DPM-MVS | | | 96.21 2 | 95.53 9 | 98.26 1 | 96.26 101 | 95.09 1 | 99.15 4 | 96.98 29 | 93.39 9 | 96.45 14 | 98.79 10 | 90.17 7 | 99.99 1 | 89.33 102 | 99.25 4 | 99.70 3 |
|
MCST-MVS | | | 96.17 3 | 96.12 5 | 96.32 5 | 99.42 2 | 89.36 8 | 98.94 15 | 97.10 23 | 95.17 2 | 92.11 63 | 98.46 24 | 87.33 20 | 99.97 2 | 97.21 12 | 99.31 2 | 99.63 5 |
|
CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 12 | 99.31 5 | 87.69 19 | 99.06 9 | 97.12 22 | 94.66 3 | 96.79 9 | 98.78 11 | 86.42 24 | 99.95 3 | 97.59 9 | 99.18 5 | 99.00 23 |
|
NCCC | | | 95.63 5 | 95.94 6 | 94.69 24 | 99.21 7 | 85.15 56 | 99.16 3 | 96.96 32 | 94.11 6 | 95.59 21 | 98.64 19 | 85.07 28 | 99.91 4 | 95.61 27 | 99.10 7 | 99.00 23 |
|
API-MVS | | | 90.18 104 | 88.97 112 | 93.80 49 | 98.66 27 | 82.95 97 | 97.50 79 | 95.63 150 | 75.16 272 | 86.31 132 | 97.69 64 | 72.49 171 | 99.90 5 | 81.26 167 | 96.07 95 | 98.56 42 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 18 | 94.30 26 | 95.02 17 | 98.86 18 | 85.68 42 | 98.06 40 | 96.64 71 | 93.64 8 | 91.74 69 | 98.54 20 | 80.17 69 | 99.90 5 | 92.28 66 | 98.75 26 | 99.49 6 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DP-MVS Recon | | | 91.72 72 | 90.85 79 | 94.34 32 | 99.50 1 | 85.00 60 | 98.51 25 | 95.96 134 | 80.57 206 | 88.08 119 | 97.63 70 | 76.84 112 | 99.89 7 | 85.67 128 | 94.88 109 | 98.13 72 |
|
CANet | | | 94.89 12 | 94.64 16 | 95.63 10 | 97.55 77 | 88.12 13 | 99.06 9 | 96.39 106 | 94.07 7 | 95.34 24 | 97.80 61 | 76.83 113 | 99.87 8 | 97.08 14 | 97.64 67 | 98.89 26 |
|
DeepPCF-MVS | | 89.82 1 | 94.61 16 | 96.17 4 | 89.91 179 | 97.09 93 | 70.21 298 | 98.99 14 | 96.69 62 | 95.57 1 | 95.08 28 | 99.23 1 | 86.40 25 | 99.87 8 | 97.84 7 | 98.66 30 | 99.65 4 |
|
HPM-MVS++ | | | 95.32 9 | 95.48 10 | 94.85 20 | 98.62 33 | 86.04 32 | 97.81 54 | 96.93 35 | 92.45 11 | 95.69 20 | 98.50 22 | 85.38 27 | 99.85 10 | 94.75 37 | 99.18 5 | 98.65 38 |
|
PHI-MVS | | | 93.59 38 | 93.63 35 | 93.48 67 | 98.05 61 | 81.76 122 | 98.64 21 | 97.13 21 | 82.60 179 | 94.09 45 | 98.49 23 | 80.35 64 | 99.85 10 | 94.74 38 | 98.62 31 | 98.83 28 |
|
OPU-MVS | | | | | 97.30 2 | 99.19 8 | 92.31 3 | 99.12 6 | | | | 98.54 20 | 92.06 2 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
test_0728_SECOND | | | | | 95.14 15 | 99.04 11 | 86.14 31 | 99.06 9 | 96.77 50 | | | | | 99.84 12 | 97.90 5 | 98.85 20 | 99.45 8 |
|
SMA-MVS | | | 94.70 15 | 94.68 15 | 94.76 22 | 98.02 62 | 85.94 35 | 97.47 80 | 96.77 50 | 85.32 109 | 97.92 2 | 98.70 16 | 83.09 47 | 99.84 12 | 95.79 24 | 99.08 8 | 98.49 45 |
|
ACMMP_NAP | | | 93.46 39 | 93.23 41 | 94.17 39 | 97.16 91 | 84.28 70 | 96.82 134 | 96.65 68 | 86.24 89 | 94.27 40 | 97.99 50 | 77.94 95 | 99.83 15 | 93.39 51 | 98.57 32 | 98.39 51 |
|
SED-MVS | | | 95.88 4 | 96.22 3 | 94.87 19 | 99.03 12 | 85.03 58 | 99.12 6 | 96.78 44 | 88.72 49 | 97.79 3 | 98.91 3 | 88.48 14 | 99.82 16 | 98.15 2 | 98.97 15 | 99.74 1 |
|
test_241102_TWO | | | | | | | | | 96.78 44 | 88.72 49 | 97.70 5 | 98.91 3 | 87.86 17 | 99.82 16 | 98.15 2 | 99.00 13 | 99.47 7 |
|
test_241102_ONE | | | | | | 99.03 12 | 85.03 58 | | 96.78 44 | 88.72 49 | 97.79 3 | 98.90 6 | 88.48 14 | 99.82 16 | | | |
|
ZNCC-MVS | | | 92.75 50 | 92.60 55 | 93.23 75 | 98.24 51 | 81.82 120 | 97.63 67 | 96.50 90 | 85.00 120 | 91.05 81 | 97.74 63 | 78.38 89 | 99.80 19 | 90.48 84 | 98.34 50 | 98.07 76 |
|
MSP-MVS | | | 95.58 7 | 95.91 7 | 94.57 26 | 99.05 9 | 85.18 51 | 99.06 9 | 96.46 94 | 88.75 47 | 96.69 10 | 98.76 12 | 87.69 18 | 99.76 20 | 97.90 5 | 98.85 20 | 98.77 30 |
|
test_0728_THIRD | | | | | | | | | | 88.38 56 | 96.69 10 | 98.76 12 | 89.64 10 | 99.76 20 | 97.47 10 | 98.84 22 | 99.38 10 |
|
GST-MVS | | | 92.43 63 | 92.22 63 | 93.04 84 | 98.17 55 | 81.64 127 | 97.40 90 | 96.38 107 | 84.71 126 | 90.90 83 | 97.40 83 | 77.55 101 | 99.76 20 | 89.75 96 | 97.74 65 | 97.72 102 |
|
zzz-MVS | | | 92.74 51 | 92.71 50 | 92.86 92 | 97.90 64 | 80.85 142 | 96.47 152 | 96.33 111 | 87.92 64 | 90.20 90 | 98.18 32 | 76.71 116 | 99.76 20 | 92.57 63 | 98.09 55 | 97.96 89 |
|
MTAPA | | | 92.45 62 | 92.31 59 | 92.86 92 | 97.90 64 | 80.85 142 | 92.88 265 | 96.33 111 | 87.92 64 | 90.20 90 | 98.18 32 | 76.71 116 | 99.76 20 | 92.57 63 | 98.09 55 | 97.96 89 |
|
PAPR | | | 92.74 51 | 92.17 64 | 94.45 28 | 98.89 17 | 84.87 63 | 97.20 99 | 96.20 120 | 87.73 70 | 88.40 114 | 98.12 41 | 78.71 85 | 99.76 20 | 87.99 114 | 96.28 92 | 98.74 31 |
|
PAPM_NR | | | 91.46 78 | 90.82 80 | 93.37 71 | 98.50 39 | 81.81 121 | 95.03 217 | 96.13 124 | 84.65 129 | 86.10 135 | 97.65 69 | 79.24 78 | 99.75 26 | 83.20 155 | 96.88 85 | 98.56 42 |
|
MAR-MVS | | | 90.63 94 | 90.22 89 | 91.86 128 | 98.47 41 | 78.20 212 | 97.18 101 | 96.61 74 | 83.87 153 | 88.18 118 | 98.18 32 | 68.71 198 | 99.75 26 | 83.66 148 | 97.15 78 | 97.63 110 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DPE-MVS | | | 95.32 9 | 95.55 8 | 94.64 25 | 98.79 20 | 84.87 63 | 97.77 56 | 96.74 55 | 86.11 91 | 96.54 13 | 98.89 7 | 88.39 16 | 99.74 28 | 97.67 8 | 99.05 10 | 99.31 14 |
|
MP-MVS-pluss | | | 92.58 60 | 92.35 58 | 93.29 72 | 97.30 89 | 82.53 102 | 96.44 156 | 96.04 131 | 84.68 127 | 89.12 105 | 98.37 26 | 77.48 103 | 99.74 28 | 93.31 55 | 98.38 47 | 97.59 113 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
QAPM | | | 86.88 160 | 84.51 176 | 93.98 43 | 94.04 162 | 85.89 36 | 97.19 100 | 96.05 130 | 73.62 283 | 75.12 251 | 95.62 130 | 62.02 236 | 99.74 28 | 70.88 256 | 96.06 96 | 96.30 163 |
|
AdaColmap | | | 88.81 127 | 87.61 134 | 92.39 110 | 99.33 4 | 79.95 164 | 96.70 144 | 95.58 151 | 77.51 257 | 83.05 165 | 96.69 111 | 61.90 240 | 99.72 31 | 84.29 138 | 93.47 122 | 97.50 119 |
|
HFP-MVS | | | 92.89 47 | 92.86 49 | 92.98 86 | 98.71 22 | 81.12 134 | 97.58 72 | 96.70 60 | 85.20 115 | 91.75 67 | 97.97 54 | 78.47 87 | 99.71 32 | 90.95 75 | 98.41 43 | 98.12 73 |
|
#test# | | | 92.99 45 | 92.99 45 | 92.98 86 | 98.71 22 | 81.12 134 | 97.77 56 | 96.70 60 | 85.75 100 | 91.75 67 | 97.97 54 | 78.47 87 | 99.71 32 | 91.36 71 | 98.41 43 | 98.12 73 |
|
DeepC-MVS | | 86.58 3 | 91.53 77 | 91.06 78 | 92.94 89 | 94.52 148 | 81.89 116 | 95.95 180 | 95.98 133 | 90.76 24 | 83.76 157 | 96.76 108 | 73.24 166 | 99.71 32 | 91.67 70 | 96.96 82 | 97.22 134 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MP-MVS | | | 92.61 59 | 92.67 53 | 92.42 109 | 98.13 57 | 79.73 172 | 97.33 93 | 96.20 120 | 85.63 102 | 90.53 85 | 97.66 65 | 78.14 93 | 99.70 35 | 92.12 68 | 98.30 52 | 97.85 95 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MVS | | | 90.60 95 | 88.64 116 | 96.50 3 | 94.25 156 | 90.53 6 | 93.33 252 | 97.21 19 | 77.59 256 | 78.88 206 | 97.31 85 | 71.52 180 | 99.69 36 | 89.60 97 | 98.03 59 | 99.27 16 |
|
DELS-MVS | | | 94.98 11 | 94.49 19 | 96.44 4 | 96.42 99 | 90.59 5 | 99.21 2 | 97.02 26 | 94.40 5 | 91.46 71 | 97.08 96 | 83.32 43 | 99.69 36 | 92.83 59 | 98.70 29 | 99.04 21 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
mPP-MVS | | | 91.88 69 | 91.82 67 | 92.07 121 | 98.38 44 | 78.63 196 | 97.29 94 | 96.09 127 | 85.12 117 | 88.45 113 | 97.66 65 | 75.53 135 | 99.68 38 | 89.83 94 | 98.02 60 | 97.88 92 |
|
3Dnovator | | 82.32 10 | 89.33 116 | 87.64 131 | 94.42 30 | 93.73 169 | 85.70 41 | 97.73 62 | 96.75 54 | 86.73 87 | 76.21 237 | 95.93 121 | 62.17 233 | 99.68 38 | 81.67 165 | 97.81 64 | 97.88 92 |
|
region2R | | | 92.72 54 | 92.70 52 | 92.79 95 | 98.68 24 | 80.53 153 | 97.53 76 | 96.51 88 | 85.22 113 | 91.94 65 | 97.98 52 | 77.26 105 | 99.67 40 | 90.83 79 | 98.37 48 | 98.18 66 |
|
ACMMPR | | | 92.69 56 | 92.67 53 | 92.75 96 | 98.66 27 | 80.57 150 | 97.58 72 | 96.69 62 | 85.20 115 | 91.57 70 | 97.92 56 | 77.01 110 | 99.67 40 | 90.95 75 | 98.41 43 | 98.00 85 |
|
testtj | | | 94.09 29 | 94.08 29 | 94.09 42 | 99.28 6 | 83.32 90 | 97.59 71 | 96.61 74 | 83.60 161 | 94.77 36 | 98.46 24 | 82.72 51 | 99.64 42 | 95.29 32 | 98.42 41 | 99.32 13 |
|
OpenMVS | | 79.58 14 | 86.09 171 | 83.62 191 | 93.50 65 | 90.95 234 | 86.71 28 | 97.44 82 | 95.83 140 | 75.35 269 | 72.64 270 | 95.72 125 | 57.42 269 | 99.64 42 | 71.41 250 | 95.85 100 | 94.13 198 |
|
ACMMP | | | 90.39 100 | 89.97 95 | 91.64 134 | 97.58 75 | 78.21 211 | 96.78 137 | 96.72 58 | 84.73 125 | 84.72 143 | 97.23 90 | 71.22 182 | 99.63 44 | 88.37 112 | 92.41 133 | 97.08 136 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CHOSEN 1792x2688 | | | 91.07 86 | 90.21 90 | 93.64 57 | 95.18 129 | 83.53 84 | 96.26 168 | 96.13 124 | 88.92 44 | 84.90 140 | 93.10 178 | 72.86 168 | 99.62 45 | 88.86 104 | 95.67 102 | 97.79 100 |
|
SD-MVS | | | 94.84 13 | 95.02 13 | 94.29 34 | 97.87 68 | 84.61 66 | 97.76 60 | 96.19 122 | 89.59 36 | 96.66 12 | 98.17 36 | 84.33 32 | 99.60 46 | 96.09 18 | 98.50 37 | 98.66 37 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
XVS | | | 92.69 56 | 92.71 50 | 92.63 102 | 98.52 37 | 80.29 156 | 97.37 91 | 96.44 96 | 87.04 84 | 91.38 72 | 97.83 60 | 77.24 107 | 99.59 47 | 90.46 85 | 98.07 57 | 98.02 80 |
|
X-MVStestdata | | | 86.26 170 | 84.14 184 | 92.63 102 | 98.52 37 | 80.29 156 | 97.37 91 | 96.44 96 | 87.04 84 | 91.38 72 | 20.73 349 | 77.24 107 | 99.59 47 | 90.46 85 | 98.07 57 | 98.02 80 |
