This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS97.84 7697.69 7398.31 12498.28 15396.27 136100.00 197.52 23295.29 7399.25 7099.65 9991.18 15398.94 16298.96 5799.04 12199.73 108
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7297.70 998.21 11799.24 13292.58 12899.94 6898.63 8299.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_Blended97.94 7197.64 7598.83 8899.59 9096.99 114100.00 199.10 2895.38 7098.27 11399.08 13989.00 18199.95 6099.12 4799.25 11699.57 137
ET-MVSNet_ETH3D94.37 17993.28 19397.64 14998.30 15097.99 7499.99 497.61 22094.35 10371.57 34499.45 11596.23 2795.34 32196.91 13685.14 26599.59 130
alignmvs97.81 7997.33 8799.25 4998.77 13698.66 4699.99 498.44 10694.40 10298.41 10699.47 11293.65 10099.42 15098.57 8394.26 20399.67 117
lupinMVS97.85 7597.60 7798.62 10097.28 21197.70 8599.99 497.55 22695.50 6999.43 5299.67 9590.92 15898.71 17598.40 8899.62 9899.45 154
IB-MVS92.85 694.99 16293.94 17498.16 12997.72 19195.69 16399.99 498.81 4794.28 10892.70 20696.90 22595.08 5099.17 15596.07 14373.88 33299.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EIA-MVS97.53 8897.46 8197.76 14598.04 16894.84 18499.98 897.61 22094.41 10197.90 12399.59 10392.40 13298.87 16398.04 10299.13 11999.59 130
ETV-MVS97.92 7397.80 7198.25 12798.14 16496.48 12899.98 897.63 21595.61 6699.29 6799.46 11492.55 12998.82 16599.02 5698.54 12999.46 152
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 898.51 9597.00 2898.52 10199.71 8687.80 19099.95 6099.75 2299.38 11399.83 96
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 898.86 4497.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5498.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13797.71 8399.98 898.44 10696.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 898.80 4990.78 22599.62 3799.78 6695.30 46100.00 199.80 1899.93 6399.99 20
CLD-MVS94.06 18493.90 17594.55 23696.02 24690.69 26799.98 897.72 21096.62 3991.05 21798.85 16777.21 27498.47 18698.11 9889.51 22494.48 230
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051597.41 9397.02 9898.59 10497.71 19397.52 9199.97 1698.54 8591.83 19697.45 13299.04 14197.50 899.10 15694.75 16496.37 17499.16 179
Fast-Effi-MVS+95.02 16194.19 16897.52 15397.88 17594.55 19099.97 1697.08 27588.85 25594.47 18597.96 19984.59 22098.41 19389.84 24797.10 16199.59 130
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6298.47 299.13 7699.92 1196.38 26100.00 199.74 24100.00 1100.00 1
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12399.97 1697.92 19798.07 598.76 9199.55 10695.00 5799.94 6899.91 1197.68 14899.99 20
jason97.24 9896.86 10098.38 12295.73 25797.32 10399.97 1697.40 24895.34 7298.60 10099.54 10887.70 19198.56 18297.94 10899.47 10999.25 174
jason: jason.
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6698.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12499.97 1698.39 13394.43 9898.90 8699.87 2694.30 81100.00 199.04 5499.99 2099.99 20
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11497.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2399.80 5897.44 11100.00 1100.00 199.98 33100.00 1
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2397.52 23297.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
save fliter99.82 6598.79 3399.96 2398.40 13097.66 10
test072699.93 2699.29 1099.96 2398.42 12597.28 1899.86 499.94 497.22 15
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2398.44 10697.96 799.55 4299.94 497.18 17100.00 193.81 18799.94 5799.98 51
TEST999.92 3598.92 2399.96 2398.43 11493.90 12699.71 3099.86 2995.88 3499.85 94
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11494.35 10399.71 3099.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
test_899.92 3598.88 2699.96 2398.43 11494.35 10399.69 3299.85 3395.94 3199.85 94
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11494.63 9299.63 3599.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2398.55 8194.87 8399.45 5099.85 3394.07 89100.00 198.67 77100.00 199.98 51
test-LLR96.47 12696.04 12197.78 14297.02 21995.44 16699.96 2398.21 16694.07 11595.55 17196.38 24293.90 9498.27 21190.42 23998.83 12499.64 123
TESTMET0.1,196.74 11796.26 11798.16 12997.36 20596.48 12899.96 2398.29 15591.93 19395.77 16998.07 19595.54 4098.29 20790.55 23698.89 12299.70 112
test-mter96.39 13095.93 13297.78 14297.02 21995.44 16699.96 2398.21 16691.81 19895.55 17196.38 24295.17 4798.27 21190.42 23998.83 12499.64 123
CPTT-MVS97.64 8697.32 8898.58 10599.97 395.77 15799.96 2398.35 14489.90 23898.36 10999.79 6291.18 15399.99 3698.37 8999.99 2099.99 20
cascas94.64 17193.61 17997.74 14797.82 18196.26 13899.96 2397.78 20985.76 29694.00 19197.54 20576.95 27799.21 15397.23 12595.43 19297.76 212
DeepPCF-MVS95.94 297.71 8498.98 1093.92 26299.63 8881.76 33699.96 2398.56 7699.47 199.19 7499.99 194.16 87100.00 199.92 999.93 63100.00 1
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4098.32 14997.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.82 599.94 1499.47 599.95 4098.43 114100.00 199.99 5100.00 1100.00 1
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4098.42 12597.50 1499.52 4799.88 2297.43 1299.71 12899.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvs-test195.53 15195.97 12894.20 25097.77 18485.44 31999.95 4097.06 27794.92 8096.58 15098.72 17085.81 20898.98 15994.80 16198.11 13998.18 203
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4098.61 6894.77 8599.31 6399.85 3394.22 83100.00 198.70 7599.98 3399.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4098.61 6895.00 7999.31 6399.85 3394.22 83100.00 198.78 7299.98 3399.98 51
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4098.56 7697.56 1399.44 5199.85 3395.38 45100.00 199.31 4399.99 2099.87 93
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4098.65 5995.78 5899.73 2699.76 7296.00 2999.80 10699.78 20100.00 199.99 20
test_prior299.95 4095.78 5899.73 2699.76 7296.00 2999.78 20100.00 1
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4098.60 7094.77 8599.31 6399.84 4693.73 98100.00 198.70 7599.98 3399.98 51
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4098.39 13394.70 8898.26 11599.81 5791.84 144100.00 198.85 6799.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4098.38 13795.04 7898.61 9999.80 5893.39 104100.00 198.64 81100.00 199.98 51
PVSNet_BlendedMVS96.05 13995.82 13796.72 17799.59 9096.99 11499.95 4099.10 2894.06 11798.27 11395.80 25689.00 18199.95 6099.12 4787.53 24993.24 310
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4098.43 11495.35 7198.03 12099.75 7794.03 9099.98 4298.11 9899.83 8199.99 20
