This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS95.94 297.71 8298.98 1093.92 25899.63 8481.76 32799.96 2398.56 7699.47 199.19 7099.99 194.16 86100.00 199.92 999.93 62100.00 1
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5498.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6698.02 699.90 299.95 397.33 13100.00 199.54 32100.00 1100.00 1
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11297.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 11297.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test072699.93 2699.29 1099.96 2398.42 12397.28 1899.86 499.94 497.22 15
DPM-MVS98.83 2198.46 3099.97 199.33 10299.92 199.96 2398.44 10497.96 799.55 4299.94 497.18 17100.00 193.81 18299.94 5699.98 51
SMA-MVS98.76 2698.48 2999.62 1599.87 5098.87 2799.86 9898.38 13693.19 14499.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
DPE-MVS99.26 699.10 799.74 799.89 4499.24 1499.87 8798.44 10497.48 1599.64 3499.94 496.68 2299.99 3699.99 5100.00 199.99 20
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5899.98 898.86 4497.10 2599.80 1699.94 495.92 33100.00 199.51 33100.00 1100.00 1
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6198.46 10194.56 9299.84 899.92 1194.32 7999.86 9099.96 899.98 33100.00 1
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6298.47 299.13 7299.92 1196.38 26100.00 199.74 24100.00 1100.00 1
MSP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4098.32 14797.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 87
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13297.71 8299.98 898.44 10496.85 2999.80 1699.91 1397.57 699.85 9499.44 3799.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4198.85 2999.24 20998.47 9998.14 499.08 7399.91 1393.09 113100.00 199.04 5299.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6198.57 5199.90 7398.37 13993.81 12699.81 1299.90 1794.34 7599.86 9099.84 1399.98 3399.97 62
tmp_tt65.23 31462.94 31672.13 32744.90 35250.03 34881.05 34389.42 34838.45 34448.51 34699.90 1754.09 33878.70 34691.84 21118.26 34787.64 338
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6398.79 3399.96 2397.52 22797.66 1099.81 1299.89 1994.70 6499.86 9099.84 1399.93 6299.96 67
SF-MVS98.67 3098.40 3599.50 2999.77 6998.67 4499.90 7398.21 16093.53 13599.81 1299.89 1994.70 6499.86 9099.84 1399.93 6299.96 67
9.1498.38 3899.87 5099.91 6998.33 14593.22 14399.78 2299.89 1994.57 6799.85 9499.84 1399.97 44
test_241102_ONE99.93 2699.30 898.43 11297.26 2299.80 1699.88 2296.71 20100.00 1
DVP-MVS99.09 899.12 598.98 8099.93 2697.24 10299.95 4098.42 12397.50 1499.52 4799.88 2297.43 1299.71 12499.50 3499.98 33100.00 1
zzz-MVS98.33 5498.00 5999.30 4799.85 5397.93 7799.80 11998.28 15195.76 6097.18 13399.88 2292.74 120100.00 198.67 7399.88 7299.99 20
MTAPA98.29 5697.96 6499.30 4799.85 5397.93 7799.39 19298.28 15195.76 6097.18 13399.88 2292.74 120100.00 198.67 7399.88 7299.99 20
ETH3D cwj APD-0.1698.40 5198.07 5699.40 4199.59 8698.41 5999.86 9898.24 15692.18 18199.73 2699.87 2693.47 10299.85 9499.74 2499.95 5099.93 78
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8798.33 14593.97 11899.76 2499.87 2694.99 5799.75 11698.55 80100.00 199.98 51
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12299.97 1698.39 13294.43 9798.90 8299.87 2694.30 80100.00 199.04 5299.99 2099.99 20
xiu_mvs_v2_base98.23 6197.97 6199.02 7798.69 13398.66 4699.52 17498.08 17797.05 2699.86 499.86 2990.65 15499.71 12499.39 4098.63 12498.69 196
TEST999.92 3598.92 2399.96 2398.43 11293.90 12399.71 3099.86 2995.88 3499.85 94
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11294.35 10099.71 3099.86 2995.94 3199.85 9499.69 3099.98 3399.99 20
LS3D95.84 14295.11 15198.02 13499.85 5395.10 17398.74 25498.50 9787.22 27293.66 19099.86 2987.45 18799.95 6090.94 22499.81 8399.02 184
MP-MVS-pluss98.07 6697.64 7299.38 4499.74 7398.41 5999.74 13498.18 16593.35 13996.45 15099.85 3392.64 12399.97 5198.91 6199.89 7099.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_899.92 3598.88 2699.96 2398.43 11294.35 10099.69 3299.85 3395.94 3199.85 94
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11294.63 9199.63 3599.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9799.95 4098.61 6894.77 8599.31 6199.85 3394.22 82100.00 198.70 7199.98 3399.98 51
region2R98.54 3998.37 4099.05 7399.96 897.18 10599.96 2398.55 8094.87 8399.45 5099.85 3394.07 88100.00 198.67 73100.00 199.98 51
PS-MVSNAJ98.44 4798.20 4999.16 5998.80 12998.92 2399.54 17298.17 16697.34 1699.85 699.85 3391.20 14499.89 7999.41 3999.67 9198.69 196
#test#98.59 3598.41 3399.14 6399.96 897.43 9799.95 4098.61 6895.00 7999.31 6199.85 3394.22 82100.00 198.78 6899.98 3399.98 51
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4199.02 1999.95 4098.56 7697.56 1399.44 5199.85 3395.38 45100.00 199.31 4199.99 2099.87 90
旧先验199.76 7097.52 9098.64 6299.85 3395.63 3999.94 5699.99 20
原ACMM198.96 8299.73 7796.99 11298.51 9394.06 11499.62 3799.85 3394.97 5899.96 5395.11 14999.95 5099.92 84
testdata98.42 11799.47 9695.33 16598.56 7693.78 12899.79 2199.85 3393.64 10099.94 6894.97 15199.94 56100.00 1
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 6998.39 13297.20 2499.46 4999.85 3395.53 4299.79 10899.86 12100.00 199.99 20
API-MVS97.86 7297.66 7198.47 11299.52 9295.41 16399.47 18298.87 4391.68 19598.84 8399.85 3392.34 12899.99 3698.44 8399.96 47100.00 1
testtj98.89 1898.69 1899.52 2699.94 1498.56 5299.90 7398.55 8095.14 7799.72 2999.84 4695.46 43100.00 199.65 3199.99 2099.99 20
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10599.95 4098.60 7094.77 8599.31 6199.84 4693.73 97100.00 198.70 7199.98 3399.98 51
DP-MVS Recon98.41 4998.02 5899.56 2199.97 398.70 4399.92 6598.44 10492.06 18698.40 10499.84 4695.68 38100.00 198.19 8999.71 8999.97 62
ACMMP_NAP98.49 4398.14 5299.54 2399.66 8398.62 5099.85 10198.37 13994.68 8999.53 4499.83 4992.87 116100.00 198.66 7699.84 7699.99 20
test22299.55 9097.41 10099.34 19898.55 8091.86 19099.27 6599.83 4993.84 9599.95 5099.99 20
112198.03 6797.57 7699.40 4199.74 7398.21 6598.31 27798.62 6692.78 15699.53 4499.83 4995.08 50100.00 194.36 16999.92 6699.99 20
ZNCC-MVS98.31 5598.03 5799.17 5799.88 4897.59 8699.94 5598.44 10494.31 10398.50 9999.82 5293.06 11499.99 3698.30 8899.99 2099.93 78
新几何199.42 3899.75 7298.27 6498.63 6592.69 16199.55 4299.82 5294.40 70100.00 191.21 21699.94 5699.99 20
CSCG97.10 10097.04 9397.27 16299.89 4491.92 23899.90 7399.07 3188.67 25295.26 17299.82 5293.17 11299.98 4298.15 9299.47 10599.90 86
MAR-MVS97.43 8797.19 8798.15 13099.47 9694.79 18199.05 22998.76 5092.65 16498.66 9299.82 5288.52 18099.98 4298.12 9399.63 9399.67 114
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVScopyleft98.23 6197.97 6199.03 7599.94 1497.17 10899.95 4098.39 13294.70 8898.26 11199.81 5691.84 138100.00 198.85 6399.97 4499.93 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