|
PVSNet_BlendedMVS | | | 90.05 105 | 89.96 96 | 90.33 164 | 97.47 78 | 83.86 76 | 98.02 43 | 96.73 56 | 87.98 63 | 89.53 100 | 89.61 222 | 76.42 120 | 99.57 49 | 94.29 42 | 79.59 223 | 87.57 289 |
|
PVSNet_Blended | | | 93.13 42 | 92.98 46 | 93.57 61 | 97.47 78 | 83.86 76 | 99.32 1 | 96.73 56 | 91.02 23 | 89.53 100 | 96.21 116 | 76.42 120 | 99.57 49 | 94.29 42 | 95.81 101 | 97.29 131 |
|
PGM-MVS | | | 91.93 68 | 91.80 68 | 92.32 113 | 98.27 50 | 79.74 171 | 95.28 203 | 97.27 17 | 83.83 154 | 90.89 84 | 97.78 62 | 76.12 126 | 99.56 51 | 88.82 105 | 97.93 63 | 97.66 107 |
|
MVS_111021_HR | | | 93.41 40 | 93.39 39 | 93.47 70 | 97.34 88 | 82.83 98 | 97.56 74 | 98.27 6 | 89.16 42 | 89.71 95 | 97.14 93 | 79.77 72 | 99.56 51 | 93.65 47 | 97.94 61 | 98.02 80 |
|
æ— å…ˆéªŒ | | | | | | | | 96.87 131 | 96.78 44 | 77.39 258 | | | | 99.52 53 | 79.95 177 | | 98.43 49 |
|
1121 | | | 90.66 93 | 89.82 101 | 93.16 78 | 97.39 84 | 81.71 125 | 93.33 252 | 96.66 67 | 74.45 278 | 91.38 72 | 97.55 75 | 79.27 76 | 99.52 53 | 79.95 177 | 98.43 40 | 98.26 62 |
|
CSCG | | | 92.02 67 | 91.65 71 | 93.12 79 | 98.53 36 | 80.59 149 | 97.47 80 | 97.18 20 | 77.06 264 | 84.64 145 | 97.98 52 | 83.98 37 | 99.52 53 | 90.72 81 | 97.33 75 | 99.23 17 |
|
æ–°å‡ ä½•1 | | | | | 93.12 79 | 97.44 80 | 81.60 128 | | 96.71 59 | 74.54 277 | 91.22 79 | 97.57 71 | 79.13 80 | 99.51 56 | 77.40 202 | 98.46 38 | 98.26 62 |
|
3Dnovator+ | | 82.88 8 | 89.63 112 | 87.85 126 | 94.99 18 | 94.49 152 | 86.76 27 | 97.84 51 | 95.74 144 | 86.10 92 | 75.47 248 | 96.02 120 | 65.00 220 | 99.51 56 | 82.91 159 | 97.07 79 | 98.72 36 |
|
CANet_DTU | | | 90.98 87 | 90.04 94 | 93.83 48 | 94.76 142 | 86.23 30 | 96.32 165 | 93.12 272 | 93.11 10 | 93.71 47 | 96.82 106 | 63.08 229 | 99.48 58 | 84.29 138 | 95.12 108 | 95.77 171 |
|
testdata2 | | | | | | | | | | | | | | 99.48 58 | 76.45 211 | | |
|
SteuartSystems-ACMMP | | | 94.13 27 | 94.44 21 | 93.20 76 | 95.41 121 | 81.35 131 | 99.02 13 | 96.59 77 | 89.50 37 | 94.18 43 | 98.36 27 | 83.68 40 | 99.45 60 | 94.77 36 | 98.45 39 | 98.81 29 |
Skip Steuart: Steuart Systems R&D Blog. |
TSAR-MVS + GP. | | | 94.35 21 | 94.50 18 | 93.89 46 | 97.38 87 | 83.04 95 | 98.10 37 | 95.29 168 | 91.57 16 | 93.81 46 | 97.45 78 | 86.64 21 | 99.43 61 | 96.28 17 | 94.01 115 | 99.20 18 |
|
ETH3 D test6400 | | | 95.56 8 | 95.41 11 | 96.00 7 | 99.02 15 | 89.42 7 | 98.75 18 | 96.80 43 | 87.28 77 | 95.88 19 | 98.95 2 | 85.92 26 | 99.41 62 | 97.15 13 | 98.95 18 | 99.18 20 |
|
1314 | | | 88.94 122 | 87.20 143 | 94.17 39 | 93.21 177 | 85.73 40 | 93.33 252 | 96.64 71 | 82.89 173 | 75.98 240 | 96.36 114 | 66.83 209 | 99.39 63 | 83.52 152 | 96.02 97 | 97.39 125 |
|
xxxxxxxxxxxxxcwj | | | 94.38 20 | 94.62 17 | 93.68 55 | 98.24 51 | 83.34 88 | 98.61 23 | 92.69 279 | 91.32 18 | 95.07 29 | 98.74 14 | 82.93 48 | 99.38 64 | 95.42 29 | 98.51 34 | 98.32 54 |
|
SF-MVS | | | 94.17 25 | 94.05 30 | 94.55 27 | 97.56 76 | 85.95 33 | 97.73 62 | 96.43 98 | 84.02 147 | 95.07 29 | 98.74 14 | 82.93 48 | 99.38 64 | 95.42 29 | 98.51 34 | 98.32 54 |
|
ETH3D-3000-0.1 | | | 94.43 19 | 94.42 22 | 94.45 28 | 97.78 69 | 85.78 38 | 97.98 44 | 96.53 86 | 85.29 112 | 95.45 22 | 98.81 8 | 83.36 42 | 99.38 64 | 96.07 19 | 98.53 33 | 98.19 65 |
|
DP-MVS | | | 81.47 239 | 78.28 252 | 91.04 148 | 98.14 56 | 78.48 198 | 95.09 216 | 86.97 323 | 61.14 328 | 71.12 279 | 92.78 181 | 59.59 248 | 99.38 64 | 53.11 321 | 86.61 175 | 95.27 183 |
|
ETH3D cwj APD-0.16 | | | 93.91 35 | 93.76 33 | 94.36 31 | 96.70 97 | 85.74 39 | 97.22 95 | 96.41 100 | 83.94 150 | 94.13 44 | 98.69 18 | 83.13 46 | 99.37 68 | 95.25 33 | 98.39 46 | 97.97 88 |
|
9.14 | | | | 94.26 27 | | 98.10 58 | | 98.14 34 | 96.52 87 | 84.74 124 | 94.83 34 | 98.80 9 | 82.80 50 | 99.37 68 | 95.95 22 | 98.42 41 | |
|
TEST9 | | | | | | 98.64 30 | 83.71 80 | 97.82 52 | 96.65 68 | 84.29 141 | 95.16 25 | 98.09 43 | 84.39 31 | 99.36 70 | | | |
|
train_agg | | | 94.28 22 | 94.45 20 | 93.74 51 | 98.64 30 | 83.71 80 | 97.82 52 | 96.65 68 | 84.50 133 | 95.16 25 | 98.09 43 | 84.33 32 | 99.36 70 | 95.91 23 | 98.96 17 | 98.16 68 |
|
sss | | | 90.87 90 | 89.96 96 | 93.60 60 | 94.15 158 | 83.84 78 | 97.14 107 | 98.13 7 | 85.93 97 | 89.68 96 | 96.09 119 | 71.67 177 | 99.30 72 | 87.69 115 | 89.16 152 | 97.66 107 |
|
PVSNet_Blended_VisFu | | | 91.24 83 | 90.77 81 | 92.66 101 | 95.09 131 | 82.40 105 | 97.77 56 | 95.87 139 | 88.26 59 | 86.39 131 | 93.94 167 | 76.77 114 | 99.27 73 | 88.80 106 | 94.00 116 | 96.31 162 |
|
PLC | | 83.97 7 | 88.00 146 | 87.38 141 | 89.83 182 | 98.02 62 | 76.46 244 | 97.16 105 | 94.43 214 | 79.26 236 | 81.98 178 | 96.28 115 | 69.36 195 | 99.27 73 | 77.71 197 | 92.25 135 | 93.77 203 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Regformer-1 | | | 94.00 32 | 94.04 31 | 93.87 47 | 98.41 42 | 84.29 69 | 97.43 86 | 97.04 25 | 89.50 37 | 92.75 58 | 98.13 38 | 82.60 53 | 99.26 75 | 93.55 49 | 96.99 80 | 98.06 77 |
|
test_8 | | | | | | 98.63 32 | 83.64 83 | 97.81 54 | 96.63 73 | 84.50 133 | 95.10 27 | 98.11 42 | 84.33 32 | 99.23 76 | | | |
|
Regformer-3 | | | 93.19 41 | 93.19 42 | 93.19 77 | 98.10 58 | 83.01 96 | 97.08 116 | 96.98 29 | 88.98 43 | 91.35 76 | 97.89 57 | 80.80 60 | 99.23 76 | 92.30 65 | 95.20 105 | 97.32 127 |
|
Regformer-2 | | | 93.92 33 | 94.01 32 | 93.67 56 | 98.41 42 | 83.75 79 | 97.43 86 | 97.00 27 | 89.43 39 | 92.69 59 | 98.13 38 | 82.48 54 | 99.22 78 | 93.51 50 | 96.99 80 | 98.04 78 |
|
test12 | | | | | 94.25 35 | 98.34 46 | 85.55 44 | | 96.35 110 | | 92.36 61 | | 80.84 59 | 99.22 78 | | 98.31 51 | 97.98 87 |
|
MSLP-MVS++ | | | 94.28 22 | 94.39 23 | 93.97 44 | 98.30 49 | 84.06 74 | 98.64 21 | 96.93 35 | 90.71 25 | 93.08 54 | 98.70 16 | 79.98 70 | 99.21 80 | 94.12 44 | 99.07 9 | 98.63 39 |
|
CDPH-MVS | | | 93.12 43 | 92.91 47 | 93.74 51 | 98.65 29 | 83.88 75 | 97.67 66 | 96.26 116 | 83.00 171 | 93.22 52 | 98.24 30 | 81.31 57 | 99.21 80 | 89.12 103 | 98.74 27 | 98.14 71 |
|
CP-MVS | | | 92.54 61 | 92.60 55 | 92.34 111 | 98.50 39 | 79.90 166 | 98.40 26 | 96.40 103 | 84.75 123 | 90.48 87 | 98.09 43 | 77.40 104 | 99.21 80 | 91.15 74 | 98.23 54 | 97.92 91 |
|
LS3D | | | 82.22 231 | 79.94 242 | 89.06 192 | 97.43 81 | 74.06 269 | 93.20 259 | 92.05 284 | 61.90 323 | 73.33 263 | 95.21 138 | 59.35 251 | 99.21 80 | 54.54 317 | 92.48 132 | 93.90 202 |
|
PCF-MVS | | 84.09 5 | 86.77 165 | 85.00 171 | 92.08 120 | 92.06 214 | 83.07 94 | 92.14 273 | 94.47 211 | 79.63 228 | 76.90 224 | 94.78 151 | 71.15 183 | 99.20 84 | 72.87 241 | 91.05 143 | 93.98 200 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Regformer-4 | | | 93.06 44 | 93.12 43 | 92.89 91 | 98.10 58 | 82.20 109 | 97.08 116 | 96.92 37 | 88.87 45 | 91.23 78 | 97.89 57 | 80.57 63 | 99.19 85 | 92.21 67 | 95.20 105 | 97.29 131 |
|
MVS_111021_LR | | | 91.60 76 | 91.64 72 | 91.47 139 | 95.74 113 | 78.79 194 | 96.15 172 | 96.77 50 | 88.49 54 | 88.64 111 | 97.07 97 | 72.33 173 | 99.19 85 | 93.13 57 | 96.48 91 | 96.43 156 |
|
APDe-MVS | | | 94.56 17 | 94.75 14 | 93.96 45 | 98.84 19 | 83.40 87 | 98.04 42 | 96.41 100 | 85.79 99 | 95.00 31 | 98.28 29 | 84.32 35 | 99.18 87 | 97.35 11 | 98.77 25 | 99.28 15 |
|
PS-MVSNAJ | | | 94.17 25 | 93.52 38 | 96.10 6 | 95.65 116 | 92.35 2 | 98.21 32 | 95.79 142 | 92.42 12 | 96.24 15 | 98.18 32 | 71.04 185 | 99.17 88 | 96.77 15 | 97.39 74 | 96.79 145 |
|
agg_prior1 | | | 94.10 28 | 94.31 25 | 93.48 67 | 98.59 34 | 83.13 92 | 97.77 56 | 96.56 81 | 84.38 137 | 94.19 41 | 98.13 38 | 84.66 30 | 99.16 89 | 95.74 25 | 98.74 27 | 98.15 70 |
|
agg_prior | | | | | | 98.59 34 | 83.13 92 | | 96.56 81 | | 94.19 41 | | | 99.16 89 | | | |
|
EI-MVSNet-Vis-set | | | 91.84 70 | 91.77 69 | 92.04 123 | 97.60 73 | 81.17 133 | 96.61 146 | 96.87 39 | 88.20 60 | 89.19 104 | 97.55 75 | 78.69 86 | 99.14 91 | 90.29 90 | 90.94 144 | 95.80 170 |
|
EI-MVSNet-UG-set | | | 91.35 82 | 91.22 75 | 91.73 132 | 97.39 84 | 80.68 147 | 96.47 152 | 96.83 42 | 87.92 64 | 88.30 117 | 97.36 84 | 77.84 97 | 99.13 92 | 89.43 101 | 89.45 151 | 95.37 180 |
|
EPNet | | | 94.06 30 | 94.15 28 | 93.76 50 | 97.27 90 | 84.35 67 | 98.29 29 | 97.64 13 | 94.57 4 | 95.36 23 | 96.88 102 | 79.96 71 | 99.12 93 | 91.30 72 | 96.11 94 | 97.82 98 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DVP-MVS | | | 95.62 6 | 96.54 1 | 92.86 92 | 98.31 48 | 80.10 163 | 97.42 88 | 96.78 44 | 92.20 13 | 97.11 8 | 98.29 28 | 93.46 1 | 99.10 94 | 96.01 20 | 99.30 3 | 99.38 10 |
|
UGNet | | | 87.73 150 | 86.55 154 | 91.27 143 | 95.16 130 | 79.11 185 | 96.35 162 | 96.23 118 | 88.14 61 | 87.83 121 | 90.48 209 | 50.65 293 | 99.09 95 | 80.13 176 | 94.03 113 | 95.60 175 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
test_prior3 | | | 94.03 31 | 94.34 24 | 93.09 81 | 98.68 24 | 81.91 114 | 98.37 27 | 96.40 103 | 86.08 93 | 94.57 38 | 98.02 48 | 83.14 44 | 99.06 96 | 95.05 34 | 98.79 23 | 98.29 59 |
|
test_prior | | | | | 93.09 81 | 98.68 24 | 81.91 114 | | 96.40 103 | | | | | 99.06 96 | | | 98.29 59 |
|
WTY-MVS | | | 92.65 58 | 91.68 70 | 95.56 11 | 96.00 108 | 88.90 10 | 98.23 31 | 97.65 12 | 88.57 52 | 89.82 94 | 97.22 91 | 79.29 75 | 99.06 96 | 89.57 98 | 88.73 158 | 98.73 35 |
