This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2598.43 11697.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2599.80 5897.44 11100.00 1100.00 199.98 33100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2699.30 898.43 11697.26 2299.80 1699.88 2296.71 20100.00 1
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7698.55 8395.14 7899.72 3199.84 4695.46 43100.00 199.65 3299.99 2099.99 20
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4398.32 15197.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
test_0728_SECOND99.82 599.94 1499.47 599.95 4398.43 116100.00 199.99 5100.00 1100.00 1
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2598.44 10897.96 799.55 4599.94 497.18 17100.00 193.81 19199.94 5799.98 51
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6498.39 13594.04 12398.80 9199.74 8192.98 118100.00 198.16 9799.76 8999.93 81
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 10198.38 13993.19 15199.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10498.37 14294.68 9299.53 4799.83 4992.87 120100.00 198.66 8299.84 8099.99 20
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 12298.28 15895.76 6297.18 14199.88 2292.74 124100.00 198.67 7999.88 7699.99 20
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 20098.28 15895.76 6297.18 14199.88 2292.74 124100.00 198.67 7999.88 7699.99 20
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4398.61 6994.77 8899.31 6699.85 3394.22 83100.00 198.70 7799.98 3399.98 51
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2598.55 8394.87 8699.45 5399.85 3394.07 89100.00 198.67 79100.00 199.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4398.61 6995.00 8199.31 6699.85 3394.22 83100.00 198.78 7399.98 3399.98 51
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4398.56 7797.56 1399.44 5499.85 3395.38 45100.00 199.31 4399.99 2099.87 93
新几何199.42 3899.75 7698.27 6598.63 6692.69 16899.55 4599.82 5394.40 71100.00 191.21 22599.94 5799.99 20
无先验99.49 18698.71 5393.46 144100.00 194.36 17899.99 20
112198.03 6997.57 8099.40 4199.74 7798.21 6698.31 29198.62 6792.78 16399.53 4799.83 4995.08 50100.00 194.36 17899.92 6799.99 20
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 1098.86 4597.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4398.60 7194.77 8899.31 6699.84 4693.73 98100.00 198.70 7799.98 3399.98 51
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4398.39 13594.70 9198.26 11999.81 5791.84 145100.00 198.85 6799.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13799.50 1693.90 13099.37 6399.76 7293.24 113100.00 197.75 12099.96 4899.98 51
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1898.64 6398.47 299.13 7899.92 1196.38 26100.00 199.74 24100.00 1100.00 1
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4398.38 13995.04 8098.61 10399.80 5893.39 104100.00 198.64 83100.00 199.98 51
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 1098.69 5598.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1898.62 6798.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12699.97 1898.39 13594.43 10298.90 8899.87 2694.30 81100.00 199.04 5499.99 2099.99 20
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6898.44 10892.06 19598.40 11299.84 4695.68 38100.00 198.19 9599.71 9399.97 63
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 1098.80 5090.78 22999.62 4099.78 6695.30 46100.00 199.80 1899.93 6399.99 20
DeepPCF-MVS95.94 297.71 8598.98 1093.92 26799.63 8881.76 34299.96 2598.56 7799.47 199.19 7699.99 194.16 87100.00 199.92 999.93 63100.00 1
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21998.47 10398.14 499.08 7999.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary97.23 10196.80 10598.51 11299.99 195.60 16699.09 22898.84 4793.32 14796.74 15199.72 8486.04 211100.00 198.01 10599.43 11299.94 80
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5898.44 10894.31 11098.50 10799.82 5393.06 11799.99 3698.30 9499.99 2099.93 81
DPE-MVScopyleft99.26 699.10 799.74 799.89 4599.24 1499.87 9098.44 10897.48 1599.64 3699.94 496.68 2299.99 3699.99 5100.00 199.99 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
testdata299.99 3690.54 241
CPTT-MVS97.64 8797.32 8998.58 10599.97 395.77 15999.96 2598.35 14689.90 24298.36 11399.79 6291.18 15599.99 3698.37 9199.99 2099.99 20
API-MVS97.86 7497.66 7498.47 11499.52 9695.41 17099.47 18998.87 4491.68 20598.84 8999.85 3392.34 13499.99 3698.44 8999.96 48100.00 1
ACMMPcopyleft97.74 8397.44 8398.66 9799.92 3596.13 14799.18 22399.45 1794.84 8796.41 16199.71 8691.40 14999.99 3697.99 10798.03 14699.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet_DTU96.76 11796.15 12198.60 10298.78 13697.53 9099.84 10897.63 21797.25 2399.20 7399.64 9981.36 24899.98 4292.77 21198.89 12498.28 206
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5898.34 14896.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_697.67 8697.34 8798.66 9799.68 8696.11 15099.68 15398.14 18093.80 13499.27 7199.70 8888.65 19099.98 4297.46 12499.72 9299.89 90
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14799.82 11598.43 11694.56 9797.52 13499.70 8894.40 7199.98 4297.00 13599.98 3399.99 20
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4398.43 11695.35 7398.03 12499.75 7794.03 9099.98 4298.11 10099.83 8199.99 20
CSCG97.10 10497.04 9897.27 16699.89 4591.92 24899.90 7699.07 3188.67 26295.26 18199.82 5393.17 11599.98 4298.15 9899.47 10999.90 89
CNLPA97.76 8297.38 8498.92 8599.53 9596.84 11899.87 9098.14 18093.78 13596.55 15699.69 9192.28 13599.98 4297.13 13199.44 11199.93 81
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16399.44 1897.33 1799.00 8599.72 8494.03 9099.98 4298.73 76100.00 1100.00 1
MAR-MVS97.43 9197.19 9298.15 13299.47 10094.79 18999.05 23998.76 5192.65 17198.66 10099.82 5388.52 19199.98 4298.12 9999.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVS-pluss98.07 6897.64 7599.38 4499.74 7798.41 6099.74 14098.18 17393.35 14696.45 15899.85 3392.64 12799.97 5198.91 6399.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PLCcopyleft95.54 397.93 7297.89 6998.05 13699.82 6594.77 19099.92 6898.46 10593.93 12897.20 14099.27 12995.44 4499.97 5197.41 12599.51 10899.41 161
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5898.42 12796.22 4999.41 5799.78 6694.34 7699.96 5398.92 6199.95 5199.99 20
X-MVStestdata93.83 19192.06 22099.15 6199.94 1497.50 9499.94 5898.42 12796.22 4999.41 5741.37 36894.34 7699.96 5398.92 6199.95 5199.99 20
原ACMM198.96 8299.73 8196.99 11498.51 9794.06 12199.62 4099.85 3394.97 5999.96 5395.11 15799.95 5199.92 87
131496.84 11395.96 13299.48 3396.74 24098.52 5598.31 29198.86 4595.82 5889.91 23598.98 15187.49 19799.96 5397.80 11399.73 9199.96 70
MVS96.60 12595.56 14499.72 996.85 23399.22 1598.31 29198.94 3691.57 20890.90 22399.61 10186.66 20699.96 5397.36 12699.88 7699.99 20
UGNet95.33 15794.57 16597.62 15398.55 14294.85 18598.67 27599.32 2495.75 6596.80 15096.27 25272.18 31199.96 5394.58 17499.05 12398.04 210
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
QAPM95.40 15694.17 17299.10 6996.92 22797.71 8399.40 19698.68 5689.31 24788.94 26198.89 16182.48 23799.96 5393.12 20899.83 8199.62 126
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 1098.51 9797.00 2898.52 10599.71 8687.80 19499.95 6099.75 2299.38 11399.83 96
旧先验299.46 19194.21 11499.85 699.95 6096.96 137
PVSNet_BlendedMVS96.05 14195.82 13996.72 18099.59 9096.99 11499.95 4399.10 2894.06 12198.27 11795.80 26189.00 18599.95 6099.12 4787.53 25293.24 315
PVSNet_Blended97.94 7197.64 7598.83 8899.59 9096.99 114100.00 199.10 2895.38 7298.27 11799.08 14189.00 18599.95 6099.12 4799.25 11799.57 138
DP-MVS94.54 17793.42 19297.91 14199.46 10294.04 20098.93 25197.48 23981.15 33290.04 23299.55 10587.02 20399.95 6088.97 25798.11 14199.73 109
PVSNet91.05 1397.13 10396.69 10898.45 11699.52 9695.81 15799.95 4399.65 1094.73 9099.04 8199.21 13684.48 22599.95 6094.92 16098.74 12899.58 137
3Dnovator91.47 1296.28 13895.34 14999.08 7196.82 23597.47 9799.45 19298.81 4895.52 7089.39 24999.00 14881.97 24099.95 6097.27 12899.83 8199.84 95
