LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 2 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 1 | 100.00 1 | 99.81 1 | 100.00 1 | 99.85 7 |
|
LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 22 | 99.85 13 | 99.11 52 | 99.90 1 | 99.78 4 | 99.63 13 | 99.78 10 | 99.67 16 | 99.48 6 | 99.81 149 | 99.30 17 | 99.97 11 | 99.77 16 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
UA-Net | | | 99.47 11 | 99.40 14 | 99.70 2 | 99.49 83 | 99.29 14 | 99.80 3 | 99.72 8 | 99.82 3 | 99.04 109 | 99.81 3 | 98.05 67 | 99.96 8 | 98.85 38 | 99.99 5 | 99.86 6 |
|
UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 14 | 99.34 11 | 99.69 4 | 99.58 26 | 99.90 2 | 99.86 7 | 99.78 5 | 99.58 3 | 99.95 14 | 99.00 31 | 99.95 15 | 99.78 14 |
|
TDRefinement | | | 99.42 16 | 99.38 15 | 99.55 24 | 99.76 21 | 99.33 12 | 99.68 5 | 99.71 9 | 99.38 32 | 99.53 31 | 99.61 23 | 98.64 27 | 99.80 159 | 98.24 69 | 99.84 54 | 99.52 91 |
|
OurMVSNet-221017-0 | | | 99.37 21 | 99.31 22 | 99.53 34 | 99.91 3 | 98.98 57 | 99.63 6 | 99.58 26 | 99.44 28 | 99.78 10 | 99.76 6 | 96.39 172 | 99.92 32 | 99.44 13 | 99.92 33 | 99.68 30 |
|
pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 13 | 99.90 4 | 99.27 17 | 99.53 7 | 99.76 6 | 99.64 11 | 99.84 8 | 99.83 2 | 99.50 5 | 99.87 78 | 99.36 14 | 99.92 33 | 99.64 38 |
|
Anonymous20231211 | | | 99.27 25 | 99.27 24 | 99.26 81 | 99.29 120 | 98.18 113 | 99.49 8 | 99.51 53 | 99.70 7 | 99.80 9 | 99.68 14 | 96.84 145 | 99.83 126 | 99.21 21 | 99.91 38 | 99.77 16 |
|
v7n | | | 99.53 8 | 99.57 8 | 99.41 57 | 99.88 7 | 98.54 90 | 99.45 9 | 99.61 21 | 99.66 10 | 99.68 19 | 99.66 17 | 98.44 38 | 99.95 14 | 99.73 2 | 99.96 14 | 99.75 22 |
|
MIMVSNet1 | | | 99.38 20 | 99.32 21 | 99.55 24 | 99.86 11 | 99.19 31 | 99.41 10 | 99.59 24 | 99.59 19 | 99.71 14 | 99.57 27 | 97.12 130 | 99.90 45 | 99.21 21 | 99.87 50 | 99.54 81 |
|
MVSFormer | | | 98.26 137 | 98.43 99 | 97.77 234 | 98.88 207 | 93.89 281 | 99.39 11 | 99.56 40 | 99.11 53 | 98.16 204 | 98.13 247 | 93.81 246 | 99.97 3 | 99.26 18 | 99.57 169 | 99.43 129 |
|
test_djsdf | | | 99.52 9 | 99.51 9 | 99.53 34 | 99.86 11 | 98.74 71 | 99.39 11 | 99.56 40 | 99.11 53 | 99.70 15 | 99.73 10 | 99.00 15 | 99.97 3 | 99.26 18 | 99.98 9 | 99.89 2 |
|
anonymousdsp | | | 99.51 10 | 99.47 12 | 99.62 6 | 99.88 7 | 99.08 56 | 99.34 13 | 99.69 12 | 98.93 74 | 99.65 22 | 99.72 11 | 98.93 18 | 99.95 14 | 99.11 25 | 100.00 1 | 99.82 9 |
|
mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 46 | 99.88 7 | 98.61 82 | 99.34 13 | 99.71 9 | 99.27 40 | 99.90 4 | 99.74 8 | 99.68 2 | 99.97 3 | 99.55 8 | 99.99 5 | 99.88 3 |
|
WR-MVS_H | | | 99.33 23 | 99.22 27 | 99.65 5 | 99.71 29 | 99.24 20 | 99.32 15 | 99.55 43 | 99.46 26 | 99.50 37 | 99.34 58 | 97.30 119 | 99.93 26 | 98.90 35 | 99.93 24 | 99.77 16 |
|
ab-mvs | | | 98.41 120 | 98.36 110 | 98.59 172 | 99.19 138 | 97.23 186 | 99.32 15 | 98.81 245 | 97.66 145 | 98.62 168 | 99.40 51 | 96.82 148 | 99.80 159 | 95.88 210 | 99.51 187 | 98.75 266 |
|
Gipuma | | | 99.03 34 | 99.16 29 | 98.64 165 | 99.94 2 | 98.51 92 | 99.32 15 | 99.75 7 | 99.58 21 | 98.60 172 | 99.62 21 | 98.22 54 | 99.51 293 | 97.70 100 | 99.73 104 | 97.89 300 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
GG-mvs-BLEND | | | | | 94.76 316 | 94.54 350 | 92.13 309 | 99.31 18 | 80.47 354 | | 88.73 348 | 91.01 347 | 67.59 351 | 98.16 346 | 82.30 343 | 94.53 341 | 93.98 344 |
|
gg-mvs-nofinetune | | | 92.37 314 | 91.20 318 | 95.85 302 | 95.80 348 | 92.38 305 | 99.31 18 | 81.84 353 | 99.75 5 | 91.83 343 | 99.74 8 | 68.29 350 | 99.02 334 | 87.15 332 | 97.12 322 | 96.16 336 |
|
DTE-MVSNet | | | 99.43 15 | 99.35 17 | 99.66 4 | 99.71 29 | 99.30 13 | 99.31 18 | 99.51 53 | 99.64 11 | 99.56 26 | 99.46 40 | 98.23 51 | 99.97 3 | 98.78 42 | 99.93 24 | 99.72 24 |
|
IS-MVSNet | | | 98.19 144 | 97.90 159 | 99.08 104 | 99.57 53 | 97.97 137 | 99.31 18 | 98.32 275 | 99.01 65 | 98.98 118 | 99.03 112 | 91.59 273 | 99.79 172 | 95.49 231 | 99.80 75 | 99.48 109 |
|
FC-MVSNet-test | | | 99.27 25 | 99.25 25 | 99.34 69 | 99.77 20 | 98.37 100 | 99.30 22 | 99.57 33 | 99.61 18 | 99.40 51 | 99.50 34 | 97.12 130 | 99.85 94 | 99.02 30 | 99.94 19 | 99.80 12 |
|
pm-mvs1 | | | 99.44 13 | 99.48 11 | 99.33 71 | 99.80 17 | 98.63 79 | 99.29 23 | 99.63 18 | 99.30 38 | 99.65 22 | 99.60 25 | 99.16 14 | 99.82 136 | 99.07 27 | 99.83 60 | 99.56 69 |
|
PS-CasMVS | | | 99.40 18 | 99.33 20 | 99.62 6 | 99.71 29 | 99.10 53 | 99.29 23 | 99.53 49 | 99.53 22 | 99.46 41 | 99.41 49 | 98.23 51 | 99.95 14 | 98.89 37 | 99.95 15 | 99.81 11 |
|
PEN-MVS | | | 99.41 17 | 99.34 19 | 99.62 6 | 99.73 23 | 99.14 45 | 99.29 23 | 99.54 47 | 99.62 16 | 99.56 26 | 99.42 47 | 98.16 60 | 99.96 8 | 98.78 42 | 99.93 24 | 99.77 16 |
|
EPP-MVSNet | | | 98.30 131 | 98.04 148 | 99.07 107 | 99.56 61 | 97.83 151 | 99.29 23 | 98.07 284 | 99.03 63 | 98.59 173 | 99.13 91 | 92.16 269 | 99.90 45 | 96.87 148 | 99.68 129 | 99.49 103 |
|
jajsoiax | | | 99.58 6 | 99.61 7 | 99.48 48 | 99.87 10 | 98.61 82 | 99.28 27 | 99.66 16 | 99.09 60 | 99.89 6 | 99.68 14 | 99.53 4 | 99.97 3 | 99.50 10 | 99.99 5 | 99.87 4 |
|
SixPastTwentyTwo | | | 98.75 68 | 98.62 71 | 99.16 92 | 99.83 15 | 97.96 141 | 99.28 27 | 98.20 280 | 99.37 33 | 99.70 15 | 99.65 19 | 92.65 265 | 99.93 26 | 99.04 29 | 99.84 54 | 99.60 47 |
|
TransMVSNet (Re) | | | 99.44 13 | 99.47 12 | 99.36 61 | 99.80 17 | 98.58 85 | 99.27 29 | 99.57 33 | 99.39 31 | 99.75 12 | 99.62 21 | 99.17 12 | 99.83 126 | 99.06 28 | 99.62 149 | 99.66 33 |
|
3Dnovator | | 98.27 2 | 98.81 60 | 98.73 55 | 99.05 114 | 98.76 226 | 97.81 156 | 99.25 30 | 99.30 134 | 98.57 92 | 98.55 179 | 99.33 60 | 97.95 76 | 99.90 45 | 97.16 122 | 99.67 135 | 99.44 125 |
|
NR-MVSNet | | | 98.95 45 | 98.82 47 | 99.36 61 | 99.16 148 | 98.72 76 | 99.22 31 | 99.20 161 | 99.10 57 | 99.72 13 | 98.76 174 | 96.38 174 | 99.86 84 | 98.00 83 | 99.82 63 | 99.50 99 |
|
PS-MVSNAJss | | | 99.46 12 | 99.49 10 | 99.35 66 | 99.90 4 | 98.15 115 | 99.20 32 | 99.65 17 | 99.48 23 | 99.92 3 | 99.71 12 | 98.07 64 | 99.96 8 | 99.53 9 | 100.00 1 | 99.93 1 |
|
GBi-Net | | | 98.65 85 | 98.47 91 | 99.17 89 | 98.90 201 | 98.24 106 | 99.20 32 | 99.44 79 | 98.59 88 | 98.95 124 | 99.55 29 | 94.14 240 | 99.86 84 | 97.77 94 | 99.69 124 | 99.41 134 |
|
test1 | | | 98.65 85 | 98.47 91 | 99.17 89 | 98.90 201 | 98.24 106 | 99.20 32 | 99.44 79 | 98.59 88 | 98.95 124 | 99.55 29 | 94.14 240 | 99.86 84 | 97.77 94 | 99.69 124 | 99.41 134 |
|
FMVSNet1 | | | 99.17 29 | 99.17 28 | 99.17 89 | 99.55 64 | 98.24 106 | 99.20 32 | 99.44 79 | 99.21 42 | 99.43 46 | 99.55 29 | 97.82 83 | 99.86 84 | 98.42 63 | 99.89 46 | 99.41 134 |
|
K. test v3 | | | 98.00 157 | 97.66 175 | 99.03 117 | 99.79 19 | 97.56 171 | 99.19 36 | 92.47 340 | 99.62 16 | 99.52 33 | 99.66 17 | 89.61 283 | 99.96 8 | 99.25 20 | 99.81 67 | 99.56 69 |
|
Vis-MVSNet | | | 99.34 22 | 99.36 16 | 99.27 79 | 99.73 23 | 98.26 104 | 99.17 37 | 99.78 4 | 99.11 53 | 99.27 71 | 99.48 38 | 98.82 20 | 99.95 14 | 98.94 33 | 99.93 24 | 99.59 53 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
HPM-MVS | | | 98.79 61 | 98.53 80 | 99.59 17 | 99.65 42 | 99.29 14 | 99.16 38 | 99.43 84 | 96.74 217 | 98.61 170 | 98.38 230 | 98.62 28 | 99.87 78 | 96.47 182 | 99.67 135 | 99.59 53 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MIMVSNet | | | 96.62 250 | 96.25 253 | 97.71 238 | 99.04 174 | 94.66 258 | 99.16 38 | 96.92 310 | 97.23 194 | 97.87 222 | 99.10 96 | 86.11 302 | 99.65 251 | 91.65 311 | 99.21 233 | 98.82 256 |
|
ANet_high | | | 99.57 7 | 99.67 5 | 99.28 76 | 99.89 6 | 98.09 119 | 99.14 40 | 99.93 1 | 99.82 3 | 99.93 2 | 99.81 3 | 99.17 12 | 99.94 22 | 99.31 16 | 100.00 1 | 99.82 9 |
|
FIs | | | 99.14 31 | 99.09 33 | 99.29 74 | 99.70 35 | 98.28 103 | 99.13 41 | 99.52 52 | 99.48 23 | 99.24 78 | 99.41 49 | 96.79 151 | 99.82 136 | 98.69 49 | 99.88 47 | 99.76 20 |
|
CP-MVSNet | | | 99.21 28 | 99.09 33 | 99.56 22 | 99.65 42 | 98.96 61 | 99.13 41 | 99.34 114 | 99.42 29 | 99.33 61 | 99.26 67 | 97.01 137 | 99.94 22 | 98.74 46 | 99.93 24 | 99.79 13 |
|
LS3D | | | 98.63 89 | 98.38 108 | 99.36 61 | 97.25 327 | 99.38 5 | 99.12 43 | 99.32 121 | 99.21 42 | 98.44 187 | 98.88 150 | 97.31 118 | 99.80 159 | 96.58 171 | 99.34 213 | 98.92 245 |
|
UGNet | | | 98.53 108 | 98.45 95 | 98.79 149 | 97.94 299 | 96.96 201 | 99.08 44 | 98.54 266 | 99.10 57 | 96.82 282 | 99.47 39 | 96.55 164 | 99.84 111 | 98.56 57 | 99.94 19 | 99.55 77 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
ACMH | | 96.65 7 | 99.25 27 | 99.24 26 | 99.26 81 | 99.72 28 | 98.38 99 | 99.07 45 | 99.55 43 | 98.30 101 | 99.65 22 | 99.45 44 | 99.22 9 | 99.76 195 | 98.44 61 | 99.77 88 | 99.64 38 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
QAPM | | | 97.31 208 | 96.81 225 | 98.82 143 | 98.80 224 | 97.49 174 | 99.06 46 | 99.19 166 | 90.22 324 | 97.69 234 | 99.16 84 | 96.91 142 | 99.90 45 | 90.89 321 | 99.41 204 | 99.07 219 |
|
3Dnovator+ | | 97.89 3 | 98.69 78 | 98.51 83 | 99.24 84 | 98.81 222 | 98.40 97 | 99.02 47 | 99.19 166 | 98.99 66 | 98.07 212 | 99.28 63 | 97.11 132 | 99.84 111 | 96.84 151 | 99.32 215 | 99.47 116 |