|
HY-MVS | | 84.06 6 | 91.63 74 | 90.37 87 | 95.39 14 | 96.12 105 | 88.25 12 | 90.22 288 | 97.58 14 | 88.33 58 | 90.50 86 | 91.96 188 | 79.26 77 | 99.06 96 | 90.29 90 | 89.07 153 | 98.88 27 |
|
MG-MVS | | | 94.25 24 | 93.72 34 | 95.85 9 | 99.38 3 | 89.35 9 | 97.98 44 | 98.09 8 | 89.99 32 | 92.34 62 | 96.97 99 | 81.30 58 | 98.99 100 | 88.54 107 | 98.88 19 | 99.20 18 |
|
原ACMM1 | | | | | 91.22 145 | 97.77 70 | 78.10 214 | | 96.61 74 | 81.05 197 | 91.28 77 | 97.42 82 | 77.92 96 | 98.98 101 | 79.85 180 | 98.51 34 | 96.59 152 |
|
Anonymous202405211 | | | 84.41 196 | 81.93 213 | 91.85 130 | 96.78 96 | 78.41 202 | 97.44 82 | 91.34 295 | 70.29 304 | 84.06 149 | 94.26 161 | 41.09 324 | 98.96 102 | 79.46 182 | 82.65 211 | 98.17 67 |
|
xiu_mvs_v2_base | | | 93.92 33 | 93.26 40 | 95.91 8 | 95.07 133 | 92.02 4 | 98.19 33 | 95.68 147 | 92.06 14 | 96.01 18 | 98.14 37 | 70.83 188 | 98.96 102 | 96.74 16 | 96.57 90 | 96.76 148 |
|
abl_6 | | | 89.80 108 | 89.71 104 | 90.07 170 | 96.53 98 | 75.52 256 | 94.48 225 | 95.04 178 | 81.12 196 | 89.22 103 | 97.00 98 | 68.83 197 | 98.96 102 | 89.86 93 | 95.27 104 | 95.73 172 |
|
VNet | | | 92.11 66 | 91.22 75 | 94.79 21 | 96.91 94 | 86.98 24 | 97.91 47 | 97.96 9 | 86.38 88 | 93.65 48 | 95.74 124 | 70.16 193 | 98.95 105 | 93.39 51 | 88.87 156 | 98.43 49 |
|
CNLPA | | | 86.96 157 | 85.37 164 | 91.72 133 | 97.59 74 | 79.34 179 | 97.21 97 | 91.05 300 | 74.22 279 | 78.90 205 | 96.75 109 | 67.21 206 | 98.95 105 | 74.68 228 | 90.77 145 | 96.88 143 |
|
ab-mvs | | | 87.08 156 | 84.94 172 | 93.48 67 | 93.34 176 | 83.67 82 | 88.82 297 | 95.70 146 | 81.18 195 | 84.55 146 | 90.14 218 | 62.72 230 | 98.94 107 | 85.49 130 | 82.54 212 | 97.85 95 |
|
HPM-MVS | | | 91.62 75 | 91.53 73 | 91.89 127 | 97.88 67 | 79.22 181 | 96.99 121 | 95.73 145 | 82.07 186 | 89.50 102 | 97.19 92 | 75.59 134 | 98.93 108 | 90.91 77 | 97.94 61 | 97.54 114 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
PVSNet | | 82.34 9 | 89.02 120 | 87.79 128 | 92.71 99 | 95.49 119 | 81.50 129 | 97.70 64 | 97.29 16 | 87.76 69 | 85.47 137 | 95.12 145 | 56.90 270 | 98.90 109 | 80.33 172 | 94.02 114 | 97.71 104 |
|
MSDG | | | 80.62 249 | 77.77 256 | 89.14 191 | 93.43 175 | 77.24 233 | 91.89 276 | 90.18 305 | 69.86 306 | 68.02 292 | 91.94 190 | 52.21 291 | 98.84 110 | 59.32 303 | 83.12 202 | 91.35 214 |
|
Anonymous20240529 | | | 83.15 214 | 80.60 231 | 90.80 155 | 95.74 113 | 78.27 206 | 96.81 135 | 94.92 183 | 60.10 332 | 81.89 180 | 92.54 182 | 45.82 310 | 98.82 111 | 79.25 185 | 78.32 237 | 95.31 182 |
|
test_yl | | | 91.46 78 | 90.53 84 | 94.24 36 | 97.41 82 | 85.18 51 | 98.08 38 | 97.72 10 | 80.94 198 | 89.85 92 | 96.14 117 | 75.61 132 | 98.81 112 | 90.42 88 | 88.56 161 | 98.74 31 |
|
DCV-MVSNet | | | 91.46 78 | 90.53 84 | 94.24 36 | 97.41 82 | 85.18 51 | 98.08 38 | 97.72 10 | 80.94 198 | 89.85 92 | 96.14 117 | 75.61 132 | 98.81 112 | 90.42 88 | 88.56 161 | 98.74 31 |
|
HPM-MVS_fast | | | 90.38 102 | 90.17 92 | 91.03 149 | 97.61 72 | 77.35 232 | 97.15 106 | 95.48 157 | 79.51 229 | 88.79 109 | 96.90 100 | 71.64 179 | 98.81 112 | 87.01 123 | 97.44 71 | 96.94 138 |
|
APD-MVS | | | 93.61 37 | 93.59 36 | 93.69 54 | 98.76 21 | 83.26 91 | 97.21 97 | 96.09 127 | 82.41 181 | 94.65 37 | 98.21 31 | 81.96 56 | 98.81 112 | 94.65 39 | 98.36 49 | 99.01 22 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SR-MVS | | | 92.16 65 | 92.27 60 | 91.83 131 | 98.37 45 | 78.41 202 | 96.67 145 | 95.76 143 | 82.19 185 | 91.97 64 | 98.07 47 | 76.44 119 | 98.64 116 | 93.71 46 | 97.27 76 | 98.45 48 |
|
alignmvs | | | 92.97 46 | 92.26 61 | 95.12 16 | 95.54 118 | 87.77 17 | 98.67 19 | 96.38 107 | 88.04 62 | 93.01 55 | 97.45 78 | 79.20 79 | 98.60 117 | 93.25 56 | 88.76 157 | 98.99 25 |
|
OMC-MVS | | | 88.80 128 | 88.16 122 | 90.72 157 | 95.30 124 | 77.92 220 | 94.81 221 | 94.51 208 | 86.80 86 | 84.97 139 | 96.85 103 | 67.53 202 | 98.60 117 | 85.08 133 | 87.62 168 | 95.63 174 |
|
canonicalmvs | | | 92.27 64 | 91.22 75 | 95.41 13 | 95.80 112 | 88.31 11 | 97.09 114 | 94.64 202 | 88.49 54 | 92.99 56 | 97.31 85 | 72.68 170 | 98.57 119 | 93.38 53 | 88.58 160 | 99.36 12 |
|
APD-MVS_3200maxsize | | | 91.23 84 | 91.35 74 | 90.89 153 | 97.89 66 | 76.35 247 | 96.30 166 | 95.52 155 | 79.82 224 | 91.03 82 | 97.88 59 | 74.70 152 | 98.54 120 | 92.11 69 | 96.89 84 | 97.77 101 |
|
IB-MVS | | 85.34 4 | 88.67 131 | 87.14 147 | 93.26 73 | 93.12 181 | 84.32 68 | 98.76 17 | 97.27 17 | 87.19 82 | 79.36 203 | 90.45 211 | 83.92 38 | 98.53 121 | 84.41 137 | 69.79 280 | 96.93 139 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
114514_t | | | 88.79 129 | 87.57 135 | 92.45 107 | 98.21 54 | 81.74 123 | 96.99 121 | 95.45 159 | 75.16 272 | 82.48 168 | 95.69 127 | 68.59 199 | 98.50 122 | 80.33 172 | 95.18 107 | 97.10 135 |
|
TSAR-MVS + MP. | | | 94.79 14 | 95.17 12 | 93.64 57 | 97.66 71 | 84.10 73 | 95.85 188 | 96.42 99 | 91.26 20 | 97.49 7 | 96.80 107 | 86.50 23 | 98.49 123 | 95.54 28 | 99.03 11 | 98.33 53 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
VDD-MVS | | | 88.28 142 | 87.02 149 | 92.06 122 | 95.09 131 | 80.18 162 | 97.55 75 | 94.45 213 | 83.09 168 | 89.10 106 | 95.92 123 | 47.97 303 | 98.49 123 | 93.08 58 | 86.91 173 | 97.52 118 |
|
PatchMatch-RL | | | 85.00 187 | 83.66 189 | 89.02 194 | 95.86 111 | 74.55 264 | 92.49 269 | 93.60 252 | 79.30 234 | 79.29 204 | 91.47 193 | 58.53 258 | 98.45 125 | 70.22 260 | 92.17 137 | 94.07 199 |
|
F-COLMAP | | | 84.50 195 | 83.44 195 | 87.67 220 | 95.22 126 | 72.22 278 | 95.95 180 | 93.78 243 | 75.74 267 | 76.30 234 | 95.18 140 | 59.50 250 | 98.45 125 | 72.67 243 | 86.59 176 | 92.35 212 |
|
xiu_mvs_v1_base_debu | | | 90.54 96 | 89.54 105 | 93.55 62 | 92.31 197 | 87.58 20 | 96.99 121 | 94.87 186 | 87.23 79 | 93.27 49 | 97.56 72 | 57.43 266 | 98.32 127 | 92.72 60 | 93.46 123 | 94.74 190 |
|
xiu_mvs_v1_base | | | 90.54 96 | 89.54 105 | 93.55 62 | 92.31 197 | 87.58 20 | 96.99 121 | 94.87 186 | 87.23 79 | 93.27 49 | 97.56 72 | 57.43 266 | 98.32 127 | 92.72 60 | 93.46 123 | 94.74 190 |
|
xiu_mvs_v1_base_debi | | | 90.54 96 | 89.54 105 | 93.55 62 | 92.31 197 | 87.58 20 | 96.99 121 | 94.87 186 | 87.23 79 | 93.27 49 | 97.56 72 | 57.43 266 | 98.32 127 | 92.72 60 | 93.46 123 | 94.74 190 |
|
CPTT-MVS | | | 89.72 110 | 89.87 100 | 89.29 190 | 98.33 47 | 73.30 271 | 97.70 64 | 95.35 164 | 75.68 268 | 87.40 122 | 97.44 81 | 70.43 190 | 98.25 130 | 89.56 99 | 96.90 83 | 96.33 161 |
|
LFMVS | | | 89.27 117 | 87.64 131 | 94.16 41 | 97.16 91 | 85.52 45 | 97.18 101 | 94.66 199 | 79.17 237 | 89.63 98 | 96.57 112 | 55.35 281 | 98.22 131 | 89.52 100 | 89.54 150 | 98.74 31 |
|
PVSNet_0 | | 77.72 15 | 81.70 236 | 78.95 249 | 89.94 178 | 90.77 238 | 76.72 242 | 95.96 179 | 96.95 33 | 85.01 119 | 70.24 286 | 88.53 235 | 52.32 290 | 98.20 132 | 86.68 125 | 44.08 340 | 94.89 186 |
|
TAPA-MVS | | 81.61 12 | 85.02 186 | 83.67 188 | 89.06 192 | 96.79 95 | 73.27 273 | 95.92 182 | 94.79 193 | 74.81 275 | 80.47 191 | 96.83 104 | 71.07 184 | 98.19 133 | 49.82 329 | 92.57 129 | 95.71 173 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
UA-Net | | | 88.92 123 | 88.48 119 | 90.24 166 | 94.06 161 | 77.18 236 | 93.04 261 | 94.66 199 | 87.39 75 | 91.09 80 | 93.89 168 | 74.92 150 | 98.18 134 | 75.83 219 | 91.43 141 | 95.35 181 |
|
thres200 | | | 88.92 123 | 87.65 130 | 92.73 98 | 96.30 100 | 85.62 43 | 97.85 50 | 98.86 1 | 84.38 137 | 84.82 141 | 93.99 166 | 75.12 148 | 98.01 135 | 70.86 257 | 86.67 174 | 94.56 193 |
|
cascas | | | 86.50 167 | 84.48 178 | 92.55 105 | 92.64 193 | 85.95 33 | 97.04 120 | 95.07 177 | 75.32 270 | 80.50 190 | 91.02 201 | 54.33 288 | 97.98 136 | 86.79 124 | 87.62 168 | 93.71 204 |
|
thres100view900 | | | 88.30 141 | 86.95 150 | 92.33 112 | 96.10 106 | 84.90 62 | 97.14 107 | 98.85 2 | 82.69 177 | 83.41 159 | 93.66 172 | 75.43 139 | 97.93 137 | 69.04 263 | 86.24 180 | 94.17 195 |
|
tfpn200view9 | | | 88.48 136 | 87.15 145 | 92.47 106 | 96.21 102 | 85.30 49 | 97.44 82 | 98.85 2 | 83.37 163 | 83.99 151 | 93.82 169 | 75.36 142 | 97.93 137 | 69.04 263 | 86.24 180 | 94.17 195 |
|
gm-plane-assit | | | | | | 92.27 201 | 79.64 174 | | | 84.47 135 | | 95.15 142 | | 97.93 137 | 85.81 127 | | |
|
testdata | | | | | 90.13 169 | 95.92 110 | 74.17 267 | | 96.49 93 | 73.49 286 | 94.82 35 | 97.99 50 | 78.80 84 | 97.93 137 | 83.53 151 | 97.52 68 | 98.29 59 |
|
thres400 | | | 88.42 139 | 87.15 145 | 92.23 116 | 96.21 102 | 85.30 49 | 97.44 82 | 98.85 2 | 83.37 163 | 83.99 151 | 93.82 169 | 75.36 142 | 97.93 137 | 69.04 263 | 86.24 180 | 93.45 208 |
|
VDDNet | | | 86.44 168 | 84.51 176 | 92.22 117 | 91.56 224 | 81.83 119 | 97.10 113 | 94.64 202 | 69.50 307 | 87.84 120 | 95.19 139 | 48.01 302 | 97.92 142 | 89.82 95 | 86.92 172 | 96.89 142 |
|
thisisatest0515 | | | 90.95 88 | 90.26 88 | 93.01 85 | 94.03 164 | 84.27 71 | 97.91 47 | 96.67 64 | 83.18 166 | 86.87 129 | 95.51 133 | 88.66 13 | 97.85 143 | 80.46 171 | 89.01 154 | 96.92 141 |
|
thres600view7 | | | 88.06 144 | 86.70 153 | 92.15 119 | 96.10 106 | 85.17 55 | 97.14 107 | 98.85 2 | 82.70 176 | 83.41 159 | 93.66 172 | 75.43 139 | 97.82 144 | 67.13 272 | 85.88 184 | 93.45 208 |