OPU-MVS99.93 299.89 4499.80 299.96 2399.80 5797.44 11100.00 1100.00 199.98 33100.00 1
SR-MVS98.46 4598.30 4698.93 8499.88 4897.04 11099.84 10598.35 14294.92 8099.32 6099.80 5793.35 10499.78 11099.30 4299.95 5099.96 67
mPP-MVS98.39 5298.20 4998.97 8199.97 396.92 11599.95 4098.38 13695.04 7898.61 9599.80 5793.39 103100.00 198.64 77100.00 199.98 51
Regformer-198.79 2498.60 2399.36 4599.85 5398.34 6199.87 8798.52 8796.05 5399.41 5499.79 6094.93 5999.76 11399.07 4799.90 6899.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5398.32 6299.87 8798.52 8796.04 5499.41 5499.79 6094.92 6099.76 11399.05 4899.90 6899.98 51
CPTT-MVS97.64 8497.32 8598.58 10399.97 395.77 15299.96 2398.35 14289.90 23298.36 10599.79 6091.18 14799.99 3698.37 8599.99 2099.99 20
MVS_111021_LR98.42 4898.38 3898.53 10999.39 9995.79 15199.87 8799.86 296.70 3698.78 8699.79 6092.03 13499.90 7599.17 4499.86 7599.88 89
XVS98.70 2898.55 2599.15 6199.94 1497.50 9399.94 5598.42 12396.22 4999.41 5499.78 6494.34 7599.96 5398.92 5999.95 5099.99 20
PHI-MVS98.41 4998.21 4899.03 7599.86 5297.10 10999.98 898.80 4990.78 21999.62 3799.78 6495.30 46100.00 199.80 1899.93 6299.99 20
Regformer-398.58 3698.41 3399.10 6999.84 5897.57 8799.66 15098.52 8795.79 5799.01 7799.77 6694.40 7099.75 11698.82 6499.83 7799.98 51
Regformer-498.56 3798.39 3799.08 7199.84 5897.52 9099.66 15098.52 8795.76 6099.01 7799.77 6694.33 7899.75 11698.80 6799.83 7799.98 51
APD-MVS_3200maxsize98.25 6098.08 5598.78 8999.81 6696.60 12399.82 11298.30 14993.95 12099.37 5899.77 6692.84 11799.76 11398.95 5699.92 6699.97 62
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10197.18 10599.93 6199.90 196.81 3398.67 9199.77 6693.92 9199.89 7999.27 4399.94 5699.96 67
EI-MVSNet-Vis-set98.27 5798.11 5498.75 9199.83 6196.59 12499.40 18898.51 9395.29 7398.51 9899.76 7093.60 10199.71 12498.53 8199.52 10299.95 75
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5699.95 4098.65 5995.78 5899.73 2699.76 7096.00 2999.80 10699.78 20100.00 199.99 20
test_prior299.95 4095.78 5899.73 2699.76 7096.00 2999.78 20100.00 1
SD-MVS98.92 1698.70 1799.56 2199.70 8198.73 4199.94 5598.34 14496.38 4499.81 1299.76 7094.59 6699.98 4299.84 1399.96 4799.97 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS98.34 5398.13 5398.99 7999.92 3597.00 11199.75 13199.50 1693.90 12399.37 5899.76 7093.24 110100.00 197.75 11299.96 4799.98 51
EI-MVSNet-UG-set98.14 6397.99 6098.60 10099.80 6796.27 13199.36 19798.50 9795.21 7698.30 10899.75 7593.29 10899.73 12398.37 8599.30 11199.81 95
PAPR98.52 4198.16 5199.58 2099.97 398.77 3699.95 4098.43 11295.35 7198.03 11699.75 7594.03 8999.98 4298.11 9499.83 7799.99 20
GST-MVS98.27 5797.97 6199.17 5799.92 3597.57 8799.93 6198.39 13294.04 11698.80 8599.74 7792.98 115100.00 198.16 9199.76 8599.93 78
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7398.67 4499.77 12598.38 13696.73 3599.88 399.74 7794.89 6199.59 13599.80 1899.98 3399.97 62
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4198.51 5599.87 8798.36 14194.08 11199.74 2599.73 7994.08 8799.74 12099.42 3899.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 15799.44 1897.33 1799.00 7999.72 8094.03 8999.98 4298.73 70100.00 1100.00 1
AdaColmapbinary97.23 9796.80 10098.51 11099.99 195.60 15999.09 21898.84 4693.32 14096.74 14399.72 8086.04 200100.00 198.01 9999.43 10899.94 77
CANet98.27 5797.82 6799.63 1299.72 7999.10 1799.98 898.51 9397.00 2898.52 9799.71 8287.80 18399.95 6099.75 2299.38 10999.83 93
ACMMPcopyleft97.74 8197.44 7998.66 9599.92 3596.13 14199.18 21399.45 1794.84 8496.41 15399.71 8291.40 14199.99 3697.99 10198.03 14099.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
abl_697.67 8397.34 8398.66 9599.68 8296.11 14499.68 14798.14 17293.80 12799.27 6599.70 8488.65 17999.98 4297.46 11699.72 8899.89 87
PAPM_NR98.12 6497.93 6598.70 9299.94 1496.13 14199.82 11298.43 11294.56 9297.52 12699.70 8494.40 7099.98 4297.00 12799.98 3399.99 20
OMC-MVS97.28 9497.23 8697.41 15599.76 7093.36 20899.65 15397.95 18796.03 5597.41 12999.70 8489.61 16599.51 13896.73 13498.25 13499.38 158
xiu_mvs_v1_base_debu97.43 8797.06 9098.55 10497.74 18198.14 6699.31 20297.86 19796.43 4199.62 3799.69 8785.56 20499.68 12899.05 4898.31 13197.83 205
xiu_mvs_v1_base97.43 8797.06 9098.55 10497.74 18198.14 6699.31 20297.86 19796.43 4199.62 3799.69 8785.56 20499.68 12899.05 4898.31 13197.83 205
xiu_mvs_v1_base_debi97.43 8797.06 9098.55 10497.74 18198.14 6699.31 20297.86 19796.43 4199.62 3799.69 8785.56 20499.68 12899.05 4898.31 13197.83 205
CNLPA97.76 8097.38 8098.92 8599.53 9196.84 11699.87 8798.14 17293.78 12896.55 14899.69 8792.28 12999.98 4297.13 12399.44 10799.93 78
cdsmvs_eth3d_5k23.43 32231.24 3240.00 3370.00 3560.00 3570.00 34898.09 1750.00 3520.00 35399.67 9183.37 2210.00 3540.00 3510.00 3510.00 350
lupinMVS97.85 7397.60 7498.62 9897.28 20597.70 8499.99 497.55 22195.50 6999.43 5299.67 9190.92 15298.71 17198.40 8499.62 9499.45 151
114514_t97.41 9196.83 9899.14 6399.51 9497.83 7999.89 8198.27 15488.48 25699.06 7499.66 9390.30 15899.64 13496.32 13799.97 4499.96 67
PAPM98.60 3398.42 3199.14 6396.05 23798.96 2099.90 7399.35 2396.68 3798.35 10699.66 9396.45 2598.51 18199.45 3699.89 7099.96 67
CS-MVS97.84 7497.69 7098.31 12298.28 14796.27 131100.00 197.52 22795.29 7399.25 6799.65 9591.18 14798.94 15898.96 5599.04 11799.73 105
CANet_DTU96.76 11396.15 11698.60 10098.78 13097.53 8999.84 10597.63 20997.25 2399.20 6899.64 9681.36 23499.98 4292.77 20298.89 11898.28 199
XVG-OURS94.82 16194.74 15895.06 21398.00 16389.19 28299.08 22097.55 22194.10 11094.71 17699.62 9780.51 24599.74 12096.04 14093.06 21196.25 216
MVS96.60 12195.56 13999.72 996.85 22099.22 1598.31 27798.94 3691.57 19890.90 21399.61 9886.66 19599.96 5397.36 11899.88 7299.99 20
EIA-MVS97.53 8697.46 7897.76 14398.04 16294.84 17899.98 897.61 21594.41 9897.90 11999.59 9992.40 12698.87 15998.04 9899.13 11599.59 127
XVG-OURS-SEG-HR94.79 16294.70 15995.08 21298.05 16189.19 28299.08 22097.54 22393.66 13294.87 17599.58 10078.78 25899.79 10897.31 11993.40 20796.25 216
HPM-MVScopyleft97.96 6897.72 6998.68 9399.84 5896.39 13099.90 7398.17 16692.61 16698.62 9499.57 10191.87 13799.67 13198.87 6299.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 7796.63 12199.97 1697.92 19198.07 598.76 8799.55 10295.00 5699.94 6899.91 1197.68 14499.99 20
DP-MVS94.54 17293.42 18497.91 13899.46 9894.04 19398.93 24097.48 23381.15 31790.04 22199.55 10287.02 19299.95 6088.97 24798.11 13599.73 105
MVSFormer96.94 10596.60 10597.95 13597.28 20597.70 8499.55 17097.27 25291.17 20899.43 5299.54 10490.92 15296.89 27294.67 16499.62 9499.25 171
jason97.24 9696.86 9798.38 12095.73 24997.32 10199.97 1697.40 24395.34 7298.60 9699.54 10487.70 18498.56 17897.94 10499.47 10599.25 171
jason: jason.
