This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS97.84 7497.69 7098.31 12298.28 14796.27 131100.00 197.52 22795.29 7399.25 6799.65 9591.18 14798.94 15898.96 5599.04 11799.73 105
DELS-MVS98.54 3998.22 4799.50 2999.15 10798.65 48100.00 198.58 7297.70 998.21 11399.24 12892.58 12499.94 6898.63 7899.94 5699.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_Blended97.94 6997.64 7298.83 8899.59 8696.99 112100.00 199.10 2895.38 7098.27 10999.08 13589.00 17499.95 6099.12 4599.25 11299.57 134
ET-MVSNet_ETH3D94.37 17793.28 19097.64 14798.30 14597.99 7399.99 497.61 21594.35 10071.57 33399.45 11196.23 2795.34 31696.91 13285.14 26299.59 127
alignmvs97.81 7797.33 8499.25 4998.77 13198.66 4699.99 498.44 10494.40 9998.41 10299.47 10893.65 9999.42 14698.57 7994.26 19999.67 114
lupinMVS97.85 7397.60 7498.62 9897.28 20597.70 8499.99 497.55 22195.50 6999.43 5299.67 9190.92 15298.71 17198.40 8499.62 9499.45 151
IB-MVS92.85 694.99 16093.94 17198.16 12797.72 18595.69 15899.99 498.81 4794.28 10592.70 20196.90 22095.08 5099.17 15196.07 13973.88 32799.60 126
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EIA-MVS97.53 8697.46 7897.76 14398.04 16294.84 17899.98 897.61 21594.41 9897.90 11999.59 9992.40 12698.87 15998.04 9899.13 11599.59 127
ETV-MVS97.92 7197.80 6898.25 12598.14 15896.48 12599.98 897.63 20995.61 6699.29 6499.46 11092.55 12598.82 16199.02 5498.54 12599.46 149
CANet98.27 5797.82 6799.63 1299.72 7999.10 1799.98 898.51 9397.00 2898.52 9799.71 8287.80 18399.95 6099.75 2299.38 10999.83 93
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5899.98 898.86 4497.10 2599.80 1699.94 495.92 33100.00 199.51 33100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5498.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13297.71 8299.98 898.44 10496.85 2999.80 1699.91 1397.57 699.85 9499.44 3799.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS98.41 4998.21 4899.03 7599.86 5297.10 10999.98 898.80 4990.78 21999.62 3799.78 6495.30 46100.00 199.80 1899.93 6299.99 20
CLD-MVS94.06 18293.90 17294.55 23296.02 23890.69 26099.98 897.72 20496.62 3991.05 21298.85 16377.21 26598.47 18298.11 9489.51 22094.48 226
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051597.41 9197.02 9598.59 10297.71 18797.52 9099.97 1698.54 8491.83 19197.45 12899.04 13797.50 899.10 15294.75 16096.37 17099.16 176
Fast-Effi-MVS+95.02 15994.19 16597.52 15197.88 16994.55 18499.97 1697.08 26688.85 24994.47 18097.96 19484.59 21298.41 18989.84 24197.10 15799.59 127
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6298.47 299.13 7299.92 1196.38 26100.00 199.74 24100.00 1100.00 1
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 7796.63 12199.97 1697.92 19198.07 598.76 8799.55 10295.00 5699.94 6899.91 1197.68 14499.99 20
jason97.24 9696.86 9798.38 12095.73 24997.32 10199.97 1697.40 24395.34 7298.60 9699.54 10487.70 18498.56 17897.94 10499.47 10599.25 171
jason: jason.
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6698.02 699.90 299.95 397.33 13100.00 199.54 32100.00 1100.00 1
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12299.97 1698.39 13294.43 9798.90 8299.87 2694.30 80100.00 199.04 5299.99 2099.99 20
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11297.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4499.80 299.96 2399.80 5797.44 11100.00 1100.00 199.98 33100.00 1
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6398.79 3399.96 2397.52 22797.66 1099.81 1299.89 1994.70 6499.86 9099.84 1399.93 6299.96 67
save fliter99.82 6398.79 3399.96 2398.40 12997.66 10
test072699.93 2699.29 1099.96 2398.42 12397.28 1899.86 499.94 497.22 15
DPM-MVS98.83 2198.46 3099.97 199.33 10299.92 199.96 2398.44 10497.96 799.55 4299.94 497.18 17100.00 193.81 18299.94 5699.98 51
TEST999.92 3598.92 2399.96 2398.43 11293.90 12399.71 3099.86 2995.88 3499.85 94
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11294.35 10099.71 3099.86 2995.94 3199.85 9499.69 3099.98 3399.99 20
test_899.92 3598.88 2699.96 2398.43 11294.35 10099.69 3299.85 3395.94 3199.85 94
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11294.63 9199.63 3599.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
region2R98.54 3998.37 4099.05 7399.96 897.18 10599.96 2398.55 8094.87 8399.45 5099.85 3394.07 88100.00 198.67 73100.00 199.98 51
test-LLR96.47 12496.04 11897.78 14097.02 21395.44 16199.96 2398.21 16094.07 11295.55 16696.38 23693.90 9398.27 20690.42 23398.83 12099.64 120
TESTMET0.1,196.74 11596.26 11498.16 12797.36 19996.48 12599.96 2398.29 15091.93 18895.77 16498.07 19195.54 4098.29 20390.55 23098.89 11899.70 109
test-mter96.39 12895.93 12997.78 14097.02 21395.44 16199.96 2398.21 16091.81 19395.55 16696.38 23695.17 4798.27 20690.42 23398.83 12099.64 120
CPTT-MVS97.64 8497.32 8598.58 10399.97 395.77 15299.96 2398.35 14289.90 23298.36 10599.79 6091.18 14799.99 3698.37 8599.99 2099.99 20
cascas94.64 16993.61 17697.74 14597.82 17596.26 13399.96 2397.78 20385.76 29094.00 18697.54 20076.95 26899.21 14997.23 12195.43 18897.76 209
DeepPCF-MVS95.94 297.71 8298.98 1093.92 25899.63 8481.76 32799.96 2398.56 7699.47 199.19 7099.99 194.16 86100.00 199.92 999.93 62100.00 1
MSP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4098.32 14797.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 87
test_0728_SECOND99.82 599.94 1499.47 599.95 4098.43 112100.00 199.99 5100.00 1100.00 1
DVP-MVS99.09 899.12 598.98 8099.93 2697.24 10299.95 4098.42 12397.50 1499.52 4799.88 2297.43 1299.71 12499.50 3499.98 33100.00 1
mvs-test195.53 14995.97 12594.20 24697.77 17885.44 31199.95 4097.06 26894.92 8096.58 14698.72 16685.81 20198.98 15594.80 15798.11 13598.18 200
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9799.95 4098.61 6894.77 8599.31 6199.85 3394.22 82100.00 198.70 7199.98 3399.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9799.95 4098.61 6895.00 7999.31 6199.85 3394.22 82100.00 198.78 6899.98 3399.98 51
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4199.02 1999.95 4098.56 7697.56 1399.44 5199.85 3395.38 45100.00 199.31 4199.99 2099.87 90
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5699.95 4098.65 5995.78 5899.73 2699.76 7096.00 2999.80 10699.78 20100.00 199.99 20
test_prior299.95 4095.78 5899.73 2699.76 7096.00 2999.78 20100.00 1
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10599.95 4098.60 7094.77 8599.31 6199.84 4693.73 97100.00 198.70 7199.98 3399.98 51