|
MVS_Test | | | 90.29 103 | 89.18 109 | 93.62 59 | 95.23 125 | 84.93 61 | 94.41 228 | 94.66 199 | 84.31 139 | 90.37 89 | 91.02 201 | 75.13 147 | 97.82 144 | 83.11 157 | 94.42 111 | 98.12 73 |
|
旧先验2 | | | | | | | | 96.97 126 | | 74.06 281 | 96.10 16 | | | 97.76 146 | 88.38 111 | | |
|
EIA-MVS | | | 91.73 71 | 92.05 65 | 90.78 156 | 94.52 148 | 76.40 246 | 98.06 40 | 95.34 165 | 89.19 41 | 88.90 108 | 97.28 89 | 77.56 100 | 97.73 147 | 90.77 80 | 96.86 88 | 98.20 64 |
|
thisisatest0530 | | | 89.65 111 | 89.02 111 | 91.53 137 | 93.46 174 | 80.78 144 | 96.52 149 | 96.67 64 | 81.69 191 | 83.79 156 | 94.90 150 | 88.85 12 | 97.68 148 | 77.80 193 | 87.49 171 | 96.14 164 |
|
BH-RMVSNet | | | 86.84 161 | 85.28 165 | 91.49 138 | 95.35 123 | 80.26 159 | 96.95 127 | 92.21 283 | 82.86 174 | 81.77 182 | 95.46 134 | 59.34 252 | 97.64 149 | 69.79 261 | 93.81 119 | 96.57 153 |
|
CS-MVS | | | 92.88 48 | 93.09 44 | 92.26 115 | 95.21 127 | 80.70 146 | 98.84 16 | 95.26 170 | 88.83 46 | 92.50 60 | 97.48 77 | 77.49 102 | 97.63 150 | 95.34 31 | 96.88 85 | 98.46 46 |
|
1112_ss | | | 88.60 134 | 87.47 139 | 92.00 124 | 93.21 177 | 80.97 139 | 96.47 152 | 92.46 281 | 83.64 159 | 80.86 187 | 97.30 87 | 80.24 67 | 97.62 151 | 77.60 198 | 85.49 188 | 97.40 124 |
|
Test_1112_low_res | | | 88.03 145 | 86.73 152 | 91.94 126 | 93.15 179 | 80.88 141 | 96.44 156 | 92.41 282 | 83.59 162 | 80.74 189 | 91.16 199 | 80.18 68 | 97.59 152 | 77.48 201 | 85.40 189 | 97.36 126 |
|
tttt0517 | | | 88.57 135 | 88.19 121 | 89.71 185 | 93.00 183 | 75.99 251 | 95.67 193 | 96.67 64 | 80.78 201 | 81.82 181 | 94.40 158 | 88.97 11 | 97.58 153 | 76.05 217 | 86.31 177 | 95.57 176 |
|
lupinMVS | | | 93.87 36 | 93.58 37 | 94.75 23 | 93.00 183 | 88.08 14 | 99.15 4 | 95.50 156 | 91.03 22 | 94.90 32 | 97.66 65 | 78.84 82 | 97.56 154 | 94.64 40 | 97.46 69 | 98.62 40 |
|
DWT-MVSNet_test | | | 90.52 99 | 89.80 102 | 92.70 100 | 95.73 115 | 82.20 109 | 93.69 243 | 96.55 83 | 88.34 57 | 87.04 128 | 95.34 136 | 86.53 22 | 97.55 155 | 76.32 214 | 88.66 159 | 98.34 52 |
|
XVG-OURS | | | 85.18 184 | 84.38 180 | 87.59 223 | 90.42 243 | 71.73 288 | 91.06 285 | 94.07 229 | 82.00 188 | 83.29 161 | 95.08 146 | 56.42 275 | 97.55 155 | 83.70 147 | 83.42 200 | 93.49 207 |
|
TR-MVS | | | 86.30 169 | 84.93 173 | 90.42 162 | 94.63 144 | 77.58 227 | 96.57 148 | 93.82 238 | 80.30 213 | 82.42 170 | 95.16 141 | 58.74 256 | 97.55 155 | 74.88 226 | 87.82 167 | 96.13 165 |
|
casdiffmvs | | | 90.95 88 | 90.39 86 | 92.63 102 | 92.82 188 | 82.53 102 | 96.83 133 | 94.47 211 | 87.69 71 | 88.47 112 | 95.56 132 | 74.04 158 | 97.54 158 | 90.90 78 | 92.74 128 | 97.83 97 |
|
XVG-OURS-SEG-HR | | | 85.74 177 | 85.16 168 | 87.49 228 | 90.22 245 | 71.45 291 | 91.29 282 | 94.09 228 | 81.37 193 | 83.90 155 | 95.22 137 | 60.30 245 | 97.53 159 | 85.58 129 | 84.42 195 | 93.50 206 |
|
baseline | | | 90.76 91 | 90.10 93 | 92.74 97 | 92.90 187 | 82.56 101 | 94.60 224 | 94.56 207 | 87.69 71 | 89.06 107 | 95.67 128 | 73.76 161 | 97.51 160 | 90.43 87 | 92.23 136 | 98.16 68 |
|
ETV-MVS | | | 92.72 54 | 92.87 48 | 92.28 114 | 94.54 147 | 81.89 116 | 97.98 44 | 95.21 172 | 89.77 35 | 93.11 53 | 96.83 104 | 77.23 109 | 97.50 161 | 95.74 25 | 95.38 103 | 97.44 121 |
|
Effi-MVS+ | | | 90.70 92 | 89.90 99 | 93.09 81 | 93.61 170 | 83.48 85 | 95.20 208 | 92.79 277 | 83.22 165 | 91.82 66 | 95.70 126 | 71.82 176 | 97.48 162 | 91.25 73 | 93.67 120 | 98.32 54 |
|
baseline2 | | | 90.39 100 | 90.21 90 | 90.93 151 | 90.86 237 | 80.99 138 | 95.20 208 | 97.41 15 | 86.03 95 | 80.07 199 | 94.61 154 | 90.58 4 | 97.47 163 | 87.29 119 | 89.86 149 | 94.35 194 |
|
diffmvs | | | 91.17 85 | 90.74 82 | 92.44 108 | 93.11 182 | 82.50 104 | 96.25 169 | 93.62 251 | 87.79 68 | 90.40 88 | 95.93 121 | 73.44 165 | 97.42 164 | 93.62 48 | 92.55 130 | 97.41 123 |
|
tpmvs | | | 83.04 217 | 80.77 227 | 89.84 181 | 95.43 120 | 77.96 217 | 85.59 318 | 95.32 167 | 75.31 271 | 76.27 235 | 83.70 301 | 73.89 159 | 97.41 165 | 59.53 300 | 81.93 214 | 94.14 197 |
|
PMMVS | | | 89.46 114 | 89.92 98 | 88.06 214 | 94.64 143 | 69.57 305 | 96.22 170 | 94.95 182 | 87.27 78 | 91.37 75 | 96.54 113 | 65.88 212 | 97.39 166 | 88.54 107 | 93.89 117 | 97.23 133 |
|
PAPM | | | 92.87 49 | 92.40 57 | 94.30 33 | 92.25 204 | 87.85 16 | 96.40 160 | 96.38 107 | 91.07 21 | 88.72 110 | 96.90 100 | 82.11 55 | 97.37 167 | 90.05 92 | 97.70 66 | 97.67 106 |
|
HQP4-MVS | | | | | | | | | | | 82.30 171 | | | 97.32 168 | | | 91.13 215 |
|
HQP-MVS | | | 87.91 149 | 87.55 136 | 88.98 195 | 92.08 211 | 78.48 198 | 97.63 67 | 94.80 191 | 90.52 27 | 82.30 171 | 94.56 155 | 65.40 216 | 97.32 168 | 87.67 116 | 83.01 204 | 91.13 215 |
|
HQP_MVS | | | 87.50 152 | 87.09 148 | 88.74 200 | 91.86 221 | 77.96 217 | 97.18 101 | 94.69 195 | 89.89 33 | 81.33 183 | 94.15 163 | 64.77 221 | 97.30 170 | 87.08 120 | 82.82 208 | 90.96 217 |
|
plane_prior5 | | | | | | | | | 94.69 195 | | | | | 97.30 170 | 87.08 120 | 82.82 208 | 90.96 217 |
|
jason | | | 92.73 53 | 92.23 62 | 94.21 38 | 90.50 241 | 87.30 23 | 98.65 20 | 95.09 175 | 90.61 26 | 92.76 57 | 97.13 94 | 75.28 145 | 97.30 170 | 93.32 54 | 96.75 89 | 98.02 80 |
jason: jason. |
CLD-MVS | | | 87.97 147 | 87.48 138 | 89.44 187 | 92.16 209 | 80.54 152 | 98.14 34 | 94.92 183 | 91.41 17 | 79.43 202 | 95.40 135 | 62.34 232 | 97.27 173 | 90.60 83 | 82.90 207 | 90.50 223 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OPM-MVS | | | 85.84 174 | 85.10 170 | 88.06 214 | 88.34 270 | 77.83 223 | 95.72 191 | 94.20 221 | 87.89 67 | 80.45 192 | 94.05 165 | 58.57 257 | 97.26 174 | 83.88 141 | 82.76 210 | 89.09 253 |
|
BH-w/o | | | 88.24 143 | 87.47 139 | 90.54 161 | 95.03 135 | 78.54 197 | 97.41 89 | 93.82 238 | 84.08 145 | 78.23 212 | 94.51 157 | 69.34 196 | 97.21 175 | 80.21 175 | 94.58 110 | 95.87 169 |
|
Vis-MVSNet | | | 88.67 131 | 87.82 127 | 91.24 144 | 92.68 189 | 78.82 191 | 96.95 127 | 93.85 237 | 87.55 73 | 87.07 127 | 95.13 144 | 63.43 227 | 97.21 175 | 77.58 199 | 96.15 93 | 97.70 105 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
mvs-test1 | | | 86.83 162 | 87.17 144 | 85.81 255 | 91.96 217 | 65.24 317 | 97.90 49 | 93.34 263 | 85.57 103 | 84.51 147 | 95.14 143 | 61.99 237 | 97.19 177 | 83.55 149 | 90.55 146 | 95.00 185 |
|
AllTest | | | 75.92 282 | 73.06 287 | 84.47 273 | 92.18 207 | 67.29 311 | 91.07 284 | 84.43 333 | 67.63 310 | 63.48 309 | 90.18 215 | 38.20 328 | 97.16 178 | 57.04 308 | 73.37 256 | 88.97 261 |
|
TestCases | | | | | 84.47 273 | 92.18 207 | 67.29 311 | | 84.43 333 | 67.63 310 | 63.48 309 | 90.18 215 | 38.20 328 | 97.16 178 | 57.04 308 | 73.37 256 | 88.97 261 |
|
ACMH | | 75.40 17 | 77.99 268 | 74.96 274 | 87.10 237 | 90.67 239 | 76.41 245 | 93.19 260 | 91.64 291 | 72.47 295 | 63.44 311 | 87.61 247 | 43.34 315 | 97.16 178 | 58.34 305 | 73.94 253 | 87.72 283 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMM | | 80.70 13 | 83.72 205 | 82.85 201 | 86.31 249 | 91.19 230 | 72.12 281 | 95.88 185 | 94.29 217 | 80.44 208 | 77.02 222 | 91.96 188 | 55.24 282 | 97.14 181 | 79.30 184 | 80.38 218 | 89.67 239 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPP-MVSNet | | | 89.76 109 | 89.72 103 | 89.87 180 | 93.78 166 | 76.02 250 | 97.22 95 | 96.51 88 | 79.35 231 | 85.11 138 | 95.01 148 | 84.82 29 | 97.10 182 | 87.46 118 | 88.21 165 | 96.50 154 |
|
tpm cat1 | | | 83.63 206 | 81.38 221 | 90.39 163 | 93.53 173 | 78.19 213 | 85.56 319 | 95.09 175 | 70.78 302 | 78.51 209 | 83.28 304 | 74.80 151 | 97.03 183 | 66.77 273 | 84.05 196 | 95.95 166 |
|
BH-untuned | | | 86.95 158 | 85.94 159 | 89.99 174 | 94.52 148 | 77.46 229 | 96.78 137 | 93.37 262 | 81.80 189 | 76.62 228 | 93.81 171 | 66.64 210 | 97.02 184 | 76.06 216 | 93.88 118 | 95.48 178 |
|
LTVRE_ROB | | 73.68 18 | 77.99 268 | 75.74 271 | 84.74 266 | 90.45 242 | 72.02 282 | 86.41 314 | 91.12 297 | 72.57 294 | 66.63 298 | 87.27 250 | 54.95 285 | 96.98 185 | 56.29 312 | 75.98 243 | 85.21 314 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TESTMET0.1,1 | | | 89.83 107 | 89.34 108 | 91.31 140 | 92.54 195 | 80.19 161 | 97.11 110 | 96.57 79 | 86.15 90 | 86.85 130 | 91.83 192 | 79.32 74 | 96.95 186 | 81.30 166 | 92.35 134 | 96.77 147 |
|
LPG-MVS_test | | | 84.20 199 | 83.49 194 | 86.33 246 | 90.88 235 | 73.06 274 | 95.28 203 | 94.13 225 | 82.20 183 | 76.31 232 | 93.20 175 | 54.83 286 | 96.95 186 | 83.72 145 | 80.83 216 | 88.98 259 |
|
LGP-MVS_train | | | | | 86.33 246 | 90.88 235 | 73.06 274 | | 94.13 225 | 82.20 183 | 76.31 232 | 93.20 175 | 54.83 286 | 96.95 186 | 83.72 145 | 80.83 216 | 88.98 259 |
|
COLMAP_ROB | | 73.24 19 | 75.74 283 | 73.00 288 | 83.94 279 | 92.38 196 | 69.08 307 | 91.85 277 | 86.93 324 | 61.48 326 | 65.32 304 | 90.27 214 | 42.27 320 | 96.93 189 | 50.91 326 | 75.63 246 | 85.80 312 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
baseline1 | | | 88.85 126 | 87.49 137 | 92.93 90 | 95.21 127 | 86.85 25 | 95.47 200 | 94.61 204 | 87.29 76 | 83.11 164 | 94.99 149 | 80.70 61 | 96.89 190 | 82.28 161 | 73.72 254 | 95.05 184 |