PVSNet91.05 1397.13 10196.69 10698.45 11699.52 9695.81 15599.95 4099.65 1094.73 8799.04 7999.21 13484.48 22199.95 6094.92 15698.74 12699.58 136
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5598.44 10694.31 10698.50 10399.82 5393.06 11799.99 3698.30 9299.99 2099.93 81
test_prior498.05 7199.94 55
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5598.42 12596.22 4999.41 5499.78 6694.34 7699.96 5398.92 6199.95 5199.99 20
X-MVStestdata93.83 18692.06 21599.15 6199.94 1497.50 9499.94 5598.42 12596.22 4999.41 5441.37 36194.34 7699.96 5398.92 6199.95 5199.99 20
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5598.34 14696.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_088.03 1991.80 23490.27 24696.38 18998.27 15690.46 27499.94 5599.61 1193.99 12086.26 29897.39 21071.13 31299.89 7998.77 7367.05 34298.79 197
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6198.46 10394.56 9399.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6198.39 13394.04 11998.80 8999.74 8192.98 118100.00 198.16 9599.76 8999.93 81
test0.0.03 193.86 18593.61 17994.64 23195.02 27392.18 23999.93 6198.58 7294.07 11587.96 27298.50 18293.90 9494.96 32681.33 31193.17 21396.78 217
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6199.90 196.81 3398.67 9599.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
thisisatest053097.10 10296.72 10598.22 12897.60 19696.70 12199.92 6598.54 8591.11 21797.07 14098.97 15197.47 999.03 15793.73 19296.09 17798.92 189
PVSNet_Blended_VisFu97.27 9796.81 10298.66 9798.81 13396.67 12299.92 6598.64 6294.51 9596.38 15898.49 18389.05 18099.88 8597.10 12998.34 13399.43 157
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6598.44 10692.06 19198.40 10899.84 4695.68 38100.00 198.19 9399.71 9399.97 63
PLCcopyleft95.54 397.93 7297.89 6998.05 13599.82 6594.77 18899.92 6598.46 10393.93 12497.20 13699.27 12795.44 4499.97 5197.41 12199.51 10899.41 159
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
9.1498.38 3899.87 5299.91 6998.33 14793.22 14699.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 6998.39 13397.20 2499.46 4999.85 3395.53 4299.79 10999.86 12100.00 199.99 20
MVSTER95.53 15195.22 15096.45 18498.56 14097.72 8299.91 6997.67 21392.38 18191.39 21397.14 21597.24 1497.30 25094.80 16187.85 24494.34 245
PMMVS96.76 11596.76 10496.76 17598.28 15392.10 24099.91 6997.98 19094.12 11299.53 4499.39 12086.93 20098.73 17396.95 13497.73 14699.45 154
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7398.21 16693.53 13899.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7398.55 8195.14 7799.72 2999.84 4695.46 43100.00 199.65 3299.99 2099.99 20
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7398.37 14093.81 12999.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
原ACMM299.90 73
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13399.90 7398.17 17292.61 16998.62 9899.57 10591.87 14399.67 13598.87 6699.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7399.51 1597.60 1299.20 7199.36 12393.71 9999.91 7497.99 10598.71 12799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CSCG97.10 10297.04 9697.27 16499.89 4591.92 24599.90 7399.07 3188.67 25895.26 17799.82 5393.17 11599.98 4298.15 9699.47 10999.90 89
PAPM98.60 3398.42 3199.14 6396.05 24598.96 2099.90 7399.35 2396.68 3798.35 11099.66 9796.45 2598.51 18599.45 3799.89 7499.96 70
RRT_test8_iter0594.58 17394.11 17095.98 19797.88 17596.11 14999.89 8197.45 23991.66 20288.28 26896.71 23396.53 2497.40 24394.73 16683.85 27794.45 236
114514_t97.41 9396.83 10199.14 6399.51 9897.83 8099.89 8198.27 15988.48 26299.06 7899.66 9790.30 16499.64 13896.32 14199.97 4499.96 70
WTY-MVS98.10 6797.60 7799.60 1798.92 12599.28 1299.89 8199.52 1395.58 6798.24 11699.39 12093.33 10699.74 12497.98 10795.58 19099.78 103
GA-MVS93.83 18692.84 19796.80 17395.73 25793.57 20899.88 8497.24 26192.57 17492.92 20296.66 23578.73 26897.67 23587.75 26694.06 20699.17 178
UniMVSNet (Re)93.07 20592.13 21295.88 19994.84 27496.24 14299.88 8498.98 3492.49 17989.25 24895.40 27587.09 19897.14 26093.13 20378.16 31494.26 249
HPM-MVS_fast97.80 8097.50 8098.68 9599.79 7096.42 13099.88 8498.16 17591.75 20098.94 8599.54 10891.82 14599.65 13797.62 11899.99 2099.99 20
DPE-MVS99.26 699.10 799.74 799.89 4599.24 1499.87 8798.44 10697.48 1599.64 3499.94 496.68 2299.99 3699.99 5100.00 199.99 20
MTMP99.87 8796.49 313
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 8798.52 8896.05 5399.41 5499.79 6294.93 6099.76 11799.07 4999.90 7299.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 8798.52 8896.04 5499.41 5499.79 6294.92 6199.76 11799.05 5099.90 7299.98 51
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8798.33 14793.97 12199.76 2499.87 2694.99 5899.75 12098.55 84100.00 199.98 51
HQP-NCC95.78 25199.87 8796.82 3093.37 196
ACMP_Plane95.78 25199.87 8796.82 3093.37 196
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 8798.36 14294.08 11499.74 2599.73 8394.08 8899.74 12499.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15699.87 8799.86 296.70 3698.78 9099.79 6292.03 14099.90 7599.17 4699.86 7999.88 92
HQP-MVS94.61 17294.50 16494.92 22295.78 25191.85 24699.87 8797.89 19996.82 3093.37 19698.65 17380.65 25298.39 19797.92 10989.60 21994.53 226
CNLPA97.76 8297.38 8398.92 8599.53 9596.84 11899.87 8798.14 17893.78 13196.55 15299.69 9192.28 13599.98 4297.13 12799.44 11199.93 81
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 9898.24 16292.18 18699.73 2699.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 9898.38 13793.19 14799.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
plane_prior91.74 25099.86 9896.76 3489.59 221
tttt051796.85 11096.49 11297.92 13997.48 20295.89 15499.85 10198.54 8590.72 22696.63 14998.93 15797.47 999.02 15893.03 20595.76 18698.85 193
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10198.37 14094.68 8999.53 4499.83 4992.87 120100.00 198.66 8099.84 8099.99 20
thres20096.96 10696.21 11899.22 5098.97 11998.84 3099.85 10199.71 593.17 14896.26 16098.88 16089.87 16999.51 14294.26 17894.91 19799.31 169
F-COLMAP96.93 10896.95 9996.87 17299.71 8491.74 25099.85 10197.95 19393.11 15095.72 17099.16 13692.35 13399.94 6895.32 15199.35 11498.92 189
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10598.35 14494.92 8099.32 6299.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
CANet_DTU96.76 11596.15 11998.60 10298.78 13597.53 9099.84 10597.63 21597.25 2399.20 7199.64 10081.36 24399.98 4292.77 20798.89 12298.28 202
