DPM-MVS | | | 96.21 2 | 95.53 9 | 98.26 1 | 96.26 105 | 95.09 1 | 99.15 4 | 96.98 29 | 93.39 9 | 96.45 14 | 98.79 10 | 90.17 7 | 99.99 1 | 89.33 106 | 99.25 4 | 99.70 3 |
|
MCST-MVS | | | 96.17 3 | 96.12 5 | 96.32 5 | 99.42 2 | 89.36 8 | 98.94 15 | 97.10 23 | 95.17 2 | 92.11 64 | 98.46 24 | 87.33 20 | 99.97 2 | 97.21 12 | 99.31 2 | 99.63 5 |
|
CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 12 | 99.31 5 | 87.69 19 | 99.06 9 | 97.12 22 | 94.66 3 | 96.79 9 | 98.78 11 | 86.42 24 | 99.95 3 | 97.59 9 | 99.18 5 | 99.00 23 |
|
NCCC | | | 95.63 5 | 95.94 6 | 94.69 24 | 99.21 7 | 85.15 56 | 99.16 3 | 96.96 32 | 94.11 6 | 95.59 21 | 98.64 19 | 85.07 28 | 99.91 4 | 95.61 27 | 99.10 7 | 99.00 23 |
|
API-MVS | | | 90.18 106 | 88.97 115 | 93.80 49 | 98.66 28 | 82.95 99 | 97.50 79 | 95.63 152 | 75.16 281 | 86.31 136 | 97.69 68 | 72.49 176 | 99.90 5 | 81.26 172 | 96.07 99 | 98.56 42 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 18 | 94.30 26 | 95.02 17 | 98.86 19 | 85.68 42 | 98.06 40 | 96.64 70 | 93.64 8 | 91.74 70 | 98.54 20 | 80.17 70 | 99.90 5 | 92.28 68 | 98.75 26 | 99.49 6 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DP-MVS Recon | | | 91.72 72 | 90.85 82 | 94.34 32 | 99.50 1 | 85.00 60 | 98.51 25 | 95.96 134 | 80.57 210 | 88.08 123 | 97.63 74 | 76.84 113 | 99.89 7 | 85.67 133 | 94.88 113 | 98.13 73 |
|
CANet | | | 94.89 12 | 94.64 16 | 95.63 10 | 97.55 81 | 88.12 13 | 99.06 9 | 96.39 106 | 94.07 7 | 95.34 24 | 97.80 65 | 76.83 114 | 99.87 8 | 97.08 14 | 97.64 68 | 98.89 26 |
|
DeepPCF-MVS | | 89.82 1 | 94.61 16 | 96.17 4 | 89.91 182 | 97.09 97 | 70.21 306 | 98.99 14 | 96.69 61 | 95.57 1 | 95.08 28 | 99.23 1 | 86.40 25 | 99.87 8 | 97.84 7 | 98.66 30 | 99.65 4 |
|
HPM-MVS++ |  | | 95.32 9 | 95.48 10 | 94.85 20 | 98.62 34 | 86.04 32 | 97.81 54 | 96.93 35 | 92.45 11 | 95.69 20 | 98.50 22 | 85.38 27 | 99.85 10 | 94.75 38 | 99.18 5 | 98.65 38 |
|
PHI-MVS | | | 93.59 38 | 93.63 35 | 93.48 67 | 98.05 63 | 81.76 125 | 98.64 21 | 97.13 21 | 82.60 182 | 94.09 45 | 98.49 23 | 80.35 65 | 99.85 10 | 94.74 39 | 98.62 31 | 98.83 28 |
|
OPU-MVS | | | | | 97.30 2 | 99.19 8 | 92.31 3 | 99.12 6 | | | | 98.54 20 | 92.06 2 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
test_0728_SECOND | | | | | 95.14 15 | 99.04 12 | 86.14 31 | 99.06 9 | 96.77 50 | | | | | 99.84 12 | 97.90 5 | 98.85 20 | 99.45 8 |
|
SMA-MVS |  | | 94.70 15 | 94.68 15 | 94.76 22 | 98.02 64 | 85.94 35 | 97.47 80 | 96.77 50 | 85.32 110 | 97.92 2 | 98.70 16 | 83.09 47 | 99.84 12 | 95.79 24 | 99.08 8 | 98.49 46 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMMP_NAP | | | 93.46 39 | 93.23 41 | 94.17 39 | 97.16 95 | 84.28 71 | 96.82 134 | 96.65 67 | 86.24 89 | 94.27 40 | 97.99 52 | 77.94 96 | 99.83 15 | 93.39 52 | 98.57 32 | 98.39 52 |
|
SED-MVS | | | 95.88 4 | 96.22 3 | 94.87 19 | 99.03 13 | 85.03 58 | 99.12 6 | 96.78 44 | 88.72 49 | 97.79 3 | 98.91 3 | 88.48 14 | 99.82 16 | 98.15 2 | 98.97 15 | 99.74 1 |
|
test_241102_TWO | | | | | | | | | 96.78 44 | 88.72 49 | 97.70 5 | 98.91 3 | 87.86 17 | 99.82 16 | 98.15 2 | 99.00 13 | 99.47 7 |
|
test_241102_ONE | | | | | | 99.03 13 | 85.03 58 | | 96.78 44 | 88.72 49 | 97.79 3 | 98.90 6 | 88.48 14 | 99.82 16 | | | |
|
ZNCC-MVS | | | 92.75 50 | 92.60 55 | 93.23 75 | 98.24 52 | 81.82 123 | 97.63 67 | 96.50 90 | 85.00 121 | 91.05 83 | 97.74 67 | 78.38 90 | 99.80 19 | 90.48 88 | 98.34 51 | 98.07 77 |
|
DVP-MVS | | | 95.58 7 | 95.91 7 | 94.57 26 | 99.05 10 | 85.18 51 | 99.06 9 | 96.46 94 | 88.75 47 | 96.69 10 | 98.76 12 | 87.69 18 | 99.76 20 | 97.90 5 | 98.85 20 | 98.77 30 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 88.38 56 | 96.69 10 | 98.76 12 | 89.64 10 | 99.76 20 | 97.47 10 | 98.84 22 | 99.38 10 |
|
GST-MVS | | | 92.43 63 | 92.22 63 | 93.04 84 | 98.17 57 | 81.64 130 | 97.40 90 | 96.38 107 | 84.71 127 | 90.90 85 | 97.40 87 | 77.55 102 | 99.76 20 | 89.75 100 | 97.74 66 | 97.72 105 |
|
zzz-MVS | | | 92.74 51 | 92.71 50 | 92.86 92 | 97.90 66 | 80.85 145 | 96.47 153 | 96.33 111 | 87.92 64 | 90.20 94 | 98.18 32 | 76.71 117 | 99.76 20 | 92.57 65 | 98.09 56 | 97.96 90 |
|
MTAPA | | | 92.45 62 | 92.31 59 | 92.86 92 | 97.90 66 | 80.85 145 | 92.88 272 | 96.33 111 | 87.92 64 | 90.20 94 | 98.18 32 | 76.71 117 | 99.76 20 | 92.57 65 | 98.09 56 | 97.96 90 |
|
PAPR | | | 92.74 51 | 92.17 64 | 94.45 28 | 98.89 18 | 84.87 63 | 97.20 99 | 96.20 120 | 87.73 70 | 88.40 118 | 98.12 41 | 78.71 86 | 99.76 20 | 87.99 118 | 96.28 96 | 98.74 31 |
|
PAPM_NR | | | 91.46 79 | 90.82 83 | 93.37 71 | 98.50 40 | 81.81 124 | 95.03 222 | 96.13 124 | 84.65 130 | 86.10 139 | 97.65 73 | 79.24 79 | 99.75 26 | 83.20 161 | 96.88 87 | 98.56 42 |
|
MAR-MVS | | | 90.63 96 | 90.22 92 | 91.86 128 | 98.47 42 | 78.20 216 | 97.18 101 | 96.61 73 | 83.87 155 | 88.18 122 | 98.18 32 | 68.71 205 | 99.75 26 | 83.66 153 | 97.15 80 | 97.63 113 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DPE-MVS | | | 95.32 9 | 95.55 8 | 94.64 25 | 98.79 21 | 84.87 63 | 97.77 56 | 96.74 54 | 86.11 91 | 96.54 13 | 98.89 7 | 88.39 16 | 99.74 28 | 97.67 8 | 99.05 10 | 99.31 14 |
|
MP-MVS-pluss | | | 92.58 60 | 92.35 58 | 93.29 72 | 97.30 93 | 82.53 104 | 96.44 158 | 96.04 131 | 84.68 128 | 89.12 109 | 98.37 26 | 77.48 104 | 99.74 28 | 93.31 56 | 98.38 48 | 97.59 116 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
QAPM | | | 86.88 162 | 84.51 180 | 93.98 43 | 94.04 167 | 85.89 36 | 97.19 100 | 96.05 130 | 73.62 292 | 75.12 258 | 95.62 134 | 62.02 245 | 99.74 28 | 70.88 262 | 96.06 100 | 96.30 166 |
|
AdaColmap |  | | 88.81 129 | 87.61 137 | 92.39 110 | 99.33 4 | 79.95 167 | 96.70 145 | 95.58 153 | 77.51 263 | 83.05 170 | 96.69 115 | 61.90 249 | 99.72 31 | 84.29 143 | 93.47 126 | 97.50 122 |
|
HFP-MVS | | | 92.89 47 | 92.86 49 | 92.98 86 | 98.71 23 | 81.12 137 | 97.58 72 | 96.70 59 | 85.20 116 | 91.75 68 | 97.97 56 | 78.47 88 | 99.71 32 | 90.95 79 | 98.41 44 | 98.12 74 |
|
#test# | | | 92.99 45 | 92.99 45 | 92.98 86 | 98.71 23 | 81.12 137 | 97.77 56 | 96.70 59 | 85.75 100 | 91.75 68 | 97.97 56 | 78.47 88 | 99.71 32 | 91.36 75 | 98.41 44 | 98.12 74 |
|
DeepC-MVS | | 86.58 3 | 91.53 78 | 91.06 81 | 92.94 89 | 94.52 153 | 81.89 119 | 95.95 184 | 95.98 133 | 90.76 24 | 83.76 162 | 96.76 112 | 73.24 171 | 99.71 32 | 91.67 74 | 96.96 84 | 97.22 137 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MP-MVS |  | | 92.61 59 | 92.67 53 | 92.42 109 | 98.13 59 | 79.73 175 | 97.33 93 | 96.20 120 | 85.63 102 | 90.53 89 | 97.66 69 | 78.14 94 | 99.70 35 | 92.12 70 | 98.30 53 | 97.85 96 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MVS | | | 90.60 97 | 88.64 119 | 96.50 3 | 94.25 161 | 90.53 6 | 93.33 259 | 97.21 19 | 77.59 262 | 78.88 211 | 97.31 89 | 71.52 187 | 99.69 36 | 89.60 101 | 98.03 60 | 99.27 16 |
|
DELS-MVS | | | 94.98 11 | 94.49 19 | 96.44 4 | 96.42 103 | 90.59 5 | 99.21 2 | 97.02 26 | 94.40 5 | 91.46 73 | 97.08 100 | 83.32 43 | 99.69 36 | 92.83 61 | 98.70 29 | 99.04 21 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
mPP-MVS | | | 91.88 69 | 91.82 68 | 92.07 121 | 98.38 45 | 78.63 200 | 97.29 94 | 96.09 127 | 85.12 118 | 88.45 117 | 97.66 69 | 75.53 138 | 99.68 38 | 89.83 98 | 98.02 61 | 97.88 93 |
|
3Dnovator | | 82.32 10 | 89.33 118 | 87.64 134 | 94.42 30 | 93.73 174 | 85.70 41 | 97.73 62 | 96.75 53 | 86.73 87 | 76.21 243 | 95.93 125 | 62.17 242 | 99.68 38 | 81.67 170 | 97.81 65 | 97.88 93 |
|
region2R | | | 92.72 54 | 92.70 52 | 92.79 95 | 98.68 25 | 80.53 156 | 97.53 76 | 96.51 88 | 85.22 114 | 91.94 66 | 97.98 54 | 77.26 106 | 99.67 40 | 90.83 83 | 98.37 49 | 98.18 67 |
|
ACMMPR | | | 92.69 56 | 92.67 53 | 92.75 96 | 98.66 28 | 80.57 153 | 97.58 72 | 96.69 61 | 85.20 116 | 91.57 72 | 97.92 58 | 77.01 111 | 99.67 40 | 90.95 79 | 98.41 44 | 98.00 86 |
|
testtj | | | 94.09 29 | 94.08 29 | 94.09 42 | 99.28 6 | 83.32 91 | 97.59 71 | 96.61 73 | 83.60 163 | 94.77 36 | 98.46 24 | 82.72 52 | 99.64 42 | 95.29 33 | 98.42 42 | 99.32 13 |
|
OpenMVS |  | 79.58 14 | 86.09 174 | 83.62 195 | 93.50 65 | 90.95 240 | 86.71 28 | 97.44 82 | 95.83 141 | 75.35 278 | 72.64 277 | 95.72 129 | 57.42 279 | 99.64 42 | 71.41 256 | 95.85 104 | 94.13 202 |
|
ACMMP |  | | 90.39 102 | 89.97 98 | 91.64 134 | 97.58 79 | 78.21 215 | 96.78 137 | 96.72 57 | 84.73 126 | 84.72 148 | 97.23 94 | 71.22 189 | 99.63 44 | 88.37 116 | 92.41 137 | 97.08 139 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CHOSEN 1792x2688 | | | 91.07 88 | 90.21 93 | 93.64 57 | 95.18 134 | 83.53 85 | 96.26 170 | 96.13 124 | 88.92 44 | 84.90 145 | 93.10 183 | 72.86 173 | 99.62 45 | 88.86 108 | 95.67 106 | 97.79 101 |
|
SD-MVS | | | 94.84 13 | 95.02 13 | 94.29 34 | 97.87 70 | 84.61 67 | 97.76 60 | 96.19 122 | 89.59 36 | 96.66 12 | 98.17 36 | 84.33 32 | 99.60 46 | 96.09 18 | 98.50 37 | 98.66 37 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
XVS | | | 92.69 56 | 92.71 50 | 92.63 102 | 98.52 38 | 80.29 159 | 97.37 91 | 96.44 96 | 87.04 84 | 91.38 74 | 97.83 64 | 77.24 108 | 99.59 47 | 90.46 89 | 98.07 58 | 98.02 81 |
|
X-MVStestdata | | | 86.26 172 | 84.14 188 | 92.63 102 | 98.52 38 | 80.29 159 | 97.37 91 | 96.44 96 | 87.04 84 | 91.38 74 | 20.73 359 | 77.24 108 | 99.59 47 | 90.46 89 | 98.07 58 | 98.02 81 |
|
PVSNet_BlendedMVS | | | 90.05 107 | 89.96 99 | 90.33 168 | 97.47 82 | 83.86 77 | 98.02 43 | 96.73 55 | 87.98 63 | 89.53 104 | 89.61 227 | 76.42 121 | 99.57 49 | 94.29 43 | 79.59 227 | 87.57 294 |
|
