.93 22095.54 31398.78 26585.72 36396.86 30298.11 26894.43 24599.10 27199.23 209
IterMVS-SCA-FT97.85 18298.18 14096.87 29799.27 13191.16 34395.53 31499.25 16399.10 6499.41 5099.35 6293.10 26999.96 898.65 5699.94 2499.49 109
原ACMM295.53 314
IterMVS97.73 18998.11 15096.57 30499.24 13690.28 34495.52 31699.21 17298.86 8799.33 6599.33 6693.11 26899.94 2398.49 6599.94 2499.48 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lupinMVS97.06 23996.86 23497.65 25798.88 22293.89 30195.48 31797.97 30793.53 31298.16 22197.58 30193.81 25999.91 4596.77 17299.57 18199.17 225
xiu_mvs_v2_base97.16 23397.49 19596.17 31398.54 28392.46 32395.45 31898.84 25497.25 20697.48 27196.49 33498.31 4999.90 4996.34 21098.68 30196.15 361
testdata195.44 31996.32 249
pmmvs497.58 20097.28 21098.51 20098.84 23096.93 22095.40 32098.52 28593.60 31198.61 18498.65 20695.10 22899.60 28496.97 15399.79 8598.99 248
YYNet197.60 19897.67 18197.39 27799.04 18793.04 31595.27 32198.38 29297.25 20698.92 14098.95 14495.48 22099.73 23096.99 15098.74 29599.41 148
MDA-MVSNet_test_wron97.60 19897.66 18497.41 27699.04 18793.09 31195.27 32198.42 28997.26 20598.88 14998.95 14495.43 22199.73 23097.02 14798.72 29799.41 148
PS-MVSNAJ97.08 23797.39 20296.16 31598.56 28092.46 32395.24 32398.85 25397.25 20697.49 27095.99 34398.07 6699.90 4996.37 20798.67 30296.12 362
HyFIR lowres test97.19 23096.60 25398.96 13699.62 5297.28 20095.17 32499.50 6094.21 30199.01 12098.32 25386.61 31499.99 297.10 14299.84 5999.60 52
USDC97.41 21397.40 20197.44 27498.94 20693.67 30795.17 32499.53 5494.03 30698.97 12999.10 10295.29 22399.34 33595.84 23699.73 11099.30 194
miper_lstm_enhance97.18 23197.16 21797.25 28298.16 31192.85 31795.15 32699.31 13497.25 20698.74 17198.78 18390.07 29399.78 20297.19 13299.80 8099.11 232
pmmvs395.03 30094.40 30696.93 29397.70 33492.53 32295.08 32797.71 31388.57 35697.71 25198.08 27279.39 35799.82 15396.19 21899.11 27098.43 305
DeepPCF-MVS96.93 598.32 13698.01 15999.23 9498.39 29898.97 6695.03 32899.18 18396.88 22999.33 6598.78 18398.16 6299.28 34496.74 17599.62 15899.44 138
c3_l97.36 21597.37 20497.31 27898.09 31593.25 31095.01 32999.16 19297.05 22198.77 16698.72 19292.88 27499.64 27296.93 15599.76 10399.05 236
test0.0.03 194.51 30593.69 31496.99 29096.05 36793.61 30894.97 33093.49 35896.17 25297.57 26394.88 36182.30 34599.01 35893.60 30294.17 36798.37 309
PMMVS96.51 26495.98 27098.09 23197.53 34095.84 24694.92 33198.84 25491.58 33596.05 32995.58 34995.68 21199.66 26595.59 24898.09 32298.76 285
PAPR95.29 29494.47 30497.75 25297.50 34495.14 26794.89 33298.71 27591.39 33995.35 34595.48 35294.57 24399.14 35484.95 36197.37 33798.97 253
test12317.04 34320.11 3467.82 35710.25 3814.91 38194.80 3334.47 3824.93 37510.00 37724.28 3749.69 3803.64 37610.14 37412.43 37514.92 372
ET-MVSNet_ETH3D94.30 31093.21 32097.58 26398.14 31294.47 28294.78 33493.24 36194.72 28989.56 36995.87 34678.57 36199.81 16796.91 15697.11 34498.46 301