LS3D95.84 14695.11 15698.02 13799.85 5595.10 18098.74 26898.50 10187.22 28293.66 19999.86 2987.45 19899.95 6090.94 23499.81 8799.02 190
testdata98.42 11999.47 10095.33 17298.56 7793.78 13599.79 2199.85 3393.64 10199.94 6894.97 15999.94 57100.00 1
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12599.97 1897.92 19998.07 598.76 9599.55 10595.00 5799.94 6899.91 1197.68 15099.99 20
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7397.70 998.21 12199.24 13492.58 12899.94 6898.63 8499.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
F-COLMAP96.93 11096.95 10196.87 17599.71 8491.74 25399.85 10497.95 19593.11 15495.72 17499.16 13892.35 13399.94 6895.32 15599.35 11498.92 192
3Dnovator+91.53 1196.31 13595.24 15199.52 2696.88 23298.64 4999.72 14898.24 16495.27 7688.42 27298.98 15182.76 23699.94 6897.10 13399.83 8199.96 70
OpenMVScopyleft90.15 1594.77 16993.59 18698.33 12396.07 24997.48 9699.56 17498.57 7590.46 23286.51 29698.95 15778.57 27499.94 6893.86 18799.74 9097.57 219
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7699.51 1597.60 1299.20 7399.36 12493.71 9999.91 7497.99 10798.71 12999.61 128
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052992.10 23290.65 24396.47 18698.82 13390.61 27498.72 27098.67 5975.54 34793.90 19798.58 18266.23 33399.90 7594.70 17190.67 22198.90 195
CHOSEN 1792x268896.81 11496.53 11397.64 15198.91 12793.07 22099.65 15999.80 395.64 6795.39 17898.86 16784.35 22799.90 7596.98 13699.16 12199.95 78
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15899.87 9099.86 296.70 3698.78 9299.79 6292.03 14199.90 7599.17 4699.86 7999.88 92
DeepC-MVS94.51 496.92 11196.40 11798.45 11699.16 11095.90 15499.66 15698.06 18696.37 4794.37 19099.49 11083.29 23499.90 7597.63 12199.61 10199.55 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13598.92 2399.54 17898.17 17497.34 1699.85 699.85 3391.20 15299.89 7999.41 4099.67 9598.69 203
VNet97.21 10296.57 11299.13 6898.97 11997.82 8199.03 24199.21 2794.31 11099.18 7798.88 16386.26 21099.89 7998.93 6094.32 20599.69 114
sss97.57 8897.03 9999.18 5498.37 14998.04 7299.73 14599.38 2193.46 14498.76 9599.06 14291.21 15199.89 7996.33 14497.01 16699.62 126
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6499.90 196.81 3398.67 9999.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
PVSNet_088.03 1991.80 23990.27 25196.38 19398.27 15690.46 27899.94 5899.61 1193.99 12486.26 30397.39 21571.13 31799.89 7998.77 7467.05 34998.79 200
PCF-MVS94.20 595.18 15994.10 17498.43 11898.55 14295.99 15297.91 30797.31 25790.35 23589.48 24899.22 13585.19 22099.89 7990.40 24598.47 13399.41 161
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521193.10 20991.99 22196.40 19199.10 11289.65 29298.88 25697.93 19783.71 32194.00 19598.75 17268.79 32299.88 8595.08 15891.71 22099.68 115
AllTest92.48 22391.64 22695.00 22499.01 11588.43 30598.94 25096.82 30586.50 29188.71 26398.47 19074.73 30199.88 8585.39 29296.18 17896.71 223
TestCases95.00 22499.01 11588.43 30596.82 30586.50 29188.71 26398.47 19074.73 30199.88 8585.39 29296.18 17896.71 223
PVSNet_Blended_VisFu97.27 9996.81 10498.66 9798.81 13496.67 12499.92 6898.64 6394.51 9996.38 16298.49 18689.05 18499.88 8597.10 13398.34 13599.43 159
MSDG94.37 18393.36 19697.40 16098.88 13093.95 20499.37 20397.38 25085.75 30390.80 22499.17 13784.11 22999.88 8586.35 28698.43 13498.36 205
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2597.52 23497.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7698.21 16893.53 14299.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6498.46 10594.56 9799.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7698.37 14293.81 13399.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 10198.24 16492.18 19099.73 2799.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
9.1498.38 3899.87 5299.91 7298.33 14993.22 15099.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
TEST999.92 3598.92 2399.96 2598.43 11693.90 13099.71 3299.86 2995.88 3499.85 94
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2598.43 11694.35 10799.71 3299.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
test_899.92 3598.88 2699.96 2598.43 11694.35 10799.69 3499.85 3395.94 3199.85 94
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2598.43 11694.63 9699.63 3899.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
agg_prior99.93 2698.77 3698.43 11699.63 3899.85 94
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13897.71 8399.98 1098.44 10896.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
COLMAP_ROBcopyleft90.47 1492.18 23091.49 23294.25 25499.00 11788.04 31198.42 28996.70 31282.30 32988.43 27099.01 14676.97 28199.85 9486.11 28996.50 17494.86 230
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_yl97.83 7797.37 8599.21 5199.18 10897.98 7599.64 16399.27 2591.43 21497.88 12898.99 14995.84 3599.84 10398.82 6995.32 19799.79 100
DCV-MVSNet97.83 7797.37 8599.21 5199.18 10897.98 7599.64 16399.27 2591.43 21497.88 12898.99 14995.84 3599.84 10398.82 6995.32 19799.79 100
PatchMatch-RL96.04 14295.40 14697.95 13899.59 9095.22 17899.52 18099.07 3193.96 12696.49 15798.35 19382.28 23899.82 10590.15 24899.22 12098.81 199
ZD-MVS99.92 3598.57 5198.52 9092.34 18699.31 6699.83 4995.06 5299.80 10699.70 3099.97 44
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4398.65 6095.78 6099.73 2799.76 7296.00 2999.80 10699.78 20100.00 199.99 20
test_prior99.43 3599.94 1498.49 5798.65 6099.80 10699.99 20
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 7298.39 13597.20 2499.46 5299.85 3395.53 4299.79 10999.86 12100.00 199.99 20
XVG-OURS-SEG-HR94.79 16794.70 16495.08 22198.05 16889.19 29599.08 23097.54 23093.66 13994.87 18499.58 10378.78 27299.79 10997.31 12793.40 21496.25 225
test117298.38 5398.25 4798.77 9099.88 4996.56 12999.80 12298.36 14494.68 9299.20 7399.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13699.76 13498.31 15394.43 10299.40 6199.75 7793.28 11099.78 11198.90 6499.92 6799.97 63
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10898.35 14694.92 8399.32 6599.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
RPMNet89.76 28087.28 29597.19 16796.29 24592.66 23192.01 35098.31 15370.19 35496.94 14585.87 35387.25 20099.78 11162.69 35695.96 18399.13 186
hse-mvs394.92 16594.36 16896.59 18598.85 13291.29 26498.93 25198.94 3695.90 5698.77 9398.42 19290.89 16199.77 11597.80 11370.76 33998.72 202
VDD-MVS93.77 19592.94 20196.27 19598.55 14290.22 28298.77 26797.79 21090.85 22796.82 14999.42 11661.18 34899.77 11598.95 5894.13 20798.82 198
HY-MVS92.50 797.79 8197.17 9499.63 1298.98 11899.32 697.49 31299.52 1395.69 6698.32 11597.41 21393.32 10799.77 11598.08 10395.75 19099.81 98
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 9098.52 9096.05 5399.41 5799.79 6294.93 6099.76 11899.07 4999.90 7299.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 9098.52 9096.04 5499.41 5799.79 6294.92 6199.76 11899.05 5099.90 7299.98 51
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12799.82 11598.30 15693.95 12799.37 6399.77 6892.84 12199.76 11898.95 5899.92 6799.97 63
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15698.52 9095.79 5999.01 8399.77 6894.40 7199.75 12198.82 6999.83 8199.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15698.52 9095.76 6299.01 8399.77 6894.33 7999.75 12198.80 7299.83 8199.98 51
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 9098.33 14993.97 12599.76 2499.87 2694.99 5899.75 12198.55 86100.00 199.98 51
test1299.43 3599.74 7798.56 5398.40 13299.65 3594.76 6399.75 12199.98 3399.99 20
XVG-OURS94.82 16694.74 16395.06 22298.00 17089.19 29599.08 23097.55 22894.10 11794.71 18599.62 10080.51 25999.74 12596.04 14893.06 21896.25 225
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 9098.36 14494.08 11899.74 2699.73 8394.08 8899.74 12599.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WTY-MVS98.10 6797.60 7899.60 1798.92 12599.28 1299.89 8499.52 1395.58 6998.24 12099.39 12193.33 10699.74 12597.98 10995.58 19399.78 103