PVSNet_Blended | | | 93.13 42 | 92.98 46 | 93.57 61 | 97.47 82 | 83.86 77 | 99.32 1 | 96.73 55 | 91.02 23 | 89.53 104 | 96.21 120 | 76.42 121 | 99.57 49 | 94.29 43 | 95.81 105 | 97.29 134 |
|
PGM-MVS | | | 91.93 68 | 91.80 69 | 92.32 113 | 98.27 51 | 79.74 174 | 95.28 208 | 97.27 17 | 83.83 156 | 90.89 86 | 97.78 66 | 76.12 127 | 99.56 51 | 88.82 109 | 97.93 64 | 97.66 110 |
|
MVS_111021_HR | | | 93.41 40 | 93.39 39 | 93.47 70 | 97.34 92 | 82.83 100 | 97.56 74 | 98.27 6 | 89.16 42 | 89.71 99 | 97.14 97 | 79.77 73 | 99.56 51 | 93.65 48 | 97.94 62 | 98.02 81 |
|
æ— å…ˆéªŒ | | | | | | | | 96.87 131 | 96.78 44 | 77.39 264 | | | | 99.52 53 | 79.95 182 | | 98.43 50 |
|
1121 | | | 90.66 95 | 89.82 104 | 93.16 78 | 97.39 88 | 81.71 128 | 93.33 259 | 96.66 66 | 74.45 287 | 91.38 74 | 97.55 79 | 79.27 77 | 99.52 53 | 79.95 182 | 98.43 41 | 98.26 63 |
|
CSCG | | | 92.02 67 | 91.65 72 | 93.12 79 | 98.53 37 | 80.59 152 | 97.47 80 | 97.18 20 | 77.06 271 | 84.64 150 | 97.98 54 | 83.98 37 | 99.52 53 | 90.72 85 | 97.33 76 | 99.23 17 |
|
æ–°å‡ ä½•1 | | | | | 93.12 79 | 97.44 84 | 81.60 131 | | 96.71 58 | 74.54 286 | 91.22 81 | 97.57 75 | 79.13 81 | 99.51 56 | 77.40 208 | 98.46 39 | 98.26 63 |
|
3Dnovator+ | | 82.88 8 | 89.63 114 | 87.85 129 | 94.99 18 | 94.49 157 | 86.76 27 | 97.84 51 | 95.74 145 | 86.10 92 | 75.47 255 | 96.02 124 | 65.00 228 | 99.51 56 | 82.91 165 | 97.07 81 | 98.72 36 |
|
CANet_DTU | | | 90.98 89 | 90.04 97 | 93.83 48 | 94.76 147 | 86.23 30 | 96.32 167 | 93.12 280 | 93.11 10 | 93.71 47 | 96.82 110 | 63.08 237 | 99.48 58 | 84.29 143 | 95.12 112 | 95.77 174 |
|
testdata2 | | | | | | | | | | | | | | 99.48 58 | 76.45 217 | | |
|
SteuartSystems-ACMMP | | | 94.13 27 | 94.44 21 | 93.20 76 | 95.41 126 | 81.35 134 | 99.02 13 | 96.59 77 | 89.50 37 | 94.18 43 | 98.36 27 | 83.68 40 | 99.45 60 | 94.77 37 | 98.45 40 | 98.81 29 |
Skip Steuart: Steuart Systems R&D Blog. |
TSAR-MVS + GP. | | | 94.35 21 | 94.50 18 | 93.89 46 | 97.38 91 | 83.04 97 | 98.10 37 | 95.29 173 | 91.57 16 | 93.81 46 | 97.45 82 | 86.64 21 | 99.43 61 | 96.28 17 | 94.01 119 | 99.20 18 |
|
ETH3 D test6400 | | | 95.56 8 | 95.41 11 | 96.00 7 | 99.02 16 | 89.42 7 | 98.75 18 | 96.80 43 | 87.28 77 | 95.88 19 | 98.95 2 | 85.92 26 | 99.41 62 | 97.15 13 | 98.95 18 | 99.18 20 |
|
1314 | | | 88.94 124 | 87.20 146 | 94.17 39 | 93.21 183 | 85.73 40 | 93.33 259 | 96.64 70 | 82.89 175 | 75.98 246 | 96.36 118 | 66.83 217 | 99.39 63 | 83.52 158 | 96.02 101 | 97.39 128 |
|
xxxxxxxxxxxxxcwj | | | 94.38 20 | 94.62 17 | 93.68 55 | 98.24 52 | 83.34 89 | 98.61 23 | 92.69 287 | 91.32 18 | 95.07 29 | 98.74 14 | 82.93 48 | 99.38 64 | 95.42 30 | 98.51 34 | 98.32 55 |
|
SF-MVS | | | 94.17 25 | 94.05 30 | 94.55 27 | 97.56 80 | 85.95 33 | 97.73 62 | 96.43 98 | 84.02 148 | 95.07 29 | 98.74 14 | 82.93 48 | 99.38 64 | 95.42 30 | 98.51 34 | 98.32 55 |
|
ETH3D-3000-0.1 | | | 94.43 19 | 94.42 22 | 94.45 28 | 97.78 71 | 85.78 38 | 97.98 44 | 96.53 86 | 85.29 113 | 95.45 22 | 98.81 8 | 83.36 42 | 99.38 64 | 96.07 19 | 98.53 33 | 98.19 66 |
|
DP-MVS | | | 81.47 244 | 78.28 258 | 91.04 149 | 98.14 58 | 78.48 202 | 95.09 221 | 86.97 332 | 61.14 338 | 71.12 286 | 92.78 186 | 59.59 258 | 99.38 64 | 53.11 331 | 86.61 179 | 95.27 186 |
|
ETH3D cwj APD-0.16 | | | 93.91 35 | 93.76 33 | 94.36 31 | 96.70 101 | 85.74 39 | 97.22 95 | 96.41 100 | 83.94 151 | 94.13 44 | 98.69 18 | 83.13 46 | 99.37 68 | 95.25 34 | 98.39 47 | 97.97 89 |
|
9.14 | | | | 94.26 27 | | 98.10 60 | | 98.14 34 | 96.52 87 | 84.74 125 | 94.83 34 | 98.80 9 | 82.80 51 | 99.37 68 | 95.95 22 | 98.42 42 | |
|
TEST9 | | | | | | 98.64 31 | 83.71 81 | 97.82 52 | 96.65 67 | 84.29 142 | 95.16 25 | 98.09 43 | 84.39 31 | 99.36 70 | | | |
|
train_agg | | | 94.28 22 | 94.45 20 | 93.74 51 | 98.64 31 | 83.71 81 | 97.82 52 | 96.65 67 | 84.50 134 | 95.16 25 | 98.09 43 | 84.33 32 | 99.36 70 | 95.91 23 | 98.96 17 | 98.16 69 |
|
sss | | | 90.87 92 | 89.96 99 | 93.60 60 | 94.15 163 | 83.84 79 | 97.14 107 | 98.13 7 | 85.93 97 | 89.68 100 | 96.09 123 | 71.67 184 | 99.30 72 | 87.69 119 | 89.16 156 | 97.66 110 |
|
PVSNet_Blended_VisFu | | | 91.24 85 | 90.77 84 | 92.66 101 | 95.09 136 | 82.40 107 | 97.77 56 | 95.87 140 | 88.26 59 | 86.39 135 | 93.94 172 | 76.77 115 | 99.27 73 | 88.80 110 | 94.00 120 | 96.31 165 |
|
PLC |  | 83.97 7 | 88.00 148 | 87.38 144 | 89.83 185 | 98.02 64 | 76.46 248 | 97.16 105 | 94.43 219 | 79.26 241 | 81.98 183 | 96.28 119 | 69.36 202 | 99.27 73 | 77.71 203 | 92.25 139 | 93.77 207 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Regformer-1 | | | 94.00 32 | 94.04 31 | 93.87 47 | 98.41 43 | 84.29 70 | 97.43 86 | 97.04 25 | 89.50 37 | 92.75 59 | 98.13 38 | 82.60 54 | 99.26 75 | 93.55 50 | 96.99 82 | 98.06 78 |
|
test_8 | | | | | | 98.63 33 | 83.64 84 | 97.81 54 | 96.63 72 | 84.50 134 | 95.10 27 | 98.11 42 | 84.33 32 | 99.23 76 | | | |
|
Regformer-3 | | | 93.19 41 | 93.19 42 | 93.19 77 | 98.10 60 | 83.01 98 | 97.08 116 | 96.98 29 | 88.98 43 | 91.35 78 | 97.89 59 | 80.80 61 | 99.23 76 | 92.30 67 | 95.20 109 | 97.32 130 |
|
Regformer-2 | | | 93.92 33 | 94.01 32 | 93.67 56 | 98.41 43 | 83.75 80 | 97.43 86 | 97.00 27 | 89.43 39 | 92.69 60 | 98.13 38 | 82.48 55 | 99.22 78 | 93.51 51 | 96.99 82 | 98.04 79 |
|
test12 | | | | | 94.25 35 | 98.34 47 | 85.55 44 | | 96.35 110 | | 92.36 62 | | 80.84 60 | 99.22 78 | | 98.31 52 | 97.98 88 |
|
MSLP-MVS++ | | | 94.28 22 | 94.39 23 | 93.97 44 | 98.30 50 | 84.06 75 | 98.64 21 | 96.93 35 | 90.71 25 | 93.08 55 | 98.70 16 | 79.98 71 | 99.21 80 | 94.12 45 | 99.07 9 | 98.63 39 |
|
CDPH-MVS | | | 93.12 43 | 92.91 47 | 93.74 51 | 98.65 30 | 83.88 76 | 97.67 66 | 96.26 116 | 83.00 173 | 93.22 53 | 98.24 30 | 81.31 58 | 99.21 80 | 89.12 107 | 98.74 27 | 98.14 72 |
|
CP-MVS | | | 92.54 61 | 92.60 55 | 92.34 111 | 98.50 40 | 79.90 169 | 98.40 26 | 96.40 103 | 84.75 124 | 90.48 91 | 98.09 43 | 77.40 105 | 99.21 80 | 91.15 78 | 98.23 55 | 97.92 92 |
|
LS3D | | | 82.22 236 | 79.94 248 | 89.06 195 | 97.43 85 | 74.06 276 | 93.20 266 | 92.05 292 | 61.90 333 | 73.33 270 | 95.21 142 | 59.35 261 | 99.21 80 | 54.54 327 | 92.48 136 | 93.90 206 |
|
PCF-MVS | | 84.09 5 | 86.77 167 | 85.00 175 | 92.08 120 | 92.06 220 | 83.07 96 | 92.14 280 | 94.47 216 | 79.63 233 | 76.90 230 | 94.78 155 | 71.15 190 | 99.20 84 | 72.87 247 | 91.05 147 | 93.98 204 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Regformer-4 | | | 93.06 44 | 93.12 43 | 92.89 91 | 98.10 60 | 82.20 111 | 97.08 116 | 96.92 37 | 88.87 45 | 91.23 80 | 97.89 59 | 80.57 64 | 99.19 85 | 92.21 69 | 95.20 109 | 97.29 134 |
|
MVS_111021_LR | | | 91.60 77 | 91.64 73 | 91.47 140 | 95.74 117 | 78.79 198 | 96.15 176 | 96.77 50 | 88.49 54 | 88.64 115 | 97.07 101 | 72.33 178 | 99.19 85 | 93.13 59 | 96.48 95 | 96.43 159 |
|
APDe-MVS | | | 94.56 17 | 94.75 14 | 93.96 45 | 98.84 20 | 83.40 88 | 98.04 42 | 96.41 100 | 85.79 99 | 95.00 31 | 98.28 29 | 84.32 35 | 99.18 87 | 97.35 11 | 98.77 25 | 99.28 15 |
|
PS-MVSNAJ | | | 94.17 25 | 93.52 38 | 96.10 6 | 95.65 121 | 92.35 2 | 98.21 32 | 95.79 143 | 92.42 12 | 96.24 15 | 98.18 32 | 71.04 192 | 99.17 88 | 96.77 15 | 97.39 75 | 96.79 148 |
|
agg_prior1 | | | 94.10 28 | 94.31 25 | 93.48 67 | 98.59 35 | 83.13 94 | 97.77 56 | 96.56 81 | 84.38 138 | 94.19 41 | 98.13 38 | 84.66 30 | 99.16 89 | 95.74 25 | 98.74 27 | 98.15 71 |
|
agg_prior | | | | | | 98.59 35 | 83.13 94 | | 96.56 81 | | 94.19 41 | | | 99.16 89 | | | |
|
ZD-MVS | | | | | | 99.09 9 | 83.22 93 | | 96.60 76 | 82.88 176 | 93.61 49 | 98.06 48 | 82.93 48 | 99.14 91 | 95.51 29 | 98.49 38 | |
|
EI-MVSNet-Vis-set | | | 91.84 70 | 91.77 70 | 92.04 123 | 97.60 77 | 81.17 136 | 96.61 147 | 96.87 39 | 88.20 60 | 89.19 108 | 97.55 79 | 78.69 87 | 99.14 91 | 90.29 94 | 90.94 148 | 95.80 173 |
|
EI-MVSNet-UG-set | | | 91.35 83 | 91.22 77 | 91.73 132 | 97.39 88 | 80.68 150 | 96.47 153 | 96.83 42 | 87.92 64 | 88.30 121 | 97.36 88 | 77.84 98 | 99.13 93 | 89.43 105 | 89.45 155 | 95.37 183 |
|
EPNet | | | 94.06 30 | 94.15 28 | 93.76 50 | 97.27 94 | 84.35 68 | 98.29 29 | 97.64 13 | 94.57 4 | 95.36 23 | 96.88 106 | 79.96 72 | 99.12 94 | 91.30 76 | 96.11 98 | 97.82 99 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MSP-MVS | | | 95.62 6 | 96.54 1 | 92.86 92 | 98.31 49 | 80.10 166 | 97.42 88 | 96.78 44 | 92.20 13 | 97.11 8 | 98.29 28 | 93.46 1 | 99.10 95 | 96.01 20 | 99.30 3 | 99.38 10 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
UGNet | | | 87.73 152 | 86.55 157 | 91.27 144 | 95.16 135 | 79.11 189 | 96.35 164 | 96.23 118 | 88.14 61 | 87.83 125 | 90.48 214 | 50.65 303 | 99.09 96 | 80.13 181 | 94.03 117 | 95.60 178 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
test_prior3 | | | 94.03 31 | 94.34 24 | 93.09 81 | 98.68 25 | 81.91 117 | 98.37 27 | 96.40 103 | 86.08 93 | 94.57 38 | 98.02 49 | 83.14 44 | 99.06 97 | 95.05 35 | 98.79 23 | 98.29 60 |
|
test_prior | | | | | 93.09 81 | 98.68 25 | 81.91 117 | | 96.40 103 | | | | | 99.06 97 | | | 98.29 60 |
|
WTY-MVS | | | 92.65 58 | 91.68 71 | 95.56 11 | 96.00 112 | 88.90 10 | 98.23 31 | 97.65 12 | 88.57 52 | 89.82 98 | 97.22 95 | 79.29 76 | 99.06 97 | 89.57 102 | 88.73 162 | 98.73 35 |
|
HY-MVS | | 84.06 6 | 91.63 75 | 90.37 90 | 95.39 14 | 96.12 109 | 88.25 12 | 90.22 295 | 97.58 14 | 88.33 58 | 90.50 90 | 91.96 193 | 79.26 78 | 99.06 97 | 90.29 94 | 89.07 157 | 98.88 27 |
|