MP-MVScopyleft98.23 6197.97 6199.03 7599.94 1497.17 10899.95 4098.39 13294.70 8898.26 11199.81 5691.84 138100.00 198.85 6399.97 4499.93 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.39 5298.20 4998.97 8199.97 396.92 11599.95 4098.38 13695.04 7898.61 9599.80 5793.39 103100.00 198.64 77100.00 199.98 51
PVSNet_BlendedMVS96.05 13795.82 13496.72 17499.59 8696.99 11299.95 4099.10 2894.06 11498.27 10995.80 24989.00 17499.95 6099.12 4587.53 24593.24 305
PAPR98.52 4198.16 5199.58 2099.97 398.77 3699.95 4098.43 11295.35 7198.03 11699.75 7594.03 8999.98 4298.11 9499.83 7799.99 20
PVSNet91.05 1397.13 9996.69 10398.45 11499.52 9295.81 15099.95 4099.65 1094.73 8799.04 7599.21 13084.48 21399.95 6094.92 15298.74 12299.58 133
ZNCC-MVS98.31 5598.03 5799.17 5799.88 4897.59 8699.94 5598.44 10494.31 10398.50 9999.82 5293.06 11499.99 3698.30 8899.99 2099.93 78
test_prior498.05 7099.94 55
XVS98.70 2898.55 2599.15 6199.94 1497.50 9399.94 5598.42 12396.22 4999.41 5499.78 6494.34 7599.96 5398.92 5999.95 5099.99 20
X-MVStestdata93.83 18492.06 21099.15 6199.94 1497.50 9399.94 5598.42 12396.22 4999.41 5441.37 35194.34 7599.96 5398.92 5999.95 5099.99 20
SD-MVS98.92 1698.70 1799.56 2199.70 8198.73 4199.94 5598.34 14496.38 4499.81 1299.76 7094.59 6699.98 4299.84 1399.96 4799.97 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_088.03 1991.80 22990.27 24096.38 18598.27 15090.46 26799.94 5599.61 1193.99 11786.26 29197.39 20571.13 30299.89 7998.77 6967.05 33698.79 194
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6198.46 10194.56 9299.84 899.92 1194.32 7999.86 9099.96 899.98 33100.00 1
GST-MVS98.27 5797.97 6199.17 5799.92 3597.57 8799.93 6198.39 13294.04 11698.80 8599.74 7792.98 115100.00 198.16 9199.76 8599.93 78
test0.0.03 193.86 18393.61 17694.64 22795.02 26592.18 23299.93 6198.58 7294.07 11287.96 26698.50 17893.90 9394.96 32181.33 30593.17 20996.78 213
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10197.18 10599.93 6199.90 196.81 3398.67 9199.77 6693.92 9199.89 7999.27 4399.94 5699.96 67
thisisatest053097.10 10096.72 10298.22 12697.60 19096.70 11999.92 6598.54 8491.11 21197.07 13698.97 14797.47 999.03 15393.73 18796.09 17398.92 186
PVSNet_Blended_VisFu97.27 9596.81 9998.66 9598.81 12896.67 12099.92 6598.64 6294.51 9496.38 15498.49 17989.05 17399.88 8597.10 12598.34 12999.43 154
DP-MVS Recon98.41 4998.02 5899.56 2199.97 398.70 4399.92 6598.44 10492.06 18698.40 10499.84 4695.68 38100.00 198.19 8999.71 8999.97 62
PLCcopyleft95.54 397.93 7097.89 6698.05 13399.82 6394.77 18299.92 6598.46 10193.93 12197.20 13299.27 12395.44 4499.97 5197.41 11799.51 10499.41 156
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
9.1498.38 3899.87 5099.91 6998.33 14593.22 14399.78 2299.89 1994.57 6799.85 9499.84 1399.97 44
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 6998.39 13297.20 2499.46 4999.85 3395.53 4299.79 10899.86 12100.00 199.99 20
MVSTER95.53 14995.22 14796.45 18198.56 13597.72 8199.91 6997.67 20792.38 17791.39 20897.14 21097.24 1497.30 24494.80 15787.85 24094.34 240
PMMVS96.76 11396.76 10196.76 17298.28 14792.10 23399.91 6997.98 18494.12 10999.53 4499.39 11686.93 19398.73 16996.95 13097.73 14299.45 151
SF-MVS98.67 3098.40 3599.50 2999.77 6998.67 4499.90 7398.21 16093.53 13599.81 1299.89 1994.70 6499.86 9099.84 1399.93 6299.96 67
testtj98.89 1898.69 1899.52 2699.94 1498.56 5299.90 7398.55 8095.14 7799.72 2999.84 4695.46 43100.00 199.65 3199.99 2099.99 20
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6198.57 5199.90 7398.37 13993.81 12699.81 1299.90 1794.34 7599.86 9099.84 1399.98 3399.97 62
原ACMM299.90 73
HPM-MVScopyleft97.96 6897.72 6998.68 9399.84 5896.39 13099.90 7398.17 16692.61 16698.62 9499.57 10191.87 13799.67 13198.87 6299.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet98.49 4398.40 3598.77 9099.62 8596.80 11899.90 7399.51 1597.60 1299.20 6899.36 11993.71 9899.91 7497.99 10198.71 12399.61 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CSCG97.10 10097.04 9397.27 16299.89 4491.92 23899.90 7399.07 3188.67 25295.26 17299.82 5293.17 11299.98 4298.15 9299.47 10599.90 86
PAPM98.60 3398.42 3199.14 6396.05 23798.96 2099.90 7399.35 2396.68 3798.35 10699.66 9396.45 2598.51 18199.45 3699.89 7099.96 67
RRT_test8_iter0594.58 17194.11 16795.98 19397.88 16996.11 14499.89 8197.45 23491.66 19688.28 26296.71 22896.53 2497.40 23794.73 16283.85 27394.45 232
114514_t97.41 9196.83 9899.14 6399.51 9497.83 7999.89 8198.27 15488.48 25699.06 7499.66 9390.30 15899.64 13496.32 13799.97 4499.96 67
WTY-MVS98.10 6597.60 7499.60 1798.92 12199.28 1299.89 8199.52 1395.58 6798.24 11299.39 11693.33 10599.74 12097.98 10395.58 18699.78 100
GA-MVS93.83 18492.84 19496.80 17095.73 24993.57 20199.88 8497.24 25492.57 17192.92 19796.66 22978.73 25997.67 23087.75 26094.06 20299.17 175
UniMVSNet (Re)93.07 20292.13 20795.88 19694.84 26696.24 13799.88 8498.98 3492.49 17589.25 24295.40 26887.09 19197.14 25593.13 19878.16 30994.26 245
HPM-MVS_fast97.80 7897.50 7798.68 9399.79 6896.42 12799.88 8498.16 16991.75 19498.94 8199.54 10491.82 13999.65 13397.62 11499.99 2099.99 20
DPE-MVS99.26 699.10 799.74 799.89 4499.24 1499.87 8798.44 10497.48 1599.64 3499.94 496.68 2299.99 3699.99 5100.00 199.99 20
MTMP99.87 8796.49 305
Regformer-198.79 2498.60 2399.36 4599.85 5398.34 6199.87 8798.52 8796.05 5399.41 5499.79 6094.93 5999.76 11399.07 4799.90 6899.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5398.32 6299.87 8798.52 8796.04 5499.41 5499.79 6094.92 6099.76 11399.05 4899.90 6899.98 51
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8798.33 14593.97 11899.76 2499.87 2694.99 5799.75 11698.55 80100.00 199.98 51
HQP-NCC95.78 24399.87 8796.82 3093.37 191
ACMP_Plane95.78 24399.87 8796.82 3093.37 191
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4198.51 5599.87 8798.36 14194.08 11199.74 2599.73 7994.08 8799.74 12099.42 3899.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.42 4898.38 3898.53 10999.39 9995.79 15199.87 8799.86 296.70 3698.78 8699.79 6092.03 13499.90 7599.17 4499.86 7599.88 89
HQP-MVS94.61 17094.50 16194.92 21895.78 24391.85 23999.87 8797.89 19396.82 3093.37 19198.65 16980.65 24398.39 19397.92 10589.60 21594.53 222
CNLPA97.76 8097.38 8098.92 8599.53 9196.84 11699.87 8798.14 17293.78 12896.55 14899.69 8792.28 12999.98 4297.13 12399.44 10799.93 78
ETH3D cwj APD-0.1698.40 5198.07 5699.40 4199.59 8698.41 5999.86 9898.24 15692.18 18199.73 2699.87 2693.47 10299.85 9499.74 2499.95 5099.93 78
SMA-MVS98.76 2698.48 2999.62 1599.87 5098.87 2799.86 9898.38 13693.19 14499.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
plane_prior91.74 24399.86 9896.76 3489.59 217