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13899.36 20598.50 10195.21 7798.30 11699.75 7793.29 10999.73 12898.37 9199.30 11599.81 98
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4398.42 12797.50 1499.52 5099.88 2297.43 1299.71 12999.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13998.66 4699.52 18098.08 18597.05 2699.86 499.86 2990.65 16399.71 12999.39 4198.63 13098.69 203
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12899.40 19698.51 9795.29 7598.51 10699.76 7293.60 10299.71 12998.53 8799.52 10699.95 78
ab-mvs94.69 17193.42 19298.51 11298.07 16796.26 13996.49 32798.68 5690.31 23694.54 18697.00 22876.30 28999.71 12995.98 14993.38 21599.56 139
xiu_mvs_v1_base_debu97.43 9197.06 9598.55 10697.74 18898.14 6799.31 21097.86 20596.43 4199.62 4099.69 9185.56 21599.68 13399.05 5098.31 13797.83 212
xiu_mvs_v1_base97.43 9197.06 9598.55 10697.74 18898.14 6799.31 21097.86 20596.43 4199.62 4099.69 9185.56 21599.68 13399.05 5098.31 13797.83 212
xiu_mvs_v1_base_debi97.43 9197.06 9598.55 10697.74 18898.14 6799.31 21097.86 20596.43 4199.62 4099.69 9185.56 21599.68 13399.05 5098.31 13797.83 212
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13599.90 7698.17 17492.61 17398.62 10299.57 10491.87 14499.67 13698.87 6699.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UA-Net96.54 12695.96 13298.27 12698.23 15995.71 16398.00 30598.45 10793.72 13898.41 11099.27 12988.71 18999.66 13791.19 22697.69 14999.44 158
HPM-MVS_fast97.80 8097.50 8198.68 9599.79 7096.42 13299.88 8798.16 17791.75 20498.94 8799.54 10791.82 14699.65 13897.62 12299.99 2099.99 20
114514_t97.41 9596.83 10399.14 6399.51 9897.83 8099.89 8498.27 16188.48 26699.06 8099.66 9790.30 16799.64 13996.32 14599.97 4499.96 70
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12998.38 13996.73 3599.88 399.74 8194.89 6299.59 14099.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LFMVS94.75 17093.56 18898.30 12499.03 11495.70 16498.74 26897.98 19287.81 27598.47 10899.39 12167.43 33099.53 14198.01 10595.20 19999.67 117
canonicalmvs97.09 10696.32 11899.39 4398.93 12398.95 2199.72 14897.35 25294.45 10097.88 12899.42 11686.71 20599.52 14298.48 8893.97 21099.72 111
thres20096.96 10896.21 12099.22 5098.97 11998.84 3099.85 10499.71 593.17 15296.26 16498.88 16389.87 17299.51 14394.26 18294.91 20099.31 172
OMC-MVS97.28 9897.23 9197.41 15999.76 7493.36 21899.65 15997.95 19596.03 5597.41 13799.70 8889.61 17499.51 14396.73 14298.25 14099.38 163
thres100view90096.74 11995.92 13599.18 5498.90 12898.77 3699.74 14099.71 592.59 17595.84 17098.86 16789.25 18199.50 14593.84 18894.57 20199.27 175
tfpn200view996.79 11595.99 12599.19 5398.94 12198.82 3199.78 12699.71 592.86 15796.02 16798.87 16589.33 17999.50 14593.84 18894.57 20199.27 175
thres600view796.69 12295.87 13899.14 6398.90 12898.78 3599.74 14099.71 592.59 17595.84 17098.86 16789.25 18199.50 14593.44 20194.50 20499.16 182
thres40096.78 11695.99 12599.16 5998.94 12198.82 3199.78 12699.71 592.86 15796.02 16798.87 16589.33 17999.50 14593.84 18894.57 20199.16 182
VDDNet93.12 20891.91 22396.76 17896.67 24392.65 23398.69 27398.21 16882.81 32697.75 13199.28 12661.57 34699.48 14998.09 10294.09 20898.15 208
RPSCF91.80 23992.79 20488.83 32498.15 16469.87 35598.11 30196.60 31583.93 31994.33 19199.27 12979.60 26699.46 15091.99 21693.16 21797.18 221
alignmvs97.81 7997.33 8899.25 4998.77 13798.66 4699.99 598.44 10894.40 10698.41 11099.47 11193.65 10099.42 15198.57 8594.26 20699.67 117
Test_1112_low_res95.72 14894.83 16098.42 11997.79 18496.41 13399.65 15996.65 31492.70 16792.86 21096.13 25692.15 13899.30 15291.88 21993.64 21299.55 140
1112_ss96.01 14395.20 15398.42 11997.80 18396.41 13399.65 15996.66 31392.71 16692.88 20999.40 11992.16 13799.30 15291.92 21893.66 21199.55 140
cascas94.64 17493.61 18397.74 14997.82 18296.26 13999.96 2597.78 21185.76 30194.00 19597.54 21076.95 28299.21 15497.23 12995.43 19597.76 216
TAPA-MVS92.12 894.42 18193.60 18596.90 17499.33 10691.78 25299.78 12698.00 18989.89 24394.52 18799.47 11191.97 14299.18 15569.90 34699.52 10699.73 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IB-MVS92.85 694.99 16493.94 17898.16 12997.72 19295.69 16599.99 598.81 4894.28 11292.70 21196.90 23095.08 5099.17 15696.07 14773.88 33799.60 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9597.02 10098.59 10497.71 19497.52 9199.97 1898.54 8791.83 20097.45 13699.04 14397.50 899.10 15794.75 16896.37 17799.16 182
thisisatest053097.10 10496.72 10798.22 12897.60 19796.70 12299.92 6898.54 8791.11 22197.07 14498.97 15397.47 999.03 15893.73 19696.09 18098.92 192
tttt051796.85 11296.49 11497.92 14097.48 20595.89 15699.85 10498.54 8790.72 23096.63 15398.93 16097.47 999.02 15993.03 20995.76 18998.85 196
mvs-test195.53 15395.97 13094.20 25597.77 18585.44 32499.95 4397.06 28194.92 8396.58 15498.72 17385.81 21298.98 16094.80 16598.11 14198.18 207
MVS_Test96.46 12995.74 14098.61 10198.18 16297.23 10599.31 21097.15 27091.07 22298.84 8997.05 22688.17 19398.97 16194.39 17797.50 15399.61 128
tpmvs94.28 18793.57 18796.40 19198.55 14291.50 26295.70 33898.55 8387.47 27792.15 21394.26 31891.42 14898.95 16288.15 26695.85 18698.76 201
EIA-MVS97.53 8997.46 8297.76 14798.04 16994.84 18699.98 1097.61 22294.41 10597.90 12799.59 10292.40 13298.87 16398.04 10499.13 12299.59 131
tpm cat193.51 20192.52 21296.47 18697.77 18591.47 26396.13 33198.06 18680.98 33392.91 20893.78 32289.66 17398.87 16387.03 28196.39 17699.09 188
ETV-MVS97.92 7397.80 7198.25 12798.14 16596.48 13099.98 1097.63 21795.61 6899.29 7099.46 11392.55 12998.82 16599.02 5698.54 13199.46 154
BH-RMVSNet95.18 15994.31 17097.80 14398.17 16395.23 17799.76 13497.53 23292.52 18094.27 19299.25 13376.84 28398.80 16690.89 23699.54 10599.35 168
gm-plane-assit96.97 22693.76 20891.47 21298.96 15598.79 16794.92 160
casdiffmvs96.42 13195.97 13097.77 14697.30 21494.98 18299.84 10897.09 27793.75 13796.58 15499.26 13285.07 22198.78 16897.77 11897.04 16599.54 144
DWT-MVSNet_test97.31 9797.19 9297.66 15098.24 15894.67 19198.86 26098.20 17293.60 14198.09 12298.89 16197.51 798.78 16894.04 18597.28 15999.55 140
TR-MVS94.54 17793.56 18897.49 15697.96 17294.34 19698.71 27197.51 23690.30 23794.51 18898.69 17475.56 29498.77 17092.82 21095.99 18299.35 168
diffmvs97.00 10796.64 10998.09 13497.64 19596.17 14699.81 11797.19 26494.67 9498.95 8699.28 12686.43 20898.76 17198.37 9197.42 15699.33 170
Vis-MVSNetpermissive95.72 14895.15 15597.45 15797.62 19694.28 19799.28 21698.24 16494.27 11396.84 14898.94 15879.39 26798.76 17193.25 20298.49 13299.30 173
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tpmrst96.27 13995.98 12797.13 16897.96 17293.15 21996.34 32998.17 17492.07 19398.71 9895.12 29493.91 9398.73 17394.91 16296.62 17199.50 151
PMMVS96.76 11796.76 10696.76 17898.28 15492.10 24399.91 7297.98 19294.12 11699.53 4799.39 12186.93 20498.73 17396.95 13897.73 14899.45 156
lupinMVS97.85 7597.60 7898.62 10097.28 21697.70 8599.99 597.55 22895.50 7199.43 5599.67 9590.92 15998.71 17598.40 9099.62 9899.45 156
Effi-MVS+96.30 13695.69 14198.16 12997.85 18096.26 13997.41 31397.21 26390.37 23498.65 10198.58 18286.61 20798.70 17697.11 13297.37 15899.52 147
baseline195.78 14794.86 15998.54 10998.47 14798.07 7099.06 23597.99 19092.68 16994.13 19498.62 17993.28 11098.69 17793.79 19385.76 26198.84 197
BH-w/o95.71 15095.38 14896.68 18198.49 14692.28 23999.84 10897.50 23792.12 19292.06 21498.79 17184.69 22398.67 17895.29 15699.66 9699.09 188
baseline96.43 13095.98 12797.76 14797.34 21095.17 17999.51 18297.17 26793.92 12996.90 14799.28 12685.37 21898.64 17997.50 12396.86 17099.46 154
baseline296.71 12196.49 11497.37 16295.63 26995.96 15399.74 14098.88 4392.94 15691.61 21698.97 15397.72 598.62 18094.83 16498.08 14597.53 220
MDTV_nov1_ep1395.69 14197.90 17594.15 19895.98 33498.44 10893.12 15397.98 12595.74 26395.10 4998.58 18190.02 24996.92 168
jason97.24 10096.86 10298.38 12295.73 26297.32 10399.97 1897.40 24995.34 7498.60 10499.54 10787.70 19598.56 18297.94 11099.47 10999.25 177
jason: jason.