casdiffmvs96.42 12995.97 12897.77 14497.30 21094.98 18099.84 10597.09 27493.75 13396.58 15099.26 13085.07 21798.78 16897.77 11497.04 16399.54 143
HQP_MVS94.49 17794.36 16694.87 22395.71 26091.74 25099.84 10597.87 20196.38 4493.01 20098.59 17780.47 25698.37 20297.79 11289.55 22294.52 228
plane_prior299.84 10596.38 44
BH-w/o95.71 14895.38 14696.68 17898.49 14592.28 23699.84 10597.50 23692.12 18892.06 20998.79 16884.69 21998.67 17895.29 15299.66 9699.09 185
UniMVSNet_NR-MVSNet92.95 20892.11 21395.49 20494.61 27995.28 17299.83 11199.08 3091.49 20689.21 25096.86 22887.14 19796.73 28593.20 19977.52 31994.46 231
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12599.82 11298.30 15493.95 12399.37 6099.77 6892.84 12199.76 11798.95 5899.92 6799.97 63
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14699.82 11298.43 11494.56 9397.52 13099.70 8894.40 7199.98 4297.00 13199.98 3399.99 20
nrg03093.51 19692.53 20696.45 18494.36 28197.20 10699.81 11497.16 26891.60 20389.86 23297.46 20686.37 20597.68 23495.88 14780.31 30294.46 231
RRT_MVS95.23 15694.77 16096.61 18198.28 15398.32 6399.81 11497.41 24692.59 17191.28 21597.76 20295.02 5497.23 25693.65 19487.14 25194.28 248
diffmvs97.00 10596.64 10798.09 13397.64 19496.17 14599.81 11497.19 26394.67 9198.95 8499.28 12486.43 20498.76 17198.37 8997.42 15499.33 167
DU-MVS92.46 21991.45 22895.49 20494.05 28695.28 17299.81 11498.74 5192.25 18589.21 25096.64 23781.66 23996.73 28593.20 19977.52 31994.46 231
ACMP92.05 992.74 21292.42 20993.73 26695.91 25088.72 29599.81 11497.53 23094.13 11187.00 28598.23 19174.07 30098.47 18696.22 14288.86 23193.99 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test117298.38 5398.25 4798.77 9099.88 4996.56 12799.80 11998.36 14294.68 8999.20 7199.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
Fast-Effi-MVS+-dtu93.72 19393.86 17793.29 27797.06 21686.16 31399.80 11996.83 29992.66 16692.58 20797.83 20181.39 24297.67 23589.75 24896.87 16796.05 224
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 11998.28 15695.76 6097.18 13799.88 2292.74 124100.00 198.67 7799.88 7699.99 20
BH-untuned95.18 15794.83 15896.22 19298.36 14991.22 26199.80 11997.32 25590.91 22191.08 21698.67 17283.51 22798.54 18494.23 17999.61 10198.92 189
tfpn200view996.79 11395.99 12399.19 5398.94 12198.82 3199.78 12399.71 592.86 15396.02 16398.87 16289.33 17599.50 14493.84 18494.57 19899.27 172
thres40096.78 11495.99 12399.16 5998.94 12198.82 3199.78 12399.71 592.86 15396.02 16398.87 16289.33 17599.50 14493.84 18494.57 19899.16 179
TAPA-MVS92.12 894.42 17893.60 18196.90 17199.33 10691.78 24999.78 12398.00 18789.89 23994.52 18399.47 11291.97 14199.18 15469.90 33999.52 10699.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12698.38 13796.73 3599.88 399.74 8194.89 6299.59 13999.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS93.21 20192.80 19894.44 24393.12 30390.85 26699.77 12697.61 22096.19 5191.56 21298.65 17375.16 29498.47 18693.78 19089.39 22593.99 278
v2v48291.30 24090.07 25295.01 21893.13 30193.79 20499.77 12697.02 28088.05 26689.25 24895.37 27980.73 25097.15 25987.28 27280.04 30594.09 269
Baseline_NR-MVSNet90.33 26389.51 26192.81 28792.84 30989.95 28399.77 12693.94 34784.69 31189.04 25495.66 26281.66 23996.52 29390.99 22876.98 32491.97 327
ACMM91.95 1092.88 20992.52 20793.98 26195.75 25689.08 29399.77 12697.52 23293.00 15189.95 22997.99 19876.17 28698.46 18993.63 19588.87 23094.39 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13499.76 13198.31 15194.43 9899.40 5899.75 7793.28 11099.78 11198.90 6499.92 6799.97 63
RE-MVS-def98.13 5599.79 7096.37 13499.76 13198.31 15194.43 9899.40 5899.75 7792.95 11998.90 6499.92 6799.97 63
BH-RMVSNet95.18 15794.31 16797.80 14198.17 16295.23 17599.76 13197.53 23092.52 17694.27 18899.25 13176.84 27898.80 16690.89 23299.54 10599.35 165
v14890.70 25389.63 25693.92 26292.97 30790.97 26399.75 13496.89 29587.51 27188.27 26995.01 29281.67 23897.04 26987.40 27077.17 32393.75 295
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13499.50 1693.90 12699.37 6099.76 7293.24 113100.00 197.75 11699.96 4899.98 51
LPG-MVS_test92.96 20792.71 20093.71 26895.43 26688.67 29699.75 13497.62 21792.81 15690.05 22598.49 18375.24 29298.40 19595.84 14889.12 22694.07 270
thres100view90096.74 11795.92 13399.18 5498.90 12898.77 3699.74 13799.71 592.59 17195.84 16698.86 16489.25 17799.50 14493.84 18494.57 19899.27 172
MP-MVS-pluss98.07 6897.64 7599.38 4499.74 7798.41 6099.74 13798.18 17193.35 14296.45 15499.85 3392.64 12799.97 5198.91 6399.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs590.17 26989.09 26893.40 27592.10 31889.77 28699.74 13795.58 33085.88 29587.24 28495.74 25873.41 30396.48 29588.54 25783.56 27893.95 281
thres600view796.69 12095.87 13699.14 6398.90 12898.78 3599.74 13799.71 592.59 17195.84 16698.86 16489.25 17799.50 14493.44 19794.50 20199.16 179
baseline296.71 11996.49 11297.37 16095.63 26495.96 15299.74 13798.88 4292.94 15291.61 21198.97 15197.72 598.62 18094.83 16098.08 14397.53 215
miper_enhance_ethall94.36 18193.98 17395.49 20498.68 13995.24 17499.73 14297.29 25793.28 14589.86 23295.97 25494.37 7597.05 26792.20 21184.45 26994.19 255
testgi89.01 28488.04 28591.90 29793.49 29684.89 32299.73 14295.66 32893.89 12885.14 30598.17 19259.68 34394.66 33077.73 32588.88 22996.16 223
sss97.57 8797.03 9799.18 5498.37 14898.04 7299.73 14299.38 2193.46 14098.76 9199.06 14091.21 14999.89 7996.33 14097.01 16499.62 125
canonicalmvs97.09 10496.32 11699.39 4398.93 12398.95 2199.72 14597.35 25194.45 9697.88 12499.42 11686.71 20199.52 14198.48 8693.97 20799.72 111
3Dnovator+91.53 1196.31 13395.24 14999.52 2696.88 22798.64 4999.72 14598.24 16295.27 7588.42 26798.98 14982.76 23299.94 6897.10 12999.83 8199.96 70
HyFIR lowres test96.66 12296.43 11497.36 16199.05 11393.91 20399.70 14799.80 390.54 22796.26 16098.08 19492.15 13898.23 21396.84 13795.46 19199.93 81
D2MVS92.76 21192.59 20593.27 27895.13 26989.54 28999.69 14899.38 2192.26 18487.59 27694.61 30685.05 21897.79 23191.59 21888.01 24392.47 321
TranMVSNet+NR-MVSNet91.68 23890.61 23994.87 22393.69 29393.98 20199.69 14898.65 5991.03 21988.44 26396.83 23280.05 25996.18 30690.26 24376.89 32694.45 236
V4291.28 24290.12 25194.74 22793.42 29893.46 21199.68 15097.02 28087.36 27489.85 23495.05 29081.31 24497.34 24787.34 27180.07 30493.40 305
testmvs40.60 32844.45 33129.05 34319.49 36514.11 36699.68 15018.47 36420.74 35964.59 34798.48 18610.95 36417.09 36256.66 35211.01 35855.94 355
abl_697.67 8597.34 8698.66 9799.68 8696.11 14999.68 15098.14 17893.80 13099.27 6899.70 8888.65 18699.98 4297.46 12099.72 9299.89 90