|
ACMP | | 81.66 11 | 84.00 200 | 83.22 197 | 86.33 246 | 91.53 227 | 72.95 276 | 95.91 184 | 93.79 242 | 83.70 158 | 73.79 258 | 92.22 184 | 54.31 289 | 96.89 190 | 83.98 140 | 79.74 222 | 89.16 251 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
CostFormer | | | 89.08 119 | 88.39 120 | 91.15 146 | 93.13 180 | 79.15 184 | 88.61 300 | 96.11 126 | 83.14 167 | 89.58 99 | 86.93 257 | 83.83 39 | 96.87 192 | 88.22 113 | 85.92 183 | 97.42 122 |
|
USDC | | | 78.65 263 | 76.25 267 | 85.85 254 | 87.58 278 | 74.60 263 | 89.58 292 | 90.58 304 | 84.05 146 | 63.13 313 | 88.23 238 | 40.69 326 | 96.86 193 | 66.57 276 | 75.81 245 | 86.09 309 |
|
MS-PatchMatch | | | 83.05 216 | 81.82 215 | 86.72 244 | 89.64 255 | 79.10 186 | 94.88 220 | 94.59 206 | 79.70 227 | 70.67 282 | 89.65 221 | 50.43 295 | 96.82 194 | 70.82 259 | 95.99 98 | 84.25 319 |
|
HyFIR lowres test | | | 89.36 115 | 88.60 117 | 91.63 135 | 94.91 139 | 80.76 145 | 95.60 196 | 95.53 153 | 82.56 180 | 84.03 150 | 91.24 198 | 78.03 94 | 96.81 195 | 87.07 122 | 88.41 163 | 97.32 127 |
|
RPSCF | | | 77.73 271 | 76.63 265 | 81.06 303 | 88.66 268 | 55.76 338 | 87.77 305 | 87.88 321 | 64.82 318 | 74.14 257 | 92.79 180 | 49.22 299 | 96.81 195 | 67.47 271 | 76.88 242 | 90.62 220 |
|
test-LLR | | | 88.48 136 | 87.98 124 | 89.98 175 | 92.26 202 | 77.23 234 | 97.11 110 | 95.96 134 | 83.76 156 | 86.30 133 | 91.38 195 | 72.30 174 | 96.78 197 | 80.82 168 | 91.92 138 | 95.94 167 |
|
test-mter | | | 88.95 121 | 88.60 117 | 89.98 175 | 92.26 202 | 77.23 234 | 97.11 110 | 95.96 134 | 85.32 109 | 86.30 133 | 91.38 195 | 76.37 122 | 96.78 197 | 80.82 168 | 91.92 138 | 95.94 167 |
|
tpmrst | | | 88.36 140 | 87.38 141 | 91.31 140 | 94.36 155 | 79.92 165 | 87.32 307 | 95.26 170 | 85.32 109 | 88.34 115 | 86.13 273 | 80.60 62 | 96.70 199 | 83.78 142 | 85.34 191 | 97.30 130 |
|
Fast-Effi-MVS+ | | | 87.93 148 | 86.94 151 | 90.92 152 | 94.04 162 | 79.16 183 | 98.26 30 | 93.72 247 | 81.29 194 | 83.94 154 | 92.90 179 | 69.83 194 | 96.68 200 | 76.70 208 | 91.74 140 | 96.93 139 |
|
MDTV_nov1_ep13 | | | | 83.69 187 | | 94.09 160 | 81.01 137 | 86.78 311 | 96.09 127 | 83.81 155 | 84.75 142 | 84.32 296 | 74.44 154 | 96.54 201 | 63.88 288 | 85.07 192 | |
|
XXY-MVS | | | 83.84 202 | 82.00 212 | 89.35 188 | 87.13 281 | 81.38 130 | 95.72 191 | 94.26 218 | 80.15 218 | 75.92 242 | 90.63 207 | 61.96 239 | 96.52 202 | 78.98 188 | 73.28 259 | 90.14 229 |
|
ACMH+ | | 76.62 16 | 77.47 272 | 74.94 275 | 85.05 263 | 91.07 233 | 71.58 290 | 93.26 257 | 90.01 306 | 71.80 298 | 64.76 306 | 88.55 233 | 41.62 322 | 96.48 203 | 62.35 295 | 71.00 267 | 87.09 297 |
|
GA-MVS | | | 85.79 176 | 84.04 185 | 91.02 150 | 89.47 259 | 80.27 158 | 96.90 130 | 94.84 189 | 85.57 103 | 80.88 186 | 89.08 225 | 56.56 274 | 96.47 204 | 77.72 196 | 85.35 190 | 96.34 159 |
|
tpm2 | | | 87.35 154 | 86.26 156 | 90.62 159 | 92.93 186 | 78.67 195 | 88.06 303 | 95.99 132 | 79.33 232 | 87.40 122 | 86.43 268 | 80.28 66 | 96.40 205 | 80.23 174 | 85.73 187 | 96.79 145 |
|
dp | | | 84.30 198 | 82.31 208 | 90.28 165 | 94.24 157 | 77.97 216 | 86.57 312 | 95.53 153 | 79.94 223 | 80.75 188 | 85.16 287 | 71.49 181 | 96.39 206 | 63.73 289 | 83.36 201 | 96.48 155 |
|
nrg030 | | | 86.79 164 | 85.43 162 | 90.87 154 | 88.76 264 | 85.34 47 | 97.06 118 | 94.33 216 | 84.31 139 | 80.45 192 | 91.98 187 | 72.36 172 | 96.36 207 | 88.48 110 | 71.13 266 | 90.93 219 |
|
RRT_test8_iter05 | | | 87.14 155 | 86.41 155 | 89.32 189 | 94.41 153 | 81.10 136 | 97.06 118 | 95.33 166 | 84.67 128 | 76.27 235 | 90.48 209 | 83.60 41 | 96.33 208 | 85.10 132 | 70.78 269 | 90.53 222 |
|
CMPMVS | | 54.94 21 | 75.71 284 | 74.56 278 | 79.17 311 | 79.69 326 | 55.98 336 | 89.59 291 | 93.30 265 | 60.28 330 | 53.85 333 | 89.07 226 | 47.68 306 | 96.33 208 | 76.55 209 | 81.02 215 | 85.22 313 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
VPA-MVSNet | | | 85.32 182 | 83.83 186 | 89.77 184 | 90.25 244 | 82.63 100 | 96.36 161 | 97.07 24 | 83.03 170 | 81.21 185 | 89.02 227 | 61.58 241 | 96.31 210 | 85.02 135 | 70.95 268 | 90.36 224 |
|
XVG-ACMP-BASELINE | | | 79.38 258 | 77.90 255 | 83.81 280 | 84.98 307 | 67.14 314 | 89.03 296 | 93.18 269 | 80.26 216 | 72.87 268 | 88.15 240 | 38.55 327 | 96.26 211 | 76.05 217 | 78.05 238 | 88.02 279 |
|
EPMVS | | | 87.47 153 | 85.90 160 | 92.18 118 | 95.41 121 | 82.26 108 | 87.00 309 | 96.28 115 | 85.88 98 | 84.23 148 | 85.57 279 | 75.07 149 | 96.26 211 | 71.14 255 | 92.50 131 | 98.03 79 |
|
IS-MVSNet | | | 88.67 131 | 88.16 122 | 90.20 168 | 93.61 170 | 76.86 239 | 96.77 139 | 93.07 273 | 84.02 147 | 83.62 158 | 95.60 131 | 74.69 153 | 96.24 213 | 78.43 192 | 93.66 121 | 97.49 120 |
|
GG-mvs-BLEND | | | | | 93.49 66 | 94.94 137 | 86.26 29 | 81.62 324 | 97.00 27 | | 88.32 116 | 94.30 160 | 91.23 3 | 96.21 214 | 88.49 109 | 97.43 72 | 98.00 85 |
|
gg-mvs-nofinetune | | | 85.48 181 | 82.90 200 | 93.24 74 | 94.51 151 | 85.82 37 | 79.22 328 | 96.97 31 | 61.19 327 | 87.33 124 | 53.01 339 | 90.58 4 | 96.07 215 | 86.07 126 | 97.23 77 | 97.81 99 |
|
v2v482 | | | 83.46 208 | 81.86 214 | 88.25 211 | 86.19 290 | 79.65 173 | 96.34 163 | 94.02 231 | 81.56 192 | 77.32 218 | 88.23 238 | 65.62 213 | 96.03 216 | 77.77 194 | 69.72 282 | 89.09 253 |
|
V42 | | | 83.04 217 | 81.53 219 | 87.57 225 | 86.27 289 | 79.09 187 | 95.87 186 | 94.11 227 | 80.35 212 | 77.22 220 | 86.79 260 | 65.32 218 | 96.02 217 | 77.74 195 | 70.14 274 | 87.61 288 |
|
VPNet | | | 84.69 191 | 82.92 199 | 90.01 173 | 89.01 263 | 83.45 86 | 96.71 142 | 95.46 158 | 85.71 101 | 79.65 201 | 92.18 185 | 56.66 273 | 96.01 218 | 83.05 158 | 67.84 299 | 90.56 221 |
|
test_post | | | | | | | | | | | | 33.80 345 | 76.17 125 | 95.97 219 | | | |
|
EI-MVSNet | | | 85.80 175 | 85.20 166 | 87.59 223 | 91.55 225 | 77.41 230 | 95.13 211 | 95.36 162 | 80.43 210 | 80.33 194 | 94.71 152 | 73.72 162 | 95.97 219 | 76.96 206 | 78.64 232 | 89.39 242 |
|
MVSTER | | | 89.25 118 | 88.92 114 | 90.24 166 | 95.98 109 | 84.66 65 | 96.79 136 | 95.36 162 | 87.19 82 | 80.33 194 | 90.61 208 | 90.02 9 | 95.97 219 | 85.38 131 | 78.64 232 | 90.09 232 |
|
PatchmatchNet | | | 86.83 162 | 85.12 169 | 91.95 125 | 94.12 159 | 82.27 107 | 86.55 313 | 95.64 149 | 84.59 131 | 82.98 166 | 84.99 291 | 77.26 105 | 95.96 222 | 68.61 267 | 91.34 142 | 97.64 109 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TinyColmap | | | 72.41 297 | 68.99 301 | 82.68 294 | 88.11 273 | 69.59 304 | 88.41 301 | 85.20 330 | 65.55 316 | 57.91 327 | 84.82 293 | 30.80 341 | 95.94 223 | 51.38 323 | 68.70 289 | 82.49 328 |
|
v1144 | | | 82.90 220 | 81.27 223 | 87.78 219 | 86.29 288 | 79.07 188 | 96.14 173 | 93.93 233 | 80.05 220 | 77.38 216 | 86.80 259 | 65.50 214 | 95.93 224 | 75.21 224 | 70.13 275 | 88.33 274 |
|
v144192 | | | 82.43 226 | 80.73 228 | 87.54 226 | 85.81 297 | 78.22 208 | 95.98 178 | 93.78 243 | 79.09 239 | 77.11 221 | 86.49 264 | 64.66 223 | 95.91 225 | 74.20 234 | 69.42 283 | 88.49 268 |
|
v1192 | | | 82.31 230 | 80.55 232 | 87.60 222 | 85.94 294 | 78.47 201 | 95.85 188 | 93.80 241 | 79.33 232 | 76.97 223 | 86.51 263 | 63.33 228 | 95.87 226 | 73.11 240 | 70.13 275 | 88.46 270 |
|
v1240 | | | 81.70 236 | 79.83 243 | 87.30 233 | 85.50 299 | 77.70 226 | 95.48 199 | 93.44 256 | 78.46 248 | 76.53 229 | 86.44 266 | 60.85 243 | 95.84 227 | 71.59 249 | 70.17 273 | 88.35 273 |
|
v1921920 | | | 82.02 233 | 80.23 236 | 87.41 229 | 85.62 298 | 77.92 220 | 95.79 190 | 93.69 248 | 78.86 243 | 76.67 226 | 86.44 266 | 62.50 231 | 95.83 228 | 72.69 242 | 69.77 281 | 88.47 269 |
|
testing_2 | | | 76.96 276 | 73.18 286 | 88.30 209 | 75.87 337 | 79.64 174 | 89.92 290 | 94.21 220 | 80.16 217 | 51.23 335 | 75.94 326 | 33.94 334 | 95.81 229 | 82.28 161 | 75.12 250 | 89.46 241 |
|
v8 | | | 81.88 234 | 80.06 240 | 87.32 231 | 86.63 284 | 79.04 189 | 94.41 228 | 93.65 250 | 78.77 244 | 73.19 265 | 85.57 279 | 66.87 208 | 95.81 229 | 73.84 238 | 67.61 301 | 87.11 296 |
|
D2MVS | | | 82.67 223 | 81.55 218 | 86.04 253 | 87.77 276 | 76.47 243 | 95.21 207 | 96.58 78 | 82.66 178 | 70.26 285 | 85.46 282 | 60.39 244 | 95.80 231 | 76.40 212 | 79.18 227 | 85.83 311 |
|
PS-MVSNAJss | | | 84.91 188 | 84.30 181 | 86.74 240 | 85.89 296 | 74.40 266 | 94.95 218 | 94.16 224 | 83.93 151 | 76.45 230 | 90.11 219 | 71.04 185 | 95.77 232 | 83.16 156 | 79.02 229 | 90.06 234 |
|
MVP-Stereo | | | 82.65 224 | 81.67 217 | 85.59 258 | 86.10 293 | 78.29 205 | 93.33 252 | 92.82 276 | 77.75 254 | 69.17 291 | 87.98 242 | 59.28 253 | 95.76 233 | 71.77 247 | 96.88 85 | 82.73 325 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
tfpnnormal | | | 78.14 267 | 75.42 272 | 86.31 249 | 88.33 271 | 79.24 180 | 94.41 228 | 96.22 119 | 73.51 284 | 69.81 287 | 85.52 281 | 55.43 280 | 95.75 234 | 47.65 333 | 67.86 298 | 83.95 321 |
|
v148 | | | 82.41 229 | 80.89 225 | 86.99 238 | 86.18 291 | 76.81 240 | 96.27 167 | 93.82 238 | 80.49 207 | 75.28 250 | 86.11 274 | 67.32 205 | 95.75 234 | 75.48 222 | 67.03 307 | 88.42 272 |
|