EPP-MVSNet96.69 12296.60 11096.96 17297.74 18893.05 22299.37 20398.56 7788.75 26095.83 17299.01 14696.01 2898.56 18296.92 13997.20 16299.25 177
BH-untuned95.18 15994.83 16096.22 19698.36 15091.22 26599.80 12297.32 25690.91 22591.08 22198.67 17583.51 23198.54 18494.23 18399.61 10198.92 192
PAPM98.60 3398.42 3199.14 6396.05 25098.96 2099.90 7699.35 2396.68 3798.35 11499.66 9796.45 2598.51 18599.45 3799.89 7499.96 70
OPM-MVS93.21 20692.80 20394.44 24893.12 30890.85 27099.77 12997.61 22296.19 5191.56 21798.65 17675.16 29998.47 18693.78 19489.39 22893.99 283
ACMP92.05 992.74 21792.42 21493.73 27195.91 25588.72 30099.81 11797.53 23294.13 11587.00 29098.23 19574.07 30598.47 18696.22 14688.86 23493.99 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS94.06 18993.90 17994.55 24196.02 25190.69 27199.98 1097.72 21296.62 3991.05 22298.85 17077.21 27998.47 18698.11 10089.51 22794.48 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMM91.95 1092.88 21492.52 21293.98 26695.75 26189.08 29899.77 12997.52 23493.00 15589.95 23497.99 20376.17 29198.46 18993.63 19988.87 23394.39 244
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dp95.05 16294.43 16796.91 17397.99 17192.73 22996.29 33097.98 19289.70 24595.93 16994.67 30993.83 9798.45 19086.91 28596.53 17399.54 144
CS-MVS-test97.85 7597.70 7398.30 12497.57 19896.72 121100.00 197.11 27495.06 7999.76 2499.45 11492.12 14098.44 19198.97 5799.28 11699.75 106
ACMH+89.98 1690.35 26789.54 26492.78 29395.99 25286.12 31998.81 26497.18 26689.38 24683.14 31997.76 20768.42 32698.43 19289.11 25686.05 26093.78 299
ITE_SJBPF92.38 29595.69 26785.14 32595.71 33292.81 16089.33 25298.11 19770.23 31998.42 19385.91 29088.16 24593.59 307
Fast-Effi-MVS+95.02 16394.19 17197.52 15597.88 17694.55 19299.97 1897.08 27888.85 25994.47 18997.96 20484.59 22498.41 19489.84 25197.10 16399.59 131
ACMH89.72 1790.64 26089.63 26193.66 27795.64 26888.64 30398.55 27997.45 24089.03 25181.62 32697.61 20969.75 32098.41 19489.37 25387.62 25193.92 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.96 21292.71 20593.71 27395.43 27188.67 30199.75 13797.62 21992.81 16090.05 23098.49 18675.24 29798.40 19695.84 15289.12 22994.07 275
LGP-MVS_train93.71 27395.43 27188.67 30197.62 21992.81 16090.05 23098.49 18675.24 29798.40 19695.84 15289.12 22994.07 275
XVG-ACMP-BASELINE91.22 24990.75 24092.63 29493.73 29785.61 32198.52 28397.44 24292.77 16489.90 23696.85 23466.64 33298.39 19892.29 21488.61 23893.89 291
HQP4-MVS93.37 20198.39 19894.53 231
HQP-MVS94.61 17594.50 16694.92 22795.78 25691.85 24999.87 9097.89 20196.82 3093.37 20198.65 17680.65 25798.39 19897.92 11189.60 22294.53 231
TDRefinement84.76 30982.56 31691.38 30674.58 36084.80 32897.36 31494.56 35084.73 31580.21 33396.12 25763.56 34298.39 19887.92 26963.97 35090.95 341
EPMVS96.53 12796.01 12498.09 13498.43 14896.12 14996.36 32899.43 1993.53 14297.64 13295.04 29694.41 7098.38 20291.13 22798.11 14199.75 106
HQP_MVS94.49 18094.36 16894.87 22895.71 26591.74 25399.84 10897.87 20396.38 4493.01 20598.59 18080.47 26198.37 20397.79 11689.55 22594.52 233
plane_prior597.87 20398.37 20397.79 11689.55 22594.52 233
TinyColmap87.87 29786.51 29891.94 30195.05 27785.57 32297.65 31194.08 35284.40 31781.82 32596.85 23462.14 34598.33 20580.25 32186.37 25991.91 334
CMPMVSbinary61.59 2184.75 31085.14 30483.57 33590.32 34062.54 35996.98 32297.59 22674.33 35069.95 35396.66 24064.17 34098.32 20687.88 27088.41 24389.84 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC90.00 27788.96 27693.10 28894.81 28088.16 30998.71 27195.54 33793.66 13983.75 31797.20 21965.58 33598.31 20783.96 30287.49 25392.85 322
TESTMET0.1,196.74 11996.26 11998.16 12997.36 20996.48 13099.96 2598.29 15791.93 19795.77 17398.07 19995.54 4098.29 20890.55 24098.89 12499.70 112
CostFormer96.10 14095.88 13796.78 17797.03 22392.55 23597.08 32097.83 20890.04 24198.72 9794.89 30395.01 5698.29 20896.54 14395.77 18899.50 151
AUN-MVS93.28 20592.60 20795.34 21398.29 15290.09 28599.31 21098.56 7791.80 20396.35 16398.00 20189.38 17898.28 21092.46 21269.22 34497.64 217
LTVRE_ROB88.28 1890.29 27089.05 27594.02 26295.08 27690.15 28497.19 31797.43 24384.91 31483.99 31597.06 22574.00 30698.28 21084.08 29987.71 24993.62 306
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test-LLR96.47 12896.04 12397.78 14497.02 22495.44 16899.96 2598.21 16894.07 11995.55 17596.38 24793.90 9498.27 21290.42 24398.83 12699.64 124
test-mter96.39 13295.93 13497.78 14497.02 22495.44 16899.96 2598.21 16891.81 20295.55 17596.38 24795.17 4798.27 21290.42 24398.83 12699.64 124
hse-mvs294.38 18294.08 17595.31 21598.27 15690.02 28699.29 21598.56 7795.90 5698.77 9398.00 20190.89 16198.26 21497.80 11369.20 34597.64 217
CS-MVS97.74 8397.61 7798.15 13297.52 20496.69 123100.00 197.11 27494.93 8299.73 2799.41 11891.68 14798.25 21598.84 6899.24 11999.52 147
HyFIR lowres test96.66 12496.43 11697.36 16399.05 11393.91 20599.70 15099.80 390.54 23196.26 16498.08 19892.15 13898.23 21696.84 14195.46 19499.93 81
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 28499.42 2097.03 2799.02 8299.09 14099.35 198.21 21799.73 2799.78 8899.77 104
ADS-MVSNet94.79 16794.02 17697.11 17097.87 17893.79 20694.24 33998.16 17790.07 23996.43 15994.48 31490.29 16898.19 21887.44 27397.23 16099.36 166
DROMVSNet97.45 9097.30 9097.90 14297.43 20695.90 15499.99 597.08 27894.64 9599.64 3699.33 12589.56 17598.15 21998.76 7599.25 11799.65 123
test_post63.35 36494.43 6998.13 220
LF4IMVS89.25 28888.85 27790.45 31492.81 31781.19 34498.12 30094.79 34791.44 21386.29 30297.11 22165.30 33898.11 22188.53 26285.25 26692.07 330
IS-MVSNet96.29 13795.90 13697.45 15798.13 16694.80 18899.08 23097.61 22292.02 19695.54 17798.96 15590.64 16498.08 22293.73 19697.41 15799.47 153
DeepMVS_CXcopyleft82.92 33795.98 25458.66 36196.01 32792.72 16578.34 33995.51 27558.29 35198.08 22282.57 30985.29 26592.03 332