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15398.52 8895.79 5799.01 8199.77 6894.40 7199.75 12098.82 6899.83 8199.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15398.52 8895.76 6099.01 8199.77 6894.33 7999.75 12098.80 7199.83 8199.98 51
DeepC-MVS94.51 496.92 10996.40 11598.45 11699.16 11095.90 15399.66 15398.06 18496.37 4794.37 18699.49 11183.29 23099.90 7597.63 11799.61 10199.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 1792x268896.81 11296.53 11197.64 14998.91 12793.07 21799.65 15699.80 395.64 6595.39 17498.86 16484.35 22399.90 7596.98 13299.16 11899.95 78
Test_1112_low_res95.72 14694.83 15898.42 11997.79 18396.41 13199.65 15696.65 30992.70 16392.86 20596.13 25192.15 13899.30 15191.88 21593.64 20999.55 139
1112_ss96.01 14195.20 15198.42 11997.80 18296.41 13199.65 15696.66 30892.71 16292.88 20499.40 11892.16 13799.30 15191.92 21493.66 20899.55 139
OMC-MVS97.28 9697.23 8997.41 15799.76 7493.36 21599.65 15697.95 19396.03 5597.41 13399.70 8889.61 17199.51 14296.73 13898.25 13899.38 161
test_yl97.83 7797.37 8499.21 5199.18 10897.98 7599.64 16099.27 2591.43 21097.88 12498.99 14795.84 3599.84 10398.82 6895.32 19499.79 100
DCV-MVSNet97.83 7797.37 8499.21 5199.18 10897.98 7599.64 16099.27 2591.43 21097.88 12498.99 14795.84 3599.84 10398.82 6895.32 19499.79 100
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16099.44 1897.33 1799.00 8399.72 8494.03 9099.98 4298.73 74100.00 1100.00 1
v114491.09 24589.83 25394.87 22393.25 30093.69 20799.62 16396.98 28586.83 28489.64 24094.99 29580.94 24797.05 26785.08 29081.16 29293.87 288
cl-mvsnet293.77 19093.25 19495.33 21099.49 9994.43 19299.61 16498.09 18190.38 22989.16 25395.61 26390.56 16297.34 24791.93 21384.45 26994.21 254
WR-MVS92.31 22291.25 23095.48 20794.45 28095.29 17199.60 16598.68 5590.10 23488.07 27196.89 22680.68 25196.80 28393.14 20279.67 30694.36 241
Effi-MVS+-dtu94.53 17695.30 14892.22 29297.77 18482.54 32999.59 16697.06 27794.92 8095.29 17695.37 27985.81 20897.89 22994.80 16197.07 16296.23 222
cl-mvsnet192.32 22191.60 22294.47 24197.31 20992.74 22499.58 16796.75 30586.99 28187.64 27595.54 26789.55 17296.50 29488.58 25682.44 28294.17 256
FIs94.10 18393.43 18696.11 19494.70 27796.82 11999.58 16798.93 3992.54 17589.34 24697.31 21187.62 19297.10 26494.22 18086.58 25494.40 238
cl-mvsnet_92.31 22291.58 22394.52 23797.33 20892.77 22299.57 16996.78 30486.97 28287.56 27795.51 27089.43 17396.62 29088.60 25582.44 28294.16 261
EPNet_dtu95.71 14895.39 14596.66 17998.92 12593.41 21399.57 16998.90 4096.19 5197.52 13098.56 18192.65 12697.36 24577.89 32498.33 13499.20 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v14419290.79 25289.52 26094.59 23393.11 30492.77 22299.56 17196.99 28386.38 28889.82 23594.95 29780.50 25597.10 26483.98 29680.41 30093.90 285
OpenMVScopyleft90.15 1594.77 16693.59 18298.33 12396.07 24497.48 9699.56 17198.57 7490.46 22886.51 29198.95 15578.57 26999.94 6893.86 18399.74 9097.57 214
MVSFormer96.94 10796.60 10897.95 13797.28 21197.70 8599.55 17397.27 25991.17 21499.43 5299.54 10890.92 15896.89 27794.67 16899.62 9899.25 174
test_djsdf92.83 21092.29 21194.47 24191.90 32092.46 23399.55 17397.27 25991.17 21489.96 22896.07 25381.10 24596.89 27794.67 16888.91 22894.05 272
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13498.92 2399.54 17598.17 17297.34 1699.85 699.85 3391.20 15099.89 7999.41 4099.67 9598.69 199
CDS-MVSNet96.34 13196.07 12097.13 16697.37 20494.96 18199.53 17697.91 19891.55 20595.37 17598.32 19095.05 5397.13 26193.80 18895.75 18799.30 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13898.66 4699.52 17798.08 18397.05 2699.86 499.86 2990.65 16099.71 12899.39 4198.63 12898.69 199
PatchMatch-RL96.04 14095.40 14497.95 13799.59 9095.22 17699.52 17799.07 3193.96 12296.49 15398.35 18982.28 23499.82 10590.15 24499.22 11798.81 196
baseline96.43 12895.98 12597.76 14597.34 20695.17 17799.51 17997.17 26693.92 12596.90 14399.28 12485.37 21498.64 17997.50 11996.86 16899.46 152
miper_ehance_all_eth93.16 20292.60 20294.82 22697.57 19793.56 20999.50 18097.07 27688.75 25688.85 25795.52 26990.97 15796.74 28490.77 23484.45 26994.17 256
v119290.62 25789.25 26594.72 22993.13 30193.07 21799.50 18097.02 28086.33 28989.56 24295.01 29279.22 26397.09 26682.34 30681.16 29294.01 275
v192192090.46 25989.12 26794.50 23992.96 30892.46 23399.49 18296.98 28586.10 29189.61 24195.30 28278.55 27097.03 27182.17 30780.89 29894.01 275
无先验99.49 18298.71 5293.46 140100.00 194.36 17499.99 20
pmmvs492.10 22791.07 23395.18 21492.82 31094.96 18199.48 18496.83 29987.45 27388.66 26196.56 24083.78 22696.83 28189.29 25084.77 26793.75 295
Vis-MVSNet (Re-imp)96.32 13295.98 12597.35 16297.93 17394.82 18599.47 18598.15 17791.83 19695.09 17899.11 13791.37 14897.47 24293.47 19697.43 15299.74 107
API-MVS97.86 7497.66 7498.47 11499.52 9695.41 16899.47 18598.87 4391.68 20198.84 8799.85 3392.34 13499.99 3698.44 8799.96 48100.00 1
旧先验299.46 18794.21 11099.85 699.95 6096.96 133
IterMVS-LS92.69 21492.11 21394.43 24596.80 23192.74 22499.45 18896.89 29588.98 24989.65 23995.38 27888.77 18396.34 30090.98 22982.04 28594.22 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator91.47 1296.28 13695.34 14799.08 7196.82 23097.47 9799.45 18898.81 4795.52 6889.39 24499.00 14681.97 23599.95 6097.27 12499.83 8199.84 95
bset_n11_16_dypcd93.05 20692.30 21095.31 21190.23 33595.05 17999.44 19097.28 25892.51 17790.65 22196.68 23485.30 21596.71 28794.49 17284.14 27294.16 261
FC-MVSNet-test93.81 18893.15 19595.80 20294.30 28396.20 14399.42 19198.89 4192.33 18389.03 25597.27 21387.39 19596.83 28193.20 19986.48 25594.36 241
cl_fuxian92.53 21791.87 21994.52 23797.40 20392.99 22099.40 19296.93 29287.86 26888.69 26095.44 27389.95 16896.44 29690.45 23880.69 29994.14 266
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12699.40 19298.51 9595.29 7398.51 10299.76 7293.60 10299.71 12898.53 8599.52 10699.95 78
新几何299.40 192
QAPM95.40 15494.17 16999.10 6996.92 22297.71 8399.40 19298.68 5589.31 24388.94 25698.89 15882.48 23399.96 5393.12 20499.83 8199.62 125
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 19698.28 15695.76 6097.18 13799.88 2292.74 124100.00 198.67 7799.88 7699.99 20
miper_lstm_enhance91.81 23191.39 22993.06 28497.34 20689.18 29299.38 19796.79 30386.70 28587.47 27995.22 28790.00 16795.86 31688.26 26081.37 29094.15 263
v124090.20 26788.79 27494.44 24393.05 30692.27 23799.38 19796.92 29385.89 29389.36 24594.87 29977.89 27397.03 27180.66 31481.08 29494.01 275
EPP-MVSNet96.69 12096.60 10896.96 16997.74 18793.05 21999.37 19998.56 7688.75 25695.83 16899.01 14496.01 2898.56 18296.92 13597.20 16099.25 174