|
Anonymous20240529 | | | 98.93 47 | 98.87 43 | 99.12 97 | 99.19 138 | 98.22 111 | 99.01 48 | 98.99 216 | 99.25 41 | 99.54 28 | 99.37 52 | 97.04 133 | 99.80 159 | 97.89 86 | 99.52 184 | 99.35 162 |
|
VDDNet | | | 98.21 142 | 97.95 154 | 99.01 121 | 99.58 49 | 97.74 162 | 99.01 48 | 97.29 302 | 99.67 9 | 98.97 121 | 99.50 34 | 90.45 278 | 99.80 159 | 97.88 89 | 99.20 234 | 99.48 109 |
|
tfpnnormal | | | 98.90 52 | 98.90 42 | 98.91 132 | 99.67 39 | 97.82 154 | 99.00 50 | 99.44 79 | 99.45 27 | 99.51 36 | 99.24 70 | 98.20 57 | 99.86 84 | 95.92 209 | 99.69 124 | 99.04 225 |
|
VPA-MVSNet | | | 99.30 24 | 99.30 23 | 99.28 76 | 99.49 83 | 98.36 101 | 99.00 50 | 99.45 76 | 99.63 13 | 99.52 33 | 99.44 45 | 98.25 49 | 99.88 62 | 99.09 26 | 99.84 54 | 99.62 42 |
|
HPM-MVS_fast | | | 99.01 35 | 98.82 47 | 99.57 18 | 99.71 29 | 99.35 8 | 99.00 50 | 99.50 55 | 97.33 179 | 98.94 128 | 98.86 153 | 98.75 23 | 99.82 136 | 97.53 106 | 99.71 114 | 99.56 69 |
|
nrg030 | | | 99.40 18 | 99.35 17 | 99.54 27 | 99.58 49 | 99.13 48 | 98.98 53 | 99.48 65 | 99.68 8 | 99.46 41 | 99.26 67 | 98.62 28 | 99.73 211 | 99.17 24 | 99.92 33 | 99.76 20 |
|
canonicalmvs | | | 98.34 128 | 98.26 122 | 98.58 173 | 98.46 270 | 97.82 154 | 98.96 54 | 99.46 73 | 99.19 49 | 97.46 253 | 95.46 328 | 98.59 30 | 99.46 302 | 98.08 77 | 98.71 280 | 98.46 280 |
|
Vis-MVSNet (Re-imp) | | | 97.46 199 | 97.16 206 | 98.34 203 | 99.55 64 | 96.10 222 | 98.94 55 | 98.44 271 | 98.32 100 | 98.16 204 | 98.62 202 | 88.76 288 | 99.73 211 | 93.88 274 | 99.79 80 | 99.18 206 |
|
LFMVS | | | 97.20 218 | 96.72 229 | 98.64 165 | 98.72 232 | 96.95 202 | 98.93 56 | 94.14 335 | 99.74 6 | 98.78 151 | 99.01 119 | 84.45 313 | 99.73 211 | 97.44 109 | 99.27 224 | 99.25 190 |
|
v8 | | | 99.01 35 | 99.16 29 | 98.57 176 | 99.47 93 | 96.31 219 | 98.90 57 | 99.47 71 | 99.03 63 | 99.52 33 | 99.57 27 | 96.93 141 | 99.81 149 | 99.60 4 | 99.98 9 | 99.60 47 |
|
v10 | | | 98.97 42 | 99.11 32 | 98.55 181 | 99.44 99 | 96.21 221 | 98.90 57 | 99.55 43 | 98.73 82 | 99.48 38 | 99.60 25 | 96.63 161 | 99.83 126 | 99.70 3 | 99.99 5 | 99.61 46 |
|
APDe-MVS | | | 98.99 37 | 98.79 50 | 99.60 13 | 99.21 134 | 99.15 42 | 98.87 59 | 99.48 65 | 97.57 153 | 99.35 58 | 99.24 70 | 97.83 80 | 99.89 54 | 97.88 89 | 99.70 118 | 99.75 22 |
|
ACMMP | | | 98.75 68 | 98.50 85 | 99.52 39 | 99.56 61 | 99.16 37 | 98.87 59 | 99.37 99 | 97.16 199 | 98.82 148 | 99.01 119 | 97.71 88 | 99.87 78 | 96.29 193 | 99.69 124 | 99.54 81 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
OpenMVS | | 96.65 7 | 97.09 225 | 96.68 232 | 98.32 204 | 98.32 278 | 97.16 194 | 98.86 61 | 99.37 99 | 89.48 328 | 96.29 300 | 99.15 88 | 96.56 163 | 99.90 45 | 92.90 293 | 99.20 234 | 97.89 300 |
|
XXY-MVS | | | 99.14 31 | 99.15 31 | 99.10 101 | 99.76 21 | 97.74 162 | 98.85 62 | 99.62 19 | 98.48 94 | 99.37 55 | 99.49 37 | 98.75 23 | 99.86 84 | 98.20 72 | 99.80 75 | 99.71 25 |
|
wuyk23d | | | 96.06 263 | 97.62 179 | 91.38 332 | 98.65 253 | 98.57 86 | 98.85 62 | 96.95 308 | 96.86 213 | 99.90 4 | 99.16 84 | 99.18 11 | 98.40 344 | 89.23 327 | 99.77 88 | 77.18 347 |
|
HY-MVS | | 95.94 13 | 95.90 267 | 95.35 274 | 97.55 251 | 97.95 298 | 94.79 253 | 98.81 64 | 96.94 309 | 92.28 305 | 95.17 323 | 98.57 209 | 89.90 282 | 99.75 202 | 91.20 316 | 97.33 320 | 98.10 295 |
|
FMVSNet5 | | | 96.01 264 | 95.20 278 | 98.41 197 | 97.53 317 | 96.10 222 | 98.74 65 | 99.50 55 | 97.22 197 | 98.03 216 | 99.04 109 | 69.80 349 | 99.88 62 | 97.27 117 | 99.71 114 | 99.25 190 |
|
COLMAP_ROB | | 96.50 10 | 98.99 37 | 98.85 45 | 99.41 57 | 99.58 49 | 99.10 53 | 98.74 65 | 99.56 40 | 99.09 60 | 99.33 61 | 99.19 76 | 98.40 40 | 99.72 219 | 95.98 207 | 99.76 97 | 99.42 132 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
tttt0517 | | | 95.64 273 | 94.98 283 | 97.64 243 | 99.36 109 | 93.81 283 | 98.72 67 | 90.47 346 | 98.08 120 | 98.67 162 | 98.34 234 | 73.88 346 | 99.92 32 | 97.77 94 | 99.51 187 | 99.20 199 |
|
CP-MVS | | | 98.70 76 | 98.42 101 | 99.52 39 | 99.36 109 | 99.12 50 | 98.72 67 | 99.36 103 | 97.54 157 | 98.30 197 | 98.40 226 | 97.86 79 | 99.89 54 | 96.53 179 | 99.72 110 | 99.56 69 |
|
XVS | | | 98.72 72 | 98.45 95 | 99.53 34 | 99.46 94 | 99.21 23 | 98.65 69 | 99.34 114 | 98.62 86 | 97.54 246 | 98.63 200 | 97.50 108 | 99.83 126 | 96.79 153 | 99.53 181 | 99.56 69 |
|
X-MVStestdata | | | 94.32 293 | 92.59 310 | 99.53 34 | 99.46 94 | 99.21 23 | 98.65 69 | 99.34 114 | 98.62 86 | 97.54 246 | 45.85 348 | 97.50 108 | 99.83 126 | 96.79 153 | 99.53 181 | 99.56 69 |
|
mPP-MVS | | | 98.64 87 | 98.34 113 | 99.54 27 | 99.54 67 | 99.17 33 | 98.63 71 | 99.24 155 | 97.47 162 | 98.09 211 | 98.68 186 | 97.62 96 | 99.89 54 | 96.22 196 | 99.62 149 | 99.57 64 |
|
ambc | | | | | 98.24 211 | 98.82 220 | 95.97 226 | 98.62 72 | 99.00 215 | | 99.27 71 | 99.21 73 | 96.99 138 | 99.50 294 | 96.55 177 | 99.50 194 | 99.26 189 |
|
FMVSNet2 | | | 98.49 112 | 98.40 103 | 98.75 158 | 98.90 201 | 97.14 196 | 98.61 73 | 99.13 186 | 98.59 88 | 99.19 84 | 99.28 63 | 94.14 240 | 99.82 136 | 97.97 84 | 99.80 75 | 99.29 183 |
|
abl_6 | | | 98.99 37 | 98.78 51 | 99.61 9 | 99.45 97 | 99.46 3 | 98.60 74 | 99.50 55 | 98.59 88 | 99.24 78 | 99.04 109 | 98.54 33 | 99.89 54 | 96.45 184 | 99.62 149 | 99.50 99 |
|
ACMH+ | | 96.62 9 | 99.08 33 | 99.00 38 | 99.33 71 | 99.71 29 | 98.83 65 | 98.60 74 | 99.58 26 | 99.11 53 | 99.53 31 | 99.18 78 | 98.81 21 | 99.67 238 | 96.71 164 | 99.77 88 | 99.50 99 |
|
MVS_0304 | | | 97.64 186 | 97.35 197 | 98.52 185 | 97.87 303 | 96.69 211 | 98.59 76 | 98.05 286 | 97.44 170 | 93.74 338 | 98.85 156 | 93.69 250 | 99.88 62 | 98.11 75 | 99.81 67 | 98.98 234 |
|
VDD-MVS | | | 98.56 99 | 98.39 106 | 99.07 107 | 99.13 155 | 98.07 125 | 98.59 76 | 97.01 306 | 99.59 19 | 99.11 93 | 99.27 65 | 94.82 224 | 99.79 172 | 98.34 66 | 99.63 146 | 99.34 164 |
|
DVP-MVS | | | 98.40 122 | 98.00 151 | 99.61 9 | 99.57 53 | 99.25 19 | 98.57 78 | 99.35 108 | 97.55 156 | 99.31 68 | 97.71 273 | 94.61 230 | 99.88 62 | 96.14 202 | 99.19 238 | 99.70 28 |
|
CSCG | | | 98.68 81 | 98.50 85 | 99.20 87 | 99.45 97 | 98.63 79 | 98.56 79 | 99.57 33 | 97.87 133 | 98.85 141 | 98.04 256 | 97.66 91 | 99.84 111 | 96.72 162 | 99.81 67 | 99.13 214 |
|
RPSCF | | | 98.62 91 | 98.36 110 | 99.42 54 | 99.65 42 | 99.42 4 | 98.55 80 | 99.57 33 | 97.72 142 | 98.90 131 | 99.26 67 | 96.12 180 | 99.52 289 | 95.72 220 | 99.71 114 | 99.32 172 |
|
DSMNet-mixed | | | 97.42 201 | 97.60 181 | 96.87 281 | 99.15 152 | 91.46 314 | 98.54 81 | 99.12 189 | 92.87 298 | 97.58 242 | 99.63 20 | 96.21 178 | 99.90 45 | 95.74 219 | 99.54 177 | 99.27 186 |
|
Anonymous202405211 | | | 97.90 162 | 97.50 186 | 99.08 104 | 98.90 201 | 98.25 105 | 98.53 82 | 96.16 319 | 98.87 76 | 99.11 93 | 98.86 153 | 90.40 279 | 99.78 182 | 97.36 113 | 99.31 217 | 99.19 204 |
|
HFP-MVS | | | 98.71 73 | 98.44 97 | 99.51 43 | 99.49 83 | 99.16 37 | 98.52 83 | 99.31 126 | 97.47 162 | 98.58 175 | 98.50 217 | 97.97 74 | 99.85 94 | 96.57 173 | 99.59 159 | 99.53 87 |
|
region2R | | | 98.69 78 | 98.40 103 | 99.54 27 | 99.53 69 | 99.17 33 | 98.52 83 | 99.31 126 | 97.46 167 | 98.44 187 | 98.51 214 | 97.83 80 | 99.88 62 | 96.46 183 | 99.58 165 | 99.58 59 |
|
ACMMPR | | | 98.70 76 | 98.42 101 | 99.54 27 | 99.52 71 | 99.14 45 | 98.52 83 | 99.31 126 | 97.47 162 | 98.56 177 | 98.54 211 | 97.75 87 | 99.88 62 | 96.57 173 | 99.59 159 | 99.58 59 |
|
PMVS | | 91.26 20 | 97.86 168 | 97.94 156 | 97.65 241 | 99.71 29 | 97.94 144 | 98.52 83 | 98.68 260 | 98.99 66 | 97.52 248 | 99.35 56 | 97.41 114 | 98.18 345 | 91.59 313 | 99.67 135 | 96.82 329 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
TSAR-MVS + MP. | | | 98.63 89 | 98.49 88 | 99.06 112 | 99.64 45 | 97.90 146 | 98.51 87 | 98.94 219 | 96.96 208 | 99.24 78 | 98.89 149 | 97.83 80 | 99.81 149 | 96.88 147 | 99.49 195 | 99.48 109 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MP-MVS | | | 98.46 115 | 98.09 142 | 99.54 27 | 99.57 53 | 99.22 22 | 98.50 88 | 99.19 166 | 97.61 150 | 97.58 242 | 98.66 191 | 97.40 115 | 99.88 62 | 94.72 246 | 99.60 157 | 99.54 81 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
APD-MVS_3200maxsize | | | 98.84 57 | 98.61 74 | 99.53 34 | 99.19 138 | 99.27 17 | 98.49 89 | 99.33 119 | 98.64 84 | 99.03 112 | 98.98 126 | 97.89 77 | 99.85 94 | 96.54 178 | 99.42 203 | 99.46 118 |
|
LCM-MVSNet-Re | | | 98.64 87 | 98.48 89 | 99.11 99 | 98.85 212 | 98.51 92 | 98.49 89 | 99.83 3 | 98.37 96 | 99.69 17 | 99.46 40 | 98.21 56 | 99.92 32 | 94.13 266 | 99.30 220 | 98.91 248 |
|
baseline | | | 98.96 44 | 99.02 36 | 98.76 155 | 99.38 106 | 97.26 185 | 98.49 89 | 99.50 55 | 98.86 77 | 99.19 84 | 99.06 99 | 98.23 51 | 99.69 226 | 98.71 48 | 99.76 97 | 99.33 170 |
|
ZNCC-MVS | | | 98.68 81 | 98.40 103 | 99.54 27 | 99.57 53 | 99.21 23 | 98.46 92 | 99.29 138 | 97.28 185 | 98.11 209 | 98.39 228 | 98.00 70 | 99.87 78 | 96.86 150 | 99.64 143 | 99.55 77 |
|
DP-MVS | | | 98.93 47 | 98.81 49 | 99.28 76 | 99.21 134 | 98.45 96 | 98.46 92 | 99.33 119 | 99.63 13 | 99.48 38 | 99.15 88 | 97.23 127 | 99.75 202 | 97.17 121 | 99.66 140 | 99.63 41 |
|