PatchmatchNetpermissive95.94 14495.45 14597.39 16197.83 18194.41 19596.05 33398.40 13292.86 15797.09 14395.28 29194.21 8698.07 22489.26 25598.11 14199.70 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GeoE94.36 18593.48 19096.99 17197.29 21593.54 21299.96 2596.72 31188.35 26993.43 20098.94 15882.05 23998.05 22588.12 26896.48 17599.37 165
MS-PatchMatch90.65 25990.30 25091.71 30494.22 28985.50 32398.24 29597.70 21388.67 26286.42 29996.37 24967.82 32898.03 22683.62 30499.62 9891.60 335
Patchmatch-test92.65 22191.50 23196.10 19996.85 23390.49 27791.50 35297.19 26482.76 32790.23 22995.59 27095.02 5498.00 22777.41 33296.98 16799.82 97
tpm295.47 15595.18 15496.35 19496.91 22891.70 25796.96 32397.93 19788.04 27298.44 10995.40 28093.32 10797.97 22894.00 18695.61 19299.38 163
JIA-IIPM91.76 24290.70 24294.94 22696.11 24887.51 31393.16 34698.13 18275.79 34697.58 13377.68 35792.84 12197.97 22888.47 26396.54 17299.33 170
VPA-MVSNet92.70 21891.55 23096.16 19795.09 27596.20 14498.88 25699.00 3391.02 22491.82 21595.29 29076.05 29397.96 23095.62 15481.19 29494.30 251
patchmatchnet-post91.70 33895.12 4897.95 231
SCA94.69 17193.81 18297.33 16597.10 21994.44 19398.86 26098.32 15193.30 14896.17 16695.59 27076.48 28797.95 23191.06 22997.43 15499.59 131
GG-mvs-BLEND98.54 10998.21 16098.01 7393.87 34398.52 9097.92 12697.92 20599.02 297.94 23398.17 9699.58 10399.67 117
Effi-MVS+-dtu94.53 17995.30 15092.22 29797.77 18582.54 33599.59 16997.06 28194.92 8395.29 18095.37 28485.81 21297.89 23494.80 16597.07 16496.23 227
XXY-MVS91.82 23590.46 24595.88 20393.91 29495.40 17198.87 25997.69 21488.63 26487.87 27897.08 22374.38 30497.89 23491.66 22184.07 27794.35 249
D2MVS92.76 21692.59 21093.27 28395.13 27489.54 29499.69 15199.38 2192.26 18887.59 28194.61 31185.05 22297.79 23691.59 22288.01 24692.47 327
gg-mvs-nofinetune93.51 20191.86 22598.47 11497.72 19297.96 7792.62 34798.51 9774.70 34997.33 13869.59 36098.91 397.79 23697.77 11899.56 10499.67 117
test_post195.78 33759.23 36793.20 11497.74 23891.06 229
nrg03093.51 20192.53 21196.45 18894.36 28697.20 10699.81 11797.16 26991.60 20789.86 23797.46 21186.37 20997.68 23995.88 15180.31 30694.46 236
Fast-Effi-MVS+-dtu93.72 19893.86 18193.29 28297.06 22186.16 31899.80 12296.83 30392.66 17092.58 21297.83 20681.39 24797.67 24089.75 25296.87 16996.05 229
GA-MVS93.83 19192.84 20296.80 17695.73 26293.57 21099.88 8797.24 26292.57 17892.92 20796.66 24078.73 27397.67 24087.75 27194.06 20999.17 181
UniMVSNet_ETH3D90.06 27688.58 28294.49 24594.67 28388.09 31097.81 30997.57 22783.91 32088.44 26897.41 21357.44 35297.62 24291.41 22388.59 24097.77 215
Anonymous2023121189.86 27888.44 28494.13 25898.93 12390.68 27298.54 28198.26 16276.28 34386.73 29295.54 27270.60 31897.56 24390.82 23780.27 30794.15 268
VPNet91.81 23690.46 24595.85 20594.74 28195.54 16798.98 24598.59 7292.14 19190.77 22597.44 21268.73 32497.54 24494.89 16377.89 32094.46 236
MVS-HIRNet86.22 30183.19 31395.31 21596.71 24290.29 28192.12 34997.33 25562.85 35586.82 29170.37 35969.37 32197.49 24575.12 33997.99 14798.15 208
test_part192.15 23190.72 24196.44 19098.87 13197.46 9898.99 24498.26 16285.89 29886.34 30196.34 25081.71 24297.48 24691.06 22978.99 31294.37 245
Vis-MVSNet (Re-imp)96.32 13495.98 12797.35 16497.93 17494.82 18799.47 18998.15 17991.83 20095.09 18299.11 13991.37 15097.47 24793.47 20097.43 15499.74 108
RRT_test8_iter0594.58 17694.11 17395.98 20197.88 17696.11 15099.89 8497.45 24091.66 20688.28 27396.71 23896.53 2497.40 24894.73 17083.85 28094.45 241
tfpnnormal89.29 28687.61 29394.34 25294.35 28794.13 19998.95 24998.94 3683.94 31884.47 31395.51 27574.84 30097.39 24977.05 33580.41 30491.48 337
jajsoiax91.92 23491.18 23694.15 25691.35 33290.95 26899.00 24397.42 24592.61 17387.38 28697.08 22372.46 31097.36 25094.53 17588.77 23594.13 272
EPNet_dtu95.71 15095.39 14796.66 18298.92 12593.41 21699.57 17298.90 4196.19 5197.52 13498.56 18492.65 12697.36 25077.89 33098.33 13699.20 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cl-mvsnet293.77 19593.25 19995.33 21499.49 9994.43 19499.61 16798.09 18390.38 23389.16 25895.61 26890.56 16597.34 25291.93 21784.45 27294.21 259
V4291.28 24790.12 25694.74 23293.42 30393.46 21499.68 15397.02 28487.36 27989.85 23995.05 29581.31 24997.34 25287.34 27680.07 30893.40 310
mvs_tets91.81 23691.08 23794.00 26491.63 33090.58 27598.67 27597.43 24392.43 18487.37 28797.05 22671.76 31297.32 25494.75 16888.68 23794.11 273
EI-MVSNet93.73 19793.40 19594.74 23296.80 23692.69 23099.06 23597.67 21588.96 25591.39 21899.02 14488.75 18897.30 25591.07 22887.85 24794.22 257
MVSTER95.53 15395.22 15296.45 18898.56 14197.72 8299.91 7297.67 21592.38 18591.39 21897.14 22097.24 1497.30 25594.80 16587.85 24794.34 250
TAMVS95.85 14595.58 14396.65 18397.07 22093.50 21399.17 22497.82 20991.39 21795.02 18398.01 20092.20 13697.30 25593.75 19595.83 18799.14 185
PS-MVSNAJss93.64 20093.31 19794.61 23792.11 32392.19 24199.12 22697.38 25092.51 18188.45 26796.99 22991.20 15297.29 25894.36 17887.71 24994.36 246
OurMVSNet-221017-089.81 27989.48 26890.83 31091.64 32981.21 34398.17 29995.38 34091.48 21185.65 30897.31 21672.66 30997.29 25888.15 26684.83 26993.97 285
MVP-Stereo90.93 25290.45 24792.37 29691.25 33488.76 29998.05 30496.17 32487.27 28184.04 31495.30 28778.46 27697.27 26083.78 30399.70 9491.09 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
RRT_MVS95.23 15894.77 16296.61 18498.28 15498.32 6399.81 11797.41 24792.59 17591.28 22097.76 20795.02 5497.23 26193.65 19887.14 25494.28 253
v890.54 26389.17 27194.66 23593.43 30293.40 21799.20 22196.94 29585.76 30187.56 28294.51 31281.96 24197.19 26284.94 29678.25 31793.38 312
mvs_anonymous95.65 15295.03 15797.53 15498.19 16195.74 16199.33 20797.49 23890.87 22690.47 22897.10 22288.23 19297.16 26395.92 15097.66 15199.68 115
v2v48291.30 24590.07 25795.01 22393.13 30693.79 20699.77 12997.02 28488.05 27189.25 25395.37 28480.73 25597.15 26487.28 27780.04 30994.09 274