MSDG94.37 17993.36 19197.40 15898.88 13093.95 20299.37 19997.38 24985.75 29890.80 21999.17 13584.11 22599.88 8586.35 28198.43 13298.36 201
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13699.36 20198.50 9995.21 7698.30 11299.75 7793.29 10999.73 12798.37 8999.30 11599.81 98
test22299.55 9497.41 10299.34 20298.55 8191.86 19599.27 6899.83 4993.84 9699.95 5199.99 20
our_test_390.39 26089.48 26393.12 28192.40 31489.57 28899.33 20396.35 31687.84 26985.30 30494.99 29584.14 22496.09 31080.38 31584.56 26893.71 300
ppachtmachnet_test89.58 27888.35 28093.25 27992.40 31490.44 27599.33 20396.73 30685.49 30285.90 30295.77 25781.09 24696.00 31476.00 33282.49 28193.30 308
mvs_anonymous95.65 15095.03 15597.53 15298.19 16095.74 15999.33 20397.49 23790.87 22290.47 22397.10 21788.23 18897.16 25895.92 14697.66 14999.68 115
AUN-MVS93.28 20092.60 20295.34 20998.29 15190.09 28199.31 20698.56 7691.80 19996.35 15998.00 19789.38 17498.28 20992.46 20869.22 33897.64 213
xiu_mvs_v1_base_debu97.43 8997.06 9398.55 10697.74 18798.14 6799.31 20697.86 20396.43 4199.62 3799.69 9185.56 21199.68 13299.05 5098.31 13597.83 208
xiu_mvs_v1_base97.43 8997.06 9398.55 10697.74 18798.14 6799.31 20697.86 20396.43 4199.62 3799.69 9185.56 21199.68 13299.05 5098.31 13597.83 208
xiu_mvs_v1_base_debi97.43 8997.06 9398.55 10697.74 18798.14 6799.31 20697.86 20396.43 4199.62 3799.69 9185.56 21199.68 13299.05 5098.31 13597.83 208
MVS_Test96.46 12795.74 13898.61 10198.18 16197.23 10599.31 20697.15 26991.07 21898.84 8797.05 22188.17 18998.97 16094.39 17397.50 15199.61 127
testdata199.28 21196.35 48
Vis-MVSNetpermissive95.72 14695.15 15397.45 15597.62 19594.28 19599.28 21198.24 16294.27 10996.84 14498.94 15679.39 26298.76 17193.25 19898.49 13099.30 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet392.69 21491.58 22395.99 19698.29 15197.42 10199.26 21397.62 21789.80 24089.68 23695.32 28181.62 24196.27 30387.01 27785.65 25994.29 247
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21498.47 10198.14 499.08 7799.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
YYNet185.50 30183.33 30592.00 29590.89 33088.38 30399.22 21596.55 31179.60 33257.26 35192.72 32479.09 26693.78 33777.25 32777.37 32293.84 290
v890.54 25889.17 26694.66 23093.43 29793.40 21499.20 21696.94 29185.76 29687.56 27794.51 30781.96 23697.19 25784.94 29178.25 31393.38 307
MDA-MVSNet_test_wron85.51 30083.32 30692.10 29490.96 32988.58 29999.20 21696.52 31279.70 33157.12 35292.69 32679.11 26593.86 33677.10 32877.46 32193.86 289
ACMMPcopyleft97.74 8397.44 8298.66 9799.92 3596.13 14699.18 21899.45 1794.84 8496.41 15799.71 8691.40 14799.99 3697.99 10598.03 14499.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WR-MVS_H91.30 24090.35 24394.15 25194.17 28592.62 23199.17 21998.94 3688.87 25486.48 29394.46 31184.36 22296.61 29188.19 26178.51 31293.21 311
TAMVS95.85 14395.58 14196.65 18097.07 21593.50 21099.17 21997.82 20791.39 21395.02 17998.01 19692.20 13697.30 25093.75 19195.83 18499.14 182
PS-MVSNAJss93.64 19593.31 19294.61 23292.11 31792.19 23899.12 22197.38 24992.51 17788.45 26296.99 22491.20 15097.29 25394.36 17487.71 24694.36 241
DTE-MVSNet89.40 27988.24 28392.88 28692.66 31289.95 28399.10 22298.22 16587.29 27585.12 30696.22 24876.27 28595.30 32383.56 30075.74 32993.41 304
CP-MVSNet91.23 24390.22 24794.26 24893.96 28892.39 23599.09 22398.57 7488.95 25286.42 29496.57 23979.19 26496.37 29890.29 24278.95 30994.02 273
AdaColmapbinary97.23 9996.80 10398.51 11299.99 195.60 16499.09 22398.84 4693.32 14396.74 14799.72 8486.04 207100.00 198.01 10399.43 11299.94 80
v1090.25 26688.82 27394.57 23593.53 29593.43 21299.08 22596.87 29785.00 30687.34 28394.51 30780.93 24897.02 27382.85 30379.23 30793.26 309
XVG-OURS-SEG-HR94.79 16494.70 16295.08 21698.05 16789.19 29099.08 22597.54 22893.66 13594.87 18099.58 10478.78 26799.79 10997.31 12393.40 21196.25 220
XVG-OURS94.82 16394.74 16195.06 21798.00 16989.19 29099.08 22597.55 22694.10 11394.71 18199.62 10180.51 25499.74 12496.04 14493.06 21596.25 220
IS-MVSNet96.29 13595.90 13497.45 15598.13 16594.80 18699.08 22597.61 22092.02 19295.54 17398.96 15390.64 16198.08 21893.73 19297.41 15599.47 151
v7n89.65 27788.29 28293.72 26792.22 31690.56 27299.07 22997.10 27385.42 30486.73 28794.72 30080.06 25897.13 26181.14 31278.12 31593.49 303
EI-MVSNet93.73 19293.40 19094.74 22796.80 23192.69 22799.06 23097.67 21388.96 25191.39 21399.02 14288.75 18497.30 25091.07 22487.85 24494.22 252
CVMVSNet94.68 17094.94 15693.89 26496.80 23186.92 31199.06 23098.98 3494.45 9694.23 18999.02 14285.60 21095.31 32290.91 23195.39 19399.43 157
baseline195.78 14594.86 15798.54 10998.47 14698.07 7099.06 23097.99 18892.68 16594.13 19098.62 17693.28 11098.69 17793.79 18985.76 25898.84 194
PEN-MVS90.19 26889.06 26993.57 27393.06 30590.90 26599.06 23098.47 10188.11 26585.91 30196.30 24676.67 27995.94 31587.07 27476.91 32593.89 286
Anonymous2023120686.32 29585.42 29789.02 31789.11 34080.53 34399.05 23495.28 33485.43 30382.82 31593.92 31574.40 29893.44 34066.99 34481.83 28793.08 313
MAR-MVS97.43 8997.19 9098.15 13299.47 10094.79 18799.05 23498.76 5092.65 16798.66 9699.82 5388.52 18799.98 4298.12 9799.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet97.21 10096.57 11099.13 6898.97 11997.82 8199.03 23699.21 2794.31 10699.18 7598.88 16086.26 20699.89 7998.93 6094.32 20299.69 114
LCM-MVSNet-Re92.31 22292.60 20291.43 30097.53 19879.27 34599.02 23791.83 35192.07 18980.31 32594.38 31283.50 22895.48 31897.22 12697.58 15099.54 143
jajsoiax91.92 22991.18 23194.15 25191.35 32690.95 26499.00 23897.42 24492.61 16987.38 28197.08 21872.46 30597.36 24594.53 17188.77 23294.13 267
test_part192.15 22690.72 23696.44 18698.87 13197.46 9898.99 23998.26 16085.89 29386.34 29696.34 24581.71 23797.48 24191.06 22578.99 30894.37 240
VPNet91.81 23190.46 24095.85 20194.74 27695.54 16598.98 24098.59 7192.14 18790.77 22097.44 20768.73 31997.54 23994.89 15977.89 31694.46 231
PS-CasMVS90.63 25689.51 26193.99 26093.83 29091.70 25498.98 24098.52 8888.48 26286.15 29996.53 24175.46 29096.31 30188.83 25478.86 31193.95 281
FMVSNet291.02 24689.56 25895.41 20897.53 19895.74 15998.98 24097.41 24687.05 27888.43 26595.00 29471.34 30996.24 30585.12 28985.21 26494.25 251
K. test v388.05 28987.24 29190.47 30891.82 32282.23 33298.96 24397.42 24489.05 24676.93 33595.60 26468.49 32095.42 31985.87 28681.01 29693.75 295
tfpnnormal89.29 28187.61 28894.34 24794.35 28294.13 19798.95 24498.94 3683.94 31384.47 30895.51 27074.84 29597.39 24477.05 32980.41 30091.48 331