MG-MVS | | | 94.25 24 | 93.72 34 | 95.85 9 | 99.38 3 | 89.35 9 | 97.98 44 | 98.09 8 | 89.99 32 | 92.34 63 | 96.97 103 | 81.30 59 | 98.99 101 | 88.54 111 | 98.88 19 | 99.20 18 |
|
原ACMM1 | | | | | 91.22 146 | 97.77 72 | 78.10 218 | | 96.61 73 | 81.05 201 | 91.28 79 | 97.42 86 | 77.92 97 | 98.98 102 | 79.85 185 | 98.51 34 | 96.59 155 |
|
Anonymous202405211 | | | 84.41 200 | 81.93 219 | 91.85 130 | 96.78 100 | 78.41 206 | 97.44 82 | 91.34 303 | 70.29 313 | 84.06 154 | 94.26 165 | 41.09 335 | 98.96 103 | 79.46 187 | 82.65 215 | 98.17 68 |
|
xiu_mvs_v2_base | | | 93.92 33 | 93.26 40 | 95.91 8 | 95.07 138 | 92.02 4 | 98.19 33 | 95.68 148 | 92.06 14 | 96.01 18 | 98.14 37 | 70.83 195 | 98.96 103 | 96.74 16 | 96.57 94 | 96.76 151 |
|
abl_6 | | | 89.80 110 | 89.71 107 | 90.07 174 | 96.53 102 | 75.52 262 | 94.48 230 | 95.04 183 | 81.12 200 | 89.22 107 | 97.00 102 | 68.83 204 | 98.96 103 | 89.86 97 | 95.27 108 | 95.73 175 |
|
VNet | | | 92.11 66 | 91.22 77 | 94.79 21 | 96.91 98 | 86.98 24 | 97.91 47 | 97.96 9 | 86.38 88 | 93.65 48 | 95.74 128 | 70.16 200 | 98.95 106 | 93.39 52 | 88.87 160 | 98.43 50 |
|
CNLPA | | | 86.96 159 | 85.37 168 | 91.72 133 | 97.59 78 | 79.34 183 | 97.21 97 | 91.05 308 | 74.22 288 | 78.90 210 | 96.75 113 | 67.21 214 | 98.95 106 | 74.68 234 | 90.77 149 | 96.88 146 |
|
ab-mvs | | | 87.08 158 | 84.94 176 | 93.48 67 | 93.34 182 | 83.67 83 | 88.82 303 | 95.70 147 | 81.18 199 | 84.55 151 | 90.14 223 | 62.72 238 | 98.94 108 | 85.49 135 | 82.54 216 | 97.85 96 |
|
HPM-MVS |  | | 91.62 76 | 91.53 74 | 91.89 127 | 97.88 69 | 79.22 185 | 96.99 121 | 95.73 146 | 82.07 189 | 89.50 106 | 97.19 96 | 75.59 137 | 98.93 109 | 90.91 81 | 97.94 62 | 97.54 117 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
PVSNet | | 82.34 9 | 89.02 122 | 87.79 131 | 92.71 99 | 95.49 124 | 81.50 132 | 97.70 64 | 97.29 16 | 87.76 69 | 85.47 141 | 95.12 149 | 56.90 280 | 98.90 110 | 80.33 177 | 94.02 118 | 97.71 107 |
|
MSDG | | | 80.62 254 | 77.77 262 | 89.14 194 | 93.43 181 | 77.24 237 | 91.89 283 | 90.18 314 | 69.86 316 | 68.02 300 | 91.94 195 | 52.21 301 | 98.84 111 | 59.32 312 | 83.12 206 | 91.35 218 |
|
Anonymous20240529 | | | 83.15 219 | 80.60 237 | 90.80 156 | 95.74 117 | 78.27 210 | 96.81 135 | 94.92 188 | 60.10 342 | 81.89 185 | 92.54 187 | 45.82 320 | 98.82 112 | 79.25 191 | 78.32 241 | 95.31 185 |
|
test_yl | | | 91.46 79 | 90.53 87 | 94.24 36 | 97.41 86 | 85.18 51 | 98.08 38 | 97.72 10 | 80.94 202 | 89.85 96 | 96.14 121 | 75.61 135 | 98.81 113 | 90.42 92 | 88.56 165 | 98.74 31 |
|
DCV-MVSNet | | | 91.46 79 | 90.53 87 | 94.24 36 | 97.41 86 | 85.18 51 | 98.08 38 | 97.72 10 | 80.94 202 | 89.85 96 | 96.14 121 | 75.61 135 | 98.81 113 | 90.42 92 | 88.56 165 | 98.74 31 |
|
HPM-MVS_fast | | | 90.38 104 | 90.17 95 | 91.03 150 | 97.61 76 | 77.35 236 | 97.15 106 | 95.48 159 | 79.51 234 | 88.79 113 | 96.90 104 | 71.64 186 | 98.81 113 | 87.01 127 | 97.44 72 | 96.94 141 |
|
APD-MVS |  | | 93.61 37 | 93.59 36 | 93.69 54 | 98.76 22 | 83.26 92 | 97.21 97 | 96.09 127 | 82.41 184 | 94.65 37 | 98.21 31 | 81.96 57 | 98.81 113 | 94.65 40 | 98.36 50 | 99.01 22 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SR-MVS | | | 92.16 65 | 92.27 60 | 91.83 131 | 98.37 46 | 78.41 206 | 96.67 146 | 95.76 144 | 82.19 188 | 91.97 65 | 98.07 47 | 76.44 120 | 98.64 117 | 93.71 47 | 97.27 77 | 98.45 49 |
|
test1172 | | | 91.64 74 | 92.00 66 | 90.54 163 | 98.20 56 | 74.48 271 | 96.45 156 | 95.65 149 | 81.97 192 | 91.63 71 | 98.02 49 | 75.76 133 | 98.61 118 | 93.16 58 | 97.17 79 | 98.52 45 |
|
SR-MVS-dyc-post | | | 91.29 84 | 91.45 75 | 90.80 156 | 97.76 73 | 76.03 254 | 96.20 174 | 95.44 162 | 80.56 211 | 90.72 87 | 97.84 62 | 75.76 133 | 98.61 118 | 91.99 72 | 96.79 91 | 97.75 103 |
|
alignmvs | | | 92.97 46 | 92.26 61 | 95.12 16 | 95.54 123 | 87.77 17 | 98.67 19 | 96.38 107 | 88.04 62 | 93.01 56 | 97.45 82 | 79.20 80 | 98.60 120 | 93.25 57 | 88.76 161 | 98.99 25 |
|
OMC-MVS | | | 88.80 130 | 88.16 125 | 90.72 159 | 95.30 129 | 77.92 224 | 94.81 226 | 94.51 213 | 86.80 86 | 84.97 144 | 96.85 107 | 67.53 210 | 98.60 120 | 85.08 138 | 87.62 172 | 95.63 177 |
|
canonicalmvs | | | 92.27 64 | 91.22 77 | 95.41 13 | 95.80 116 | 88.31 11 | 97.09 114 | 94.64 207 | 88.49 54 | 92.99 57 | 97.31 89 | 72.68 175 | 98.57 122 | 93.38 54 | 88.58 164 | 99.36 12 |
|
APD-MVS_3200maxsize | | | 91.23 86 | 91.35 76 | 90.89 154 | 97.89 68 | 76.35 251 | 96.30 168 | 95.52 157 | 79.82 229 | 91.03 84 | 97.88 61 | 74.70 155 | 98.54 123 | 92.11 71 | 96.89 86 | 97.77 102 |
|
IB-MVS | | 85.34 4 | 88.67 133 | 87.14 150 | 93.26 73 | 93.12 187 | 84.32 69 | 98.76 17 | 97.27 17 | 87.19 82 | 79.36 208 | 90.45 216 | 83.92 38 | 98.53 124 | 84.41 142 | 69.79 284 | 96.93 142 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
114514_t | | | 88.79 131 | 87.57 138 | 92.45 107 | 98.21 55 | 81.74 126 | 96.99 121 | 95.45 161 | 75.16 281 | 82.48 173 | 95.69 131 | 68.59 206 | 98.50 125 | 80.33 177 | 95.18 111 | 97.10 138 |
|
TSAR-MVS + MP. | | | 94.79 14 | 95.17 12 | 93.64 57 | 97.66 75 | 84.10 74 | 95.85 192 | 96.42 99 | 91.26 20 | 97.49 7 | 96.80 111 | 86.50 23 | 98.49 126 | 95.54 28 | 99.03 11 | 98.33 54 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
VDD-MVS | | | 88.28 144 | 87.02 152 | 92.06 122 | 95.09 136 | 80.18 165 | 97.55 75 | 94.45 218 | 83.09 170 | 89.10 110 | 95.92 127 | 47.97 313 | 98.49 126 | 93.08 60 | 86.91 177 | 97.52 121 |
|
PatchMatch-RL | | | 85.00 190 | 83.66 193 | 89.02 197 | 95.86 115 | 74.55 270 | 92.49 276 | 93.60 258 | 79.30 239 | 79.29 209 | 91.47 198 | 58.53 268 | 98.45 128 | 70.22 266 | 92.17 141 | 94.07 203 |
|
F-COLMAP | | | 84.50 199 | 83.44 199 | 87.67 224 | 95.22 131 | 72.22 286 | 95.95 184 | 93.78 249 | 75.74 276 | 76.30 240 | 95.18 144 | 59.50 260 | 98.45 128 | 72.67 249 | 86.59 180 | 92.35 216 |
|
RPMNet | | | 79.85 258 | 75.92 276 | 91.64 134 | 90.16 255 | 79.75 172 | 79.02 339 | 95.44 162 | 58.43 346 | 82.27 180 | 72.55 342 | 73.03 172 | 98.41 130 | 46.10 345 | 86.25 182 | 96.75 152 |
|
xiu_mvs_v1_base_debu | | | 90.54 98 | 89.54 108 | 93.55 62 | 92.31 203 | 87.58 20 | 96.99 121 | 94.87 191 | 87.23 79 | 93.27 50 | 97.56 76 | 57.43 276 | 98.32 131 | 92.72 62 | 93.46 127 | 94.74 193 |
|
xiu_mvs_v1_base | | | 90.54 98 | 89.54 108 | 93.55 62 | 92.31 203 | 87.58 20 | 96.99 121 | 94.87 191 | 87.23 79 | 93.27 50 | 97.56 76 | 57.43 276 | 98.32 131 | 92.72 62 | 93.46 127 | 94.74 193 |
|
xiu_mvs_v1_base_debi | | | 90.54 98 | 89.54 108 | 93.55 62 | 92.31 203 | 87.58 20 | 96.99 121 | 94.87 191 | 87.23 79 | 93.27 50 | 97.56 76 | 57.43 276 | 98.32 131 | 92.72 62 | 93.46 127 | 94.74 193 |
|
CPTT-MVS | | | 89.72 112 | 89.87 103 | 89.29 193 | 98.33 48 | 73.30 279 | 97.70 64 | 95.35 169 | 75.68 277 | 87.40 126 | 97.44 85 | 70.43 197 | 98.25 134 | 89.56 103 | 96.90 85 | 96.33 164 |
|
LFMVS | | | 89.27 119 | 87.64 134 | 94.16 41 | 97.16 95 | 85.52 45 | 97.18 101 | 94.66 204 | 79.17 242 | 89.63 102 | 96.57 116 | 55.35 291 | 98.22 135 | 89.52 104 | 89.54 154 | 98.74 31 |
|
PVSNet_0 | | 77.72 15 | 81.70 241 | 78.95 255 | 89.94 181 | 90.77 246 | 76.72 246 | 95.96 183 | 96.95 33 | 85.01 120 | 70.24 293 | 88.53 242 | 52.32 300 | 98.20 136 | 86.68 130 | 44.08 348 | 94.89 189 |
|
TAPA-MVS | | 81.61 12 | 85.02 189 | 83.67 192 | 89.06 195 | 96.79 99 | 73.27 281 | 95.92 186 | 94.79 198 | 74.81 284 | 80.47 196 | 96.83 108 | 71.07 191 | 98.19 137 | 49.82 339 | 92.57 133 | 95.71 176 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
UA-Net | | | 88.92 125 | 88.48 122 | 90.24 170 | 94.06 166 | 77.18 240 | 93.04 268 | 94.66 204 | 87.39 75 | 91.09 82 | 93.89 173 | 74.92 153 | 98.18 138 | 75.83 225 | 91.43 145 | 95.35 184 |
|
thres200 | | | 88.92 125 | 87.65 133 | 92.73 98 | 96.30 104 | 85.62 43 | 97.85 50 | 98.86 1 | 84.38 138 | 84.82 146 | 93.99 171 | 75.12 151 | 98.01 139 | 70.86 263 | 86.67 178 | 94.56 197 |
|
cascas | | | 86.50 169 | 84.48 182 | 92.55 105 | 92.64 199 | 85.95 33 | 97.04 120 | 95.07 182 | 75.32 279 | 80.50 195 | 91.02 206 | 54.33 298 | 97.98 140 | 86.79 128 | 87.62 172 | 93.71 208 |
|
thres100view900 | | | 88.30 143 | 86.95 153 | 92.33 112 | 96.10 110 | 84.90 62 | 97.14 107 | 98.85 2 | 82.69 180 | 83.41 164 | 93.66 177 | 75.43 142 | 97.93 141 | 69.04 269 | 86.24 184 | 94.17 199 |
|
tfpn200view9 | | | 88.48 138 | 87.15 148 | 92.47 106 | 96.21 106 | 85.30 49 | 97.44 82 | 98.85 2 | 83.37 165 | 83.99 156 | 93.82 174 | 75.36 145 | 97.93 141 | 69.04 269 | 86.24 184 | 94.17 199 |
|
gm-plane-assit | | | | | | 92.27 207 | 79.64 177 | | | 84.47 136 | | 95.15 146 | | 97.93 141 | 85.81 132 | | |
|
testdata | | | | | 90.13 173 | 95.92 114 | 74.17 274 | | 96.49 93 | 73.49 295 | 94.82 35 | 97.99 52 | 78.80 85 | 97.93 141 | 83.53 157 | 97.52 69 | 98.29 60 |
|
thres400 | | | 88.42 141 | 87.15 148 | 92.23 116 | 96.21 106 | 85.30 49 | 97.44 82 | 98.85 2 | 83.37 165 | 83.99 156 | 93.82 174 | 75.36 145 | 97.93 141 | 69.04 269 | 86.24 184 | 93.45 212 |
|
VDDNet | | | 86.44 170 | 84.51 180 | 92.22 117 | 91.56 230 | 81.83 122 | 97.10 113 | 94.64 207 | 69.50 317 | 87.84 124 | 95.19 143 | 48.01 312 | 97.92 146 | 89.82 99 | 86.92 176 | 96.89 145 |
|
thisisatest0515 | | | 90.95 90 | 90.26 91 | 93.01 85 | 94.03 169 | 84.27 72 | 97.91 47 | 96.67 63 | 83.18 168 | 86.87 133 | 95.51 137 | 88.66 13 | 97.85 147 | 80.46 176 | 89.01 158 | 96.92 144 |
|
thres600view7 | | | 88.06 146 | 86.70 156 | 92.15 119 | 96.10 110 | 85.17 55 | 97.14 107 | 98.85 2 | 82.70 179 | 83.41 164 | 93.66 177 | 75.43 142 | 97.82 148 | 67.13 278 | 85.88 188 | 93.45 212 |