UniMVSNet (Re)93.07 21092.13 21795.88 20394.84 27996.24 14399.88 8798.98 3492.49 18389.25 25395.40 28087.09 20297.14 26593.13 20778.16 31894.26 254
v7n89.65 28288.29 28793.72 27292.22 32290.56 27699.07 23497.10 27685.42 30986.73 29294.72 30580.06 26397.13 26681.14 31778.12 31993.49 308
CDS-MVSNet96.34 13396.07 12297.13 16897.37 20894.96 18399.53 17997.91 20091.55 20995.37 17998.32 19495.05 5397.13 26693.80 19295.75 19099.30 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EG-PatchMatch MVS85.35 30783.81 30989.99 31890.39 33981.89 34098.21 29896.09 32681.78 33174.73 34893.72 32351.56 35797.12 26879.16 32688.61 23890.96 340
v14419290.79 25789.52 26594.59 23893.11 30992.77 22599.56 17496.99 28786.38 29389.82 24094.95 30280.50 26097.10 26983.98 30180.41 30493.90 290
FIs94.10 18893.43 19196.11 19894.70 28296.82 11999.58 17098.93 4092.54 17989.34 25197.31 21687.62 19697.10 26994.22 18486.58 25794.40 243
v119290.62 26289.25 27094.72 23493.13 30693.07 22099.50 18497.02 28486.33 29489.56 24795.01 29779.22 26897.09 27182.34 31181.16 29594.01 280
miper_enhance_ethall94.36 18593.98 17795.49 20898.68 14095.24 17699.73 14597.29 25893.28 14989.86 23795.97 25994.37 7597.05 27292.20 21584.45 27294.19 260
v114491.09 25089.83 25894.87 22893.25 30593.69 20999.62 16696.98 28986.83 28989.64 24594.99 30080.94 25297.05 27285.08 29581.16 29593.87 293
v14890.70 25889.63 26193.92 26792.97 31290.97 26799.75 13796.89 29987.51 27688.27 27495.01 29781.67 24397.04 27487.40 27577.17 32893.75 300
pm-mvs189.36 28587.81 29294.01 26393.40 30491.93 24798.62 27896.48 31986.25 29583.86 31696.14 25573.68 30797.04 27486.16 28875.73 33593.04 319
v192192090.46 26489.12 27294.50 24492.96 31392.46 23699.49 18696.98 28986.10 29689.61 24695.30 28778.55 27597.03 27682.17 31280.89 30294.01 280
v124090.20 27288.79 27994.44 24893.05 31192.27 24099.38 20196.92 29785.89 29889.36 25094.87 30477.89 27897.03 27680.66 31981.08 29894.01 280
v1090.25 27188.82 27894.57 24093.53 30093.43 21599.08 23096.87 30185.00 31187.34 28894.51 31280.93 25397.02 27882.85 30879.23 31193.26 314
lessismore_v090.53 31190.58 33880.90 34695.80 33077.01 34195.84 26066.15 33496.95 27983.03 30775.05 33693.74 303
OpenMVS_ROBcopyleft79.82 2083.77 31681.68 31990.03 31788.30 34882.82 33298.46 28495.22 34373.92 35176.00 34591.29 33955.00 35496.94 28068.40 34988.51 24290.34 344
anonymousdsp91.79 24190.92 23994.41 25190.76 33792.93 22498.93 25197.17 26789.08 24987.46 28595.30 28778.43 27796.92 28192.38 21388.73 23693.39 311
MVSFormer96.94 10996.60 11097.95 13897.28 21697.70 8599.55 17697.27 26091.17 21899.43 5599.54 10790.92 15996.89 28294.67 17299.62 9899.25 177
test_djsdf92.83 21592.29 21694.47 24691.90 32692.46 23699.55 17697.27 26091.17 21889.96 23396.07 25881.10 25096.89 28294.67 17288.91 23194.05 277
pmmvs685.69 30283.84 30891.26 30790.00 34384.41 32997.82 30896.15 32575.86 34581.29 32895.39 28261.21 34796.87 28483.52 30673.29 33892.50 326
tpm93.70 19993.41 19494.58 23995.36 27387.41 31497.01 32196.90 29890.85 22796.72 15294.14 31990.40 16696.84 28590.75 23988.54 24199.51 149
FC-MVSNet-test93.81 19393.15 20095.80 20694.30 28896.20 14499.42 19598.89 4292.33 18789.03 26097.27 21887.39 19996.83 28693.20 20386.48 25894.36 246
pmmvs492.10 23291.07 23895.18 21992.82 31694.96 18399.48 18896.83 30387.45 27888.66 26696.56 24583.78 23096.83 28689.29 25484.77 27093.75 300
WR-MVS92.31 22791.25 23595.48 21194.45 28595.29 17399.60 16898.68 5690.10 23888.07 27696.89 23180.68 25696.80 28893.14 20679.67 31094.36 246
miper_ehance_all_eth93.16 20792.60 20794.82 23197.57 19893.56 21199.50 18497.07 28088.75 26088.85 26295.52 27490.97 15896.74 28990.77 23884.45 27294.17 261
UniMVSNet_NR-MVSNet92.95 21392.11 21895.49 20894.61 28495.28 17499.83 11499.08 3091.49 21089.21 25596.86 23387.14 20196.73 29093.20 20377.52 32394.46 236
DU-MVS92.46 22491.45 23395.49 20894.05 29195.28 17499.81 11798.74 5292.25 18989.21 25596.64 24281.66 24496.73 29093.20 20377.52 32394.46 236
bset_n11_16_dypcd93.05 21192.30 21595.31 21590.23 34195.05 18199.44 19497.28 25992.51 18190.65 22696.68 23985.30 21996.71 29294.49 17684.14 27594.16 266
eth_miper_zixun_eth92.41 22591.93 22293.84 27097.28 21690.68 27298.83 26296.97 29188.57 26589.19 25795.73 26589.24 18396.69 29389.97 25081.55 29194.15 268
SixPastTwentyTwo88.73 29088.01 29190.88 30891.85 32782.24 33798.22 29795.18 34588.97 25482.26 32296.89 23171.75 31396.67 29484.00 30082.98 28293.72 304
cl-mvsnet____92.31 22791.58 22894.52 24297.33 21292.77 22599.57 17296.78 30886.97 28787.56 28295.51 27589.43 17796.62 29588.60 25982.44 28594.16 266
WR-MVS_H91.30 24590.35 24894.15 25694.17 29092.62 23499.17 22498.94 3688.87 25886.48 29894.46 31684.36 22696.61 29688.19 26578.51 31693.21 316
NR-MVSNet91.56 24490.22 25295.60 20794.05 29195.76 16098.25 29498.70 5491.16 22080.78 33196.64 24283.23 23596.57 29791.41 22377.73 32294.46 236
Baseline_NR-MVSNet90.33 26889.51 26692.81 29292.84 31489.95 28899.77 12993.94 35484.69 31689.04 25995.66 26781.66 24496.52 29890.99 23276.98 32991.97 333
cl-mvsnet192.32 22691.60 22794.47 24697.31 21392.74 22799.58 17096.75 30986.99 28687.64 28095.54 27289.55 17696.50 29988.58 26082.44 28594.17 261
pmmvs590.17 27489.09 27393.40 28092.10 32489.77 29199.74 14095.58 33685.88 30087.24 28995.74 26373.41 30896.48 30088.54 26183.56 28193.95 286
cl_fuxian92.53 22291.87 22494.52 24297.40 20792.99 22399.40 19696.93 29687.86 27388.69 26595.44 27889.95 17196.44 30190.45 24280.69 30394.14 271
TransMVSNet (Re)87.25 29885.28 30393.16 28593.56 29991.03 26698.54 28194.05 35383.69 32281.09 32996.16 25475.32 29696.40 30276.69 33668.41 34692.06 331
CP-MVSNet91.23 24890.22 25294.26 25393.96 29392.39 23899.09 22898.57 7588.95 25686.42 29996.57 24479.19 26996.37 30390.29 24678.95 31394.02 278
ambc83.23 33677.17 35962.61 35887.38 35794.55 35176.72 34386.65 35130.16 36296.36 30484.85 29769.86 34090.73 342