AllTest92.48 21891.64 22195.00 21999.01 11588.43 30098.94 24596.82 30186.50 28688.71 25898.47 18774.73 29699.88 8585.39 28796.18 17596.71 218
anonymousdsp91.79 23690.92 23494.41 24690.76 33192.93 22198.93 24697.17 26689.08 24587.46 28095.30 28278.43 27296.92 27692.38 20988.73 23393.39 306
DP-MVS94.54 17493.42 18797.91 14099.46 10294.04 19898.93 24697.48 23881.15 32790.04 22799.55 10687.02 19999.95 6088.97 25398.11 13999.73 108
IterMVS-SCA-FT90.85 25190.16 25092.93 28596.72 23689.96 28298.89 24896.99 28388.95 25286.63 28995.67 26176.48 28295.00 32587.04 27584.04 27693.84 290
IterMVS90.91 24890.17 24993.12 28196.78 23490.42 27698.89 24897.05 27989.03 24786.49 29295.42 27476.59 28195.02 32487.22 27384.09 27393.93 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous20240521193.10 20491.99 21696.40 18799.10 11289.65 28798.88 25097.93 19583.71 31694.00 19198.75 16968.79 31799.88 8595.08 15491.71 21799.68 115
VPA-MVSNet92.70 21391.55 22596.16 19395.09 27096.20 14398.88 25099.00 3391.02 22091.82 21095.29 28576.05 28897.96 22595.62 15081.19 29194.30 246
test20.0384.72 30583.99 30086.91 32588.19 34280.62 34298.88 25095.94 32388.36 26478.87 32994.62 30568.75 31889.11 34966.52 34575.82 32891.00 333
XXY-MVS91.82 23090.46 24095.88 19993.91 28995.40 16998.87 25397.69 21288.63 26087.87 27397.08 21874.38 29997.89 22991.66 21784.07 27494.35 244
SCA94.69 16893.81 17897.33 16397.10 21494.44 19198.86 25498.32 14993.30 14496.17 16295.59 26576.48 28297.95 22691.06 22597.43 15299.59 130
DWT-MVSNet_test97.31 9597.19 9097.66 14898.24 15794.67 18998.86 25498.20 17093.60 13798.09 11898.89 15897.51 798.78 16894.04 18197.28 15799.55 139
eth_miper_zixun_eth92.41 22091.93 21793.84 26597.28 21190.68 26898.83 25696.97 28788.57 26189.19 25295.73 26089.24 17996.69 28889.97 24681.55 28894.15 263
CL-MVSNet_2432*160084.50 30683.15 30888.53 32186.00 34581.79 33598.82 25797.35 25185.12 30583.62 31390.91 33576.66 28091.40 34469.53 34060.36 34792.40 322
ACMH+89.98 1690.35 26289.54 25992.78 28895.99 24786.12 31498.81 25897.18 26589.38 24283.14 31497.76 20268.42 32198.43 19189.11 25286.05 25793.78 294
N_pmnet80.06 31680.78 31577.89 33191.94 31945.28 36098.80 25956.82 36378.10 33580.08 32793.33 31977.03 27595.76 31768.14 34382.81 28092.64 317
VDD-MVS93.77 19092.94 19696.27 19198.55 14190.22 27898.77 26097.79 20890.85 22396.82 14599.42 11661.18 34299.77 11598.95 5894.13 20498.82 195
LFMVS94.75 16793.56 18498.30 12599.03 11495.70 16298.74 26197.98 19087.81 27098.47 10499.39 12067.43 32599.53 14098.01 10395.20 19699.67 117
LS3D95.84 14495.11 15498.02 13699.85 5595.10 17898.74 26198.50 9987.22 27793.66 19599.86 2987.45 19499.95 6090.94 23099.81 8799.02 187
Anonymous2024052992.10 22790.65 23896.47 18298.82 13290.61 27098.72 26398.67 5875.54 34193.90 19398.58 17966.23 32899.90 7594.70 16790.67 21898.90 192
TR-MVS94.54 17493.56 18497.49 15497.96 17194.34 19498.71 26497.51 23590.30 23394.51 18498.69 17175.56 28998.77 17092.82 20695.99 17999.35 165
USDC90.00 27288.96 27193.10 28394.81 27588.16 30498.71 26495.54 33193.66 13583.75 31297.20 21465.58 33098.31 20683.96 29787.49 25092.85 316
VDDNet93.12 20391.91 21896.76 17596.67 23892.65 23098.69 26698.21 16682.81 32197.75 12799.28 12461.57 34099.48 14898.09 10094.09 20598.15 204
EU-MVSNet90.14 27090.34 24489.54 31592.55 31381.06 33998.69 26698.04 18691.41 21286.59 29096.84 23180.83 24993.31 34186.20 28281.91 28694.26 249
mvs_tets91.81 23191.08 23294.00 25991.63 32490.58 27198.67 26897.43 24292.43 18087.37 28297.05 22171.76 30797.32 24994.75 16488.68 23494.11 268
MDA-MVSNet-bldmvs84.09 30881.52 31491.81 29891.32 32788.00 30798.67 26895.92 32480.22 33055.60 35393.32 32068.29 32293.60 33973.76 33476.61 32793.82 292
UGNet95.33 15594.57 16397.62 15198.55 14194.85 18398.67 26899.32 2495.75 6396.80 14696.27 24772.18 30699.96 5394.58 17099.05 12098.04 206
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pm-mvs189.36 28087.81 28794.01 25893.40 29991.93 24498.62 27196.48 31486.25 29083.86 31196.14 25073.68 30297.04 26986.16 28375.73 33093.04 314
test_040285.58 29883.94 30290.50 30793.81 29185.04 32198.55 27295.20 33776.01 33879.72 32895.13 28864.15 33596.26 30466.04 34786.88 25390.21 339
ACMH89.72 1790.64 25589.63 25693.66 27295.64 26388.64 29898.55 27297.45 23989.03 24781.62 32197.61 20469.75 31598.41 19389.37 24987.62 24893.92 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121189.86 27388.44 27994.13 25398.93 12390.68 26898.54 27498.26 16076.28 33786.73 28795.54 26770.60 31397.56 23890.82 23380.27 30394.15 263
TransMVSNet (Re)87.25 29385.28 29893.16 28093.56 29491.03 26298.54 27494.05 34683.69 31781.09 32396.16 24975.32 29196.40 29776.69 33068.41 33992.06 325
XVG-ACMP-BASELINE91.22 24490.75 23592.63 28993.73 29285.61 31698.52 27697.44 24192.77 16089.90 23196.85 22966.64 32798.39 19792.29 21088.61 23593.89 286
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 27799.42 2097.03 2799.02 8099.09 13899.35 198.21 21499.73 2799.78 8899.77 104
OpenMVS_ROBcopyleft79.82 2083.77 31081.68 31390.03 31288.30 34182.82 32798.46 27795.22 33673.92 34576.00 33891.29 33355.00 34896.94 27568.40 34288.51 23990.34 337
GBi-Net90.88 24989.82 25494.08 25497.53 19891.97 24198.43 27996.95 28887.05 27889.68 23694.72 30071.34 30996.11 30787.01 27785.65 25994.17 256
test190.88 24989.82 25494.08 25497.53 19891.97 24198.43 27996.95 28887.05 27889.68 23694.72 30071.34 30996.11 30787.01 27785.65 25994.17 256
FMVSNet188.50 28686.64 29294.08 25495.62 26591.97 24198.43 27996.95 28883.00 31986.08 30094.72 30059.09 34496.11 30781.82 31084.07 27494.17 256
COLMAP_ROBcopyleft90.47 1492.18 22591.49 22794.25 24999.00 11788.04 30698.42 28296.70 30782.30 32488.43 26599.01 14476.97 27699.85 9486.11 28496.50 17294.86 225
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test12337.68 32939.14 33233.31 34219.94 36424.83 36598.36 2839.75 36515.53 36051.31 35587.14 34219.62 36217.74 36147.10 3543.47 36057.36 354
131496.84 11195.96 13099.48 3396.74 23598.52 5598.31 28498.86 4495.82 5689.91 23098.98 14987.49 19399.96 5397.80 11199.73 9199.96 70
112198.03 6997.57 7999.40 4199.74 7798.21 6698.31 28498.62 6692.78 15999.53 4499.83 4995.08 50100.00 194.36 17499.92 6799.99 20
MVS96.60 12395.56 14299.72 996.85 22899.22 1598.31 28498.94 3691.57 20490.90 21899.61 10286.66 20299.96 5397.36 12299.88 7699.99 20
NR-MVSNet91.56 23990.22 24795.60 20394.05 28695.76 15898.25 28798.70 5391.16 21680.78 32496.64 23783.23 23196.57 29291.41 21977.73 31894.46 231