test_0402 | | | 98.76 67 | 98.71 59 | 98.93 129 | 99.56 61 | 98.14 117 | 98.45 94 | 99.34 114 | 99.28 39 | 98.95 124 | 98.91 138 | 98.34 46 | 99.79 172 | 95.63 226 | 99.91 38 | 98.86 253 |
|
MTAPA | | | 98.88 53 | 98.64 69 | 99.61 9 | 99.67 39 | 99.36 6 | 98.43 95 | 99.20 161 | 98.83 80 | 98.89 133 | 98.90 141 | 96.98 139 | 99.92 32 | 97.16 122 | 99.70 118 | 99.56 69 |
|
VPNet | | | 98.87 54 | 98.83 46 | 99.01 121 | 99.70 35 | 97.62 170 | 98.43 95 | 99.35 108 | 99.47 25 | 99.28 69 | 99.05 106 | 96.72 157 | 99.82 136 | 98.09 76 | 99.36 209 | 99.59 53 |
|
Patchmatch-test | | | 96.55 251 | 96.34 248 | 97.17 268 | 98.35 276 | 93.06 292 | 98.40 97 | 97.79 290 | 97.33 179 | 98.41 191 | 98.67 188 | 83.68 320 | 99.69 226 | 95.16 235 | 99.31 217 | 98.77 264 |
|
baseline1 | | | 95.96 266 | 95.44 270 | 97.52 254 | 98.51 266 | 93.99 275 | 98.39 98 | 96.09 321 | 98.21 110 | 98.40 195 | 97.76 271 | 86.88 294 | 99.63 255 | 95.42 232 | 89.27 347 | 98.95 239 |
|
TranMVSNet+NR-MVSNet | | | 99.17 29 | 99.07 35 | 99.46 53 | 99.37 108 | 98.87 63 | 98.39 98 | 99.42 87 | 99.42 29 | 99.36 57 | 99.06 99 | 98.38 41 | 99.95 14 | 98.34 66 | 99.90 42 | 99.57 64 |
|
SR-MVS | | | 98.71 73 | 98.43 99 | 99.57 18 | 99.18 145 | 99.35 8 | 98.36 100 | 99.29 138 | 98.29 104 | 98.88 137 | 98.85 156 | 97.53 104 | 99.87 78 | 96.14 202 | 99.31 217 | 99.48 109 |
|
EU-MVSNet | | | 97.66 185 | 98.50 85 | 95.13 313 | 99.63 47 | 85.84 338 | 98.35 101 | 98.21 279 | 98.23 109 | 99.54 28 | 99.46 40 | 95.02 218 | 99.68 235 | 98.24 69 | 99.87 50 | 99.87 4 |
|
CPTT-MVS | | | 97.84 174 | 97.36 196 | 99.27 79 | 99.31 116 | 98.46 95 | 98.29 102 | 99.27 144 | 94.90 265 | 97.83 225 | 98.37 231 | 94.90 220 | 99.84 111 | 93.85 276 | 99.54 177 | 99.51 94 |
|
MAR-MVS | | | 96.47 255 | 95.70 261 | 98.79 149 | 97.92 300 | 99.12 50 | 98.28 103 | 98.60 265 | 92.16 307 | 95.54 319 | 96.17 316 | 94.77 229 | 99.52 289 | 89.62 326 | 98.23 294 | 97.72 312 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
V42 | | | 98.78 64 | 98.78 51 | 98.76 155 | 99.44 99 | 97.04 197 | 98.27 104 | 99.19 166 | 97.87 133 | 99.25 77 | 99.16 84 | 96.84 145 | 99.78 182 | 99.21 21 | 99.84 54 | 99.46 118 |
|
GST-MVS | | | 98.61 92 | 98.30 118 | 99.52 39 | 99.51 73 | 99.20 29 | 98.26 105 | 99.25 150 | 97.44 170 | 98.67 162 | 98.39 228 | 97.68 89 | 99.85 94 | 96.00 205 | 99.51 187 | 99.52 91 |
|
AllTest | | | 98.44 117 | 98.20 128 | 99.16 92 | 99.50 76 | 98.55 87 | 98.25 106 | 99.58 26 | 96.80 214 | 98.88 137 | 99.06 99 | 97.65 92 | 99.57 274 | 94.45 253 | 99.61 155 | 99.37 152 |
|
VNet | | | 98.42 119 | 98.30 118 | 98.79 149 | 98.79 225 | 97.29 182 | 98.23 107 | 98.66 261 | 99.31 37 | 98.85 141 | 98.80 167 | 94.80 227 | 99.78 182 | 98.13 74 | 99.13 248 | 99.31 176 |
|
PGM-MVS | | | 98.66 84 | 98.37 109 | 99.55 24 | 99.53 69 | 99.18 32 | 98.23 107 | 99.49 63 | 97.01 207 | 98.69 160 | 98.88 150 | 98.00 70 | 99.89 54 | 95.87 213 | 99.59 159 | 99.58 59 |
|
LPG-MVS_test | | | 98.71 73 | 98.46 93 | 99.47 51 | 99.57 53 | 98.97 58 | 98.23 107 | 99.48 65 | 96.60 222 | 99.10 96 | 99.06 99 | 98.71 25 | 99.83 126 | 95.58 229 | 99.78 84 | 99.62 42 |
|
SteuartSystems-ACMMP | | | 98.79 61 | 98.54 79 | 99.54 27 | 99.73 23 | 99.16 37 | 98.23 107 | 99.31 126 | 97.92 129 | 98.90 131 | 98.90 141 | 98.00 70 | 99.88 62 | 96.15 201 | 99.72 110 | 99.58 59 |
Skip Steuart: Steuart Systems R&D Blog. |
CS-MVS | | | 97.82 178 | 97.59 183 | 98.52 185 | 98.76 226 | 98.04 129 | 98.20 111 | 99.61 21 | 97.10 202 | 96.02 308 | 94.87 338 | 98.27 48 | 99.84 111 | 96.31 191 | 99.17 240 | 97.69 314 |
|
SF-MVS | | | 98.53 108 | 98.27 121 | 99.32 73 | 99.31 116 | 98.75 70 | 98.19 112 | 99.41 88 | 96.77 216 | 98.83 144 | 98.90 141 | 97.80 84 | 99.82 136 | 95.68 223 | 99.52 184 | 99.38 149 |
|
MVS_Test | | | 98.18 145 | 98.36 110 | 97.67 239 | 98.48 268 | 94.73 255 | 98.18 113 | 99.02 209 | 97.69 143 | 98.04 215 | 99.11 94 | 97.22 128 | 99.56 277 | 98.57 54 | 98.90 272 | 98.71 268 |
|
Patchmtry | | | 97.35 205 | 96.97 215 | 98.50 190 | 97.31 326 | 96.47 214 | 98.18 113 | 98.92 224 | 98.95 73 | 98.78 151 | 99.37 52 | 85.44 308 | 99.85 94 | 95.96 208 | 99.83 60 | 99.17 210 |
|
API-MVS | | | 97.04 231 | 96.91 219 | 97.42 259 | 97.88 302 | 98.23 110 | 98.18 113 | 98.50 269 | 97.57 153 | 97.39 258 | 96.75 307 | 96.77 152 | 99.15 331 | 90.16 324 | 99.02 262 | 94.88 343 |
|
test0726 | | | | | | 99.50 76 | 99.21 23 | 98.17 116 | 99.35 108 | 97.97 125 | 99.26 75 | 99.06 99 | 97.61 97 | | | | |
|
Anonymous20231206 | | | 98.21 142 | 98.21 127 | 98.20 213 | 99.51 73 | 95.43 240 | 98.13 117 | 99.32 121 | 96.16 236 | 98.93 129 | 98.82 165 | 96.00 185 | 99.83 126 | 97.32 115 | 99.73 104 | 99.36 158 |
|
EPMVS | | | 93.72 305 | 93.27 303 | 95.09 314 | 96.04 345 | 87.76 331 | 98.13 117 | 85.01 351 | 94.69 269 | 96.92 272 | 98.64 196 | 78.47 342 | 99.31 319 | 95.04 236 | 96.46 330 | 98.20 291 |
|
PHI-MVS | | | 98.29 134 | 97.95 154 | 99.34 69 | 98.44 272 | 99.16 37 | 98.12 119 | 99.38 95 | 96.01 242 | 98.06 213 | 98.43 224 | 97.80 84 | 99.67 238 | 95.69 222 | 99.58 165 | 99.20 199 |
|
CR-MVSNet | | | 96.28 260 | 95.95 256 | 97.28 263 | 97.71 309 | 94.22 265 | 98.11 120 | 98.92 224 | 92.31 304 | 96.91 274 | 99.37 52 | 85.44 308 | 99.81 149 | 97.39 112 | 97.36 318 | 97.81 306 |
|
RPMNet | | | 96.82 241 | 96.66 235 | 97.28 263 | 97.71 309 | 94.22 265 | 98.11 120 | 96.90 311 | 99.37 33 | 96.91 274 | 99.34 58 | 86.72 295 | 99.81 149 | 97.53 106 | 97.36 318 | 97.81 306 |
|
SED-MVS | | | 98.91 50 | 98.72 57 | 99.49 46 | 99.49 83 | 99.17 33 | 98.10 122 | 99.31 126 | 98.03 122 | 99.66 20 | 99.02 113 | 98.36 42 | 99.88 62 | 96.91 140 | 99.62 149 | 99.41 134 |
|
OPU-MVS | | | | | 98.82 143 | 98.59 258 | 98.30 102 | 98.10 122 | | | | 98.52 213 | 98.18 58 | 98.75 342 | 94.62 247 | 99.48 197 | 99.41 134 |
|
tpmvs | | | 95.02 286 | 95.25 276 | 94.33 319 | 96.39 342 | 85.87 337 | 98.08 124 | 96.83 313 | 95.46 256 | 95.51 320 | 98.69 184 | 85.91 303 | 99.53 285 | 94.16 261 | 96.23 332 | 97.58 318 |
|
1314 | | | 95.74 271 | 95.60 265 | 96.17 297 | 97.53 317 | 92.75 300 | 98.07 125 | 98.31 276 | 91.22 317 | 94.25 330 | 96.68 308 | 95.53 204 | 99.03 333 | 91.64 312 | 97.18 321 | 96.74 330 |
|
1121 | | | 96.73 244 | 96.00 254 | 98.91 132 | 98.95 190 | 97.76 159 | 98.07 125 | 98.73 257 | 87.65 336 | 96.54 290 | 98.13 247 | 94.52 232 | 99.73 211 | 92.38 304 | 99.02 262 | 99.24 193 |
|
MVS | | | 93.19 310 | 92.09 313 | 96.50 290 | 96.91 331 | 94.03 272 | 98.07 125 | 98.06 285 | 68.01 347 | 94.56 329 | 96.48 312 | 95.96 191 | 99.30 321 | 83.84 338 | 96.89 326 | 96.17 335 |
|
ACMM | | 96.08 12 | 98.91 50 | 98.73 55 | 99.48 48 | 99.55 64 | 99.14 45 | 98.07 125 | 99.37 99 | 97.62 148 | 99.04 109 | 98.96 131 | 98.84 19 | 99.79 172 | 97.43 110 | 99.65 141 | 99.49 103 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EIA-MVS | | | 98.00 157 | 97.74 168 | 98.80 147 | 98.72 232 | 98.09 119 | 98.05 129 | 99.60 23 | 97.39 174 | 96.63 287 | 95.55 325 | 97.68 89 | 99.80 159 | 96.73 161 | 99.27 224 | 98.52 278 |
|
SMA-MVS | | | 98.40 122 | 98.03 149 | 99.51 43 | 99.16 148 | 99.21 23 | 98.05 129 | 99.22 158 | 94.16 282 | 98.98 118 | 99.10 96 | 97.52 106 | 99.79 172 | 96.45 184 | 99.64 143 | 99.53 87 |
|
EG-PatchMatch MVS | | | 98.99 37 | 99.01 37 | 98.94 128 | 99.50 76 | 97.47 175 | 98.04 131 | 99.59 24 | 98.15 118 | 99.40 51 | 99.36 55 | 98.58 31 | 99.76 195 | 98.78 42 | 99.68 129 | 99.59 53 |
|
thres100view900 | | | 94.19 296 | 93.67 299 | 95.75 304 | 99.06 171 | 91.35 317 | 98.03 132 | 94.24 333 | 98.33 99 | 97.40 257 | 94.98 334 | 79.84 332 | 99.62 257 | 83.05 339 | 98.08 304 | 96.29 333 |
|
#test# | | | 98.50 111 | 98.16 135 | 99.51 43 | 99.49 83 | 99.16 37 | 98.03 132 | 99.31 126 | 96.30 233 | 98.58 175 | 98.50 217 | 97.97 74 | 99.85 94 | 95.68 223 | 99.59 159 | 99.53 87 |
|
MSP-MVS | | | 98.77 66 | 98.52 81 | 99.52 39 | 99.50 76 | 99.21 23 | 98.02 134 | 98.84 239 | 97.97 125 | 99.08 99 | 99.02 113 | 97.61 97 | 99.88 62 | 96.99 134 | 99.63 146 | 99.48 109 |
|
test_0728_SECOND | | | | | 99.60 13 | 99.50 76 | 99.23 21 | 98.02 134 | 99.32 121 | | | | | 99.88 62 | 96.99 134 | 99.63 146 | 99.68 30 |
|
Effi-MVS+-dtu | | | 98.26 137 | 97.90 159 | 99.35 66 | 98.02 295 | 99.49 2 | 98.02 134 | 99.16 179 | 98.29 104 | 97.64 237 | 97.99 258 | 96.44 170 | 99.95 14 | 96.66 167 | 98.93 271 | 98.60 275 |
|
DeepC-MVS | | 97.60 4 | 98.97 42 | 98.93 41 | 99.10 101 | 99.35 113 | 97.98 136 | 98.01 137 | 99.46 73 | 97.56 155 | 99.54 28 | 99.50 34 | 98.97 16 | 99.84 111 | 98.06 78 | 99.92 33 | 99.49 103 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
thres600view7 | | | 94.45 291 | 93.83 296 | 96.29 293 | 99.06 171 | 91.53 313 | 97.99 138 | 94.24 333 | 98.34 98 | 97.44 255 | 95.01 332 | 79.84 332 | 99.67 238 | 84.33 337 | 98.23 294 | 97.66 315 |
|
RRT_test8_iter05 | | | 95.24 281 | 95.13 280 | 95.57 308 | 97.32 325 | 87.02 335 | 97.99 138 | 99.41 88 | 98.06 121 | 99.12 91 | 99.05 106 | 66.85 352 | 99.85 94 | 98.93 34 | 99.47 198 | 99.84 8 |
|