|
MVS_Test | | | 90.29 105 | 89.18 112 | 93.62 59 | 95.23 130 | 84.93 61 | 94.41 233 | 94.66 204 | 84.31 140 | 90.37 93 | 91.02 206 | 75.13 150 | 97.82 148 | 83.11 163 | 94.42 115 | 98.12 74 |
|
旧先验2 | | | | | | | | 96.97 126 | | 74.06 290 | 96.10 16 | | | 97.76 150 | 88.38 115 | | |
|
EIA-MVS | | | 91.73 71 | 92.05 65 | 90.78 158 | 94.52 153 | 76.40 250 | 98.06 40 | 95.34 170 | 89.19 41 | 88.90 112 | 97.28 93 | 77.56 101 | 97.73 151 | 90.77 84 | 96.86 90 | 98.20 65 |
|
thisisatest0530 | | | 89.65 113 | 89.02 114 | 91.53 138 | 93.46 180 | 80.78 147 | 96.52 150 | 96.67 63 | 81.69 195 | 83.79 161 | 94.90 154 | 88.85 12 | 97.68 152 | 77.80 199 | 87.49 175 | 96.14 167 |
|
BH-RMVSNet | | | 86.84 163 | 85.28 169 | 91.49 139 | 95.35 128 | 80.26 162 | 96.95 127 | 92.21 291 | 82.86 177 | 81.77 187 | 95.46 138 | 59.34 262 | 97.64 153 | 69.79 267 | 93.81 123 | 96.57 156 |
|
CS-MVS | | | 92.88 48 | 93.09 44 | 92.26 115 | 95.21 132 | 80.70 149 | 98.84 16 | 95.26 175 | 88.83 46 | 92.50 61 | 97.48 81 | 77.49 103 | 97.63 154 | 95.34 32 | 96.88 87 | 98.46 47 |
|
1112_ss | | | 88.60 136 | 87.47 142 | 92.00 124 | 93.21 183 | 80.97 142 | 96.47 153 | 92.46 289 | 83.64 161 | 80.86 192 | 97.30 91 | 80.24 68 | 97.62 155 | 77.60 204 | 85.49 192 | 97.40 127 |
|
Test_1112_low_res | | | 88.03 147 | 86.73 155 | 91.94 126 | 93.15 185 | 80.88 144 | 96.44 158 | 92.41 290 | 83.59 164 | 80.74 194 | 91.16 204 | 80.18 69 | 97.59 156 | 77.48 207 | 85.40 193 | 97.36 129 |
|
tttt0517 | | | 88.57 137 | 88.19 124 | 89.71 188 | 93.00 189 | 75.99 257 | 95.67 197 | 96.67 63 | 80.78 205 | 81.82 186 | 94.40 162 | 88.97 11 | 97.58 157 | 76.05 223 | 86.31 181 | 95.57 179 |
|
lupinMVS | | | 93.87 36 | 93.58 37 | 94.75 23 | 93.00 189 | 88.08 14 | 99.15 4 | 95.50 158 | 91.03 22 | 94.90 32 | 97.66 69 | 78.84 83 | 97.56 158 | 94.64 41 | 97.46 70 | 98.62 40 |
|
DWT-MVSNet_test | | | 90.52 101 | 89.80 105 | 92.70 100 | 95.73 119 | 82.20 111 | 93.69 250 | 96.55 83 | 88.34 57 | 87.04 132 | 95.34 140 | 86.53 22 | 97.55 159 | 76.32 220 | 88.66 163 | 98.34 53 |
|
XVG-OURS | | | 85.18 187 | 84.38 184 | 87.59 227 | 90.42 251 | 71.73 296 | 91.06 292 | 94.07 234 | 82.00 191 | 83.29 166 | 95.08 150 | 56.42 285 | 97.55 159 | 83.70 152 | 83.42 204 | 93.49 211 |
|
TR-MVS | | | 86.30 171 | 84.93 177 | 90.42 165 | 94.63 149 | 77.58 231 | 96.57 149 | 93.82 244 | 80.30 219 | 82.42 175 | 95.16 145 | 58.74 266 | 97.55 159 | 74.88 232 | 87.82 171 | 96.13 168 |
|
casdiffmvs | | | 90.95 90 | 90.39 89 | 92.63 102 | 92.82 194 | 82.53 104 | 96.83 133 | 94.47 216 | 87.69 71 | 88.47 116 | 95.56 136 | 74.04 161 | 97.54 162 | 90.90 82 | 92.74 132 | 97.83 98 |
|
XVG-OURS-SEG-HR | | | 85.74 180 | 85.16 172 | 87.49 232 | 90.22 253 | 71.45 299 | 91.29 289 | 94.09 233 | 81.37 197 | 83.90 160 | 95.22 141 | 60.30 255 | 97.53 163 | 85.58 134 | 84.42 199 | 93.50 210 |
|
baseline | | | 90.76 93 | 90.10 96 | 92.74 97 | 92.90 193 | 82.56 103 | 94.60 229 | 94.56 212 | 87.69 71 | 89.06 111 | 95.67 132 | 73.76 164 | 97.51 164 | 90.43 91 | 92.23 140 | 98.16 69 |
|
ETV-MVS | | | 92.72 54 | 92.87 48 | 92.28 114 | 94.54 152 | 81.89 119 | 97.98 44 | 95.21 177 | 89.77 35 | 93.11 54 | 96.83 108 | 77.23 110 | 97.50 165 | 95.74 25 | 95.38 107 | 97.44 124 |
|
Effi-MVS+ | | | 90.70 94 | 89.90 102 | 93.09 81 | 93.61 175 | 83.48 86 | 95.20 213 | 92.79 285 | 83.22 167 | 91.82 67 | 95.70 130 | 71.82 183 | 97.48 166 | 91.25 77 | 93.67 124 | 98.32 55 |
|
baseline2 | | | 90.39 102 | 90.21 93 | 90.93 152 | 90.86 243 | 80.99 141 | 95.20 213 | 97.41 15 | 86.03 95 | 80.07 204 | 94.61 158 | 90.58 4 | 97.47 167 | 87.29 123 | 89.86 153 | 94.35 198 |
|
diffmvs | | | 91.17 87 | 90.74 85 | 92.44 108 | 93.11 188 | 82.50 106 | 96.25 171 | 93.62 257 | 87.79 68 | 90.40 92 | 95.93 125 | 73.44 169 | 97.42 168 | 93.62 49 | 92.55 134 | 97.41 126 |
|
tpmvs | | | 83.04 222 | 80.77 233 | 89.84 184 | 95.43 125 | 77.96 221 | 85.59 327 | 95.32 172 | 75.31 280 | 76.27 241 | 83.70 308 | 73.89 162 | 97.41 169 | 59.53 309 | 81.93 218 | 94.14 201 |
|
PMMVS | | | 89.46 116 | 89.92 101 | 88.06 218 | 94.64 148 | 69.57 313 | 96.22 172 | 94.95 187 | 87.27 78 | 91.37 77 | 96.54 117 | 65.88 220 | 97.39 170 | 88.54 111 | 93.89 121 | 97.23 136 |
|
PAPM | | | 92.87 49 | 92.40 57 | 94.30 33 | 92.25 210 | 87.85 16 | 96.40 162 | 96.38 107 | 91.07 21 | 88.72 114 | 96.90 104 | 82.11 56 | 97.37 171 | 90.05 96 | 97.70 67 | 97.67 109 |
|
HQP4-MVS | | | | | | | | | | | 82.30 176 | | | 97.32 172 | | | 91.13 219 |
|
HQP-MVS | | | 87.91 151 | 87.55 139 | 88.98 198 | 92.08 217 | 78.48 202 | 97.63 67 | 94.80 196 | 90.52 27 | 82.30 176 | 94.56 159 | 65.40 224 | 97.32 172 | 87.67 120 | 83.01 208 | 91.13 219 |
|
HQP_MVS | | | 87.50 154 | 87.09 151 | 88.74 204 | 91.86 227 | 77.96 221 | 97.18 101 | 94.69 200 | 89.89 33 | 81.33 188 | 94.15 168 | 64.77 229 | 97.30 174 | 87.08 124 | 82.82 212 | 90.96 221 |
|
plane_prior5 | | | | | | | | | 94.69 200 | | | | | 97.30 174 | 87.08 124 | 82.82 212 | 90.96 221 |
|
jason | | | 92.73 53 | 92.23 62 | 94.21 38 | 90.50 249 | 87.30 23 | 98.65 20 | 95.09 180 | 90.61 26 | 92.76 58 | 97.13 98 | 75.28 148 | 97.30 174 | 93.32 55 | 96.75 93 | 98.02 81 |
jason: jason. |
CLD-MVS | | | 87.97 149 | 87.48 141 | 89.44 190 | 92.16 215 | 80.54 155 | 98.14 34 | 94.92 188 | 91.41 17 | 79.43 207 | 95.40 139 | 62.34 240 | 97.27 177 | 90.60 87 | 82.90 211 | 90.50 227 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OPM-MVS | | | 85.84 177 | 85.10 174 | 88.06 218 | 88.34 278 | 77.83 227 | 95.72 195 | 94.20 225 | 87.89 67 | 80.45 197 | 94.05 170 | 58.57 267 | 97.26 178 | 83.88 146 | 82.76 214 | 89.09 258 |
|
BH-w/o | | | 88.24 145 | 87.47 142 | 90.54 163 | 95.03 140 | 78.54 201 | 97.41 89 | 93.82 244 | 84.08 146 | 78.23 218 | 94.51 161 | 69.34 203 | 97.21 179 | 80.21 180 | 94.58 114 | 95.87 172 |
|
Vis-MVSNet |  | | 88.67 133 | 87.82 130 | 91.24 145 | 92.68 195 | 78.82 195 | 96.95 127 | 93.85 243 | 87.55 73 | 87.07 131 | 95.13 148 | 63.43 235 | 97.21 179 | 77.58 205 | 96.15 97 | 97.70 108 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
mvs-test1 | | | 86.83 164 | 87.17 147 | 85.81 259 | 91.96 223 | 65.24 326 | 97.90 49 | 93.34 271 | 85.57 103 | 84.51 152 | 95.14 147 | 61.99 246 | 97.19 181 | 83.55 154 | 90.55 150 | 95.00 188 |
|
AllTest | | | 75.92 288 | 73.06 295 | 84.47 279 | 92.18 213 | 67.29 320 | 91.07 291 | 84.43 342 | 67.63 320 | 63.48 319 | 90.18 220 | 38.20 339 | 97.16 182 | 57.04 318 | 73.37 260 | 88.97 266 |
|
TestCases | | | | | 84.47 279 | 92.18 213 | 67.29 320 | | 84.43 342 | 67.63 320 | 63.48 319 | 90.18 220 | 38.20 339 | 97.16 182 | 57.04 318 | 73.37 260 | 88.97 266 |
|
ACMH | | 75.40 17 | 77.99 273 | 74.96 280 | 87.10 241 | 90.67 247 | 76.41 249 | 93.19 267 | 91.64 299 | 72.47 304 | 63.44 321 | 87.61 254 | 43.34 326 | 97.16 182 | 58.34 314 | 73.94 256 | 87.72 288 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMM | | 80.70 13 | 83.72 210 | 82.85 205 | 86.31 253 | 91.19 236 | 72.12 289 | 95.88 189 | 94.29 222 | 80.44 214 | 77.02 228 | 91.96 193 | 55.24 292 | 97.14 185 | 79.30 190 | 80.38 222 | 89.67 244 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPP-MVSNet | | | 89.76 111 | 89.72 106 | 89.87 183 | 93.78 171 | 76.02 256 | 97.22 95 | 96.51 88 | 79.35 236 | 85.11 143 | 95.01 152 | 84.82 29 | 97.10 186 | 87.46 122 | 88.21 169 | 96.50 157 |
|
tpm cat1 | | | 83.63 211 | 81.38 227 | 90.39 166 | 93.53 179 | 78.19 217 | 85.56 328 | 95.09 180 | 70.78 311 | 78.51 215 | 83.28 311 | 74.80 154 | 97.03 187 | 66.77 279 | 84.05 200 | 95.95 169 |
|
BH-untuned | | | 86.95 160 | 85.94 162 | 89.99 177 | 94.52 153 | 77.46 233 | 96.78 137 | 93.37 270 | 81.80 193 | 76.62 234 | 93.81 176 | 66.64 218 | 97.02 188 | 76.06 222 | 93.88 122 | 95.48 181 |
|
LTVRE_ROB | | 73.68 18 | 77.99 273 | 75.74 277 | 84.74 272 | 90.45 250 | 72.02 290 | 86.41 323 | 91.12 305 | 72.57 303 | 66.63 308 | 87.27 257 | 54.95 295 | 96.98 189 | 56.29 322 | 75.98 247 | 85.21 322 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TESTMET0.1,1 | | | 89.83 109 | 89.34 111 | 91.31 141 | 92.54 201 | 80.19 164 | 97.11 110 | 96.57 79 | 86.15 90 | 86.85 134 | 91.83 197 | 79.32 75 | 96.95 190 | 81.30 171 | 92.35 138 | 96.77 150 |
|
LPG-MVS_test | | | 84.20 204 | 83.49 198 | 86.33 250 | 90.88 241 | 73.06 282 | 95.28 208 | 94.13 229 | 82.20 186 | 76.31 238 | 93.20 180 | 54.83 296 | 96.95 190 | 83.72 150 | 80.83 220 | 88.98 264 |
|
LGP-MVS_train | | | | | 86.33 250 | 90.88 241 | 73.06 282 | | 94.13 229 | 82.20 186 | 76.31 238 | 93.20 180 | 54.83 296 | 96.95 190 | 83.72 150 | 80.83 220 | 88.98 264 |
|
COLMAP_ROB |  | 73.24 19 | 75.74 290 | 73.00 296 | 83.94 285 | 92.38 202 | 69.08 315 | 91.85 284 | 86.93 333 | 61.48 336 | 65.32 314 | 90.27 219 | 42.27 331 | 96.93 193 | 50.91 336 | 75.63 250 | 85.80 319 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
baseline1 | | | 88.85 128 | 87.49 140 | 92.93 90 | 95.21 132 | 86.85 25 | 95.47 204 | 94.61 209 | 87.29 76 | 83.11 169 | 94.99 153 | 80.70 62 | 96.89 194 | 82.28 167 | 73.72 257 | 95.05 187 |
|
ACMP | | 81.66 11 | 84.00 205 | 83.22 201 | 86.33 250 | 91.53 233 | 72.95 284 | 95.91 188 | 93.79 248 | 83.70 160 | 73.79 265 | 92.22 189 | 54.31 299 | 96.89 194 | 83.98 145 | 79.74 226 | 89.16 256 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