v10 | | | 81.43 240 | 79.53 245 | 87.11 236 | 86.38 285 | 78.87 190 | 94.31 232 | 93.43 257 | 77.88 252 | 73.24 264 | 85.26 283 | 65.44 215 | 95.75 234 | 72.14 246 | 67.71 300 | 86.72 300 |
|
TAMVS | | | 88.48 136 | 87.79 128 | 90.56 160 | 91.09 232 | 79.18 182 | 96.45 155 | 95.88 138 | 83.64 159 | 83.12 163 | 93.33 174 | 75.94 129 | 95.74 237 | 82.40 160 | 88.27 164 | 96.75 149 |
|
cl-mvsnet2 | | | 85.11 185 | 84.17 183 | 87.92 216 | 95.06 134 | 78.82 191 | 95.51 198 | 94.22 219 | 79.74 226 | 76.77 225 | 87.92 243 | 75.96 128 | 95.68 238 | 79.93 179 | 72.42 261 | 89.27 248 |
|
UniMVSNet_ETH3D | | | 80.86 247 | 78.75 250 | 87.22 235 | 86.31 287 | 72.02 282 | 91.95 274 | 93.76 246 | 73.51 284 | 75.06 252 | 90.16 217 | 43.04 318 | 95.66 239 | 76.37 213 | 78.55 235 | 93.98 200 |
|
Anonymous20231211 | | | 79.72 254 | 77.19 260 | 87.33 230 | 95.59 117 | 77.16 237 | 95.18 210 | 94.18 223 | 59.31 334 | 72.57 271 | 86.20 272 | 47.89 304 | 95.66 239 | 74.53 232 | 69.24 286 | 89.18 250 |
|
CHOSEN 280x420 | | | 91.71 73 | 91.85 66 | 91.29 142 | 94.94 137 | 82.69 99 | 87.89 304 | 96.17 123 | 85.94 96 | 87.27 125 | 94.31 159 | 90.27 6 | 95.65 241 | 94.04 45 | 95.86 99 | 95.53 177 |
|
CDS-MVSNet | | | 89.50 113 | 88.96 113 | 91.14 147 | 91.94 220 | 80.93 140 | 97.09 114 | 95.81 141 | 84.26 142 | 84.72 143 | 94.20 162 | 80.31 65 | 95.64 242 | 83.37 153 | 88.96 155 | 96.85 144 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVS-HIRNet | | | 71.36 301 | 67.00 303 | 84.46 275 | 90.58 240 | 69.74 303 | 79.15 329 | 87.74 322 | 46.09 339 | 61.96 317 | 50.50 340 | 45.14 311 | 95.64 242 | 53.74 319 | 88.11 166 | 88.00 280 |
|
v7n | | | 79.32 259 | 77.34 258 | 85.28 261 | 84.05 316 | 72.89 277 | 93.38 250 | 93.87 236 | 75.02 274 | 70.68 281 | 84.37 295 | 59.58 249 | 95.62 244 | 67.60 269 | 67.50 302 | 87.32 295 |
|
Effi-MVS+-dtu | | | 84.61 192 | 84.90 174 | 83.72 284 | 91.96 217 | 63.14 324 | 94.95 218 | 93.34 263 | 85.57 103 | 79.79 200 | 87.12 254 | 61.99 237 | 95.61 245 | 83.55 149 | 85.83 185 | 92.41 211 |
|
JIA-IIPM | | | 79.00 262 | 77.20 259 | 84.40 276 | 89.74 254 | 64.06 321 | 75.30 336 | 95.44 160 | 62.15 322 | 81.90 179 | 59.08 337 | 78.92 81 | 95.59 246 | 66.51 277 | 85.78 186 | 93.54 205 |
|
Fast-Effi-MVS+-dtu | | | 83.33 210 | 82.60 205 | 85.50 259 | 89.55 257 | 69.38 306 | 96.09 176 | 91.38 292 | 82.30 182 | 75.96 241 | 91.41 194 | 56.71 271 | 95.58 247 | 75.13 225 | 84.90 193 | 91.54 213 |
|
EG-PatchMatch MVS | | | 74.92 286 | 72.02 290 | 83.62 285 | 83.76 318 | 73.28 272 | 93.62 245 | 92.04 285 | 68.57 309 | 58.88 324 | 83.80 300 | 31.87 339 | 95.57 248 | 56.97 310 | 78.67 231 | 82.00 331 |
|
UniMVSNet (Re) | | | 85.31 183 | 84.23 182 | 88.55 203 | 89.75 252 | 80.55 151 | 96.72 140 | 96.89 38 | 85.42 107 | 78.40 210 | 88.93 228 | 75.38 141 | 95.52 249 | 78.58 190 | 68.02 296 | 89.57 240 |
|
OpenMVS_ROB | | 68.52 20 | 73.02 295 | 69.57 299 | 83.37 289 | 80.54 324 | 71.82 286 | 93.60 246 | 88.22 320 | 62.37 321 | 61.98 316 | 83.15 305 | 35.31 333 | 95.47 250 | 45.08 336 | 75.88 244 | 82.82 323 |
|
miper_enhance_ethall | | | 85.95 173 | 85.20 166 | 88.19 213 | 94.85 140 | 79.76 168 | 96.00 177 | 94.06 230 | 82.98 172 | 77.74 215 | 88.76 230 | 79.42 73 | 95.46 251 | 80.58 170 | 72.42 261 | 89.36 247 |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 324 | 77.78 98 | 95.39 252 | | | |
|
SCA | | | 85.63 178 | 83.64 190 | 91.60 136 | 92.30 200 | 81.86 118 | 92.88 265 | 95.56 152 | 84.85 121 | 82.52 167 | 85.12 289 | 58.04 261 | 95.39 252 | 73.89 236 | 87.58 170 | 97.54 114 |
|
jajsoiax | | | 82.12 232 | 81.15 224 | 85.03 264 | 84.19 313 | 70.70 294 | 94.22 237 | 93.95 232 | 83.07 169 | 73.48 260 | 89.75 220 | 49.66 298 | 95.37 254 | 82.24 163 | 79.76 220 | 89.02 257 |
|
mvs_anonymous | | | 88.68 130 | 87.62 133 | 91.86 128 | 94.80 141 | 81.69 126 | 93.53 248 | 94.92 183 | 82.03 187 | 78.87 207 | 90.43 212 | 75.77 131 | 95.34 255 | 85.04 134 | 93.16 126 | 98.55 44 |
|
ITE_SJBPF | | | | | 82.38 296 | 87.00 282 | 65.59 316 | | 89.55 309 | 79.99 222 | 69.37 289 | 91.30 197 | 41.60 323 | 95.33 256 | 62.86 294 | 74.63 252 | 86.24 306 |
|
eth_miper_zixun_eth | | | 83.12 215 | 82.01 211 | 86.47 245 | 91.85 223 | 74.80 261 | 94.33 231 | 93.18 269 | 79.11 238 | 75.74 246 | 87.25 252 | 72.71 169 | 95.32 257 | 76.78 207 | 67.13 305 | 89.27 248 |
|
mvs_tets | | | 81.74 235 | 80.71 229 | 84.84 265 | 84.22 312 | 70.29 297 | 93.91 240 | 93.78 243 | 82.77 175 | 73.37 261 | 89.46 223 | 47.36 307 | 95.31 258 | 81.99 164 | 79.55 225 | 88.92 263 |
|
FIs | | | 86.73 166 | 86.10 157 | 88.61 202 | 90.05 249 | 80.21 160 | 96.14 173 | 96.95 33 | 85.56 106 | 78.37 211 | 92.30 183 | 76.73 115 | 95.28 259 | 79.51 181 | 79.27 226 | 90.35 225 |
|
pm-mvs1 | | | 80.05 252 | 78.02 254 | 86.15 251 | 85.42 300 | 75.81 254 | 95.11 213 | 92.69 279 | 77.13 261 | 70.36 284 | 87.43 248 | 58.44 259 | 95.27 260 | 71.36 251 | 64.25 314 | 87.36 294 |
|
miper_ehance_all_eth | | | 84.57 193 | 83.60 192 | 87.50 227 | 92.64 193 | 78.25 207 | 95.40 202 | 93.47 255 | 79.28 235 | 76.41 231 | 87.64 246 | 76.53 118 | 95.24 261 | 78.58 190 | 72.42 261 | 89.01 258 |
|
ADS-MVSNet | | | 81.26 242 | 78.36 251 | 89.96 177 | 93.78 166 | 79.78 167 | 79.48 326 | 93.60 252 | 73.09 289 | 80.14 196 | 79.99 318 | 62.15 234 | 95.24 261 | 59.49 301 | 83.52 198 | 94.85 187 |
|
cl-mvsnet_ | | | 83.27 211 | 82.12 209 | 86.74 240 | 92.20 205 | 75.95 252 | 95.11 213 | 93.27 266 | 78.44 249 | 74.82 253 | 87.02 256 | 74.19 156 | 95.19 263 | 74.67 229 | 69.32 284 | 89.09 253 |
|
cl-mvsnet1 | | | 83.27 211 | 82.12 209 | 86.74 240 | 92.19 206 | 75.92 253 | 95.11 213 | 93.26 267 | 78.44 249 | 74.81 254 | 87.08 255 | 74.19 156 | 95.19 263 | 74.66 230 | 69.30 285 | 89.11 252 |
|
IterMVS-LS | | | 83.93 201 | 82.80 202 | 87.31 232 | 91.46 228 | 77.39 231 | 95.66 194 | 93.43 257 | 80.44 208 | 75.51 247 | 87.26 251 | 73.72 162 | 95.16 265 | 76.99 204 | 70.72 271 | 89.39 242 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet_NR-MVSNet | | | 85.49 180 | 84.59 175 | 88.21 212 | 89.44 260 | 79.36 177 | 96.71 142 | 96.41 100 | 85.22 113 | 78.11 213 | 90.98 203 | 76.97 111 | 95.14 266 | 79.14 186 | 68.30 293 | 90.12 230 |
|
DU-MVS | | | 84.57 193 | 83.33 196 | 88.28 210 | 88.76 264 | 79.36 177 | 96.43 158 | 95.41 161 | 85.42 107 | 78.11 213 | 90.82 204 | 67.61 200 | 95.14 266 | 79.14 186 | 68.30 293 | 90.33 226 |
|
cl_fuxian | | | 83.80 203 | 82.65 204 | 87.25 234 | 92.10 210 | 77.74 225 | 95.25 206 | 93.04 274 | 78.58 246 | 76.01 239 | 87.21 253 | 75.25 146 | 95.11 268 | 77.54 200 | 68.89 288 | 88.91 264 |
|
MVSFormer | | | 91.36 81 | 90.57 83 | 93.73 53 | 93.00 183 | 88.08 14 | 94.80 222 | 94.48 209 | 80.74 202 | 94.90 32 | 97.13 94 | 78.84 82 | 95.10 269 | 83.77 143 | 97.46 69 | 98.02 80 |
|
test_djsdf | | | 83.00 219 | 82.45 207 | 84.64 270 | 84.07 315 | 69.78 302 | 94.80 222 | 94.48 209 | 80.74 202 | 75.41 249 | 87.70 245 | 61.32 242 | 95.10 269 | 83.77 143 | 79.76 220 | 89.04 256 |
|
test_post1 | | | | | | | | 85.88 317 | | | | 30.24 348 | 73.77 160 | 95.07 271 | 73.89 236 | | |
|
pmmvs4 | | | 82.54 225 | 80.79 226 | 87.79 218 | 86.11 292 | 80.49 154 | 93.55 247 | 93.18 269 | 77.29 260 | 73.35 262 | 89.40 224 | 65.26 219 | 95.05 272 | 75.32 223 | 73.61 255 | 87.83 282 |
|
RRT_MVS | | | 86.89 159 | 85.96 158 | 89.68 186 | 95.01 136 | 84.13 72 | 96.33 164 | 94.98 181 | 84.20 144 | 80.10 198 | 92.07 186 | 70.52 189 | 95.01 273 | 83.30 154 | 77.14 241 | 89.91 236 |
|
anonymousdsp | | | 80.98 246 | 79.97 241 | 84.01 278 | 81.73 320 | 70.44 296 | 92.49 269 | 93.58 254 | 77.10 263 | 72.98 267 | 86.31 270 | 57.58 265 | 94.90 274 | 79.32 183 | 78.63 234 | 86.69 301 |
|
NR-MVSNet | | | 83.35 209 | 81.52 220 | 88.84 197 | 88.76 264 | 81.31 132 | 94.45 227 | 95.16 173 | 84.65 129 | 67.81 293 | 90.82 204 | 70.36 191 | 94.87 275 | 74.75 227 | 66.89 308 | 90.33 226 |
|
WR-MVS | | | 84.32 197 | 82.96 198 | 88.41 205 | 89.38 261 | 80.32 155 | 96.59 147 | 96.25 117 | 83.97 149 | 76.63 227 | 90.36 213 | 67.53 202 | 94.86 276 | 75.82 220 | 70.09 278 | 90.06 234 |
|
pmmvs6 | | | 74.65 288 | 71.67 291 | 83.60 286 | 79.13 328 | 69.94 299 | 93.31 256 | 90.88 302 | 61.05 329 | 65.83 302 | 84.15 298 | 43.43 314 | 94.83 277 | 66.62 274 | 60.63 321 | 86.02 310 |
|
FC-MVSNet-test | | | 85.96 172 | 85.39 163 | 87.66 221 | 89.38 261 | 78.02 215 | 95.65 195 | 96.87 39 | 85.12 117 | 77.34 217 | 91.94 190 | 76.28 124 | 94.74 278 | 77.09 203 | 78.82 230 | 90.21 228 |
|
Vis-MVSNet (Re-imp) | | | 88.88 125 | 88.87 115 | 88.91 196 | 93.89 165 | 74.43 265 | 96.93 129 | 94.19 222 | 84.39 136 | 83.22 162 | 95.67 128 | 78.24 91 | 94.70 279 | 78.88 189 | 94.40 112 | 97.61 112 |
|
tpm | | | 85.55 179 | 84.47 179 | 88.80 199 | 90.19 246 | 75.39 258 | 88.79 298 | 94.69 195 | 84.83 122 | 83.96 153 | 85.21 285 | 78.22 92 | 94.68 280 | 76.32 214 | 78.02 239 | 96.34 159 |
|
TranMVSNet+NR-MVSNet | | | 83.24 213 | 81.71 216 | 87.83 217 | 87.71 277 | 78.81 193 | 96.13 175 | 94.82 190 | 84.52 132 | 76.18 238 | 90.78 206 | 64.07 224 | 94.60 281 | 74.60 231 | 66.59 310 | 90.09 232 |
|