tttt051796.85 10896.49 10997.92 13797.48 19695.89 14999.85 10198.54 8490.72 22096.63 14598.93 15397.47 999.02 15493.03 20095.76 18298.85 190
ACMMP_NAP98.49 4398.14 5299.54 2399.66 8398.62 5099.85 10198.37 13994.68 8999.53 4499.83 4992.87 116100.00 198.66 7699.84 7699.99 20
thres20096.96 10496.21 11599.22 5098.97 11598.84 3099.85 10199.71 593.17 14596.26 15598.88 15689.87 16399.51 13894.26 17394.91 19399.31 166
F-COLMAP96.93 10696.95 9696.87 16999.71 8091.74 24399.85 10197.95 18793.11 14795.72 16599.16 13292.35 12799.94 6895.32 14799.35 11098.92 186
SR-MVS98.46 4598.30 4698.93 8499.88 4897.04 11099.84 10598.35 14294.92 8099.32 6099.80 5793.35 10499.78 11099.30 4299.95 5099.96 67
CANet_DTU96.76 11396.15 11698.60 10098.78 13097.53 8999.84 10597.63 20997.25 2399.20 6899.64 9681.36 23499.98 4292.77 20298.89 11898.28 199
casdiffmvs96.42 12795.97 12597.77 14297.30 20494.98 17499.84 10597.09 26593.75 13096.58 14699.26 12685.07 20998.78 16497.77 11097.04 15999.54 140
HQP_MVS94.49 17594.36 16394.87 21995.71 25291.74 24399.84 10597.87 19596.38 4493.01 19598.59 17380.47 24798.37 19897.79 10889.55 21894.52 224
plane_prior299.84 10596.38 44
BH-w/o95.71 14695.38 14396.68 17598.49 14092.28 22999.84 10597.50 23192.12 18392.06 20498.79 16484.69 21198.67 17495.29 14899.66 9299.09 182
UniMVSNet_NR-MVSNet92.95 20492.11 20895.49 20194.61 27195.28 16799.83 11199.08 3091.49 20089.21 24496.86 22387.14 19096.73 28093.20 19477.52 31494.46 227
APD-MVS_3200maxsize98.25 6098.08 5598.78 8999.81 6696.60 12399.82 11298.30 14993.95 12099.37 5899.77 6692.84 11799.76 11398.95 5699.92 6699.97 62
PAPM_NR98.12 6497.93 6598.70 9299.94 1496.13 14199.82 11298.43 11294.56 9297.52 12699.70 8494.40 7099.98 4297.00 12799.98 3399.99 20
nrg03093.51 19492.53 20296.45 18194.36 27397.20 10499.81 11497.16 26191.60 19789.86 22697.46 20186.37 19897.68 22995.88 14380.31 29894.46 227
RRT_MVS95.23 15494.77 15796.61 17898.28 14798.32 6299.81 11497.41 24192.59 16891.28 21097.76 19795.02 5397.23 25093.65 18987.14 24794.28 244
diffmvs97.00 10396.64 10498.09 13197.64 18896.17 14099.81 11497.19 25694.67 9098.95 8099.28 12086.43 19798.76 16798.37 8597.42 15099.33 164
DU-MVS92.46 21591.45 22395.49 20194.05 27895.28 16799.81 11498.74 5192.25 18089.21 24496.64 23181.66 23096.73 28093.20 19477.52 31494.46 227
ACMP92.05 992.74 20892.42 20593.73 26295.91 24288.72 28799.81 11497.53 22594.13 10887.00 27998.23 18774.07 29098.47 18296.22 13888.86 22793.99 273
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Fast-Effi-MVS+-dtu93.72 19193.86 17493.29 27197.06 21086.16 30599.80 11996.83 29192.66 16392.58 20297.83 19681.39 23397.67 23089.75 24296.87 16396.05 220
zzz-MVS98.33 5498.00 5999.30 4799.85 5397.93 7799.80 11998.28 15195.76 6097.18 13399.88 2292.74 120100.00 198.67 7399.88 7299.99 20
BH-untuned95.18 15594.83 15596.22 18898.36 14491.22 25499.80 11997.32 24990.91 21591.08 21198.67 16883.51 21998.54 18094.23 17499.61 9798.92 186
tfpn200view996.79 11195.99 12099.19 5398.94 11798.82 3199.78 12299.71 592.86 15096.02 15898.87 15889.33 16899.50 14093.84 17994.57 19499.27 169
thres40096.78 11295.99 12099.16 5998.94 11798.82 3199.78 12299.71 592.86 15096.02 15898.87 15889.33 16899.50 14093.84 17994.57 19499.16 176
TAPA-MVS92.12 894.42 17693.60 17896.90 16899.33 10291.78 24299.78 12298.00 18189.89 23394.52 17899.47 10891.97 13599.18 15069.90 33099.52 10299.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7398.67 4499.77 12598.38 13696.73 3599.88 399.74 7794.89 6199.59 13599.80 1899.98 3399.97 62
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS93.21 19892.80 19594.44 23993.12 29590.85 25999.77 12597.61 21596.19 5191.56 20798.65 16975.16 28498.47 18293.78 18589.39 22193.99 273
v2v48291.30 23590.07 24695.01 21493.13 29393.79 19799.77 12597.02 27188.05 26189.25 24295.37 27280.73 24197.15 25487.28 26680.04 30194.09 264
Baseline_NR-MVSNet90.33 25889.51 25592.81 28192.84 30189.95 27599.77 12593.94 33884.69 30289.04 24895.66 25581.66 23096.52 28790.99 22276.98 31991.97 319
ACMM91.95 1092.88 20592.52 20393.98 25795.75 24889.08 28599.77 12597.52 22793.00 14889.95 22397.99 19376.17 27698.46 18593.63 19088.87 22694.39 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-RMVSNet95.18 15594.31 16497.80 13998.17 15695.23 17099.76 13097.53 22592.52 17394.27 18399.25 12776.84 26998.80 16290.89 22699.54 10199.35 162
v14890.70 24889.63 25093.92 25892.97 29990.97 25699.75 13196.89 28787.51 26688.27 26395.01 28581.67 22997.04 26487.40 26477.17 31893.75 290
PGM-MVS98.34 5398.13 5398.99 7999.92 3597.00 11199.75 13199.50 1693.90 12399.37 5899.76 7093.24 110100.00 197.75 11299.96 4799.98 51
LPG-MVS_test92.96 20392.71 19793.71 26495.43 25888.67 28899.75 13197.62 21292.81 15390.05 21998.49 17975.24 28298.40 19195.84 14489.12 22294.07 265
thres100view90096.74 11595.92 13099.18 5498.90 12498.77 3699.74 13499.71 592.59 16895.84 16198.86 16089.25 17099.50 14093.84 17994.57 19499.27 169
MP-MVS-pluss98.07 6697.64 7299.38 4499.74 7398.41 5999.74 13498.18 16593.35 13996.45 15099.85 3392.64 12399.97 5198.91 6199.89 7099.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs590.17 26489.09 26293.40 26992.10 31089.77 27899.74 13495.58 32185.88 28987.24 27895.74 25173.41 29396.48 28988.54 25183.56 27493.95 276
thres600view796.69 11895.87 13399.14 6398.90 12498.78 3599.74 13499.71 592.59 16895.84 16198.86 16089.25 17099.50 14093.44 19294.50 19799.16 176
baseline296.71 11796.49 10997.37 15895.63 25695.96 14799.74 13498.88 4292.94 14991.61 20698.97 14797.72 598.62 17694.83 15698.08 13997.53 211
miper_enhance_ethall94.36 17993.98 17095.49 20198.68 13495.24 16999.73 13997.29 25193.28 14289.86 22695.97 24794.37 7497.05 26292.20 20684.45 26694.19 251
testgi89.01 27988.04 27991.90 29193.49 28884.89 31499.73 13995.66 31993.89 12585.14 29898.17 18859.68 33294.66 32577.73 31788.88 22596.16 219
sss97.57 8597.03 9499.18 5498.37 14398.04 7199.73 13999.38 2193.46 13798.76 8799.06 13691.21 14399.89 7996.33 13697.01 16099.62 122
canonicalmvs97.09 10296.32 11399.39 4398.93 11998.95 2199.72 14297.35 24694.45 9597.88 12099.42 11286.71 19499.52 13798.48 8293.97 20399.72 108
3Dnovator+91.53 1196.31 13195.24 14699.52 2696.88 21998.64 4999.72 14298.24 15695.27 7588.42 26198.98 14582.76 22499.94 6897.10 12599.83 7799.96 67
HyFIR lowres test96.66 12096.43 11197.36 15999.05 10993.91 19699.70 14499.80 390.54 22196.26 15598.08 19092.15 13298.23 20896.84 13395.46 18799.93 78
D2MVS92.76 20792.59 20193.27 27295.13 26189.54 28199.69 14599.38 2192.26 17987.59 27094.61 29985.05 21097.79 22691.59 21388.01 23992.47 314