eth_miper_zixun_eth97.23 22797.25 21197.17 28498.00 32092.77 31994.71 33599.18 18397.27 20498.56 19498.74 18991.89 28599.69 24597.06 14699.81 7299.05 236
PVSNet_Blended96.88 25096.68 24697.47 27298.92 21293.77 30594.71 33599.43 9090.98 34397.62 25797.36 31796.82 15899.67 25794.73 26599.56 18698.98 249
CLD-MVS97.49 20597.16 21798.48 20399.07 18097.03 21594.71 33599.21 17294.46 29498.06 23197.16 32397.57 10699.48 31894.46 27399.78 8998.95 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth97.06 23997.03 22397.16 28697.83 32793.06 31294.66 33899.09 20595.99 26198.69 17398.45 23792.73 27799.61 28396.79 16999.03 27798.82 272
cl____97.02 24396.83 23797.58 26397.82 32894.04 29194.66 33899.16 19297.04 22298.63 18098.71 19388.68 30599.69 24597.00 14899.81 7299.00 247
DIV-MVS_self_test97.02 24396.84 23697.58 26397.82 32894.03 29294.66 33899.16 19297.04 22298.63 18098.71 19388.69 30399.69 24597.00 14899.81 7299.01 244
our_test_397.39 21497.73 17996.34 30898.70 25689.78 34694.61 34198.97 23196.50 24299.04 11698.85 16895.98 20099.84 12797.26 13099.67 14499.41 148
PMMVS298.07 16098.08 15498.04 23899.41 10994.59 28194.59 34299.40 9797.50 17698.82 16098.83 17496.83 15799.84 12797.50 12099.81 7299.71 26
ppachtmachnet_test97.50 20397.74 17796.78 30298.70 25691.23 34294.55 34399.05 21396.36 24799.21 8998.79 18296.39 18299.78 20296.74 17599.82 6899.34 179
DPM-MVS96.32 27295.59 28198.51 20098.76 24397.21 20694.54 34498.26 29591.94 33196.37 32197.25 31993.06 27199.43 32691.42 33898.74 29598.89 265
MSDG97.71 19097.52 19398.28 22198.91 21596.82 22294.42 34599.37 10597.65 16398.37 21398.29 25597.40 12499.33 33794.09 28899.22 24998.68 295
cl2295.79 28595.39 28996.98 29196.77 35892.79 31894.40 34698.53 28494.59 29197.89 24098.17 26382.82 34499.24 34696.37 20799.03 27798.92 261
IB-MVS91.63 1992.24 33490.90 33896.27 31097.22 35191.24 34194.36 34793.33 36092.37 32692.24 36594.58 36466.20 37899.89 5993.16 31294.63 36497.66 338
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CL-MVSNet_self_test97.44 21197.22 21498.08 23498.57 27995.78 24994.30 34898.79 26396.58 24198.60 18698.19 26294.74 24199.64 27296.41 20698.84 29198.82 272
tmp_tt78.77 34078.73 34378.90 35658.45 37974.76 37994.20 34978.26 37939.16 37286.71 37292.82 37080.50 35175.19 37586.16 36092.29 36986.74 370
KD-MVS_2432*160092.87 32791.99 33195.51 32891.37 37589.27 34794.07 35098.14 30195.42 27697.25 28296.44 33767.86 37299.24 34691.28 33996.08 35698.02 319
miper_refine_blended92.87 32791.99 33195.51 32891.37 37589.27 34794.07 35098.14 30195.42 27697.25 28296.44 33767.86 37299.24 34691.28 33996.08 35698.02 319
test-LLR93.90 31793.85 31194.04 34196.53 36084.62 36794.05 35292.39 36396.17 25294.12 35595.07 35582.30 34599.67 25795.87 23398.18 31697.82 328
TESTMET0.1,192.19 33591.77 33593.46 34896.48 36282.80 37294.05 35291.52 36694.45 29694.00 35894.88 36166.65 37699.56 29795.78 23898.11 32198.02 319