IterMVS-LS92.69 21992.11 21894.43 25096.80 23692.74 22799.45 19296.89 29988.98 25389.65 24495.38 28388.77 18796.34 30590.98 23382.04 28894.22 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-CasMVS90.63 26189.51 26693.99 26593.83 29591.70 25798.98 24598.52 9088.48 26686.15 30496.53 24675.46 29596.31 30688.83 25878.86 31593.95 286
MVS_030489.28 28788.31 28692.21 29897.05 22286.53 31797.76 31099.57 1285.58 30693.86 19892.71 33151.04 35896.30 30784.49 29892.72 21993.79 298
FMVSNet392.69 21991.58 22895.99 20098.29 15297.42 10199.26 21897.62 21989.80 24489.68 24195.32 28681.62 24696.27 30887.01 28285.65 26294.29 252
test_040285.58 30383.94 30790.50 31293.81 29685.04 32698.55 27995.20 34476.01 34479.72 33595.13 29364.15 34196.26 30966.04 35486.88 25690.21 346
FMVSNet291.02 25189.56 26395.41 21297.53 20095.74 16198.98 24597.41 24787.05 28388.43 27095.00 29971.34 31496.24 31085.12 29485.21 26794.25 256
TranMVSNet+NR-MVSNet91.68 24390.61 24494.87 22893.69 29893.98 20399.69 15198.65 6091.03 22388.44 26896.83 23780.05 26496.18 31190.26 24776.89 33194.45 241
GBi-Net90.88 25489.82 25994.08 25997.53 20091.97 24498.43 28696.95 29287.05 28389.68 24194.72 30571.34 31496.11 31287.01 28285.65 26294.17 261
test190.88 25489.82 25994.08 25997.53 20091.97 24498.43 28696.95 29287.05 28389.68 24194.72 30571.34 31496.11 31287.01 28285.65 26294.17 261
FMVSNet188.50 29186.64 29794.08 25995.62 27091.97 24498.43 28696.95 29283.00 32486.08 30594.72 30559.09 35096.11 31281.82 31584.07 27794.17 261
our_test_390.39 26589.48 26893.12 28692.40 32089.57 29399.33 20796.35 32187.84 27485.30 30994.99 30084.14 22896.09 31580.38 32084.56 27193.71 305
PatchT90.38 26688.75 28095.25 21895.99 25290.16 28391.22 35497.54 23076.80 34297.26 13986.01 35291.88 14396.07 31666.16 35395.91 18599.51 149
CR-MVSNet93.45 20492.62 20695.94 20296.29 24592.66 23192.01 35096.23 32292.62 17296.94 14593.31 32791.04 15696.03 31779.23 32395.96 18399.13 186
Patchmtry89.70 28188.49 28393.33 28196.24 24789.94 29091.37 35396.23 32278.22 34087.69 27993.31 32791.04 15696.03 31780.18 32282.10 28794.02 278
ppachtmachnet_test89.58 28388.35 28593.25 28492.40 32090.44 27999.33 20796.73 31085.49 30785.90 30795.77 26281.09 25196.00 31976.00 33882.49 28493.30 313
PEN-MVS90.19 27389.06 27493.57 27893.06 31090.90 26999.06 23598.47 10388.11 27085.91 30696.30 25176.67 28495.94 32087.07 27976.91 33093.89 291
miper_lstm_enhance91.81 23691.39 23493.06 28997.34 21089.18 29799.38 20196.79 30786.70 29087.47 28495.22 29290.00 17095.86 32188.26 26481.37 29394.15 268
N_pmnet80.06 32380.78 32177.89 33891.94 32545.28 36798.80 26556.82 37078.10 34180.08 33493.33 32577.03 28095.76 32268.14 35082.81 28392.64 323
LCM-MVSNet-Re92.31 22792.60 20791.43 30597.53 20079.27 35199.02 24291.83 35892.07 19380.31 33294.38 31783.50 23295.48 32397.22 13097.58 15299.54 144
K. test v388.05 29487.24 29690.47 31391.82 32882.23 33898.96 24897.42 24589.05 25076.93 34295.60 26968.49 32595.42 32485.87 29181.01 30093.75 300
ADS-MVSNet293.80 19493.88 18093.55 27997.87 17885.94 32094.24 33996.84 30290.07 23996.43 15994.48 31490.29 16895.37 32587.44 27397.23 16099.36 166
ET-MVSNet_ETH3D94.37 18393.28 19897.64 15198.30 15197.99 7499.99 597.61 22294.35 10771.57 35199.45 11496.23 2795.34 32696.91 14085.14 26899.59 131
CVMVSNet94.68 17394.94 15893.89 26996.80 23686.92 31699.06 23598.98 3494.45 10094.23 19399.02 14485.60 21495.31 32790.91 23595.39 19699.43 159
DTE-MVSNet89.40 28488.24 28892.88 29192.66 31889.95 28899.10 22798.22 16787.29 28085.12 31196.22 25376.27 29095.30 32883.56 30575.74 33493.41 309
IterMVS90.91 25390.17 25493.12 28696.78 23990.42 28098.89 25497.05 28389.03 25186.49 29795.42 27976.59 28695.02 32987.22 27884.09 27693.93 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.85 25690.16 25592.93 29096.72 24189.96 28798.89 25496.99 28788.95 25686.63 29495.67 26676.48 28795.00 33087.04 28084.04 27993.84 295
test0.0.03 193.86 19093.61 18394.64 23695.02 27892.18 24299.93 6498.58 7394.07 11987.96 27798.50 18593.90 9494.96 33181.33 31693.17 21696.78 222
UnsupCasMVSNet_bld79.97 32477.03 32788.78 32585.62 35381.98 33993.66 34497.35 25275.51 34870.79 35283.05 35448.70 35994.91 33278.31 32960.29 35589.46 351
MIMVSNet90.30 26988.67 28195.17 22096.45 24491.64 25992.39 34897.15 27085.99 29790.50 22793.19 32966.95 33194.86 33382.01 31393.43 21399.01 191
new_pmnet84.49 31382.92 31589.21 32190.03 34282.60 33496.89 32495.62 33580.59 33475.77 34789.17 34465.04 33994.79 33472.12 34381.02 29990.23 345
testgi89.01 28988.04 29091.90 30293.49 30184.89 32799.73 14595.66 33493.89 13285.14 31098.17 19659.68 34994.66 33577.73 33188.88 23296.16 228
KD-MVS_2432*160088.00 29586.10 29993.70 27596.91 22894.04 20097.17 31897.12 27284.93 31281.96 32392.41 33492.48 13094.51 33679.23 32352.68 35792.56 324
miper_refine_blended88.00 29586.10 29993.70 27596.91 22894.04 20097.17 31897.12 27284.93 31281.96 32392.41 33492.48 13094.51 33679.23 32352.68 35792.56 324
Anonymous2024052185.15 30883.81 30989.16 32288.32 34782.69 33398.80 26595.74 33179.72 33681.53 32790.99 34065.38 33794.16 33872.69 34281.11 29790.63 343
pmmvs-eth3d84.03 31581.97 31890.20 31584.15 35587.09 31598.10 30294.73 34983.05 32374.10 34987.77 34865.56 33694.01 33981.08 31869.24 34389.49 350
UnsupCasMVSNet_eth85.52 30483.99 30590.10 31689.36 34583.51 33196.65 32597.99 19089.14 24875.89 34693.83 32163.25 34393.92 34081.92 31467.90 34892.88 321
PM-MVS80.47 32178.88 32585.26 33383.79 35672.22 35495.89 33691.08 35985.71 30476.56 34488.30 34636.64 36193.90 34182.39 31069.57 34289.66 349
MDA-MVSNet_test_wron85.51 30583.32 31292.10 29990.96 33588.58 30499.20 22196.52 31779.70 33757.12 35992.69 33279.11 27093.86 34277.10 33477.46 32593.86 294
YYNet185.50 30683.33 31192.00 30090.89 33688.38 30899.22 22096.55 31679.60 33857.26 35892.72 33079.09 27193.78 34377.25 33377.37 32693.84 295