TranMVSNet+NR-MVSNet91.68 23390.61 23394.87 21993.69 28593.98 19499.69 14598.65 5991.03 21388.44 25796.83 22780.05 25096.18 30090.26 23776.89 32194.45 232
V4291.28 23790.12 24594.74 22393.42 29093.46 20499.68 14797.02 27187.36 26989.85 22895.05 28381.31 23597.34 24187.34 26580.07 30093.40 300
testmvs40.60 32044.45 32229.05 33519.49 35514.11 35699.68 14718.47 35520.74 34964.59 33698.48 18210.95 35417.09 35356.66 34211.01 34855.94 346
abl_697.67 8397.34 8398.66 9599.68 8296.11 14499.68 14798.14 17293.80 12799.27 6599.70 8488.65 17999.98 4297.46 11699.72 8899.89 87
Regformer-398.58 3698.41 3399.10 6999.84 5897.57 8799.66 15098.52 8795.79 5799.01 7799.77 6694.40 7099.75 11698.82 6499.83 7799.98 51
Regformer-498.56 3798.39 3799.08 7199.84 5897.52 9099.66 15098.52 8795.76 6099.01 7799.77 6694.33 7899.75 11698.80 6799.83 7799.98 51
DeepC-MVS94.51 496.92 10796.40 11298.45 11499.16 10695.90 14899.66 15098.06 17896.37 4794.37 18199.49 10783.29 22299.90 7597.63 11399.61 9799.55 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 1792x268896.81 11096.53 10897.64 14798.91 12393.07 21099.65 15399.80 395.64 6595.39 16998.86 16084.35 21599.90 7596.98 12899.16 11499.95 75
Test_1112_low_res95.72 14494.83 15598.42 11797.79 17796.41 12899.65 15396.65 30192.70 16092.86 20096.13 24492.15 13299.30 14791.88 21093.64 20599.55 136
1112_ss96.01 13995.20 14898.42 11797.80 17696.41 12899.65 15396.66 30092.71 15992.88 19999.40 11492.16 13199.30 14791.92 20993.66 20499.55 136
OMC-MVS97.28 9497.23 8697.41 15599.76 7093.36 20899.65 15397.95 18796.03 5597.41 12999.70 8489.61 16599.51 13896.73 13498.25 13499.38 158
test_yl97.83 7597.37 8199.21 5199.18 10497.98 7499.64 15799.27 2591.43 20497.88 12098.99 14395.84 3599.84 10398.82 6495.32 19099.79 97
DCV-MVSNet97.83 7597.37 8199.21 5199.18 10497.98 7499.64 15799.27 2591.43 20497.88 12098.99 14395.84 3599.84 10398.82 6495.32 19099.79 97
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 15799.44 1897.33 1799.00 7999.72 8094.03 8999.98 4298.73 70100.00 1100.00 1
v114491.09 24089.83 24794.87 21993.25 29293.69 20099.62 16096.98 27786.83 27989.64 23494.99 28880.94 23897.05 26285.08 28481.16 28893.87 283
cl-mvsnet293.77 18893.25 19195.33 20699.49 9594.43 18699.61 16198.09 17590.38 22389.16 24795.61 25690.56 15697.34 24191.93 20884.45 26694.21 250
WR-MVS92.31 21891.25 22595.48 20494.45 27295.29 16699.60 16298.68 5590.10 22888.07 26596.89 22180.68 24296.80 27893.14 19779.67 30294.36 236
Effi-MVS+-dtu94.53 17495.30 14592.22 28697.77 17882.54 32199.59 16397.06 26894.92 8095.29 17195.37 27285.81 20197.89 22494.80 15797.07 15896.23 218
cl-mvsnet192.32 21791.60 21794.47 23797.31 20392.74 21799.58 16496.75 29786.99 27687.64 26995.54 26089.55 16696.50 28888.58 25082.44 27894.17 252
FIs94.10 18193.43 18396.11 19094.70 26996.82 11799.58 16498.93 3992.54 17289.34 24097.31 20687.62 18597.10 25994.22 17586.58 25094.40 234
cl-mvsnet_92.31 21891.58 21894.52 23397.33 20292.77 21599.57 16696.78 29686.97 27787.56 27195.51 26389.43 16796.62 28488.60 24982.44 27894.16 257
EPNet_dtu95.71 14695.39 14296.66 17698.92 12193.41 20699.57 16698.90 4096.19 5197.52 12698.56 17792.65 12297.36 23977.89 31698.33 13099.20 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v14419290.79 24789.52 25494.59 22993.11 29692.77 21599.56 16896.99 27586.38 28389.82 22994.95 29080.50 24697.10 25983.98 29080.41 29693.90 280
OpenMVScopyleft90.15 1594.77 16493.59 17998.33 12196.07 23697.48 9599.56 16898.57 7490.46 22286.51 28598.95 15178.57 26099.94 6893.86 17899.74 8697.57 210
MVSFormer96.94 10596.60 10597.95 13597.28 20597.70 8499.55 17097.27 25291.17 20899.43 5299.54 10490.92 15296.89 27294.67 16499.62 9499.25 171
test_djsdf92.83 20692.29 20694.47 23791.90 31292.46 22699.55 17097.27 25291.17 20889.96 22296.07 24681.10 23696.89 27294.67 16488.91 22494.05 267
PS-MVSNAJ98.44 4798.20 4999.16 5998.80 12998.92 2399.54 17298.17 16697.34 1699.85 699.85 3391.20 14499.89 7999.41 3999.67 9198.69 196
CDS-MVSNet96.34 12996.07 11797.13 16397.37 19894.96 17599.53 17397.91 19291.55 19995.37 17098.32 18695.05 5297.13 25693.80 18395.75 18399.30 167
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base98.23 6197.97 6199.02 7798.69 13398.66 4699.52 17498.08 17797.05 2699.86 499.86 2990.65 15499.71 12499.39 4098.63 12498.69 196
PatchMatch-RL96.04 13895.40 14197.95 13599.59 8695.22 17199.52 17499.07 3193.96 11996.49 14998.35 18582.28 22699.82 10590.15 23899.22 11398.81 193
baseline96.43 12695.98 12297.76 14397.34 20095.17 17299.51 17697.17 25993.92 12296.90 13999.28 12085.37 20798.64 17597.50 11596.86 16499.46 149
miper_ehance_all_eth93.16 19992.60 19994.82 22297.57 19193.56 20299.50 17797.07 26788.75 25088.85 25195.52 26290.97 15196.74 27990.77 22884.45 26694.17 252
v119290.62 25289.25 25994.72 22593.13 29393.07 21099.50 17797.02 27186.33 28489.56 23695.01 28579.22 25497.09 26182.34 30081.16 28894.01 270
v192192090.46 25489.12 26194.50 23592.96 30092.46 22699.49 17996.98 27786.10 28689.61 23595.30 27578.55 26197.03 26682.17 30180.89 29494.01 270
无先验99.49 17998.71 5293.46 137100.00 194.36 16999.99 20
pmmvs492.10 22291.07 22895.18 21092.82 30294.96 17599.48 18196.83 29187.45 26888.66 25596.56 23483.78 21896.83 27689.29 24484.77 26493.75 290
Vis-MVSNet (Re-imp)96.32 13095.98 12297.35 16097.93 16794.82 17999.47 18298.15 17191.83 19195.09 17399.11 13391.37 14297.47 23693.47 19197.43 14899.74 104
API-MVS97.86 7297.66 7198.47 11299.52 9295.41 16399.47 18298.87 4391.68 19598.84 8399.85 3392.34 12899.99 3698.44 8399.96 47100.00 1
旧先验299.46 18494.21 10799.85 699.95 6096.96 129
IterMVS-LS92.69 21092.11 20894.43 24196.80 22392.74 21799.45 18596.89 28788.98 24389.65 23395.38 27188.77 17696.34 29490.98 22382.04 28194.22 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator91.47 1296.28 13495.34 14499.08 7196.82 22297.47 9699.45 18598.81 4795.52 6889.39 23899.00 14281.97 22799.95 6097.27 12099.83 7799.84 92
FC-MVSNet-test93.81 18693.15 19295.80 19994.30 27596.20 13899.42 18798.89 4192.33 17889.03 24997.27 20887.39 18896.83 27693.20 19486.48 25194.36 236
cl_fuxian92.53 21391.87 21494.52 23397.40 19792.99 21399.40 18896.93 28487.86 26388.69 25495.44 26689.95 16296.44 29090.45 23280.69 29594.14 261
EI-MVSNet-Vis-set98.27 5798.11 5498.75 9199.83 6196.59 12499.40 18898.51 9395.29 7398.51 9899.76 7093.60 10199.71 12498.53 8199.52 10299.95 75
新几何299.40 188
QAPM95.40 15294.17 16699.10 6996.92 21697.71 8299.40 18898.68 5589.31 23788.94 25098.89 15482.48 22599.96 5393.12 19999.83 7799.62 122