CostFormer | | | 89.08 121 | 88.39 123 | 91.15 147 | 93.13 186 | 79.15 188 | 88.61 306 | 96.11 126 | 83.14 169 | 89.58 103 | 86.93 264 | 83.83 39 | 96.87 196 | 88.22 117 | 85.92 187 | 97.42 125 |
|
USDC | | | 78.65 268 | 76.25 273 | 85.85 258 | 87.58 286 | 74.60 269 | 89.58 298 | 90.58 313 | 84.05 147 | 63.13 323 | 88.23 245 | 40.69 337 | 96.86 197 | 66.57 282 | 75.81 249 | 86.09 314 |
|
MS-PatchMatch | | | 83.05 221 | 81.82 221 | 86.72 248 | 89.64 263 | 79.10 190 | 94.88 225 | 94.59 211 | 79.70 232 | 70.67 289 | 89.65 226 | 50.43 305 | 96.82 198 | 70.82 265 | 95.99 102 | 84.25 328 |
|
HyFIR lowres test | | | 89.36 117 | 88.60 120 | 91.63 136 | 94.91 144 | 80.76 148 | 95.60 200 | 95.53 155 | 82.56 183 | 84.03 155 | 91.24 203 | 78.03 95 | 96.81 199 | 87.07 126 | 88.41 167 | 97.32 130 |
|
RPSCF | | | 77.73 276 | 76.63 271 | 81.06 309 | 88.66 276 | 55.76 347 | 87.77 313 | 87.88 330 | 64.82 328 | 74.14 264 | 92.79 185 | 49.22 309 | 96.81 199 | 67.47 277 | 76.88 246 | 90.62 224 |
|
test-LLR | | | 88.48 138 | 87.98 127 | 89.98 178 | 92.26 208 | 77.23 238 | 97.11 110 | 95.96 134 | 83.76 158 | 86.30 137 | 91.38 200 | 72.30 179 | 96.78 201 | 80.82 173 | 91.92 142 | 95.94 170 |
|
test-mter | | | 88.95 123 | 88.60 120 | 89.98 178 | 92.26 208 | 77.23 238 | 97.11 110 | 95.96 134 | 85.32 110 | 86.30 137 | 91.38 200 | 76.37 123 | 96.78 201 | 80.82 173 | 91.92 142 | 95.94 170 |
|
tpmrst | | | 88.36 142 | 87.38 144 | 91.31 141 | 94.36 160 | 79.92 168 | 87.32 316 | 95.26 175 | 85.32 110 | 88.34 119 | 86.13 280 | 80.60 63 | 96.70 203 | 83.78 147 | 85.34 195 | 97.30 133 |
|
Fast-Effi-MVS+ | | | 87.93 150 | 86.94 154 | 90.92 153 | 94.04 167 | 79.16 187 | 98.26 30 | 93.72 253 | 81.29 198 | 83.94 159 | 92.90 184 | 69.83 201 | 96.68 204 | 76.70 214 | 91.74 144 | 96.93 142 |
|
AUN-MVS | | | 86.25 173 | 85.57 164 | 88.26 214 | 93.57 177 | 73.38 277 | 95.45 205 | 95.88 138 | 83.94 151 | 85.47 141 | 94.21 166 | 73.70 167 | 96.67 205 | 83.54 156 | 64.41 319 | 94.73 196 |
|
MDTV_nov1_ep13 | | | | 83.69 191 | | 94.09 165 | 81.01 140 | 86.78 320 | 96.09 127 | 83.81 157 | 84.75 147 | 84.32 303 | 74.44 157 | 96.54 206 | 63.88 294 | 85.07 196 | |
|
XXY-MVS | | | 83.84 207 | 82.00 218 | 89.35 191 | 87.13 289 | 81.38 133 | 95.72 195 | 94.26 223 | 80.15 223 | 75.92 249 | 90.63 212 | 61.96 248 | 96.52 207 | 78.98 194 | 73.28 263 | 90.14 234 |
|
ACMH+ | | 76.62 16 | 77.47 279 | 74.94 281 | 85.05 269 | 91.07 239 | 71.58 298 | 93.26 264 | 90.01 315 | 71.80 307 | 64.76 316 | 88.55 240 | 41.62 333 | 96.48 208 | 62.35 301 | 71.00 271 | 87.09 302 |
|
GA-MVS | | | 85.79 179 | 84.04 189 | 91.02 151 | 89.47 267 | 80.27 161 | 96.90 130 | 94.84 194 | 85.57 103 | 80.88 191 | 89.08 231 | 56.56 284 | 96.47 209 | 77.72 202 | 85.35 194 | 96.34 162 |
|
tpm2 | | | 87.35 156 | 86.26 159 | 90.62 161 | 92.93 192 | 78.67 199 | 88.06 311 | 95.99 132 | 79.33 237 | 87.40 126 | 86.43 275 | 80.28 67 | 96.40 210 | 80.23 179 | 85.73 191 | 96.79 148 |
|
dp | | | 84.30 203 | 82.31 214 | 90.28 169 | 94.24 162 | 77.97 220 | 86.57 321 | 95.53 155 | 79.94 228 | 80.75 193 | 85.16 294 | 71.49 188 | 96.39 211 | 63.73 295 | 83.36 205 | 96.48 158 |
|
nrg030 | | | 86.79 166 | 85.43 166 | 90.87 155 | 88.76 272 | 85.34 47 | 97.06 118 | 94.33 221 | 84.31 140 | 80.45 197 | 91.98 192 | 72.36 177 | 96.36 212 | 88.48 114 | 71.13 270 | 90.93 223 |
|
RRT_test8_iter05 | | | 87.14 157 | 86.41 158 | 89.32 192 | 94.41 158 | 81.10 139 | 97.06 118 | 95.33 171 | 84.67 129 | 76.27 241 | 90.48 214 | 83.60 41 | 96.33 213 | 85.10 137 | 70.78 273 | 90.53 226 |
|
CMPMVS |  | 54.94 21 | 75.71 291 | 74.56 286 | 79.17 318 | 79.69 335 | 55.98 345 | 89.59 297 | 93.30 273 | 60.28 340 | 53.85 344 | 89.07 232 | 47.68 316 | 96.33 213 | 76.55 215 | 81.02 219 | 85.22 321 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
VPA-MVSNet | | | 85.32 185 | 83.83 190 | 89.77 187 | 90.25 252 | 82.63 102 | 96.36 163 | 97.07 24 | 83.03 172 | 81.21 190 | 89.02 233 | 61.58 250 | 96.31 215 | 85.02 140 | 70.95 272 | 90.36 228 |
|
XVG-ACMP-BASELINE | | | 79.38 264 | 77.90 261 | 83.81 286 | 84.98 315 | 67.14 323 | 89.03 302 | 93.18 277 | 80.26 222 | 72.87 275 | 88.15 247 | 38.55 338 | 96.26 216 | 76.05 223 | 78.05 242 | 88.02 284 |
|
EPMVS | | | 87.47 155 | 85.90 163 | 92.18 118 | 95.41 126 | 82.26 110 | 87.00 318 | 96.28 115 | 85.88 98 | 84.23 153 | 85.57 286 | 75.07 152 | 96.26 216 | 71.14 261 | 92.50 135 | 98.03 80 |
|
IS-MVSNet | | | 88.67 133 | 88.16 125 | 90.20 172 | 93.61 175 | 76.86 243 | 96.77 139 | 93.07 281 | 84.02 148 | 83.62 163 | 95.60 135 | 74.69 156 | 96.24 218 | 78.43 198 | 93.66 125 | 97.49 123 |
|
GG-mvs-BLEND | | | | | 93.49 66 | 94.94 142 | 86.26 29 | 81.62 333 | 97.00 27 | | 88.32 120 | 94.30 164 | 91.23 3 | 96.21 219 | 88.49 113 | 97.43 73 | 98.00 86 |
|
gg-mvs-nofinetune | | | 85.48 184 | 82.90 204 | 93.24 74 | 94.51 156 | 85.82 37 | 79.22 337 | 96.97 31 | 61.19 337 | 87.33 128 | 53.01 349 | 90.58 4 | 96.07 220 | 86.07 131 | 97.23 78 | 97.81 100 |
|
v2v482 | | | 83.46 213 | 81.86 220 | 88.25 215 | 86.19 298 | 79.65 176 | 96.34 165 | 94.02 236 | 81.56 196 | 77.32 224 | 88.23 245 | 65.62 221 | 96.03 221 | 77.77 200 | 69.72 286 | 89.09 258 |
|
V42 | | | 83.04 222 | 81.53 225 | 87.57 229 | 86.27 297 | 79.09 191 | 95.87 190 | 94.11 231 | 80.35 218 | 77.22 226 | 86.79 267 | 65.32 226 | 96.02 222 | 77.74 201 | 70.14 278 | 87.61 293 |
|
VPNet | | | 84.69 195 | 82.92 203 | 90.01 176 | 89.01 271 | 83.45 87 | 96.71 143 | 95.46 160 | 85.71 101 | 79.65 206 | 92.18 190 | 56.66 283 | 96.01 223 | 83.05 164 | 67.84 303 | 90.56 225 |
|
test_post | | | | | | | | | | | | 33.80 355 | 76.17 126 | 95.97 224 | | | |
|
EI-MVSNet | | | 85.80 178 | 85.20 170 | 87.59 227 | 91.55 231 | 77.41 234 | 95.13 216 | 95.36 167 | 80.43 216 | 80.33 199 | 94.71 156 | 73.72 165 | 95.97 224 | 76.96 212 | 78.64 236 | 89.39 247 |
|
MVSTER | | | 89.25 120 | 88.92 117 | 90.24 170 | 95.98 113 | 84.66 66 | 96.79 136 | 95.36 167 | 87.19 82 | 80.33 199 | 90.61 213 | 90.02 9 | 95.97 224 | 85.38 136 | 78.64 236 | 90.09 237 |
|
PatchmatchNet |  | | 86.83 164 | 85.12 173 | 91.95 125 | 94.12 164 | 82.27 109 | 86.55 322 | 95.64 151 | 84.59 132 | 82.98 171 | 84.99 298 | 77.26 106 | 95.96 227 | 68.61 273 | 91.34 146 | 97.64 112 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test_part1 | | | 84.72 193 | 82.85 205 | 90.34 167 | 95.73 119 | 84.79 65 | 96.75 140 | 94.10 232 | 79.05 248 | 75.97 247 | 89.51 228 | 67.69 207 | 95.94 228 | 79.34 188 | 67.50 306 | 90.30 232 |
|
TinyColmap | | | 72.41 304 | 68.99 310 | 82.68 300 | 88.11 281 | 69.59 312 | 88.41 307 | 85.20 339 | 65.55 326 | 57.91 338 | 84.82 300 | 30.80 351 | 95.94 228 | 51.38 333 | 68.70 293 | 82.49 337 |
|
v1144 | | | 82.90 225 | 81.27 229 | 87.78 223 | 86.29 296 | 79.07 192 | 96.14 177 | 93.93 238 | 80.05 225 | 77.38 222 | 86.80 266 | 65.50 222 | 95.93 230 | 75.21 230 | 70.13 279 | 88.33 279 |
|
v144192 | | | 82.43 231 | 80.73 234 | 87.54 230 | 85.81 305 | 78.22 212 | 95.98 182 | 93.78 249 | 79.09 244 | 77.11 227 | 86.49 271 | 64.66 231 | 95.91 231 | 74.20 240 | 69.42 287 | 88.49 273 |
|
v1192 | | | 82.31 235 | 80.55 238 | 87.60 226 | 85.94 302 | 78.47 205 | 95.85 192 | 93.80 247 | 79.33 237 | 76.97 229 | 86.51 270 | 63.33 236 | 95.87 232 | 73.11 246 | 70.13 279 | 88.46 275 |
|
v1240 | | | 81.70 241 | 79.83 249 | 87.30 237 | 85.50 307 | 77.70 230 | 95.48 203 | 93.44 264 | 78.46 254 | 76.53 235 | 86.44 273 | 60.85 253 | 95.84 233 | 71.59 255 | 70.17 277 | 88.35 278 |
|
v1921920 | | | 82.02 238 | 80.23 242 | 87.41 233 | 85.62 306 | 77.92 224 | 95.79 194 | 93.69 254 | 78.86 249 | 76.67 232 | 86.44 273 | 62.50 239 | 95.83 234 | 72.69 248 | 69.77 285 | 88.47 274 |
|
v8 | | | 81.88 239 | 80.06 246 | 87.32 235 | 86.63 292 | 79.04 193 | 94.41 233 | 93.65 256 | 78.77 250 | 73.19 272 | 85.57 286 | 66.87 216 | 95.81 235 | 73.84 244 | 67.61 305 | 87.11 301 |
|
D2MVS | | | 82.67 228 | 81.55 224 | 86.04 257 | 87.77 284 | 76.47 247 | 95.21 212 | 96.58 78 | 82.66 181 | 70.26 292 | 85.46 289 | 60.39 254 | 95.80 236 | 76.40 218 | 79.18 231 | 85.83 318 |
|
PS-MVSNAJss | | | 84.91 191 | 84.30 185 | 86.74 244 | 85.89 304 | 74.40 273 | 94.95 223 | 94.16 228 | 83.93 153 | 76.45 236 | 90.11 224 | 71.04 192 | 95.77 237 | 83.16 162 | 79.02 233 | 90.06 239 |
|
MVP-Stereo | | | 82.65 229 | 81.67 223 | 85.59 264 | 86.10 301 | 78.29 209 | 93.33 259 | 92.82 284 | 77.75 260 | 69.17 299 | 87.98 249 | 59.28 263 | 95.76 238 | 71.77 253 | 96.88 87 | 82.73 334 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
tfpnnormal | | | 78.14 272 | 75.42 278 | 86.31 253 | 88.33 279 | 79.24 184 | 94.41 233 | 96.22 119 | 73.51 293 | 69.81 295 | 85.52 288 | 55.43 290 | 95.75 239 | 47.65 343 | 67.86 302 | 83.95 330 |
|
v148 | | | 82.41 234 | 80.89 231 | 86.99 242 | 86.18 299 | 76.81 244 | 96.27 169 | 93.82 244 | 80.49 213 | 75.28 257 | 86.11 281 | 67.32 213 | 95.75 239 | 75.48 228 | 67.03 312 | 88.42 277 |
|
v10 | | | 81.43 245 | 79.53 251 | 87.11 240 | 86.38 293 | 78.87 194 | 94.31 237 | 93.43 265 | 77.88 258 | 73.24 271 | 85.26 290 | 65.44 223 | 95.75 239 | 72.14 252 | 67.71 304 | 86.72 305 |
|
TAMVS | | | 88.48 138 | 87.79 131 | 90.56 162 | 91.09 238 | 79.18 186 | 96.45 156 | 95.88 138 | 83.64 161 | 83.12 168 | 93.33 179 | 75.94 130 | 95.74 242 | 82.40 166 | 88.27 168 | 96.75 152 |
|