PM-MVS | | | 98.82 58 | 98.72 57 | 99.12 97 | 99.64 45 | 98.54 90 | 97.98 140 | 99.68 13 | 97.62 148 | 99.34 60 | 99.18 78 | 97.54 102 | 99.77 188 | 97.79 92 | 99.74 101 | 99.04 225 |
|
CostFormer | | | 93.97 301 | 93.78 297 | 94.51 318 | 97.53 317 | 85.83 339 | 97.98 140 | 95.96 322 | 89.29 330 | 94.99 326 | 98.63 200 | 78.63 339 | 99.62 257 | 94.54 249 | 96.50 329 | 98.09 296 |
|
PatchT | | | 96.65 248 | 96.35 247 | 97.54 252 | 97.40 322 | 95.32 242 | 97.98 140 | 96.64 315 | 99.33 36 | 96.89 278 | 99.42 47 | 84.32 315 | 99.81 149 | 97.69 102 | 97.49 313 | 97.48 321 |
|
MTMP | | | | | | | | 97.93 143 | 91.91 343 | | | | | | | | |
|
ADS-MVSNet2 | | | 95.43 278 | 94.98 283 | 96.76 287 | 98.14 289 | 91.74 311 | 97.92 144 | 97.76 291 | 90.23 322 | 96.51 293 | 98.91 138 | 85.61 305 | 99.85 94 | 92.88 294 | 96.90 324 | 98.69 271 |
|
ADS-MVSNet | | | 95.24 281 | 94.93 285 | 96.18 296 | 98.14 289 | 90.10 325 | 97.92 144 | 97.32 301 | 90.23 322 | 96.51 293 | 98.91 138 | 85.61 305 | 99.74 206 | 92.88 294 | 96.90 324 | 98.69 271 |
|
EPNet | | | 96.14 262 | 95.44 270 | 98.25 210 | 90.76 352 | 95.50 237 | 97.92 144 | 94.65 328 | 98.97 69 | 92.98 339 | 98.85 156 | 89.12 287 | 99.87 78 | 95.99 206 | 99.68 129 | 99.39 143 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVP-Stereo | | | 98.08 151 | 97.92 157 | 98.57 176 | 98.96 188 | 96.79 206 | 97.90 147 | 99.18 170 | 96.41 228 | 98.46 185 | 98.95 133 | 95.93 192 | 99.60 264 | 96.51 180 | 98.98 268 | 99.31 176 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
SD-MVS | | | 98.40 122 | 98.68 64 | 97.54 252 | 98.96 188 | 97.99 132 | 97.88 148 | 99.36 103 | 98.20 113 | 99.63 25 | 99.04 109 | 98.76 22 | 95.33 349 | 96.56 176 | 99.74 101 | 99.31 176 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
tpm | | | 94.67 289 | 94.34 292 | 95.66 306 | 97.68 313 | 88.42 328 | 97.88 148 | 94.90 327 | 94.46 273 | 96.03 307 | 98.56 210 | 78.66 338 | 99.79 172 | 95.88 210 | 95.01 338 | 98.78 263 |
|
TAMVS | | | 98.24 140 | 98.05 147 | 98.80 147 | 99.07 167 | 97.18 192 | 97.88 148 | 98.81 245 | 96.66 221 | 99.17 89 | 99.21 73 | 94.81 226 | 99.77 188 | 96.96 138 | 99.88 47 | 99.44 125 |
|
thisisatest0530 | | | 95.27 280 | 94.45 289 | 97.74 237 | 99.19 138 | 94.37 263 | 97.86 151 | 90.20 347 | 97.17 198 | 98.22 201 | 97.65 276 | 73.53 347 | 99.90 45 | 96.90 145 | 99.35 211 | 98.95 239 |
|
FMVSNet3 | | | 97.50 194 | 97.24 203 | 98.29 208 | 98.08 293 | 95.83 230 | 97.86 151 | 98.91 226 | 97.89 132 | 98.95 124 | 98.95 133 | 87.06 293 | 99.81 149 | 97.77 94 | 99.69 124 | 99.23 194 |
|
testing_2 | | | 98.93 47 | 98.99 40 | 98.76 155 | 99.57 53 | 97.03 198 | 97.85 153 | 99.13 186 | 98.46 95 | 99.44 44 | 99.44 45 | 98.22 54 | 99.74 206 | 98.85 38 | 99.94 19 | 99.51 94 |
|
114514_t | | | 96.50 254 | 95.77 258 | 98.69 162 | 99.48 91 | 97.43 178 | 97.84 154 | 99.55 43 | 81.42 345 | 96.51 293 | 98.58 208 | 95.53 204 | 99.67 238 | 93.41 287 | 99.58 165 | 98.98 234 |
|
DWT-MVSNet_test | | | 92.75 312 | 92.05 314 | 94.85 315 | 96.48 339 | 87.21 334 | 97.83 155 | 94.99 326 | 92.22 306 | 92.72 340 | 94.11 343 | 70.75 348 | 99.46 302 | 95.01 237 | 94.33 342 | 97.87 302 |
|
ACMMP_NAP | | | 98.75 68 | 98.48 89 | 99.57 18 | 99.58 49 | 99.29 14 | 97.82 156 | 99.25 150 | 96.94 209 | 98.78 151 | 99.12 92 | 98.02 68 | 99.84 111 | 97.13 126 | 99.67 135 | 99.59 53 |
|
casdiffmvs | | | 98.95 45 | 99.00 38 | 98.81 145 | 99.38 106 | 97.33 181 | 97.82 156 | 99.57 33 | 99.17 50 | 99.35 58 | 99.17 82 | 98.35 45 | 99.69 226 | 98.46 60 | 99.73 104 | 99.41 134 |
|
testtj | | | 97.79 179 | 97.25 201 | 99.42 54 | 99.03 177 | 98.85 64 | 97.78 158 | 99.18 170 | 95.83 247 | 98.12 208 | 98.50 217 | 95.50 207 | 99.86 84 | 92.23 306 | 99.07 254 | 99.54 81 |
|
testgi | | | 98.32 129 | 98.39 106 | 98.13 216 | 99.57 53 | 95.54 234 | 97.78 158 | 99.49 63 | 97.37 176 | 99.19 84 | 97.65 276 | 98.96 17 | 99.49 295 | 96.50 181 | 98.99 266 | 99.34 164 |
|
test20.03 | | | 98.78 64 | 98.77 53 | 98.78 152 | 99.46 94 | 97.20 190 | 97.78 158 | 99.24 155 | 99.04 62 | 99.41 48 | 98.90 141 | 97.65 92 | 99.76 195 | 97.70 100 | 99.79 80 | 99.39 143 |
|
HQP_MVS | | | 97.99 160 | 97.67 172 | 98.93 129 | 99.19 138 | 97.65 167 | 97.77 161 | 99.27 144 | 98.20 113 | 97.79 228 | 97.98 259 | 94.90 220 | 99.70 222 | 94.42 255 | 99.51 187 | 99.45 122 |
|
plane_prior2 | | | | | | | | 97.77 161 | | 98.20 113 | | | | | | | |
|
APD-MVS | | | 98.10 149 | 97.67 172 | 99.42 54 | 99.11 156 | 98.93 62 | 97.76 163 | 99.28 140 | 94.97 263 | 98.72 159 | 98.77 172 | 97.04 133 | 99.85 94 | 93.79 277 | 99.54 177 | 99.49 103 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepC-MVS_fast | | 96.85 6 | 98.30 131 | 98.15 137 | 98.75 158 | 98.61 254 | 97.23 186 | 97.76 163 | 99.09 193 | 97.31 182 | 98.75 156 | 98.66 191 | 97.56 101 | 99.64 253 | 96.10 204 | 99.55 176 | 99.39 143 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MDTV_nov1_ep13 | | | | 95.22 277 | | 97.06 330 | 83.20 347 | 97.74 165 | 96.16 319 | 94.37 277 | 96.99 270 | 98.83 162 | 83.95 318 | 99.53 285 | 93.90 272 | 97.95 308 | |
|
UniMVSNet (Re) | | | 98.87 54 | 98.71 59 | 99.35 66 | 99.24 127 | 98.73 74 | 97.73 166 | 99.38 95 | 98.93 74 | 99.12 91 | 98.73 177 | 96.77 152 | 99.86 84 | 98.63 51 | 99.80 75 | 99.46 118 |
|
alignmvs | | | 97.35 205 | 96.88 220 | 98.78 152 | 98.54 263 | 98.09 119 | 97.71 167 | 97.69 294 | 99.20 45 | 97.59 241 | 95.90 320 | 88.12 292 | 99.55 280 | 98.18 73 | 98.96 269 | 98.70 270 |
|
XVG-ACMP-BASELINE | | | 98.56 99 | 98.34 113 | 99.22 86 | 99.54 67 | 98.59 84 | 97.71 167 | 99.46 73 | 97.25 188 | 98.98 118 | 98.99 122 | 97.54 102 | 99.84 111 | 95.88 210 | 99.74 101 | 99.23 194 |
|
MDTV_nov1_ep13_2view | | | | | | | 74.92 353 | 97.69 169 | | 90.06 327 | 97.75 231 | | 85.78 304 | | 93.52 283 | | 98.69 271 |
|
UniMVSNet_NR-MVSNet | | | 98.86 56 | 98.68 64 | 99.40 59 | 99.17 146 | 98.74 71 | 97.68 170 | 99.40 91 | 99.14 51 | 99.06 102 | 98.59 207 | 96.71 158 | 99.93 26 | 98.57 54 | 99.77 88 | 99.53 87 |
|
ACMP | | 95.32 15 | 98.41 120 | 98.09 142 | 99.36 61 | 99.51 73 | 98.79 69 | 97.68 170 | 99.38 95 | 95.76 249 | 98.81 150 | 98.82 165 | 98.36 42 | 99.82 136 | 94.75 243 | 99.77 88 | 99.48 109 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
tpm2 | | | 93.09 311 | 92.58 311 | 94.62 317 | 97.56 315 | 86.53 336 | 97.66 172 | 95.79 324 | 86.15 339 | 94.07 334 | 98.23 243 | 75.95 343 | 99.53 285 | 90.91 320 | 96.86 327 | 97.81 306 |
|
dp | | | 93.47 307 | 93.59 300 | 93.13 331 | 96.64 336 | 81.62 350 | 97.66 172 | 96.42 317 | 92.80 299 | 96.11 302 | 98.64 196 | 78.55 341 | 99.59 268 | 93.31 289 | 92.18 346 | 98.16 293 |
|
PatchmatchNet | | | 95.58 274 | 95.67 263 | 95.30 312 | 97.34 324 | 87.32 333 | 97.65 174 | 96.65 314 | 95.30 258 | 97.07 266 | 98.69 184 | 84.77 310 | 99.75 202 | 94.97 239 | 98.64 284 | 98.83 255 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v144192 | | | 98.54 106 | 98.57 78 | 98.45 194 | 99.21 134 | 95.98 225 | 97.63 175 | 99.36 103 | 97.15 201 | 99.32 66 | 99.18 78 | 95.84 196 | 99.84 111 | 99.50 10 | 99.91 38 | 99.54 81 |
|
tpmrst | | | 95.07 284 | 95.46 269 | 93.91 323 | 97.11 329 | 84.36 345 | 97.62 176 | 96.96 307 | 94.98 262 | 96.35 299 | 98.80 167 | 85.46 307 | 99.59 268 | 95.60 227 | 96.23 332 | 97.79 309 |
|
UnsupCasMVSNet_eth | | | 97.89 164 | 97.60 181 | 98.75 158 | 99.31 116 | 97.17 193 | 97.62 176 | 99.35 108 | 98.72 83 | 98.76 155 | 98.68 186 | 92.57 266 | 99.74 206 | 97.76 98 | 95.60 335 | 99.34 164 |
|
Fast-Effi-MVS+-dtu | | | 98.27 135 | 98.09 142 | 98.81 145 | 98.43 273 | 98.11 118 | 97.61 178 | 99.50 55 | 98.64 84 | 97.39 258 | 97.52 284 | 98.12 63 | 99.95 14 | 96.90 145 | 98.71 280 | 98.38 286 |
|
tfpn200view9 | | | 94.03 300 | 93.44 301 | 95.78 303 | 98.93 193 | 91.44 315 | 97.60 179 | 94.29 331 | 97.94 127 | 97.10 263 | 94.31 341 | 79.67 334 | 99.62 257 | 83.05 339 | 98.08 304 | 96.29 333 |
|
thres400 | | | 94.14 298 | 93.44 301 | 96.24 295 | 98.93 193 | 91.44 315 | 97.60 179 | 94.29 331 | 97.94 127 | 97.10 263 | 94.31 341 | 79.67 334 | 99.62 257 | 83.05 339 | 98.08 304 | 97.66 315 |
|
test_post1 | | | | | | | | 97.59 181 | | | | 20.48 352 | 83.07 323 | 99.66 246 | 94.16 261 | | |
|
v1144 | | | 98.60 94 | 98.66 67 | 98.41 197 | 99.36 109 | 95.90 227 | 97.58 182 | 99.34 114 | 97.51 158 | 99.27 71 | 99.15 88 | 96.34 176 | 99.80 159 | 99.47 12 | 99.93 24 | 99.51 94 |
|
v2v482 | | | 98.56 99 | 98.62 71 | 98.37 201 | 99.42 103 | 95.81 231 | 97.58 182 | 99.16 179 | 97.90 131 | 99.28 69 | 99.01 119 | 95.98 189 | 99.79 172 | 99.33 15 | 99.90 42 | 99.51 94 |
|
v1921920 | | | 98.54 106 | 98.60 76 | 98.38 200 | 99.20 137 | 95.76 232 | 97.56 184 | 99.36 103 | 97.23 194 | 99.38 53 | 99.17 82 | 96.02 183 | 99.84 111 | 99.57 6 | 99.90 42 | 99.54 81 |
|
MVSTER | | | 96.86 238 | 96.55 242 | 97.79 233 | 97.91 301 | 94.21 267 | 97.56 184 | 98.87 232 | 97.49 161 | 99.06 102 | 99.05 106 | 80.72 329 | 99.80 159 | 98.44 61 | 99.82 63 | 99.37 152 |
|
DU-MVS | | | 98.82 58 | 98.63 70 | 99.39 60 | 99.16 148 | 98.74 71 | 97.54 186 | 99.25 150 | 98.84 79 | 99.06 102 | 98.76 174 | 96.76 154 | 99.93 26 | 98.57 54 | 99.77 88 | 99.50 99 |
|