MTAPA98.29 5697.96 6499.30 4799.85 5397.93 7799.39 19298.28 15195.76 6097.18 13399.88 2292.74 120100.00 198.67 7399.88 7299.99 20
miper_lstm_enhance91.81 22691.39 22493.06 27897.34 20089.18 28499.38 19396.79 29586.70 28087.47 27395.22 28090.00 16195.86 31188.26 25481.37 28694.15 258
v124090.20 26288.79 26894.44 23993.05 29892.27 23099.38 19396.92 28585.89 28889.36 23994.87 29277.89 26497.03 26680.66 30881.08 29094.01 270
EPP-MVSNet96.69 11896.60 10596.96 16697.74 18193.05 21299.37 19598.56 7688.75 25095.83 16399.01 14096.01 2898.56 17896.92 13197.20 15699.25 171
MSDG94.37 17793.36 18897.40 15698.88 12693.95 19599.37 19597.38 24485.75 29290.80 21499.17 13184.11 21799.88 8586.35 27598.43 12898.36 198
EI-MVSNet-UG-set98.14 6397.99 6098.60 10099.80 6796.27 13199.36 19798.50 9795.21 7698.30 10899.75 7593.29 10899.73 12398.37 8599.30 11199.81 95
test22299.55 9097.41 10099.34 19898.55 8091.86 19099.27 6599.83 4993.84 9599.95 5099.99 20
our_test_390.39 25589.48 25793.12 27592.40 30689.57 28099.33 19996.35 30787.84 26485.30 29794.99 28884.14 21696.09 30480.38 30984.56 26593.71 295
ppachtmachnet_test89.58 27288.35 27493.25 27392.40 30690.44 26899.33 19996.73 29885.49 29685.90 29595.77 25081.09 23796.00 30976.00 32482.49 27793.30 303
mvs_anonymous95.65 14895.03 15297.53 15098.19 15495.74 15499.33 19997.49 23290.87 21690.47 21797.10 21288.23 18197.16 25395.92 14297.66 14599.68 112
xiu_mvs_v1_base_debu97.43 8797.06 9098.55 10497.74 18198.14 6699.31 20297.86 19796.43 4199.62 3799.69 8785.56 20499.68 12899.05 4898.31 13197.83 205
xiu_mvs_v1_base97.43 8797.06 9098.55 10497.74 18198.14 6699.31 20297.86 19796.43 4199.62 3799.69 8785.56 20499.68 12899.05 4898.31 13197.83 205
xiu_mvs_v1_base_debi97.43 8797.06 9098.55 10497.74 18198.14 6699.31 20297.86 19796.43 4199.62 3799.69 8785.56 20499.68 12899.05 4898.31 13197.83 205
MVS_Test96.46 12595.74 13598.61 9998.18 15597.23 10399.31 20297.15 26291.07 21298.84 8397.05 21688.17 18298.97 15694.39 16897.50 14799.61 124
testdata199.28 20696.35 48
Vis-MVSNetpermissive95.72 14495.15 15097.45 15397.62 18994.28 18999.28 20698.24 15694.27 10696.84 14098.94 15279.39 25398.76 16793.25 19398.49 12699.30 167
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet392.69 21091.58 21895.99 19298.29 14697.42 9999.26 20897.62 21289.80 23489.68 23095.32 27481.62 23296.27 29787.01 27185.65 25594.29 243
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4198.85 2999.24 20998.47 9998.14 499.08 7399.91 1393.09 113100.00 199.04 5299.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
YYNet185.50 29483.33 29792.00 28990.89 32288.38 29599.22 21096.55 30379.60 32257.26 34192.72 31779.09 25793.78 33077.25 31977.37 31793.84 285
v890.54 25389.17 26094.66 22693.43 28993.40 20799.20 21196.94 28385.76 29087.56 27194.51 30081.96 22897.19 25184.94 28578.25 30893.38 302
MDA-MVSNet_test_wron85.51 29383.32 29892.10 28890.96 32188.58 29199.20 21196.52 30479.70 32157.12 34292.69 31979.11 25693.86 32977.10 32077.46 31693.86 284
ACMMPcopyleft97.74 8197.44 7998.66 9599.92 3596.13 14199.18 21399.45 1794.84 8496.41 15399.71 8291.40 14199.99 3697.99 10198.03 14099.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WR-MVS_H91.30 23590.35 23794.15 24794.17 27792.62 22499.17 21498.94 3688.87 24886.48 28794.46 30484.36 21496.61 28588.19 25578.51 30793.21 306
TAMVS95.85 14195.58 13896.65 17797.07 20993.50 20399.17 21497.82 20191.39 20795.02 17498.01 19292.20 13097.30 24493.75 18695.83 18099.14 179
PS-MVSNAJss93.64 19393.31 18994.61 22892.11 30992.19 23199.12 21697.38 24492.51 17488.45 25696.99 21991.20 14497.29 24794.36 16987.71 24294.36 236
DTE-MVSNet89.40 27388.24 27792.88 28092.66 30489.95 27599.10 21798.22 15987.29 27085.12 29996.22 24176.27 27595.30 31883.56 29475.74 32493.41 299
CP-MVSNet91.23 23890.22 24194.26 24493.96 28092.39 22899.09 21898.57 7488.95 24686.42 28896.57 23379.19 25596.37 29290.29 23678.95 30494.02 268
AdaColmapbinary97.23 9796.80 10098.51 11099.99 195.60 15999.09 21898.84 4693.32 14096.74 14399.72 8086.04 200100.00 198.01 9999.43 10899.94 77
v1090.25 26188.82 26794.57 23193.53 28793.43 20599.08 22096.87 28985.00 29987.34 27794.51 30080.93 23997.02 26882.85 29779.23 30393.26 304
XVG-OURS-SEG-HR94.79 16294.70 15995.08 21298.05 16189.19 28299.08 22097.54 22393.66 13294.87 17599.58 10078.78 25899.79 10897.31 11993.40 20796.25 216
XVG-OURS94.82 16194.74 15895.06 21398.00 16389.19 28299.08 22097.55 22194.10 11094.71 17699.62 9780.51 24599.74 12096.04 14093.06 21196.25 216
IS-MVSNet96.29 13395.90 13197.45 15398.13 15994.80 18099.08 22097.61 21592.02 18795.54 16898.96 14990.64 15598.08 21393.73 18797.41 15199.47 148
v7n89.65 27188.29 27693.72 26392.22 30890.56 26599.07 22497.10 26485.42 29886.73 28194.72 29380.06 24997.13 25681.14 30678.12 31093.49 298
EI-MVSNet93.73 19093.40 18794.74 22396.80 22392.69 22099.06 22597.67 20788.96 24591.39 20899.02 13888.75 17797.30 24491.07 21987.85 24094.22 248
CVMVSNet94.68 16894.94 15393.89 26096.80 22386.92 30399.06 22598.98 3494.45 9594.23 18499.02 13885.60 20395.31 31790.91 22595.39 18999.43 154
baseline195.78 14394.86 15498.54 10798.47 14198.07 6999.06 22597.99 18292.68 16294.13 18598.62 17293.28 10998.69 17393.79 18485.76 25498.84 191
PEN-MVS90.19 26389.06 26393.57 26793.06 29790.90 25899.06 22598.47 9988.11 26085.91 29496.30 23976.67 27095.94 31087.07 26876.91 32093.89 281
Anonymous2023120686.32 28885.42 28989.02 31189.11 33180.53 33399.05 22995.28 32585.43 29782.82 30793.92 30874.40 28893.44 33366.99 33481.83 28393.08 308
MAR-MVS97.43 8797.19 8798.15 13099.47 9694.79 18199.05 22998.76 5092.65 16498.66 9299.82 5288.52 18099.98 4298.12 9399.63 9399.67 114
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet97.21 9896.57 10799.13 6898.97 11597.82 8099.03 23199.21 2794.31 10399.18 7198.88 15686.26 19999.89 7998.93 5894.32 19899.69 111
LCM-MVSNet-Re92.31 21892.60 19991.43 29497.53 19279.27 33599.02 23291.83 34292.07 18480.31 31494.38 30583.50 22095.48 31397.22 12297.58 14699.54 140
jajsoiax91.92 22491.18 22694.15 24791.35 31890.95 25799.00 23397.42 23992.61 16687.38 27597.08 21372.46 29597.36 23994.53 16788.77 22894.13 262
VPNet91.81 22690.46 23495.85 19894.74 26895.54 16098.98 23498.59 7192.14 18290.77 21597.44 20268.73 30997.54 23494.89 15577.89 31194.46 227
PS-CasMVS90.63 25189.51 25593.99 25693.83 28291.70 24798.98 23498.52 8788.48 25686.15 29296.53 23575.46 28096.31 29588.83 24878.86 30693.95 276