cl-mvsnet2 | | | 85.11 188 | 84.17 187 | 87.92 220 | 95.06 139 | 78.82 195 | 95.51 202 | 94.22 224 | 79.74 231 | 76.77 231 | 87.92 250 | 75.96 129 | 95.68 243 | 79.93 184 | 72.42 265 | 89.27 253 |
|
UniMVSNet_ETH3D | | | 80.86 252 | 78.75 256 | 87.22 239 | 86.31 295 | 72.02 290 | 91.95 281 | 93.76 252 | 73.51 293 | 75.06 259 | 90.16 222 | 43.04 329 | 95.66 244 | 76.37 219 | 78.55 239 | 93.98 204 |
|
Anonymous20231211 | | | 79.72 260 | 77.19 266 | 87.33 234 | 95.59 122 | 77.16 241 | 95.18 215 | 94.18 227 | 59.31 344 | 72.57 278 | 86.20 279 | 47.89 314 | 95.66 244 | 74.53 238 | 69.24 290 | 89.18 255 |
|
CHOSEN 280x420 | | | 91.71 73 | 91.85 67 | 91.29 143 | 94.94 142 | 82.69 101 | 87.89 312 | 96.17 123 | 85.94 96 | 87.27 129 | 94.31 163 | 90.27 6 | 95.65 246 | 94.04 46 | 95.86 103 | 95.53 180 |
|
CDS-MVSNet | | | 89.50 115 | 88.96 116 | 91.14 148 | 91.94 226 | 80.93 143 | 97.09 114 | 95.81 142 | 84.26 143 | 84.72 148 | 94.20 167 | 80.31 66 | 95.64 247 | 83.37 159 | 88.96 159 | 96.85 147 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVS-HIRNet | | | 71.36 308 | 67.00 312 | 84.46 281 | 90.58 248 | 69.74 311 | 79.15 338 | 87.74 331 | 46.09 349 | 61.96 328 | 50.50 350 | 45.14 321 | 95.64 247 | 53.74 329 | 88.11 170 | 88.00 285 |
|
v7n | | | 79.32 265 | 77.34 264 | 85.28 267 | 84.05 324 | 72.89 285 | 93.38 257 | 93.87 242 | 75.02 283 | 70.68 288 | 84.37 302 | 59.58 259 | 95.62 249 | 67.60 275 | 67.50 306 | 87.32 300 |
|
Effi-MVS+-dtu | | | 84.61 196 | 84.90 178 | 83.72 290 | 91.96 223 | 63.14 333 | 94.95 223 | 93.34 271 | 85.57 103 | 79.79 205 | 87.12 261 | 61.99 246 | 95.61 250 | 83.55 154 | 85.83 189 | 92.41 215 |
|
JIA-IIPM | | | 79.00 267 | 77.20 265 | 84.40 282 | 89.74 262 | 64.06 330 | 75.30 345 | 95.44 162 | 62.15 332 | 81.90 184 | 59.08 347 | 78.92 82 | 95.59 251 | 66.51 283 | 85.78 190 | 93.54 209 |
|
Fast-Effi-MVS+-dtu | | | 83.33 215 | 82.60 211 | 85.50 265 | 89.55 265 | 69.38 314 | 96.09 180 | 91.38 300 | 82.30 185 | 75.96 248 | 91.41 199 | 56.71 281 | 95.58 252 | 75.13 231 | 84.90 197 | 91.54 217 |
|
EG-PatchMatch MVS | | | 74.92 293 | 72.02 298 | 83.62 291 | 83.76 326 | 73.28 280 | 93.62 252 | 92.04 293 | 68.57 319 | 58.88 335 | 83.80 307 | 31.87 349 | 95.57 253 | 56.97 320 | 78.67 235 | 82.00 340 |
|
UniMVSNet (Re) | | | 85.31 186 | 84.23 186 | 88.55 207 | 89.75 260 | 80.55 154 | 96.72 141 | 96.89 38 | 85.42 107 | 78.40 216 | 88.93 235 | 75.38 144 | 95.52 254 | 78.58 196 | 68.02 300 | 89.57 245 |
|
OpenMVS_ROB |  | 68.52 20 | 73.02 302 | 69.57 307 | 83.37 295 | 80.54 333 | 71.82 294 | 93.60 253 | 88.22 329 | 62.37 331 | 61.98 327 | 83.15 312 | 35.31 344 | 95.47 255 | 45.08 346 | 75.88 248 | 82.82 332 |
|
miper_enhance_ethall | | | 85.95 176 | 85.20 170 | 88.19 217 | 94.85 145 | 79.76 171 | 96.00 181 | 94.06 235 | 82.98 174 | 77.74 221 | 88.76 237 | 79.42 74 | 95.46 256 | 80.58 175 | 72.42 265 | 89.36 252 |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 335 | 77.78 99 | 95.39 257 | | | |
|
SCA | | | 85.63 181 | 83.64 194 | 91.60 137 | 92.30 206 | 81.86 121 | 92.88 272 | 95.56 154 | 84.85 122 | 82.52 172 | 85.12 296 | 58.04 271 | 95.39 257 | 73.89 242 | 87.58 174 | 97.54 117 |
|
jajsoiax | | | 82.12 237 | 81.15 230 | 85.03 270 | 84.19 321 | 70.70 302 | 94.22 242 | 93.95 237 | 83.07 171 | 73.48 267 | 89.75 225 | 49.66 308 | 95.37 259 | 82.24 168 | 79.76 224 | 89.02 262 |
|
mvs_anonymous | | | 88.68 132 | 87.62 136 | 91.86 128 | 94.80 146 | 81.69 129 | 93.53 255 | 94.92 188 | 82.03 190 | 78.87 212 | 90.43 217 | 75.77 132 | 95.34 260 | 85.04 139 | 93.16 130 | 98.55 44 |
|
ITE_SJBPF | | | | | 82.38 302 | 87.00 290 | 65.59 325 | | 89.55 318 | 79.99 227 | 69.37 297 | 91.30 202 | 41.60 334 | 95.33 261 | 62.86 300 | 74.63 255 | 86.24 311 |
|
eth_miper_zixun_eth | | | 83.12 220 | 82.01 217 | 86.47 249 | 91.85 229 | 74.80 267 | 94.33 236 | 93.18 277 | 79.11 243 | 75.74 253 | 87.25 259 | 72.71 174 | 95.32 262 | 76.78 213 | 67.13 310 | 89.27 253 |
|
mvs_tets | | | 81.74 240 | 80.71 235 | 84.84 271 | 84.22 320 | 70.29 305 | 93.91 247 | 93.78 249 | 82.77 178 | 73.37 268 | 89.46 229 | 47.36 317 | 95.31 263 | 81.99 169 | 79.55 229 | 88.92 268 |
|
FIs | | | 86.73 168 | 86.10 160 | 88.61 206 | 90.05 257 | 80.21 163 | 96.14 177 | 96.95 33 | 85.56 106 | 78.37 217 | 92.30 188 | 76.73 116 | 95.28 264 | 79.51 186 | 79.27 230 | 90.35 229 |
|
pm-mvs1 | | | 80.05 257 | 78.02 260 | 86.15 255 | 85.42 308 | 75.81 260 | 95.11 218 | 92.69 287 | 77.13 268 | 70.36 291 | 87.43 255 | 58.44 269 | 95.27 265 | 71.36 257 | 64.25 320 | 87.36 299 |
|
miper_ehance_all_eth | | | 84.57 197 | 83.60 196 | 87.50 231 | 92.64 199 | 78.25 211 | 95.40 207 | 93.47 262 | 79.28 240 | 76.41 237 | 87.64 253 | 76.53 119 | 95.24 266 | 78.58 196 | 72.42 265 | 89.01 263 |
|
ADS-MVSNet | | | 81.26 247 | 78.36 257 | 89.96 180 | 93.78 171 | 79.78 170 | 79.48 335 | 93.60 258 | 73.09 298 | 80.14 201 | 79.99 328 | 62.15 243 | 95.24 266 | 59.49 310 | 83.52 202 | 94.85 190 |
|
cl-mvsnet_ | | | 83.27 216 | 82.12 215 | 86.74 244 | 92.20 211 | 75.95 258 | 95.11 218 | 93.27 274 | 78.44 255 | 74.82 260 | 87.02 263 | 74.19 159 | 95.19 268 | 74.67 235 | 69.32 288 | 89.09 258 |
|
cl-mvsnet1 | | | 83.27 216 | 82.12 215 | 86.74 244 | 92.19 212 | 75.92 259 | 95.11 218 | 93.26 275 | 78.44 255 | 74.81 261 | 87.08 262 | 74.19 159 | 95.19 268 | 74.66 236 | 69.30 289 | 89.11 257 |
|
IterMVS-LS | | | 83.93 206 | 82.80 208 | 87.31 236 | 91.46 234 | 77.39 235 | 95.66 198 | 93.43 265 | 80.44 214 | 75.51 254 | 87.26 258 | 73.72 165 | 95.16 270 | 76.99 210 | 70.72 275 | 89.39 247 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UniMVSNet_NR-MVSNet | | | 85.49 183 | 84.59 179 | 88.21 216 | 89.44 268 | 79.36 181 | 96.71 143 | 96.41 100 | 85.22 114 | 78.11 219 | 90.98 208 | 76.97 112 | 95.14 271 | 79.14 192 | 68.30 297 | 90.12 235 |
|
DU-MVS | | | 84.57 197 | 83.33 200 | 88.28 213 | 88.76 272 | 79.36 181 | 96.43 160 | 95.41 166 | 85.42 107 | 78.11 219 | 90.82 209 | 67.61 208 | 95.14 271 | 79.14 192 | 68.30 297 | 90.33 230 |
|
cl_fuxian | | | 83.80 208 | 82.65 210 | 87.25 238 | 92.10 216 | 77.74 229 | 95.25 211 | 93.04 282 | 78.58 252 | 76.01 245 | 87.21 260 | 75.25 149 | 95.11 273 | 77.54 206 | 68.89 292 | 88.91 269 |
|
bset_n11_16_dypcd | | | 84.35 201 | 82.83 207 | 88.91 199 | 82.54 328 | 82.07 113 | 94.12 244 | 93.47 262 | 85.39 109 | 78.55 214 | 88.98 234 | 62.23 241 | 95.11 273 | 86.75 129 | 73.42 259 | 89.55 246 |
|
MVSFormer | | | 91.36 82 | 90.57 86 | 93.73 53 | 93.00 189 | 88.08 14 | 94.80 227 | 94.48 214 | 80.74 206 | 94.90 32 | 97.13 98 | 78.84 83 | 95.10 275 | 83.77 148 | 97.46 70 | 98.02 81 |
|
test_djsdf | | | 83.00 224 | 82.45 213 | 84.64 276 | 84.07 323 | 69.78 310 | 94.80 227 | 94.48 214 | 80.74 206 | 75.41 256 | 87.70 252 | 61.32 252 | 95.10 275 | 83.77 148 | 79.76 224 | 89.04 261 |
|
test_post1 | | | | | | | | 85.88 326 | | | | 30.24 358 | 73.77 163 | 95.07 277 | 73.89 242 | | |
|
pmmvs4 | | | 82.54 230 | 80.79 232 | 87.79 222 | 86.11 300 | 80.49 157 | 93.55 254 | 93.18 277 | 77.29 266 | 73.35 269 | 89.40 230 | 65.26 227 | 95.05 278 | 75.32 229 | 73.61 258 | 87.83 287 |
|
RRT_MVS | | | 86.89 161 | 85.96 161 | 89.68 189 | 95.01 141 | 84.13 73 | 96.33 166 | 94.98 186 | 84.20 145 | 80.10 203 | 92.07 191 | 70.52 196 | 95.01 279 | 83.30 160 | 77.14 245 | 89.91 241 |
|
anonymousdsp | | | 80.98 251 | 79.97 247 | 84.01 284 | 81.73 329 | 70.44 304 | 92.49 276 | 93.58 260 | 77.10 270 | 72.98 274 | 86.31 277 | 57.58 275 | 94.90 280 | 79.32 189 | 78.63 238 | 86.69 306 |
|
NR-MVSNet | | | 83.35 214 | 81.52 226 | 88.84 201 | 88.76 272 | 81.31 135 | 94.45 232 | 95.16 178 | 84.65 130 | 67.81 301 | 90.82 209 | 70.36 198 | 94.87 281 | 74.75 233 | 66.89 313 | 90.33 230 |
|
WR-MVS | | | 84.32 202 | 82.96 202 | 88.41 209 | 89.38 269 | 80.32 158 | 96.59 148 | 96.25 117 | 83.97 150 | 76.63 233 | 90.36 218 | 67.53 210 | 94.86 282 | 75.82 226 | 70.09 282 | 90.06 239 |
|
pmmvs6 | | | 74.65 295 | 71.67 299 | 83.60 292 | 79.13 337 | 69.94 307 | 93.31 263 | 90.88 311 | 61.05 339 | 65.83 312 | 84.15 305 | 43.43 325 | 94.83 283 | 66.62 280 | 60.63 327 | 86.02 315 |
|
FC-MVSNet-test | | | 85.96 175 | 85.39 167 | 87.66 225 | 89.38 269 | 78.02 219 | 95.65 199 | 96.87 39 | 85.12 118 | 77.34 223 | 91.94 195 | 76.28 125 | 94.74 284 | 77.09 209 | 78.82 234 | 90.21 233 |
|
Vis-MVSNet (Re-imp) | | | 88.88 127 | 88.87 118 | 88.91 199 | 93.89 170 | 74.43 272 | 96.93 129 | 94.19 226 | 84.39 137 | 83.22 167 | 95.67 132 | 78.24 92 | 94.70 285 | 78.88 195 | 94.40 116 | 97.61 115 |
|
tpm | | | 85.55 182 | 84.47 183 | 88.80 203 | 90.19 254 | 75.39 264 | 88.79 304 | 94.69 200 | 84.83 123 | 83.96 158 | 85.21 292 | 78.22 93 | 94.68 286 | 76.32 220 | 78.02 243 | 96.34 162 |
|
TranMVSNet+NR-MVSNet | | | 83.24 218 | 81.71 222 | 87.83 221 | 87.71 285 | 78.81 197 | 96.13 179 | 94.82 195 | 84.52 133 | 76.18 244 | 90.78 211 | 64.07 232 | 94.60 287 | 74.60 237 | 66.59 315 | 90.09 237 |
|
Patchmatch-test | | | 78.25 271 | 74.72 284 | 88.83 202 | 91.20 235 | 74.10 275 | 73.91 348 | 88.70 328 | 59.89 343 | 66.82 307 | 85.12 296 | 78.38 90 | 94.54 288 | 48.84 341 | 79.58 228 | 97.86 95 |
|
FMVSNet3 | | | 84.71 194 | 82.71 209 | 90.70 160 | 94.55 151 | 87.71 18 | 95.92 186 | 94.67 203 | 81.73 194 | 75.82 250 | 88.08 248 | 66.99 215 | 94.47 289 | 71.23 258 | 75.38 251 | 89.91 241 |
|
pmmvs5 | | | 81.34 246 | 79.54 250 | 86.73 247 | 85.02 314 | 76.91 242 | 96.22 172 | 91.65 298 | 77.65 261 | 73.55 266 | 88.61 239 | 55.70 289 | 94.43 290 | 74.12 241 | 73.35 262 | 88.86 270 |