9.14 | | | | 97.78 165 | | 99.07 167 | | 97.53 187 | 99.32 121 | 95.53 254 | 98.54 181 | 98.70 183 | 97.58 99 | 99.76 195 | 94.32 260 | 99.46 199 | |
|
v1192 | | | 98.60 94 | 98.66 67 | 98.41 197 | 99.27 122 | 95.88 228 | 97.52 188 | 99.36 103 | 97.41 172 | 99.33 61 | 99.20 75 | 96.37 175 | 99.82 136 | 99.57 6 | 99.92 33 | 99.55 77 |
|
HPM-MVS++ | | | 98.10 149 | 97.64 177 | 99.48 48 | 99.09 163 | 99.13 48 | 97.52 188 | 98.75 254 | 97.46 167 | 96.90 277 | 97.83 267 | 96.01 184 | 99.84 111 | 95.82 217 | 99.35 211 | 99.46 118 |
|
ETV-MVS | | | 98.03 153 | 97.86 162 | 98.56 180 | 98.69 242 | 98.07 125 | 97.51 190 | 99.50 55 | 98.10 119 | 97.50 250 | 95.51 326 | 98.41 39 | 99.88 62 | 96.27 194 | 99.24 229 | 97.71 313 |
|
v1240 | | | 98.55 103 | 98.62 71 | 98.32 204 | 99.22 132 | 95.58 233 | 97.51 190 | 99.45 76 | 97.16 199 | 99.45 43 | 99.24 70 | 96.12 180 | 99.85 94 | 99.60 4 | 99.88 47 | 99.55 77 |
|
MSLP-MVS++ | | | 98.02 155 | 98.14 139 | 97.64 243 | 98.58 259 | 95.19 246 | 97.48 192 | 99.23 157 | 97.47 162 | 97.90 220 | 98.62 202 | 97.04 133 | 98.81 341 | 97.55 103 | 99.41 204 | 98.94 243 |
|
PAPM_NR | | | 96.82 241 | 96.32 249 | 98.30 207 | 99.07 167 | 96.69 211 | 97.48 192 | 98.76 251 | 95.81 248 | 96.61 289 | 96.47 313 | 94.12 243 | 99.17 329 | 90.82 322 | 97.78 310 | 99.06 220 |
|
ETH3D-3000-0.1 | | | 98.03 153 | 97.62 179 | 99.29 74 | 99.11 156 | 98.80 68 | 97.47 194 | 99.32 121 | 95.54 252 | 98.43 190 | 98.62 202 | 96.61 162 | 99.77 188 | 93.95 271 | 99.49 195 | 99.30 179 |
|
Baseline_NR-MVSNet | | | 98.98 41 | 98.86 44 | 99.36 61 | 99.82 16 | 98.55 87 | 97.47 194 | 99.57 33 | 99.37 33 | 99.21 82 | 99.61 23 | 96.76 154 | 99.83 126 | 98.06 78 | 99.83 60 | 99.71 25 |
|
v148 | | | 98.45 116 | 98.60 76 | 98.00 225 | 99.44 99 | 94.98 250 | 97.44 196 | 99.06 196 | 98.30 101 | 99.32 66 | 98.97 128 | 96.65 160 | 99.62 257 | 98.37 65 | 99.85 52 | 99.39 143 |
|
tpm cat1 | | | 93.29 309 | 93.13 307 | 93.75 324 | 97.39 323 | 84.74 342 | 97.39 197 | 97.65 295 | 83.39 344 | 94.16 331 | 98.41 225 | 82.86 324 | 99.39 310 | 91.56 314 | 95.35 337 | 97.14 325 |
|
OpenMVS_ROB | | 95.38 14 | 95.84 269 | 95.18 279 | 97.81 232 | 98.41 274 | 97.15 195 | 97.37 198 | 98.62 264 | 83.86 342 | 98.65 164 | 98.37 231 | 94.29 238 | 99.68 235 | 88.41 329 | 98.62 286 | 96.60 332 |
|
RRT_MVS | | | 97.07 227 | 96.57 241 | 98.58 173 | 95.89 347 | 96.33 217 | 97.36 199 | 98.77 250 | 97.85 135 | 99.08 99 | 99.12 92 | 82.30 326 | 99.96 8 | 98.82 41 | 99.90 42 | 99.45 122 |
|
PVSNet_Blended_VisFu | | | 98.17 147 | 98.15 137 | 98.22 212 | 99.73 23 | 95.15 247 | 97.36 199 | 99.68 13 | 94.45 275 | 98.99 116 | 99.27 65 | 96.87 144 | 99.94 22 | 97.13 126 | 99.91 38 | 99.57 64 |
|
zzz-MVS | | | 98.79 61 | 98.52 81 | 99.61 9 | 99.67 39 | 99.36 6 | 97.33 201 | 99.20 161 | 98.83 80 | 98.89 133 | 98.90 141 | 96.98 139 | 99.92 32 | 97.16 122 | 99.70 118 | 99.56 69 |
|
Effi-MVS+ | | | 98.02 155 | 97.82 164 | 98.62 169 | 98.53 265 | 97.19 191 | 97.33 201 | 99.68 13 | 97.30 183 | 96.68 285 | 97.46 289 | 98.56 32 | 99.80 159 | 96.63 169 | 98.20 296 | 98.86 253 |
|
mvs_anonymous | | | 97.83 176 | 98.16 135 | 96.87 281 | 98.18 287 | 91.89 310 | 97.31 203 | 98.90 227 | 97.37 176 | 98.83 144 | 99.46 40 | 96.28 177 | 99.79 172 | 98.90 35 | 98.16 299 | 98.95 239 |
|
test_yl | | | 96.69 245 | 96.29 250 | 97.90 227 | 98.28 280 | 95.24 243 | 97.29 204 | 97.36 298 | 98.21 110 | 98.17 202 | 97.86 264 | 86.27 298 | 99.55 280 | 94.87 241 | 98.32 292 | 98.89 249 |
|
DCV-MVSNet | | | 96.69 245 | 96.29 250 | 97.90 227 | 98.28 280 | 95.24 243 | 97.29 204 | 97.36 298 | 98.21 110 | 98.17 202 | 97.86 264 | 86.27 298 | 99.55 280 | 94.87 241 | 98.32 292 | 98.89 249 |
|
MS-PatchMatch | | | 97.68 183 | 97.75 167 | 97.45 257 | 98.23 285 | 93.78 284 | 97.29 204 | 98.84 239 | 96.10 238 | 98.64 165 | 98.65 193 | 96.04 182 | 99.36 313 | 96.84 151 | 99.14 245 | 99.20 199 |
|
F-COLMAP | | | 97.30 209 | 96.68 232 | 99.14 95 | 99.19 138 | 98.39 98 | 97.27 207 | 99.30 134 | 92.93 296 | 96.62 288 | 98.00 257 | 95.73 199 | 99.68 235 | 92.62 301 | 98.46 290 | 99.35 162 |
|
Fast-Effi-MVS+ | | | 97.67 184 | 97.38 194 | 98.57 176 | 98.71 235 | 97.43 178 | 97.23 208 | 99.45 76 | 94.82 267 | 96.13 301 | 96.51 310 | 98.52 34 | 99.91 42 | 96.19 198 | 98.83 273 | 98.37 288 |
|
EI-MVSNet-UG-set | | | 98.69 78 | 98.71 59 | 98.62 169 | 99.10 160 | 96.37 216 | 97.23 208 | 98.87 232 | 99.20 45 | 99.19 84 | 98.99 122 | 97.30 119 | 99.85 94 | 98.77 45 | 99.79 80 | 99.65 37 |
|
EI-MVSNet-Vis-set | | | 98.68 81 | 98.70 62 | 98.63 167 | 99.09 163 | 96.40 215 | 97.23 208 | 98.86 237 | 99.20 45 | 99.18 88 | 98.97 128 | 97.29 121 | 99.85 94 | 98.72 47 | 99.78 84 | 99.64 38 |
|
IterMVS-LS | | | 98.55 103 | 98.70 62 | 98.09 217 | 99.48 91 | 94.73 255 | 97.22 211 | 99.39 93 | 98.97 69 | 99.38 53 | 99.31 62 | 96.00 185 | 99.93 26 | 98.58 52 | 99.97 11 | 99.60 47 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
mvs-test1 | | | 97.83 176 | 97.48 190 | 98.89 135 | 98.02 295 | 99.20 29 | 97.20 212 | 99.16 179 | 98.29 104 | 96.46 297 | 97.17 299 | 96.44 170 | 99.92 32 | 96.66 167 | 97.90 309 | 97.54 320 |
|
EI-MVSNet | | | 98.40 122 | 98.51 83 | 98.04 223 | 99.10 160 | 94.73 255 | 97.20 212 | 98.87 232 | 98.97 69 | 99.06 102 | 99.02 113 | 96.00 185 | 99.80 159 | 98.58 52 | 99.82 63 | 99.60 47 |
|
CVMVSNet | | | 96.25 261 | 97.21 204 | 93.38 329 | 99.10 160 | 80.56 351 | 97.20 212 | 98.19 282 | 96.94 209 | 99.00 115 | 99.02 113 | 89.50 285 | 99.80 159 | 96.36 189 | 99.59 159 | 99.78 14 |
|
LF4IMVS | | | 97.90 162 | 97.69 171 | 98.52 185 | 99.17 146 | 97.66 166 | 97.19 215 | 99.47 71 | 96.31 232 | 97.85 224 | 98.20 245 | 96.71 158 | 99.52 289 | 94.62 247 | 99.72 110 | 98.38 286 |
|
Regformer-3 | | | 98.61 92 | 98.61 74 | 98.63 167 | 99.02 179 | 96.53 213 | 97.17 216 | 98.84 239 | 99.13 52 | 99.10 96 | 98.85 156 | 97.24 126 | 99.79 172 | 98.41 64 | 99.70 118 | 99.57 64 |
|
Regformer-4 | | | 98.73 71 | 98.68 64 | 98.89 135 | 99.02 179 | 97.22 188 | 97.17 216 | 99.06 196 | 99.21 42 | 99.17 89 | 98.85 156 | 97.45 112 | 99.86 84 | 98.48 59 | 99.70 118 | 99.60 47 |
|
MP-MVS-pluss | | | 98.57 98 | 98.23 126 | 99.60 13 | 99.69 37 | 99.35 8 | 97.16 218 | 99.38 95 | 94.87 266 | 98.97 121 | 98.99 122 | 98.01 69 | 99.88 62 | 97.29 116 | 99.70 118 | 99.58 59 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
pmmvs-eth3d | | | 98.47 114 | 98.34 113 | 98.86 139 | 99.30 119 | 97.76 159 | 97.16 218 | 99.28 140 | 95.54 252 | 99.42 47 | 99.19 76 | 97.27 122 | 99.63 255 | 97.89 86 | 99.97 11 | 99.20 199 |
|
OPM-MVS | | | 98.56 99 | 98.32 117 | 99.25 83 | 99.41 104 | 98.73 74 | 97.13 220 | 99.18 170 | 97.10 202 | 98.75 156 | 98.92 137 | 98.18 58 | 99.65 251 | 96.68 166 | 99.56 174 | 99.37 152 |
|
plane_prior | | | | | | | 97.65 167 | 97.07 221 | | 96.72 218 | | | | | | 99.36 209 | |
|
CMPMVS | | 75.91 23 | 96.29 259 | 95.44 270 | 98.84 141 | 96.25 343 | 98.69 77 | 97.02 222 | 99.12 189 | 88.90 331 | 97.83 225 | 98.86 153 | 89.51 284 | 98.90 339 | 91.92 307 | 99.51 187 | 98.92 245 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
DPE-MVS | | | 98.59 97 | 98.26 122 | 99.57 18 | 99.27 122 | 99.15 42 | 97.01 223 | 99.39 93 | 97.67 144 | 99.44 44 | 98.99 122 | 97.53 104 | 99.89 54 | 95.40 233 | 99.68 129 | 99.66 33 |
|
CNVR-MVS | | | 98.17 147 | 97.87 161 | 99.07 107 | 98.67 247 | 98.24 106 | 97.01 223 | 98.93 221 | 97.25 188 | 97.62 238 | 98.34 234 | 97.27 122 | 99.57 274 | 96.42 186 | 99.33 214 | 99.39 143 |
|
NCCC | | | 97.86 168 | 97.47 191 | 99.05 114 | 98.61 254 | 98.07 125 | 96.98 225 | 98.90 227 | 97.63 147 | 97.04 268 | 97.93 262 | 95.99 188 | 99.66 246 | 95.31 234 | 98.82 274 | 99.43 129 |
|
AdaColmap | | | 97.14 223 | 96.71 230 | 98.46 193 | 98.34 277 | 97.80 157 | 96.95 226 | 98.93 221 | 95.58 251 | 96.92 272 | 97.66 275 | 95.87 195 | 99.53 285 | 90.97 318 | 99.14 245 | 98.04 297 |
|
D2MVS | | | 97.84 174 | 97.84 163 | 97.83 231 | 99.14 153 | 94.74 254 | 96.94 227 | 98.88 230 | 95.84 246 | 98.89 133 | 98.96 131 | 94.40 235 | 99.69 226 | 97.55 103 | 99.95 15 | 99.05 221 |
|
OMC-MVS | | | 97.88 166 | 97.49 187 | 99.04 116 | 98.89 206 | 98.63 79 | 96.94 227 | 99.25 150 | 95.02 261 | 98.53 182 | 98.51 214 | 97.27 122 | 99.47 300 | 93.50 285 | 99.51 187 | 99.01 229 |
|
JIA-IIPM | | | 95.52 276 | 95.03 282 | 97.00 273 | 96.85 333 | 94.03 272 | 96.93 229 | 95.82 323 | 99.20 45 | 94.63 328 | 99.71 12 | 83.09 322 | 99.60 264 | 94.42 255 | 94.64 339 | 97.36 323 |
|
TAPA-MVS | | 96.21 11 | 96.63 249 | 95.95 256 | 98.65 164 | 98.93 193 | 98.09 119 | 96.93 229 | 99.28 140 | 83.58 343 | 98.13 207 | 97.78 269 | 96.13 179 | 99.40 308 | 93.52 283 | 99.29 222 | 98.45 282 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CDS-MVSNet | | | 97.69 182 | 97.35 197 | 98.69 162 | 98.73 231 | 97.02 200 | 96.92 231 | 98.75 254 | 95.89 245 | 98.59 173 | 98.67 188 | 92.08 271 | 99.74 206 | 96.72 162 | 99.81 67 | 99.32 172 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Regformer-1 | | | 98.55 103 | 98.44 97 | 98.87 137 | 98.85 212 | 97.29 182 | 96.91 232 | 98.99 216 | 98.97 69 | 98.99 116 | 98.64 196 | 97.26 125 | 99.81 149 | 97.79 92 | 99.57 169 | 99.51 94 |