HPM-MVS_fast97.80 7897.50 7798.68 9399.79 6896.42 12799.88 8498.16 16991.75 19498.94 8199.54 10491.82 13999.65 13397.62 11499.99 2099.99 20
DeepC-MVS94.51 496.92 10796.40 11298.45 11499.16 10695.90 14899.66 15098.06 17896.37 4794.37 18199.49 10783.29 22299.90 7597.63 11399.61 9799.55 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs97.81 7797.33 8499.25 4998.77 13198.66 4699.99 498.44 10494.40 9998.41 10299.47 10893.65 9999.42 14698.57 7994.26 19999.67 114
TAPA-MVS92.12 894.42 17693.60 17896.90 16899.33 10291.78 24299.78 12298.00 18189.89 23394.52 17899.47 10891.97 13599.18 15069.90 33099.52 10299.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETV-MVS97.92 7197.80 6898.25 12598.14 15896.48 12599.98 897.63 20995.61 6699.29 6499.46 11092.55 12598.82 16199.02 5498.54 12599.46 149
ET-MVSNet_ETH3D94.37 17793.28 19097.64 14798.30 14597.99 7399.99 497.61 21594.35 10071.57 33399.45 11196.23 2795.34 31696.91 13285.14 26299.59 127
canonicalmvs97.09 10296.32 11399.39 4398.93 11998.95 2199.72 14297.35 24694.45 9597.88 12099.42 11286.71 19499.52 13798.48 8293.97 20399.72 108
VDD-MVS93.77 18892.94 19396.27 18798.55 13690.22 27198.77 25397.79 20290.85 21796.82 14199.42 11261.18 33199.77 11198.95 5694.13 20098.82 192
1112_ss96.01 13995.20 14898.42 11797.80 17696.41 12899.65 15396.66 30092.71 15992.88 19999.40 11492.16 13199.30 14791.92 20993.66 20499.55 136
ab-mvs-re8.28 32411.04 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.40 1140.00 3580.00 3540.00 3510.00 3510.00 350
LFMVS94.75 16593.56 18198.30 12399.03 11095.70 15798.74 25497.98 18487.81 26598.47 10099.39 11667.43 31499.53 13698.01 9995.20 19299.67 114
WTY-MVS98.10 6597.60 7499.60 1798.92 12199.28 1299.89 8199.52 1395.58 6798.24 11299.39 11693.33 10599.74 12097.98 10395.58 18699.78 100
PMMVS96.76 11396.76 10196.76 17298.28 14792.10 23399.91 6997.98 18494.12 10999.53 4499.39 11686.93 19398.73 16996.95 13097.73 14299.45 151
EPNet98.49 4398.40 3598.77 9099.62 8596.80 11899.90 7399.51 1597.60 1299.20 6899.36 11993.71 9899.91 7497.99 10198.71 12399.61 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VDDNet93.12 20091.91 21396.76 17296.67 23092.65 22398.69 25998.21 16082.81 31197.75 12399.28 12061.57 32999.48 14498.09 9694.09 20198.15 201
diffmvs97.00 10396.64 10498.09 13197.64 18896.17 14099.81 11497.19 25694.67 9098.95 8099.28 12086.43 19798.76 16798.37 8597.42 15099.33 164
baseline96.43 12695.98 12297.76 14397.34 20095.17 17299.51 17697.17 25993.92 12296.90 13999.28 12085.37 20798.64 17597.50 11596.86 16499.46 149
UA-Net96.54 12295.96 12798.27 12498.23 15295.71 15698.00 29198.45 10393.72 13198.41 10299.27 12388.71 17899.66 13291.19 21797.69 14399.44 153
RPSCF91.80 22992.79 19688.83 31298.15 15769.87 33998.11 28796.60 30283.93 30594.33 18299.27 12379.60 25299.46 14591.99 20793.16 21097.18 212
PLCcopyleft95.54 397.93 7097.89 6698.05 13399.82 6394.77 18299.92 6598.46 10193.93 12197.20 13299.27 12395.44 4499.97 5197.41 11799.51 10499.41 156
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvs96.42 12795.97 12597.77 14297.30 20494.98 17499.84 10597.09 26593.75 13096.58 14699.26 12685.07 20998.78 16497.77 11097.04 15999.54 140
BH-RMVSNet95.18 15594.31 16497.80 13998.17 15695.23 17099.76 13097.53 22592.52 17394.27 18399.25 12776.84 26998.80 16290.89 22699.54 10199.35 162
DELS-MVS98.54 3998.22 4799.50 2999.15 10798.65 48100.00 198.58 7297.70 998.21 11399.24 12892.58 12499.94 6898.63 7899.94 5699.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS94.20 595.18 15594.10 16898.43 11698.55 13695.99 14697.91 29397.31 25090.35 22589.48 23799.22 12985.19 20899.89 7990.40 23598.47 12799.41 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet91.05 1397.13 9996.69 10398.45 11499.52 9295.81 15099.95 4099.65 1094.73 8799.04 7599.21 13084.48 21399.95 6094.92 15298.74 12299.58 133
MSDG94.37 17793.36 18897.40 15698.88 12693.95 19599.37 19597.38 24485.75 29290.80 21499.17 13184.11 21799.88 8586.35 27598.43 12898.36 198
F-COLMAP96.93 10696.95 9696.87 16999.71 8091.74 24399.85 10197.95 18793.11 14795.72 16599.16 13292.35 12799.94 6895.32 14799.35 11098.92 186
Vis-MVSNet (Re-imp)96.32 13095.98 12297.35 16097.93 16794.82 17999.47 18298.15 17191.83 19195.09 17399.11 13391.37 14297.47 23693.47 19197.43 14899.74 104
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10098.87 2798.46 27099.42 2097.03 2799.02 7699.09 13499.35 198.21 20999.73 2799.78 8499.77 101
PVSNet_Blended97.94 6997.64 7298.83 8899.59 8696.99 112100.00 199.10 2895.38 7098.27 10999.08 13589.00 17499.95 6099.12 4599.25 11299.57 134
sss97.57 8597.03 9499.18 5498.37 14398.04 7199.73 13999.38 2193.46 13798.76 8799.06 13691.21 14399.89 7996.33 13697.01 16099.62 122
thisisatest051597.41 9197.02 9598.59 10297.71 18797.52 9099.97 1698.54 8491.83 19197.45 12899.04 13797.50 899.10 15294.75 16096.37 17099.16 176
EI-MVSNet93.73 19093.40 18794.74 22396.80 22392.69 22099.06 22597.67 20788.96 24591.39 20899.02 13888.75 17797.30 24491.07 21987.85 24094.22 248
CVMVSNet94.68 16894.94 15393.89 26096.80 22386.92 30399.06 22598.98 3494.45 9594.23 18499.02 13885.60 20395.31 31790.91 22595.39 18999.43 154
EPP-MVSNet96.69 11896.60 10596.96 16697.74 18193.05 21299.37 19598.56 7688.75 25095.83 16399.01 14096.01 2898.56 17896.92 13197.20 15699.25 171
COLMAP_ROBcopyleft90.47 1492.18 22191.49 22294.25 24599.00 11388.04 29898.42 27596.70 29982.30 31488.43 25999.01 14076.97 26799.85 9486.11 27896.50 16894.86 221
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator91.47 1296.28 13495.34 14499.08 7196.82 22297.47 9699.45 18598.81 4795.52 6889.39 23899.00 14281.97 22799.95 6097.27 12099.83 7799.84 92
test_yl97.83 7597.37 8199.21 5199.18 10497.98 7499.64 15799.27 2591.43 20497.88 12098.99 14395.84 3599.84 10398.82 6495.32 19099.79 97
DCV-MVSNet97.83 7597.37 8199.21 5199.18 10497.98 7499.64 15799.27 2591.43 20497.88 12098.99 14395.84 3599.84 10398.82 6495.32 19099.79 97
131496.84 10995.96 12799.48 3396.74 22798.52 5498.31 27798.86 4495.82 5689.91 22498.98 14587.49 18699.96 5397.80 10799.73 8799.96 67
3Dnovator+91.53 1196.31 13195.24 14699.52 2696.88 21998.64 4999.72 14298.24 15695.27 7588.42 26198.98 14582.76 22499.94 6897.10 12599.83 7799.96 67
thisisatest053097.10 10096.72 10298.22 12697.60 19096.70 11999.92 6598.54 8491.11 21197.07 13698.97 14797.47 999.03 15393.73 18796.09 17398.92 186