MS-PatchMatch90.65 25490.30 24591.71 29994.22 28485.50 31898.24 28897.70 21188.67 25886.42 29496.37 24467.82 32398.03 22183.62 29999.62 9891.60 329
pmmvs380.27 31577.77 31987.76 32480.32 35182.43 33098.23 28991.97 35072.74 34678.75 33087.97 34057.30 34790.99 34670.31 33862.37 34589.87 340
SixPastTwentyTwo88.73 28588.01 28690.88 30391.85 32182.24 33198.22 29095.18 33888.97 25082.26 31796.89 22671.75 30896.67 28984.00 29582.98 27993.72 299
EG-PatchMatch MVS85.35 30283.81 30489.99 31390.39 33381.89 33498.21 29196.09 32181.78 32674.73 34193.72 31851.56 35197.12 26379.16 32188.61 23590.96 334
OurMVSNet-221017-089.81 27489.48 26390.83 30591.64 32381.21 33798.17 29295.38 33391.48 20785.65 30397.31 21172.66 30497.29 25388.15 26284.83 26693.97 280
LF4IMVS89.25 28388.85 27290.45 30992.81 31181.19 33898.12 29394.79 34091.44 20986.29 29797.11 21665.30 33298.11 21788.53 25885.25 26392.07 324
RPSCF91.80 23492.79 19988.83 31898.15 16369.87 34998.11 29496.60 31083.93 31494.33 18799.27 12779.60 26199.46 14991.99 21293.16 21497.18 216
pmmvs-eth3d84.03 30981.97 31290.20 31084.15 34887.09 31098.10 29594.73 34283.05 31874.10 34287.77 34165.56 33194.01 33381.08 31369.24 33789.49 343
DSMNet-mixed88.28 28888.24 28388.42 32289.64 33875.38 34798.06 29689.86 35485.59 30088.20 27092.14 33176.15 28791.95 34378.46 32296.05 17897.92 207
MVP-Stereo90.93 24790.45 24292.37 29191.25 32888.76 29498.05 29796.17 31987.27 27684.04 30995.30 28278.46 27197.27 25583.78 29899.70 9491.09 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UA-Net96.54 12495.96 13098.27 12698.23 15895.71 16198.00 29898.45 10593.72 13498.41 10699.27 12788.71 18599.66 13691.19 22297.69 14799.44 156
new-patchmatchnet81.19 31379.34 31786.76 32682.86 35080.36 34497.92 29995.27 33582.09 32572.02 34386.87 34362.81 33890.74 34771.10 33763.08 34489.19 345
PCF-MVS94.20 595.18 15794.10 17198.43 11898.55 14195.99 15197.91 30097.31 25690.35 23189.48 24399.22 13385.19 21699.89 7990.40 24198.47 13199.41 159
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
pmmvs685.69 29783.84 30391.26 30290.00 33784.41 32497.82 30196.15 32075.86 33981.29 32295.39 27761.21 34196.87 27983.52 30173.29 33392.50 320
UniMVSNet_ETH3D90.06 27188.58 27794.49 24094.67 27888.09 30597.81 30297.57 22583.91 31588.44 26397.41 20857.44 34697.62 23791.41 21988.59 23797.77 211
MVS_030489.28 28288.31 28192.21 29397.05 21786.53 31297.76 30399.57 1285.58 30193.86 19492.71 32551.04 35296.30 30284.49 29392.72 21693.79 293
TinyColmap87.87 29286.51 29391.94 29695.05 27285.57 31797.65 30494.08 34584.40 31281.82 32096.85 22962.14 33998.33 20480.25 31686.37 25691.91 328
HY-MVS92.50 797.79 8197.17 9299.63 1298.98 11899.32 697.49 30599.52 1395.69 6498.32 11197.41 20893.32 10799.77 11598.08 10195.75 18799.81 98
Effi-MVS+96.30 13495.69 13998.16 12997.85 17996.26 13897.41 30697.21 26290.37 23098.65 9798.58 17986.61 20398.70 17697.11 12897.37 15699.52 146
TDRefinement84.76 30382.56 31091.38 30174.58 35384.80 32397.36 30794.56 34384.73 31080.21 32696.12 25263.56 33698.39 19787.92 26463.97 34390.95 335
FMVSNet588.32 28787.47 28990.88 30396.90 22688.39 30297.28 30895.68 32782.60 32384.67 30792.40 33079.83 26091.16 34576.39 33181.51 28993.09 312
DIV-MVS_2432*160083.59 31182.06 31188.20 32386.93 34380.70 34197.21 30996.38 31582.87 32082.49 31688.97 33867.63 32492.32 34273.75 33562.30 34691.58 330
LTVRE_ROB88.28 1890.29 26589.05 27094.02 25795.08 27190.15 28097.19 31097.43 24284.91 30983.99 31097.06 22074.00 30198.28 20984.08 29487.71 24693.62 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
KD-MVS_2432*160088.00 29086.10 29493.70 27096.91 22394.04 19897.17 31197.12 27184.93 30781.96 31892.41 32892.48 13094.51 33179.23 31852.68 35092.56 318
miper_refine_blended88.00 29086.10 29493.70 27096.91 22394.04 19897.17 31197.12 27184.93 30781.96 31892.41 32892.48 13094.51 33179.23 31852.68 35092.56 318
CostFormer96.10 13895.88 13596.78 17497.03 21892.55 23297.08 31397.83 20690.04 23798.72 9394.89 29895.01 5698.29 20796.54 13995.77 18599.50 149
tpm93.70 19493.41 18994.58 23495.36 26887.41 30997.01 31496.90 29490.85 22396.72 14894.14 31490.40 16396.84 28090.75 23588.54 23899.51 147
CMPMVSbinary61.59 2184.75 30485.14 29983.57 32890.32 33462.54 35296.98 31597.59 22474.33 34469.95 34696.66 23564.17 33498.32 20587.88 26588.41 24089.84 341
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpm295.47 15395.18 15296.35 19096.91 22391.70 25496.96 31697.93 19588.04 26798.44 10595.40 27593.32 10797.97 22394.00 18295.61 18999.38 161
new_pmnet84.49 30782.92 30989.21 31690.03 33682.60 32896.89 31795.62 32980.59 32975.77 34089.17 33765.04 33394.79 32972.12 33681.02 29590.23 338
UnsupCasMVSNet_eth85.52 29983.99 30090.10 31189.36 33983.51 32696.65 31897.99 18889.14 24475.89 33993.83 31663.25 33793.92 33481.92 30967.90 34192.88 315
MIMVSNet182.58 31280.51 31688.78 31986.68 34484.20 32596.65 31895.41 33278.75 33378.59 33192.44 32751.88 35089.76 34865.26 34878.95 30992.38 323
ab-mvs94.69 16893.42 18798.51 11298.07 16696.26 13896.49 32098.68 5590.31 23294.54 18297.00 22376.30 28499.71 12895.98 14593.38 21299.56 138
EPMVS96.53 12596.01 12298.09 13398.43 14796.12 14896.36 32199.43 1993.53 13897.64 12895.04 29194.41 7098.38 20191.13 22398.11 13999.75 106
tpmrst96.27 13795.98 12597.13 16697.96 17193.15 21696.34 32298.17 17292.07 18998.71 9495.12 28993.91 9398.73 17394.91 15896.62 16999.50 149
dp95.05 16094.43 16596.91 17097.99 17092.73 22696.29 32397.98 19089.70 24195.93 16594.67 30493.83 9798.45 19086.91 28096.53 17199.54 143
tpm cat193.51 19692.52 20796.47 18297.77 18491.47 26096.13 32498.06 18480.98 32892.91 20393.78 31789.66 17098.87 16387.03 27696.39 17399.09 185
MDTV_nov1_ep13_2view96.26 13896.11 32591.89 19498.06 11994.40 7194.30 17799.67 117
PatchmatchNetpermissive95.94 14295.45 14397.39 15997.83 18094.41 19396.05 32698.40 13092.86 15397.09 13995.28 28694.21 8698.07 22089.26 25198.11 13999.70 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1395.69 13997.90 17494.15 19695.98 32798.44 10693.12 14997.98 12195.74 25895.10 4998.58 18190.02 24596.92 166
FPMVS68.72 31868.72 32168.71 33665.95 35744.27 36295.97 32894.74 34151.13 35153.26 35490.50 33625.11 35983.00 35360.80 35080.97 29778.87 349
PM-MVS80.47 31478.88 31885.26 32783.79 34972.22 34895.89 32991.08 35285.71 29976.56 33788.30 33936.64 35493.90 33582.39 30569.57 33689.66 342
test_post195.78 33059.23 36093.20 11497.74 23391.06 225
tpmvs94.28 18293.57 18396.40 18798.55 14191.50 25995.70 33198.55 8187.47 27292.15 20894.26 31391.42 14698.95 16188.15 26295.85 18398.76 198