Patchmatch-test | | | 78.25 266 | 74.72 276 | 88.83 198 | 91.20 229 | 74.10 268 | 73.91 339 | 88.70 319 | 59.89 333 | 66.82 297 | 85.12 289 | 78.38 89 | 94.54 282 | 48.84 331 | 79.58 224 | 97.86 94 |
|
FMVSNet3 | | | 84.71 190 | 82.71 203 | 90.70 158 | 94.55 146 | 87.71 18 | 95.92 182 | 94.67 198 | 81.73 190 | 75.82 243 | 88.08 241 | 66.99 207 | 94.47 283 | 71.23 252 | 75.38 247 | 89.91 236 |
|
pmmvs5 | | | 81.34 241 | 79.54 244 | 86.73 243 | 85.02 306 | 76.91 238 | 96.22 170 | 91.65 290 | 77.65 255 | 73.55 259 | 88.61 232 | 55.70 279 | 94.43 284 | 74.12 235 | 73.35 258 | 88.86 265 |
|
Baseline_NR-MVSNet | | | 81.22 243 | 80.07 239 | 84.68 268 | 85.32 304 | 75.12 260 | 96.48 151 | 88.80 316 | 76.24 266 | 77.28 219 | 86.40 269 | 67.61 200 | 94.39 285 | 75.73 221 | 66.73 309 | 84.54 317 |
|
FMVSNet2 | | | 82.79 221 | 80.44 233 | 89.83 182 | 92.66 190 | 85.43 46 | 95.42 201 | 94.35 215 | 79.06 240 | 74.46 255 | 87.28 249 | 56.38 276 | 94.31 286 | 69.72 262 | 74.68 251 | 89.76 238 |
|
SixPastTwentyTwo | | | 76.04 281 | 74.32 280 | 81.22 302 | 84.54 309 | 61.43 329 | 91.16 283 | 89.30 312 | 77.89 251 | 64.04 308 | 86.31 270 | 48.23 300 | 94.29 287 | 63.54 291 | 63.84 316 | 87.93 281 |
|
TDRefinement | | | 69.20 304 | 65.78 307 | 79.48 309 | 66.04 343 | 62.21 326 | 88.21 302 | 86.12 327 | 62.92 320 | 61.03 320 | 85.61 278 | 33.23 336 | 94.16 288 | 55.82 315 | 53.02 330 | 82.08 330 |
|
TransMVSNet (Re) | | | 76.94 277 | 74.38 279 | 84.62 271 | 85.92 295 | 75.25 259 | 95.28 203 | 89.18 313 | 73.88 282 | 67.22 294 | 86.46 265 | 59.64 247 | 94.10 289 | 59.24 304 | 52.57 332 | 84.50 318 |
|
OurMVSNet-221017-0 | | | 77.18 275 | 76.06 268 | 80.55 305 | 83.78 317 | 60.00 331 | 90.35 287 | 91.05 300 | 77.01 265 | 66.62 299 | 87.92 243 | 47.73 305 | 94.03 290 | 71.63 248 | 68.44 291 | 87.62 287 |
|
EPNet_dtu | | | 87.65 151 | 87.89 125 | 86.93 239 | 94.57 145 | 71.37 292 | 96.72 140 | 96.50 90 | 88.56 53 | 87.12 126 | 95.02 147 | 75.91 130 | 94.01 291 | 66.62 274 | 90.00 148 | 95.42 179 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
lessismore_v0 | | | | | 79.98 307 | 80.59 323 | 58.34 334 | | 80.87 341 | | 58.49 325 | 83.46 303 | 43.10 317 | 93.89 292 | 63.11 293 | 48.68 334 | 87.72 283 |
|
GBi-Net | | | 82.42 227 | 80.43 234 | 88.39 206 | 92.66 190 | 81.95 111 | 94.30 233 | 93.38 259 | 79.06 240 | 75.82 243 | 85.66 275 | 56.38 276 | 93.84 293 | 71.23 252 | 75.38 247 | 89.38 244 |
|
test1 | | | 82.42 227 | 80.43 234 | 88.39 206 | 92.66 190 | 81.95 111 | 94.30 233 | 93.38 259 | 79.06 240 | 75.82 243 | 85.66 275 | 56.38 276 | 93.84 293 | 71.23 252 | 75.38 247 | 89.38 244 |
|
FMVSNet1 | | | 79.50 256 | 76.54 266 | 88.39 206 | 88.47 269 | 81.95 111 | 94.30 233 | 93.38 259 | 73.14 288 | 72.04 275 | 85.66 275 | 43.86 312 | 93.84 293 | 65.48 281 | 72.53 260 | 89.38 244 |
|
test_0402 | | | 72.68 296 | 69.54 300 | 82.09 299 | 88.67 267 | 71.81 287 | 92.72 267 | 86.77 325 | 61.52 325 | 62.21 315 | 83.91 299 | 43.22 316 | 93.76 296 | 34.60 340 | 72.23 264 | 80.72 333 |
|
CR-MVSNet | | | 83.53 207 | 81.36 222 | 90.06 171 | 90.16 247 | 79.75 169 | 79.02 330 | 91.12 297 | 84.24 143 | 82.27 175 | 80.35 315 | 75.45 137 | 93.67 297 | 63.37 292 | 86.25 178 | 96.75 149 |
|
RPMNet | | | 79.32 259 | 75.75 270 | 90.06 171 | 90.16 247 | 79.75 169 | 79.02 330 | 93.92 234 | 58.43 336 | 82.27 175 | 72.55 332 | 73.03 167 | 93.67 297 | 46.10 335 | 86.25 178 | 96.75 149 |
|
ET-MVSNet_ETH3D | | | 90.01 106 | 89.03 110 | 92.95 88 | 94.38 154 | 86.77 26 | 98.14 34 | 96.31 114 | 89.30 40 | 63.33 312 | 96.72 110 | 90.09 8 | 93.63 299 | 90.70 82 | 82.29 213 | 98.46 46 |
|
Patchmtry | | | 77.36 273 | 74.59 277 | 85.67 257 | 89.75 252 | 75.75 255 | 77.85 333 | 91.12 297 | 60.28 330 | 71.23 277 | 80.35 315 | 75.45 137 | 93.56 300 | 57.94 306 | 67.34 304 | 87.68 285 |
|
miper_lstm_enhance | | | 81.66 238 | 80.66 230 | 84.67 269 | 91.19 230 | 71.97 284 | 91.94 275 | 93.19 268 | 77.86 253 | 72.27 273 | 85.26 283 | 73.46 164 | 93.42 301 | 73.71 239 | 67.05 306 | 88.61 266 |
|
PatchT | | | 79.75 253 | 76.85 263 | 88.42 204 | 89.55 257 | 75.49 257 | 77.37 334 | 94.61 204 | 63.07 319 | 82.46 169 | 73.32 331 | 75.52 136 | 93.41 302 | 51.36 324 | 84.43 194 | 96.36 157 |
|
ppachtmachnet_test | | | 77.19 274 | 74.22 281 | 86.13 252 | 85.39 301 | 78.22 208 | 93.98 239 | 91.36 294 | 71.74 299 | 67.11 296 | 84.87 292 | 56.67 272 | 93.37 303 | 52.21 322 | 64.59 313 | 86.80 299 |
|
MVS_0304 | | | 78.43 264 | 76.70 264 | 83.60 286 | 88.22 272 | 69.81 301 | 92.91 264 | 95.10 174 | 72.32 296 | 78.71 208 | 80.29 317 | 33.78 335 | 93.37 303 | 68.77 266 | 80.23 219 | 87.63 286 |
|
our_test_3 | | | 77.90 270 | 75.37 273 | 85.48 260 | 85.39 301 | 76.74 241 | 93.63 244 | 91.67 289 | 73.39 287 | 65.72 303 | 84.65 294 | 58.20 260 | 93.13 305 | 57.82 307 | 67.87 297 | 86.57 302 |
|
LCM-MVSNet-Re | | | 83.75 204 | 83.54 193 | 84.39 277 | 93.54 172 | 64.14 320 | 92.51 268 | 84.03 335 | 83.90 152 | 66.14 301 | 86.59 262 | 67.36 204 | 92.68 306 | 84.89 136 | 92.87 127 | 96.35 158 |
|
WR-MVS_H | | | 81.02 244 | 80.09 237 | 83.79 281 | 88.08 274 | 71.26 293 | 94.46 226 | 96.54 84 | 80.08 219 | 72.81 269 | 86.82 258 | 70.36 191 | 92.65 307 | 64.18 286 | 67.50 302 | 87.46 293 |
|
ambc | | | | | 76.02 318 | 68.11 341 | 51.43 340 | 64.97 342 | 89.59 308 | | 60.49 321 | 74.49 327 | 17.17 345 | 92.46 308 | 61.50 296 | 52.85 331 | 84.17 320 |
|
PEN-MVS | | | 79.47 257 | 78.26 253 | 83.08 291 | 86.36 286 | 68.58 308 | 93.85 241 | 94.77 194 | 79.76 225 | 71.37 276 | 88.55 233 | 59.79 246 | 92.46 308 | 64.50 285 | 65.40 311 | 88.19 276 |
|
CP-MVSNet | | | 81.01 245 | 80.08 238 | 83.79 281 | 87.91 275 | 70.51 295 | 94.29 236 | 95.65 148 | 80.83 200 | 72.54 272 | 88.84 229 | 63.71 225 | 92.32 310 | 68.58 268 | 68.36 292 | 88.55 267 |
|
LF4IMVS | | | 72.36 298 | 70.82 294 | 76.95 314 | 79.18 327 | 56.33 335 | 86.12 315 | 86.11 328 | 69.30 308 | 63.06 314 | 86.66 261 | 33.03 337 | 92.25 311 | 65.33 282 | 68.64 290 | 82.28 329 |
|
PS-CasMVS | | | 80.27 251 | 79.18 246 | 83.52 288 | 87.56 279 | 69.88 300 | 94.08 238 | 95.29 168 | 80.27 215 | 72.08 274 | 88.51 236 | 59.22 254 | 92.23 312 | 67.49 270 | 68.15 295 | 88.45 271 |
|
DTE-MVSNet | | | 78.37 265 | 77.06 261 | 82.32 298 | 85.22 305 | 67.17 313 | 93.40 249 | 93.66 249 | 78.71 245 | 70.53 283 | 88.29 237 | 59.06 255 | 92.23 312 | 61.38 297 | 63.28 318 | 87.56 290 |
|
UnsupCasMVSNet_bld | | | 68.60 306 | 64.50 308 | 80.92 304 | 74.63 338 | 67.80 310 | 83.97 321 | 92.94 275 | 65.12 317 | 54.63 332 | 68.23 335 | 35.97 330 | 92.17 314 | 60.13 299 | 44.83 338 | 82.78 324 |
|
N_pmnet | | | 61.30 309 | 60.20 311 | 64.60 324 | 84.32 311 | 17.00 354 | 91.67 281 | 10.98 354 | 61.77 324 | 58.45 326 | 78.55 321 | 49.89 297 | 91.83 315 | 42.27 338 | 63.94 315 | 84.97 315 |
|
K. test v3 | | | 73.62 289 | 71.59 292 | 79.69 308 | 82.98 319 | 59.85 332 | 90.85 286 | 88.83 315 | 77.13 261 | 58.90 323 | 82.11 306 | 43.62 313 | 91.72 316 | 65.83 280 | 54.10 329 | 87.50 292 |
|
Patchmatch-RL test | | | 76.65 279 | 74.01 283 | 84.55 272 | 77.37 333 | 64.23 319 | 78.49 332 | 82.84 339 | 78.48 247 | 64.63 307 | 73.40 330 | 76.05 127 | 91.70 317 | 76.99 204 | 57.84 324 | 97.72 102 |
|
IterMVS-SCA-FT | | | 80.51 250 | 79.10 248 | 84.73 267 | 89.63 256 | 74.66 262 | 92.98 262 | 91.81 288 | 80.05 220 | 71.06 280 | 85.18 286 | 58.04 261 | 91.40 318 | 72.48 245 | 70.70 272 | 88.12 278 |
|
IterMVS | | | 80.67 248 | 79.16 247 | 85.20 262 | 89.79 251 | 76.08 249 | 92.97 263 | 91.86 286 | 80.28 214 | 71.20 278 | 85.14 288 | 57.93 264 | 91.34 319 | 72.52 244 | 70.74 270 | 88.18 277 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MDA-MVSNet-bldmvs | | | 71.45 300 | 67.94 302 | 81.98 300 | 85.33 303 | 68.50 309 | 92.35 272 | 88.76 317 | 70.40 303 | 42.99 338 | 81.96 307 | 46.57 308 | 91.31 320 | 48.75 332 | 54.39 328 | 86.11 308 |
|
pmmvs-eth3d | | | 73.59 290 | 70.66 295 | 82.38 296 | 76.40 335 | 73.38 270 | 89.39 295 | 89.43 310 | 72.69 293 | 60.34 322 | 77.79 323 | 46.43 309 | 91.26 321 | 66.42 278 | 57.06 325 | 82.51 326 |
|
PM-MVS | | | 69.32 303 | 66.93 304 | 76.49 316 | 73.60 339 | 55.84 337 | 85.91 316 | 79.32 344 | 74.72 276 | 61.09 319 | 78.18 322 | 21.76 343 | 91.10 322 | 70.86 257 | 56.90 326 | 82.51 326 |
|
Anonymous20231206 | | | 75.29 285 | 73.64 284 | 80.22 306 | 80.75 321 | 63.38 323 | 93.36 251 | 90.71 303 | 73.09 289 | 67.12 295 | 83.70 301 | 50.33 296 | 90.85 323 | 53.63 320 | 70.10 277 | 86.44 303 |
|
MIMVSNet | | | 79.18 261 | 75.99 269 | 88.72 201 | 87.37 280 | 80.66 148 | 79.96 325 | 91.82 287 | 77.38 259 | 74.33 256 | 81.87 308 | 41.78 321 | 90.74 324 | 66.36 279 | 83.10 203 | 94.76 189 |
|
UnsupCasMVSNet_eth | | | 73.25 293 | 70.57 296 | 81.30 301 | 77.53 331 | 66.33 315 | 87.24 308 | 93.89 235 | 80.38 211 | 57.90 328 | 81.59 309 | 42.91 319 | 90.56 325 | 65.18 283 | 48.51 335 | 87.01 298 |
|
YYNet1 | | | 73.53 292 | 70.43 297 | 82.85 293 | 84.52 310 | 71.73 288 | 91.69 280 | 91.37 293 | 67.63 310 | 46.79 336 | 81.21 311 | 55.04 284 | 90.43 326 | 55.93 313 | 59.70 323 | 86.38 304 |
|