baseline296.71 11796.49 10997.37 15895.63 25695.96 14799.74 13498.88 4292.94 14991.61 20698.97 14797.72 598.62 17694.83 15698.08 13997.53 211
gm-plane-assit96.97 21593.76 19991.47 20298.96 14998.79 16394.92 152
IS-MVSNet96.29 13395.90 13197.45 15398.13 15994.80 18099.08 22097.61 21592.02 18795.54 16898.96 14990.64 15598.08 21393.73 18797.41 15199.47 148
OpenMVScopyleft90.15 1594.77 16493.59 17998.33 12196.07 23697.48 9599.56 16898.57 7490.46 22286.51 28598.95 15178.57 26099.94 6893.86 17899.74 8697.57 210
Vis-MVSNetpermissive95.72 14495.15 15097.45 15397.62 18994.28 18999.28 20698.24 15694.27 10696.84 14098.94 15279.39 25398.76 16793.25 19398.49 12699.30 167
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tttt051796.85 10896.49 10997.92 13797.48 19695.89 14999.85 10198.54 8490.72 22096.63 14598.93 15397.47 999.02 15493.03 20095.76 18298.85 190
DWT-MVSNet_test97.31 9397.19 8797.66 14698.24 15194.67 18398.86 24898.20 16493.60 13498.09 11498.89 15497.51 798.78 16494.04 17697.28 15399.55 136
QAPM95.40 15294.17 16699.10 6996.92 21697.71 8299.40 18898.68 5589.31 23788.94 25098.89 15482.48 22599.96 5393.12 19999.83 7799.62 122
VNet97.21 9896.57 10799.13 6898.97 11597.82 8099.03 23199.21 2794.31 10399.18 7198.88 15686.26 19999.89 7998.93 5894.32 19899.69 111
thres20096.96 10496.21 11599.22 5098.97 11598.84 3099.85 10199.71 593.17 14596.26 15598.88 15689.87 16399.51 13894.26 17394.91 19399.31 166
tfpn200view996.79 11195.99 12099.19 5398.94 11798.82 3199.78 12299.71 592.86 15096.02 15898.87 15889.33 16899.50 14093.84 17994.57 19499.27 169
thres40096.78 11295.99 12099.16 5998.94 11798.82 3199.78 12299.71 592.86 15096.02 15898.87 15889.33 16899.50 14093.84 17994.57 19499.16 176
thres100view90096.74 11595.92 13099.18 5498.90 12498.77 3699.74 13499.71 592.59 16895.84 16198.86 16089.25 17099.50 14093.84 17994.57 19499.27 169
thres600view796.69 11895.87 13399.14 6398.90 12498.78 3599.74 13499.71 592.59 16895.84 16198.86 16089.25 17099.50 14093.44 19294.50 19799.16 176
CHOSEN 1792x268896.81 11096.53 10897.64 14798.91 12393.07 21099.65 15399.80 395.64 6595.39 16998.86 16084.35 21599.90 7596.98 12899.16 11499.95 75
CLD-MVS94.06 18293.90 17294.55 23296.02 23890.69 26099.98 897.72 20496.62 3991.05 21298.85 16377.21 26598.47 18298.11 9489.51 22094.48 226
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-w/o95.71 14695.38 14396.68 17598.49 14092.28 22999.84 10597.50 23192.12 18392.06 20498.79 16484.69 21198.67 17495.29 14899.66 9299.09 182
Anonymous20240521193.10 20191.99 21196.40 18399.10 10889.65 27998.88 24497.93 18983.71 30794.00 18698.75 16568.79 30799.88 8595.08 15091.71 21399.68 112
mvs-test195.53 14995.97 12594.20 24697.77 17885.44 31199.95 4097.06 26894.92 8096.58 14698.72 16685.81 20198.98 15594.80 15798.11 13598.18 200
TR-MVS94.54 17293.56 18197.49 15297.96 16594.34 18898.71 25797.51 23090.30 22794.51 17998.69 16775.56 27998.77 16692.82 20195.99 17599.35 162
BH-untuned95.18 15594.83 15596.22 18898.36 14491.22 25499.80 11997.32 24990.91 21591.08 21198.67 16883.51 21998.54 18094.23 17499.61 9798.92 186
OPM-MVS93.21 19892.80 19594.44 23993.12 29590.85 25999.77 12597.61 21596.19 5191.56 20798.65 16975.16 28498.47 18293.78 18589.39 22193.99 273
NP-MVS95.77 24691.79 24198.65 169
HQP-MVS94.61 17094.50 16194.92 21895.78 24391.85 23999.87 8797.89 19396.82 3093.37 19198.65 16980.65 24398.39 19397.92 10589.60 21594.53 222
baseline195.78 14394.86 15498.54 10798.47 14198.07 6999.06 22597.99 18292.68 16294.13 18598.62 17293.28 10998.69 17393.79 18485.76 25498.84 191
HQP_MVS94.49 17594.36 16394.87 21995.71 25291.74 24399.84 10597.87 19596.38 4493.01 19598.59 17380.47 24798.37 19897.79 10889.55 21894.52 224
plane_prior498.59 173
Anonymous2024052992.10 22290.65 23296.47 17998.82 12790.61 26398.72 25698.67 5875.54 33193.90 18898.58 17566.23 31799.90 7594.70 16390.67 21498.90 189
Effi-MVS+96.30 13295.69 13698.16 12797.85 17396.26 13397.41 30097.21 25590.37 22498.65 9398.58 17586.61 19698.70 17297.11 12497.37 15299.52 143
EPNet_dtu95.71 14695.39 14296.66 17698.92 12193.41 20699.57 16698.90 4096.19 5197.52 12698.56 17792.65 12297.36 23977.89 31698.33 13099.20 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test0.0.03 193.86 18393.61 17694.64 22795.02 26592.18 23299.93 6198.58 7294.07 11287.96 26698.50 17893.90 9394.96 32181.33 30593.17 20996.78 213
LPG-MVS_test92.96 20392.71 19793.71 26495.43 25888.67 28899.75 13197.62 21292.81 15390.05 21998.49 17975.24 28298.40 19195.84 14489.12 22294.07 265
LGP-MVS_train93.71 26495.43 25888.67 28897.62 21292.81 15390.05 21998.49 17975.24 28298.40 19195.84 14489.12 22294.07 265
PVSNet_Blended_VisFu97.27 9596.81 9998.66 9598.81 12896.67 12099.92 6598.64 6294.51 9496.38 15498.49 17989.05 17399.88 8597.10 12598.34 12999.43 154
testmvs40.60 32044.45 32229.05 33519.49 35514.11 35699.68 14718.47 35520.74 34964.59 33698.48 18210.95 35417.09 35356.66 34211.01 34855.94 346
AllTest92.48 21491.64 21695.00 21599.01 11188.43 29298.94 23996.82 29386.50 28188.71 25298.47 18374.73 28699.88 8585.39 28196.18 17196.71 214
TestCases95.00 21599.01 11188.43 29296.82 29386.50 28188.71 25298.47 18374.73 28699.88 8585.39 28196.18 17196.71 214
PatchMatch-RL96.04 13895.40 14197.95 13599.59 8695.22 17199.52 17499.07 3193.96 11996.49 14998.35 18582.28 22699.82 10590.15 23899.22 11398.81 193
CDS-MVSNet96.34 12996.07 11797.13 16397.37 19894.96 17599.53 17397.91 19291.55 19995.37 17098.32 18695.05 5297.13 25693.80 18395.75 18399.30 167
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMP92.05 992.74 20892.42 20593.73 26295.91 24288.72 28799.81 11497.53 22594.13 10887.00 27998.23 18774.07 29098.47 18296.22 13888.86 22793.99 273
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testgi89.01 27988.04 27991.90 29193.49 28884.89 31499.73 13995.66 31993.89 12585.14 29898.17 18859.68 33294.66 32577.73 31788.88 22596.16 219
ITE_SJBPF92.38 28495.69 25485.14 31295.71 31792.81 15389.33 24198.11 18970.23 30498.42 18885.91 27988.16 23893.59 297
HyFIR lowres test96.66 12096.43 11197.36 15999.05 10993.91 19699.70 14499.80 390.54 22196.26 15598.08 19092.15 13298.23 20896.84 13395.46 18799.93 78
TESTMET0.1,196.74 11596.26 11498.16 12797.36 19996.48 12599.96 2398.29 15091.93 18895.77 16498.07 19195.54 4098.29 20390.55 23098.89 11899.70 109
TAMVS95.85 14195.58 13896.65 17797.07 20993.50 20399.17 21497.82 20191.39 20795.02 17498.01 19292.20 13097.30 24493.75 18695.83 18099.14 179