|
Regformer-2 | | | 98.60 94 | 98.46 93 | 99.02 120 | 98.85 212 | 97.71 164 | 96.91 232 | 99.09 193 | 98.98 68 | 99.01 113 | 98.64 196 | 97.37 117 | 99.84 111 | 97.75 99 | 99.57 169 | 99.52 91 |
|
MCST-MVS | | | 98.00 157 | 97.63 178 | 99.10 101 | 99.24 127 | 98.17 114 | 96.89 234 | 98.73 257 | 95.66 250 | 97.92 218 | 97.70 274 | 97.17 129 | 99.66 246 | 96.18 200 | 99.23 230 | 99.47 116 |
|
ETH3D cwj APD-0.16 | | | 97.55 192 | 97.00 213 | 99.19 88 | 98.51 266 | 98.64 78 | 96.85 235 | 99.13 186 | 94.19 281 | 97.65 236 | 98.40 226 | 95.78 197 | 99.81 149 | 93.37 288 | 99.16 241 | 99.12 215 |
|
WR-MVS | | | 98.40 122 | 98.19 130 | 99.03 117 | 99.00 181 | 97.65 167 | 96.85 235 | 98.94 219 | 98.57 92 | 98.89 133 | 98.50 217 | 95.60 202 | 99.85 94 | 97.54 105 | 99.85 52 | 99.59 53 |
|
baseline2 | | | 93.73 304 | 92.83 309 | 96.42 291 | 97.70 311 | 91.28 320 | 96.84 237 | 89.77 348 | 93.96 286 | 92.44 341 | 95.93 319 | 79.14 337 | 99.77 188 | 92.94 292 | 96.76 328 | 98.21 290 |
|
DP-MVS Recon | | | 97.33 207 | 96.92 217 | 98.57 176 | 99.09 163 | 97.99 132 | 96.79 238 | 99.35 108 | 93.18 293 | 97.71 232 | 98.07 255 | 95.00 219 | 99.31 319 | 93.97 269 | 99.13 248 | 98.42 285 |
|
EPNet_dtu | | | 94.93 287 | 94.78 287 | 95.38 311 | 93.58 351 | 87.68 332 | 96.78 239 | 95.69 325 | 97.35 178 | 89.14 347 | 98.09 253 | 88.15 291 | 99.49 295 | 94.95 240 | 99.30 220 | 98.98 234 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
WTY-MVS | | | 96.67 247 | 96.27 252 | 97.87 229 | 98.81 222 | 94.61 260 | 96.77 240 | 97.92 289 | 94.94 264 | 97.12 262 | 97.74 272 | 91.11 275 | 99.82 136 | 93.89 273 | 98.15 300 | 99.18 206 |
|
CANet | | | 97.87 167 | 97.76 166 | 98.19 214 | 97.75 307 | 95.51 236 | 96.76 241 | 99.05 200 | 97.74 140 | 96.93 271 | 98.21 244 | 95.59 203 | 99.89 54 | 97.86 91 | 99.93 24 | 99.19 204 |
|
sss | | | 97.21 217 | 96.93 216 | 98.06 221 | 98.83 217 | 95.22 245 | 96.75 242 | 98.48 270 | 94.49 271 | 97.27 261 | 97.90 263 | 92.77 263 | 99.80 159 | 96.57 173 | 99.32 215 | 99.16 213 |
|
1112_ss | | | 97.29 211 | 96.86 221 | 98.58 173 | 99.34 115 | 96.32 218 | 96.75 242 | 99.58 26 | 93.14 294 | 96.89 278 | 97.48 287 | 92.11 270 | 99.86 84 | 96.91 140 | 99.54 177 | 99.57 64 |
|
BH-untuned | | | 96.83 239 | 96.75 228 | 97.08 271 | 98.74 230 | 93.33 289 | 96.71 244 | 98.26 277 | 96.72 218 | 98.44 187 | 97.37 294 | 95.20 214 | 99.47 300 | 91.89 308 | 97.43 315 | 98.44 283 |
|
pmmvs5 | | | 97.64 186 | 97.49 187 | 98.08 220 | 99.14 153 | 95.12 249 | 96.70 245 | 99.05 200 | 93.77 287 | 98.62 168 | 98.83 162 | 93.23 252 | 99.75 202 | 98.33 68 | 99.76 97 | 99.36 158 |
|
BH-RMVSNet | | | 96.83 239 | 96.58 240 | 97.58 247 | 98.47 269 | 94.05 270 | 96.67 246 | 97.36 298 | 96.70 220 | 97.87 222 | 97.98 259 | 95.14 216 | 99.44 305 | 90.47 323 | 98.58 288 | 99.25 190 |
|
PVSNet_BlendedMVS | | | 97.55 192 | 97.53 184 | 97.60 245 | 98.92 197 | 93.77 285 | 96.64 247 | 99.43 84 | 94.49 271 | 97.62 238 | 99.18 78 | 96.82 148 | 99.67 238 | 94.73 244 | 99.93 24 | 99.36 158 |
|
MDA-MVSNet-bldmvs | | | 97.94 161 | 97.91 158 | 98.06 221 | 99.44 99 | 94.96 251 | 96.63 248 | 99.15 185 | 98.35 97 | 98.83 144 | 99.11 94 | 94.31 237 | 99.85 94 | 96.60 170 | 98.72 278 | 99.37 152 |
|
thres200 | | | 93.72 305 | 93.14 306 | 95.46 310 | 98.66 252 | 91.29 319 | 96.61 249 | 94.63 329 | 97.39 174 | 96.83 281 | 93.71 344 | 79.88 331 | 99.56 277 | 82.40 342 | 98.13 301 | 95.54 342 |
|
XVG-OURS-SEG-HR | | | 98.49 112 | 98.28 120 | 99.14 95 | 99.49 83 | 98.83 65 | 96.54 250 | 99.48 65 | 97.32 181 | 99.11 93 | 98.61 205 | 99.33 8 | 99.30 321 | 96.23 195 | 98.38 291 | 99.28 184 |
|
xxxxxxxxxxxxxcwj | | | 98.44 117 | 98.24 124 | 99.06 112 | 99.11 156 | 97.97 137 | 96.53 251 | 99.54 47 | 98.24 107 | 98.83 144 | 98.90 141 | 97.80 84 | 99.82 136 | 95.68 223 | 99.52 184 | 99.38 149 |
|
ETH3 D test6400 | | | 96.46 256 | 95.59 266 | 99.08 104 | 98.88 207 | 98.21 112 | 96.53 251 | 99.18 170 | 88.87 332 | 97.08 265 | 97.79 268 | 93.64 251 | 99.77 188 | 88.92 328 | 99.40 206 | 99.28 184 |
|
save fliter | | | | | | 99.11 156 | 97.97 137 | 96.53 251 | 99.02 209 | 98.24 107 | | | | | | | |
|
CHOSEN 1792x2688 | | | 97.49 196 | 97.14 209 | 98.54 184 | 99.68 38 | 96.09 224 | 96.50 254 | 99.62 19 | 91.58 312 | 98.84 143 | 98.97 128 | 92.36 267 | 99.88 62 | 96.76 157 | 99.95 15 | 99.67 32 |
|
TR-MVS | | | 95.55 275 | 95.12 281 | 96.86 284 | 97.54 316 | 93.94 276 | 96.49 255 | 96.53 316 | 94.36 278 | 97.03 269 | 96.61 309 | 94.26 239 | 99.16 330 | 86.91 333 | 96.31 331 | 97.47 322 |
|
xiu_mvs_v1_base_debu | | | 97.86 168 | 98.17 132 | 96.92 278 | 98.98 185 | 93.91 278 | 96.45 256 | 99.17 176 | 97.85 135 | 98.41 191 | 97.14 302 | 98.47 35 | 99.92 32 | 98.02 80 | 99.05 255 | 96.92 326 |
|
xiu_mvs_v1_base | | | 97.86 168 | 98.17 132 | 96.92 278 | 98.98 185 | 93.91 278 | 96.45 256 | 99.17 176 | 97.85 135 | 98.41 191 | 97.14 302 | 98.47 35 | 99.92 32 | 98.02 80 | 99.05 255 | 96.92 326 |
|
xiu_mvs_v1_base_debi | | | 97.86 168 | 98.17 132 | 96.92 278 | 98.98 185 | 93.91 278 | 96.45 256 | 99.17 176 | 97.85 135 | 98.41 191 | 97.14 302 | 98.47 35 | 99.92 32 | 98.02 80 | 99.05 255 | 96.92 326 |
|
new-patchmatchnet | | | 98.35 127 | 98.74 54 | 97.18 267 | 99.24 127 | 92.23 308 | 96.42 259 | 99.48 65 | 98.30 101 | 99.69 17 | 99.53 32 | 97.44 113 | 99.82 136 | 98.84 40 | 99.77 88 | 99.49 103 |
|
PLC | | 94.65 16 | 96.51 252 | 95.73 260 | 98.85 140 | 98.75 229 | 97.91 145 | 96.42 259 | 99.06 196 | 90.94 321 | 95.59 312 | 97.38 293 | 94.41 234 | 99.59 268 | 90.93 319 | 98.04 307 | 99.05 221 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
diffmvs | | | 98.22 141 | 98.24 124 | 98.17 215 | 99.00 181 | 95.44 239 | 96.38 261 | 99.58 26 | 97.79 139 | 98.53 182 | 98.50 217 | 96.76 154 | 99.74 206 | 97.95 85 | 99.64 143 | 99.34 164 |
|
PatchMatch-RL | | | 97.24 215 | 96.78 226 | 98.61 171 | 99.03 177 | 97.83 151 | 96.36 262 | 99.06 196 | 93.49 292 | 97.36 260 | 97.78 269 | 95.75 198 | 99.49 295 | 93.44 286 | 98.77 275 | 98.52 278 |
|
CNLPA | | | 97.17 221 | 96.71 230 | 98.55 181 | 98.56 261 | 98.05 128 | 96.33 263 | 98.93 221 | 96.91 211 | 97.06 267 | 97.39 292 | 94.38 236 | 99.45 304 | 91.66 310 | 99.18 239 | 98.14 294 |
|
TSAR-MVS + GP. | | | 98.18 145 | 97.98 152 | 98.77 154 | 98.71 235 | 97.88 147 | 96.32 264 | 98.66 261 | 96.33 230 | 99.23 81 | 98.51 214 | 97.48 111 | 99.40 308 | 97.16 122 | 99.46 199 | 99.02 228 |
|
HQP-NCC | | | | | | 98.67 247 | | 96.29 265 | | 96.05 239 | 95.55 316 | | | | | | |
|
ACMP_Plane | | | | | | 98.67 247 | | 96.29 265 | | 96.05 239 | 95.55 316 | | | | | | |
|
HQP-MVS | | | 97.00 234 | 96.49 244 | 98.55 181 | 98.67 247 | 96.79 206 | 96.29 265 | 99.04 203 | 96.05 239 | 95.55 316 | 96.84 305 | 93.84 244 | 99.54 283 | 92.82 296 | 99.26 227 | 99.32 172 |
|
MVS-HIRNet | | | 94.32 293 | 95.62 264 | 90.42 333 | 98.46 270 | 75.36 352 | 96.29 265 | 89.13 349 | 95.25 259 | 95.38 321 | 99.75 7 | 92.88 261 | 99.19 328 | 94.07 268 | 99.39 207 | 96.72 331 |
|
TinyColmap | | | 97.89 164 | 97.98 152 | 97.60 245 | 98.86 210 | 94.35 264 | 96.21 269 | 99.44 79 | 97.45 169 | 99.06 102 | 98.88 150 | 97.99 73 | 99.28 324 | 94.38 259 | 99.58 165 | 99.18 206 |
|
UnsupCasMVSNet_bld | | | 97.30 209 | 96.92 217 | 98.45 194 | 99.28 121 | 96.78 209 | 96.20 270 | 99.27 144 | 95.42 257 | 98.28 199 | 98.30 238 | 93.16 254 | 99.71 220 | 94.99 238 | 97.37 316 | 98.87 252 |
|
CANet_DTU | | | 97.26 212 | 97.06 210 | 97.84 230 | 97.57 314 | 94.65 259 | 96.19 271 | 98.79 248 | 97.23 194 | 95.14 324 | 98.24 241 | 93.22 253 | 99.84 111 | 97.34 114 | 99.84 54 | 99.04 225 |
|
Patchmatch-RL test | | | 97.26 212 | 97.02 212 | 97.99 226 | 99.52 71 | 95.53 235 | 96.13 272 | 99.71 9 | 97.47 162 | 99.27 71 | 99.16 84 | 84.30 316 | 99.62 257 | 97.89 86 | 99.77 88 | 98.81 258 |
|
MVS_111021_LR | | | 98.30 131 | 98.12 140 | 98.83 142 | 99.16 148 | 98.03 130 | 96.09 273 | 99.30 134 | 97.58 152 | 98.10 210 | 98.24 241 | 98.25 49 | 99.34 315 | 96.69 165 | 99.65 141 | 99.12 215 |
|
CDPH-MVS | | | 97.26 212 | 96.66 235 | 99.07 107 | 99.00 181 | 98.15 115 | 96.03 274 | 99.01 212 | 91.21 318 | 97.79 228 | 97.85 266 | 96.89 143 | 99.69 226 | 92.75 299 | 99.38 208 | 99.39 143 |
|
N_pmnet | | | 97.63 188 | 97.17 205 | 98.99 123 | 99.27 122 | 97.86 149 | 95.98 275 | 93.41 337 | 95.25 259 | 99.47 40 | 98.90 141 | 95.63 201 | 99.85 94 | 96.91 140 | 99.73 104 | 99.27 186 |
|
XVG-OURS | | | 98.53 108 | 98.34 113 | 99.11 99 | 99.50 76 | 98.82 67 | 95.97 276 | 99.50 55 | 97.30 183 | 99.05 107 | 98.98 126 | 99.35 7 | 99.32 318 | 95.72 220 | 99.68 129 | 99.18 206 |
|
MVS_111021_HR | | | 98.25 139 | 98.08 145 | 98.75 158 | 99.09 163 | 97.46 176 | 95.97 276 | 99.27 144 | 97.60 151 | 97.99 217 | 98.25 240 | 98.15 62 | 99.38 312 | 96.87 148 | 99.57 169 | 99.42 132 |
|
TEST9 | | | | | | 98.71 235 | 98.08 123 | 95.96 278 | 99.03 205 | 91.40 315 | 95.85 309 | 97.53 282 | 96.52 165 | 99.76 195 | | | |
|