|
Baseline_NR-MVSNet | | | 81.22 248 | 80.07 245 | 84.68 274 | 85.32 312 | 75.12 266 | 96.48 152 | 88.80 325 | 76.24 275 | 77.28 225 | 86.40 276 | 67.61 208 | 94.39 291 | 75.73 227 | 66.73 314 | 84.54 325 |
|
FMVSNet2 | | | 82.79 226 | 80.44 239 | 89.83 185 | 92.66 196 | 85.43 46 | 95.42 206 | 94.35 220 | 79.06 245 | 74.46 262 | 87.28 256 | 56.38 286 | 94.31 292 | 69.72 268 | 74.68 254 | 89.76 243 |
|
SixPastTwentyTwo | | | 76.04 287 | 74.32 288 | 81.22 308 | 84.54 317 | 61.43 338 | 91.16 290 | 89.30 321 | 77.89 257 | 64.04 318 | 86.31 277 | 48.23 310 | 94.29 293 | 63.54 297 | 63.84 322 | 87.93 286 |
|
TDRefinement | | | 69.20 312 | 65.78 316 | 79.48 316 | 66.04 353 | 62.21 335 | 88.21 308 | 86.12 336 | 62.92 330 | 61.03 331 | 85.61 285 | 33.23 346 | 94.16 294 | 55.82 325 | 53.02 338 | 82.08 339 |
|
TransMVSNet (Re) | | | 76.94 283 | 74.38 287 | 84.62 277 | 85.92 303 | 75.25 265 | 95.28 208 | 89.18 322 | 73.88 291 | 67.22 302 | 86.46 272 | 59.64 257 | 94.10 295 | 59.24 313 | 52.57 340 | 84.50 326 |
|
OurMVSNet-221017-0 | | | 77.18 282 | 76.06 274 | 80.55 312 | 83.78 325 | 60.00 340 | 90.35 294 | 91.05 308 | 77.01 272 | 66.62 309 | 87.92 250 | 47.73 315 | 94.03 296 | 71.63 254 | 68.44 295 | 87.62 292 |
|
EPNet_dtu | | | 87.65 153 | 87.89 128 | 86.93 243 | 94.57 150 | 71.37 300 | 96.72 141 | 96.50 90 | 88.56 53 | 87.12 130 | 95.02 151 | 75.91 131 | 94.01 297 | 66.62 280 | 90.00 152 | 95.42 182 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
lessismore_v0 | | | | | 79.98 314 | 80.59 332 | 58.34 343 | | 80.87 350 | | 58.49 336 | 83.46 310 | 43.10 328 | 93.89 298 | 63.11 299 | 48.68 342 | 87.72 288 |
|
GBi-Net | | | 82.42 232 | 80.43 240 | 88.39 210 | 92.66 196 | 81.95 114 | 94.30 238 | 93.38 267 | 79.06 245 | 75.82 250 | 85.66 282 | 56.38 286 | 93.84 299 | 71.23 258 | 75.38 251 | 89.38 249 |
|
test1 | | | 82.42 232 | 80.43 240 | 88.39 210 | 92.66 196 | 81.95 114 | 94.30 238 | 93.38 267 | 79.06 245 | 75.82 250 | 85.66 282 | 56.38 286 | 93.84 299 | 71.23 258 | 75.38 251 | 89.38 249 |
|
FMVSNet1 | | | 79.50 262 | 76.54 272 | 88.39 210 | 88.47 277 | 81.95 114 | 94.30 238 | 93.38 267 | 73.14 297 | 72.04 282 | 85.66 282 | 43.86 323 | 93.84 299 | 65.48 287 | 72.53 264 | 89.38 249 |
|
test_0402 | | | 72.68 303 | 69.54 308 | 82.09 305 | 88.67 275 | 71.81 295 | 92.72 274 | 86.77 334 | 61.52 335 | 62.21 326 | 83.91 306 | 43.22 327 | 93.76 302 | 34.60 350 | 72.23 268 | 80.72 342 |
|
CR-MVSNet | | | 83.53 212 | 81.36 228 | 90.06 175 | 90.16 255 | 79.75 172 | 79.02 339 | 91.12 305 | 84.24 144 | 82.27 180 | 80.35 325 | 75.45 140 | 93.67 303 | 63.37 298 | 86.25 182 | 96.75 152 |
|
ET-MVSNet_ETH3D | | | 90.01 108 | 89.03 113 | 92.95 88 | 94.38 159 | 86.77 26 | 98.14 34 | 96.31 114 | 89.30 40 | 63.33 322 | 96.72 114 | 90.09 8 | 93.63 304 | 90.70 86 | 82.29 217 | 98.46 47 |
|
Patchmtry | | | 77.36 280 | 74.59 285 | 85.67 263 | 89.75 260 | 75.75 261 | 77.85 342 | 91.12 305 | 60.28 340 | 71.23 284 | 80.35 325 | 75.45 140 | 93.56 305 | 57.94 315 | 67.34 309 | 87.68 290 |
|
miper_lstm_enhance | | | 81.66 243 | 80.66 236 | 84.67 275 | 91.19 236 | 71.97 292 | 91.94 282 | 93.19 276 | 77.86 259 | 72.27 280 | 85.26 290 | 73.46 168 | 93.42 306 | 73.71 245 | 67.05 311 | 88.61 271 |
|
PatchT | | | 79.75 259 | 76.85 269 | 88.42 208 | 89.55 265 | 75.49 263 | 77.37 343 | 94.61 209 | 63.07 329 | 82.46 174 | 73.32 341 | 75.52 139 | 93.41 307 | 51.36 334 | 84.43 198 | 96.36 160 |
|
ppachtmachnet_test | | | 77.19 281 | 74.22 289 | 86.13 256 | 85.39 309 | 78.22 212 | 93.98 246 | 91.36 302 | 71.74 308 | 67.11 304 | 84.87 299 | 56.67 282 | 93.37 308 | 52.21 332 | 64.59 318 | 86.80 304 |
|
MVS_0304 | | | 78.43 269 | 76.70 270 | 83.60 292 | 88.22 280 | 69.81 309 | 92.91 271 | 95.10 179 | 72.32 305 | 78.71 213 | 80.29 327 | 33.78 345 | 93.37 308 | 68.77 272 | 80.23 223 | 87.63 291 |
|
our_test_3 | | | 77.90 275 | 75.37 279 | 85.48 266 | 85.39 309 | 76.74 245 | 93.63 251 | 91.67 297 | 73.39 296 | 65.72 313 | 84.65 301 | 58.20 270 | 93.13 310 | 57.82 316 | 67.87 301 | 86.57 307 |
|
LCM-MVSNet-Re | | | 83.75 209 | 83.54 197 | 84.39 283 | 93.54 178 | 64.14 329 | 92.51 275 | 84.03 344 | 83.90 154 | 66.14 311 | 86.59 269 | 67.36 212 | 92.68 311 | 84.89 141 | 92.87 131 | 96.35 161 |
|
WR-MVS_H | | | 81.02 249 | 80.09 243 | 83.79 287 | 88.08 282 | 71.26 301 | 94.46 231 | 96.54 84 | 80.08 224 | 72.81 276 | 86.82 265 | 70.36 198 | 92.65 312 | 64.18 292 | 67.50 306 | 87.46 298 |
|
ambc | | | | | 76.02 325 | 68.11 351 | 51.43 350 | 64.97 351 | 89.59 317 | | 60.49 332 | 74.49 337 | 17.17 355 | 92.46 313 | 61.50 304 | 52.85 339 | 84.17 329 |
|
PEN-MVS | | | 79.47 263 | 78.26 259 | 83.08 297 | 86.36 294 | 68.58 316 | 93.85 248 | 94.77 199 | 79.76 230 | 71.37 283 | 88.55 240 | 59.79 256 | 92.46 313 | 64.50 291 | 65.40 316 | 88.19 281 |
|
CP-MVSNet | | | 81.01 250 | 80.08 244 | 83.79 287 | 87.91 283 | 70.51 303 | 94.29 241 | 95.65 149 | 80.83 204 | 72.54 279 | 88.84 236 | 63.71 233 | 92.32 315 | 68.58 274 | 68.36 296 | 88.55 272 |
|
LF4IMVS | | | 72.36 305 | 70.82 302 | 76.95 321 | 79.18 336 | 56.33 344 | 86.12 324 | 86.11 337 | 69.30 318 | 63.06 324 | 86.66 268 | 33.03 347 | 92.25 316 | 65.33 288 | 68.64 294 | 82.28 338 |
|
PS-CasMVS | | | 80.27 256 | 79.18 252 | 83.52 294 | 87.56 287 | 69.88 308 | 94.08 245 | 95.29 173 | 80.27 221 | 72.08 281 | 88.51 243 | 59.22 264 | 92.23 317 | 67.49 276 | 68.15 299 | 88.45 276 |
|
DTE-MVSNet | | | 78.37 270 | 77.06 267 | 82.32 304 | 85.22 313 | 67.17 322 | 93.40 256 | 93.66 255 | 78.71 251 | 70.53 290 | 88.29 244 | 59.06 265 | 92.23 317 | 61.38 305 | 63.28 324 | 87.56 295 |
|
UnsupCasMVSNet_bld | | | 68.60 314 | 64.50 317 | 80.92 310 | 74.63 348 | 67.80 318 | 83.97 330 | 92.94 283 | 65.12 327 | 54.63 343 | 68.23 345 | 35.97 341 | 92.17 319 | 60.13 308 | 44.83 346 | 82.78 333 |
|
KD-MVS_2432*1600 | | | 77.63 277 | 74.92 282 | 85.77 260 | 90.86 243 | 79.44 179 | 88.08 309 | 93.92 239 | 76.26 273 | 67.05 305 | 82.78 313 | 72.15 181 | 91.92 320 | 61.53 302 | 41.62 349 | 85.94 316 |
|
miper_refine_blended | | | 77.63 277 | 74.92 282 | 85.77 260 | 90.86 243 | 79.44 179 | 88.08 309 | 93.92 239 | 76.26 273 | 67.05 305 | 82.78 313 | 72.15 181 | 91.92 320 | 61.53 302 | 41.62 349 | 85.94 316 |
|
N_pmnet | | | 61.30 317 | 60.20 320 | 64.60 332 | 84.32 319 | 17.00 364 | 91.67 288 | 10.98 363 | 61.77 334 | 58.45 337 | 78.55 331 | 49.89 307 | 91.83 322 | 42.27 348 | 63.94 321 | 84.97 323 |
|
K. test v3 | | | 73.62 296 | 71.59 300 | 79.69 315 | 82.98 327 | 59.85 341 | 90.85 293 | 88.83 324 | 77.13 268 | 58.90 334 | 82.11 315 | 43.62 324 | 91.72 323 | 65.83 286 | 54.10 335 | 87.50 297 |
|
Patchmatch-RL test | | | 76.65 285 | 74.01 292 | 84.55 278 | 77.37 343 | 64.23 328 | 78.49 341 | 82.84 348 | 78.48 253 | 64.63 317 | 73.40 340 | 76.05 128 | 91.70 324 | 76.99 210 | 57.84 330 | 97.72 105 |
|
IterMVS-SCA-FT | | | 80.51 255 | 79.10 254 | 84.73 273 | 89.63 264 | 74.66 268 | 92.98 269 | 91.81 296 | 80.05 225 | 71.06 287 | 85.18 293 | 58.04 271 | 91.40 325 | 72.48 251 | 70.70 276 | 88.12 283 |
|
IterMVS | | | 80.67 253 | 79.16 253 | 85.20 268 | 89.79 259 | 76.08 253 | 92.97 270 | 91.86 294 | 80.28 220 | 71.20 285 | 85.14 295 | 57.93 274 | 91.34 326 | 72.52 250 | 70.74 274 | 88.18 282 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MDA-MVSNet-bldmvs | | | 71.45 307 | 67.94 311 | 81.98 306 | 85.33 311 | 68.50 317 | 92.35 279 | 88.76 326 | 70.40 312 | 42.99 348 | 81.96 316 | 46.57 318 | 91.31 327 | 48.75 342 | 54.39 334 | 86.11 313 |
|
pmmvs-eth3d | | | 73.59 297 | 70.66 303 | 82.38 302 | 76.40 345 | 73.38 277 | 89.39 301 | 89.43 319 | 72.69 302 | 60.34 333 | 77.79 333 | 46.43 319 | 91.26 328 | 66.42 284 | 57.06 331 | 82.51 335 |
|
PM-MVS | | | 69.32 311 | 66.93 313 | 76.49 323 | 73.60 349 | 55.84 346 | 85.91 325 | 79.32 353 | 74.72 285 | 61.09 330 | 78.18 332 | 21.76 353 | 91.10 329 | 70.86 263 | 56.90 332 | 82.51 335 |
|
Anonymous20231206 | | | 75.29 292 | 73.64 293 | 80.22 313 | 80.75 330 | 63.38 332 | 93.36 258 | 90.71 312 | 73.09 298 | 67.12 303 | 83.70 308 | 50.33 306 | 90.85 330 | 53.63 330 | 70.10 281 | 86.44 308 |
|
MIMVSNet | | | 79.18 266 | 75.99 275 | 88.72 205 | 87.37 288 | 80.66 151 | 79.96 334 | 91.82 295 | 77.38 265 | 74.33 263 | 81.87 317 | 41.78 332 | 90.74 331 | 66.36 285 | 83.10 207 | 94.76 192 |
|
UnsupCasMVSNet_eth | | | 73.25 300 | 70.57 304 | 81.30 307 | 77.53 341 | 66.33 324 | 87.24 317 | 93.89 241 | 80.38 217 | 57.90 339 | 81.59 318 | 42.91 330 | 90.56 332 | 65.18 289 | 48.51 343 | 87.01 303 |
|
YYNet1 | | | 73.53 299 | 70.43 305 | 82.85 299 | 84.52 318 | 71.73 296 | 91.69 287 | 91.37 301 | 67.63 320 | 46.79 346 | 81.21 321 | 55.04 294 | 90.43 333 | 55.93 323 | 59.70 329 | 86.38 309 |
|
MDA-MVSNet_test_wron | | | 73.54 298 | 70.43 305 | 82.86 298 | 84.55 316 | 71.85 293 | 91.74 286 | 91.32 304 | 67.63 320 | 46.73 347 | 81.09 322 | 55.11 293 | 90.42 334 | 55.91 324 | 59.76 328 | 86.31 310 |
|
CVMVSNet | | | 84.83 192 | 85.57 164 | 82.63 301 | 91.55 231 | 60.38 339 | 95.13 216 | 95.03 184 | 80.60 209 | 82.10 182 | 94.71 156 | 66.40 219 | 90.19 335 | 74.30 239 | 90.32 151 | 97.31 132 |
|
ADS-MVSNet2 | | | 79.57 261 | 77.53 263 | 85.71 262 | 93.78 171 | 72.13 288 | 79.48 335 | 86.11 337 | 73.09 298 | 80.14 201 | 79.99 328 | 62.15 243 | 90.14 336 | 59.49 310 | 83.52 202 | 94.85 190 |