ACMM91.95 1092.88 20592.52 20393.98 25795.75 24889.08 28599.77 12597.52 22793.00 14889.95 22397.99 19376.17 27698.46 18593.63 19088.87 22694.39 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+95.02 15994.19 16597.52 15197.88 16994.55 18499.97 1697.08 26688.85 24994.47 18097.96 19484.59 21298.41 18989.84 24197.10 15799.59 127
GG-mvs-BLEND98.54 10798.21 15398.01 7293.87 32798.52 8797.92 11897.92 19599.02 297.94 22398.17 9099.58 9999.67 114
Fast-Effi-MVS+-dtu93.72 19193.86 17493.29 27197.06 21086.16 30599.80 11996.83 29192.66 16392.58 20297.83 19681.39 23397.67 23089.75 24296.87 16396.05 220
RRT_MVS95.23 15494.77 15796.61 17898.28 14798.32 6299.81 11497.41 24192.59 16891.28 21097.76 19795.02 5397.23 25093.65 18987.14 24794.28 244
ACMH+89.98 1690.35 25789.54 25392.78 28295.99 23986.12 30698.81 25197.18 25889.38 23683.14 30697.76 19768.42 31198.43 18789.11 24686.05 25393.78 289
ACMH89.72 1790.64 25089.63 25093.66 26695.64 25588.64 29098.55 26597.45 23489.03 24181.62 31097.61 19969.75 30598.41 18989.37 24387.62 24493.92 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cascas94.64 16993.61 17697.74 14597.82 17596.26 13399.96 2397.78 20385.76 29094.00 18697.54 20076.95 26899.21 14997.23 12195.43 18897.76 209
nrg03093.51 19492.53 20296.45 18194.36 27397.20 10499.81 11497.16 26191.60 19789.86 22697.46 20186.37 19897.68 22995.88 14380.31 29894.46 227
VPNet91.81 22690.46 23495.85 19894.74 26895.54 16098.98 23498.59 7192.14 18290.77 21597.44 20268.73 30997.54 23494.89 15577.89 31194.46 227
UniMVSNet_ETH3D90.06 26688.58 27194.49 23694.67 27088.09 29797.81 29597.57 22083.91 30688.44 25797.41 20357.44 33597.62 23291.41 21488.59 23397.77 208
HY-MVS92.50 797.79 7997.17 8999.63 1298.98 11499.32 697.49 29999.52 1395.69 6498.32 10797.41 20393.32 10699.77 11198.08 9795.75 18399.81 95
PVSNet_088.03 1991.80 22990.27 24096.38 18598.27 15090.46 26799.94 5599.61 1193.99 11786.26 29197.39 20571.13 30299.89 7998.77 6967.05 33698.79 194
FIs94.10 18193.43 18396.11 19094.70 26996.82 11799.58 16498.93 3992.54 17289.34 24097.31 20687.62 18597.10 25994.22 17586.58 25094.40 234
OurMVSNet-221017-089.81 26989.48 25790.83 29991.64 31581.21 32898.17 28595.38 32491.48 20185.65 29697.31 20672.66 29497.29 24788.15 25684.83 26393.97 275
FC-MVSNet-test93.81 18693.15 19295.80 19994.30 27596.20 13899.42 18798.89 4192.33 17889.03 24997.27 20887.39 18896.83 27693.20 19486.48 25194.36 236
USDC90.00 26788.96 26593.10 27794.81 26788.16 29698.71 25795.54 32293.66 13283.75 30597.20 20965.58 31998.31 20283.96 29187.49 24692.85 311
MVSTER95.53 14995.22 14796.45 18198.56 13597.72 8199.91 6997.67 20792.38 17791.39 20897.14 21097.24 1497.30 24494.80 15787.85 24094.34 240
LF4IMVS89.25 27888.85 26690.45 30392.81 30381.19 32998.12 28694.79 33191.44 20386.29 29097.11 21165.30 32198.11 21288.53 25285.25 25992.07 316
mvs_anonymous95.65 14895.03 15297.53 15098.19 15495.74 15499.33 19997.49 23290.87 21690.47 21797.10 21288.23 18197.16 25395.92 14297.66 14599.68 112
jajsoiax91.92 22491.18 22694.15 24791.35 31890.95 25799.00 23397.42 23992.61 16687.38 27597.08 21372.46 29597.36 23994.53 16788.77 22894.13 262
XXY-MVS91.82 22590.46 23495.88 19693.91 28195.40 16498.87 24797.69 20688.63 25487.87 26797.08 21374.38 28997.89 22491.66 21284.07 27094.35 239
LTVRE_ROB88.28 1890.29 26089.05 26494.02 25395.08 26390.15 27397.19 30397.43 23784.91 30083.99 30397.06 21574.00 29198.28 20584.08 28887.71 24293.62 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets91.81 22691.08 22794.00 25591.63 31690.58 26498.67 26197.43 23792.43 17687.37 27697.05 21671.76 29797.32 24394.75 16088.68 23094.11 263
MVS_Test96.46 12595.74 13598.61 9998.18 15597.23 10399.31 20297.15 26291.07 21298.84 8397.05 21688.17 18298.97 15694.39 16897.50 14799.61 124
ab-mvs94.69 16693.42 18498.51 11098.07 16096.26 13396.49 31198.68 5590.31 22694.54 17797.00 21876.30 27499.71 12495.98 14193.38 20899.56 135
PS-MVSNAJss93.64 19393.31 18994.61 22892.11 30992.19 23199.12 21697.38 24492.51 17488.45 25696.99 21991.20 14497.29 24794.36 16987.71 24294.36 236
IB-MVS92.85 694.99 16093.94 17198.16 12797.72 18595.69 15899.99 498.81 4794.28 10592.70 20196.90 22095.08 5099.17 15196.07 13973.88 32799.60 126
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.31 21891.25 22595.48 20494.45 27295.29 16699.60 16298.68 5590.10 22888.07 26596.89 22180.68 24296.80 27893.14 19779.67 30294.36 236
SixPastTwentyTwo88.73 28088.01 28090.88 29791.85 31382.24 32398.22 28395.18 32988.97 24482.26 30896.89 22171.75 29896.67 28384.00 28982.98 27593.72 294
UniMVSNet_NR-MVSNet92.95 20492.11 20895.49 20194.61 27195.28 16799.83 11199.08 3091.49 20089.21 24496.86 22387.14 19096.73 28093.20 19477.52 31494.46 227
XVG-ACMP-BASELINE91.22 23990.75 23092.63 28393.73 28485.61 30898.52 26997.44 23692.77 15789.90 22596.85 22466.64 31698.39 19392.29 20488.61 23193.89 281
TinyColmap87.87 28586.51 28791.94 29095.05 26485.57 30997.65 29794.08 33684.40 30381.82 30996.85 22462.14 32898.33 20080.25 31086.37 25291.91 320
EU-MVSNet90.14 26590.34 23889.54 30992.55 30581.06 33098.69 25998.04 18091.41 20686.59 28496.84 22680.83 24093.31 33486.20 27681.91 28294.26 245
TranMVSNet+NR-MVSNet91.68 23390.61 23394.87 21993.69 28593.98 19499.69 14598.65 5991.03 21388.44 25796.83 22780.05 25096.18 30090.26 23776.89 32194.45 232
RRT_test8_iter0594.58 17194.11 16795.98 19397.88 16996.11 14499.89 8197.45 23491.66 19688.28 26296.71 22896.53 2497.40 23794.73 16283.85 27394.45 232
GA-MVS93.83 18492.84 19496.80 17095.73 24993.57 20199.88 8497.24 25492.57 17192.92 19796.66 22978.73 25997.67 23087.75 26094.06 20299.17 175
CMPMVSbinary61.59 2184.75 29885.14 29183.57 32090.32 32662.54 34296.98 30697.59 21974.33 33469.95 33596.66 22964.17 32398.32 20187.88 25988.41 23689.84 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DU-MVS92.46 21591.45 22395.49 20194.05 27895.28 16799.81 11498.74 5192.25 18089.21 24496.64 23181.66 23096.73 28093.20 19477.52 31494.46 227
NR-MVSNet91.56 23490.22 24195.60 20094.05 27895.76 15398.25 28098.70 5391.16 21080.78 31396.64 23183.23 22396.57 28691.41 21477.73 31394.46 227
CP-MVSNet91.23 23890.22 24194.26 24493.96 28092.39 22899.09 21898.57 7488.95 24686.42 28896.57 23379.19 25596.37 29290.29 23678.95 30494.02 268
pmmvs492.10 22291.07 22895.18 21092.82 30294.96 17599.48 18196.83 29187.45 26888.66 25596.56 23483.78 21896.83 27689.29 24484.77 26493.75 290