test-mter92.33 33391.76 33694.04 34196.53 36084.62 36794.05 35292.39 36394.00 30794.12 35595.07 35565.63 37999.67 25795.87 23398.18 31697.82 328
GA-MVS95.86 28395.32 29197.49 27198.60 27494.15 28993.83 35597.93 30895.49 27496.68 30897.42 31283.21 34099.30 34196.22 21698.55 30899.01 244
thisisatest051594.12 31493.16 32196.97 29298.60 27492.90 31693.77 35690.61 36794.10 30496.91 29695.87 34674.99 36699.80 17694.52 27199.12 26998.20 312
miper_enhance_ethall96.01 27995.74 27496.81 30196.41 36492.27 32793.69 35798.89 24291.14 34298.30 21497.35 31890.58 29099.58 29396.31 21199.03 27798.60 296
testmvs17.12 34220.53 3456.87 35812.05 3804.20 38293.62 3586.73 3814.62 37610.41 37624.33 3738.28 3813.56 3779.69 37515.07 37412.86 373
CHOSEN 280x42095.51 29295.47 28395.65 32498.25 30588.27 35293.25 35998.88 24393.53 31294.65 35097.15 32486.17 31899.93 2897.41 12399.93 2898.73 288
PCF-MVS92.86 1894.36 30793.00 32498.42 20898.70 25697.56 18693.16 36099.11 20379.59 36997.55 26497.43 31192.19 28199.73 23079.85 37099.45 21497.97 322
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVEpermissive83.40 2292.50 33091.92 33394.25 34098.83 23391.64 33292.71 36183.52 37695.92 26386.46 37395.46 35395.20 22595.40 37280.51 36998.64 30395.73 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet93.40 1795.67 28795.70 27695.57 32598.83 23388.57 34992.50 36297.72 31292.69 32396.49 31996.44 33793.72 26299.43 32693.61 30199.28 24198.71 289
PAPM91.88 33690.34 33996.51 30598.06 31792.56 32192.44 36397.17 32586.35 36190.38 36896.01 34286.61 31499.21 34970.65 37395.43 36097.75 334
cascas94.79 30394.33 30996.15 31696.02 36992.36 32692.34 36499.26 16285.34 36495.08 34894.96 36092.96 27398.53 36594.41 27998.59 30697.56 342
bset_n11_16_dypcd96.99 24796.56 25698.27 22299.00 19595.25 26192.18 36594.05 35798.75 9299.01 12098.38 24488.98 30199.93 2898.77 4999.92 3799.64 41
PVSNet_089.98 2191.15 33790.30 34093.70 34697.72 33184.34 37090.24 36697.42 31890.20 34893.79 35993.09 36990.90 28998.89 36286.57 35972.76 37397.87 326
E-PMN94.17 31294.37 30793.58 34796.86 35585.71 36490.11 36797.07 32798.17 13197.82 24697.19 32084.62 33198.94 35989.77 35097.68 33196.09 363
EMVS93.83 31894.02 31093.23 35196.83 35784.96 36589.77 36896.32 33997.92 14697.43 27596.36 34086.17 31898.93 36087.68 35697.73 33095.81 364
test_method79.78 33979.50 34280.62 35580.21 37845.76 38070.82 36998.41 29131.08 37380.89 37497.71 29384.85 32897.37 36991.51 33780.03 37298.75 286
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k24.66 34132.88 3440.00 3590.00 3820.00 3830.00 37099.10 2040.00 3770.00 37897.58 30199.21 100.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas8.17 34410.90 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37798.07 660.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.12 34510.83 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37897.48 3080.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