train_agg | | | 97.10 224 | 96.45 245 | 99.07 107 | 98.71 235 | 98.08 123 | 95.96 278 | 99.03 205 | 91.64 310 | 95.85 309 | 97.53 282 | 96.47 168 | 99.76 195 | 93.67 279 | 99.16 241 | 99.36 158 |
|
new_pmnet | | | 96.99 235 | 96.76 227 | 97.67 239 | 98.72 232 | 94.89 252 | 95.95 280 | 98.20 280 | 92.62 301 | 98.55 179 | 98.54 211 | 94.88 223 | 99.52 289 | 93.96 270 | 99.44 202 | 98.59 277 |
|
新几何2 | | | | | | | | 95.93 281 | | | | | | | | | |
|
MG-MVS | | | 96.77 243 | 96.61 238 | 97.26 265 | 98.31 279 | 93.06 292 | 95.93 281 | 98.12 283 | 96.45 227 | 97.92 218 | 98.73 177 | 93.77 248 | 99.39 310 | 91.19 317 | 99.04 258 | 99.33 170 |
|
test_8 | | | | | | 98.67 247 | 98.01 131 | 95.91 283 | 99.02 209 | 91.64 310 | 95.79 311 | 97.50 285 | 96.47 168 | 99.76 195 | | | |
|
test_prior4 | | | | | | | 97.97 137 | 95.86 284 | | | | | | | | | |
|
jason | | | 97.45 200 | 97.35 197 | 97.76 235 | 99.24 127 | 93.93 277 | 95.86 284 | 98.42 272 | 94.24 279 | 98.50 184 | 98.13 247 | 94.82 224 | 99.91 42 | 97.22 119 | 99.73 104 | 99.43 129 |
jason: jason. |
SCA | | | 96.41 257 | 96.66 235 | 95.67 305 | 98.24 283 | 88.35 329 | 95.85 286 | 96.88 312 | 96.11 237 | 97.67 235 | 98.67 188 | 93.10 256 | 99.85 94 | 94.16 261 | 99.22 231 | 98.81 258 |
|
Test_1112_low_res | | | 96.99 235 | 96.55 242 | 98.31 206 | 99.35 113 | 95.47 238 | 95.84 287 | 99.53 49 | 91.51 314 | 96.80 283 | 98.48 222 | 91.36 274 | 99.83 126 | 96.58 171 | 99.53 181 | 99.62 42 |
|
agg_prior1 | | | 97.06 228 | 96.40 246 | 99.03 117 | 98.68 245 | 97.99 132 | 95.76 288 | 99.01 212 | 91.73 309 | 95.59 312 | 97.50 285 | 96.49 167 | 99.77 188 | 93.71 278 | 99.14 245 | 99.34 164 |
|
旧先验2 | | | | | | | | 95.76 288 | | 88.56 334 | 97.52 248 | | | 99.66 246 | 94.48 251 | | |
|
test_prior3 | | | 97.48 198 | 97.00 213 | 98.95 126 | 98.69 242 | 97.95 142 | 95.74 290 | 99.03 205 | 96.48 225 | 96.11 302 | 97.63 278 | 95.92 193 | 99.59 268 | 94.16 261 | 99.20 234 | 99.30 179 |
|
test_prior2 | | | | | | | | 95.74 290 | | 96.48 225 | 96.11 302 | 97.63 278 | 95.92 193 | | 94.16 261 | 99.20 234 | |
|
无先验 | | | | | | | | 95.74 290 | 98.74 256 | 89.38 329 | | | | 99.73 211 | 92.38 304 | | 99.22 198 |
|
BH-w/o | | | 95.13 283 | 94.89 286 | 95.86 301 | 98.20 286 | 91.31 318 | 95.65 293 | 97.37 297 | 93.64 288 | 96.52 292 | 95.70 323 | 93.04 259 | 99.02 334 | 88.10 330 | 95.82 334 | 97.24 324 |
|
FPMVS | | | 93.44 308 | 92.23 312 | 97.08 271 | 99.25 126 | 97.86 149 | 95.61 294 | 97.16 304 | 92.90 297 | 93.76 337 | 98.65 193 | 75.94 344 | 95.66 347 | 79.30 346 | 97.49 313 | 97.73 311 |
|
DELS-MVS | | | 98.27 135 | 98.20 128 | 98.48 191 | 98.86 210 | 96.70 210 | 95.60 295 | 99.20 161 | 97.73 141 | 98.45 186 | 98.71 180 | 97.50 108 | 99.82 136 | 98.21 71 | 99.59 159 | 98.93 244 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
test222 | | | | | | 98.92 197 | 96.93 203 | 95.54 296 | 98.78 249 | 85.72 340 | 96.86 280 | 98.11 250 | 94.43 233 | | | 99.10 253 | 99.23 194 |
|
IterMVS-SCA-FT | | | 97.85 173 | 98.18 131 | 96.87 281 | 99.27 122 | 91.16 323 | 95.53 297 | 99.25 150 | 99.10 57 | 99.41 48 | 99.35 56 | 93.10 256 | 99.96 8 | 98.65 50 | 99.94 19 | 99.49 103 |
|
原ACMM2 | | | | | | | | 95.53 297 | | | | | | | | | |
|
IterMVS | | | 97.73 180 | 98.11 141 | 96.57 288 | 99.24 127 | 90.28 324 | 95.52 299 | 99.21 159 | 98.86 77 | 99.33 61 | 99.33 60 | 93.11 255 | 99.94 22 | 98.49 58 | 99.94 19 | 99.48 109 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
lupinMVS | | | 97.06 228 | 96.86 221 | 97.65 241 | 98.88 207 | 93.89 281 | 95.48 300 | 97.97 287 | 93.53 290 | 98.16 204 | 97.58 280 | 93.81 246 | 99.91 42 | 96.77 156 | 99.57 169 | 99.17 210 |
|
xiu_mvs_v2_base | | | 97.16 222 | 97.49 187 | 96.17 297 | 98.54 263 | 92.46 303 | 95.45 301 | 98.84 239 | 97.25 188 | 97.48 252 | 96.49 311 | 98.31 47 | 99.90 45 | 96.34 190 | 98.68 282 | 96.15 337 |
|
testdata1 | | | | | | | | 95.44 302 | | 96.32 231 | | | | | | | |
|
pmmvs4 | | | 97.58 191 | 97.28 200 | 98.51 188 | 98.84 215 | 96.93 203 | 95.40 303 | 98.52 268 | 93.60 289 | 98.61 170 | 98.65 193 | 95.10 217 | 99.60 264 | 96.97 137 | 99.79 80 | 98.99 233 |
|
YYNet1 | | | 97.60 189 | 97.67 172 | 97.39 261 | 99.04 174 | 93.04 295 | 95.27 304 | 98.38 274 | 97.25 188 | 98.92 130 | 98.95 133 | 95.48 209 | 99.73 211 | 96.99 134 | 98.74 276 | 99.41 134 |
|
MDA-MVSNet_test_wron | | | 97.60 189 | 97.66 175 | 97.41 260 | 99.04 174 | 93.09 291 | 95.27 304 | 98.42 272 | 97.26 187 | 98.88 137 | 98.95 133 | 95.43 210 | 99.73 211 | 97.02 131 | 98.72 278 | 99.41 134 |
|
PS-MVSNAJ | | | 97.08 226 | 97.39 193 | 96.16 299 | 98.56 261 | 92.46 303 | 95.24 306 | 98.85 238 | 97.25 188 | 97.49 251 | 95.99 318 | 98.07 64 | 99.90 45 | 96.37 187 | 98.67 283 | 96.12 338 |
|
HyFIR lowres test | | | 97.19 219 | 96.60 239 | 98.96 125 | 99.62 48 | 97.28 184 | 95.17 307 | 99.50 55 | 94.21 280 | 99.01 113 | 98.32 237 | 86.61 296 | 99.99 2 | 97.10 128 | 99.84 54 | 99.60 47 |
|
USDC | | | 97.41 202 | 97.40 192 | 97.44 258 | 98.94 191 | 93.67 287 | 95.17 307 | 99.53 49 | 94.03 284 | 98.97 121 | 99.10 96 | 95.29 212 | 99.34 315 | 95.84 216 | 99.73 104 | 99.30 179 |
|
miper_lstm_enhance | | | 97.18 220 | 97.16 206 | 97.25 266 | 98.16 288 | 92.85 297 | 95.15 309 | 99.31 126 | 97.25 188 | 98.74 158 | 98.78 170 | 90.07 280 | 99.78 182 | 97.19 120 | 99.80 75 | 99.11 217 |
|
pmmvs3 | | | 95.03 285 | 94.40 290 | 96.93 277 | 97.70 311 | 92.53 302 | 95.08 310 | 97.71 293 | 88.57 333 | 97.71 232 | 98.08 254 | 79.39 336 | 99.82 136 | 96.19 198 | 99.11 252 | 98.43 284 |
|
DeepPCF-MVS | | 96.93 5 | 98.32 129 | 98.01 150 | 99.23 85 | 98.39 275 | 98.97 58 | 95.03 311 | 99.18 170 | 96.88 212 | 99.33 61 | 98.78 170 | 98.16 60 | 99.28 324 | 96.74 159 | 99.62 149 | 99.44 125 |
|
cl_fuxian | | | 97.36 204 | 97.37 195 | 97.31 262 | 98.09 292 | 93.25 290 | 95.01 312 | 99.16 179 | 97.05 204 | 98.77 154 | 98.72 179 | 92.88 261 | 99.64 253 | 96.93 139 | 99.76 97 | 99.05 221 |
|
test0.0.03 1 | | | 94.51 290 | 93.69 298 | 96.99 274 | 96.05 344 | 93.61 288 | 94.97 313 | 93.49 336 | 96.17 234 | 97.57 244 | 94.88 336 | 82.30 326 | 99.01 336 | 93.60 281 | 94.17 343 | 98.37 288 |
|
PMMVS | | | 96.51 252 | 95.98 255 | 98.09 217 | 97.53 317 | 95.84 229 | 94.92 314 | 98.84 239 | 91.58 312 | 96.05 306 | 95.58 324 | 95.68 200 | 99.66 246 | 95.59 228 | 98.09 303 | 98.76 265 |
|
PAPR | | | 95.29 279 | 94.47 288 | 97.75 236 | 97.50 321 | 95.14 248 | 94.89 315 | 98.71 259 | 91.39 316 | 95.35 322 | 95.48 327 | 94.57 231 | 99.14 332 | 84.95 336 | 97.37 316 | 98.97 238 |
|
test123 | | | 17.04 323 | 20.11 325 | 7.82 335 | 10.25 355 | 4.91 355 | 94.80 316 | 4.47 357 | 4.93 350 | 10.00 352 | 24.28 350 | 9.69 356 | 3.64 352 | 10.14 349 | 12.43 350 | 14.92 348 |
|
ET-MVSNet_ETH3D | | | 94.30 295 | 93.21 304 | 97.58 247 | 98.14 289 | 94.47 262 | 94.78 317 | 93.24 339 | 94.72 268 | 89.56 346 | 95.87 321 | 78.57 340 | 99.81 149 | 96.91 140 | 97.11 323 | 98.46 280 |
|
eth_miper_zixun_eth | | | 97.23 216 | 97.25 201 | 97.17 268 | 98.00 297 | 92.77 299 | 94.71 318 | 99.18 170 | 97.27 186 | 98.56 177 | 98.74 176 | 91.89 272 | 99.69 226 | 97.06 130 | 99.81 67 | 99.05 221 |
|
PVSNet_Blended | | | 96.88 237 | 96.68 232 | 97.47 256 | 98.92 197 | 93.77 285 | 94.71 318 | 99.43 84 | 90.98 320 | 97.62 238 | 97.36 295 | 96.82 148 | 99.67 238 | 94.73 244 | 99.56 174 | 98.98 234 |
|
CLD-MVS | | | 97.49 196 | 97.16 206 | 98.48 191 | 99.07 167 | 97.03 198 | 94.71 318 | 99.21 159 | 94.46 273 | 98.06 213 | 97.16 300 | 97.57 100 | 99.48 298 | 94.46 252 | 99.78 84 | 98.95 239 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
miper_ehance_all_eth | | | 97.06 228 | 97.03 211 | 97.16 270 | 97.83 304 | 93.06 292 | 94.66 321 | 99.09 193 | 95.99 243 | 98.69 160 | 98.45 223 | 92.73 264 | 99.61 263 | 96.79 153 | 99.03 259 | 98.82 256 |
|
cl-mvsnet_ | | | 97.02 232 | 96.83 224 | 97.58 247 | 97.82 305 | 94.04 271 | 94.66 321 | 99.16 179 | 97.04 205 | 98.63 166 | 98.71 180 | 88.68 290 | 99.69 226 | 97.00 132 | 99.81 67 | 99.00 232 |
|
cl-mvsnet1 | | | 97.02 232 | 96.84 223 | 97.58 247 | 97.82 305 | 94.03 272 | 94.66 321 | 99.16 179 | 97.04 205 | 98.63 166 | 98.71 180 | 88.69 289 | 99.69 226 | 97.00 132 | 99.81 67 | 99.01 229 |
|
our_test_3 | | | 97.39 203 | 97.73 170 | 96.34 292 | 98.70 239 | 89.78 326 | 94.61 324 | 98.97 218 | 96.50 224 | 99.04 109 | 98.85 156 | 95.98 189 | 99.84 111 | 97.26 118 | 99.67 135 | 99.41 134 |
|
PMMVS2 | | | 98.07 152 | 98.08 145 | 98.04 223 | 99.41 104 | 94.59 261 | 94.59 325 | 99.40 91 | 97.50 159 | 98.82 148 | 98.83 162 | 96.83 147 | 99.84 111 | 97.50 108 | 99.81 67 | 99.71 25 |
|
ppachtmachnet_test | | | 97.50 194 | 97.74 168 | 96.78 286 | 98.70 239 | 91.23 322 | 94.55 326 | 99.05 200 | 96.36 229 | 99.21 82 | 98.79 169 | 96.39 172 | 99.78 182 | 96.74 159 | 99.82 63 | 99.34 164 |
|
DPM-MVS | | | 96.32 258 | 95.59 266 | 98.51 188 | 98.76 226 | 97.21 189 | 94.54 327 | 98.26 277 | 91.94 308 | 96.37 298 | 97.25 297 | 93.06 258 | 99.43 306 | 91.42 315 | 98.74 276 | 98.89 249 |
|
MSDG | | | 97.71 181 | 97.52 185 | 98.28 209 | 98.91 200 | 96.82 205 | 94.42 328 | 99.37 99 | 97.65 146 | 98.37 196 | 98.29 239 | 97.40 115 | 99.33 317 | 94.09 267 | 99.22 231 | 98.68 274 |