PS-CasMVS90.63 25189.51 25593.99 25693.83 28291.70 24798.98 23498.52 8788.48 25686.15 29296.53 23575.46 28096.31 29588.83 24878.86 30693.95 276
test-LLR96.47 12496.04 11897.78 14097.02 21395.44 16199.96 2398.21 16094.07 11295.55 16696.38 23693.90 9398.27 20690.42 23398.83 12099.64 120
test-mter96.39 12895.93 12997.78 14097.02 21395.44 16199.96 2398.21 16091.81 19395.55 16696.38 23695.17 4798.27 20690.42 23398.83 12099.64 120
MS-PatchMatch90.65 24990.30 23991.71 29394.22 27685.50 31098.24 28197.70 20588.67 25286.42 28896.37 23867.82 31398.03 21683.62 29399.62 9491.60 321
PEN-MVS90.19 26389.06 26393.57 26793.06 29790.90 25899.06 22598.47 9988.11 26085.91 29496.30 23976.67 27095.94 31087.07 26876.91 32093.89 281
UGNet95.33 15394.57 16097.62 14998.55 13694.85 17798.67 26199.32 2495.75 6396.80 14296.27 24072.18 29699.96 5394.58 16699.05 11698.04 203
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DTE-MVSNet89.40 27388.24 27792.88 28092.66 30489.95 27599.10 21798.22 15987.29 27085.12 29996.22 24176.27 27595.30 31883.56 29475.74 32493.41 299
TransMVSNet (Re)87.25 28685.28 29093.16 27493.56 28691.03 25598.54 26794.05 33783.69 30881.09 31296.16 24275.32 28196.40 29176.69 32268.41 33392.06 317
pm-mvs189.36 27587.81 28194.01 25493.40 29191.93 23798.62 26496.48 30686.25 28583.86 30496.14 24373.68 29297.04 26486.16 27775.73 32593.04 309
Test_1112_low_res95.72 14494.83 15598.42 11797.79 17796.41 12899.65 15396.65 30192.70 16092.86 20096.13 24492.15 13299.30 14791.88 21093.64 20599.55 136
TDRefinement84.76 29782.56 30191.38 29574.58 34384.80 31597.36 30194.56 33484.73 30180.21 31596.12 24563.56 32598.39 19387.92 25863.97 33790.95 326
test_djsdf92.83 20692.29 20694.47 23791.90 31292.46 22699.55 17097.27 25291.17 20889.96 22296.07 24681.10 23696.89 27294.67 16488.91 22494.05 267
miper_enhance_ethall94.36 17993.98 17095.49 20198.68 13495.24 16999.73 13997.29 25193.28 14289.86 22695.97 24794.37 7497.05 26292.20 20684.45 26694.19 251
lessismore_v090.53 30090.58 32480.90 33195.80 31677.01 32395.84 24866.15 31896.95 26983.03 29675.05 32693.74 293
PVSNet_BlendedMVS96.05 13795.82 13496.72 17499.59 8696.99 11299.95 4099.10 2894.06 11498.27 10995.80 24989.00 17499.95 6099.12 4587.53 24593.24 305
ppachtmachnet_test89.58 27288.35 27493.25 27392.40 30690.44 26899.33 19996.73 29885.49 29685.90 29595.77 25081.09 23796.00 30976.00 32482.49 27793.30 303
pmmvs590.17 26489.09 26293.40 26992.10 31089.77 27899.74 13495.58 32185.88 28987.24 27895.74 25173.41 29396.48 28988.54 25183.56 27493.95 276
MDTV_nov1_ep1395.69 13697.90 16894.15 19195.98 31898.44 10493.12 14697.98 11795.74 25195.10 4998.58 17790.02 23996.92 162
eth_miper_zixun_eth92.41 21691.93 21293.84 26197.28 20590.68 26198.83 25096.97 27988.57 25589.19 24695.73 25389.24 17296.69 28289.97 24081.55 28494.15 258
IterMVS-SCA-FT90.85 24690.16 24492.93 27996.72 22889.96 27498.89 24296.99 27588.95 24686.63 28395.67 25476.48 27295.00 32087.04 26984.04 27293.84 285
Baseline_NR-MVSNet90.33 25889.51 25592.81 28192.84 30189.95 27599.77 12593.94 33884.69 30289.04 24895.66 25581.66 23096.52 28790.99 22276.98 31991.97 319
cl-mvsnet293.77 18893.25 19195.33 20699.49 9594.43 18699.61 16198.09 17590.38 22389.16 24795.61 25690.56 15697.34 24191.93 20884.45 26694.21 250
K. test v388.05 28487.24 28490.47 30291.82 31482.23 32498.96 23797.42 23989.05 24076.93 32495.60 25768.49 31095.42 31485.87 28081.01 29293.75 290
SCA94.69 16693.81 17597.33 16197.10 20894.44 18598.86 24898.32 14793.30 14196.17 15795.59 25876.48 27297.95 22191.06 22097.43 14899.59 127
Patchmatch-test92.65 21291.50 22196.10 19196.85 22090.49 26691.50 33697.19 25682.76 31290.23 21895.59 25895.02 5398.00 21777.41 31896.98 16199.82 94
cl-mvsnet192.32 21791.60 21794.47 23797.31 20392.74 21799.58 16496.75 29786.99 27687.64 26995.54 26089.55 16696.50 28888.58 25082.44 27894.17 252
Anonymous2023121189.86 26888.44 27394.13 24998.93 11990.68 26198.54 26798.26 15576.28 32786.73 28195.54 26070.60 30397.56 23390.82 22780.27 29994.15 258
miper_ehance_all_eth93.16 19992.60 19994.82 22297.57 19193.56 20299.50 17797.07 26788.75 25088.85 25195.52 26290.97 15196.74 27990.77 22884.45 26694.17 252
cl-mvsnet_92.31 21891.58 21894.52 23397.33 20292.77 21599.57 16696.78 29686.97 27787.56 27195.51 26389.43 16796.62 28488.60 24982.44 27894.16 257
tfpnnormal89.29 27687.61 28294.34 24394.35 27494.13 19298.95 23898.94 3683.94 30484.47 30195.51 26374.84 28597.39 23877.05 32180.41 29691.48 322
DeepMVS_CXcopyleft82.92 32295.98 24158.66 34496.01 31392.72 15878.34 32195.51 26358.29 33498.08 21382.57 29885.29 25892.03 318
cl_fuxian92.53 21391.87 21494.52 23397.40 19792.99 21399.40 18896.93 28487.86 26388.69 25495.44 26689.95 16296.44 29090.45 23280.69 29594.14 261
IterMVS90.91 24390.17 24393.12 27596.78 22690.42 26998.89 24297.05 27089.03 24186.49 28695.42 26776.59 27195.02 31987.22 26784.09 26993.93 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)93.07 20292.13 20795.88 19694.84 26696.24 13799.88 8498.98 3492.49 17589.25 24295.40 26887.09 19197.14 25593.13 19878.16 30994.26 245
tpm295.47 15195.18 14996.35 18696.91 21791.70 24796.96 30797.93 18988.04 26298.44 10195.40 26893.32 10697.97 21894.00 17795.61 18599.38 158
pmmvs685.69 29083.84 29591.26 29690.00 32884.41 31697.82 29496.15 31175.86 32981.29 31195.39 27061.21 33096.87 27483.52 29573.29 32892.50 313
IterMVS-LS92.69 21092.11 20894.43 24196.80 22392.74 21799.45 18596.89 28788.98 24389.65 23395.38 27188.77 17696.34 29490.98 22382.04 28194.22 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu94.53 17495.30 14592.22 28697.77 17882.54 32199.59 16397.06 26894.92 8095.29 17195.37 27285.81 20197.89 22494.80 15797.07 15896.23 218
v2v48291.30 23590.07 24695.01 21493.13 29393.79 19799.77 12597.02 27188.05 26189.25 24295.37 27280.73 24197.15 25487.28 26680.04 30194.09 264
FMVSNet392.69 21091.58 21895.99 19298.29 14697.42 9999.26 20897.62 21289.80 23489.68 23095.32 27481.62 23296.27 29787.01 27185.65 25594.29 243
MVP-Stereo90.93 24290.45 23692.37 28591.25 32088.76 28698.05 29096.17 31087.27 27184.04 30295.30 27578.46 26297.27 24983.78 29299.70 9091.09 323
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
anonymousdsp91.79 23190.92 22994.41 24290.76 32392.93 21498.93 24097.17 25989.08 23987.46 27495.30 27578.43 26396.92 27192.38 20388.73 22993.39 301