MSC_two_6792asdad99.32 7898.43 29398.37 11198.86 25099.89 5997.14 13899.60 16799.71 26
PC_three_145293.27 31599.40 5398.54 22498.22 5597.00 37095.17 25599.45 21499.49 109
No_MVS99.32 7898.43 29398.37 11198.86 25099.89 5997.14 13899.60 16799.71 26
test_one_060199.39 11199.20 3399.31 13498.49 10798.66 17799.02 11997.64 100
eth-test20.00 382
eth-test0.00 382
ZD-MVS99.01 19498.84 7499.07 20894.10 30498.05 23398.12 26796.36 18699.86 9492.70 32299.19 256
IU-MVS99.49 8699.15 4898.87 24592.97 31899.41 5096.76 17399.62 15899.66 36
test_241102_TWO99.30 14498.03 13899.26 8099.02 11997.51 11499.88 7096.91 15699.60 16799.66 36
test_241102_ONE99.49 8699.17 3999.31 13497.98 14099.66 2098.90 15298.36 4499.48 318
test_0728_THIRD98.17 13199.08 10699.02 11997.89 7999.88 7097.07 14499.71 12299.70 31
GSMVS98.81 275
test_part299.36 11799.10 6099.05 114
sam_mvs184.74 33098.81 275
sam_mvs84.29 336
MTGPAbinary99.20 174
test_post21.25 37583.86 33899.70 241
patchmatchnet-post98.77 18584.37 33399.85 109
gm-plane-assit94.83 37281.97 37488.07 35894.99 35899.60 28491.76 331
test9_res93.28 31199.15 26299.38 164
agg_prior292.50 32599.16 25999.37 167
agg_prior98.68 26397.99 14699.01 22595.59 33499.77 208
TestCases99.16 10299.50 7998.55 9799.58 2896.80 23198.88 14999.06 10597.65 9799.57 29494.45 27499.61 16599.37 167
test_prior98.95 13798.69 26097.95 15699.03 21899.59 28899.30 194
新几何198.91 14398.94 20697.76 17498.76 26787.58 36096.75 30798.10 26994.80 23899.78 20292.73 32199.00 28399.20 214
旧先验198.82 23697.45 19298.76 26798.34 25095.50 21899.01 28299.23 209
原ACMM198.35 21498.90 21696.25 23798.83 25992.48 32596.07 32898.10 26995.39 22299.71 23992.61 32498.99 28499.08 233
testdata299.79 19092.80 319
segment_acmp97.02 146
testdata98.09 23198.93 20895.40 25998.80 26290.08 34997.45 27398.37 24695.26 22499.70 24193.58 30398.95 28899.17 225
test1298.93 14098.58 27797.83 16698.66 27796.53 31495.51 21799.69 24599.13 26699.27 201
plane_prior799.19 15097.87 162
plane_prior698.99 19997.70 18094.90 231
plane_prior599.27 15799.70 24194.42 27699.51 19999.45 133
plane_prior497.98 277
plane_prior397.78 17397.41 19097.79 247
plane_prior199.05 186
n20.00 383
nn0.00 383
door-mid99.57 35
lessismore_v098.97 13599.73 2597.53 18886.71 37399.37 5899.52 3889.93 29499.92 3598.99 3599.72 11799.44 138
LGP-MVS_train99.47 5499.57 5798.97 6699.48 7096.60 23999.10 10399.06 10598.71 2799.83 14295.58 24999.78 8999.62 46
test1198.87 245
door99.41 94
HQP5-MVS96.79 223
BP-MVS92.82 317
HQP4-MVS95.56 33799.54 30399.32 187
HQP3-MVS99.04 21699.26 245
HQP2-MVS93.84 257
NP-MVS98.84 23097.39 19596.84 328
ACMMP++_ref99.77 93
ACMMP++99.68 138
Test By Simon96.52 175
ITE_SJBPF98.87 14899.22 14198.48 10499.35 11597.50 17698.28 21698.60 21997.64 10099.35 33493.86 29699.27 24298.79 281
DeepMVS_CXcopyleft93.44 34998.24 30694.21 28794.34 35164.28 37191.34 36794.87 36389.45 29992.77 37477.54 37293.14 36893.35 369