FMVSNet291.02 24189.56 25295.41 20597.53 19295.74 15498.98 23497.41 24187.05 27388.43 25995.00 28771.34 29996.24 29985.12 28385.21 26094.25 247
K. test v388.05 28487.24 28490.47 30291.82 31482.23 32498.96 23797.42 23989.05 24076.93 32495.60 25768.49 31095.42 31485.87 28081.01 29293.75 290
tfpnnormal89.29 27687.61 28294.34 24394.35 27494.13 19298.95 23898.94 3683.94 30484.47 30195.51 26374.84 28597.39 23877.05 32180.41 29691.48 322
AllTest92.48 21491.64 21695.00 21599.01 11188.43 29298.94 23996.82 29386.50 28188.71 25298.47 18374.73 28699.88 8585.39 28196.18 17196.71 214
anonymousdsp91.79 23190.92 22994.41 24290.76 32392.93 21498.93 24097.17 25989.08 23987.46 27495.30 27578.43 26396.92 27192.38 20388.73 22993.39 301
DP-MVS94.54 17293.42 18497.91 13899.46 9894.04 19398.93 24097.48 23381.15 31790.04 22199.55 10287.02 19299.95 6088.97 24798.11 13599.73 105
IterMVS-SCA-FT90.85 24690.16 24492.93 27996.72 22889.96 27498.89 24296.99 27588.95 24686.63 28395.67 25476.48 27295.00 32087.04 26984.04 27293.84 285
IterMVS90.91 24390.17 24393.12 27596.78 22690.42 26998.89 24297.05 27089.03 24186.49 28695.42 26776.59 27195.02 31987.22 26784.09 26993.93 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous20240521193.10 20191.99 21196.40 18399.10 10889.65 27998.88 24497.93 18983.71 30794.00 18698.75 16568.79 30799.88 8595.08 15091.71 21399.68 112
VPA-MVSNet92.70 20991.55 22096.16 18995.09 26296.20 13898.88 24499.00 3391.02 21491.82 20595.29 27876.05 27897.96 22095.62 14681.19 28794.30 242
test20.0384.72 29983.99 29286.91 31788.19 33380.62 33298.88 24495.94 31488.36 25878.87 31894.62 29868.75 30889.11 34066.52 33575.82 32391.00 324
XXY-MVS91.82 22590.46 23495.88 19693.91 28195.40 16498.87 24797.69 20688.63 25487.87 26797.08 21374.38 28997.89 22491.66 21284.07 27094.35 239
SCA94.69 16693.81 17597.33 16197.10 20894.44 18598.86 24898.32 14793.30 14196.17 15795.59 25876.48 27297.95 22191.06 22097.43 14899.59 127
DWT-MVSNet_test97.31 9397.19 8797.66 14698.24 15194.67 18398.86 24898.20 16493.60 13498.09 11498.89 15497.51 798.78 16494.04 17697.28 15399.55 136
eth_miper_zixun_eth92.41 21691.93 21293.84 26197.28 20590.68 26198.83 25096.97 27988.57 25589.19 24695.73 25389.24 17296.69 28289.97 24081.55 28494.15 258
ACMH+89.98 1690.35 25789.54 25392.78 28295.99 23986.12 30698.81 25197.18 25889.38 23683.14 30697.76 19768.42 31198.43 18789.11 24686.05 25393.78 289
N_pmnet80.06 30880.78 30677.89 32391.94 31145.28 35098.80 25256.82 35478.10 32580.08 31693.33 31277.03 26695.76 31268.14 33382.81 27692.64 312
VDD-MVS93.77 18892.94 19396.27 18798.55 13690.22 27198.77 25397.79 20290.85 21796.82 14199.42 11261.18 33199.77 11198.95 5694.13 20098.82 192
LFMVS94.75 16593.56 18198.30 12399.03 11095.70 15798.74 25497.98 18487.81 26598.47 10099.39 11667.43 31499.53 13698.01 9995.20 19299.67 114
LS3D95.84 14295.11 15198.02 13499.85 5395.10 17398.74 25498.50 9787.22 27293.66 19099.86 2987.45 18799.95 6090.94 22499.81 8399.02 184
Anonymous2024052992.10 22290.65 23296.47 17998.82 12790.61 26398.72 25698.67 5875.54 33193.90 18898.58 17566.23 31799.90 7594.70 16390.67 21498.90 189
TR-MVS94.54 17293.56 18197.49 15297.96 16594.34 18898.71 25797.51 23090.30 22794.51 17998.69 16775.56 27998.77 16692.82 20195.99 17599.35 162
USDC90.00 26788.96 26593.10 27794.81 26788.16 29698.71 25795.54 32293.66 13283.75 30597.20 20965.58 31998.31 20283.96 29187.49 24692.85 311
VDDNet93.12 20091.91 21396.76 17296.67 23092.65 22398.69 25998.21 16082.81 31197.75 12399.28 12061.57 32999.48 14498.09 9694.09 20198.15 201
EU-MVSNet90.14 26590.34 23889.54 30992.55 30581.06 33098.69 25998.04 18091.41 20686.59 28496.84 22680.83 24093.31 33486.20 27681.91 28294.26 245
mvs_tets91.81 22691.08 22794.00 25591.63 31690.58 26498.67 26197.43 23792.43 17687.37 27697.05 21671.76 29797.32 24394.75 16088.68 23094.11 263
MDA-MVSNet-bldmvs84.09 30181.52 30591.81 29291.32 31988.00 29998.67 26195.92 31580.22 32055.60 34393.32 31368.29 31293.60 33273.76 32676.61 32293.82 287
UGNet95.33 15394.57 16097.62 14998.55 13694.85 17798.67 26199.32 2495.75 6396.80 14296.27 24072.18 29699.96 5394.58 16699.05 11698.04 203
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pm-mvs189.36 27587.81 28194.01 25493.40 29191.93 23798.62 26496.48 30686.25 28583.86 30496.14 24373.68 29297.04 26486.16 27775.73 32593.04 309
test_040285.58 29183.94 29490.50 30193.81 28385.04 31398.55 26595.20 32876.01 32879.72 31795.13 28164.15 32496.26 29866.04 33786.88 24990.21 330
ACMH89.72 1790.64 25089.63 25093.66 26695.64 25588.64 29098.55 26597.45 23489.03 24181.62 31097.61 19969.75 30598.41 18989.37 24387.62 24493.92 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121189.86 26888.44 27394.13 24998.93 11990.68 26198.54 26798.26 15576.28 32786.73 28195.54 26070.60 30397.56 23390.82 22780.27 29994.15 258
TransMVSNet (Re)87.25 28685.28 29093.16 27493.56 28691.03 25598.54 26794.05 33783.69 30881.09 31296.16 24275.32 28196.40 29176.69 32268.41 33392.06 317
XVG-ACMP-BASELINE91.22 23990.75 23092.63 28393.73 28485.61 30898.52 26997.44 23692.77 15789.90 22596.85 22466.64 31698.39 19392.29 20488.61 23193.89 281
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10098.87 2798.46 27099.42 2097.03 2799.02 7699.09 13499.35 198.21 20999.73 2799.78 8499.77 101
OpenMVS_ROBcopyleft79.82 2083.77 30381.68 30490.03 30688.30 33282.82 31998.46 27095.22 32773.92 33576.00 32791.29 32455.00 33796.94 27068.40 33288.51 23590.34 328
GBi-Net90.88 24489.82 24894.08 25097.53 19291.97 23498.43 27296.95 28087.05 27389.68 23094.72 29371.34 29996.11 30187.01 27185.65 25594.17 252
test190.88 24489.82 24894.08 25097.53 19291.97 23498.43 27296.95 28087.05 27389.68 23094.72 29371.34 29996.11 30187.01 27185.65 25594.17 252
FMVSNet188.50 28186.64 28694.08 25095.62 25791.97 23498.43 27296.95 28083.00 31086.08 29394.72 29359.09 33396.11 30181.82 30484.07 27094.17 252
COLMAP_ROBcopyleft90.47 1492.18 22191.49 22294.25 24599.00 11388.04 29898.42 27596.70 29982.30 31488.43 25999.01 14076.97 26799.85 9486.11 27896.50 16894.86 221
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test12337.68 32139.14 32333.31 33419.94 35424.83 35598.36 2769.75 35615.53 35051.31 34587.14 33119.62 35217.74 35247.10 3443.47 35057.36 345
131496.84 10995.96 12799.48 3396.74 22798.52 5498.31 27798.86 4495.82 5689.91 22498.98 14587.49 18699.96 5397.80 10799.73 8799.96 67
112198.03 6797.57 7699.40 4199.74 7398.21 6598.31 27798.62 6692.78 15699.53 4499.83 4995.08 50100.00 194.36 16999.92 6699.99 20