v192192090.46 25489.12 26194.50 23592.96 30092.46 22699.49 17996.98 27786.10 28689.61 23595.30 27578.55 26197.03 26682.17 30180.89 29494.01 270
VPA-MVSNet92.70 20991.55 22096.16 18995.09 26296.20 13898.88 24499.00 3391.02 21491.82 20595.29 27876.05 27897.96 22095.62 14681.19 28794.30 242
PatchmatchNetpermissive95.94 14095.45 14097.39 15797.83 17494.41 18796.05 31798.40 12992.86 15097.09 13595.28 27994.21 8598.07 21589.26 24598.11 13599.70 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_lstm_enhance91.81 22691.39 22493.06 27897.34 20089.18 28499.38 19396.79 29586.70 28087.47 27395.22 28090.00 16195.86 31188.26 25481.37 28694.15 258
test_040285.58 29183.94 29490.50 30193.81 28385.04 31398.55 26595.20 32876.01 32879.72 31795.13 28164.15 32496.26 29866.04 33786.88 24990.21 330
tpmrst96.27 13595.98 12297.13 16397.96 16593.15 20996.34 31398.17 16692.07 18498.71 9095.12 28293.91 9298.73 16994.91 15496.62 16599.50 146
V4291.28 23790.12 24594.74 22393.42 29093.46 20499.68 14797.02 27187.36 26989.85 22895.05 28381.31 23597.34 24187.34 26580.07 30093.40 300
EPMVS96.53 12396.01 11998.09 13198.43 14296.12 14396.36 31299.43 1993.53 13597.64 12495.04 28494.41 6998.38 19791.13 21898.11 13599.75 103
v119290.62 25289.25 25994.72 22593.13 29393.07 21099.50 17797.02 27186.33 28489.56 23695.01 28579.22 25497.09 26182.34 30081.16 28894.01 270
v14890.70 24889.63 25093.92 25892.97 29990.97 25699.75 13196.89 28787.51 26688.27 26395.01 28581.67 22997.04 26487.40 26477.17 31893.75 290
FMVSNet291.02 24189.56 25295.41 20597.53 19295.74 15498.98 23497.41 24187.05 27388.43 25995.00 28771.34 29996.24 29985.12 28385.21 26094.25 247
our_test_390.39 25589.48 25793.12 27592.40 30689.57 28099.33 19996.35 30787.84 26485.30 29794.99 28884.14 21696.09 30480.38 30984.56 26593.71 295
v114491.09 24089.83 24794.87 21993.25 29293.69 20099.62 16096.98 27786.83 27989.64 23494.99 28880.94 23897.05 26285.08 28481.16 28893.87 283
v14419290.79 24789.52 25494.59 22993.11 29692.77 21599.56 16896.99 27586.38 28389.82 22994.95 29080.50 24697.10 25983.98 29080.41 29693.90 280
CostFormer96.10 13695.88 13296.78 17197.03 21292.55 22597.08 30497.83 20090.04 23198.72 8994.89 29195.01 5598.29 20396.54 13595.77 18199.50 146
v124090.20 26288.79 26894.44 23993.05 29892.27 23099.38 19396.92 28585.89 28889.36 23994.87 29277.89 26497.03 26680.66 30881.08 29094.01 270
v7n89.65 27188.29 27693.72 26392.22 30890.56 26599.07 22497.10 26485.42 29886.73 28194.72 29380.06 24997.13 25681.14 30678.12 31093.49 298
GBi-Net90.88 24489.82 24894.08 25097.53 19291.97 23498.43 27296.95 28087.05 27389.68 23094.72 29371.34 29996.11 30187.01 27185.65 25594.17 252
test190.88 24489.82 24894.08 25097.53 19291.97 23498.43 27296.95 28087.05 27389.68 23094.72 29371.34 29996.11 30187.01 27185.65 25594.17 252
FMVSNet188.50 28186.64 28694.08 25095.62 25791.97 23498.43 27296.95 28083.00 31086.08 29394.72 29359.09 33396.11 30181.82 30484.07 27094.17 252
dp95.05 15894.43 16296.91 16797.99 16492.73 21996.29 31497.98 18489.70 23595.93 16094.67 29793.83 9698.45 18686.91 27496.53 16799.54 140
test20.0384.72 29983.99 29286.91 31788.19 33380.62 33298.88 24495.94 31488.36 25878.87 31894.62 29868.75 30889.11 34066.52 33575.82 32391.00 324
D2MVS92.76 20792.59 20193.27 27295.13 26189.54 28199.69 14599.38 2192.26 17987.59 27094.61 29985.05 21097.79 22691.59 21388.01 23992.47 314
v890.54 25389.17 26094.66 22693.43 28993.40 20799.20 21196.94 28385.76 29087.56 27194.51 30081.96 22897.19 25184.94 28578.25 30893.38 302
v1090.25 26188.82 26794.57 23193.53 28793.43 20599.08 22096.87 28985.00 29987.34 27794.51 30080.93 23997.02 26882.85 29779.23 30393.26 304
ADS-MVSNet293.80 18793.88 17393.55 26897.87 17185.94 30794.24 32396.84 29090.07 22996.43 15194.48 30290.29 15995.37 31587.44 26297.23 15499.36 160
ADS-MVSNet94.79 16294.02 16997.11 16597.87 17193.79 19794.24 32398.16 16990.07 22996.43 15194.48 30290.29 15998.19 21087.44 26297.23 15499.36 160
WR-MVS_H91.30 23590.35 23794.15 24794.17 27792.62 22499.17 21498.94 3688.87 24886.48 28794.46 30484.36 21496.61 28588.19 25578.51 30793.21 306
LCM-MVSNet-Re92.31 21892.60 19991.43 29497.53 19279.27 33599.02 23291.83 34292.07 18480.31 31494.38 30583.50 22095.48 31397.22 12297.58 14699.54 140
tpmvs94.28 18093.57 18096.40 18398.55 13691.50 25295.70 32298.55 8087.47 26792.15 20394.26 30691.42 14098.95 15788.15 25695.85 17998.76 195
tpm93.70 19293.41 18694.58 23095.36 26087.41 30197.01 30596.90 28690.85 21796.72 14494.14 30790.40 15796.84 27590.75 22988.54 23499.51 144
Anonymous2023120686.32 28885.42 28989.02 31189.11 33180.53 33399.05 22995.28 32585.43 29782.82 30793.92 30874.40 28893.44 33366.99 33481.83 28393.08 308
UnsupCasMVSNet_eth85.52 29283.99 29290.10 30589.36 33083.51 31896.65 30997.99 18289.14 23875.89 32893.83 30963.25 32693.92 32781.92 30367.90 33592.88 310
tpm cat193.51 19492.52 20396.47 17997.77 17891.47 25396.13 31598.06 17880.98 31892.91 19893.78 31089.66 16498.87 15987.03 27096.39 16999.09 182
EG-PatchMatch MVS85.35 29583.81 29689.99 30790.39 32581.89 32698.21 28496.09 31281.78 31674.73 33093.72 31151.56 34097.12 25879.16 31388.61 23190.96 325
N_pmnet80.06 30880.78 30677.89 32391.94 31145.28 35098.80 25256.82 35478.10 32580.08 31693.33 31277.03 26695.76 31268.14 33382.81 27692.64 312
MDA-MVSNet-bldmvs84.09 30181.52 30591.81 29291.32 31988.00 29998.67 26195.92 31580.22 32055.60 34393.32 31368.29 31293.60 33273.76 32676.61 32293.82 287
CR-MVSNet93.45 19792.62 19895.94 19496.29 23292.66 22192.01 33496.23 30892.62 16596.94 13793.31 31491.04 14996.03 30679.23 31295.96 17699.13 180
Patchmtry89.70 27088.49 27293.33 27096.24 23489.94 27791.37 33796.23 30878.22 32487.69 26893.31 31491.04 14996.03 30680.18 31182.10 28094.02 268
MIMVSNet90.30 25988.67 27095.17 21196.45 23191.64 24992.39 33297.15 26285.99 28790.50 21693.19 31666.95 31594.86 32382.01 30293.43 20699.01 185
YYNet185.50 29483.33 29792.00 28990.89 32288.38 29599.22 21096.55 30379.60 32257.26 34192.72 31779.09 25793.78 33077.25 31977.37 31793.84 285
MVS_030489.28 27788.31 27592.21 28797.05 21186.53 30497.76 29699.57 1285.58 29593.86 18992.71 31851.04 34196.30 29684.49 28792.72 21293.79 288
MDA-MVSNet_test_wron85.51 29383.32 29892.10 28890.96 32188.58 29199.20 21196.52 30479.70 32157.12 34292.69 31979.11 25693.86 32977.10 32077.46 31693.86 284
MIMVSNet182.58 30480.51 30788.78 31386.68 33484.20 31796.65 30995.41 32378.75 32378.59 32092.44 32051.88 33989.76 33965.26 33878.95 30492.38 315