Patchmatch-RL test86.90 29985.98 30189.67 31984.45 35475.59 35289.71 35592.43 35686.89 28877.83 34090.94 34194.22 8393.63 34487.75 27169.61 34199.79 100
MDA-MVSNet-bldmvs84.09 31481.52 32091.81 30391.32 33388.00 31298.67 27595.92 32980.22 33555.60 36093.32 32668.29 32793.60 34573.76 34076.61 33293.82 297
Anonymous2023120686.32 30085.42 30289.02 32389.11 34680.53 34999.05 23995.28 34185.43 30882.82 32093.92 32074.40 30393.44 34666.99 35181.83 29093.08 318
EU-MVSNet90.14 27590.34 24989.54 32092.55 31981.06 34598.69 27398.04 18891.41 21686.59 29596.84 23680.83 25493.31 34786.20 28781.91 28994.26 254
DIV-MVS_2432*160083.59 31782.06 31788.20 32986.93 35080.70 34797.21 31696.38 32082.87 32582.49 32188.97 34567.63 32992.32 34873.75 34162.30 35391.58 336
test_method80.79 32079.70 32384.08 33492.83 31567.06 35799.51 18295.42 33854.34 35781.07 33093.53 32444.48 36092.22 34978.90 32777.23 32792.94 320
DSMNet-mixed88.28 29388.24 28888.42 32889.64 34475.38 35398.06 30389.86 36185.59 30588.20 27592.14 33776.15 29291.95 35078.46 32896.05 18197.92 211
CL-MVSNet_2432*160084.50 31283.15 31488.53 32786.00 35281.79 34198.82 26397.35 25285.12 31083.62 31890.91 34276.66 28591.40 35169.53 34760.36 35492.40 328
FMVSNet588.32 29287.47 29490.88 30896.90 23188.39 30797.28 31595.68 33382.60 32884.67 31292.40 33679.83 26591.16 35276.39 33781.51 29293.09 317
pmmvs380.27 32277.77 32687.76 33080.32 35882.43 33698.23 29691.97 35772.74 35278.75 33787.97 34757.30 35390.99 35370.31 34562.37 35289.87 347
new-patchmatchnet81.19 31979.34 32486.76 33282.86 35780.36 35097.92 30695.27 34282.09 33072.02 35086.87 35062.81 34490.74 35471.10 34463.08 35189.19 352
MIMVSNet182.58 31880.51 32288.78 32586.68 35184.20 33096.65 32595.41 33978.75 33978.59 33892.44 33351.88 35689.76 35565.26 35578.95 31392.38 329
test20.0384.72 31183.99 30586.91 33188.19 34980.62 34898.88 25695.94 32888.36 26878.87 33694.62 31068.75 32389.11 35666.52 35275.82 33391.00 339
Gipumacopyleft66.95 32865.00 32972.79 34191.52 33167.96 35666.16 36295.15 34647.89 35958.54 35767.99 36129.74 36387.54 35750.20 36077.83 32162.87 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 32664.73 33076.87 33962.95 36656.25 36389.37 35693.74 35544.53 36061.99 35580.74 35520.42 36886.53 35869.37 34859.50 35687.84 353
PMMVS267.15 32764.15 33176.14 34070.56 36362.07 36093.89 34287.52 36558.09 35660.02 35678.32 35622.38 36784.54 35959.56 35847.03 35981.80 355
FPMVS68.72 32568.72 32868.71 34365.95 36444.27 36995.97 33594.74 34851.13 35853.26 36190.50 34325.11 36683.00 36060.80 35780.97 30178.87 356
PMVScopyleft49.05 2353.75 33151.34 33560.97 34640.80 37034.68 37074.82 36189.62 36337.55 36228.67 36872.12 3587.09 37281.63 36143.17 36368.21 34766.59 359
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt65.23 32962.94 33272.13 34244.90 36950.03 36581.05 35989.42 36438.45 36148.51 36399.90 1754.09 35578.70 36291.84 22018.26 36487.64 354
MVEpermissive53.74 2251.54 33347.86 33762.60 34559.56 36750.93 36479.41 36077.69 36735.69 36436.27 36661.76 3655.79 37469.63 36337.97 36436.61 36067.24 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 33052.24 33367.66 34449.27 36856.82 36283.94 35882.02 36670.47 35333.28 36764.54 36217.23 37069.16 36445.59 36223.85 36377.02 357
E-PMN52.30 33252.18 33452.67 34771.51 36145.40 36693.62 34576.60 36836.01 36343.50 36464.13 36327.11 36567.31 36531.06 36526.06 36145.30 364
EMVS51.44 33451.22 33652.11 34870.71 36244.97 36894.04 34175.66 36935.34 36542.40 36561.56 36628.93 36465.87 36627.64 36624.73 36245.49 363
wuyk23d20.37 33820.84 34118.99 35165.34 36527.73 37150.43 3637.67 3739.50 3688.01 3696.34 3696.13 37326.24 36723.40 36710.69 3662.99 365
test12337.68 33639.14 33933.31 34919.94 37124.83 37298.36 2909.75 37215.53 36751.31 36287.14 34919.62 36917.74 36847.10 3613.47 36757.36 361
testmvs40.60 33544.45 33829.05 35019.49 37214.11 37399.68 15318.47 37120.74 36664.59 35498.48 18910.95 37117.09 36956.66 35911.01 36555.94 362
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k23.43 33731.24 3400.00 3520.00 3730.00 3740.00 36498.09 1830.00 3690.00 37099.67 9583.37 2330.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.60 34010.13 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37091.20 1520.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.28 33911.04 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.40 1190.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
RE-MVS-def98.13 5599.79 7096.37 13699.76 13498.31 15394.43 10299.40 6199.75 7792.95 11998.90 6499.92 6799.97 63
IU-MVS99.93 2699.31 798.41 13197.71 899.84 8100.00 1100.00 1100.00 1
save fliter99.82 6598.79 3399.96 2598.40 13297.66 10
test072699.93 2699.29 1099.96 2598.42 12797.28 1899.86 499.94 497.22 15
GSMVS99.59 131
test_part299.89 4599.25 1399.49 51
sam_mvs194.72 6499.59 131
sam_mvs94.25 82
MTGPAbinary98.28 158
MTMP99.87 9096.49 318
test9_res99.71 2999.99 20100.00 1
agg_prior299.48 36100.00 1100.00 1
test_prior498.05 7199.94 58
test_prior299.95 4395.78 6099.73 2799.76 7296.00 2999.78 20100.00 1
新几何299.40 196
旧先验199.76 7497.52 9198.64 6399.85 3395.63 3999.94 5799.99 20
原ACMM299.90 76
test22299.55 9497.41 10299.34 20698.55 8391.86 19999.27 7199.83 4993.84 9699.95 5199.99 20
segment_acmp96.68 22
testdata199.28 21696.35 48
plane_prior795.71 26591.59 261
plane_prior695.76 26091.72 25680.47 261
plane_prior498.59 180
plane_prior391.64 25996.63 3893.01 205
plane_prior299.84 10896.38 44
plane_prior195.73 262
plane_prior91.74 25399.86 10196.76 3489.59 224
n20.00 374
nn0.00 374
door-mid89.69 362
test1198.44 108
door90.31 360
HQP5-MVS91.85 249
HQP-NCC95.78 25699.87 9096.82 3093.37 201
ACMP_Plane95.78 25699.87 9096.82 3093.37 201
BP-MVS97.92 111
HQP3-MVS97.89 20189.60 222
HQP2-MVS80.65 257
NP-MVS95.77 25991.79 25198.65 176
MDTV_nov1_ep13_2view96.26 13996.11 33291.89 19898.06 12394.40 7194.30 18199.67 117
ACMMP++_ref87.04 255
ACMMP++88.23 244
Test By Simon92.82 123