MVS96.60 12195.56 13999.72 996.85 22099.22 1598.31 27798.94 3691.57 19890.90 21399.61 9886.66 19599.96 5397.36 11899.88 7299.99 20
NR-MVSNet91.56 23490.22 24195.60 20094.05 27895.76 15398.25 28098.70 5391.16 21080.78 31396.64 23183.23 22396.57 28691.41 21477.73 31394.46 227
MS-PatchMatch90.65 24990.30 23991.71 29394.22 27685.50 31098.24 28197.70 20588.67 25286.42 28896.37 23867.82 31398.03 21683.62 29399.62 9491.60 321
pmmvs380.27 30777.77 31087.76 31680.32 34182.43 32298.23 28291.97 34172.74 33678.75 31987.97 32957.30 33690.99 33770.31 32962.37 33989.87 331
SixPastTwentyTwo88.73 28088.01 28090.88 29791.85 31382.24 32398.22 28395.18 32988.97 24482.26 30896.89 22171.75 29896.67 28384.00 28982.98 27593.72 294
EG-PatchMatch MVS85.35 29583.81 29689.99 30790.39 32581.89 32698.21 28496.09 31281.78 31674.73 33093.72 31151.56 34097.12 25879.16 31388.61 23190.96 325
OurMVSNet-221017-089.81 26989.48 25790.83 29991.64 31581.21 32898.17 28595.38 32491.48 20185.65 29697.31 20672.66 29497.29 24788.15 25684.83 26393.97 275
LF4IMVS89.25 27888.85 26690.45 30392.81 30381.19 32998.12 28694.79 33191.44 20386.29 29097.11 21165.30 32198.11 21288.53 25285.25 25992.07 316
RPSCF91.80 22992.79 19688.83 31298.15 15769.87 33998.11 28796.60 30283.93 30594.33 18299.27 12379.60 25299.46 14591.99 20793.16 21097.18 212
pmmvs-eth3d84.03 30281.97 30290.20 30484.15 33787.09 30298.10 28894.73 33383.05 30974.10 33187.77 33065.56 32094.01 32681.08 30769.24 33289.49 334
DSMNet-mixed88.28 28388.24 27788.42 31589.64 32975.38 33798.06 28989.86 34585.59 29488.20 26492.14 32276.15 27791.95 33578.46 31496.05 17497.92 204
MVP-Stereo90.93 24290.45 23692.37 28591.25 32088.76 28698.05 29096.17 31087.27 27184.04 30295.30 27578.46 26297.27 24983.78 29299.70 9091.09 323
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UA-Net96.54 12295.96 12798.27 12498.23 15295.71 15698.00 29198.45 10393.72 13198.41 10299.27 12388.71 17899.66 13291.19 21797.69 14399.44 153
new-patchmatchnet81.19 30579.34 30886.76 31882.86 33980.36 33497.92 29295.27 32682.09 31572.02 33286.87 33262.81 32790.74 33871.10 32863.08 33889.19 336
PCF-MVS94.20 595.18 15594.10 16898.43 11698.55 13695.99 14697.91 29397.31 25090.35 22589.48 23799.22 12985.19 20899.89 7990.40 23598.47 12799.41 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
pmmvs685.69 29083.84 29591.26 29690.00 32884.41 31697.82 29496.15 31175.86 32981.29 31195.39 27061.21 33096.87 27483.52 29573.29 32892.50 313
UniMVSNet_ETH3D90.06 26688.58 27194.49 23694.67 27088.09 29797.81 29597.57 22083.91 30688.44 25797.41 20357.44 33597.62 23291.41 21488.59 23397.77 208
MVS_030489.28 27788.31 27592.21 28797.05 21186.53 30497.76 29699.57 1285.58 29593.86 18992.71 31851.04 34196.30 29684.49 28792.72 21293.79 288
TinyColmap87.87 28586.51 28791.94 29095.05 26485.57 30997.65 29794.08 33684.40 30381.82 30996.85 22462.14 32898.33 20080.25 31086.37 25291.91 320
testing_285.10 29681.72 30395.22 20982.25 34094.16 19097.54 29897.01 27488.15 25962.23 33786.43 33444.43 34397.18 25292.28 20585.20 26194.31 241
HY-MVS92.50 797.79 7997.17 8999.63 1298.98 11499.32 697.49 29999.52 1395.69 6498.32 10797.41 20393.32 10699.77 11198.08 9795.75 18399.81 95
Effi-MVS+96.30 13295.69 13698.16 12797.85 17396.26 13397.41 30097.21 25590.37 22498.65 9398.58 17586.61 19698.70 17297.11 12497.37 15299.52 143
TDRefinement84.76 29782.56 30191.38 29574.58 34384.80 31597.36 30194.56 33484.73 30180.21 31596.12 24563.56 32598.39 19387.92 25863.97 33790.95 326
FMVSNet588.32 28287.47 28390.88 29796.90 21888.39 29497.28 30295.68 31882.60 31384.67 30092.40 32179.83 25191.16 33676.39 32381.51 28593.09 307
LTVRE_ROB88.28 1890.29 26089.05 26494.02 25395.08 26390.15 27397.19 30397.43 23784.91 30083.99 30397.06 21574.00 29198.28 20584.08 28887.71 24293.62 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CostFormer96.10 13695.88 13296.78 17197.03 21292.55 22597.08 30497.83 20090.04 23198.72 8994.89 29195.01 5598.29 20396.54 13595.77 18199.50 146
tpm93.70 19293.41 18694.58 23095.36 26087.41 30197.01 30596.90 28690.85 21796.72 14494.14 30790.40 15796.84 27590.75 22988.54 23499.51 144
CMPMVSbinary61.59 2184.75 29885.14 29183.57 32090.32 32662.54 34296.98 30697.59 21974.33 33469.95 33596.66 22964.17 32398.32 20187.88 25988.41 23689.84 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpm295.47 15195.18 14996.35 18696.91 21791.70 24796.96 30797.93 18988.04 26298.44 10195.40 26893.32 10697.97 21894.00 17795.61 18599.38 158
new_pmnet84.49 30082.92 30089.21 31090.03 32782.60 32096.89 30895.62 32080.59 31975.77 32989.17 32765.04 32294.79 32472.12 32781.02 29190.23 329
UnsupCasMVSNet_eth85.52 29283.99 29290.10 30589.36 33083.51 31896.65 30997.99 18289.14 23875.89 32893.83 30963.25 32693.92 32781.92 30367.90 33592.88 310
MIMVSNet182.58 30480.51 30788.78 31386.68 33484.20 31796.65 30995.41 32378.75 32378.59 32092.44 32051.88 33989.76 33965.26 33878.95 30492.38 315
ab-mvs94.69 16693.42 18498.51 11098.07 16096.26 13396.49 31198.68 5590.31 22694.54 17797.00 21876.30 27499.71 12495.98 14193.38 20899.56 135
EPMVS96.53 12396.01 11998.09 13198.43 14296.12 14396.36 31299.43 1993.53 13597.64 12495.04 28494.41 6998.38 19791.13 21898.11 13599.75 103
tpmrst96.27 13595.98 12297.13 16397.96 16593.15 20996.34 31398.17 16692.07 18498.71 9095.12 28293.91 9298.73 16994.91 15496.62 16599.50 146
dp95.05 15894.43 16296.91 16797.99 16492.73 21996.29 31497.98 18489.70 23595.93 16094.67 29793.83 9698.45 18686.91 27496.53 16799.54 140
tpm cat193.51 19492.52 20396.47 17997.77 17891.47 25396.13 31598.06 17880.98 31892.91 19893.78 31089.66 16498.87 15987.03 27096.39 16999.09 182
MDTV_nov1_ep13_2view96.26 13396.11 31691.89 18998.06 11594.40 7094.30 17299.67 114
PatchmatchNetpermissive95.94 14095.45 14097.39 15797.83 17494.41 18796.05 31798.40 12992.86 15097.09 13595.28 27994.21 8598.07 21589.26 24598.11 13599.70 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1395.69 13697.90 16894.15 19195.98 31898.44 10493.12 14697.98 11795.74 25195.10 4998.58 17790.02 23996.92 162
FPMVS68.72 31068.72 31268.71 32865.95 34744.27 35295.97 31994.74 33251.13 34153.26 34490.50 32625.11 34983.00 34460.80 34080.97 29378.87 340
PM-MVS80.47 30678.88 30985.26 31983.79 33872.22 33895.89 32091.08 34385.71 29376.56 32688.30 32836.64 34493.90 32882.39 29969.57 33189.66 333
test_post195.78 32159.23 35093.20 11197.74 22891.06 220
tpmvs94.28 18093.57 18096.40 18398.55 13691.50 25295.70 32298.55 8087.47 26792.15 20394.26 30691.42 14098.95 15788.15 25695.85 17998.76 195