FMVSNet588.32 28287.47 28390.88 29796.90 21888.39 29497.28 30295.68 31882.60 31384.67 30092.40 32179.83 25191.16 33676.39 32381.51 28593.09 307
DSMNet-mixed88.28 28388.24 27788.42 31589.64 32975.38 33798.06 28989.86 34585.59 29488.20 26492.14 32276.15 27791.95 33578.46 31496.05 17497.92 204
patchmatchnet-post91.70 32395.12 4897.95 221
OpenMVS_ROBcopyleft79.82 2083.77 30381.68 30490.03 30688.30 33282.82 31998.46 27095.22 32773.92 33576.00 32791.29 32455.00 33796.94 27068.40 33288.51 23590.34 328
Patchmatch-RL test86.90 28785.98 28889.67 30884.45 33675.59 33689.71 33992.43 34086.89 27877.83 32290.94 32594.22 8293.63 33187.75 26069.61 33099.79 97
FPMVS68.72 31068.72 31268.71 32865.95 34744.27 35295.97 31994.74 33251.13 34153.26 34490.50 32625.11 34983.00 34460.80 34080.97 29378.87 340
new_pmnet84.49 30082.92 30089.21 31090.03 32782.60 32096.89 30895.62 32080.59 31975.77 32989.17 32765.04 32294.79 32472.12 32781.02 29190.23 329
PM-MVS80.47 30678.88 30985.26 31983.79 33872.22 33895.89 32091.08 34385.71 29376.56 32688.30 32836.64 34493.90 32882.39 29969.57 33189.66 333
pmmvs380.27 30777.77 31087.76 31680.32 34182.43 32298.23 28291.97 34172.74 33678.75 31987.97 32957.30 33690.99 33770.31 32962.37 33989.87 331
pmmvs-eth3d84.03 30281.97 30290.20 30484.15 33787.09 30298.10 28894.73 33383.05 30974.10 33187.77 33065.56 32094.01 32681.08 30769.24 33289.49 334
test12337.68 32139.14 32333.31 33419.94 35424.83 35598.36 2769.75 35615.53 35051.31 34587.14 33119.62 35217.74 35247.10 3443.47 35057.36 345
new-patchmatchnet81.19 30579.34 30886.76 31882.86 33980.36 33497.92 29295.27 32682.09 31572.02 33286.87 33262.81 32790.74 33871.10 32863.08 33889.19 336
ambc83.23 32177.17 34262.61 34187.38 34194.55 33576.72 32586.65 33330.16 34596.36 29384.85 28669.86 32990.73 327
testing_285.10 29681.72 30395.22 20982.25 34094.16 19097.54 29897.01 27488.15 25962.23 33786.43 33444.43 34397.18 25292.28 20585.20 26194.31 241
PatchT90.38 25688.75 26995.25 20895.99 23990.16 27291.22 33897.54 22376.80 32697.26 13186.01 33591.88 13696.07 30566.16 33695.91 17899.51 144
RPMNet89.39 27487.20 28595.94 19496.29 23292.66 22192.01 33497.63 20970.19 33896.94 13785.87 33687.25 18996.03 30662.69 33995.96 17699.13 180
UnsupCasMVSNet_bld79.97 30977.03 31188.78 31385.62 33581.98 32593.66 32897.35 24675.51 33270.79 33483.05 33748.70 34294.91 32278.31 31560.29 34089.46 335
LCM-MVSNet67.77 31164.73 31476.87 32462.95 34956.25 34689.37 34093.74 33944.53 34361.99 33880.74 33820.42 35186.53 34269.37 33159.50 34187.84 337
PMMVS267.15 31264.15 31576.14 32570.56 34662.07 34393.89 32687.52 34958.09 34060.02 33978.32 33922.38 35084.54 34359.56 34147.03 34281.80 339
JIA-IIPM91.76 23290.70 23194.94 21796.11 23587.51 30093.16 33098.13 17475.79 33097.58 12577.68 34092.84 11797.97 21888.47 25396.54 16699.33 164
PMVScopyleft49.05 2353.75 31651.34 31960.97 33140.80 35334.68 35374.82 34589.62 34737.55 34528.67 35172.12 3417.09 35581.63 34543.17 34668.21 33466.59 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet86.22 28983.19 29995.31 20796.71 22990.29 27092.12 33397.33 24862.85 33986.82 28070.37 34269.37 30697.49 23575.12 32597.99 14198.15 201
gg-mvs-nofinetune93.51 19491.86 21598.47 11297.72 18597.96 7692.62 33198.51 9374.70 33397.33 13069.59 34398.91 397.79 22697.77 11099.56 10099.67 114
Gipumacopyleft66.95 31365.00 31372.79 32691.52 31767.96 34066.16 34695.15 33047.89 34258.54 34067.99 34429.74 34687.54 34150.20 34377.83 31262.87 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high56.10 31552.24 31767.66 32949.27 35156.82 34583.94 34282.02 35070.47 33733.28 35064.54 34517.23 35369.16 34845.59 34523.85 34677.02 341
E-PMN52.30 31752.18 31852.67 33271.51 34445.40 34993.62 32976.60 35236.01 34643.50 34764.13 34627.11 34867.31 34931.06 34826.06 34445.30 348
test_post63.35 34794.43 6898.13 211
MVEpermissive53.74 2251.54 31847.86 32162.60 33059.56 35050.93 34779.41 34477.69 35135.69 34736.27 34961.76 3485.79 35769.63 34737.97 34736.61 34367.24 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 31951.22 32052.11 33370.71 34544.97 35194.04 32575.66 35335.34 34842.40 34861.56 34928.93 34765.87 35027.64 34924.73 34545.49 347
test_post195.78 32159.23 35093.20 11197.74 22891.06 220
X-MVStestdata93.83 18492.06 21099.15 6199.94 1497.50 9399.94 5598.42 12396.22 4999.41 5441.37 35194.34 7599.96 5398.92 5999.95 5099.99 20
wuyk23d20.37 32320.84 32518.99 33665.34 34827.73 35450.43 3477.67 3579.50 3518.01 3526.34 3526.13 35626.24 35123.40 35010.69 3492.99 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.60 32510.13 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35391.20 1440.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.93 2699.31 798.41 12797.71 899.84 8100.00 1100.00 1100.00 1
save fliter99.82 6398.79 3399.96 2398.40 12997.66 10
test_0728_SECOND99.82 599.94 1499.47 599.95 4098.43 112100.00 199.99 5100.00 1100.00 1
GSMVS99.59 127
test_part299.89 4499.25 1399.49 48
test_part10.00 3370.00 3570.00 34898.41 1270.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs194.72 6399.59 127
sam_mvs94.25 81
MTGPAbinary98.28 151
MTMP99.87 8796.49 305
test9_res99.71 2999.99 20100.00 1
agg_prior299.48 35100.00 1100.00 1
agg_prior99.93 2698.77 3698.43 11299.63 3599.85 94
test_prior498.05 7099.94 55
test_prior99.43 3599.94 1498.49 5698.65 5999.80 10699.99 20
旧先验299.46 18494.21 10799.85 699.95 6096.96 129
新几何299.40 188
无先验99.49 17998.71 5293.46 137100.00 194.36 16999.99 20
原ACMM299.90 73
testdata299.99 3690.54 231
segment_acmp96.68 22
testdata199.28 20696.35 48
test1299.43 3599.74 7398.56 5298.40 12999.65 3394.76 6299.75 11699.98 3399.99 20
plane_prior795.71 25291.59 251
plane_prior695.76 24791.72 24680.47 247
plane_prior597.87 19598.37 19897.79 10889.55 21894.52 224
plane_prior391.64 24996.63 3893.01 195
plane_prior299.84 10596.38 44
plane_prior195.73 249
plane_prior91.74 24399.86 9896.76 3489.59 217
n20.00 358
nn0.00 358
door-mid89.69 346
test1198.44 104
door90.31 344
HQP5-MVS91.85 239
HQP-NCC95.78 24399.87 8796.82 3093.37 191
ACMP_Plane95.78 24399.87 8796.82 3093.37 191
BP-MVS97.92 105
HQP4-MVS93.37 19198.39 19394.53 222
HQP3-MVS97.89 19389.60 215
HQP2-MVS80.65 243
MDTV_nov1_ep13_2view96.26 13396.11 31691.89 18998.06 11594.40 7094.30 17299.67 114
ACMMP++_ref87.04 248
ACMMP++88.23 237
Test By Simon92.82 119