|
CL-MVSNet_2432*1600 | | | 75.81 289 | 74.14 291 | 80.83 311 | 78.33 339 | 67.79 319 | 94.22 242 | 93.52 261 | 77.28 267 | 69.82 294 | 81.54 319 | 61.47 251 | 89.22 337 | 57.59 317 | 53.51 336 | 85.48 320 |
|
test0.0.03 1 | | | 82.79 226 | 82.48 212 | 83.74 289 | 86.81 291 | 72.22 286 | 96.52 150 | 95.03 184 | 83.76 158 | 73.00 273 | 93.20 180 | 72.30 179 | 88.88 338 | 64.15 293 | 77.52 244 | 90.12 235 |
|
testgi | | | 74.88 294 | 73.40 294 | 79.32 317 | 80.13 334 | 61.75 336 | 93.21 265 | 86.64 335 | 79.49 235 | 66.56 310 | 91.06 205 | 35.51 343 | 88.67 339 | 56.79 321 | 71.25 269 | 87.56 295 |
|
DIV-MVS_2432*1600 | | | 70.97 309 | 69.31 309 | 75.95 327 | 76.24 347 | 55.39 348 | 87.45 314 | 90.94 310 | 70.20 314 | 62.96 325 | 77.48 334 | 44.01 322 | 88.09 340 | 61.25 306 | 53.26 337 | 84.37 327 |
|
new_pmnet | | | 66.18 315 | 63.18 318 | 75.18 329 | 76.27 346 | 61.74 337 | 83.79 331 | 84.66 341 | 56.64 347 | 51.57 345 | 71.85 344 | 31.29 350 | 87.93 341 | 49.98 338 | 62.55 325 | 75.86 345 |
|
FMVSNet5 | | | 76.46 286 | 74.16 290 | 83.35 296 | 90.05 257 | 76.17 252 | 89.58 298 | 89.85 316 | 71.39 310 | 65.29 315 | 80.42 324 | 50.61 304 | 87.70 342 | 61.05 307 | 69.24 290 | 86.18 312 |
|
EU-MVSNet | | | 76.92 284 | 76.95 268 | 76.83 322 | 84.10 322 | 54.73 349 | 91.77 285 | 92.71 286 | 72.74 301 | 69.57 296 | 88.69 238 | 58.03 273 | 87.43 343 | 64.91 290 | 70.00 283 | 88.33 279 |
|
new-patchmatchnet | | | 68.85 313 | 65.93 315 | 77.61 320 | 73.57 350 | 63.94 331 | 90.11 296 | 88.73 327 | 71.62 309 | 55.08 342 | 73.60 339 | 40.84 336 | 87.22 344 | 51.35 335 | 48.49 344 | 81.67 341 |
|
DSMNet-mixed | | | 73.13 301 | 72.45 297 | 75.19 328 | 77.51 342 | 46.82 352 | 85.09 329 | 82.01 349 | 67.61 324 | 69.27 298 | 81.33 320 | 50.89 302 | 86.28 345 | 54.54 327 | 83.80 201 | 92.46 214 |
|
pmmvs3 | | | 65.75 316 | 62.18 319 | 76.45 324 | 67.12 352 | 64.54 327 | 88.68 305 | 85.05 340 | 54.77 348 | 57.54 341 | 73.79 338 | 29.40 352 | 86.21 346 | 55.49 326 | 47.77 345 | 78.62 343 |
|
MIMVSNet1 | | | 69.44 310 | 66.65 314 | 77.84 319 | 76.48 344 | 62.84 334 | 87.42 315 | 88.97 323 | 66.96 325 | 57.75 340 | 79.72 330 | 32.77 348 | 85.83 347 | 46.32 344 | 63.42 323 | 84.85 324 |
|
test20.03 | | | 72.36 305 | 71.15 301 | 75.98 326 | 77.79 340 | 59.16 342 | 92.40 278 | 89.35 320 | 74.09 289 | 61.50 329 | 84.32 303 | 48.09 311 | 85.54 348 | 50.63 337 | 62.15 326 | 83.24 331 |
|
DeepMVS_CX |  | | | | 64.06 333 | 78.53 338 | 43.26 355 | | 68.11 357 | 69.94 315 | 38.55 349 | 76.14 336 | 18.53 354 | 79.34 349 | 43.72 347 | 41.62 349 | 69.57 348 |
|
FPMVS | | | 55.09 318 | 52.93 321 | 61.57 334 | 55.98 354 | 40.51 357 | 83.11 332 | 83.41 347 | 37.61 351 | 34.95 351 | 71.95 343 | 14.40 356 | 76.95 350 | 29.81 351 | 65.16 317 | 67.25 349 |
|
LCM-MVSNet | | | 52.52 319 | 48.24 322 | 65.35 330 | 47.63 359 | 41.45 356 | 72.55 349 | 83.62 346 | 31.75 352 | 37.66 350 | 57.92 348 | 9.19 362 | 76.76 351 | 49.26 340 | 44.60 347 | 77.84 344 |
|
Gipuma |  | | 45.11 322 | 42.05 324 | 54.30 336 | 80.69 331 | 51.30 351 | 35.80 355 | 83.81 345 | 28.13 353 | 27.94 354 | 34.53 354 | 11.41 360 | 76.70 352 | 21.45 353 | 54.65 333 | 34.90 353 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 50.90 320 | 46.31 323 | 64.67 331 | 55.53 355 | 46.67 353 | 77.30 344 | 71.02 355 | 40.89 350 | 34.16 352 | 59.32 346 | 9.83 361 | 76.14 353 | 40.09 349 | 28.63 352 | 71.21 346 |
|
PMVS |  | 34.80 23 | 39.19 324 | 35.53 327 | 50.18 337 | 29.72 362 | 30.30 359 | 59.60 353 | 66.20 358 | 26.06 354 | 17.91 357 | 49.53 351 | 3.12 363 | 74.09 354 | 18.19 355 | 49.40 341 | 46.14 350 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ANet_high | | | 46.22 321 | 41.28 326 | 61.04 335 | 39.91 361 | 46.25 354 | 70.59 350 | 76.18 354 | 58.87 345 | 23.09 355 | 48.00 352 | 12.58 358 | 66.54 355 | 28.65 352 | 13.62 355 | 70.35 347 |
|
MVE |  | 35.65 22 | 33.85 325 | 29.49 330 | 46.92 338 | 41.86 360 | 36.28 358 | 50.45 354 | 56.52 360 | 18.75 357 | 18.28 356 | 37.84 353 | 2.41 364 | 58.41 356 | 18.71 354 | 20.62 353 | 46.06 351 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 32.70 326 | 32.39 328 | 33.65 340 | 53.35 357 | 25.70 361 | 74.07 347 | 53.33 361 | 21.08 355 | 17.17 358 | 33.63 356 | 11.85 359 | 54.84 357 | 12.98 356 | 14.04 354 | 20.42 354 |
|
EMVS | | | 31.70 327 | 31.45 329 | 32.48 341 | 50.72 358 | 23.95 362 | 74.78 346 | 52.30 362 | 20.36 356 | 16.08 359 | 31.48 357 | 12.80 357 | 53.60 358 | 11.39 357 | 13.10 357 | 19.88 355 |
|
tmp_tt | | | 41.54 323 | 41.93 325 | 40.38 339 | 20.10 363 | 26.84 360 | 61.93 352 | 59.09 359 | 14.81 358 | 28.51 353 | 80.58 323 | 35.53 342 | 48.33 359 | 63.70 296 | 13.11 356 | 45.96 352 |
|
wuyk23d | | | 14.10 329 | 13.89 332 | 14.72 342 | 55.23 356 | 22.91 363 | 33.83 356 | 3.56 364 | 4.94 359 | 4.11 360 | 2.28 362 | 2.06 365 | 19.66 360 | 10.23 358 | 8.74 358 | 1.59 358 |
|
test123 | | | 9.07 331 | 11.73 334 | 1.11 343 | 0.50 365 | 0.77 365 | 89.44 300 | 0.20 366 | 0.34 361 | 2.15 362 | 10.72 361 | 0.34 366 | 0.32 361 | 1.79 360 | 0.08 360 | 2.23 356 |
|
testmvs | | | 9.92 330 | 12.94 333 | 0.84 344 | 0.65 364 | 0.29 366 | 93.78 249 | 0.39 365 | 0.42 360 | 2.85 361 | 15.84 360 | 0.17 367 | 0.30 362 | 2.18 359 | 0.21 359 | 1.91 357 |
|
uanet_test | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
cdsmvs_eth3d_5k | | | 21.43 328 | 28.57 331 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 95.93 137 | 0.00 362 | 0.00 363 | 97.66 69 | 63.57 234 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
pcd_1.5k_mvsjas | | | 5.92 333 | 7.89 336 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 71.04 192 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet-low-res | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uncertanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
Regformer | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
ab-mvs-re | | | 8.11 332 | 10.81 335 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 97.30 91 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
RE-MVS-def | | | | 91.18 80 | | 97.76 73 | 76.03 254 | 96.20 174 | 95.44 162 | 80.56 211 | 90.72 87 | 97.84 62 | 73.36 170 | | 91.99 72 | 96.79 91 | 97.75 103 |
|
IU-MVS | | | | | | 99.03 13 | 85.34 47 | | 96.86 41 | 92.05 15 | 98.74 1 | | | | 98.15 2 | 98.97 15 | 99.42 9 |
|
save fliter | | | | | | 98.24 52 | 83.34 89 | 98.61 23 | 96.57 79 | 91.32 18 | | | | | | | |
|
test0726 | | | | | | 99.05 10 | 85.18 51 | 99.11 8 | 96.78 44 | 88.75 47 | 97.65 6 | 98.91 3 | 87.69 18 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 117 |
|
test_part2 | | | | | | 98.90 17 | 85.14 57 | | | | 96.07 17 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 100 | | | | 97.54 117 |
|
sam_mvs | | | | | | | | | | | | | 75.35 147 | | | | |
|
MTGPA |  | | | | | | | | 96.33 111 | | | | | | | | |
|
MTMP | | | | | | | | 97.53 76 | 68.16 356 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 96.00 21 | 99.03 11 | 98.31 58 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 42 | 99.00 13 | 98.57 41 |
|
test_prior4 | | | | | | | 82.34 108 | 97.75 61 | | | | | | | | | |
|
test_prior2 | | | | | | | | 98.37 27 | | 86.08 93 | 94.57 38 | 98.02 49 | 83.14 44 | | 95.05 35 | 98.79 23 | |
|
æ–°å‡ ä½•2 | | | | | | | | 96.42 161 | | | | | | | | | |
|
旧先验1 | | | | | | 97.39 88 | 79.58 178 | | 96.54 84 | | | 98.08 46 | 84.00 36 | | | 97.42 74 | 97.62 114 |
|
原ACMM2 | | | | | | | | 96.84 132 | | | | | | | | | |
|
test222 | | | | | | 96.15 108 | 78.41 206 | 95.87 190 | 96.46 94 | 71.97 306 | 89.66 101 | 97.45 82 | 76.33 124 | | | 98.24 54 | 98.30 59 |
|
segment_acmp | | | | | | | | | | | | | 82.69 53 | | | | |
|
testdata1 | | | | | | | | 95.57 201 | | 87.44 74 | | | | | | | |
|
plane_prior7 | | | | | | 91.86 227 | 77.55 232 | | | | | | | | | | |
|
plane_prior6 | | | | | | 91.98 222 | 77.92 224 | | | | | | 64.77 229 | | | | |
|
plane_prior4 | | | | | | | | | | | | 94.15 168 | | | | | |
|
plane_prior3 | | | | | | | 77.75 228 | | | 90.17 31 | 81.33 188 | | | | | | |
|
plane_prior2 | | | | | | | | 97.18 101 | | 89.89 33 | | | | | | | |
|
plane_prior1 | | | | | | 91.95 225 | | | | | | | | | | | |
|
plane_prior | | | | | | | 77.96 221 | 97.52 78 | | 90.36 30 | | | | | | 82.96 210 | |
|
n2 | | | | | | | | | 0.00 367 | | | | | | | | |
|
nn | | | | | | | | | 0.00 367 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 352 | | | | | | | | |
|
test11 | | | | | | | | | 96.50 90 | | | | | | | | |
|
door | | | | | | | | | 80.13 351 | | | | | | | | |
|
HQP5-MVS | | | | | | | 78.48 202 | | | | | | | | | | |
|
HQP-NCC | | | | | | 92.08 217 | | 97.63 67 | | 90.52 27 | 82.30 176 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 217 | | 97.63 67 | | 90.52 27 | 82.30 176 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 120 | | |
|
HQP3-MVS | | | | | | | | | 94.80 196 | | | | | | | 83.01 208 | |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 224 | | | | |
|
NP-MVS | | | | | | 92.04 221 | 78.22 212 | | | | | 94.56 159 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 81.74 126 | 86.80 319 | | 80.65 208 | 85.65 140 | | 74.26 158 | | 76.52 216 | | 96.98 140 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 240 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 232 | |
|
Test By Simon | | | | | | | | | | | | | 71.65 185 | | | | |
|