|
cl-mvsnet2 | | | 95.79 270 | 95.39 273 | 96.98 275 | 96.77 335 | 92.79 298 | 94.40 329 | 98.53 267 | 94.59 270 | 97.89 221 | 98.17 246 | 82.82 325 | 99.24 326 | 96.37 187 | 99.03 259 | 98.92 245 |
|
IB-MVS | | 91.63 19 | 92.24 316 | 90.90 319 | 96.27 294 | 97.22 328 | 91.24 321 | 94.36 330 | 93.33 338 | 92.37 303 | 92.24 342 | 94.58 340 | 66.20 354 | 99.89 54 | 93.16 291 | 94.63 340 | 97.66 315 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tmp_tt | | | 78.77 320 | 78.73 322 | 78.90 334 | 58.45 353 | 74.76 354 | 94.20 331 | 78.26 355 | 39.16 349 | 86.71 349 | 92.82 346 | 80.50 330 | 75.19 351 | 86.16 335 | 92.29 345 | 86.74 346 |
|
test-LLR | | | 93.90 302 | 93.85 295 | 94.04 321 | 96.53 337 | 84.62 343 | 94.05 332 | 92.39 341 | 96.17 234 | 94.12 332 | 95.07 330 | 82.30 326 | 99.67 238 | 95.87 213 | 98.18 297 | 97.82 304 |
|
TESTMET0.1,1 | | | 92.19 317 | 91.77 316 | 93.46 327 | 96.48 339 | 82.80 348 | 94.05 332 | 91.52 344 | 94.45 275 | 94.00 335 | 94.88 336 | 66.65 353 | 99.56 277 | 95.78 218 | 98.11 302 | 98.02 298 |
|
test-mter | | | 92.33 315 | 91.76 317 | 94.04 321 | 96.53 337 | 84.62 343 | 94.05 332 | 92.39 341 | 94.00 285 | 94.12 332 | 95.07 330 | 65.63 355 | 99.67 238 | 95.87 213 | 98.18 297 | 97.82 304 |
|
GA-MVS | | | 95.86 268 | 95.32 275 | 97.49 255 | 98.60 256 | 94.15 269 | 93.83 335 | 97.93 288 | 95.49 255 | 96.68 285 | 97.42 291 | 83.21 321 | 99.30 321 | 96.22 196 | 98.55 289 | 99.01 229 |
|
thisisatest0515 | | | 94.12 299 | 93.16 305 | 96.97 276 | 98.60 256 | 92.90 296 | 93.77 336 | 90.61 345 | 94.10 283 | 96.91 274 | 95.87 321 | 74.99 345 | 99.80 159 | 94.52 250 | 99.12 251 | 98.20 291 |
|
miper_enhance_ethall | | | 96.01 264 | 95.74 259 | 96.81 285 | 96.41 341 | 92.27 307 | 93.69 337 | 98.89 229 | 91.14 319 | 98.30 197 | 97.35 296 | 90.58 277 | 99.58 273 | 96.31 191 | 99.03 259 | 98.60 275 |
|
testmvs | | | 17.12 322 | 20.53 324 | 6.87 336 | 12.05 354 | 4.20 356 | 93.62 338 | 6.73 356 | 4.62 351 | 10.41 351 | 24.33 349 | 8.28 357 | 3.56 353 | 9.69 350 | 15.07 349 | 12.86 349 |
|
CHOSEN 280x420 | | | 95.51 277 | 95.47 268 | 95.65 307 | 98.25 282 | 88.27 330 | 93.25 339 | 98.88 230 | 93.53 290 | 94.65 327 | 97.15 301 | 86.17 300 | 99.93 26 | 97.41 111 | 99.93 24 | 98.73 267 |
|
PCF-MVS | | 92.86 18 | 94.36 292 | 93.00 308 | 98.42 196 | 98.70 239 | 97.56 171 | 93.16 340 | 99.11 191 | 79.59 346 | 97.55 245 | 97.43 290 | 92.19 268 | 99.73 211 | 79.85 345 | 99.45 201 | 97.97 299 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MVE | | 83.40 22 | 92.50 313 | 91.92 315 | 94.25 320 | 98.83 217 | 91.64 312 | 92.71 341 | 83.52 352 | 95.92 244 | 86.46 350 | 95.46 328 | 95.20 214 | 95.40 348 | 80.51 344 | 98.64 284 | 95.73 341 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PVSNet | | 93.40 17 | 95.67 272 | 95.70 261 | 95.57 308 | 98.83 217 | 88.57 327 | 92.50 342 | 97.72 292 | 92.69 300 | 96.49 296 | 96.44 314 | 93.72 249 | 99.43 306 | 93.61 280 | 99.28 223 | 98.71 268 |
|
PAPM | | | 91.88 318 | 90.34 320 | 96.51 289 | 98.06 294 | 92.56 301 | 92.44 343 | 97.17 303 | 86.35 338 | 90.38 345 | 96.01 317 | 86.61 296 | 99.21 327 | 70.65 348 | 95.43 336 | 97.75 310 |
|
cascas | | | 94.79 288 | 94.33 293 | 96.15 300 | 96.02 346 | 92.36 306 | 92.34 344 | 99.26 149 | 85.34 341 | 95.08 325 | 94.96 335 | 92.96 260 | 98.53 343 | 94.41 258 | 98.59 287 | 97.56 319 |
|
PVSNet_0 | | 89.98 21 | 91.15 319 | 90.30 321 | 93.70 325 | 97.72 308 | 84.34 346 | 90.24 345 | 97.42 296 | 90.20 325 | 93.79 336 | 93.09 345 | 90.90 276 | 98.89 340 | 86.57 334 | 72.76 348 | 97.87 302 |
|
E-PMN | | | 94.17 297 | 94.37 291 | 93.58 326 | 96.86 332 | 85.71 340 | 90.11 346 | 97.07 305 | 98.17 116 | 97.82 227 | 97.19 298 | 84.62 312 | 98.94 337 | 89.77 325 | 97.68 312 | 96.09 339 |
|
EMVS | | | 93.83 303 | 94.02 294 | 93.23 330 | 96.83 334 | 84.96 341 | 89.77 347 | 96.32 318 | 97.92 129 | 97.43 256 | 96.36 315 | 86.17 300 | 98.93 338 | 87.68 331 | 97.73 311 | 95.81 340 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 99.28 140 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
cdsmvs_eth3d_5k | | | 24.66 321 | 32.88 323 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 99.10 192 | 0.00 352 | 0.00 353 | 97.58 280 | 99.21 10 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
pcd_1.5k_mvsjas | | | 8.17 324 | 10.90 326 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 98.07 64 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
ab-mvs-re | | | 8.12 325 | 10.83 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 97.48 287 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
IU-MVS | | | | | | 99.49 83 | 99.15 42 | | 98.87 232 | 92.97 295 | 99.41 48 | | | | 96.76 157 | 99.62 149 | 99.66 33 |
|
test_241102_TWO | | | | | | | | | 99.30 134 | 98.03 122 | 99.26 75 | 99.02 113 | 97.51 107 | 99.88 62 | 96.91 140 | 99.60 157 | 99.66 33 |
|
test_241102_ONE | | | | | | 99.49 83 | 99.17 33 | | 99.31 126 | 97.98 124 | 99.66 20 | 98.90 141 | 98.36 42 | 99.48 298 | | | |
|
test_0728_THIRD | | | | | | | | | | 98.17 116 | 99.08 99 | 99.02 113 | 97.89 77 | 99.88 62 | 97.07 129 | 99.71 114 | 99.70 28 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.81 258 |
|
test_part2 | | | | | | 99.36 109 | 99.10 53 | | | | 99.05 107 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 84.74 311 | | | | 98.81 258 |
|
sam_mvs | | | | | | | | | | | | | 84.29 317 | | | | |
|
MTGPA | | | | | | | | | 99.20 161 | | | | | | | | |
|
test_post | | | | | | | | | | | | 21.25 351 | 83.86 319 | 99.70 222 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 98.77 172 | 84.37 314 | 99.85 94 | | | |
|
gm-plane-assit | | | | | | 94.83 349 | 81.97 349 | | | 88.07 335 | | 94.99 333 | | 99.60 264 | 91.76 309 | | |
|
test9_res | | | | | | | | | | | | | | | 93.28 290 | 99.15 244 | 99.38 149 |
|
agg_prior2 | | | | | | | | | | | | | | | 92.50 303 | 99.16 241 | 99.37 152 |
|
agg_prior | | | | | | 98.68 245 | 97.99 132 | | 99.01 212 | | 95.59 312 | | | 99.77 188 | | | |
|
TestCases | | | | | 99.16 92 | 99.50 76 | 98.55 87 | | 99.58 26 | 96.80 214 | 98.88 137 | 99.06 99 | 97.65 92 | 99.57 274 | 94.45 253 | 99.61 155 | 99.37 152 |
|
test_prior | | | | | 98.95 126 | 98.69 242 | 97.95 142 | | 99.03 205 | | | | | 99.59 268 | | | 99.30 179 |
|
新几何1 | | | | | 98.91 132 | 98.94 191 | 97.76 159 | | 98.76 251 | 87.58 337 | 96.75 284 | 98.10 251 | 94.80 227 | 99.78 182 | 92.73 300 | 99.00 265 | 99.20 199 |
|
旧先验1 | | | | | | 98.82 220 | 97.45 177 | | 98.76 251 | | | 98.34 234 | 95.50 207 | | | 99.01 264 | 99.23 194 |
|
原ACMM1 | | | | | 98.35 202 | 98.90 201 | 96.25 220 | | 98.83 244 | 92.48 302 | 96.07 305 | 98.10 251 | 95.39 211 | 99.71 220 | 92.61 302 | 98.99 266 | 99.08 218 |
|
testdata2 | | | | | | | | | | | | | | 99.79 172 | 92.80 298 | | |
|
segment_acmp | | | | | | | | | | | | | 97.02 136 | | | | |
|
testdata | | | | | 98.09 217 | 98.93 193 | 95.40 241 | | 98.80 247 | 90.08 326 | 97.45 254 | 98.37 231 | 95.26 213 | 99.70 222 | 93.58 282 | 98.95 270 | 99.17 210 |
|
test12 | | | | | 98.93 129 | 98.58 259 | 97.83 151 | | 98.66 261 | | 96.53 291 | | 95.51 206 | 99.69 226 | | 99.13 248 | 99.27 186 |
|
plane_prior7 | | | | | | 99.19 138 | 97.87 148 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.99 184 | 97.70 165 | | | | | | 94.90 220 | | | | |
|
plane_prior5 | | | | | | | | | 99.27 144 | | | | | 99.70 222 | 94.42 255 | 99.51 187 | 99.45 122 |
|
plane_prior4 | | | | | | | | | | | | 97.98 259 | | | | | |
|
plane_prior3 | | | | | | | 97.78 158 | | | 97.41 172 | 97.79 228 | | | | | | |
|
plane_prior1 | | | | | | 99.05 173 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
door-mid | | | | | | | | | 99.57 33 | | | | | | | | |
|
lessismore_v0 | | | | | 98.97 124 | 99.73 23 | 97.53 173 | | 86.71 350 | | 99.37 55 | 99.52 33 | 89.93 281 | 99.92 32 | 98.99 32 | 99.72 110 | 99.44 125 |
|
LGP-MVS_train | | | | | 99.47 51 | 99.57 53 | 98.97 58 | | 99.48 65 | 96.60 222 | 99.10 96 | 99.06 99 | 98.71 25 | 99.83 126 | 95.58 229 | 99.78 84 | 99.62 42 |
|
test11 | | | | | | | | | 98.87 232 | | | | | | | | |
|
door | | | | | | | | | 99.41 88 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.79 206 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.82 296 | | |
|
HQP4-MVS | | | | | | | | | | | 95.56 315 | | | 99.54 283 | | | 99.32 172 |
|
HQP3-MVS | | | | | | | | | 99.04 203 | | | | | | | 99.26 227 | |
|
HQP2-MVS | | | | | | | | | | | | | 93.84 244 | | | | |
|
NP-MVS | | | | | | 98.84 215 | 97.39 180 | | | | | 96.84 305 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 88 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.68 129 | |
|
Test By Simon | | | | | | | | | | | | | 96.52 165 | | | | |
|
ITE_SJBPF | | | | | 98.87 137 | 99.22 132 | 98.48 94 | | 99.35 108 | 97.50 159 | 98.28 199 | 98.60 206 | 97.64 95 | 99.35 314 | 93.86 275 | 99.27 224 | 98.79 262 |
|
DeepMVS_CX | | | | | 93.44 328 | 98.24 283 | 94.21 267 | | 94.34 330 | 64.28 348 | 91.34 344 | 94.87 338 | 89.45 286 | 92.77 350 | 77.54 347 | 93.14 344 | 93.35 345 |
|