MDA-MVSNet_test_wron | | | 73.54 291 | 70.43 297 | 82.86 292 | 84.55 308 | 71.85 285 | 91.74 279 | 91.32 296 | 67.63 310 | 46.73 337 | 81.09 312 | 55.11 283 | 90.42 327 | 55.91 314 | 59.76 322 | 86.31 305 |
|
CVMVSNet | | | 84.83 189 | 85.57 161 | 82.63 295 | 91.55 225 | 60.38 330 | 95.13 211 | 95.03 179 | 80.60 205 | 82.10 177 | 94.71 152 | 66.40 211 | 90.19 328 | 74.30 233 | 90.32 147 | 97.31 129 |
|
ADS-MVSNet2 | | | 79.57 255 | 77.53 257 | 85.71 256 | 93.78 166 | 72.13 280 | 79.48 326 | 86.11 328 | 73.09 289 | 80.14 196 | 79.99 318 | 62.15 234 | 90.14 329 | 59.49 301 | 83.52 198 | 94.85 187 |
|
test0.0.03 1 | | | 82.79 221 | 82.48 206 | 83.74 283 | 86.81 283 | 72.22 278 | 96.52 149 | 95.03 179 | 83.76 156 | 73.00 266 | 93.20 175 | 72.30 174 | 88.88 330 | 64.15 287 | 77.52 240 | 90.12 230 |
|
testgi | | | 74.88 287 | 73.40 285 | 79.32 310 | 80.13 325 | 61.75 327 | 93.21 258 | 86.64 326 | 79.49 230 | 66.56 300 | 91.06 200 | 35.51 332 | 88.67 331 | 56.79 311 | 71.25 265 | 87.56 290 |
|
new_pmnet | | | 66.18 307 | 63.18 309 | 75.18 321 | 76.27 336 | 61.74 328 | 83.79 322 | 84.66 332 | 56.64 337 | 51.57 334 | 71.85 334 | 31.29 340 | 87.93 332 | 49.98 328 | 62.55 319 | 75.86 336 |
|
FMVSNet5 | | | 76.46 280 | 74.16 282 | 83.35 290 | 90.05 249 | 76.17 248 | 89.58 292 | 89.85 307 | 71.39 301 | 65.29 305 | 80.42 314 | 50.61 294 | 87.70 333 | 61.05 298 | 69.24 286 | 86.18 307 |
|
EU-MVSNet | | | 76.92 278 | 76.95 262 | 76.83 315 | 84.10 314 | 54.73 339 | 91.77 278 | 92.71 278 | 72.74 292 | 69.57 288 | 88.69 231 | 58.03 263 | 87.43 334 | 64.91 284 | 70.00 279 | 88.33 274 |
|
new-patchmatchnet | | | 68.85 305 | 65.93 306 | 77.61 313 | 73.57 340 | 63.94 322 | 90.11 289 | 88.73 318 | 71.62 300 | 55.08 331 | 73.60 329 | 40.84 325 | 87.22 335 | 51.35 325 | 48.49 336 | 81.67 332 |
|
DSMNet-mixed | | | 73.13 294 | 72.45 289 | 75.19 320 | 77.51 332 | 46.82 342 | 85.09 320 | 82.01 340 | 67.61 314 | 69.27 290 | 81.33 310 | 50.89 292 | 86.28 336 | 54.54 317 | 83.80 197 | 92.46 210 |
|
pmmvs3 | | | 65.75 308 | 62.18 310 | 76.45 317 | 67.12 342 | 64.54 318 | 88.68 299 | 85.05 331 | 54.77 338 | 57.54 330 | 73.79 328 | 29.40 342 | 86.21 337 | 55.49 316 | 47.77 337 | 78.62 334 |
|
MIMVSNet1 | | | 69.44 302 | 66.65 305 | 77.84 312 | 76.48 334 | 62.84 325 | 87.42 306 | 88.97 314 | 66.96 315 | 57.75 329 | 79.72 320 | 32.77 338 | 85.83 338 | 46.32 334 | 63.42 317 | 84.85 316 |
|
test20.03 | | | 72.36 298 | 71.15 293 | 75.98 319 | 77.79 330 | 59.16 333 | 92.40 271 | 89.35 311 | 74.09 280 | 61.50 318 | 84.32 296 | 48.09 301 | 85.54 339 | 50.63 327 | 62.15 320 | 83.24 322 |
|
DeepMVS_CX | | | | | 64.06 325 | 78.53 329 | 43.26 345 | | 68.11 348 | 69.94 305 | 38.55 339 | 76.14 325 | 18.53 344 | 79.34 340 | 43.72 337 | 41.62 341 | 69.57 339 |
|
FPMVS | | | 55.09 310 | 52.93 312 | 61.57 326 | 55.98 344 | 40.51 347 | 83.11 323 | 83.41 338 | 37.61 341 | 34.95 341 | 71.95 333 | 14.40 346 | 76.95 341 | 29.81 341 | 65.16 312 | 67.25 340 |
|
LCM-MVSNet | | | 52.52 311 | 48.24 313 | 65.35 322 | 47.63 349 | 41.45 346 | 72.55 340 | 83.62 337 | 31.75 342 | 37.66 340 | 57.92 338 | 9.19 352 | 76.76 342 | 49.26 330 | 44.60 339 | 77.84 335 |
|
Gipuma | | | 45.11 314 | 42.05 315 | 54.30 328 | 80.69 322 | 51.30 341 | 35.80 346 | 83.81 336 | 28.13 343 | 27.94 344 | 34.53 344 | 11.41 350 | 76.70 343 | 21.45 343 | 54.65 327 | 34.90 344 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 50.90 312 | 46.31 314 | 64.67 323 | 55.53 345 | 46.67 343 | 77.30 335 | 71.02 346 | 40.89 340 | 34.16 342 | 59.32 336 | 9.83 351 | 76.14 344 | 40.09 339 | 28.63 342 | 71.21 337 |
|
PMVS | | 34.80 23 | 39.19 316 | 35.53 318 | 50.18 329 | 29.72 352 | 30.30 349 | 59.60 344 | 66.20 349 | 26.06 344 | 17.91 347 | 49.53 341 | 3.12 353 | 74.09 345 | 18.19 345 | 49.40 333 | 46.14 341 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ANet_high | | | 46.22 313 | 41.28 317 | 61.04 327 | 39.91 351 | 46.25 344 | 70.59 341 | 76.18 345 | 58.87 335 | 23.09 345 | 48.00 342 | 12.58 348 | 66.54 346 | 28.65 342 | 13.62 345 | 70.35 338 |
|
MVE | | 35.65 22 | 33.85 317 | 29.49 321 | 46.92 330 | 41.86 350 | 36.28 348 | 50.45 345 | 56.52 351 | 18.75 347 | 18.28 346 | 37.84 343 | 2.41 354 | 58.41 347 | 18.71 344 | 20.62 343 | 46.06 342 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 32.70 318 | 32.39 319 | 33.65 332 | 53.35 347 | 25.70 351 | 74.07 338 | 53.33 352 | 21.08 345 | 17.17 348 | 33.63 346 | 11.85 349 | 54.84 348 | 12.98 346 | 14.04 344 | 20.42 345 |
|
EMVS | | | 31.70 319 | 31.45 320 | 32.48 333 | 50.72 348 | 23.95 352 | 74.78 337 | 52.30 353 | 20.36 346 | 16.08 349 | 31.48 347 | 12.80 347 | 53.60 349 | 11.39 347 | 13.10 347 | 19.88 346 |
|
tmp_tt | | | 41.54 315 | 41.93 316 | 40.38 331 | 20.10 353 | 26.84 350 | 61.93 343 | 59.09 350 | 14.81 348 | 28.51 343 | 80.58 313 | 35.53 331 | 48.33 350 | 63.70 290 | 13.11 346 | 45.96 343 |
|
wuyk23d | | | 14.10 321 | 13.89 323 | 14.72 334 | 55.23 346 | 22.91 353 | 33.83 347 | 3.56 355 | 4.94 349 | 4.11 350 | 2.28 352 | 2.06 355 | 19.66 351 | 10.23 348 | 8.74 348 | 1.59 349 |
|
test123 | | | 9.07 323 | 11.73 325 | 1.11 335 | 0.50 355 | 0.77 355 | 89.44 294 | 0.20 357 | 0.34 351 | 2.15 352 | 10.72 351 | 0.34 356 | 0.32 352 | 1.79 350 | 0.08 350 | 2.23 347 |
|
testmvs | | | 9.92 322 | 12.94 324 | 0.84 336 | 0.65 354 | 0.29 356 | 93.78 242 | 0.39 356 | 0.42 350 | 2.85 351 | 15.84 350 | 0.17 357 | 0.30 353 | 2.18 349 | 0.21 349 | 1.91 348 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 96.77 50 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
cdsmvs_eth3d_5k | | | 21.43 320 | 28.57 322 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 95.93 137 | 0.00 352 | 0.00 353 | 97.66 65 | 63.57 226 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
pcd_1.5k_mvsjas | | | 5.92 325 | 7.89 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 71.04 185 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
ab-mvs-re | | | 8.11 324 | 10.81 326 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 97.30 87 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
IU-MVS | | | | | | 99.03 12 | 85.34 47 | | 96.86 41 | 92.05 15 | 98.74 1 | | | | 98.15 2 | 98.97 15 | 99.42 9 |
|
save fliter | | | | | | 98.24 51 | 83.34 88 | 98.61 23 | 96.57 79 | 91.32 18 | | | | | | | |
|
test0726 | | | | | | 99.05 9 | 85.18 51 | 99.11 8 | 96.78 44 | 88.75 47 | 97.65 6 | 98.91 3 | 87.69 18 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 114 |
|
test_part2 | | | | | | 98.90 16 | 85.14 57 | | | | 96.07 17 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 99 | | | | 97.54 114 |
|
sam_mvs | | | | | | | | | | | | | 75.35 144 | | | | |
|
MTGPA | | | | | | | | | 96.33 111 | | | | | | | | |
|
MTMP | | | | | | | | 97.53 76 | 68.16 347 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 96.00 21 | 99.03 11 | 98.31 57 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 41 | 99.00 13 | 98.57 41 |
|
test_prior4 | | | | | | | 82.34 106 | 97.75 61 | | | | | | | | | |
|
test_prior2 | | | | | | | | 98.37 27 | | 86.08 93 | 94.57 38 | 98.02 48 | 83.14 44 | | 95.05 34 | 98.79 23 | |
|
æ–°å‡ ä½•2 | | | | | | | | 96.42 159 | | | | | | | | | |
|
旧先验1 | | | | | | 97.39 84 | 79.58 176 | | 96.54 84 | | | 98.08 46 | 84.00 36 | | | 97.42 73 | 97.62 111 |
|
原ACMM2 | | | | | | | | 96.84 132 | | | | | | | | | |
|
test222 | | | | | | 96.15 104 | 78.41 202 | 95.87 186 | 96.46 94 | 71.97 297 | 89.66 97 | 97.45 78 | 76.33 123 | | | 98.24 53 | 98.30 58 |
|
segment_acmp | | | | | | | | | | | | | 82.69 52 | | | | |
|
testdata1 | | | | | | | | 95.57 197 | | 87.44 74 | | | | | | | |
|
plane_prior7 | | | | | | 91.86 221 | 77.55 228 | | | | | | | | | | |
|
plane_prior6 | | | | | | 91.98 216 | 77.92 220 | | | | | | 64.77 221 | | | | |
|
plane_prior4 | | | | | | | | | | | | 94.15 163 | | | | | |
|
plane_prior3 | | | | | | | 77.75 224 | | | 90.17 31 | 81.33 183 | | | | | | |
|
plane_prior2 | | | | | | | | 97.18 101 | | 89.89 33 | | | | | | | |
|
plane_prior1 | | | | | | 91.95 219 | | | | | | | | | | | |
|
plane_prior | | | | | | | 77.96 217 | 97.52 78 | | 90.36 30 | | | | | | 82.96 206 | |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 343 | | | | | | | | |
|
test11 | | | | | | | | | 96.50 90 | | | | | | | | |
|
door | | | | | | | | | 80.13 342 | | | | | | | | |
|
HQP5-MVS | | | | | | | 78.48 198 | | | | | | | | | | |
|
HQP-NCC | | | | | | 92.08 211 | | 97.63 67 | | 90.52 27 | 82.30 171 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 211 | | 97.63 67 | | 90.52 27 | 82.30 171 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 116 | | |
|
HQP3-MVS | | | | | | | | | 94.80 191 | | | | | | | 83.01 204 | |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 216 | | | | |
|
NP-MVS | | | | | | 92.04 215 | 78.22 208 | | | | | 94.56 155 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 81.74 123 | 86.80 310 | | 80.65 204 | 85.65 136 | | 74.26 155 | | 76.52 210 | | 96.98 137 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 236 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 228 | |
|
Test By Simon | | | | | | | | | | | | | 71.65 178 | | | | |
|