ADS-MVSNet293.80 18793.88 17393.55 26897.87 17185.94 30794.24 32396.84 29090.07 22996.43 15194.48 30290.29 15995.37 31587.44 26297.23 15499.36 160
ADS-MVSNet94.79 16294.02 16997.11 16597.87 17193.79 19794.24 32398.16 16990.07 22996.43 15194.48 30290.29 15998.19 21087.44 26297.23 15499.36 160
EMVS51.44 31951.22 32052.11 33370.71 34544.97 35194.04 32575.66 35335.34 34842.40 34861.56 34928.93 34765.87 35027.64 34924.73 34545.49 347
PMMVS267.15 31264.15 31576.14 32570.56 34662.07 34393.89 32687.52 34958.09 34060.02 33978.32 33922.38 35084.54 34359.56 34147.03 34281.80 339
GG-mvs-BLEND98.54 10798.21 15398.01 7293.87 32798.52 8797.92 11897.92 19599.02 297.94 22398.17 9099.58 9999.67 114
UnsupCasMVSNet_bld79.97 30977.03 31188.78 31385.62 33581.98 32593.66 32897.35 24675.51 33270.79 33483.05 33748.70 34294.91 32278.31 31560.29 34089.46 335
E-PMN52.30 31752.18 31852.67 33271.51 34445.40 34993.62 32976.60 35236.01 34643.50 34764.13 34627.11 34867.31 34931.06 34826.06 34445.30 348
JIA-IIPM91.76 23290.70 23194.94 21796.11 23587.51 30093.16 33098.13 17475.79 33097.58 12577.68 34092.84 11797.97 21888.47 25396.54 16699.33 164
gg-mvs-nofinetune93.51 19491.86 21598.47 11297.72 18597.96 7692.62 33198.51 9374.70 33397.33 13069.59 34398.91 397.79 22697.77 11099.56 10099.67 114
MIMVSNet90.30 25988.67 27095.17 21196.45 23191.64 24992.39 33297.15 26285.99 28790.50 21693.19 31666.95 31594.86 32382.01 30293.43 20699.01 185
MVS-HIRNet86.22 28983.19 29995.31 20796.71 22990.29 27092.12 33397.33 24862.85 33986.82 28070.37 34269.37 30697.49 23575.12 32597.99 14198.15 201
CR-MVSNet93.45 19792.62 19895.94 19496.29 23292.66 22192.01 33496.23 30892.62 16596.94 13793.31 31491.04 14996.03 30679.23 31295.96 17699.13 180
RPMNet89.39 27487.20 28595.94 19496.29 23292.66 22192.01 33497.63 20970.19 33896.94 13785.87 33687.25 18996.03 30662.69 33995.96 17699.13 180
Patchmatch-test92.65 21291.50 22196.10 19196.85 22090.49 26691.50 33697.19 25682.76 31290.23 21895.59 25895.02 5398.00 21777.41 31896.98 16199.82 94
Patchmtry89.70 27088.49 27293.33 27096.24 23489.94 27791.37 33796.23 30878.22 32487.69 26893.31 31491.04 14996.03 30680.18 31182.10 28094.02 268
PatchT90.38 25688.75 26995.25 20895.99 23990.16 27291.22 33897.54 22376.80 32697.26 13186.01 33591.88 13696.07 30566.16 33695.91 17899.51 144
Patchmatch-RL test86.90 28785.98 28889.67 30884.45 33675.59 33689.71 33992.43 34086.89 27877.83 32290.94 32594.22 8293.63 33187.75 26069.61 33099.79 97
LCM-MVSNet67.77 31164.73 31476.87 32462.95 34956.25 34689.37 34093.74 33944.53 34361.99 33880.74 33820.42 35186.53 34269.37 33159.50 34187.84 337
ambc83.23 32177.17 34262.61 34187.38 34194.55 33576.72 32586.65 33330.16 34596.36 29384.85 28669.86 32990.73 327
ANet_high56.10 31552.24 31767.66 32949.27 35156.82 34583.94 34282.02 35070.47 33733.28 35064.54 34517.23 35369.16 34845.59 34523.85 34677.02 341
tmp_tt65.23 31462.94 31672.13 32744.90 35250.03 34881.05 34389.42 34838.45 34448.51 34699.90 1754.09 33878.70 34691.84 21118.26 34787.64 338
MVEpermissive53.74 2251.54 31847.86 32162.60 33059.56 35050.93 34779.41 34477.69 35135.69 34736.27 34961.76 3485.79 35769.63 34737.97 34736.61 34367.24 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 31651.34 31960.97 33140.80 35334.68 35374.82 34589.62 34737.55 34528.67 35172.12 3417.09 35581.63 34543.17 34668.21 33466.59 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft66.95 31365.00 31372.79 32691.52 31767.96 34066.16 34695.15 33047.89 34258.54 34067.99 34429.74 34687.54 34150.20 34377.83 31262.87 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d20.37 32320.84 32518.99 33665.34 34827.73 35450.43 3477.67 3579.50 3518.01 3526.34 3526.13 35626.24 35123.40 35010.69 3492.99 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34898.41 1270.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.43 32231.24 3240.00 3370.00 3560.00 3570.00 34898.09 1750.00 3520.00 35399.67 9183.37 2210.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.60 32510.13 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35391.20 1440.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.28 32411.04 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.40 1140.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.93 2699.31 798.41 12797.71 899.84 8100.00 1100.00 1100.00 1
test_241102_TWO98.43 11297.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2699.30 898.43 11297.26 2299.80 1699.88 2296.71 20100.00 1
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
GSMVS99.59 127
test_part299.89 4499.25 1399.49 48
sam_mvs194.72 6399.59 127
sam_mvs94.25 81
MTGPAbinary98.28 151
test_post63.35 34794.43 6898.13 211
patchmatchnet-post91.70 32395.12 4897.95 221
gm-plane-assit96.97 21593.76 19991.47 20298.96 14998.79 16394.92 152
test9_res99.71 2999.99 20100.00 1
agg_prior299.48 35100.00 1100.00 1
agg_prior99.93 2698.77 3698.43 11299.63 3599.85 94
TestCases95.00 21599.01 11188.43 29296.82 29386.50 28188.71 25298.47 18374.73 28699.88 8585.39 28196.18 17196.71 214
test_prior99.43 3599.94 1498.49 5698.65 5999.80 10699.99 20
新几何199.42 3899.75 7298.27 6498.63 6592.69 16199.55 4299.82 5294.40 70100.00 191.21 21699.94 5699.99 20
旧先验199.76 7097.52 9098.64 6299.85 3395.63 3999.94 5699.99 20
原ACMM198.96 8299.73 7796.99 11298.51 9394.06 11499.62 3799.85 3394.97 5899.96 5395.11 14999.95 5099.92 84
testdata299.99 3690.54 231
segment_acmp96.68 22
testdata98.42 11799.47 9695.33 16598.56 7693.78 12899.79 2199.85 3393.64 10099.94 6894.97 15199.94 56100.00 1
test1299.43 3599.74 7398.56 5298.40 12999.65 3394.76 6299.75 11699.98 3399.99 20
plane_prior795.71 25291.59 251
plane_prior695.76 24791.72 24680.47 247
plane_prior597.87 19598.37 19897.79 10889.55 21894.52 224
plane_prior498.59 173
plane_prior391.64 24996.63 3893.01 195
plane_prior195.73 249
n20.00 358
nn0.00 358
door-mid89.69 346
lessismore_v090.53 30090.58 32480.90 33195.80 31677.01 32395.84 24866.15 31896.95 26983.03 29675.05 32693.74 293
LGP-MVS_train93.71 26495.43 25888.67 28897.62 21292.81 15390.05 21998.49 17975.24 28298.40 19195.84 14489.12 22294.07 265
test1198.44 104
door90.31 344
HQP5-MVS91.85 239
BP-MVS97.92 105
HQP4-MVS93.37 19198.39 19394.53 222
HQP3-MVS97.89 19389.60 215
HQP2-MVS80.65 243
NP-MVS95.77 24691.79 24198.65 169
ACMMP++_ref87.04 248
ACMMP++88.23 237
Test By Simon92.82 119
ITE_SJBPF92.38 28495.69 25485.14 31295.71 31792.81 15389.33 24198.11 18970.23 30498.42 18885.91 27988.16 23893.59 297
DeepMVS_CXcopyleft82.92 32295.98 24158.66 34496.01 31392.72 15878.34 32195.51 26358.29 33498.08 21382.57 29885.29 25892.03 318