ADS-MVSNet293.80 18993.88 17693.55 27497.87 17785.94 31594.24 33296.84 29890.07 23596.43 15594.48 30990.29 16595.37 32087.44 26897.23 15899.36 163
ADS-MVSNet94.79 16494.02 17297.11 16897.87 17793.79 20494.24 33298.16 17590.07 23596.43 15594.48 30990.29 16598.19 21587.44 26897.23 15899.36 163
EMVS51.44 32751.22 32952.11 34170.71 35544.97 36194.04 33475.66 36235.34 35842.40 35861.56 35928.93 35765.87 35927.64 35924.73 35545.49 356
PMMVS267.15 32064.15 32476.14 33370.56 35662.07 35393.89 33587.52 35858.09 35060.02 34978.32 34922.38 36084.54 35259.56 35147.03 35281.80 348
GG-mvs-BLEND98.54 10998.21 15998.01 7393.87 33698.52 8897.92 12297.92 20099.02 297.94 22898.17 9499.58 10399.67 117
UnsupCasMVSNet_bld79.97 31777.03 32088.78 31985.62 34681.98 33393.66 33797.35 25175.51 34270.79 34583.05 34748.70 35394.91 32778.31 32360.29 34889.46 344
E-PMN52.30 32552.18 32752.67 34071.51 35445.40 35993.62 33876.60 36136.01 35643.50 35764.13 35627.11 35867.31 35831.06 35826.06 35445.30 357
JIA-IIPM91.76 23790.70 23794.94 22196.11 24387.51 30893.16 33998.13 18075.79 34097.58 12977.68 35092.84 12197.97 22388.47 25996.54 17099.33 167
gg-mvs-nofinetune93.51 19691.86 22098.47 11497.72 19197.96 7792.62 34098.51 9574.70 34397.33 13469.59 35398.91 397.79 23197.77 11499.56 10499.67 117
MIMVSNet90.30 26488.67 27695.17 21596.45 23991.64 25692.39 34197.15 26985.99 29290.50 22293.19 32366.95 32694.86 32882.01 30893.43 21099.01 188
MVS-HIRNet86.22 29683.19 30795.31 21196.71 23790.29 27792.12 34297.33 25462.85 34986.82 28670.37 35269.37 31697.49 24075.12 33397.99 14598.15 204
CR-MVSNet93.45 19992.62 20195.94 19896.29 24092.66 22892.01 34396.23 31792.62 16896.94 14193.31 32191.04 15596.03 31279.23 31895.96 18099.13 183
RPMNet89.76 27587.28 29097.19 16596.29 24092.66 22892.01 34398.31 15170.19 34896.94 14185.87 34687.25 19699.78 11162.69 34995.96 18099.13 183
Patchmatch-test92.65 21691.50 22696.10 19596.85 22890.49 27391.50 34597.19 26382.76 32290.23 22495.59 26595.02 5498.00 22277.41 32696.98 16599.82 97
Patchmtry89.70 27688.49 27893.33 27696.24 24289.94 28591.37 34696.23 31778.22 33487.69 27493.31 32191.04 15596.03 31280.18 31782.10 28494.02 273
PatchT90.38 26188.75 27595.25 21395.99 24790.16 27991.22 34797.54 22876.80 33697.26 13586.01 34591.88 14296.07 31166.16 34695.91 18299.51 147
Patchmatch-RL test86.90 29485.98 29689.67 31484.45 34775.59 34689.71 34892.43 34986.89 28377.83 33390.94 33494.22 8393.63 33887.75 26669.61 33599.79 100
LCM-MVSNet67.77 31964.73 32376.87 33262.95 35956.25 35689.37 34993.74 34844.53 35361.99 34880.74 34820.42 36186.53 35169.37 34159.50 34987.84 346
ambc83.23 32977.17 35262.61 35187.38 35094.55 34476.72 33686.65 34430.16 35596.36 29984.85 29269.86 33490.73 336
ANet_high56.10 32352.24 32667.66 33749.27 36156.82 35583.94 35182.02 35970.47 34733.28 36064.54 35517.23 36369.16 35745.59 35523.85 35677.02 350
tmp_tt65.23 32262.94 32572.13 33544.90 36250.03 35881.05 35289.42 35738.45 35448.51 35699.90 1754.09 34978.70 35591.84 21618.26 35787.64 347
MVEpermissive53.74 2251.54 32647.86 33062.60 33859.56 36050.93 35779.41 35377.69 36035.69 35736.27 35961.76 3585.79 36769.63 35637.97 35736.61 35367.24 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 32451.34 32860.97 33940.80 36334.68 36374.82 35489.62 35637.55 35528.67 36172.12 3517.09 36581.63 35443.17 35668.21 34066.59 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft66.95 32165.00 32272.79 33491.52 32567.96 35066.16 35595.15 33947.89 35258.54 35067.99 35429.74 35687.54 35050.20 35377.83 31762.87 353
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d20.37 33120.84 33418.99 34465.34 35827.73 36450.43 3567.67 3669.50 3618.01 3626.34 3626.13 36626.24 36023.40 36010.69 3592.99 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.43 33031.24 3330.00 3450.00 3660.00 3670.00 35798.09 1810.00 3620.00 36399.67 9583.37 2290.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.60 33310.13 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36391.20 1500.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.28 33211.04 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36399.40 1180.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS99.92 3598.57 5198.52 8892.34 18299.31 6399.83 4995.06 5299.80 10699.70 3099.97 44
IU-MVS99.93 2699.31 798.41 12997.71 899.84 8100.00 1100.00 1100.00 1
test_241102_TWO98.43 11497.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2699.30 898.43 11497.26 2299.80 1699.88 2296.71 20100.00 1
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
GSMVS99.59 130
test_part299.89 4599.25 1399.49 48
sam_mvs194.72 6499.59 130
sam_mvs94.25 82
MTGPAbinary98.28 156
test_post63.35 35794.43 6998.13 216
patchmatchnet-post91.70 33295.12 4897.95 226
gm-plane-assit96.97 22193.76 20691.47 20898.96 15398.79 16794.92 156
test9_res99.71 2999.99 20100.00 1
agg_prior299.48 36100.00 1100.00 1
agg_prior99.93 2698.77 3698.43 11499.63 3599.85 94
TestCases95.00 21999.01 11588.43 30096.82 30186.50 28688.71 25898.47 18774.73 29699.88 8585.39 28796.18 17596.71 218
test_prior99.43 3599.94 1498.49 5798.65 5999.80 10699.99 20
新几何199.42 3899.75 7698.27 6598.63 6592.69 16499.55 4299.82 5394.40 71100.00 191.21 22199.94 5799.99 20
旧先验199.76 7497.52 9198.64 6299.85 3395.63 3999.94 5799.99 20
原ACMM198.96 8299.73 8196.99 11498.51 9594.06 11799.62 3799.85 3394.97 5999.96 5395.11 15399.95 5199.92 87
testdata299.99 3690.54 237
segment_acmp96.68 22
testdata98.42 11999.47 10095.33 17098.56 7693.78 13199.79 2199.85 3393.64 10199.94 6894.97 15599.94 57100.00 1
test1299.43 3599.74 7798.56 5398.40 13099.65 3394.76 6399.75 12099.98 3399.99 20
plane_prior795.71 26091.59 258
plane_prior695.76 25591.72 25380.47 256
plane_prior597.87 20198.37 20297.79 11289.55 22294.52 228
plane_prior498.59 177
plane_prior391.64 25696.63 3893.01 200
plane_prior195.73 257
n20.00 367
nn0.00 367
door-mid89.69 355
lessismore_v090.53 30690.58 33280.90 34095.80 32577.01 33495.84 25566.15 32996.95 27483.03 30275.05 33193.74 298
LGP-MVS_train93.71 26895.43 26688.67 29697.62 21792.81 15690.05 22598.49 18375.24 29298.40 19595.84 14889.12 22694.07 270
test1198.44 106
door90.31 353
HQP5-MVS91.85 246
BP-MVS97.92 109
HQP4-MVS93.37 19698.39 19794.53 226
HQP3-MVS97.89 19989.60 219
HQP2-MVS80.65 252
NP-MVS95.77 25491.79 24898.65 173
ACMMP++_ref87.04 252
ACMMP++88.23 241
Test By Simon92.82 123
ITE_SJBPF92.38 29095.69 26285.14 32095.71 32692.81 15689.33 24798.11 19370.23 31498.42 19285.91 28588.16 24293.59 302
DeepMVS_CXcopyleft82.92 33095.98 24958.66 35496.01 32292.72 16178.34 33295.51 27058.29 34598.08 21882.57 30485.29 26292.03 326